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Lecture 1: Introduction and Background

(Tuesday, Sep 7, 1993)

Algorithms and Data Structures: The study of data structures and the algorithms that manip-

ulate them is among the most fundamental topics in computer science. If you think about,

deep down most of what computer systems spend their time doing is storing, accessing, and

manipulating data in one form or another. Much of the �eld of computer science is subdivided

into various applications areas, such as operating systems, databases, compilers, computer

graphics, arti�cial intelligence. In each area, much of the content deals with the questions of

how to store, access, and manipulate the data of importance for that area. However, central to

all these applications are these three basic tasks. In this course we will deal with the �rst two

tasks of storage and access at a very general level. (The last issue of manipulation is further

subdivided into two areas, manipulation of numeric or 
oating point data, which is the subject

of numerical analysis, and the manipulation of discrete data, which is the subject of discrete

algorithm design.)

What is a data structure? Whenever we deal with the representation of real world objects in

a computer program we must �rst consider each of the following issues:

(1) the manner in which real world objects are modeled as mathematical entities,

(2) the set of operations that we de�ne over these mathematical entities,

(3) the manner in which these entities are stored in a computer's memory (e.g. how they are

aggregated as �elds in records and how these records are arranged in memory, perhaps as

arrays or as linked structures), and

(4) the algorithms that are used to perform perform these operations.

Note that items (1) and (2) above are essentially mathematical issues dealing only with the

\what" of a data structure, whereas items (3) and (4) are implementation issues dealing with

the \how". Properly, items (1) and (2) are used to encapsulate the notion of an abstract data

type (or ADT), that is, a domain of mathematically de�ned objects and a set of functions or

operations that can be applied to the objects of this domain. In contrast the �eld of data

structures is the study of items (3) and (4), that is, how these abstract mathematical objects

are implemented. (Note that the entire notion of object oriented programming is simply the

discipline of designing programs by breaking them down to their constituent ADT's, and then

implementing them using data structures.)

For example, you should all be familiar with the concept of a stack from basic programming

classes. This a list of items where new items can be added to the stack by either pushing them

on top of the stack, or popping the top item o� the top of the stack. A stack is an ADT. The

issue of how the stack is to be implemented, either as an array with a top pointer, or as a

linked list, is a data structures problem.
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Course Overview: In this course we will consider many di�erent abstract data types, and we will

consider many di�erent data structures for storing each type. Note that there will generally

be many possible data structures for each abstract type, and there will not generally be a

\best" one for all circumstances. It will be important for you as a designer of data structures

to understand each structure well enough to know the circumstances where one data structure

is to be prefered over another.

How important is the choice of a data structure? There are numerous examples from all areas

of computer science where a relatively simple application of good data structure techniques

resulted in massive savings in computation time and, hence, money.

Perhaps a more important aspect of this course is a sense of how to design new data structures.

The data structures we will cover in this course have grown out of the standard applications of

computer science. But new applications will demand the creation of new domains of objects

(which we cannot foresee at this time) and this will demand the creation of new data structures.

It will fall on the students of today to create these data structures of the future. We will see

that there are a few important elements which are shared by all good data structures. We will

also discuss how one can apply simple mathematics and common sense to quickly ascertain

the weaknesses or strenghts of one data structure relative to another.

Algorithmics: It is easy to see that the topics of algorithms and data structures cannot be separated

since the two are inextricably intertwined. So before we begin talking about data structures, we

must begin with a quick review of the basics of algorithms, and in particular, how to measure

the relative e�ciency of algorithms. The main issue in studying the e�ciency of algorithms is

the amount of resources they use, usually measured in either the space or time used. There are

usually two ways of measuring these quantities. One is a mathematical analysis of the general

algorithm being used (called asymptotic analysis) which can capture gross aspects of e�ciency

for all possible inputs but not exact execution times, and the second is an empirical analysis

of an actual implementation to determine exact running times for a sample of speci�c inputs.

In class we will deal mostly with the former, but the latter is important also.

There is another aspect of complexity, that we will not discuss at length (but needs to be

considered) and that is the complexity of programming. Some of the data structures that

we will discuss will be quite simple to implement and others much more complex. The issue

of which data structure to choose may be dependent on issues that have nothing to do with

run-time issues, but instead on the software engineering issues of what data structures are

most 
exible, which are easiest to implement and maintain, etc. These are important issues,

but we will not dwell on them excessively, since they are really outside of our scope.

For now let us concentrate on running time. (What we are saying can also be applied to space,

but space is somewhat easier to deal with than time.) Given a program, its running time is not

a �xed number, but rather a function. For each input (or instance of the data structure), there

may be a di�erent running time. Presumably as input size increases so does running time, so

we often describe running time as a function of input/data structure size n, T (n). We want

our notion of time to be largely machine-independent, so rather than measuring CPU seconds,

it is more common to measure basic \steps" that the algorithm makes (e.g. the number of

statements of C code that the algorithm executes). This will not exactly predict the true

running time, since some compilers do a better job of optimization than others, but its will

get us within a small constant factor of the true running time most of the time.

Even measuring running time as a function of input size is not really well de�ned, because, for

example, it may be possible to sort a list that is already sorted, than it is to sort a list that is

randomly permuted. For this reason, we usually talk about worst case running time. Over all

possible inputs of size n, what is the maximum running time. It is often more reasonable to

consider expected case running time where we average over all inputs of size n. We will usually
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do worst-case analysis, except where it is clear that the worst case is signi�cantly di�erent

from the expected case.

Asymptotics: There are particular bag of tricks that most algorithm analyzers use to study the

running time of algorithms. For this class we will try to stick to the basics. The �rst element

is the notion of asymptotic notation. Suppose that we have already performed an analysis of

an algorithm and we have discovered through our analysis that

T (n) = 13n3 + 42n2 + 2n logn+ 3
p
n:

(This function was just made up as an illustration.) Unless we say otherwise, assume that

logarithms are taken base 2. When the value n is small, we do not worry too much about this

function since it will not be too large, but as n increases in size, we will have to worry about the

running time. Observe that as n grows larger, the size of n3 is MUCH larger than n2, which is

much larger than n logn (note that 0 < logn < n whenever n > 1) which is much larger thanp
n. Thus the n3 term dominates for large n. Also note that the leading factor 13 is a constant.

Such constant factors can be a�ected by the machine speed, or compiler, so we will ignore it

(as long as it is relatively small). We could summarize this function succinctly by saying

that the running time grows \roughly on the order of n3", and this is written notationally as

T (n) 2 O(n3).

Informally, the statement T (n) 2 O(n3) means, \when you ignore constant multiplicative

factors, and consider the leading (i.e. fastest growing) term, you get n3". This intuition can

be made more formal, however.

De�nition: T (n) 2 O(f(n)) if there exists constants c and n0 (which do NOT depend on n)

such that 0 � T (n) � cf(n) for all n � n0.

Alternative De�nition: T (n) 2 O(f(n)) if limn!1 T (n)=f(n) is either zero or a constant

(but NOT 1).

Some people prefer the alternative de�nition because it is a little easier to work with.

For example, we said that the function above T (n) 2 O(n3). Using the alternative de�nition

we have

lim
n!1

T (n)

f(n)
= lim

n!1

13n3 + 42n2 + 2n logn+ 3
p
n

n3

= lim
n!1

�
13 +

42

n
+
2 logn

n2
+

3

n2:5

�
= 13:

Since this is a constant, we can assert that T (n) 2 O(n3).

The O notation is good for putting an upper bound on a function. Notice that if T (n) is O(n3)

it is also O(n4), O(n5), etc. since the limit will just go to zero. To get lower bounds we use

the notation 
.

De�nition: T (n) 2 
(f(n)) if there exists constants c and n0 (which do NOT depend on n)

such that 0 � cf(n) � T (n) for all n � n0.

Alternative De�nition: T (n) 2 
(f(n)) if limn!1 T (n)=f(n) is either a constant or 1
(but NOT zero).

De�nition: T (n) 2 �(f(n)) if T (n) 2 O(f(n) and T (n) 2 
(f(n)).
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Alternative De�nition: T (n) 2 �(f(n)) if limn!1 T (n)=f(n) is a nonzero constant (NOT

zero or 1).

We will try to avoid getting bogged down in this notation, but it is important to know the

de�nitions. To get a feeling what various growth rates mean here is a summary.

T (n) 2 O(1) : Great. This means your algorithm takes only constant time. You can't beat

this.

T (n) 2 O(log logn) : Super fast! For all intents this is as fast as a constant time.

T (n) 2 O(logn) : Very good. This is called logarithmic time. This is what we look for for

most data structures. Note that log 1000 � 10 and log 1; 000; 000� 20 (log's base 2).

T (n) 2 O((logn)k) : (where k is a constant). This is called polylogarithmic time. Not bad,

when simple logarithmic is not achievable.

T (n) 2 O(n) : This is called linear time. It is about the best that one can hope for if your

algorithm has to look at all the data. In data structures the game is usually to avoid this

though.

T (n) 2 O(n logn) : This one is famous, because this is the time needed to sort a list of numbers.

It arises in a number of other problems as well.

T (n) 2 O(n2) : Quadratic time. Okay if n is in the thousands, but rough when n gets into the

millions.

T (n) 2 O(nk) : (where k is a constant). This is called polynomial time. Practical if k is not

too large.

T (n) 2 O(2n); O(nn); O(n!) : Exponential time. Algorithms taking this much time are only

practical for the smallest values of n (e.g. n � 10 or maybe n � 20).

Lecture 2: Mathematical Prelimaries

(Thursday, Sep 9, 1993)
Read: Chapt 1 of Weiss and skim Chapt 2.

Mathematics: Although this course will not be a \theory" course, it is important to have a basic

understanding of the mathematical tools that will be needed to reason about the data struc-

tures and algorithms we will be working with. A good understanding of mathematics helps

greatly in the ability to design good data structures, since through mathematics it is possible

to get a clearer understanding of the nature of the data structures, and a general feeling for

their e�ciency in time and space. Last time we gave a brief introduction to asymptotic (big-

\Oh" notation), and later this semester we will see how to apply that. Today we consider a

few other preliminary notions: summations and proofs by induction.

Summations: Summations are important in the analysis of programs that operate iteratively. For

example, in the following code fragment

for i = 1 to n do begin

...

end;

Where the loop body (the \...") takes f(i) time to run the total running time is given by the

summation

T (n) =

nX
i=1

f(i):
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Observe that nested loops naturally lead to nested sums. Even programs that operate re-

cursively, the standard methods for analyzing these programs is to break them down into

summations, and then solve the summation.

Solving summations breaks down into two basic steps. First simplify the summation as much

as possible by removing constant terms (note that a constant here means anything that is

independent of the loop variable, i) and separating individual terms into separate summations.

Then each of the remaining simpli�ed sums can be solved. Some important sums to know are

nX
i=1

1 = n the constant sum

nX
i=1

i =
n(n+ 1)

2
the linear sum

nX
i=1

1

i
= lnn+ O(1) harmonic sum

nX
i=0

c
i =

c
n+1 � 1

c� 1
c 6= 1:

The last summation is probably the most important one for data structures. For example,

suppose you want to know how many nodes are in a complete 3-ary tree of height h. (We have

not given a formal de�nition of tree's yet, but consider the �gure below.

Figure 1: Complete 3-ary tree of height 2.

The height of a tree is the maximum number of edges from the root to a leaf.) One way to

break this computation down is to look at the tree level by level. At the top level (level 0)

there is 1 node, at level 1 there are 3 nodes, at level 2, 9 nodes, and in general at level i there

3i nodes. To �nd the total number of nodes we sum over all levels, 0 through h giving:

hX
i=0

3i =
3h+1 � 1

2
2 O(3h):

Conversely, if someone told you that he had a 3-ary tree with n nodes, you could determine

the height by inverting this. Since n = (3(h+1) � 1)=2 then we have

3(h+1) = (2n+ 1)

implying that

h = (log3(2n+ 1)) � 1 2 O(logn):

Another important fact to keep in mind about summations is that they can be approximated

using integrals.
bX

i=a

f(i) �
Z b

x=a

f(x)dx:
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Given an obscure summation, it is often possible to �nd it in a book on integrals, and use the

formula to approximate the sum.

Recurrences: A second mathematical construct that arises when studying recursive programs (as

are many described in this class) is that of a recurrence. A recurrence is a mathematical

formula that is de�ned recursively. For example, let's go back to our example of a 3-ary tree

of height h. There is another way to describe the number of nodes in a complete 3-ary tree.

If h = 0 then the tree consists of a single node. Otherwise that the tree consists of a root

node and 3 copies of a 3-ary tree of height h� 1. This suggests the following recurrence which

de�nes the number of nodes N (h) in a 3-ary tree of height h:

N (0) = 1

N (h) = 3N (h� 1) + 1 if h � 1.

Although the de�nition appears circular, it is well grounded since we eventually reduce to

N (0).

N (1) = 3N (0) + 1 = 3 � 1 + 1 = 4

N (2) = 3N (1) + 1 = 3 � 4 + 1 = 13

N (3) = 3N (2) + 1 = 3 � 13 + 1 = 40;

and so on.

There are two common methods for solving recurrences. One (which works well for simple

regular recurrences) is to repeatedly expand the recurrence de�nition, eventually reducing it

to a summation, and the other is to just guess an answer and use induction. Here is an example

of the former technique.

N (h) = 3N (h� 1) + 1

= 3(3N (h� 2) + 1) + 1 = 9N (h� 2) + 3 + 1

= 9(3N (h� 3) + 1) + 3 + 1 = 27N (h� 3) + 9 + 3 + 1

...

= 3kN (h� k) + (3k�1 + : : :+ 9 + 3 + 1)

When does this all end? We know that N (0) = 1, so let's set k = h implying that

N (h) = 3hN (0) + (3h�1 + : : :+ 3 + 1) = 3h + 3h�1 + : : :+ 3 + 1 =

hX
i=0

3i:

This is the same thing we saw before, just derived in a di�erent way.

Proofs by Induction: The last mathematical technique of importance is that of proofs by induc-

tion. Induction proofs are critical to all aspects of computer science and data structures, not

just e�ciency proofs. In particular, virtually all correctness arguments are based on induction.

From courses on discrete mathematics you have probably learned about the standard approach

to induction. You have some theorem that you want to prove that is of the form, \For all

integers n � 1, blah, blah, blah", where the statement of the theorem involves n in some way.

The idea is to prove the theorem for some basis set of n-values (e.g. n = 1 in this case), and
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then show that if the theorem holds when you plug in a speci�c value n� 1 into the theorem

then it holds when you plug in n itself. (You may be more familiar with going from n to n+1

but obviously the two are equivalent.)

In data structures, and especially when dealing with trees, this type of induction is not partic-

ularly helpful. Instead a slight variant called strong induction seems to be more relevant. The

idea is to assume that if the theorem holds for ALL values of n that are strictly less than n

then it is true for n. As the semester goes on we will see examples of strong induction proofs.

Let's go back to our previous example problem. Suppose we want to prove the following

theorem.

Theorem: Let T be a complete 3-ary tree with n � 1 nodes. Let H(n) denote the height of

this tree. Then

H(n) = (log3(2n+ 1))� 1:

Basis Case: (Take the smallest legal value of n, n = 1 in this case.) A tree with a single node

has height 0, so H(1) = 0. Plugging n = 1 into the formula gives (log3(2 � 1 + 1)) � 1

which is equal to (log3 3)� 1 or 0, as desired.

Induction Step: We want to prove the theorem for the speci�c value n > 1. Note that we

cannot apply standard induction here, because there is NO complete 3-ary tree with 2

nodes in it (the next larger one has 4 nodes).

We will assume the induction hypothesis, that for all smaller n0, 1 � n
0
< n, H(n0) is

given by the formula above. (But we do not know that the formula holds for n itself.)

Let's consider a complete 3-ary tree with n > 1 nodes. Since n > 1, it must consist of

a root node plus 3 identical subtrees, each being a complete 3-ary tree of n0 < n nodes.

How many nodes are in these subtrees? Since they are identical, if we exclude the root

node, each subtree has one third of the remaining number nodes, so n0 = (n�1)=3. Since

n
0
< n we can apply the induction hypothesis. This tells us that

H(n0) = (log3(2n
0 + 1))� 1

= (log3(2(n� 1)=3 + 1)) � 1

= (log3(2(n� 1) + 3)=3)� 1

= (log3(2n+ 1)=3)� 1

= log3(2n+ 1)� log3 3� 1

= log3(2n+ 1)� 2

Note that the height of the entire tree is one more than the heights of the subtrees so

H(n) = H(n0) + 1. Thus we have:

H(n) = log3(2n+ 1)� 2 + 1 = log3(2n+ 1)� 1;

as desired.

Lecture 3: Lists and Trees

(Tuesday, Sep 14, 1993)
Reading: Review Chapt. 3 in Weiss. Read Chapt 4.
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Lists: A list is an ordered sequence of elements ha1; a2; : : : ; ani. The size or length of such a list

is n. A list of size 0 is an empty list or null list. Lists of various types are among the most

primitive abstract data types, and because these are taught in virtually all basic programming

classes we will not cover them in detail here.

We will not give an enumeration of standard list operations, since there are so many possible

operations of interest. Examples include the following. The type LIST is a data type for a list.

L = create list(): A constructor that returns an empty list L.

delete list(L): A destructor that destroys a list L returning any allocated space back to the

system.

x = find kth(L, k): Returns the k-th element of list L (and produces an error if k is out of

range). This operation might instead produce a pointer to the k-th element.

L3 = concat(L1, L2): Returns the concatenation of L1 and L2. This operation may be either

be destructive, meaning that it destroys the lists L1 and L2 in the process or it may be

nondestructive meaning that these lists are una�ected.

Examples of other operations include insertion of new items, deletion of items, operations to

�nd predecessors and successors in the list, operations to print a list, etc.

There are two commonways to implement lists. The �rst is by storing elements contiguously in

an array. This implementation is quite e�cient for certain types of lists, where most accesses

occur either at the head or tail of the list, but su�ers from the de�ciency that it is often

necessary to overestimate the amount of storage needed for the list (since it is not easy to

just \tack on" additional array elements) resulting in poor space utilization. It is also harder

to perform insertions into the middle of such a list since space must be made for any new

elements by relocating other elements in the list.

The other method is by storing elements in some type of linked list. This creates a additional

space overhead for storing pointers, but alleviates the problems of poor space utilization and

dynamic insertions and deletions. Usually the choice of array versus linked implementation

depends on the degree of dynamics in the list. If updates are rare, array implementation is

usually prefered, and if updates are common then linked implementation is prefered.

There are two very special types of lists, stacks and queues. In stacks, insertions and deletions

occur from only one end (called the top of the stack). The insertion operation is called push

and the deletion operation is called pop. In a queue insertions occur only at one end (called

the tail or rear) and deletions occur only at the other end (called the head or front). The

insertion operation for queues is called enqueue and the deletion operation is called dequeue.

Both stacks and queues can be implemented e�ciently in arrays or as linked lists. See Chapt.

3 of Weiss for implementation details.

Trees: Trees and their variants are among the most common data structures. In its most general

form, a free tree is a connected, undirected graph that has no cycles. Since we will want to

use our trees for applications in searching, it will be more meaningful to assign some sense of

order and direction to our trees.

Formally a tree (actually a rooted tree) is a �nite set T of zero or more items called nodes. If

there are no items the tree is empty, and otherwise there is a distinguished node called the

root and zero or more (sub)trees T1; T2; : : : ; Tk, each of whose roots are connected with r by

an edge. (Observe that this de�nition is recursive, as is almost everything that is done with

trees.) The root of each subtree T1; : : : ; Tk is said to be a child of r, and r is the parent of

each root. The roots of the subtrees are siblings of one another. See the �gure below, left as

an illustration of the de�nition, and right for an example of a tree.
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T1 T2 Tk.  .  .

r
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A

Figure 2: Trees.

If there is an order among the Ti's, then we say that the tree is an ordered tree. The degree of

a node in a tree is the number of children it has. A leaf is a node of degree 0. A path between

two nodes is a sequence of nodes n1; n2; : : : ; nk such that ni is a parent of ni+1. The length

of a path is the number of edges on the path (in this case k � 1). There is a path of length 0

from every node to itself.

The depth of a node in the tree is the length of the unique path from the root to that node.

The root is at depth 0. The height of a node is the length of the longest path from the node

to a leaf. Thus all leaves are at height 0.

If there is a path from n1 to n2 we say that n2 is a descendants of n1 (a proper descendent if

n2 6= n1). Similarly, n1 is an ancestor of n2.

Implementation of Trees: One di�culty with representing general trees is that since there is no

bound on the number of children a node can have, there is no obvious bound on the size of a

given node (assuming each node must store pointers to all its children). The more common

representation of general trees is to store two pointers with each node: the first child and

the next sibling. The �gure below illustrates how the above tree would be represented using

this technique.

B C

F

I

G

H

E

D

A

First Child

Next Sibling

Figure 3: Binary representation of general trees.

Trees arise in many applications in which hierarchies exist. Examples include the Unix �le

system, corporate managerial structures, and anything that can be described in \outline form"

(like the chapters, sections, and subsections of a user's manual). One special case of trees will

be very important for our purposes, and that is the notion of a binary tree.

Binary Trees: Our text de�nes a binary tree as a tree in which each node has no more than 2

children. Samet points out that this de�nition is subtly 
awed. Samet de�nes a binary tree

to be a �nite set of nodes which is either empty, or contains a root node and two disjoint

binary trees, called the left and right subtrees. The di�erence in the two de�nitions is subtle
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but important. There is a distinction between a tree with a single left child, and one with a

single right child (whereas in our normal de�nition of tree we would not make any distinction

between the two).

The typical representation of a tree as a C data structure is given below. The element �eld

contains the data for the node and is of some unspeci�ed type: element type. This type

would be �lled in in the actual implementation using the tree. In languages like C++ the

element type can be left unspeci�ed (resulting in a template structure). When we need to be

concrete we will often assume that element �elds are just integers. The left �eld is a pointer

to the left child (or NULL if this tree is empty) and the right �eld is analogous for the right

child.

typedef struct tree_node *tree_ptr;

struct tree_node {

element_type element; // data item

tree_ptr left; // left child

tree_ptr right; // right child

end;

typedef tree_ptr TREE; // tree is pointer to root

Binary trees come up in many applications. One that we will see a lot of this semester

is for representing ordered sets of objects, a binary search tree. Another one that is used

often in compiler design is expression trees which are used as an intermediate representation

for expressions when a compiler is parsing a statement of some programming language. For

example, in the �gure below, we show an expression tree for the expression (a+ b � c) + ((d �
e+ f) � g).

+

d

a *

b c *

e

+

*

f

g

+

Figure 4: Expression tree.

Traversals: There are three natural ways of visiting or traversing every node of a tree, preorder,

postorder, and (for binary trees) inorder. Let T be a tree whose root is r and whose subtrees

are T1; T2; : : : ; Tm for m � 0.

Preorder: Visit the root r, then recursively do a preorder traversal of T1; T2; : : : ; Tk. For

example: h+;+; a; �; b; c; �;+; �; d; e; f; gi for the tree shown above.
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Postorder: Recursively do a postorder traversal of T1; T2; : : : ; Tk and then visit r. Example:

ha; b; c; �;+; d; e; �; f;+; g; �;+i. (Note that this is NOT the same as reversing the preorder

traversal.)

Inorder: (for binary trees) Do an inorder traversal of TL, visit r, do an inorder traversal of

TR. Example: ha;+; b; �; c;+; d;�; e;+; f; �; gi.

Note that theses traversal correspond to the familiar pre�x, post�x, and in�x notations for

arithmetic expressions.

Preorder arises in game-tree applications in AI, where one is searching a tree of possible

strategies by depth-�rst search. Postorder arises naturally in code generation in compilers.

Inorder arises naturally in binary search trees which we will see more of.

These traversals are most easily coded using recursion. If recursion is not desired (for greater

e�ciency) it is possible to use a stack to implement the traversal. Either way the algorithm

is quite e�cient in that its running time is proportional to the size of the tree. That is, if the

tree has n nodes then the running time of these traversal algorithms are all O(n).

Lecture 4: Binary Search Trees

(Thursday, Sep 16, 1993)
Reading: Chapt 4 of Weiss, through 4.3.6.

Searching: Searching is among the most fundamental problems in data structure design. We are

given a set of records R1; R2; : : : ; Rn (associated with distinct key values X1; X2; : : : ; Xn).

Given a search key x, we wish to determine whether the key x occurs in one of the records.

This problem has applications too numerous to mention. A well known example is that of a

symbol table in a compiler, where we wish to locate variable names in order to ascertain its

type.

Since the set of records will generally be rather static, but there may be many search requests,

we want to preprocess the set of keys so that searching will be as fast as possible. In addition

we may want a data structure which can process insertion and deletion requests.

A dictionary is a data structure which can process the following requests. There are a number

of additional operations that one may like to have supported, but these seem to be the core

operations. To simplify things, we will concentrate on only storing key values, but in most

applications we are storing not only the key but an associated record of information.

insert(x, T): Insert x into dictionary T . If x exists in T already, take appropriate action

(e.g. do nothing, return error status, increment a reference count). (Recall that we

assume that keys uniquely identify records.)

delete(x, T): Delete key x from dictionary T . If x does not appear in T then issue an error

message.

find(x, T): Is x a member of T? This query may return a simple True or False, or more

generally could return a pointer to the record if it is found.

Other operations that one generally would like to see in dictionaries include printing (print

all entries in sorted order), predecessor/successor queries (which key folows x), range queries

(report all keys between x1 and x2), and counting queries (how many keys lie between x1 and

x2?), and many others.

There are a number of ways of implementing dictionaries. We discuss some of these below.

11
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Sequential, Binary and Interpolation Search: The most naive idea is to simply store the keys

in a linear array and run sequentially through the list to search for an element. Although

this is simple, it is not very e�cient unless the list is very short. Given a simple unsorted list

insertion is very fast O(1) time (by appending to the end of the list). However searching takes

O(n) time in the worst case, and (under the assumption that each node is equally likely to

be sought) the average case running time is O(n=2) = O(n). Recall that the values of n we

are usually interested in run from thousands to millions. The logarithms of these values range

from 10 to 20, much less.

Of course, if you store the keys in sorted order by key value then you can reduce the expected

search time to O(logn) through the familier technique of binary search. Given that you want

to search for a key x in a sorted array, we access the middle element of the array. If x is less

than this element then recursively search the left sublist, if x is greater then recursively search

the right sublist. You stop when you either �nd the element or the sublist becomes empty.

It is a well known fact that the number of probes needed by binary search is O(logn). The

reason is quite simple, each probe eliminates roughly one half of the remaining items from

further consideration. The number of times you can \halve" a list of size n is lgn (lg means

log base 2).

Although binary search is fast, it is hard to dynamically update the list, since the list must be

maintained in sorted order. Naively, this would take O(n) time for insertion and deletion. To

�x this we can use binary trees.

Binary Search Trees: In order to provide the type of rapid access that binary search o�ers, but

at the same time allows e�cient insertion and deletion of keys, the simplest generalization is

called a binary search tree.

The idea is to store the records in the nodes of a binary tree, such that an inorder traversal

visits the nodes in increasing key order. In particular, if x is the key stored in the root node,

then the left subtree contains all keys that are less than x, and the right subtree stores all keys

that are greater than x. (Recall that we assume that keys are distinct.)

The search procedure is as follows. It returns NULL if the element cannot be found, otherwise

it returns a pointer to the node containing the desired key. The argument x is the key being

sought and T is a pointer to the root of the tree.

tree_ptr

find(element_type x, tree_ptr T) {

if (T == NULL) return(NULL); // item not found

else if (x < T->element) return(find(x, T->left));

else if (x > T->element) return(find(x, T->right));

else return(T);

}

Insertion: To insert a new element in a binary search tree, we essentially try to locate the key in

the tree. At the point that we \fall out" of the tree, we insert a new record as a leaf. It is

a little tricky to write this procedure recursively, because we need to \reach back" and alter

the pointer �elds to the prior node after falling out. To do this this routine returns a pointer

to the (sub)tree with the newly added element. The initial call to this routine should be: T =

insert(x, T).

tree_ptr

insert(element_type x, tree_ptr T) {

if (T == NULL) {

12
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new(T); // allocate a new node

T->element = x;

T->left = T->right = NULL;

}

else if (x < T->element) T->left = insert(x, T->left);

else if (x > T->element) T->right = insert(x, T->right);

// if already in tree do nothing

return(T);

}

6

8

4

2

1

3

6

8

4

2

1

3 5

Insert(5)

Figure 5: Binary tree insertion.

Note: It is usually the case that we are not just inserting a key, but in fact we are inserting an

entire record. In this case, the variable x is a constant pointer to the record, and comparisons

are actually made with x.key, or whatever the key value is in the record.

Deletion: Deletion is a little trickier. There are a few cases cases. If the node is a leaf, it can just

be deleted with no problem. If it has no left child (or equivalently no right child) then we

can just replace the node with it's left child (or right child). If both children are present then

things are trickier. The typical solution is to �nd the smallest element in the right subtree and

replace it with this element.

Delete(5)
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4

2

3

0 0

1 1

Figure 6: Binary tree deletion: One child.

To present the code we �rst give a function that returns a pointer to the element with the

minimum key value in a tree. This is found by just following left-links as far as possible. We

assume that T is not an empty tree (i.e. T != NULL). Also note that in C variables are passed
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Figure 7: Binary tree deletion: Two children.

by value, so modifyingT will have no e�ect on the actual argument. Although most procedures

on trees are more naturally coded recursively, this one is each enough to do iteratively.

tree_ptr

find_min(tree_ptr T) { // assume (T != NULL)

while (T->left != NULL) T = T->left;

return(T);

}

Now we can give the code for deletion.

tree_ptr

delete(element_type x, tree_ptr T) {

if (T == NULL)

output("Error - deletion of nonexistent element");

else {

if (x < T->element)

T->left = delete(x, T->left);

else if (x > T->element)

T->right = delete(x, T->right);

// (T->element == x)

else if (T->left && T->right) { // both children nonnull

repl = find_min(T->right); // find replacement

T->element = repl->element; // copy replacement

T->right = delete(T->element, T->right);

}

else { // zero or one child

tmp = T;

if (T->left == NULL) // left null: go right

repl = T->right;

if (T->right == NULL) // right null: go left

repl = T->left;

free(tmp); // delete T

return(repl);

}
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}

return(T);

}

Lecture 5: Binary and AVL Search Trees

(Tuesday, Sep 21, 1993)
Reading: Chapt 4 of Weiss, through 4.4.

Analysis of Binary Search Trees: It is not hard to see that all of the procedures find(), insert(),

and delete() run in time that is proportional to the height of the tree being considered. (The

delete() procedure may be the only really complex one, but note that when we make the

recursive call to delete the replacement element, it is at a lower level of the tree than the node

being replaced. Furthermore, it will have at most one child so it will be deleted without the

need for any further recursive calls.)

The question is, given a tree T containing n keys, what is the height of the tree? It is not hard

to see that in the worst case, if we insert keys in either strictly increasing or strictly decreasing

order, then the resulting tree will be completely degenerate, and have height n � 1. On the

other hand, following the analogy from binary search, if the �rst key to be inserted is the

median element of the set of keys, then it will nicely break the set of keys into two sets of sizes

roughly n=2 each. This will result in a nicely balanced tree, whose height will be O(logn).

1

2

3

4

Insert: 1, 2, 3, 4, ... Insert: 4, 2, 6, 1, 3, 5, 7, ...

3 5 7

4

2 6

1

Figure 8: Worst/Best cases for binary tree insertion.

Clearly the worst case performance is very bad, and the best case is very good. The hard

question is what should we really expect? The answer depends on the distribution of insertions

and deletions. Suppose we consider the case of insertions only and make the probabilistic

assumption that the order in which the keys are inserted is completely random (i.e. all possible

insertion orders are equally likely). Averaging over all possible n! insertion orders will give the

desired average case analysis.

Our textbook gives a careful analysis of the average case. We will give a more intuitive, but

less rigorous, explanation. First observe that the insertion of the �rst key x naturally splits

the keys into two groups. Those keys that are less than x will go into the left subtree and

those greater go into the right subtree. In the best case, x splits the list roughly as n=2 and

n=2 (actually b(n � 1)=2c and d(n� 1)=2e but let's think of n as being very large so 
oor's

and ceiling's will not make much di�erence in the general trends). The worst case is when x

is the smallest or largest, splitting the set into groups of sizes 0 and n � 1. In general, x will

split the remaining elements into two groups, one of size k � 1, and the other of size n � k

(where 1 � k � n).
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To estimate the average case, consider the middle possibility, that roughly n=4 of the keys

are split one way, and that the other roughly 3n=4 keys are split the other way. Further let's

assume that within each group, they continue to be split in the ratio (1=4) : (3=4). Clearly the

subtree containing the larger number of elements, 3n=4, will dominate the height of the tree.

Let H(n) denote the resulting height of the tree assuming this process. Observe that when

n = 1, the tree has height 0, and otherwise, we create one root node, and an edge to a tree

containing roughly 3n=4 elements.

H(1) = 0

H(n) = 1 +H(3n=4):

This recurrence is NOT well de�ned (since, 3n=4 is not always an integer), but we can ignore

this for the time being for this intuitive analysis. If we start expanding the recurrence we get

H(n) = 1 +H(3n=4)

= 2 +H(9n=16)

= 3 +H(27n=64)

= : : :

= k +H((3=4)kn):

By solving (3=4)kn = 1, for k, we get (4=3)k = n and taking logarithms base 2 on both sides

we get

k =
lgn

lg 4=3
:

Since lg(4=3) is about 0.415 this gives H(n) � 2:4 lgn. Thus we miss the optimal height by a

factor of about 2.4, but the important point is that asymptotically we are O(logn) in height.

Thus, on average we expect to have logarithmic height.

Interestingly this analysis breaks down if we are doing deletions. It can be shown that if we

alternate random insertions and random deletions (keeping the size of the tree steady around

n), then the height of the tree will settle down at O(
p
n), which is worse that O(logn). The

reason has to do with the fact that the replacement element was chosen in a skew manner

(always taking the minimum from the right subtree). This causes the trees to become left-

heavy. This can be �xed by alternating taking the replacement from the right subtree with

the left subtree resulting in a tree with expected height O(logn).

Balanced Binary Trees and AVL Trees: Although binary search trees provide a fairly simple

way to insert, delete, and �nd keys, they su�er from the problem that nonrandom insertion

sequences can produce unbalanced trees. A natural question to ask is whether by rebalancing

the tree can we restore balance, so that the tree always has O(logn) height.

The idea is at each node we need to keep track of balance information. When a node becomes

unbalanced, we must attempt to restore balance. How do we de�ne the balance information.

There are many di�erent ways. The important aspects of balance information is it should have

a little \leeway" so that the structure of the tree is not entirely �xed, but should not allow the

tree to become signi�cantly unbalanced.

One method for de�ning balancing information is to associate a balance factor based on the

heights of the two subtrees rooted at a node. The resulting search trees are called AVL trees

(named after the inventors, Adelson-Velskii and Landis). We maintain the following invariant:
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AVL invariant: For every node in the tree, the heights of its left subtree and right subtree

di�er by at most 1. (The height of a null subtree is de�ned to be -1 by convention.)

In order to maintain the balance condition we will add a new �eld, height to each node. (This

is actually overkill, since it is possible to store just the di�erence in heights, rather than the

height itself. The height of a typical tree can be assumed to be a short integer (since our trees

will be balanced), but the di�erence in heights an be represented using only 2 bits.)

Before discussing how we maintain this balance information we should consider the question

of whether this condition is strong enough to guarantee that the height of an AVL tree with n

nodes will be O(logn). To prove this, let's let N (h) denote the minimumnumber of nodes that

can be in an AVL tree of height h. We can generate a recurrence for N (h). Clearly N (0) = 1.

In general N (h) will be 1 (for the root) plus N (hL) and N (hR) where hL and hR are the

heights of the two subtrees. Since the overall tree has height h, one of the subtrees must have

height h � 1, suppose hL. To make the other subtree as small as possible we minimize its

height. It's height can be no smaller than h � 2 without violating the AVL condition. Thus

we have the recurrence

N (0) = 1

N (h) = N (h� 1) +N (h � 2) + 1:

This recurrence is not well de�ned since N (1) cannot be computed from these rules, so we add

the additional case N (1) = 2. This recurrence looks very similar to the Fibonacci recurrence

(F (h) = F (h � 1) + F (h � 2)). In fact, it can be argued (by a little approximating, a little

cheating, and a little constructive induction) that

N (h) �

 
1 +

p
5

2

!h

:

The quantity (1 +
p
5)=2 � 1:618 is the famous Golden ratio. Thus, by inverting this we

�nd that the height of the worst case AVL tree with n nodes is roughly log� n, where � is

the Golden ratio. This is O(logn) (because log's of di�erent bases di�er only by a constant

factor).

Insertion: The insertion routine for AVL trees is exactly the same as the insertion routine for

binary search trees, but after the insertion of the node in a subtree, we must ask whether the

subtree has become unbalanced. If so, we perform a rebalancing step.

Rebalancing itself is a purely local operation (that is, you only need constant time and actions

on nearby nodes), but requires a little careful thought. The basic operation we perform is

called a rotation. The type of rotation depends on the nature of the imbalance. Let us assume

that the insertion was into the left subtree, which became deeper (by one level) as a result.

(The right side case is symmetric.) Let us further assume that the insertion of the node was

into the left subtree of the left child. In other words: x < T->left->element. See the Single

Rotation �gure.

The operation performed in this case is a right single rotation. (Warning: Weiss calls this a

left rotation for some strange reason.) Notice that after this rotation has been performed, the

balance factors change. The heights of the subtrees of b and d are now both even with each

other.

For the other case, let us still assume that the insertion went into the left child, which become

deeper. Suppose however that the insertion went into the right subtree of the left child. In

other words, x > T->left->element. See the Double Rotation �gure.
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Figure 10: Double (left/right) rotation.
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If you attempt a single rotation here you will not change the balance factors. However, if you

perform a left rotation on the left-right grandchild (the right child of the left child), and then

a right rotation on the left child, you will restore balance. This operation is called a double

rotation. After the double rotation is completed the balance factors at nodes b and f depend

on the balance factor of the old node d. It is not hard to work out the details. Weiss handles

it by updating the heights as he performs the rotations.

Here is the insertion code in a little more detail. The calls S Rotate Left(T) and D Rotate Left(T)

do the rotations and update the balance factors. (Note that there is an error in the version

given in Weiss. This one is correct.)

AVLNode* S_Rotate_Left(AVLNode *k2)

{

AVLNode *k1; // left child of k2

k1 = k2->left;

k2->left = k1->right; // swap inner child

k1->right = k2; // bring k1 above k2

// update heights

k2->height = max(Height(k2->left), Height(k2->right)) + 1;

k1->height = max(Height(k1->left), Height(k1->right)) + 1;

return k1;

}

...see Weiss for other rotations...

AVLNode* Insert(int x, AVLNode *T)

{

if (T == NULL) { // empty tree: create new node

T = new AVLNode(x); // create node and initialize

}

else if (x < T->element) {

T->left = Insert(x, T->left); // insert recursively on left

// check height condition

if ((Height(T->left) - Height(T->right)) == 2) {

// rotate up the left side

if (x < T->left->element) // left-left insertion

T = S_Rotate_Left(T);

else // left-right insertion

T = D_Rotate_Left(T);

}

else // balance okay: update height

T->height = max(Height(T->left), Height(T->right)) + 1;

}

else if (x > T->element) {

...symmetric with left insertion...

}

else { // duplicate key insertion

output("Warning: duplicate insertion ignored.\n");

}

return T;

}
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Lecture 6: Splay Trees

(Thursday, Sep 23, 1993)
Reading: Chapt 4 of Weiss, through 4.5.

Splay Trees and Amortization: Recall that we have discussed binary trees, which have the nice

property that if keys are inserted and deleted randomly, then the expected times for insert,

delete, and member are O(logn). Because worst case scenarios can lead O(n) behavior per

operation, we were lead to the idea of the height balanced tree, or AVL tree, which guarantees

O(logn) time per operation because it maintains a balanced tree at all times. The basic

operations that AVL trees use to maintain balance are called rotations (either single or double).

The primary disadvantage of AVL trees is that we need to maintain balance information in

the nodes, and the routines for updating the AVL tree are somewhat more complicated that

one might generally like.

Today we will introduce a new data structure, called a splay tree. Like the AVL tree, a splay

tree is a binary tree, and we will use rotation operations to keep it in balance. Unlike an

AVL tree NO balance information needs to be stored. Because a splay tree has no balance

information, it is possible to create unbalanced splay trees. Splay trees have an interesting

self-adjusting nature to them. In particular, whenever the tree becomes unbalanced, accesses

to unbalanced portions of the tree will naturally tend to balance themselves out. This is really

quite clever, when you consider the fact that the tree has no idea whether it is balanced or

not! Thus, like an unbalanced binary tree, it is possible that a single access operation could

take as long as O(n) time (and NOT the O(logn) that we would like to see). However, the

nice property that splay trees have is the following:

Splay Tree Amortized Performance Bound: Starting with an empty tree, the total time

needed to perform any sequence of m insertion/deletion/�nd operations on a splay tree

is O(m logn), where n is the maximum number of nodes in the tree.

Thus, although any one operation may be quite costly, over any sequence of operations there

must be a large number of e�cient operations to balance out the few costly ones. In other

words, over the sequence of m operations, the average cost of an operation is O(logn).

This idea of arguing about a series of operations may seem a little odd at �rst. Note that this

is NOT the same as the average case analysis done for unbalaced binary trees. In that case,

the average was over the possible insertion orders, which an adversary could choose to make

arbitrarily bad. In this case, an adversary could pick the worst sequence imaginable, and it

would still be the case that the time to execute the entire sequence is O(m logn). Thus, unlike

the case of the unbalanced binary tree, where the adversary can force bad behavior time after

time, in splay trees, the adversary can force bad behavior only once in a while. The rest of the

time, the operations operate quite e�ciently. Observe that in many computational problems,

the user is only interested in executing an algorithm once. However, with data structures,

operations are typically performed over and over again, and we are more interested in the

overall running time of the algorithm than we are in the time of a single operation.

This type of analysis based on sequences of operations is called an amortized analysis. In

the business world, amortization refers to the process of paying o� a large payment over time

in small installments. Here we are paying for the total running time of the data structure's

algorithms over a sequence of operations in small installments (of O(logn) each) even though

each individual operation may cost much more. Amortized analyses are extremely important

in data structure theory, because it is often the case that if one is willing to give up the

requirement that EVERY access be e�cient, it is often possible to design data structures that

are more e�cient and simpler than ones that must perform well for every operation.
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Splay trees are potentially even better than standard search trees in one sense. They tend to

bring recently accessed data to up near the root, so over time, we may need to search LESS

than O(logn) time to �nd frequently accessed elements.

How they work: As we mentioned earlier, the key idea behind splay trees is that of self-organization.

Imagine that over a series of insertions and deletions, our tree has become rather unbalanced.

If it is possible to repeatedly access the unbalanced portion of the tree, then we are doomed

to poor performance. However, if we can perform an operation that takes unbalanced regions

of the tree, and makes them more balanced then that operation is of interest to us. As we

said before, since splay trees contain no balance information, we cannot selectively apply this

operation at positions of known imbalance. Rather we will perform it everywhere along the

access path to every node. This basic operation is called splaying. The word splaying means

\spreading", and the splay operation has a tendency to \mix up" trees and make them more

random. As we know, random binary trees tend towards O(logn) height, and this is why splay

trees seem to work as they do.

Basically all operations in splay trees begin with a call to a function splay(x,T) which will

reorganize the tree, bringing the node with key value x to the root of the tree, and generally

reorganizing the tree along the way. If x is not in the tree, either the node immediately

preceeding or following x will be brought to the root.

Here is how splay(x,T) works. We perform the normal binary search descent to �nd the node

v with key value x. If x is not in the tree, then let v be the last node visited before we fall out

of the tree. If v is the root then we are done. If v is a child of the root, then we perform a

single rotation (just as we did in AVL trees) at the root to bring v up to the root's position.

Otherwise, if v is at least two levels deep in the tree, we perform one of four possible double

rotations from v's grandparent. In each case the double rotations will have the e�ect of pulling

v up two levels in the tree. We then go up to the new grandparent and repeat the operation.

Eventually v will be carried to the top of the tree. In general there are many ways to rotate a

node to the root of a tree, but the choice of rotations used in splay trees is very important to

their e�ciency.

The rotations are selected as follows. Recall that v is the node containing x (or its immediate

predecessor or successor). Let p denote x's parent and let g denote x's grandparent. There

are 4 possible cases for rotations. If x is the left child of a right child, or the right child of a

left child, then we call this a zig-zag case. In this case we perform a double rotation to bring

x up to the top. See the �gure below. Note that this can be accomplished by performing one

single rotation at p and a second at g.

A

B C

D

p

x

g x

p g

A DB C

Figure 11: Zig-zag case.

Otherwise, if x is the left child of a left child or the right child of a right child we call this a

zig-zig case. In this case we perform a new type of double rotation, by �rst rotating at g and

then rotating at p. The result is shown in the �gure below.

A complete example of splay(T,3) is shown in the next �gure.
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Figure 12: Zig-zig case.
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Figure 13: Splay(T , 3).
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Splay Tree Operations: Let us suppose that we have implemented the splay operation. How can

we use this operation to help us perform the basic dictionary operations of insert, delete, and

�nd?

To �nd key x, we simply call splay(x,T). If x is in the tree it will be transported to the root.

(This is nice, because in many situations there are a small number of nodes that are repeatedly

being accessed. This operation brings the object to the root so the subsequent accesses will

be even faster. Note that the other data structures we have seen, repeated �nd's do nothing

to alter the tree's structure.)

Insertion of x operates by �rst calling splay(x,T). If x is already in the tree, it will be

transported to the root, and we can take appropriate action (e.g. error message). Otherwise,

the root will consist of some key w that is either the key immediately before x or immediately

after x in the set of keys. Let us suppose that it is the former case (w < x). Let R be the

right subtree of the root. We know that all the nodes in R are greater than x so we make a

new root node with x as data value, and make R its right subtree. The remaining nodes are

hung o� as the left subtree of this node. See the �gure below.

w

w

x
T splay(T,x) Final Tree

(assume w < x)

Figure 14: Insertion of x.

Finally to delete a node x, we execute splay(x,T) to bring the deleted node to the root. If it

is not the root we can take appropriate error action. Let L and R be the left and right subtrees

of the resulting tree. If L is empty, then x is the smallest key in the tree. We can delete x

by setting the root to the right subtree R, and deleting the node containing x. Otherwise, we

perform splay(x, L) to form a tree L0. Since all the nodes in this subtree are already less

than x, this will bring the predecessor w of x (i.e. it will bring the largest key in L to the

root of L, and since all keys in L are less than x, this will be the immediate predecessor of x).

Since this is the largest value in the subtree, it will have no right child. We then make R the

right subtree of the root of L0. We discard the node containing x. See the �gure below.

L R

x

w

x
T splay(T,x) Final Treesplay(L,x)

L’

R RL’

w

Figure 15: Deletion of x.

Lecture 7: Splay Trees, cont.

(Tuesday, Sep 27, 1993)
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Reading: Chapter 4 (up to Section 4.6) and Section 11.5.

Splay Trees Analysis: Last time we mentioned that splay trees were interesting because they tend

to remain balanced, even though they contain no balance information (and hence are called

self-adjusting trees). We want to prove the following claim today.

Theorem: The total time needed to perform m operations on a splay tree (starting with an

empty tree) of at most n nodes, is O(m logn).

Recall that the analysis is called an amortized analysis. To do the analysis we de�ne a potential

function �(T ) which intuitively is a measure of how unbalanced the tree is (low potential means

balanced, high potential means unbalanced). Let S(v) denote the size of the subtree rooted

at v, that is, the number of nodes including v that are descended from v. De�ne the rank of

node v to be R(v) = lgS(v). Thus leaves have rank 0, and the root of the tree has the largest

possible rank, lgn. Finally de�ne the potential of an entire tree to be

�(T ) =
X
v2T

R(v):

Each operation on a tree involves a constant amount of work and either one or two splays (one

for �nd and insert, and two for deletion). Since the splay's take the time, it su�ces to prove

their total time is O(m logn).

Let Tac(T ) denote the actual time needed of performing a single splay on tree T . Since splaying

basically performs a series of rotations (double or single) we will account for the total time for

the operation by counting the number of rotations performed (where double rotations count

twice). Let ��(T ) denote the change in potential from before the splay to after the splay.

De�ne the amortized cost of the splay operation to be the actual time plus the change in

potential.

Tam(T ) = Tac(T ) + ��(T ):

Thus, amortized cost, accounts for the amount of time spent in the operation as well as the

change in the balance of the tree. An operation that makes the tree more balanced will have

a smaller amortized than actual cost. An operation that takes makes the balance worse will

have a larger amortized than actual cost. Amortized cost allows us to take into account that

costly splay operations that improve the balance of the tree are actually desirable.

We will show

Lemma: The amortized time of each splay operation is O(logn).

Thus, even though the actual time may be as high as O(n), the change in potential (that is,

the improvement in balance of the tree) will be a su�ciently large negative value to cancel out

the large cost.

Suppose that we can prove the Lemma. How will this prove our main theorem that the series of

operations will have cost O(m logn)? Suppose we perform m operations to the tree, and hence

at most 2m splays are performed. Let T0 denote the initial (empty) tree, and let T1; T2; : : : ; Tm
denote the trees after each operation. If we can succeed in proving the lemma, then the total

amortized cost for all these operations will be O(m logn). Thus we will have

O(m logn) �
mX
i=1

Tam(Ti)

=

mX
i=1

(Tac(Ti) + (�(Ti)� �(Ti�1))
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=

mX
i=1

Tac(Ti) + (�(T1)� �(T0)) + (�(T2)��(T1)) + : : :

=

mX
i=1

Tac(Ti) + (�(Tm) ��(T0))

�
mX
i=1

Tac(Ti):

In the last step we can throw away the �(Tm)��(T0) term because the initial tree is empty,

and the potential is always nonegative, so this term is always nonnegative. Thus the actual

time is at most O(m logn).

Amortized Analysis of One Splay: Before proving the lemma, we will begin with a technical

result that we will need in the proof.

Claim: If a+ b � c and a; b > 0, then

lg a+ lg b � 2(lg c)� 2:

Proof: We use a basic mathematical fact that says that the arithmetic mean of two numbers

is always larger than their geometric mean. That is

p
ab �

a + b

2
:

From this we infer that
p
ab � c=2 and by squaring both sides we have ab � c

2
=4. Taking

lg on both sides gives the desired result.

Let's rephrase the main lemma in a more precise form.

Lemma: The amortized time to splay a tree of n nodes with root T at any node x is at most

3(R(T )� R(x)) + 1 2 O(logn).

Since potential is always nonnegative, R(T )�R(x) � R(T ) and since T has n nodes, R(T ) =

lgn, and the main lemma will follow. To prove this claim, let us consider each rotation one

by one and add them all up. We claim that the amortized cost of a single rotation is at most

3(R(T )�R(x))+ 1 and the amortized cost of each double rotation is at most 3(R(T )�R(x)).

There are 3 cases to be considered in the proof: the zig-case (single rotation), zig-zag case

(double rotation), and zig-zig case (double rotation). We will only show the zig-zag case,

because it is illustrative of the general technique. See Weiss (Chapt. 11) for more details.

Zig-zag case: Let p be x's parent, and g be x's grandparent. See the �gure below.

In this case, the only the ranks of vertices x, p and g change, and we perform 2 rotations.

So the amortized cost is

Tam = 2 +��

= 2 + (Rf (x)�Ri(x)) + (Rf (p)� Ri(p)) + (Rf (g) � Ri(g)):

First observe that x now has all the descendents g once had so Rf (x) = Ri(g), giving us

Tam = 2�Ri(x) + (Rf (p)� Ri(p)) +Rf (g):

Also before rotation x is a descedent of p, so Ri(p) � Ri(x) so

Tam � 2� 2Ri(x) + Rf (p) + Rf (g):
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A

B C

D

p

x

g x

p g

A DB C

Figure 16: Zig-zag case.

Similarly, after rotation, Sf (p)+Sf (g) � Sf (x), so we can take logs and apply the earlier

claim to see that Rf (p) + Rf (g) � 2Rf (x) � 2. Substituting gives

Tam � 2� 2Ri(x) + 2Rf(x) � 2

= 2(Rf (x)� Rf (x))

� 3(Rf (x)� Ri(x)):

as desired.

Now, to complete the proof of the claim, consider the series of rotations used to perform the

entire splay. Let R0(x) denote the rank of the original tree, and let R1(x); R2(x); : : : ; Rf (x)

denote the ranks of the node x in each of the successive trees after each rotation. If we sum

the amortized costs we get at most

3(R1(x)�R0(x)) + 3(R2(x)�R1(x)) + : : :3(Rf (x)�Rf�1(x)) + 1:

Note that the +1 appears only once, since it applies only to the single rotation after which x

is at the root. Also notice that alternating terms cancel. So we are left with a total amortized

cost of

3(Rf (x)�R0(x)) + 1

and since x is the root of the �nal tree this is

3(R(T ) �R(x)) + 1

in the original tree. Finally note that R(T ) = lgn, and R(x) � 0, so this whole expression is

O(logn). This completes the proof of the claim.

Intuition: Unfortunately this proof gives little intuition about why the particular set of rotations

used in splay trees work the way they do, and why splay trees do not tend to become badly

unbalanced.

Here is a somewhat more intuitive explanation. Let's consider a single zig-zag rotation. Label

the subtrees, A, B, C, and D, as in Weiss.

Note that in performing the rotation, subtrees B and C have moved up and subtree D has

moved down. This is good for the balance if B and C are large, but bad if D is large. Thus,

from the perspective of decrease in potential, we prefer that B and C be small, but D be large.

On the other hand, from the perspective of actual cost, we prefer that B and C be small, and

D be large. The reason is that, since the elements ofD are eliminated from the search, we have

fewer elements left to consider. Thus, what is good for balance (potential change) seems to be

bad for actual cost, and vice versa. The amortized analysis takes into account both elements,

and shows that it is never the case that BOTH are large.
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We can also see from this, that the choice of rotations should be made so that either (1)

the subtrees along which the search path leads are small (good for actual cost) or (2) the

subtrees on the search path are large, but their potential decreases signi�cantly (at least by a

constant). This explains why a series of single rotations does not work for splay trees. In any

single rotation, one subtree (the middle one) may be large, but does not move in the rotation

(so its potential does not decrease).

Lecture 8: Skip Lists

(Thursday, Sep 30, 1993)
Reading: Section 10.4.2 in Weiss, and Samet's notes Section 5.1.

Recap: So far we have seen three di�erent method for storing data in trees for fast access. Bi-

nary trees were simple, and worked well on average, but an adversary could make them run

very slowly. AVL trees guaranteed good performance, but were somewhat more complex to

implement. Splay trees provided an interesting alternative to AVL trees, which organized

themselves. A single operation might be costly but over any sequence of operations, the run-

ning time is guaranteed to be good. The splay tree analysis is an example of an amortized

analysis which seems to crop up in the study of many di�erent data structures.

Today we are going to continue our investigation of di�erent data structures for the manipu-

lation of a collection of keys. The data structure we will consider today is called a skip list. A

skip list is an interesting generalization of a linked list. As such, it keeps much of the simplicity

of linked lists, but has the e�cient O(logn) performance we see in balanced trees. Another

interesting feature of skip lists is that they are a randomized data structure. In other words,

we use a random number generator in creating these trees. We will show that skip lists are

e�cient in the expected case. However, unlike unbalanced binary search trees, the expectation

has nothing to do with the keys being inserted. It is only a�ected by the random number

generator. Hence an adversary cannot pick a sequence of operations for our tree that will

always be bad. And in fact, the probability that skip lists perform badly is VERY small.

Perfect Skip Lists: Skip lists began with the idea, \how can we make sorted linked lists better?"

It is easy to do operations like insertion and deletion into linked lists, but it is hard to locate

items e�ciently because we have to walk through the list one item at a time. If we could

\skip" over lots of items at a time, then we could solve this problem. One way to think of skip

lists is as a hierarchy of sorted linked lists, stacked one on top of the other.

To make this more concrete, imagine a linked list, sorted by key value. Take every other entry

of this linked list (say the even numbered entries) and lift them up to a new linked list with

1/2 as many entries. Now take every other entry of this linked list and lift it up to another

linked with 1/4 as many entries as the original list. We could repeat this process logn times,

until there are is only one element in the topmost list. To search in such a list you would use

the pointers at high levels to \skip" over lots of elements, and then descend to lower levels

only as needed. An example of such a \perfect" skip list is shown below.

To search for a key x we would start at the highest level. We scan linearly along the list at the

current level i searching for �rst item that is greater than x (or until we run o� the list). Let p

point to the node just before this step. If p's data value is equal to x then we stop. Otherwise,

we descend to the next lower level i� 1 and repeat the search. At level 0 we have all the keys

stored, so if we don't �nd it at this level we quit.

The search time in the worst case may have to go through all lgn levels (if the key is not in

the list). We claim that the number of nodes you visit at level i is at most 2. This is true

because you know at the previous level that you lie between two consecutive nodes p and q,
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Nil

2
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10 13
19

SentinelHeader

11

Figure 17: Perfect skip list.

where p's data value is less than x and q's data value is greater than x (or q is null). Between

any two consecutive nodes at level i + 1 there is exactly one new node at level i. Thus our

search will visit this node for sure, and may also check node q again (but in theory you didn't

have to). Thus the total number of nodes visited is O(logn).

Randomized Skip Lists: The problem with the data structure mentioned above is that it is ex-

actly balanced (somewhat like a perfectly balanced binary tree). The insertion of any node

would result in a complete restructuring of the list if we insisted on this much structure. Skip

lists (like all good balanced data structures) allow a certain amount of imbalance to be present.

In fact, skip lists achieve this extra \slop factor" through randomization.

Let's take a look at the probabilistic structure of a skip list at any point in time. This is NOT

how the structure is actually built, but serves to give the intuition behind its structure. In

a skip list we do not demand that exactly every other node at level i be promoted to level

i+1, instead think of each node at level i tossing a coin. If the coin comes up heads (i.e. with

probability 1/2) this node promotes itself to the next higher level linked list, and otherwise

it stays where it is. Randomization being what it is, it follows that the expected number of

nodes at level 1 is n=2, the expected number at level 2 is n=4, and so on. Furthermore, since

nodes appear randomly at each of the levels, we would expect the nodes at a given level to

be well distributed throughout (not all bunching up at one end). Thus a randomized skip list

behaves much like an idealized skip list in the expected case. The search procedure is exactly

the same as it was in the idealized case. See the �gure below.

The interesting thing about skip lists is that it is possible to insert and delete nodes into a

list, so that this probabilistic structure will hold at any time. For insertion of key x we �rst

do a search on key x to �nd its immediate predecessors in the skip list (at each level of the

structure). If x is not in the list, we create a new node x and insert it at the lowest level of

the skip list. We then toss a coin (or equivalently generate a random number). If the result is

tails (if the random number is even) we stop. Otherwise we insert x at the next higher level

of the structure. We repeat this process until the coin comes up tails, or we hit the maximum

level in the structure. Since this is just repeated link list insertion the code is very simple. To

do deletion, we simply delete the node from every level it appears in.

Note that at any point in time, the linked list will have the desired probabilistic structure

we mentioned earlier. The reason is that (1) because the adversary cannot see our random

number generator, he has no way to selectively delete nodes at a particular level, and (2) each

node tosses it's coins independently of the other nodes, so the levels of nodes in the skip list are

independent of one another. (This seems to be one important di�erence between skip lists and

trees, since it is hard to do anything independently in a tree, without a�ecting your children.)

Analysis: The analysis of skip lists is a probabilistic analysis. We want to argue that in the

expected case, the search time is O(logn). Clearly this is the time that dominates in insertion

and deletion.
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Figure 18: Randomized skip list.

First observe that the expected number of levels in a skip list is O(logn). The reason is that

at level 0 we have n keys, at level 1 we expect that n=2 keys survive, at level 2 we expect n=4

keys survive, and so forth. By the same argument we used in the ideal case, after O(logn)

levels, there will be no keys left.

The argument to prove the expected bound on the search time is rather interesting. What

we do is look at the reversal of the search path. Observe that the forward search path drops

down a level whenever the next link would take us \beyond" the node we are searching for.

When we reverse the search path, observe that it will always take a step up if it can (i.e. if

the node it is visiting appears at the next higher level), otherwise it will take a step to the

left. Now, when we arrive at level i of any node in the skip list, we argue that the probability

that there is a level above us is just 1/2. The reason is that when we inserted the node, this

is the probability that it promoted itself to the next higher level. Therefore with probability

1/2 we step to the next higher level. With the remaining probability 1� (1=2) = 1=2 we stay

at the same level. The expected number of steps needed to walk through j levels of the skip

list is given by the following recurrence.

C(j) = 1 +
1

2
C(j � 1) +

1

2
C(j):

The 1 counts the current step. With probability 1/2 we step to the next higher level and so

have one fewer level to pass through, and with probability 1/2 we stay at the same level. This

can be rewritten as

C(j) = 2 + C(j � 1):

By expansion it is easy to verify that C(j) = 2j. Since j is at most the number of levels in

the tree, we have that the expected search time is at most O(logn).

Implementation Notes: One of the appeals of skip lists is their ease of implementation. Most of

procedures that operate on skip lists make use of the same simple code that is used for linked-

list operations, but you need to be aware of the level of the skip list that you are currently on.
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The way that this is done most e�ciently, is to have nodes of variable size, where the size of a

node is determined randomly when it is created. A typical skip list node could be de�ned in

C as:

typedef struct skip_node *skip_ptr; // pointer to skip list node

typedef struct skip_node {

element_type element; // data value

int level; // level of node

skip_ptr forward[1]; // array of forward pointers

};

The trick is, that when the node is actually allocated, you allocate additional space for the

forward pointers. Suppose you want to allocate a node of level k. Such a node will have k+ 1

forward pointers (recalling that the lowest level is 0). This can be done as follows:

p = (skip_ptr) malloc(sizeof(struct skip_node)

+ k*sizeof(skip_ptr *))

This allocates enough space for the basic node, plus k additional �elds for the forward pointers.

Because C does not check for array subscripting out of bounds, you can access the i-th forward

pointer of p with the expression p->forward[i].

This is very risky however, because it assumes your compiler stores the elements of a structure

in exactly the same order that you declare them. A safer strategy (but costing one extra

reference) is to let forward be a pointer to a dynmically allocated array of k + 1 elements.

typedef struct skip_node {

element_type element; // data value

int level; // level of node

skip_ptr *forward; // array of forward pointers

};

Allocating a node can be done as follows.

p = (skip_ptr) malloc(sizeof(struct skip_node));

p->forward = (skip_ptr *) malloc((k+1)*sizeof(skip_ptr *));

In C++ this might look something like:

class skip_node { // skip list node

private:

int element; // data stored in the node

int level; // level of node

skip_ptr *forward; // array of forward ptrs

public:

skip_node(int k, int x) // node constructor

{ element = x; level = k; forward = new skip_ptr[k+1]; }

~skip_node() // node destructor

{ delete[] frwrd; }

...

}

...

p = new skip_node(x, k); // create a new node
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For this method you access a pointer as: (p->forward)[i].

An intereting note is that you do not NEED to store the level of a node as a �eld in the

node. It turns out that skip list routines never move to higher levels, they only walk down

to lower levels. Thus there is never a need to check whether you are subscripting beyond the

array's actual limits. However, for the programming project you WILL need to store the level

information, because I ask you to indicate the level of each node in the skip list as part of your

print routine.

The size of the initial header node is a somewhat tricky matter, since as n grows, so too should

the size of the header. However, since this header need never be bigger than lgn, if we assume

no more than 216 elements in our skip list (quite reasonably) we can allocate a 16 element

vector to be the header (it key value is irrelevant). This value should probably be made a

program constant. When generating the level of a node, you should never allow it to exceed

this maximum value.

It makes the coding somewhat simpler if you create a level 16 sentinel node, called nil, which

holds a key value that is larger than any legal key. This makes the code simpler, since you do

not need to worry about checking for NULL values as you traverse the skip list.

Lecture 9: B-trees

(Tuesday, Oct 5, 1993)
Reading: Section 4.7 of Weiss.

B-trees: Although it was realized quite early it was possible to use binary trees for rapid searching

with insertion and deletion, these data structures were really not appropriate for data stored

on disks. The problem is that the random nature of a binary tree results in repeated disk

accesses, which is quite slow (compared to random access time). The property of disks is that

they are partitioned into blocks (or pages), and we access the entire contents of a block as fast

as we can access a single word of the block. Although it is possible to segment binary trees in

a clever way so that many neighboring nodes are stored in one block it is di�cult to perform

updates on the tree to preserve this proximity.

An alternative strategy is that of a B-tree, which solves the problem by using multi-way trees

rather than binary trees. In a standard binary search tree, we have 2 pointers, left and right,

and one key value k that is used to split the keys in the left subtree from the right subtree.

In a j-ary multi-way search tree node, we have j children pointers, p1; p2; : : : ; pj, and j � 1

key values, k1 < k2 < : : : < kj�1. We use these key values to split the elements among the

subtrees. We assume that the data values x located in subtree pi satisfy ki < x < ki+1 for

1 � i � j (where by convention k0 = �1 and kj = +1). See the �gure below.

k1 k 2 k 3

k1x < k1 k 2 k 3
x < k

k

x > k <x< <x<k k2 3 x<

Figure 19: Binary and 4-ary search tree nodes.

B-trees are multi-way search trees, in which we achieve balance by varying the \width" of

each node. As with all other balanced structures, we maintain balance by providing a range

31



Lecture Notes CMSC 420

of possible values, to provide us a little leeway in our balance. Actually B-trees are a class of

di�erent data structures, each one speci�ed by a parameter m (which is usually set depending

on the characteristics of the keys and disk page sizes).

Our de�nition di�ers from the one given in Weiss. Weiss's de�nition is more reasonable for

actual implementation on disks, but ours is designed to make the similarities with other search

trees a little more apparent. For m � 3, B-tree of order m has the following properties:

� The root is either a leaf or has between 2 and m children.

� Each nonleaf node except the root has between dm=2e and m (nonnull) children. A node

with k children contains k � 1 key values.

� All leaves are at the same level. Each leaf contains between dm=2e � 1 to m � 1 keys.

So for example, when m = 4 each internal node has from 2 to 4 children and from 1 to 3 keys.

When m = 7 each internal node has from 4 to 7 children and from 3 to 6 keys (except the

root which may have as few as 2 children and 1 key). Why is the requirement on the number

of children not enforced on the root of the tree? We will see why later.

The de�nition in the book di�ers in that all data is stored in the leaves, and the leaves are

allowed to have a di�erent structure from nonleaf nodes. This makes sense for storing large

data records on disks. In the �gure below we show a B-tree of order 3 (also called a (2�3)-tree).

13:--

18:--

30:45

8:11 16:-- 22: 23 41:-- 58:59

Figure 20: B-tree example: (2; 3)-tree.

Height analysis: Observe that if you have a B-tree of height h, then observe that in the best case

(i.e. for the minimum depth), the tree is splitting as widely as possible, and so you have mh

leaves. Since each node contains at least one key, this means that n � m
h, or that

h � logm n =
lgn

lgm
2 O(logn):

This is VERY small when m gets large. Even in the worst case (excluding the root) the tree

essentially is splitting m=2 ways, implying that

h � log(m=2) n =
lgn

lg(m=2)
2 O(logn):

Thus, the height of the tree is O(logn) in either case. For example, if m = 256 we can store

100,000 records with a height of only 3. This is important, since disk accesses are typically

many orders of magnitude slower than main memory accesses, so it is important to minimize

them.

Node structure: Unlike skip-lists, where nodes are typically allocated with di�erent sizes, here

every node is allocated with the maximum possible size, but not all nodes are fully utilized.

A typical B-tree node might have the following C++ structure. In this case, we are storing

integers as the elements. We place twice as many elements in each leaf node as in each internal

node, since we do not need the storage for child pointers.
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#define order 64 // order of tree

struct B_node {

int n_child; // number of children

B_node *child[order]; // children

int key[order-1]; // keys

};

Search: To search a B-tree for some key x is easy. When you arrive at an internal node with keys

k1 < k2 < : : : < kj�1 search (either linearly or by binary search) for x in this list. If you �nd

x in the list, then you are done. Otherwise, determine the index i such that ki < x < ki+1

(again, where k0 = �1 and kj = +1) and recursively search the subtree pointed to by pi.

When you arrive at a leaf, search all the keys. If it is not here, then it is not in the B-tree.

Insertion: To insert a key into a B-tree of order m, we perform a search to �nd the appropriate

leaf into which to insert the node. If the leaf is NOT at full capacity (it has fewer than m� 1

keys) then we simply insert it (note that when m is large this is the typical case by in large).

This will typically involve sliding nodes around within the leaf node to make room for the new

entry. This constant time overhead is usually unimportant, because disk access times are so

much larger than small data movement times.

Otherwise the node over
ows and we have to take action to restore balance. There are two

methods for restoring order in a B-tree.

The �rst one is quick and involves little data movement. Unfortunately, it is not enough to

always do the job. This method is called key-rotation. Let's let p be the node that over
ows.

We look at our immediate left and right siblings in the B-tree. (Note that one or the other

may not exist). Let's say that one of them, the left sibling say, has fewer than m � 1 keys.

Let q denote this sibling, and let k denote the key in the parent node that splits the elements

in q from those in p. We take the key k from the parent and make it the maximum key in

q. We take the minimum key from p and use it to replace k in the parent node. Finally we

transfer the leftmost subtree from p to become the rightmost subtree of q (and readjust all the

pointers accordingly). At this point the tree is balanced and no further rebalancing is needed.

An example of this is shown in the following �gure. Rotation to the right child is analogous.

9 : 15

18:42

22:309 : --

15:42

q: p:

k

18 : 22 : 30

T T

Figure 21: Key rotation.

If both siblings are full, then need to perform a node split. Note that a node can have at most

m � 1 keys and at least dm=2e � 1 keys. Suppose after inserting the new key we have a node

with m keys, k1 < k2 < : : : < km. We split the node into three groups: one with the smallest

d(m � 1)=2e elements, a single central element, and one with the largest b(m� 1)=2c keys. We

take the smallest and largest group and form two nodes out of them. Note that�
m � 1

2

�
�
�
m � 1

2

�
�
j
m

2
� 1
k
�
j
m

2

k
� 1;
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>>>>>Fix this.

so these nodes are legal sized nodes. We take the extra key and insert it into the parent. At

this point the parent may over
ow, and so we repeat this process. When the root over
ows,

we split the root into two nodes, and create a new root with 2 children. (This is why the

root is exempt from the normal number of children requirement.) See the �gure below for an

example.

1:-

3:-

5:- 9:- 14:- 17:-

12 : 16

 8  : 19

20 : 24

27 : 40

30 : 35 51 : 55

1:-

3:-

5:- 9:- 14:- 17:-

12 : 16

20 : 24 51 : 55

 8  : 19

30 : -- 36: --

27 : 35 : 40

1:-

3:-

5:- 9:- 14:- 17:-

12 : 16

20 : 24 51 : 5530 : -- 36: --

27 : -- 40 : --

 8  : 19 : 35 Overflow

1:-

3:-

5:- 9:- 14:- 17:-

12 : 16

20 : 24 51 : 55

Insert(36)

Overflow

30 : -- 36: --

27 : -- 40 : --

8 : -- 35 : --

19 : -- New Root

Figure 22: B-tree insertion.

Deletion: As usual deletion is the trickier of the two operations. As in regular tree deletion we

begin by �nding the node to be deleted. We need to �nd a suitable replacement for this node.

This is done by �nding the largest key in the left child (or smallest key in the right child), and

moving this key up to �ll the hole. This key will always be at the leaf level. This creates a

34



Lecture Notes CMSC 420

hole at the leaf node. If this leaf node still has su�cient capacity (at least dm=2e � 1 keys)

then we are done. Otherwise we need to do some kind of node merging.

Merging nodes is similar than splitting them, but sometimes key rotations are NECESSARY,

not just convenient. The reason is that neighboring nodes may already be �lled to capacity

so we cannot simply merge two into one. So we attempt to \rotate" a key from a neighboring

node. In particular, suppose that the left sibling can a�ord to give up a key, i.e. it has more

than dm=2e � 1 keys. We rotate the largest key from the left sibling up to the parent, and

then rotate the parent's key down to this node.

If there is no sibling from which we can rotate a node, then it means that the neighboring

sibling has exactly dm=2e � 1 keys. In this case we combine it with the current node, which

has dm=2e�2 keys to get a node with 2 dm=2e�3 � m�1 keys. This may cause an under
ow

at the parent and the process may need to be repeated up the tree. In the worst case this

continues up to the root. If the root looses its only key then we simply remove it, and make

the root's only child the new root.

An example of deletion where m = 3 (meaning each node has from 1 to 2 keys) is shown in

the �gure below.

1:-

3:-

5:- 9:- 14:- 17:-

12 : 16

 8  : 19

20 : 24

27 : 40

30 : 35 51 : 55

1:-

3:-

9:- 14:- 17:-

12 : 16

 8  : 19

20 : 24

27 : 40

30 : 35 51 : 55-:-

9:- 14:- 17:-

12 : 16

 8  : 19

20 : 24

27 : 40

30 : 35 51 : 55 1 : 3

-:-

Underflow

Delete(5)

14:- 17:- 20 : 24

27 : 40

30 : 35 51 : 55 1 : 3 9:-

8:--

12 : 19

16 : --

Node Merge

Key rotation

Figure 23: B-tree deletion.
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Lecture 10: BB-trees

(Thursday, Oct 7, 1993)
Reading: This is not covered in Weiss or Samet's notes.

BB-trees: Last time we introduced B-trees, and mentioned that they are good for storing data

on disks. However, B-trees can be stored in main memory as well, and are an alternative

to AVL trees, since both guarantee O(logn) wost case time for dictionary operations (not

amortized, not randomized, not average case). Unfortunately, implementing B-trees is quite

a messy programming task in general. BB-trees are a special binary tree implementation of

2-3 trees, and one of their appealing aspects is that they are very easy to code (arguably even

easier than AVL trees).

Recall that in a 2-3 tree, each node has either 2 or 3 children, and if a node has j children,

then it has j � 1 key values. We can represent a single node in a 2-3 tree using either 1 or 2

nodes in a binary tree, as illustrated below.

 x : -- x  x : y x

y

Figure 24: Binary representation of 2-3 tree nodes.

When two nodes of a BB-tree are used to represent a single node of a 2-3 tree, this pair of

nodes is called pseudo-node. When we represent a 2-3 tree using this binary representation,

we must be careful to keep straight which pairs of vertices are pseudo-nodes. To do this, we

create an additional �eld in each node that contains the level of the node in the 2-3 tree. The

leaves of the 2-3 tree are at level 1, and the root is at the highest level. Two adjacent nodes

in a BB-tree (parent and right child) that are of equal level form a single pseudo-node.

The term \BB-tree" stands for \binary B-tree". Note that in other textbooks there is a data

structure called a \bounded balance" tree, which also goes by the name BB-tree. Be sure you

are aware of the di�erence. BB-trees are closely related to red-black trees, which are a binary

representation of 2-3-4 trees.

As is done with skip-lists, it simpli�es coding to create a special sentinel node called nil.

Rather than using NULL pointers, we store a pointer to the node nil as the child in each leaf.

The level of the sentinel node is 0. The left and right children of nil point back to nil.

The �gure below illustrates a 2-3 tree and the corresponding BB-tree.

Note that the edges of the tree can be broken into two classes, vertical edges that correspond

to 2-3 tree edges, and horizontal edges that are used to join the two nodes that form a pseudo-

node.

BB-tree operations: Since a BB-tree is essentially a binary search tree, �nd operations are no

di�erent than they are for any other binary tree. Insertions and deletions operate in essentially

the same way they do for AVL trees, �rst insert or delete the key, and then retrace the search

path and rebalance as you go. Rebalancing is performed using rotations. For BB-trees the two

rotations go under the special names skew() and split. Their intuitive meanings are:

skew(p): replace any horizontal left edge with a horizontal right edge by a right rotation at

p.
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1 :-- 3 :-- 5 :  7 9 :-- 11:-- 13:--

2  :-- 8  :-- 12:--

4 :10

Nil

level = 0

1

2

3

4

2

1 3 5

7

8

11 13

12

10

9

Figure 25: BB-tree corresponding to a 2-3 tree.

split(p): if a pseudo-node is too large (i.e. more than 2 consecutive nodes at the same

level), then split it by increasing the level of every other node. This is done by making

left rotations along a right path of horizontal edges.

Here is their implementation. Split only splits one set of three nodes.

BB_ptr skew(BB_ptr p) {

if (p->left->level == p->level) {

q = p->left;

p->left = q->right;

q->right = p;

return q;

}

else return p;

}

BB_ptr split(BB_ptr p) {

if (p->right->right->level == p->level) {

q = p->right;

p->right = q->left;

q->left = p;

q->level++;

return q;

}

else return p;

}

Insertion: Insertion performs in the usual way. We walk down the tree until falling out, and insert

the new key at the point we fell out. The new node is at level 1. We return up the search

path and rebalance. At each node along the search path it su�ces to perform one skew and

one split.

BB_ptr Insert(int x, BB_ptr T)

{

if (T == nil) { // empty tree

T = new BB_node(x,1,nil,nil); // new node a level 1

}

else {
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Figure 26: BB-tree insertion.
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if (x < T->element)

T->left = Insert(x, T->left); // insert on left

else if (x > T->element)

T->right = Insert(x, T->right); // insert on right

else // duplicate key

; // duplicate key!

T = skew(T); // rebalance

T = split(T);

}

return T;

}

Deletion: As usual deletion is more of a hassle. We �rst locate the node to be deleted. We replace

it's key with an appropriately chose key from level 1 (which need not be a leaf) and proceed to

delete the node with replacement key. We retrace the search path towards the root rebalancing

along the way. At each node p that we visit there are a number of things that can happen.

(a) If p's child is 2 levels lower, then p drops a level. If p is part of a pseudo-node of size 2,

then both nodes drop a level.

(b) Apply a su�cient number of skew operations to align the nodes at this level. In general

3 may be needed: one at p, one at p's right child, and one at p's right-right grandchild.

(c) Apply a su�cient number of splits to �x things up. In general, two may be needed: one

at p, and one at p's right child.

Important note: We use 3 global variables: nil is a pointer to the sentinel node at level 0,

del is a pointer to the node to be deleted, repl is the replacement node. Before calling this

routine from the main program, initialize del = nil.

BB_ptr Delete(int x, BB_ptr T)

{

if (T != nil) { // search tree for repl and del

repl = T;

if (x < T->element)

T->left = Delete(x, T->left);

else {

del = T;

T->right = Delete(x, T->right);

}

if (T == repl) { // if at bottom remove item

if ((del != nil) && (x == del->element)) {

del->element = T->element;

del = nil;

T = T->right; // unlink replacement

delete repl; // destroy replacement

}

else

// deletion of nonexistent key!

}

// lost a level?

else if ((T->left->level < T->level-1) ||

(T->right->level < T->level-1)) {
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Figure 27: BB-tree deletion.
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T->level--; // drop down a level

if (T->right->level > T->level) {

T->right->level = T->level;

}

T = Skew(T);

T->right = Skew(T->right);

T->right->right = Skew(T->right->right);

T = Split(T);

T->right = Split(T->right);

}

}

return T;

}

Lecture 11: Review for Midterm

(Tuesday, Oct 12, 1993)
The following is a list of topics we have covered since the start of the semester. The exam will

include all topics up to and including BB-trees.

Basics: Asymptotic notation, induction proofs, summations, and recurrences.

Trees: General trees, binary representation of trees, standard traversals.

Unbalanced binary search trees: Insertion, deletion, expected height O(logn) assuming ran-

dom insertions. Expected height over a series of random insertions and deletions is O(
p
n),

but this is due to the skew in the choice of replacement node (always selecting the minimum

from the right subtree). If we randomly select min from right, and max from left, the trees

will be O(logn) height on average (assuming random insertions and deletions).

AVL trees: Guarantee O(logn) time for insertions, deletions, and �nds by height balancing. Use

single and double rotations to restore balance.

Splay trees: Guarantee O(m logn) time for a series of m insertions, deletions, and �nds. The tree

is self-adjusting, making use of no balancing information or structural assumptions. Any one

operation could be slow, but any long series of operations will be fast. Good for data sets where

the frequency of access of elements is nonuniform (a small fraction of elements are accessed

very often), since frequently accessed elements tend to rise to the top of the tree.

Amortized analysis: Splay trees were analyzed using a technique called amortized analysis. In this

technique, we de�ne a potential function, which intuitively captures the degree of \imbalance"

in a structure (imbalanced structures are those that tend to induce a higher cost on operations).

The amortized cost is the sum of the actual cost and change in potential. Proving a bound

on amortized cost, intuitively means that expensive operations signi�cantly improve balance.

Although you are not responsible for knowing the details of the proof for splay trees, you are

expected to understand how amortization proofs work.

Skip lists: A simple randomized data structure with O(logn) time for insert, delete, and �nd with

high probability. Unlike balanced binary trees, skip lists perform this well on average, no

matter what the input looks like (in other words, there are no bad inputs, just unlucky coin

tosses).
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B-trees: Widely considered the best data structure for disk access, since node size can be adjusted

to the size of a disk page. Guarantees O(logn) time for dictionary operations, but is rather

messy to code. The basic restructuring operations are node splits, node merges, and key-

rotations.

BB-trees: A binary representation of 2-3 trees. Guarantees O(logn) time for dictionary operations.

Probably the simplest balanced binary tree from the perspective of coding.

Lecture 12: Midterm Exam

(Thursday, Oct 14, 1993)

Lecture 13: Prototyping

(Thursday, Oct 19, 1993)

Prototyping: Today we discuss the issue of experimental analyses of algorithms and data struc-

tures, with the programming project in mind. The programming project is an example of a

typical experimental prototype.

Although asymptotic analysis forms the backbone behind the choice of data structures, it does

not provide a �ne enough analysis to distinguish between data structures of roughly equal

asymptotic behavior. Furthermore, worst case analyses cannot capture the special structural

aspects that speci�c application data sets may possess. Consequently, experimental implemen-

tation and testing is an important step before �nally settling on a solution.

Main Program: The purpose of the main program is to generate inputs and record information

for subsequent statistical analysis. There are three phases needed in the analysis process:

Correctness: Establish that the program is performing to speci�cations.

Machine dependent analysis: If you know that your program will only be executing on

one machine, under one operating system, and one compiler, then the simplest and most

important measure of a program's performance is the number of CPU seconds that it

takes to execute.

Machine independent analysis: If the program is general purpose and may be run on

many machines, then the analysis must be a function of algorithm and program only.

The standard technique is to de�ne a notion of canonical operation that provides a good

re
ection of the execution time of your program, irrespective of the choice of compiler

or machine architecture. For each input measure the number of canonical operations

that are performed. For numerical computation this may be the number of 
oating point

operations performed, for sorting and searching this may be the number of comparisons,

for data structure applications this may be the number of accesses to the data structure.

For each of these elements you will need to consider a wide variety of data sets, ideally varying

over a large number of di�erent sizes. For data structure projects, it is typical to generate a

large number of data sets (10 in our case is rather small), and for each generate a large number

of operations (5000 in our case is also small).

One of the headaches of setting up many di�erent experiments is that you need to write a

di�erent driving program for each experiment. One di�culty with this is that if you �nd a

bug in one driver, you have to make the corresponding changes in each program. For example,

in the programming project, you need to insert code to count pointer dereferences to the data
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structure. However you want to remove this code when counting CPU seconds, since it is not

really part of the program.

One way to handle this mess is to use the conditional compilation feature that many languages

provide. Here is how I handled it in my implementation. In C and C++, you can use the

preprocessor to help. In my program, I have #define constants, which invoke each version.

For example, if CPU is set, the program computes and prints CPU seconds.

#ifdef CPU // record CPU seconds

start_time = clock();

#endif

...

#ifdef CPU

cout << "Total CPU seconds = " <<

(clock() - start_time)/1000000.0;

#endif

In order to count references, there is a nifty trick. The comma operator in C and C++ can

be inserted into any expression or assignment statement, and simply evaluates the expression

from left to right, returning the rightmost value. For example, if (p = q, q->left == NULL)

performs the assignment and returns the result of the comparison. This provides a convenient

way to add reference counts. For example:

if (Ref_Count += 3, p->data < q->right->data) ...

This can be combined with conditional compilation as follows.

#ifdef REFCT // keep reference counts

#define RC1 Ref_Count+=1, // NOTE: indentation is not

#define RC2 Ref_Count+=2, // allowed in C, only C++

#define RC3 Ref_Count+=3,

#else // no reference counts

#define RC1

#define RC2

#define RC3

#endif

...

if (RC3 p->data < q->right->data) {

RC1 p = p->left;

}

Observe that if REFCT is de�ned then this will compile the reference counts, and otherwise it

will not do anything. More importantly, the overhead of maintaining the reference counter

will not enter the execution time.

In order to activate CPU second reporting, or reference counting, you just need to de�ne the

appropriate constants. This can be done in the program source:

#define REFCT 1 // activate reference counting

or from the call to the compiler. For example, the following line appears in my Make�le. The

command make cpu creates a program called cpu that counts CPU seconds for a dictionary

data structure. The main program is stored in proj.cc, the skip list, or BB-tree, or splay tree

code is in dict.cc, and the declarations are in dict.h.
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cpu: proj.cc dict.cc dict.h

g++ -o cpu -DCPU proj.cc dict.cc

Note that in order to change versions, I need only invoke a di�erent object on my make call

(e.g. make cpu or make refct. To change from skip lists to splay trees I change the �les

dict.cc and dict.h to hold the appropriate source �les. The interfaces for all three data

structures are identical though, so the main program never needs to be changed.

Skip-list implementation: Skip-lists are relatively easy to implement, but there are a couple of

important issues that is needed for fast updates. First o�, the maximum level of the data

structure should be set up. I suggested just using a constant that will be larger than 2d. For

example, 16 will be more than enough for this project.

The other issue is that when you search for a key, it is important to keep track of the immediate

predecessor of the search key on each level of the skip list. This is needed for pointer updates.

This can be stored in an array Update[maxlevel]. Consider the insertion of 12 in the example

shown below.

8
10

11

Nil
2

15

19

8
10

11

Nil
122

15

19

Header

Header Sentinel

Sentinel

Update

Insert(12)

Figure 28: Skip list insertion

When searching for the key 12, we drop a level whenever the forward pointer at this level goes

to a strictly higher key value (or nil). In each case we save a pointer to each node where we

dropped down a level in Update[]. When the new node for 12 have been created (in this case

with height 3) we access the lowest 3 nodes pointed to by Update[] and update these pointer

values. The update array is used when performing deletion also in much the same way.

The insertion routine operates in 2 phases. The �rst performs the search, and stores pointers

in Update[]. At the completion of this search, we decide how big to make the new node, and

then allocate the node, and update the pointers appropriately.

To determine the height of the new node you need to simulate a random coin toss. The

suggested approach is to call the built-in function random(), which returns a random integer,

and then testing the lowest order bit. For example, this can be done with coin = random()

& 01. Note that this is not very e�cient, since you use only one random bit for each call.

Perhaps a better idea is to call random() once and use this number to generate 31 random

bits (by repeated \and-ing" and \shifting").
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Splay trees: Our text book describes some portions of the algorithm for splaying. The basic splay

algorithm operates by performing a search for the node containing the splay key (if we fall out

of the tree we use the last node visited), and then working back up to the root performing

the appropriate type of rotations (zig-zig or zig-zag) on the way back. The problem is how to

retrace the path to the root. We normally do this by setting up the program recursively, but

that is not particularly easy here because we only perform rotations at alternate levels. The

book suggests using parent pointers to retrace the search path. This is probably more e�cient

than using a recursive procedure, but is somewhat messier in that parent pointers need to be

updated as well. A third alternative is to save the ancestors on the search path in a stack, and

then pop pointers o� the stack to determine a node's parent and grandparent.

BB-trees: The BB-tree code can be taken from the class notes. Since this code has been copied,

the source should be cited. It is: A. Andersson, \Balanced search trees made simple," in

Algorithms and Data Structures, Springer Lecture Notes in Computer Science, No. 709, 1993.

The code can be taken from the lecture notes pretty much verbatim. The only thing that you

have to do is to be sure to initialize the global variable nil when the data structure is �rst

created, and to initialize del before calling the deletion routine.

Lecture 14: Binary Heaps

(Thursday, Oct 21, 1993)
Reading: Chapt 6 in Weiss (up to 6.5).

Priority Queue: A priority queue Q is a data structure which supports the following operations:

Insert(x, Q) and x := DeleteMin(Q). Priority queues are somewhat simpler than dictio-

naries, since the element being deleted is always the minimum element of the list.

Priority queues have a narrower range of applicability than dictionaries, but there are many

applications that make use of them. One example is discrete event simulation. You are

simulating a complex system (e.g. an airport) by a computer program. There are many events

which can arise, planes arriving and leaving, planes requesting to land or take o�, planes

entering and leaving gates or taxi ways. There are many things happening at one time, and

we want a way of keeping everything straight (on a sequential computer). To do this we break

all events down according the the time of occurrence (for long events like taxing, we have two

events, time at which the action is initiated and time at which it �nishes). The simulation

works by storing all these events in a priority queue and extracting the next event in time. In

turn, this event may trigger other events in the future which are put into the priority queue.

Note that we can use a dictionary to implement a priority queue, since in all binary trees we

can �nd the smallest element by simply following the left links until coming to a leaf and then

deleting this element. However, the restricted nature of priority queues provides us with a

much simpler data structure.

Heaps: One simple implementation of a priority queue is to maintain a sorted array or linked list

of elements. However, insertion into such a list requires �(n) time in the worst case, although

DeleteMin() is fast. A much more clever method is based on trees.

Partially Ordered Tree: is a binary tree in which each node v holds a numeric value x

called a key, and the key value of each internal node is less than or equal to the key values

of each of its children. (Note: Unlike a binary search tree, there is no particular order

among the keys of the children nodes.)

Complete Binary Tree: is a binary tree in which every level of the tree is completely �lled,

except possibly the bottom level, which is �lled from left to right. A complete binary tree
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of height h has between 2h and 2h+1 � 1 nodes, implying that a tree with n nodes has

height O(logn).

Binary Heap: is a complete, partially ordered binary tree.

An example is provided in the �gure below.

65 26 32

3124

21

13

14

19 68

13 21 14 24 31 68 65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

19

n = 10

Figure 29: Heap.

One of the nice features of binary heaps is the regularity of their structure allows them to

be stored in arrays. So no additional space is wasted on pointers. (Note: This is very much

dependent on the fact that the heap is complete. Do not attempt this with arbitrary trees.)

Consider an indexing of nodes of a complete tree from 1 to n in increasing level order (so

that the root is numbered 1 and the last leaf is numbered n). Observe that there is a simple

mathematical relationship between the index of a node and the indices of its children and

parents.

In particular:

Left Child(i): 2i (if 2i � n, and NULL otherwise).

Right Child(i): 2i+ 1 (if 2i+ 1 � n, and NULL otherwise).

Parent(i): bi=2c (if i � 2, and NULL otherwise).

Observe that the last leaf in the tree is at position n, so adding a new leaf simply means

inserting a value at position n + 1 in the list (and update n). Thus, we can store the entire

heap in an array A[1 : : :n] and use these operations to access the desired elements.

Inserting into a Heap: To insert a node into a heap we select the next available leaf element and

put the item here. (Note that this would be hard to perform in a normal tree, but in the array

representation above this is as simple as incrementing n and storing the new value in A[n].)

We look At the parent of this element. If the parent's key is larger, then we swap the parent

and child's keys. (Observe that the partial ordering property is preserved with respect to the

other child.) Repeat with the parent. This is called sifting up. An example is shown in the

following �gure.

DeleteMin: To perform a DeleteMin, remove the root from the tree and return its value. Remove

the rightmost leaf on the bottommost level of the tree and move its key to the root. (As

before, this is hard to do with a general tree, but using the array representation we can simply

access A[n] and then decrement n.) Now perform the following sifting down operation. Find

the smaller of its two children. If this key is larger than that, then swap these two, and repeat

with the child. An example is shown in the following �gure.

46



Lecture Notes CMSC 420

65 26 32 31

2124

15

13

14

19 686819

14

13

21

24

65 26 32 15

31

Insert(15)

Figure 30: Heap insertion.
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Figure 31: Heap deletion.
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Analysis: The running times of these operations is clearly proportional to the height of the tree.

We claim the height of the tree is O(logn). To prove this, suppose that the tree has n nodes.

We know that if h is the height of the tree that the number of nodes in the tree satis�es

2h � 1 < n � 2h+1 � 1:

The lower bound comes from taking a tree of height h� 1 and the upper bound from a tree of

height h. Using the lower bound we have

2h � n ) h � lgn

as desired.

Building a heap: Suppose you have to build a heap containing n keys. (This is how the sorting

algorithm HeapSort works.) This will take O(n logn) time in total. However, if you know

that you have n keys and want to convert them into heap order, this can be done much more

e�ciently in O(n) time.

Starting with the last (in level order) nonleaf node, and working level by level back towards

the root, perform a sift-down on each node of the tree. An example is shown in the next �gure.
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Figure 32: Heap building.

What is the running time of this procedure? Let's simplify things by assuming that the tree

is complete (i.e. all leaves are at the same level). Thus n = 2h+1 � 1. There is 1 node at level

0 and it may be sifted down through as many as h levels, there are 2 nodes at level 1 and they

may be sifted down as many as h � 1 levels, there are 4 nodes at level 2 and it may be sifted

down as many as h� 2 levels. Thus we get the following sum which counts the total time

S = h+ 2(h� 1) + 4(h� 2) + : : :+ 2h�1(1):

To solve this we use a clever trick of shifting the sum and subtracting to cancel out terms.

Multiply this sum times 2.

2S = 0 + 2h+ 4(h� 1) + 8(h� 2) + : : :+ 2h�1(2) + 2h(1):

Now subtract 2S � S = S, subtracting common powers of 2:

S = �h + (2 + 4 + : : :+ 2h�1) + 2h
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= �h � 1 + (1 + 2 + 4 + : : :+ 2h�1) + 2h

= 2h + 2h � (h + 1)

= 2 � 2h � h� 1

Now let's substitute h = lgn giving

S = 2 � 2lgn � lgn � 1 = 2n� lgn� 1 � 2n:

Thus the total running time of buildheap is O(n).

Sorting: Heaps are used for one of the most basic sorting algorithms, HeapSort. This algorithm

operates by storing all the keys in a heap (with the largest key at the root), and then repeatedly

applying DeleteMax() to remove elements in order from largest to smallest.

Graph Algorithms: Another important application of priority queues is as a basic tool in many

graph algorithms. Algorithms for computing shortest paths in graphs and minimum span-

ning trees of graphs make use of priority queues to organize their e�ort. It turns out that

these data structures tend to perform many more DecreaseKey() operatations than they

do DeleteMin(). For this reason there is a more sophisticated data structure called a Fi-

bonacci heap that can perform DecreaseKey() operations rapidly (in O(1) amortized time)

and DeleteMin() in the normal O(logn) time.

Lecture 15: Leftist Heaps

(Thursday, Oct 26, 1993)
Reading: Sections 6.6 in Weiss.

Leftist Heaps: The standard binary heap data structure is an excellent data structure for the basic

priority queue operations Insert(x,Q), x = DeleteMin(Q). In some applications it is nice to

be able to merge two priority queues into a single priority queue, and thus we introduce a

new operation Q = Merge(Q1, Q2), that takes two existing priority queues Q1 and Q2, and

merges them into a new priority queue, Q. (Duplicate keys are allowed.) This operation is

destructive, which means that the priority queues Q1 and Q2 are destroyed in order to form

Q. (Destructiveness is quite common for operations that map two data structures into a single

combined data structure, since we can simply reuse the same nodes without having to create

duplicate copies.)

We would like to be able to implement Merge() in O(logn) time, where n is the total number

of keys in priority queues Q1 and Q2. Unfortunately, it does not seem to be possible to do

this with the standard binary heap data structure (because of its highly rigid structure and

the fact that it is stored in an array, without the use of pointers).

We introduce a new data structure called a leftist heap, which is fairly simple, and can provide

the operations Insert, DeleteMin, and Merge. This data structure has many of the same

features as binary heaps. It is a binary tree which is partially ordered (recall that this means

that the key value in each parent node is less than or equal to the key values in its children's

nodes). However, unlike a binary heap, we will not require that the tree is complete, or even

balanced. In fact, it is entirely possible that the tree may be quite unbalanced. (Even stranger,

there is a sense that the MORE unbalanced these trees are, the BETTER they perform!)

Leftist Heap Property: De�ne the null path length, NPL(v), of any node v to be the length of

the shortest path to a descendent that does not have two children. An example of a leftist
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heap is shown in the �gure at the end of the lecture. The NPL values are listed above each

node.

Observe that the NPL(v) can be de�ned recursively as follows.

int NPL(v) {

if (v == NULL) return -1;

else return (min(NPL(v->left), NPL(v->right)) + 1);

}

We will assume that each node has an extra �eld, v->NPL that contains the node's NPL value.

The leftist heap property is that for every node v in the tree, the NPL of its left child is at least

as large as the NPL of its right child. We now de�ne a leftist heap to be a binary tree whose

keys are partially ordered and which satis�es the leftist heap property.

Note that any tree that does not satisfy leftist heap property can be made to do so by swapping

left and right subtrees at any nodes that violate the property. Observe that this does not a�ect

the partial ordering property. Also observe that satisfying the leftist heap property does NOT

assure that the tree is balanced. Indeed, a degenerate binary tree in which is formed from

a chain of nodes each attached as the left child of its parent does satisfy this property. The

key to the e�ciency of leftist heap operations is that we do not care that there might be

a long path in the heap, what we care about is that there exists a short path (where short

intuitively means of O(logn) length). In particular de�ne the rightmost path in a binary tree

to be the path starting at the root, resulting by following only right pointers. We prove the

following lemma that shows that the rightmost path in the tree cannot be of length greater

than O(logn).

Lemma: Given a leftist heap with r � 1 nodes on its rightmost path, the heap must have at

least 2r � 1 nodes.

Proof: The proof is by induction on the size of the rightmost path. Before beginning the

proof, we begin with two observations, which are easy to see: (1) the shortest path in

any leftist heap is the rightmost path in the heap, and (2) any subtree of a leftist heap

is a leftist heap. (2) is obvious. (1) follows from the observation that if the shortest path

in the tree were ever required to take a left-link, then the leftist heap property would be

violated at this node.

For the basis case, if there is only one node on the rightmost path, then the tree has at

least one node, and 21 � 1 = 1.

For the induction step, let us suppose that the lemma is true for any leftist heap with

strictly fewer than r nodes on its rightmost path, and we will prove it for a binary tree

with exactly r nodes on its rightmost path. Remove the root of the tree, resulting in two

subtrees. The right subtree has exactly r � 1 nodes on its rightmost path (since we have

eliminated only the root), and the left subtree must have a AT LEAST r�1 nodes on its

rightmost path (since otherwise the rightmost path in the original tree would not be the

shortest, violating (1)). Thus, by applying the induction hypothesis, we have that the

right and left subtrees have at least 2r�1 � 1 nodes each, and summing them, together

with the root node we get a total of at least

2(2r�1 � 1) + 1 = 2r � 1

nodes in the entire tree.

Leftist Heap Operations: The basic operation upon which leftist heaps are based is the merge

operation. Observe, for example, that both the operations Insert and DeleteMin can be

implemented by using the operation Merge.
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Note the &Q indicates that Q is a reference argument, implying that changes to Q in the

procedure cause changes to the actual parameter in the calling procedure.

void Insert(int x, HeapPtr &Q) {

v = new leftist_heap_node;

v->element = x;

v->NPL = 0;

v->left = v->right = NULL;

Q = Merge(Q, v); // merge v as a single node heap

}

int DeleteMin(HeapPtr &Q) {

x = Q->element; // x is root node's key

L = Q->left; // left subheap

R = Q->right; // right subheap

delete Q; // delete root node (only)

Q = Merge(L, R); // merge left and right

return x;

}

Thus, it su�ces to show how Merge() is implemented. The formal description of the procedure

is recursive. However it is somewhat easier to understand intuitively in its nonrecursive form.

Let Q1 and Q2 be the two leftist heaps to be merged. Consider the rightmost paths of both

heaps. The keys along both of these paths form increasing sequences. We can merge these

paths into a single sorted path, however the resulting tree might not satisfy the leftist heap

property. Thus we swap left and right children at each node along this path where the leftist

property is violated. As we do this we update the NPL values. An example is shown in the

next �gure.

Here is a recursive description of the algorithm. It is essentially the same as the one given in

Weiss, with some minor coding changes.

HeapPtr Merge(HeapPtr Q1, HeapPtr Q2) {

if (Q1 == NULL) return Q2; // trivial if either empty

if (Q2 == NULL) return Q1;

if (Q1->element > Q2->element) // swap so Q1 has smaller root

swap(Q1, Q2);

if (Q1->left == NULL) {

Q1->left = Q2;

// Note: In this case Q1->right must be NULL so

// NPL value of Q1 will remain 0.

}

else { // merge Q2 into right subtree and swap if needed

Q1->right = Merge(Q1->right, Q2);

if (Q1->left->NPL < Q1->right->NPL) {

swap(Q1->left, Q1->right);

}

Q1->NPL = Q1->right->NPL + 1;

}

return Q1; // return pointer to final heap

}
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Merge right paths

Swap subtrees when NPL(left) < NPL(right)
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Figure 33: Merging two leftist heaps.
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For the analysis, observe that because the recursive algorithm spends O(1) time for each node

on the rightmost path of either Q1 or Q2, the total running time is O(logn), where n is the

total number of nodes in both heaps.

Lecture 16: Disjoint Sets

(Thursday, Oct 28, 1993)
Reading: Weiss, Chapt 8.

Equivalences: Recall that an equivalence relation over some set S is a relation that satis�es the

following properties for all elements of a; b; c 2 S.

Re
exive: a � a.

Symmetric: a � b then b � a

Transitive: a � b and b � c then a � c.

Equivalence relations arise in numerous applications. An example includes any sort of \group-

ing" operation, where every object belongs to some group (perhaps in a group by itself) and

no object belongs to more than one group (called a partition). For example, suppose we are

maintaining a bidirectional communication network. As we add links to the network, sites that

could not communicate with other now can. Communication is an equivalence relation, since

if machine a can communicate with machine b, and machine b can communicate with machine

c, then machine a can communicate with machine c (e.g. by sending messages through b). We

discuss a data structure that can be used for maintaining equivalence relations, and merging

groups. For example, if we establish a new link between two machines a and b, it is now that

case the the entire groups of machines that could comminicate with a can communicate with

the entire group of machines that could communicate with b.

Union-Find: An important abstract data-type which is used in these grouping applications is

called the Union-Find data type. We assume that we have an underlying domain of elements

S = f1; 2; : : :; ng and we want to maintain a collection of disjoint subsets of these sets, i.e. a

partition of the set. (Note that S is a collection of disjoint sets, not just a single set.) The

three operations the data structure provides are:

Init(S): Initialize the elements of S so that each element i resides in its own singleton set,

fig.
s = Find(S,i): Return the name of the set s that contains the element i. The name of a set

is an integer identi�er for the set. The main property of set names is that Find(i) ==

Find(j) if and only if i and j are in the same set.

Union(s,t): Merge the sets named s and t into a single set.

The Union-Find Data Structure: In order to implement the Union-Find data type we maintain

the elements of S in a forest of inverted trees. This means that the pointers in the tree are

directed up towards the root. There is no limit on how many children a node can have. The

root of a tree has a NULL parent pointer. Two elements are in the same set if and only if

they are in the same tree. To perform the operation Find(S, i), we �nd the node containing

element i (we'll see how later) and then just follow parent links up to the root. We return the

element in the root node as the \name" of the set. Note that this achieves the desired result,

because two nodes are in the same tree if and only if they return the same name.

For example, suppose that S = f1; 2; 3; : : :; 13g and the current partition is

f1; 6; 7; 8; 11; 12g;f2g; f3; 4;5;13g;f9;10g:
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Figure 34: Union-Find Tree Example.

This might be stored as follows.

Note that there is not particular order to how the individual trees are structured, as long as

they contain the proper elements. Also note that unlike existing problems we have discussed

in which there are key values, here the elements are just integers in the range from 1 to n.

Thus, there is never a question of \what" is in the data structure, the issue is \which" tree

are you in.

As with binary heaps, there is a clever way to store Union-Find trees in arrays. The observation

is that since we do not need to store key values, we can simply store the parent pointers.

Further, by storing the elements in an array S[1::n], the array need only contain the index of

your parent in the tree, where an index of 0 means a null pointer. So the tree showed above

could be represented in array form as shown in the �gure.

Union-Find Operations: In order to initialize the data structure we just set all parent pointers

to NULL, or equivalently just initialize the array to 0. Thus each element is in its own set.

To perform a Find, we simply traverse the parent pointers until arriving at the root. We return

a pointer to the root element (this is the \name" of the set).

Performing a Union is pretty straightforward. To perform the union of two sets, e.g. to take

the union of the set containing f2g with the set f9; 10g we just link the root of one tree into

the root of the other tree. But here is where we need to be smart. If we link the root of f9; 10g
into f2g, the height of the resulting tree is 2, whereas if we do it the other way the height of

the tree is only 1. (Here the height of a tree is the maximumnumber of edges from any leaf to

the root.) It is best to keep the tree's height small, because in doing so we make the Find's go

faster.

In order to perform Union's intelligently, we can maintain an extra piece of information, which

contains the rank, that is, height of a tree. (We could have also stored the size, i.e. number of

nodes, instead). Our more intelligent heuristic for Unioning is to link the set of smaller rank

as a child of the set of larger rank.

Observe that we only need to maintain the rank �eld for the root nodes (whose array values

are all zero). One clever way to store this rank �eld using our array representation is to store

the negation of the rank in the root nodes. Thus if S[i] is strictly positive, then this entry is

a parent link, and otherwise i is the root of a tree and �S[i] is the rank of this tree. The set

shown in the �gure above would now have the following representation.

Here is the code for the data structure operations. The type Disj Sets is a collection of disjoint
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Array representation:
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Figure 35: Union-Find with ranks.

sets (an array of integers, which are either positive indices or negative ranks), a Set Type is a

single set (just an integer index), and a Elt Type is a single element (just an integer index).

Disj_Sets S[n];

void Init(Disj_Sets S) {

for (i = 1; i <= n; i++) // put each item in its own set

S[i] = 0;

}

void Union(Disj_Sets S, Set_Type r1, Set_Type r2) {

if (S[r2] < S[r1]) // r2 has strictly higher rank

S[r1] = r2; // make r2 new root

else { // make r1 new root

if (S[r2] == S[r1])) // equal rank

S[r1]--; // increment (negative) rank

S[r2] = r1;

}

}

Set_Type Find1(Elt_Type x, Disj_Sets S) {

while (S[x] > 0) x = S[x]; // follow chain to root

return x;

}

Analysis of Running Time: Observe that the running time of the initialization is proportional

to n, the number of elements in the set, but this is done only once. Union takes only constant

time, O(1).

In the worst case, Find takes time proportional to the height of the tree. The key to the

e�ciency of this procedure is the following observation. We use the notation lgm to denote

the logarithm base 2 of m. Let h(T ) denote the height of tree T .

Theorem: Using the Union and Find1 procedures given above any tree containingm elements

has height at most lgm. This follows by the following lemma.

Lemma: Using the Union and Find1 procedures given above any tree with height h has at

least 2h elements.
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Proof: (By strong induction on the number of Unions performed to build the tree). For the

basis (no unions) we have a tree with 1 element of height 0. But 20 = 1, as desired.

For the induction step, suppose that the hypothesis is true for all trees of built with

strictly fewer than k union operations, and we want to prove the lemma for a Union-Find

tree built with exactly k union operations. Such a tree was formed by unioning two trees,

say T1 and T2, of heights h1 and h2 and sizes n1 and n2. Since these trees were formed

with fewer than k union operations, ni � 2hi . Assume without loss of generality that T2
was made a child of T1 (implying that h2 � h1). If h2 < h1 then the �nal tree has height

h = h1, and by the induction hypothesis it contains

n = n1 + n2 � 2h1 + 2h2 � 2h1 = 2h

elements, as desired.

On the other hand, if h2 = h1, then the height of the �nal tree h = h2 + 1 = h1 + 1, and

by the induction hypothesis this tree contains

n = n1 + n2 � 2h1 + 2h2 = 2(h� 1) + 2(h� 1) = 2h

elements, as desired.

As a corollary, it follows that the running time of the Find procedure is O(logm).

Theorem: After initialization, any sequence of n Union's and Find's can be performed in

time O(n logn).

Proof: Union's take constant time, and Find's take O(logn) time each, so any sequence of

length n takes no more than O(n logn) time.

Path Compression: Interestingly, it is possible to apply a very simple heuristic improvement

to this data structure which provides an impressive improvement in the running time (in

particular, it ALMOST gets rid of the logn factor in the running time above).

Here is the intuition. If the user of your data structure repeatedly performs Find's on a leaf

at a very low level in the tree then this takes a lot of time. If we were to compress the path

on each Find, then subsequent Find's to this element would go much faster. By \compress the

path", we mean that when we �nd the root of the tree, we set all the parent pointers of the

nodes on this path to the root directly. For example, in the following �gure, when we do a

Find on 1, we traverse the path through 3; 2; 4 and then \compress" all the parent pointers of

these elements (except 4) to 4. Notice that all other pointers in the tree are una�ected.
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1
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44
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...
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Find(1)

Figure 36: Path Compression.

Here is a very slick implementation �nd with path compression.
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Set_Type Find2(Elt_Type x, Disj_Sets S) {

if (S[x] <= 0) return x;

else return S[x] = Find2(S[x], S);

}

The running time of Find2 is still proportional to the level of node being \found", but observe

that each time you spend alot of time in a Find, you make the tree 
atter. Thus the work you

do provides a bene�t for later Find operations. (This is the sort of thing that we look for in

amortized analysis.)

Does the savings really amount to anything? The answer is YES. It was believed at one time

that with path compression the running time of the algorithm was O(m) to perform a series of

m UNION and FIND's (starting with an empty data structure), and thus the amortized cost

of each operation is O(1), but this turned out to be false, but only barely so.

To analyze this algorithm is quite tricky, but we'll state the result. We need to introduce two

new functions, A(m;n) and �(n). The function A(m;n) is called Ackerman's function. It is

famous for being just about the fastest growing function imaginable.

A(1; j) = 2j for j � 1,

A(i; 1) = A(i � 1; 2) for i � 2,

A(i; j) = A(i � 1; A(i; j � 1)) for i; j � 2.

To get a feeling for how fast this function grows, observe that

A(2; j) = 22
�

�

�

2

;

where the tower of powers of 2 is j high. A(3; j) is much much larger than this. A(3; 2) is

already greater than the number of atoms in the observable universe.

Now to de�ne an unbelievably slow growing function, we de�ne

�(m;n) = minfi � 1 j A(i; bm=nc) > lgng:

This de�nition is somewhat hard to interpret, but the important bottom line is that �(m;n) �
4 as long as m is less than the number of atoms in the universe.

Theorem: After initialization, any sequence of m Union's and Find's (using path compres-

sion) on an initial set of n elements can be performed in time O(m�(m;n)) time. Thus

the amortized cost of each Union/Find operation is O(�(m;n)).

Lecture 17: Hashing

(Tuesday, Nov 1, 1993)
Reading: Chapter 5 in Weiss.

Hashing: We have seen various data structures (e.g., binary trees, AVL trees, splay trees, skip lists)

that can perform the dictionary operations Insert(), Delete() and Find(). We know that

these data structures provide O(logn) time access. It is unreasonable to ask any sort of tree-

based structure to do better than this, since to store n keys in a binary tree requires at least


(logn) height. Thus one is inclined to think that it is impossible to do better. Remarkably,

there is a better method, at least if one is willing to consider expected case rather than worst
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case performance. However, as with skip lists, it is possible randomize things so that the

running times are O(1) with high probability.

Hashing is a method that performs all the dictionary operations in O(1) (i.e. constant) ex-

pected time, under some assumptions about the hashing function being used. Hashing is

considered so good, that in contexts where just these operations are being performed, hashing

is the method of choice (e.g. symbol tables for compilers are almost always implemented using

hashing). Tree-based data structures are generally prefered in the following situations:

� When storing data on secondary storage (B-trees),

� When knowledge of the relative ordering of elements is important (e.g. if a Find() fails,

I may want to know the nearest key. Hashing cannot help us with this.)

One of the most common applications of hashing is in compilers. We need to maintain a

symbol table of the variables seen in the program. We could store them in a tree, but hashing

turns out to be so much faster in practice that it is the most popular technique. There are a

number of other applications of hashing to parallel computing and fault-tolerant distributed

computing. In both cases, it is important to distribute data around a system uniformly. For

parallel computation this is for load balancing so that no on processor has an unusually heavy

workload, and in distributed computing this is done for fault tolerance, so that if one machine

in a network goes down, the data necessary for the system as a whole to operate is scattered

around on other machines.

The idea behind hashing is very simple. We have a table containing m entries (Weiss uses the

notation H SIZE). We select a hash function h(k), that maps each key k to some (essentially)

random location in the range [0..m-1]. We will then attempt to store the key in index h(k)

in the table. Of course, it may be that di�erent keys are \hashed" to the same location. This

is called a collision. If the hashing function is really very nearly random-like, then we expect

that the chances of a collision occuring at any index of the table are about the same. As long

as the table is not too full, the number of collisions should be small.

There are two topics that need to be considered in hashing. The �rst is how to select a hashing

function and the second is how to resolve collisions.

Hash Functions: A good hashing function should have the following properties.

� It should be simple to compute (using simple arithmetic operations ideally).

� It should produce few collisions. In turn the following are good rules of thumb in the

selection of a hashing function.

{ It should be a function of every bit of the key.

{ It should break up naturally occuring clusters of keys.

We will assume that our hash functions are being applied to integer keys. Of course, keys need

not be integers generally. In most common applications they are character strings. Character

strings are typically stored as a series of bytes, each of which is an ASCII representation of the

character. The sequence is either of �xed length or is terminated by a special byte (e.g. 0).

For example \Hello" is encoded as h72; 101; 108; 108; 111;0i. A simple technique for converting

such a string into an integer is by successive adding and multiplying by some random number

(or shifting bits). E.g.

(((72 � 13 + 101) � 13 + 108) � 13 + 108) � 13 + 111 = 2298056:

It is easy to design a simple loop to perform this computation (but some care is needed to

handle over
ow if the string is long).
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Once our key has been converted into an integer, we can think of hash functions on integers.

One very simple hashing function is the function

h(k) = k modm:

This certainly maps each key into the range [0::m � 1], and it is fast on most machines.

Unfortunately this function is not really very good when it comes to collision properties. In

particular, keys whose values di�er only by one (e.g. the variable names temp1, temp2, temp3)

will be hashed to consecutive locations. We would prefer to avoid this type of clustering.

A more robust idea is to �rst multiply the key value by some integer constant x and then take

the mod. For this to have good scattering properties either m should be chosen to be a prime

number, or x should be prime relative to m (i.e. share no common divisors other than 1).

h(k) = xk modm:

In our examples, we will simplify things by taking the last digit as the hash value, although in

practice this is a very bad choice.

A �nal idea for generating hash functions, is to do what we did with skip lists, randomize.

Since any given hash function might be bad for a particular set of keys, how about if we

introduce randomness into the process. One suggestion (returning to strings) is to multiply

each character of the string by a random number in the range from 0 to m� 1, and then take

the whole thing modulo m. For example, to hash the string a = ha1; a2; : : : ; aki we would

compute

h(a) =

kX
i=0

aixi modm:

Where the hx1; x2; : : :i is a sequence of �xed random numbers (selected during the initialization

of the hashing function). This method is called universal hashing. It has the nice property

that for ANY two distinct keys, a and b, the probability that a randomly chosen hash function

will map them to the same location in the hash table is 1=m, which is the best you can hope

for.

Lecture 18: More Hashing

(Thursday, Nov 4, 1993)
Reading: Chapter 6 in Samet's notes, Chapt 5 in Weiss.

Collision Resolution: Once a hash function has been selected, the next element that has to be

solved is how to handle collisions. If two elements are hashed to the same address, then we

need a way to resolve the situation.

Separate Chaining: The simplest approach is a method called separate chaining. The idea is that

we think of each of the m locations of the hash table as simple head pointers to m linked list.

The link list Table[i] holds all keys that hash to location i.

To insert a key k we simply compute h(k) and insert the new element into this linked list (we

should �rst search the list to make sure it is not a duplicate). To �nd a key we just search

this linked list. To delete a key we delete it from this linked list. An example is shown below,

where we just use the last digit as the hash function (a very bad choice normally).

The running time of this procedure will depend on the length of the linked list to which the

key has been hashed. If n denotes the number of keys stored in the table currently, then the

ratio � = n=m indicates the load factor of the hash table. If we assume that keys are being
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Figure 37: Separate Chaining.

hashed roughly randomly (so that clustering does not occur), then it follows that each linked

list is expected to contain � elements. As mentioned before, we select m to be with a constant

factor of n, so this ratio is a constant.

Thus, it follows from a straightforward analysis that the expected running time of a successful

search is roughly

Sc = 1 +
�

2
= O(1):

since about half of an average list needs be searched. The running time of an unsuccessful

search is roughly

Uc = 1 + � = O(1):

Thus as long as the load factor is a constant separate chaining provide expected O(1) time for

insertion and deletion.

The problem with separate chaining is that we require separate storage for pointers and the

new nodes of the linked list. This also creates additional overhead for memory allocation. It

would be nice to have a method that does not require the use of any pointers.

Open Addressing: To avoid the use of extra pointers we will simply store all the keys in the table,

and use a special value (di�erent from every key) called Empty, to determine which entries have

keys and which do not. But we will need some way of �nding out which entry to go to next

when a collision occurs. In general, we will have a secondary search function, f , and if we �nd

that location h(k) is occupied, we next try locations

(h(k) + f(1)) modm; (h(k) + f(2)) modm; (h(k) + f(3)) modm; : : : :

until �nding an open location. This sequence is called a probe sequence, and ideally it should

be capable of searching the entire list. How is this function f chosen? There are a number of

alternatives, which we consider below.

Linear Probing: The simplest idea is to simply search sequential locations until �nding one that

is open. Thus f(i) = i. Although this approach is very simple, as the table starts to get full

its performance becomes very bad (much worse than chaining).

To see what is happening let's consider an example. Suppose that we insert the following 4

keys into the hash table (using the last digit rule as given earlier): 10, 50, 42, 92. Observe

that the �rst 4 locations of the hash table are �lled. Now, suppose we want to add the key

31. With chaining it would normally be the case that since no other key has been hashed to

location 1, the insertion can be performed right away. But the bunching of lists implies that

we have to search through 4 cells before �nding an available slot.

60



Lecture Notes CMSC 420

50

6

5

4

3

2

1

0

42

50

10

6

5

4

3

2

1

0

92

42

50

10

6

5

4

3

2

1

0

31

92

42

50

10

6

5

4

3

2

1

010

Insert(50) Insert(42) Insert(92) Insert(31)

Figure 38: Linear probing.

This phenomenon is called secondary clustering. Primary clustering happens when the table

contains many names with the same hash value (presumably implying a poor choice for the

hashing function). Secondary clustering happens when keys with di�erent hash values have

nearly the same probe seqeunce. Note that this does not occur in chaining because the lists

for separate hash locations are kept separate from each other, but in open addressing they can

interfere with each other.

As the table becomes denser, this a�ect becomes more and more pronounced, and it becomes

harder and harder to �nd empty spaces in the table.

It can be shown that if � = n=m, then the expected running times of a successful and unsuc-

cessful searches using linear probing are

Slp =
1

2

�
1 +

1

1� �

�

Ulp =
1

2

 
1 +

�
1

1� �

�2
!
:

As � approaches 1 (a full table) this grows to in�nity. A rule of thumb is that as long as the

table remains less than 75% full, linear probing performs fairly well.

Deletions: When using an open addressing scheme, we must be careful when performing deletions.

In the example above, if we were to delete the key 42, then observe that we would not �nd

31, because once the �nd function sees that the location is empty, it looks no further. To

handle this we create a new special value (in addition to Empty) for cells whose keys have been

deleted, called Del. If the entry is Del this means that the Find routine should keep searching

(until it comes to an Empty entry), whereas the insertion routine can simply reuse any Del cell

for placing a new key.

Lecture 19: Still More Hashing

(Tuesday, Nov 9, 1993)
Reading: Chapter 6 in Samet's notes, Chapt 5 in Weiss.

Quadratic Probing: To avoid secondary clustering, one idea is to use a nonlinear probing function

which scatters subsequent probes around more e�ectively. One such method is called quadratic
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Figure 39: Deleting with open addressing.

probing, which works as follows. If the index hashed to h(x) is full, then we consider next

h(x) + 1; h(x) + 4; h(x) + 9; : : : (again taking indices mod m). Thus the probing function is

f(i) = i
2.

Here is the search algorithm (insertion is similar). Note that there is a clever trick to compute

i
2 without using multiplication. It is based on the observation that i2 = (i � 1)2 + 2i � 1.

Therefore, f(i) = f(i � 1) + 2i � 1. Since we already know f(i � 1) we only have to add in

the 2i � 1. Since multiplication by 2 can be performed by shifting this is more e�cient. The

argument x is the key to �nd, T is the table, and m is the size of the table.

int T[m]; // hash table

int Find(x, int T[]) {

i = 0;

c = hash(x); // first position

while (T[c] != Empty) && (T[c] != x) {

c += 2*(++i) - 1 // next position

if (c > m) c -= m; // wrap around

}

return c;

}

The above procedure is not quite complete, since it loops in�nitely when the table is full. This

is easy to �x, by adding a variable counting the number of entries being used in the table.

Experience shows that this succeeds in breaking up the secondary clusters that arise from

linear probing, but there are some tricky questions to consider. With linear probing we were

assured that as long as there is one free location in the array, we will eventually �nd it without

repeating any probe locations. How do we know if we perform quadratic probing that this

will be the case? It might be that we keep hitting the same index of the table over and over

(because of the fact that we take the index mod m).

It turns out (fortunately) that quadratic probing does do a pretty good job of visiting di�erent

locations of the array without repeating. It can even be formally proved that if m is prime,

then the �rst m=2 locations that quadratic probing hits will be distinct.

Theorem: If quadratic probing is used, and the table size is prime, then a new element can

always be inserted if the table is at most half full.
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Proof: We prove that the �rst m=2 locations tested by the quadratic probing method are

distinct. Let us assume that m is a prime number. Suppose by way of contradiction that

for 0 � i < j � bm=2c that h(x) + i
2 � h(x) + j

2 (mod m). Then we have

i
2 � j

2 (mod m)

i
2 � j

2 � 0 (mod m)

(i � j)(i + j) � 0 (mod m)

This means that the quantity (i � j)(i + j) is a multiple of m. Because m is prime, one

of these two numbers must be a multiple of m. Since i 6= j, and both numbers are less or

equal to m=2 it follows that neither (i� j) nor (i + j) can be a multiple of m.

Double Hashing: As we saw, the problem with linear probing is that we may see clustering or

piling up arise in the table. Quadratic probing was an attractive way to avoid this by scattering

the successive probe sequences around. If you really want to scatter things around for probing,

then why don't you just use another hashing function to do this?

The idea is use h(x) to �nd the �rst location at which to start searching, and then let f(i) =

i � h2(x) be the probing sequence where h2(x) is another hashing function. Some care needs

to be taken in the choice of h2(x) (e.g. h2(x) = 0 would be a disaster). As long as the table

size m is prime and (h2(x) modm 6= 0 we are assured of visiting all cells before repeating.

Be careful, the second hash function does not tell us where to put the object, it gives us an

increment to use in cycling around the table.

Performance: Performance analysis shows that as long as primary clustering is avoided, then

open addressing is an e�cient alternative to chaining. The running times of successful and

unsuccessful searches are

S =
1

�
ln

1

1� �

U =
1

1� �
:

To give some sort of feeling for what these quantities mean, consider the following table.

� 0.50 0.75 0.90 0.95 0.99

U (�) 2.00 4.00 10.0 20.0 100.

S(�) 1.39 1.89 2.56 3.15 4.65

Rehashing: The advantage of open addressing is that we do not have to worry about pointers

and storage allocation. However, if the table becomes full, or just too close to full so that

performance starts degrading (e.g. the load factor exceeds some threshold in the range from

80% to 90%). The simplest scheme, is to allocate a new array of size a constant factor larger

(e.g. twice) the previous array. Then create a new hash function for this array. Finally go

through the old array, and hash all the old keys into the new table, and then delete the old

array.

You may think that in the worst case this could lead to lots of recopying of elements, but

notice that if the last time you rehashed you had 1000 items in the array, the next time you

may have 2000 elements, which means that you performed at least 1000 insertions in the mean

time. Thus the time to copy the 2000 elements is amortized by the previous 1000 insertions

leading up to this situation.
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Extensible Hashing: Suppose the number of keys we have is so large that the hash table will not

�t in main memory. Can we still apply hashing in this case? Recall that when accessing disk

pages, there is a very large cost to bring in a page into fast main memory. Once the page is in

memory we can access it very e�ciently. Thus locality of reference is important. The problem

with hashing (much like the problem with binary trees) is that the most e�cient methods

(such as quadratic probing and double hashing) work by eliminating any locality of reference.

Thus, if you have to probe the hash table 6 times, this could result in 6 disk page accesses.

The question is whether we can create a hashing scheme that minimizes the number of disk

accesses (as B-trees did for binary search trees). The answer is a method called extensible

hashing. In this method the hash table is broken up into a number of smaller hash tables, each

is called a bucket. The maximum size of each bucket is taken to be the size of a disk page, so

we can access each bucket with a single disk access. In order to �nd which bucket to search for,

we store in main memory, a data structure called a dictionary. Each entry in the dictionary

contains a disk address of the corresponding bucket. Each bucket can hold as many records

as will �t onto one disk page, but as keys are inserted and deleted from the data structure a

bucket will not necessarily be full. We will try to keep each bucket at least half full (although

this will not be possible in the worst case, it tends to be true on average).

Let m denote the maximum size of each bucket, and let n denote the total number of keys in

the data structure. Recall that m depends on the size of a disk page. It is important that m

be fairly large (e.g. at least 4 and ideally much higher). If records are too large to �t very

many in each disk page, then just store pointers to the records in each bucket. To make it

easy to draw illustrations we will assume m = 4, but bigger is better.

The dictionary D is always of size that is a power of 2. As the hash table grows this power

will increase. Let's suppose that it is 2k right now. To decide which bucket to store a key x,

we �rst compute the hash function h(x) on this key. This results in a binary number. We

look at the leading k bits of h(x), call the result q, and store x in the bucket pointed to by

D[q]. (Since q is exactly k bits long, it is a number in the range 0 to 2k � 1.) An example is

shown below where k = 2. We assume that the key is the hash value itself (although this is

not recommended unless you have reason to believe your keys are uniformly distributed).

000100

001000

001010

001011

00 01 10 11

010100

011000

100000

101000

101100

101110

111000

111001

2 2 2 2

Figure 40: Extensible hashing.

For example, to �nd the key 101100 we strip o� the �rst 2 bits, 10, and search the appropriate

bucket. Within a bucket we can store data anyway we like. The reason is that the disk access

time is so large that the processing time within each node is tiny in comparison.

Suppose we want to insert a new key. If there is room in the bucket then there is no problem.

Otherwise we need to split a bucket. We do this by considering one additional bit in our

dictionary (which e�ectively doubles the size of the dictionary) and then we split the bucket

that has over
owed according to this new bit. However, note that we do not need to split any
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other buckets. We simply have both pointers of the dictionary point to the same bucket. For

example, suppose we add the key 100100 into the table above. The result is shown below.

000100

001000

001010

001011

111000

111001

000 001 010 011 100 101 110 111

010100

011000

100000 101000

101100

101110

100100

2 2 3 3 2

Figure 41: Insertion of 100100.

Observe that although the dictionary has doubled in size, only one of the buckets has been

split. For example, there are two dictionary entries 000 and 001 that point to the same bucket.

If we were to insert the key 000000, the bucket 000 would over
ow, and so it would be split.

However we do not need to increase the size of the dictionary, we simply di�erentiate between

the newly created buckets for 000 and 001.

111000

111001

000 001 010 011 100 101 110 111

010100

011000

100000 101000

101100

101110

100100

2 3 3 23 3

001000

001010

001011

000100

000000

Figure 42: Insertion of 000000.

As you can see, the performance of this system would be bad if it were the case that almost

all the keys began with the same string of bits. For example, if all keys began with the pre�x

00000 then we would need a dictonary of size 25 = 32 and only one entry of the dictionary

would be used. However, remember that we extract bits from the result of applying the hash

function. Even if the initial set of keys is not uniformly distributed, we expect the output of

the hash function will be uniformly distributed. Thus this problem will not arise in practice.

Analysis shows that buckets will be about ln 2 = 69% full on average.

Lecture 20: Project 2

(Thursday, Nov 11, 1993)
Today's lecture was spent discussing programming project 2. See the project handout.

Lecture 21: Geometric Preliminaries

(Tuesday, Nov 16, 1993)
Today's material is not discussed in any of our readings.
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Geometry and Computation: An increasingly large number of data structures and algorithms

problems these days involve geometric data. The reason is that rapidly growing �elds such

as computer graphics, robotics, computer vision, computer-aided design, visualization, virtual

reality, and others deal primarily with geometric data. Geometric applications give rise to

knew data structures problems, which we will be studying for a number of lectures.

Before discussing geometric data structures, we need to provide a background on what geo-

metric data is, and how we compute with it. With nongeometric data we stated that we are

storing records, and each record is associated with an identifying key value. In the case of

geometric data, the same model holds, but now the key values are geometric objects, points,

lines and line segments, rectangles, spheres, polygons, etc. Along with the basic key value we

also have associated data. For example, a sphere in 3-dimensional space is characterized by 4

numbers, the (x; y; z) coordinates of its center and its radius. However, associated data might

include things such as surface color and texture (for graphics applications), weight or elictrical

properties (for physical modeling applications), planet name, orbit and rotational velocity (for

astronomical applications), etc.

Primitive Objects: What are the primitive objects from which data structures are constructed.

Here is a list of common objects (and possible representations), but the list is far from complete.

Let d-denote the dimension of the space.

Scalar: Almost all spaces are based on some notion of what a single number is. Usually this

is an 
oating point number, but could be something else, e.g. intger, rational, or complex

number.

Point: Points are locations in space. Typical representation is as a d-tuple of scalars, e.g.

(x; y; z). You might wonder whether it is better to used an array representation or a

structure representation:

scalar Point[3]; // array representation

-or-

struct {

scalar x, y, z; // structure representation

} Point;

It is generally felt that the array representation is better because it typically saves code

(using loops rather than repeating code) and is usually easier to generalize to higher

dimensions. However, in C is not possible to copy arrays to arrays just using assignment

statements, whereas points can be copied. Later we will suggest a compromise alternative.

Vector: Vectors are used to denote direction and magnitude in space. Vectors and points are

represented in essentially the same way, as a d-tuple of scalars, but in many applications

it is useful to distinguish between them. For example, velocities are frequently described

as vectors, but locations are usually described as points.

Sphere: A d-dimensional sphere, can be represented by point indicating the center of the

sphere, and a positive scalar representing its radius.

Line Segment: A line segment can be represented by giving its two endpoints (p1; p2). In

some applications it is important to distinguish between the line segments (p1; p2) and

(p2; p1). In this case they would be called directed line segments.

Line: In dimension 2, a line can be represented by a line equation

y = ax+ b or ax+ by = c:

The former de�nition is the familiar slope/intercept representation, and the latter takes

an extra coe�cient but is more general since it can represent vertical lines. The repre-

sentation consists of just storing the pair (a; b) or (a; b; c).
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Hyperplanes: In general, in dimension d, a linear equation of the form

a1x1 + a2x2 + : : : ; adxd = c

de�nes a d � 1 dimensional hyperplane. It can be represented by the (d + 1)-tuple

(a1; a2; : : : ; ad; c).

Orthogonal Hyperplane: In many data structures it is common to use hyperplanes for

decomposing space, but only hyperplanes that are perpendicular to one of the coordinate

axes. In this case it is much easier to store such a hyperplane by storing (1) an integer

cut dim in the range [0::d�1] that indicates which axis the plane is perpendicular to and

(2) a scalar cut val that indicates where the plane cuts this axis.

Ray: Directed lines in dimensions greater than 2 space are not usually represented by equa-

tions, but by using rays. A ray can be represented by storing an origin point and a

nonzero directional vector. Letting p and v denote the origin and directional vector of

the ray, the ray consists of all the points p + tv, where t is any scalar, t � 0.

Ray Segment: A ray segment is my term for a connected piece of a ray in 3-space. By a

segment of a ray, we mean all the points of the ray that lie within an interval [t0; t1] for

scalars, 0 � t0 � t1. A ray segment can be represented by 4 quantities, the origin point

of the ray, p, the directional vector, v, and the values t0 and t1. (Another representation

is to store the two endpoints of the segment.)

Simple Polygon: Solid objects can be represented as polygons (in dimension 2) and polyhe-

dra (in higher dimensions). By a simple polygon in the plane we mean a closed sequence

of line segments joined end-to-end, such that no two segments cross over one another (i.e.

the curve is simple).

(a) Nonsimple (b) Simple

Figure 43: Simple and nonsimple polygons.

The standard representation of a simple polygon is just a list of points (stored either in

an array or a circularly linked list). In general representing solids in higher dimensions is

tricky. We will probably discuss representations in future lectures.

Orthogonal Rectangle: Rectangles can be represented as polygons, but rectangles whose

sides are parallel to the coordinate axes are common. A couple of representations are

often used. One is to store the two points of opposite corners (e.g. lower left and upper

right). Another is to store d sets of intervals [xlo; xhigh] describing the projection of the

rectangle onto each of the coordinate axes.

Operations on Primitive Objects: When dealing with simple numeric keys in 1-dimensional

data structures, the set of possible operations needed to be performed on each primitive object

was quite simple, e.g. compare one key with another, sum keys, print keys, etc. With geometric

objects, there are many more operations that one can imagine.

Basic point/vector operators: Let s be any scalar, p; p0 be points, and v; v0; v00 be vectors.

Then the following operations are familiar ones from linear algebra. s�v ! v (scalar/vector
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multiplication), v+v0 ! v
00 (vector addition), p+v ! p

0 (point/vector addition), p�p0 !
v (point/point subtraction), and �nally v �v0 ! s (vector dot product). Results are given

below.

s � (v0; v1; v2) ! (sv0; sv1; sv2)

(v0; v1; v2) + (v00; v
0

1; v
0

2) ! (v0 + v
0

0; v1 + v
0

1; v2 + v
0

2)

(p0; p1; p2) + (v0; v1; v2) ! (p0 + v0; p1 + v1; p2 + v2)

(p0; p1; p2)� (p00; p
0

1; p
0

2) ! (p0 � p
0

0; p1 � p
0

1; p2 � p
0

2)

(v0; v1; v2) � (v00; v
0

1; v
0

2) ! v0v
0

0 + v1v
0

1 + v2v
0

2:

Basic extractions: For each of the objects given above, you will need to extract the basic

elements from which the object is composed (e.g. the x-coordinate of a vector, the center

of a sphere, the directional vector of a ray). In most cases these will just be extracting the

appropriate �eld from an array or structure. One nontrivial example are the ray segment

operations of returning the �rst point on the ray segment (p+(t0 � v)), and the last point

on the segment (p+ (t1 � v)) (where p and v are the origin and direction of the ray).

Input/Output: It is good to have routines for inputting and outputting geometric objects.

Normalization: It is important for some of the operations to be discussed that vectors be

normalized to unit length. Given a vector (v0; v1; v2), its length is given by the formula r =p
v
2
0 + v

2
1 + v

2
2. If r is nonzero, we divide each component by r giving (v0=r; v1=r; v2=r).

Otherwise an error message is printed.

Clipping and Intersection: The most common operations involving geometric primitives

is computing intersections between objects. We discuss the examples of clipping a ray

segment to sphere and splitting a ray segment about a line are described below.

Re
ecting: One primitive which is nice for ray tracing applications and some motion simu-

lation problems is that of computing how an ray re
ects when it hits an object. This is

discussed below.

As a programming note, observe that C++ has a very nice mechanism for handling these

operations using operator overloading. For example, to implement point/point subtraction

one might use the following.

// C++ version

const int dim = 3;

typedef double scalar;

class Point {

scalar c[dim];

...

friend Vect operator -(Point p1, Point p2);

}

class Vect {

scalar c[dim];

...

friend Vect operator -(Point p1, Point p2);

}

Vect operator -(Point p1, Point p2) {

Vect v;
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for (int i = 0; i < dim; i++)

v.c[i] = p1.c[i] - p2.c[i];

return v;

}

After this, to compute the di�erence of points you can just say v = p1 - p2. In C, the

alternative is somewhat messier. One problem is that you cannot overload operators, and the

other is that you cannoy make assignments to arrays (although you can make assignments to

structures). So the following might be used instead:

/* ANSI C version */

#define dim 3

typedef double scalar;

typedef struct {

scalar c[dim];

} Point;

typedef struct {

scalar c[dim];

} Vect;

Vect PPDiff(Point p1, Point p2) {

Vect v;

for (int i = 0; i < dim; i++)

v.c[i] = p1.c[i] - p2.c[i];

return v;

}

and give the somewhat messier v = PPDiff(p1, p2).

Splitting: We consider the task of splitting a ray segment about a orthogonal plane. We are given

a ray segment s, and an orthogonal plane pl. Let us assume that the ray is given by the origin

point p, the directional vector d, and the two parameter values t0 and t1. Let's assume that

the plane is given by a cutting dimension i and a cutting value of c.

The basic task is to determine the parameter value at which the ray would hit the plane. The

ray is given by the point/vector equation

p+ t � v for t > 0.

So, the parameter t at which the i-th coordinate of the point on the ray hits the plane is given

by

p[i] + t � v[i] = c:

Solving for t we get

t =
c� p[i]

v[i]
:

Of course a solution only exists if v[i] 6= 0. What does it mean if v[i] = 0? It means that the

ray is parallel to the plane, and so there is no solution (we assume that the ray does not lie

exactly on the plane).

Once we have computed the value of t, to determine whether the segment hits the plane or

not, we test whether t lies in the range [t0; t1]. If so, we have a hit, otherwise we do not. In
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the following code, low and high are the results of the split. The former lies on the lower side

of the plane, and the latter lies on the upper side. If the segment lies entirely on one side,

then one of these segments will be empty. To make a segment empty, we simply set it's two

parameters t0 and t1 equal to each other. If the segment is parallel to the plane, then we set

high to an empty segment, and low contains the whole segment.

Note: We use pass by reference, which is allowed in C++. In C to return the values of low

and high you would have to pass pointers to these objects. Also, in the code below I assume

that I can index into points and vectors directly to simplify notation.

class RaySeg {

Point origin; // origin of ray

Vect direc; // direction of ray

scalar t0; // parametric limits of segment

scalar t1;

...

friend void Split(...);

}

class OrthPlane {

int cut_dim; // cutting dimension

scalar cut_val; // cutting value

...

friend void Split(...);

}

void Split(OrthPlane pl, RaySeg s, RaySeg &low, RaySeg &high)

// NOTE: low, high are

// reference parameters.

{

int i = pl.cut_dim; // cutting dimension

scalar c = pl.cut_val; // cutting value

Point p = s.origin; // origin of ray segment

Vect v = s.direc; // direction of ray segment

low = high = s; // initialize to s

if (v[i] == 0.0) { // parallel to plane

high.t0 = high.t1; // make high empty

}

else {

scalar t = (c - p[i])/v[i];

if (t < s.t0) // miss on low side

low.t0 = low.t1 = t; // low is empty

else if (t > s.t1) // miss on high side

high.t0 = high.t1 = t; // high is empty

else { // segment is cut

high.t0 = t; // trim the final segments

low.t1 = t;

}

}

}
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Lecture 22: More Geometric Primitives

(Thursday, Nov 18, 1993)
Today's material is not discussed in any of our readings.

Clipping: Another important geometric primitive is computing intersections between rays and

objects. For example in ray tracing, we may need to determine whether a given segment

of a ray intersects a sphere. If it does then we clip the ray, by terminating it at the point

of intersection. If there is no contact then the ray segment is unchanged. Determining the

intersection point is a straightforward application of basic high school algebra.

Let c and r denote the center point and radius, respectively, of the sphere. Let c[i] denote the

i-th coordinate of the center. Thus a point q lies on the sphere if and only if the distance from

q to c is equal to r. Given a vector w, let jjwjj denote the length of w. That is

jjwjj =
p
w[0]2+ w[1]2+ w[2]2 =

p
w �w:

(where w � w denote dot product. Saying that q lies on the sphere is the same as saying that

the distance from q to c is r, or that the length of the vector q � c is r. Squaring both sides

and applying the de�nition of the length of a vector we get

r
2 = jjq� cjj2 = (q � c) � (q � c):

Let p denote the origin of the ray segment, let v denote the directional vector, and let t0 and

t1 be the extreme points of the segment. Thus a point t on the ray is given by the equation

p + t � v; for t0 � t � t1.

We want to know whether there is some value t such that this point of the ray segment hits

the sphere, in other words, whether p+ t � v satis�es the above formula in place of q.

r
2 = jj(p+ t � v) � cjj2:

We know the values of p, v, c, and r, so all we need to do is solve this rather messy looking

formula for t. Let's let w be the vector p� c. We can rewrite the above formula as

r
2 = jjt � v + wjj2 = (t � v +w) � (t � v + w)

Using the basic fact of linear algebra that dot product is a linear operator we have

r
2 = t

2 � (v � v) + t � 2 � (v �w) + (w �w):

Observe that this is of the form of a quadratic equation in t. In particular, if we let A = (v �v),
B = 2 � (v �w), and C = (w �w) � r

2 we get

0 = At
2 +Bt +C:

We know from high school algebra that if the discriminant

D = B
2 � 4AC

is negative, there are no solutions. Otherwise there are two solutions

t =
�B �

p
D

2A
:
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The two solutions correspond to the fact that when we hit the sphere we hit it twice, the front

side and the back side. Since we are interested only in the �rst intersection (and since A > 0)

we can take the smaller root only

t =
�B �

p
D

2A
:

Putting all this together we get the following procedure. If the segment does not hit the sphere

it returns 0. Otherwise it clips the segment and returns 1.

#define EPS 1.0e-6 // a very small number

class RaySeg {

Point origin; // origin of ray

Vect direc; // direction of ray

scalar t0; // parametric limits of seg

scalar t1;

...

friend int Clip(...);

}

class Sphere {

Point center; // center of sphere

scalar radius; // radius

...

friend int Clip(...);

}

int Clip(RaySeg &s, Sphere sph) // clip segment s at sphere

{

Point c = sph.center; // important objects

scalar r = sph.radius;

Point p = s.origin;

Vect v = s.direc;

scalar t;

Vect w = p - c; // difference of points

scalar A = Dot(v,v); // coeffs of quadratic eqn

scalar B = 2.0*Dot(v,w);

scalar C = Dot(w,w) - r*r;

scalar D = B*B - 4.0*A*C; // discriminant

if (D < 0.0) // negative discriminant

return 0; // no intersection

t = (-B - sqrt(D))/(2.0 * A); // solution parameter

if (t < s.t0+EPS || t > s.t1) // are we within segment?

return 0; // outside of segment

s.t1 = t; // set new high value

return 1; // we hit it

}

There is one tricky item to discuss. When we check that t < s:t0, we add in a small number

EPS. The purpose of this is due to a problem with 
oating point round-o� error. If we are
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shooting a ray o� a sphere we do not want to detect an intersection with this same sphere. In

this case the true value of t will be exactly 0. However 
oating point errors result in a very

small but nonzero value. By disallowing solutions that are very close to zero we avoid this

problem.

Re
ection: Another geometric primitive that is useful is that of computing how a ray bounces o�

a surface, that is, to re
ect the ray. This arises in a couple of places in ray tracing. One is if

you are dealing with re
ective objects, you need to determine how the viewing vector bounces

o� of an object that it hits (in e�ect, you are tracing backwards along the ray of light that

eventually hits the viewers eye to see where it came from). The basic fact about re
ection is

that if w is a normal vector to the surface at the point the ray hits the surface, then the angle

� of re
ection is equal to the angle of incidence.

We will need one basic fact from linear algebra. Given two vectors v and w, the orthogonal

projection of v on w is the vector u that points in the same direction as w and comes by

dropping a perpendicular from v onto w. See the �gure below.

v w

u

s

-2*u

c

q

w

v
u

r

Figure 44: Projection and re
ection.

The orthogonal projection of v onto w is given by the following equation.

u =
v �w
w �w

w:

Now, let s denote the ray segment that hits a sphere. Let q denote the point of contact

between the ray and sphere, and let c denote the center of the sphere. We assume that the clip

procedure has already been called, so q is the terminal endpoint of s. Let w denote a normal

vector pointing outwards from the sphere at point q. We can compute w by taking the vector

from c to q, that is, w = q� c. Place v and w so that their tails lie on q. If we compute u the

projection of v onto w, then it is easy to see by congruent triangles that the re
ection vector

r is r = v � 2 � u.

Thus the re
ective ray has r as its direction and q as its origin. The procedure is given below.

We assume there is a constructor function which given r, q, and the values of t0 and t1 will

create a ray segment having these properties. Since we don't know where the segment ends,

we set t1 to a very large number (essetially +1). We also assume that we have an extractor

function EndPoint(s) which returns the endpoint (p + t1*v) of a ray segment.

#define INFTY 1.0e20 // a big number

// Reflect a ray segment off a sphere.

// We assume s terminates on the sphere (from Clip()).

RaySeg Reflect(RaySeg s, Sphere sph)
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{

Point q = EndPoint(s); // endpoint of s (q = p + t1*v)

Point c = sph.center; // center of sphere

Vect w = q - c; // normal to sphere at q

Vect v = s.direc; // directional vector of s

Vect u = (Dot(v,w)/Dot(w,w))*w; // projection of v on w

Vect r = v + (-2.0)*u; // reflection vector

Normalize(r); // normalize to unit length

RaySeg R(q, r, 0.0, INFTY); // reflection segment

return R;

}

Lecture 23: Geometric Data Structures

(Tuesday, Nov 23, 1993)
Today's material is discussed in Chapt. 2 of Samet's book on spatial data structures.

Geometric Data Structures: Geometric data structures are based on many of the concepts pre-

sented in typical one-dimensional (i.e. single key) data structures. Some concepts generalize

well (e.g. trees) but others do not seem to generalize as well (e.g. hashing). (One problem

with hashing is that it scatters data around. However the notion of proximity is important in

geometry, so it is desireable to keep nearby objects close to each other in the data structure.)

Why is it hard to generalize 1-dimensional data structures. There are a few reasons. The �rst

is that most 1-dimensional data structures are built in one way or another around sorting.

However, what does it mean to sort 2-dimensional data? (Obviously your could sort by x-

coordinate, and among elements with the same x-coordinate you could sort by y-coordinates,

but this is a rather arti�cial ordering, since it is possible for objects to be very close in this

order but be physically very far from each other (e.g. if their x-coordinates are nearly the

same but y-coordinates are vastly di�erent). Second complicating matter is that when dealing

with 1-dimensional search we use the fact that a single key value x can be used to split the

space into the set of keys less than x, and those greater than x. However, given a single point

in 2-dimensional space, how can this point be used to split up space?

Geometric Search Structures: As with 1-dimensional data structures, there are many di�erent

types of problems for which we need data structures, but searching of one form or another

seems to be the most common types of problems. Let S denote a set of geometric objects

(e.g. points, line segments, lines, sphere, rectangles, polygons). In addition to the standard

operations of inserting and deleting elements from S, the following are example of common

queries.

Membership: Is a given object in the set?

Nearest Neighbor: Find the closest object to a given point.

Ray Shooting: Given a ray, what is the �rst object it hits.

Range Query: Given a region (e.g. a rectangle) list all the objects that lie entirely/partially

inside of this region.

As with 1-dimensional data structures, the goal is to store our objects in some sort of intelligent

way so that queries of the above form can be answered e�ciently.

Notice with 1-dimensional data it was important for us to consider the dynamic case (i.e.

objects are being inserted and deleted). The reason was that the static case can be solved by
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simply sorting the objects. Note that in higher dimensions sorting is not longer an option, so

solving these problems is nontrivial, even for static sets.

Basic Paradigm: There is a basic paradigm that underlies the design of a large number of geo-

metric search data structures. It is a natural generalization of what happens in a binary tree.

In a binary tree each key is used to split the space. In geometry, it is no longer the case that

we can use a single key value to split space, but based upon the key we can determine other

methods for splitting space. When space has been split into 2 or more regions, then we can

recurse on these regions. The other element that needs to be considered is that since geometric

objects occupy \space" (unless they are single points) it may not necessarily be the case that

an object falls into one side or the other of the split, rather they may overlap multiple regions.

The general paradigm is:

Subdivide: \Subdivide" space into regions. This is typically done hierarchically, where each

each region is this further split and subregions are stored in a tree.

Insertion: Determine which region(s) the geometric object overlaps and insert it into the

subtrees for these regions.

Splitting: If a region becomes to \crowded", then split this region into smaller regions, and

redistribute the elements among these regions.

Query: Determine which region(s) might a�ect the result of the query. Move through the

tree \searching" each of these regions (perhaps according to some order).

What it means to \split" and \search", and what is meant by \crowded" vary with the ap-

plication and choice of data structure. However, once these notions have been made clear,

the speci�c data structure emerges. Since there are many choices for how to perform these

operations, there are many geometric data structures. As a data structure designer, it is less

important to memorize the various distinctions between the structures, as it is to recognize

what choices lead to e�cient data structures are which do not.

Splitting Alternatives: Let us consider possible techniques for hierarchically decomposing space

into simpler regions. We begin with the simple case of point data. Let us make the simplifying

assumption that we know that all the data objects will lie in some rectangular region. We

assume that this region is given to us as two points LB (for lower bound) and UB (for upper

bound). These represent the lower left and upper right corners of a bounding box. We assume

that the portion of the space that we are interested in is limited to the set of points p such

that

LB[i] � p[i] � UB[i] for i = 0; 1; : : :; d� 1.

For some of the data structures we will mention we do not need these bounds, but for others it

will be important to assume their existence. Let us further assume that the region is square,

so

UB[i]� LB[i] = UB[j]� LB[j] for all 0 � i; j � d� 1.

An example of a set of points is shown below in dimension d = 2 where LB = (0; 0) and

UB = (100; 100).

Point quadtree: Our goal is to decompose space into simple regions, called cells. One idea is that

called a point quadtree. In this method the points are inserted one at a time. Whenever a

point is inserted, we split the cell containing the new point into 4 smaller rectangular cells

by passing horizontal and vertical lines through the point. Suppose we take the points in the

previous example, and insert them in the following order.

(35; 40); (50; 10); (60; 75); (80; 65); (85;15); (5;45); (25; 35); (90; 5)
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(5,45)

(35,40)

(25,35)

(50,10)

(60,75)

(80,65)

(90,5)

(0,0) (100,0)

(100,100)(0,100)

(85,15)

Figure 45: Points and bounding box.

(35,40)

(80,65)

(50,10)

(60,75)

(35,40)

(80,65)

(60,75)

(35,40)

(50,10) (85,15)

(5,45)

(35,40)

(90,5)

(50,10)

(35,40)

Figure 46: Point quadtree decomposition.
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To represent this structure as a tree, we keep a node for each of splits made. Each node has

4-children, one for each of the 4 cells it creates. These can be labelled in any order. Here they

are shown as NW, NE, SW, SE (for NorthWest, NorthEast, SouthWest, and SouthEast).

35.40

 5,45 60,75 25,35 50,10

80,65 85,15 90.5

(x,y)

NW NE SW SE

Figure 47: Point quadtree tree representation.

I usually �nd it easier to draw quadtrees using their geometric representation (since this shows

more of the geometric intuition), but it is good idea to think in terms of both representations.

Point k-d tree: Point quadtrees can be generalized to high dimensions, but for each splitting point

the number of children of a node increases with dimension. In general, in dimension d, each

node has 2d children. Thus, in 3-space the resulting trees have 8 children each, and are often

called point octrees. The problem is that the resulting algorithms get messier as a result of

having to deal with so many children. An alternative is to retain the notion of a binary tree,

by splitting using a single orthogonal plane. At each level of the tree we vary which axis we

cut along. For example, at the root we cut perpendicular to the x-axis, the next level we cut

perpendicular to the y-axis, then to the z-axis, and then we repeat (or whenever we run out

of dimensions). The resulting data structure is called a k-d tree. (Actually the k in k-d is

supposed to be the dimension, so the speci�c name is a 2-d tree, 3-d tree, etc.) An example of

inserting the same points is shown below.

The tree representation is much the same as it is for quad-trees except now every node has only

two children. The left child holds all the points that are less than the current point according

to the discriminating coordinate, and the right subtree holds those that are larger. An example

is shown below. We do not need to store the coordinate along which we are splitting, since it

is possible to maintain that information as we traverse the tree. If the splitting dimension is

i at some level, then the splitting dimension of its children is just (i+1) % d, where d is the

dimension.

Lecture 24: PMR k-d Tree

(Tuesday, Nov 30, 1993)
Today's material is discussed in Sect. 4.2.3.4 of Samet's book on spatial data structures.

PMR k-d tree: We discuss how to store a collection of circles or spheres in a data structure called

a PMR k-d tree. The data structure has two types of nodes, internal nodes and leaf nodes.

Each internal node contains an orthogonal plane, which is used as a splitting value to guide

searches. As with point k-d trees, the choice of the cutting dimension rotates among the axes,

�rst cutting along x, then along y, then along z, and then back to x, and so on. Unlike a point

k-d tree (in which the cut is based on the point being inserted) we always cut a cell along its

midpoint.

The spheres are not stored in the internal nodes, they are stored in the leaf nodes only. Each

leaf node contains zero or more spheres (or actually pointers to spheres). We will see that

a single sphere may be inserted into many di�erent leaf nodes. Intuitively, when too many

spheres have been inserted in a leaf cell this cell is split into two smaller cells by cutting the
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(35,40)

(85,15)

(35,40)

(35,40) (35,40)

(80,65)

(35,40)

(50,10)

(50,10)(50,10)

(5,45)

(90,5)

(80,65)

(60,75) (60,75)

Figure 48: Point k-d tree decomposition.

 5,45

90.5

80,65

85,15

25,35

50,10

35.40

60,75

x

y

x

y

x

Figure 49: Point k-d tree representation.
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cell with an orthogonal plane. (However, there is a subtlety in the splitting rule which we will

discuss later.) We maintain a constant integer parameter n split. Whenever the insertion

of a sphere causes the number of spheres in a given cell to become greater than or equal to

n split, we split the cell. In the examples given here, n split is equal to 2 (meaning that if

2 or more spheres are inserted into a cell, it will split). When a cell is split, we create two new

leaf nodes, one for each of the new cells. For each new cell, we insert a sphere into that cell if

it overlaps the cell.

Example: Consider the following example. We present the example in dimension 2, but we'll

continue to call the objects spheres for consistency with the project. The generalization to

dimensions 3 and higher is not di�cult. Let us suppose that the initial bounding box is from

(0; 0) to (100; 100). (It will be di�erent in the project.) We insert a number of spheres. Let us

assume that they all have radius 10. The centers of the spheres are at the points A = (80; 70),

B = (30; 20), C = (63; 20), and D = (80; 20). See the �gure below.

(0,0) x

y

A

x = 50

(100,100)

B

A

B C

A

B

A

C D

x = 75
split only once!

Figure 50: PMR k-d tree insertion.

Initially there are no spheres and we have one cell (the entire region). The insertion of the

sphere centered at A does not cause any problems because a cell is allowed to contain one

sphere. The insertion of the sphere centered at B causes an over
ow (because we have 2

spheres overlapping this cell), and so we split it. We split it along the x-coordinate at the

midpoint of the cell (x = 50). This results in two identical cells, left and right. Sphere B

overlaps the only the left cell, so it is placed there, and sphere A overlaps the right cell, so it

is placed there.

Next consider the insertion of sphere C. It overlaps the right side of the split, so we attempt

to place it in this cell. Because this cell has 2 spheres, it splits. This time we split along the

y-coordinate at the midpoint of the cell (y = 50). Sphere C overlaps the lower cell, so it is

placed there, and sphere A overlaps the upper cell, so it is placed there.

Finally we insert D. It overlaps the right side of the split, so it is recursively inserted into

the region containing A and C. Within this region it overlaps the lower cell which already

contains C, so it is placed in this lower cell. Since this cell now contains 2 spheres we split it.

Since our parent split along y, we split along x. (Of course in 3-space we split along z.) In

this case the midpoint of the cell is at x = 75. The resulting cell has a left subcell and a right

subcell. Since C overlaps only the left subcell, it is placed there. Since D overlaps BOTH the

right and left subcells, it is placed in BOTH cells. (Note that we do not attempt to cut the

sphere in half. We simply insert a pointer to sphere D in both of the resulting cells.)

At this point we observe a problem. There are two spheres, C and D, that overlap the left

subcell. If we continue to follow the splitting strategy given above, this would mean that we

need to split this subcell. However, since the two spheres themselves overlap, notice that no
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matter how many splits we performed, there will ALWAYS be at least one subcell that contains

both spheres. This will lead to an in�nite splitting loop! To get around this problem, we exploit

an important property of PMR k-d trees, namely we split only once for each insertion. (This

is the \subtlety" referred to earlier in the splitting rule.) As a consequence, resulting subcells

may contain more than n split spheres. Fortunately, severe overcrowding occurs rarely in

practice.

PMR k-d tree splitting rule: When inserting a sphere into a leaf cell, if the new number of

spheres in the cell is greater than or equal to n split, then split this cell (ONLY ONCE)

along its midpoint, forming two subcells. (As with any k-d tree the cutting dimension

rotates among x, y, and z). For each sphere that overlaps the original cell (including the

newly inserted sphere), place the sphere into each of the new subcells that it overlaps.

However, such insertions CANNOT cause the resulting subcells to split.

Tree Structure: Now let us consider the structure of the binary tree that represents the state of

the data structure. Each node contains a 
ag indicating whether it is an internal node or a leaf

node. If it is an internal node it contains a single orthogonal cutting plane, which indicates

where the parent cell has been split, and two pointers to its left and right children. (The left

subtree corresponds to the points whose coordinate is less than the orthogonal plane's cutting

value, and the right subtree corresponds to points whose coordinates are greater than or equal

to the cutting value.) If the node is a leaf node it contains an integer �eld n obj which indicates

the number spheres that overlap this cell, and it contains a list of pointers to these spheres.

The �gure below shows the trees resulting from each of the insertions given earlier. Note that

initially the tree consists of a single leaf node with no objects. Each time we split, we replace

a leaf node with an internal node that contains the cutting plane, and we create two new leaf

nodes. Also observe that because of the PMR splitting rule, a cell may contain more than

n split spheres. Observe that in the last tree, the sphere D is contained in two leaf nodes

(because it overlaps two cells).

0 A1
Insert(B)Insert(A)

x = 50

B A1 1

Insert(C)
x = 50

y = 50B

C A11

1

x = 50

y = 50

x = 75

B

A

DC, D

1

1

12

Insert(D)

Figure 51: PMR k-d tree structure.

Let us consider one �nal insertion to see how much damage a single sphere can cause to the

data structure. Suppose we insert a sphere at the center point (50; 50). This sphere overlaps

the left subtree with B, and so it is placed there (causing this cell to split). It overlaps the

cell containing A, and so it is placed there (causing this cell to split). Finally it overlaps the

cell containing C and D, and is placed there (causing this cell to be split). The �nal spatial

decomposition and tree are shown in the following �gure. As you can see, a single insertion

can cause a great deal of change in the tree (in this case the tree almost doubles in size.)
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Fortunately, the sort of worst-case scenarios that one might imagine happening, seem to occur

only rarely in practice.

B

A

DC

E

2 C,D 3 C,D,E

x = 75
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y =50
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1 2 1
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Figure 52: One more insertion.

Node Structure: Because a PMR k-d tree consists of two di�erent types of nodes, internal nodes

and leaf nodes, this complicates the declarations. In particular, notice that the left and right

child pointers for an internal node might point to an internal node or they might point to a

leaf node. It is possible to simply declare a single node type which contains all of the elements

present in both internal and leaf nodes, but this is rather wasteful.

C++ has an elegant method to handle this, using inheritance. The idea is to declare a base

class, KD Node, and then derive two other classes KD Intern and KD Leaf from this base class.

The base class contains no data members, and only virtual member functions that are common

to the two derived classes (e.g. a constructor, an insertion routine, and a ray-tracing routine).

The �rst derived class contains only entries needed for internal nodes, and the second derived

class contains only entries needed for leaf nodes. We can now declare the left and right child

pointers to point to a KD Node, and let the system �gure out whether this node happens to be

an internal node or a leaf node (and indeed in this case you do not need to store any marker

indicating the type of a node, because the system handles this for you automatically).

Unfortunately this is not an option for C programmers, and so we will propose a compromise

that will work for both languages. (And in fact this is similar to how C++ handles inheritance

at the implementation level.) The idea will be to create two structures, one for internal nodes,

and one for leaves. Both structures will share a common �rst �eld, which indicates the type

of the node. Otherwise they will contain only the required entries for the particular type of

node. We will use a generic pointer, namely void *, to point to both structures, but after

determining the type of node, we will cast the pointer to the appropriate speci�c type.

As mentioned earlier, we do not know in advance how many spheres may be assigned to a

given cell. Let's make the simplifying assumption for this project that no cell can contain

more than 10 spheres. With this assumption we can store the spheres in an array. (A better

method would be to store a linked list of spheres, so there is no a priori limit. But I am a

lazy programmer.) We also create two points LB and UB . These contain the upper and lower

bounds on the outermost region for the tree (e.g. LB = (0; 0) and UB = (100; 100) for the

previous example).

const int dim = 3; // in dimension 3

const int n_split = 2; // split if 2 or more spheres

const int n_max = 10; // max number of spheres per leaf

typedef void *KDPtr // generic kd-tree node pointer
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typedef struct { // internal node

int is_leaf; // must be = 0 (False)

OrthPlane cut; // cutting plane

KDPtr left; // left child

KDPtr right; // right child

} KD_Intern;

typedef struct { // leaf node

int is_leaf; // must be = 1 (True)

int n_obj; // number of objects

Sphere *obj[n_max]; // spheres overlapping this cell

} KD_Leaf;

Point LB; // lower bound point

Point UB; // upper bound point

KDPtr root; // root of tree

C++ programmers can convert these into classes, adding constructors and appropriate member

or friend functions for insertion and ray tracing. You can follow the general structure we used

for binary tree data structures of designing a class for the tree as a whole, which contains the

root pointer, and two classes, one for the internal and one for leaf nodes.

Initialization: One of the interesting things about PMR k-d trees (and trees having this sort of

internal/leaf structure) is that we never need to use NULL pointers when referring to nodes in

the tree. Notice that all internal nodes have exactly two non-NULL children, and the leaves do

not need child pointers. In particular, the data structure should not be initialized by setting the

root to NULL. The initialization consists of creating a single leaf node containing zero objects.

This should be part of a global initialization routine, or a constructor for the tree.

KD_Leaf *L = new KD_Leaf; // create new leaf

L->n_obj = 0; // initially empty

root = L;

Another element of initialization is initializing LB and UB . For this project you may assume

that LB = (�10;�10;�10) and UB = (10; 10; 10). I set these points up in my main program

and made them arguments to my k-d tree constructor.

Sphere Insertion: The �rst operation to consider is that of sphere insertion. There are two cases

to consider. First, if we are inserting a sphere into an internal node, and second if we are

inserting a sphere into a leaf node. The following procedure determines the type of a node

pointer and calls an appropriate function. The arguments consist of a pointer to the node into

which we are inserting, the sphere being inserted, the lower and upper bounds of this cell, the

current cutting dimension, and �nally a 
ag indicating whether we are allowed to perform a

split or not. The initial insertion call is made on the root node, as NInsert(root, sph, LB,

UB, 0, 1). This means to insert the sphere in the root node, starting with 0 (x-axis as the

cutting axis) and allowing splits.

KDPtr NInsert(KDPtr T, Sphere *sph, Point LB, Point UB,

int c_dim, int splitable)

{

if (((KD_Leaf *)T)->is_leaf)

T = LeafInsert((KD_Leaf *)T, sph, LB, UB, c_dim, splitable);
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else

T = IntInsert((KD_Intern *)T, sph, LB, UB, c_dim, splitable);

return T;

}

Insertion into an internal node involves determining whether the sphere overlaps the left re-

gion and/or the right region. Determining whether a sphere overlaps a rectangular region is

somewhat messy, so we use a simpler test of whether the box surrounding the sphere overlaps

the region. Suppose that the cutting plane is vertical. This amounts to testing whether the

leftmost edge of the enclosing box (center minus radius) lies to the left of the cutting plane,

or whether the rightmost edge of the box (center plus radius) lies to the right of the cutting

plane. An example is shown below where x is the cutting coordinate.

center[d]+radius

cut_val

center[d]-radius

Figure 53: Sphere overlap with left/right subregions.

When we recurse on each subregion, but �rst we modify the appropriate coordinate of either

LB or UB to account for the fact that the region size has been trimmed.

KDPtr IntInsert(KD_Intern *T, Sphere *sph, Point LB, Point UB,

int c_dim, int splitable)

{

scalar save;

int d = T->cut.cut_dim; // cutting dimension

scalar v = T->cut.cut_val; // cutting value

// overlap left side?

if (sph->center[d] - sph->radius < v) {

save = UB[d]; // save upper bound

UB[d] = v;

// insert on left

T->left = NInsert(T->left, sph, LB, UB, (d+1)%dim, splitable);

UB[d] = save; // restore upper bound

}

// overlap right side?

if (sph->center[d] + sph->radius >= v) {

save = LB[d]; // save lower bound

LB[d] = v;

// insert on right

T->right = NInsert(T->right, sph, LB, UB, (d+1)%dim, splitable);

LB[d] = save; // restore lower bound

}

return T;

}

Finally to insert a sphere into a leaf cell, we need to determine whether we need to split the

cell. If not (or we are not allowed to) we just copy the pointer to the sphere into the object list
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array. Otherwise we create a new cutting plane along the appropriate coordinate by bisecting

the upper and lower bounds along the cutting dimension. We create a new internal node p

to replace this node, and create two new leaf nodes, nl and nr, in which to store the spheres.

Finally we insert the spheres of the existing node into these new nodes. This can be done by

calling the insertion procedure for each of these spheres on the new internal node. We do not

allow these insertions to cause splits though. See the example below.

A

B
CA

B
C

UB

LB

val=(LB[d]+UB[d])/2

UB

LB

3 A, B, C

x=valp:

2 A,B 2 B, Cnl: nr:

T:

Figure 54: Leaf splitting.

We make use of a constructor for internal nodes that initializes the cutting plane, left and

right child pointers. We also assume that the constructor for leaf nodes initializes the n obj

�eld to 0.

KDPtr LeafInsert(KD_Leaf *T, Sphere *sph, Point LB, Point UB,

int c_dim, int splitable)

{

// can we insert without split?

if (T->n_obj+1 < n_split || !splitable) {

if (T->n_obj >= n_max) // no more room

output "Error: node overflow!\n";

else

T->obj[T->n_obj++] = sph; // else add this sphere to list

return T;

}

else { // need to split this node

KDPtr nl = new KD_Leaf; // create a new leaf for left

KDPtr nr = new KD_Leaf; // create a new leaf for right

// new cut value is midpoint

scalar val = (LB[c_dim] + UB[c_dim])/2.0;

OrthPlane pl(c_dim, val); // create new cutting plane

// new internal node

KDPtr p = new KD_Intern(pl, nl, nr);

// reinsert without splitting

for (int i = 0; i < T->n_obj; i++)

p = NInsert(p, T->obj[i], LB, UB, c_dim, 0);

// insert this sphere as well

p = NInsert(p, sph, LB, UB, c_dim, 0);

delete T; // dispose of current node

return p;

}

}
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Lecture 25: More, PMR k-d Tree

(Thursday, Dec 1, 1993)
Today's material is discussed in Sect. 4.2.3.4 of Samet's book on spatial data structures.

Ray Tracing: The other important operation for the PMR k-d tree to handle is ray tracing. The

procedure NTrace(T, s) is given a pointer to a node T in a k-d tree, and a ray segment s,

and returns a pointer to the �rst sphere that the ray hits, or NULL if the ray does not hit any

sphere.

As was the case with insertion, there are two cases depending on whether T points to an

internal node or a leaf. Thus, as with NInsert() the procedure NTrace() essentially just tests

the type of node T , and calls either LeafTrace() or IntTrace() depending on whether the

node is an internal node or leaf. (The details are left to you.)

If T points to a leaf, then we simply need to check whether the ray segment hits any of the

spheres that overlap the associated cell. This can be done by calling Clip(). Recall that

Clip() returns a 1 if it succeeds in shortening the ray segment, so we return a pointer to the

last sphere that succeeded clipping the ray. Here is the code.

Sphere *LeafTrace(KD_Leaf *T, RaySeg s)

{

if (IsEmpty(s)) return NULL; // nothing to trace

Sphere *sph = NULL; // default: no sphere hit

for (int i = 0; i < T->n_obj; i++) {

if (Clip(s, *(T->obj[i]))) // hit this sphere?

sph = T->obj[i]; // yes, remember it

}

return sph;

}

If T points to an internal node, then the cutting plane splits the region associated with T

into two rectangular subregions; call them left and right. We can use the procedure Split()

to split the ray segment into two ray segments, low , and high, lying on opposite sides of the

cutting plane. Recall that (1) as we travel along the ray we encounter low �rst, and then high

second, and (2) if the ray is parallel to the cutting plane then the entire ray is left in low , and

high is returned empty. Observe that in the �gure below, depending on the direction of the

ray, (a) left to right, (b) right to left, (c) parallel on the left, and (d) parallel on the right, we

need to recurse on the subtrees of T in di�erent orders. For example in case (a), we should

look for a hit in the left subtree �rst, and then in the right. In case (c) we need only look for

a hit in the left subtree.

high
low

left right left right

low

left right

low
high

left right

low

(a) (b) (c) (d)

Figure 55: Internal node ray tracing.

To determine which of these cases holds, we consider the directional vector for s and the

cutting dimension d of the cutting plane. If the d-th coordinate of the directional vector is

positive, then we are moving from left to right, if negative then from right to left. If it is zero

then we are parallel, and we test whether the origin of s lies to the left or right of the cutting
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value. The code is given below. We make use of a utility routine IsEmpty() which determines

whether a ray-segment s is empty by testing whether s.t0 == s.t1.

Sphere *IntTrace(KD_Intern *T, RaySeg s)

{

RaySeg low, high;

Sphere *sph;

if (IsEmpty(s)) return NULL; // nothing to trace

Split(T->cut, s, low, high); // split s along cutting plane

int d = T->cut.cut_dim; // cutting dimension

scalar v = T->cut.cut_val; // cutting value

if (s.direc[d] > 0.0) { // directed left to right

sph = NTrace(T->left, low); // look for hit on left side

if (sph == NULL) // none

sph = NTrace(T->right, high);// look for hit on right side

}

else if (s.direc[d] < 0.0) { // directed right to left

sph = NTrace(T->right, low); // look for hit on right side

if (sph == NULL) // none

sph = NTrace(T->left, high);// look for hit on left side

}

// otherwise we are parallel

else if (s.origin[d] < v) // left of cutting plane

sph = NTrace(T->left, low); // look for hit on left side

else // right of cut plane

sph = NTrace(T->right, low); // look for hit on right side

return sph;

}

Generating Rays: Refer back to the project description for details on the last line of the input

�le. This line speci�es how rays are to be generated. The �rst item is the coordinates of a

point indicating the position of the viewer, vp, and the second two items are the coordinates

of points representing the upper left and lower right points of a square that is assumed to be

perpendicular to the z-axis, UL and LR. (We choose upper-left and lower-right because this

is the order in which pixel arrays are stored.) The last item is the integer number rays nr to

generate for each row and column of the square. We subdivide this square along its x- and

y-axes into an nr � nr mesh of points into which we shoot our rays. Let w = LR[0]� UL[0]

denote the width of the entire mesh, and let h = LR[1]�UL[1] denote the height of the entire

mesh (this will be negative).

We will assume that the spheres to be displayed will lie between the viewer and the mesh

(so our rays can terminate at the mesh, rather than pass through them). We let i and j run

through values all nr rows and columns, and for each (i; j) pair we determine the appropriate

point on the mesh, mp. Then we shoot a ray from the viewer's position vp to mp. The variable

j iterates over columns (determining the x-coordinate) and i iterates over rows (determining

the y-coordinate). The x-coordinate of mp is given by computing the ratio j=nr (a number

in the range [0::1]), multiplying this by the width w of the mesh and �nally, adding in the

leftmost coordinate. A similar formula holds for y giving:

x(j) = w
j

nr
+UL[0] y(i) = h

i

nr
+UL[1]:
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As a check, you can verify by substitution that when i and j range from 0 to nr, the points

(x; y) will range from UL to LR. We create the point mp with coordinates (x(j); y(i); UL[2])

using a point constructor. Finally our ray segment has as origin vp, directional vector mp� vp

(point-point di�erence), and range values t0 = 0 and t1 = 1. The following code generates

the rays, and calls a procedure RayTrace(T,s) to perform the ray-tracing where T is the k-d

tree with spheres already inserted and s is the ray segment. The shade of the object that was

hit is returned. How RayTrace() determines this color, and how OutputPixel() work will be

discussed next.

double w = LR[0]-UL[0]; // width of mesh

double h = LR[1]-UL[1]; // height of mesh

// generate rays

for (i = 0; i < nr; i++) { // iterate over mesh rows

scalar y = h*((double) i)/((double) nr) + UL[1];

for (j = 0; j < nr; j++) { // iterate over mesh columns

scalar x = w*((double) j)/((double) nr) + UL[0];

Point mp(x, y, UL[2]); // create destination point on mesh

RaySeg s(vp, mp-vp, 0.0, 1.0); // create the ray to trace

Color color = RayTrace(T, s); // trace it

OutputPixel(color); // output this color

}

}

Coloring and Shading: The next issue to consider in the project has nothing to do with data

structures, but is needed for getting nice color output. Up to now we have given all the low-

level routines for generating and shooting rays. However, when a ray hits a sphere we need

to know what color to assign it. Colors are represented on most graphics workstations by

blending three primary colors: red, green, and blue. Thus a color can be thought of as a triple

(r; g; b) where each component is a 
oating point number in the range [0; 1], where 0 means

dark and 1 means bright. When all colors are mixed equally you get shades of gray, so (0; 0; 0)

is black, (0:5; 0:5:; 0:5) is gray, and (1; 1; 1) is white. Mixing red and green gives yellow, mixing

red and blue gives magenta (a light purple), and mixing green and blue gives cyan (a greenish

blue). Thus (0:2; 0:2; 0) is a dark magenta, and (0; 1; 1) is a light cyan. The possibilities are

limitless. (Unfortunately, most workstations and PC's can only display a limited number of

colors at a time (typically 256) so it is necessary to use programs like xv to approximate a

large range of colors on a limited-color workstation.)

Colors can be represented in much the same way that points and vectors were. (Note: Since

colors are conceptually di�erent from points and vectors, it is not a good idea to declare a

color to be of type Point or type Vect. Ideally, a new type or class, Color, should be created.)

An example is shown below. One important primitive operation needed on colors is a blending

function. You are given two colors, c0 and c1, and you want to mix them together in the

proportions p0 and p1 (where typically p0 + p1 = 1). Thus when (p0; p1) = (1; 0) the resulting

color is c0, when (p0; p1) = (0; 1) the resulting color is c1, and when (p0; p1) = (0:5; 0:5)

the resulting color is halfway between these two colors. This is performed by the function

Combine() given below. Since we require that color values lie in the range from 0 to 1, we also

provide a utility routine to �x up colors that have gone out of range (we will see later why this

is possible).

const int col_dim = 3; // dimension of color space

typedef struct {

double rgb[col_dim]; // red, green, blue components
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} Color;

// combine colors

Color Combine(Color c0, Color c1, double p0, double p1)

{

Color result;

for (int i = 0; i < col_dim; i++)

result.rgb[i] = p0*c0.rgb[i] + p1*c1.rgb[i];

return result;

}

Color FixUp(Color c) // fix colors if out of bounds

{

Color result;

for (int i = 0; i < col_dim; i++) {

double cc = c.rgb[i]; // default color component

if (cc > 1.0) cc = 1.0; // too large

else if (cc < 0.0) cc = 0.0; // too small

result.rgb[i] = cc;

}

return result;

}

When each sphere is input, you are given (in addition to the center coordinates and radius) the

RGB values of its color. You can enhance the sphere structure to include the new components.

(C++ programmers: this is a natural place to use inheritance, by de�ning a \colored sphere"

which is derived from a sphere and adds a color component.)

The basic question is, when a ray hits a sphere, what is the color that should be displayed? We

could simply output the color of the sphere, but that would create no shading and hence no

sense of depth or light. To produce more realistic coloring, we introduce a simple illumination

model. You would have to take a course in computer graphics to fully explain the model, but

we'll give just a brief outline, along with the code. See the book on Computer Graphics by

Foley, VanDam, Feiner, and Hughes for a more complete explanation.

The idea of an illumination model is to provide a mathematical formula describing the nature

of light and illumination properties of the spheres. There are a number of parameters whose

values we will assume are constants. However, if you want to play around with them, you are

encouraged to make them part of the input �le and then alter them. The basic elements of

our illumination model are:

Light source: There is a single point generating light. The coordinates of this point are

stored in a point source pt. We will assume the coordinates are (�200; 100; 200).

Light source intensity: The light source has a certain intensity which is described by a

double quantity, source int, which we will assume is 1.5. (There are no real explanation

for this number. I created a value that I thought looked pretty.)

Ambient light intensity: A point that is hidden from the light is not entirely black. The

reason is that there is a certain amount of \random" light that is uniform in all directions.

This is called ambient light. The intensity of ambient light is amb int, and is set to 0.6.

Background color: If the ray does not hit any sphere, then it is given the background color.

This color is a mediumgray, (0:5; 0:5; 0:5), and is not in
uenced by the location or intensity

of the light source. This is denoted back color.

Di�use, specular, and re
ective coe�cients: Our spheres have a certain degree fuzziness

(or di�useness), a certain degree of shininess (or specularity), and a certain degree of pure
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re
ectiveness. If you shine a light on a red rubber ball (highly di�use) it will look quite

di�erent than if you shine a light on a shiny red apple (highly specular), and this looks

still di�erent from a red polished metal ball (highly re
ective). Each sphere has three

coe�cients associated with these quantities, denoted the coe�cient of di�use re
ection

diff coef, the coe�cient of specular re
ection spec coef, and the coe�cient of pure

re
ection refl coef. We will set these parameters to 0.7, 0.8, and 0.0, respectively, for all

spheres. Thus our spheres are moderately di�use and specular, but not re
ective. (Pure

re
ection is not required for the project, so you can ignore this last quantity altogether.)

Specular exponent: With specular re
ection, the coe�cient of specular re
ection deter-

mines the brightness of the shiny spot. The size of the shiny spot is determined by the

specular exponent, spec exp. Low values (e.g. 2), result in large shiny spots, and high

values (e.g. 30) result in small spots. We will �x this value for all spheres at 20.0.

The ray tracing and shading are controlled by two routines. The �rst is RayTrace(T,s). Its

job is to trace the ray s through a k-d tree T , and determine whether any sphere was hit. If

not, it returns the background color. If so, it calls the routine Shade() that does the real work

of computing the shade of the contact. We assume that Trace() is the main entry point to

the ray tracer for k-d trees (i.e. it calls NTrace() on the root of the tree).

Color RayTrace(KDTree *T, RaySeg s)

{

Sphere *sph = Trace(T, s); // trace the ray segment

if (sph == NULL) // missed

return back_col; // return background color

else

return Shade(T, s, *sph); // compute shading

}

The routine Shade() does all the dirty work. It's arguments are the k-d tree T , the ray segment

s, and the sphere sph that was hit. The simpli�ed version given below computes the strengths

of the di�use and specular components of the re
ection. (Pure re
ection and shadows are not

required for the project. These is left as an exercise if you are interested.) The code is given

below.

Color Shade(KDTree *T, RaySeg s, Sphere sph)

{

Color obj_col = sph.color; // object color

Color spec_col(1.0, 1.0, 1.0); // specular color = white(1,1,1)

double diff_str = 0.0; // diffuse strength (0 by default)

double spec_str = 0.0; // specular strength (0 by def)

Clip(s, sph); // clip ray to sphere

Point q = EndPt(s); // contact point with sphere

Vect L = source_pt - q; // vector from q to light (PPDiff)

Normalize(L);

Vect N = q - sph.center; // surface normal (PPDiff)

Normalize(N);

scalar dot = Dot(L, N); // cosine of light and normal angle

if (dot > 0.0) { // on the object's light side

// compute diffuse brightness

diff_str = source_int * diff_coef * dot;

// ray from light source to q

RaySeg light2q(source_pt, q - source_pt, 0.0, 1.0);

// compute reflection off sphere
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RaySeg refl = Reflect(light2q, sph);

Vect R = refl.direc;

Normalize(R); // normalized reflection of light

Vect V = s.direc; // vector from viewer

Normalize(V);

scalar dot2 = -Dot(R, V); // cosine of reflect and view angle

// compute specular strength

spec_str = source_int * spec_coef * pow(-dot2, spec_exp);

}

// mix diffuse and specular parts

Color final_col = Combine(obj_col, spec_col, diff_str, spec_str);

// mix in ambient contribution

final_col = Combine(obj_col, final_col, amb_int, 1.0-amb_int);

return FixUp(final_col);

}

We will not go into the details of how and why this works, since this is the subject for a

computer graphics course, but here is a brief description of the formulas it uses. The di�use

strength DS is given by the formula

DS = SI �DC � (L �N );

where SI is the source intensity, DC is the coe�cient of di�use re
ection, L is a normalized

vector pointing from the contact point to the light source and N is a normalized surface normal

vector at the contact point. The specular strength SS is given by the formula

SS = SI � SC � (R � V )SE ;

where SI is as before, SC is the coe�cient of specular re
ection, R is the normalized re
ection

vector of a ray from the light source to the contact point, and V is a normalized vector directed

from the contact point back to the viewer, and SE is the specular exponent.

Correctness Output: For the correctness phase of the output (see the project description), run

your program on the input �les ray.samp and ray.final. These �les are in the anonymous

ftp directory on cs.polygon.umd.edu. Sample output for the �le ray.samp is given in the �le

ray.out. (There will be no sample output for ray.final.)

Pixel Output: You are not required to hand in pixel output, but you are encouraged to try to

generate a pixel output that you can display. There are a number of di�erent formats for

producing color images. The format we have selected is ppm, because it a very simple, low-

level format that can be translated easily into other formats (e.g. using a program like xv

which runs on many X-windows machines). There are two basic ppm formats, one is called P3

and the other, which we will use, is called P6. (On many X-windows machines you can enter

man ppm for more information.)

You should begin by removing all the output generated by your correctness phase (or at least

send the diagnostic output and pixel output to di�erent �les). The �rst line of a P6 �le is the

string \P6", the next line is the width and height of the output window, and the third line

is a maximum color value, which you may assume is 255. Thus the �rst 3 lines for a 200 by

200 image would be as show below. Each line ends with a newline immediately after the last

nonblank character.

P6

200 200

255
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The width and height are just the values nr described in the section on Generating Rays. The

rest of the output consists of 3 � nr � nr bytes (note that these characters will generally be

unprintable). For each ray that is traced, take its color value (r; g; b), scale each coordinate

into an integer in the range [0::255], then cast this into a character and output this character.

This can be done as follows. Let c denote the color to be output.

// C++ version of OutputPixel(c)

for (i = 0; i < col_dim; i++)

cout << (char) (c.rgb[i]*255);

// C version of OutputPixel(c)

for (i = 0; i < col_dim; i++)

putc((char) (c.rgb[i]*255), stdout);

IMPORTANT NOTE: After outputting the initial 3-line header for the ppm �le, you should

not output any other white-space (blanks, tabs, or newlines). Just the bytes encoding the

colors.

Lecture 26: Queries to Point k-d Trees

(Tuesday, Dec 7, 1993)
Reading: Samet's textbook, Section 2.4.

Point k-d Tree Node Structure: Today we return to our earlier topic of discussion of point k-d

trees, and in particular we consider how to answer various queries using the tree. Recall that

the point k-d tree is a tree for storing points. We use the i-th coordinate of the data point

located at each node for splitting space, where i rotates depending on the level of the tree.

The basic node structure is.

const int dim = 2; // dimension of space

struct PtKDNode { // k-d tree node

Point data; // data point

PtKDNode *left; // left child

PtKDNode *right; // right child

};

An example of the space decomposition and a tree are shown below.

Range Queries: A range query is a query of the following form: Report (or count) all the points

of the k-d tree that lie in a certain (given) region. The region may be a rectangle, an in�nite

horizontal or vertical strip, it may be a circle, or it may be any shape.

To process a rectangular range query, suppose that the rectangle is speci�ed giving two quan-

tities, the low left point Lo and the upper right point Hi. The idea intuitively is to visit those

subtrees of the k-d tree that MIGHT have a point that intersects the given range. This will be

true if and only if the rectangle associated with the node overlaps the rectangular range. To

determine whether the rectangle overlaps the left subtree, we test whether the lower side of

the rectangle overlaps the lower side of the splitting plane, that is Lo[cd] <= T->data[cd].

Similarly for the right side we check whether the upper side of the rectangle overlaps the upper

side of the splitting plane, that is Hi[cd] >= T->data[cd]. The complete code is given below.

The argument cd gives the current cutting dimension. The initial call is RectRange(root,

0, Lo, Hi). We make use of a utility routine, InRect(p, Lo, Hi) which returns True if the

point p lies within the rectangle de�ned by points Lo and Hi.
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Figure 56: Point k-d tree.

int InRect(Point p, Point Lo, Point Hi) {

for (int i = 0; i < dim; i++) {

if (p[i] < Lo[i] || p[i] > Hi[i]) return False;

}

return True;

}

void RectRange(PtKDPtr T, int cd, Point Lo, Point Hi) {

if (T == NULL) return;

else {

if (Lo[cd] <= T->data[cd]) RectRange(T->left, (cd+1)%dim, Lo, Hi);

if (InRect(T->data, Lo, Hi) output T->data;

if (Hi[cd] >= T->data[cd]) RectRange(T->right, (cd+1)%dim, Lo, Hi);

}

}

An example is shown in the following �gure. The dashed lines shows the query rectangle, and

the heavy lines show which (nonempty) subtrees are visited by the search.

 5,45

90.5

80,65

85,15

25,35

50,10

35,40

(85,15)

(35,40)

(50,10)

(5,45)

(90,5)

(80,65)
60,75

x

y

x

y

x

(60,75)

Hi=(90,90)

(35,40)

Lo=(40,50)

Figure 57: Range query.

The running time of this procedure is rather di�cult to determine. Ideally one would like a

running time that is something like O(r + logn) where n is the number of points in the tree
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and r is the number of values reported. Unfortunately, there are worst case examples where

this algorithm may visit ALL the nodes in the tree and not print anything. If the tree is well

balanced then it can be argued that the running time is more like O(r+
p
n) in dimension 2. As

dimension gets higher this gets worse, namely O(r+n
1�(1=d). This is bad for high dimensions,

since n1�(1=d) is almost as high as n, and this is the bound that naive linear search achieves.

To perform a circular range query (report all the points lying within a given circle) the strategy

would be almost the same, except that we want to know whether the region associated with

a given node intersects the circle. Since it is a little di�cult to determine whether a circle

intersects a k-d tree region, a common heuristic is to compute a bounding box around the

circle, and then use the above algorithm. Before reporting a point, we test whether it lies

within the circle though.

Nearest Neighbor Queries: Range queries are not the only queries that one might think of asking

of a k-d tree. Consider the problem of determining the nearest data point to a given query

point. This is called the nearest neighbor search problem. For example, a pilot in a sudden

emergency may ask the question \what is the nearest airport to my current location"?

Given two points (x1; y1) and (x2; y2) the distance between the points is given by the formula

d =
p
(x2 � x1)2 + (y2 � y1)2

For a given query point q = (xq; yq), we want to �nd the point in our tree that is the closest

to this point.

It turns out that nearest neighbor queries can be answered by modi�cation of the scheme

described for range queries. Here is how it works, �rst we descend the k-d tree. At all times

we maintain a candidate point which is the nearest point seen so far, and the distance to the

candidate. For every node visited we see whether this point is the closest seen so far, and if

so we update our nearest neighbor information.

Next we need to check the subtrees. If q lies to the low side of the splitting plane, then we

recurse to the left, and otherwise we recurse to the right. After visiting the left side we have

updated the nearest neighbor candidate, and the distance to this point.

We ask, is it worth searching the right subtree? To determine if it is worthwhile, we ask whether

there is any part of the right region that could be closer to q than current nearest neighbor

candidate. This is equivalent to asking whether the circle centered at q and whose radius is the

nearest neighbor distance overlaps the right region. As we did with sphere insertion, rather

than testing the sphere itself, we just test the rightmost point of the circle. Thus we search

the right subtree if and only if q[cd] + dist >= T->data[cd]. A similar argument applies

on the right side.

In the procedure below, we pass in the nearest candidate point so far, nn, and dist which is

the distance to the candidate. These are reference parameters, which may be altered by the

procedure.

void NearNeigh(PtKDPtr T, Point q, int cd, Point &nn, scalar &dist) {

if (T == NULL) return;

else {

Point p = T->data; // data/splitting point

if (dist(p, q) < dist) { // new nearest point

nn = p;

dist = Dist(p, q);

}

if (q[cd] <= p[cd]) { // start on left side
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NearNeigh(T->left, q, (cd+1)%dim, nn, dist);

if (q[cd] + dist > p[cd])

NearNeigh(T->right, q, (cd+1)%dim, nn, dist);

}

else // (q[cd] > T->data[cd]) so start on right side

NearNeigh(T->right, q, (cd+1)%dim, nn, dist);

if (q[cd] - dist < p[cd])

NearNeigh(T->left, q, (cd+1)%dim, nn, dist);

}

}

}

If points are uniformly distributed then the expected running time of this procedure is O(logn).

This procedure is easy to adapt to higher dimensions, but performance drops o� quickly. In

particular, the running time is O(2d logn), where d is the dimension. As d grows this \constant

factor" grows very quickly. As long as dimension is fairly small (e.g. � 8) this algorithm is

relatively practical.
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Figure 58: Nearest neighbor query.

Lecture 27: Final Review

(Thursday, Dec 9, 1993)

Final Overview: This semester we have covered a number of di�erent data structures. The fun-

damental concept behind all data structures is that of arranging data in a way that permits a

given set of queries or accesses to be performed e�ciently. The aim has been at describing the

general principles that lead to good data structures as opposed to giving a \cookbook" of stan-

dard techniques. In addition we have discussed the mathematics needed to prove properties

and analyze the performance of these data structures (both theoretically and empirically).

Some of the important concepts that I see that you should take away from this course are the

following:

Mathematical Models: Before you design any data structure or algorithm, �rst isolate the

key mathematical elements of the task at hand. Identify what the mathematical objects

are, and what operations you are performing on them. (E.g. Dictionary: insertion,

deletion, and �nding of numeric keys. Ray Tracing: insertion, and ray tracing queries for

a set of spheres in 3-space.)
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Recursive Subdivision: A large number of data structures (particularly tree based struc-

tures) have been de�ned recursively, by splitting the underlying domain using a key value.

The algorithms that deal with them are often most cleanly conceptualized in recursive

form.

(Strong) Induction: In order to prove properties of recursively de�ned objects, like trees,

the most natural mathematical technique is induction. In particular, strong induction is

important when dealing with trees.

Balance: The fundamental property on which virtually all good data structures rely is a

notion of information balancing. Balance is achieved in many ways (rebalancing by ro-

tations, using hash functions to distribute information randomly, balanced merging in

UNION-FIND trees).

Amortization: When the running time of each operation is less important than the running

time of a string of operations, you can often arrive at simpler data structures and al-

gorithms. Amortization is a technique to justify the e�ciency of these algorithms, e.g.

through the use of potential function which measures the imbalance present in a structure

and how your access functions a�ect this balance.

Randomization: Another technique for improving the performance of data structures is: if

you can't randomize the data, randomize the data structure. Randomized data structures

are simpler and more e�cient than deterministic data structures which have to worry

about worst case scenarios.

Asymptotic analysis: Before �ne-tuning your algorithm or data structure's performance,

�rst be sure that your basic design is a good one. A half-hour spent solving a recurrence

to analyze a data structure may tell you more than 2 days spent prototyping and pro�ling.

Empirical analysis: Asymptotics are not the only answer. The bottom line: the algorithms

have to perform fast on my data for my application. Prototyping and measuring perfor-

mance parameters can help uncover hidden ine�ciencies in your data structure.

Build up good tools: Modern languages like C++ help you to build up classes of data

structures and objects. For example, in the ray tracing project, taking the time to de�ne

the geometric primitives made coding of the ray tracing routines simpler, because we do

not have to worry about the low level details, and conceptualize concepts like vectors,

point, and spheres as single entities.

Topics: Since the midterm, these are the main topics that have been covered.

Priority Queues: We discussed binary heaps and leftist heaps. Binary heaps supported the

operations of Insert and Delete-Min. Leftist heaps also supported the operation Merge.

The most important aspect of binary heaps is the fact that since the tree in which they

are stored is so regular, we can store the tree in an array and do not need pointers. The

key to leftist heaps was to observe that the entire tree does not need to balanced in the

case of a heap, only one branch. In leftist heaps we guaranteed that the rightmost branch

of the tree was of length O(logn).

Disjoint Set Union/Find: We discussed a data structure for maintaining partitions of sets.

This data structure can support the operations of merging to sets together (Union) and

determining which set contains a speci�c element (Find). It has applications in a number

of algorithms that are discussed in a course like CMSC 451.

Hashing: Hashing is considered the simplest and most e�cient technique (from a practical

perspective) for performing dictionary operations. The operations Insert, Delete, and

Find can be performed in O(1) expected time. The main issues here are designing a good

hash function which distributes the keys in a nearly random manner, and a good collision
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resolution method to handle the situation when keys hash to the same location. Hashing

will not replace trees, because trees provide so many additional capabilities (e.g. �nd all

the keys in some range).

Geometric objects and primitives: We brie
y introduced the notions of geometric objects

like vectors, points, spheres, rays, ray segments, and some choices in how to represent

them.

Geometric data structures: We discussed point quad-trees and point k-d trees as a tech-

nique for storing points, and PMR k-d trees as a technique for storing more complex

objects like spheres. In both cases the key concepts are those of (1) determining a way

of subdividing space, and (2) in the case of query processing, determining which subtrees

are to be visited and in which order. We showed examples for ray tracing, rectangular

range queries, and nearest neighbor queries. Although we could not prove e�cient time

bounds in the worst case, practice shows that these algorithms tend to perform well for

typical geometric data sets.

Lecture X1: Red-Black Trees

(Supplemental)
Reading: Section 5.2 in Samet's notes.

Red-Black Trees: Red-Black trees are balanced binary search trees. Like the other structures

we have studied (AVL trees, B-trees) this structure provides O(logn) insertion, deletion, and

search times. What makes this data structure interesting is that it bears a similarity to both

AVL trees (because of the style of manipulation through rotations) and B-trees (through a

type of isomorphism). Our presentation follows Samet's. Note that this is di�erent from usual

presentations, since Samet colors edges, and most other presentations color vertices.

A red-black tree is a binary search tree in which each edge of the tree is associated with a

color, either red or black. Each node of the data structure contains an additional one-bit �eld,

COLOR, which indicates the color of the incoming edge from the parent. We will assume that

the color of nonexistent edge coming into the root node is set to black. De�ne the black-depth

of a node to be the number of black edges traversed from the root to that node. A red-black

tree has the following properties, which assure balance.

(1) Consider the external nodes in the augmented binary tree (where each null pointer in the

original tree is replaced by a black edge to a special node). The black-depths of all these

external nodes are equal. (Note: The augmented tree is introduced for the purposes of

de�nition only, we do not actually construct these external nodes in our representation

of red-black trees.)

(2) No path from the root to a leaf has two consecutive red edges.

(3) (Optional) The two edges leaving a node to its children cannot both be red.

Property (3) can be omitted without altering the basic balance properties of red-black trees

(but the rebalancing procedures will have to be modi�ed to handle this case). We will assume

that property (3) is enforced. An example is shown in the �gure below. Red edge are indicated

with dashed lines and black edges with solid lines. The small nodes are the external nodes

(not really part of the tree). Note that all these nodes are of black-depth 3 (counting the edge

coming into them).

Red-black trees have obvious connections with 2-3 trees (B-trees of order m = 3), and 2-3-4

trees (B-trees of order m = 4). When property (3) is enforced, the red edges are entirely

isolated from one another. By merging two nodes connected by a red-edge together into a
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Figure 59: Red-black tree.

single node, we get a 3-node of a 2-3 tree tree. This is shown in part (a) of the �gure below.

(Note that there is a symmetric case in which the red edge connects a right child. Thus, a

given 2-3 tree can be converted into many di�erent possible red-black trees.)
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Figure 60: Red-black and 2-3 or 2-3-4 trees.

In the case where property (3) is not enforced, then it is possible to have a two red sibling

edges. If we join all three nodes connected by these edges we get a 4-node (see part (b) of the

same �gure). Thus by enforcing property (3) we get something isomorphic to a 2-3 tree, and

by not enforcing it we get something isomorphic to 2-3-4 trees. For example, the red-black

tree given earlier could be expressed as the following (2-3)-tree.

Thus red-black trees are certainly similar to B-trees. One reason for studying red-black trees

independently is that when storing B-trees in main memory (as opposed to the disk) red-black

trees have the nice property that every node is fully utilized (since B-tree nodes can be as much

as half empty). Another reason is to illustrate the fact that there are many ways to implement

a single \concept", and these other implementations may be cleaner in certain circumstances.
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Figure 61: Equivalent (2-3) tree.

Unfortunately, red-black trees cannot replace B-trees when it comes to storing data on disks.

It follows that the height of a red-black tree of n nodes is O(logn), since these trees are

essentially the same as 2-3 or 2-3-4 trees, which also have logarithmic height.

Red-Black Insertion: It should be obvious from the discussion above that the methods used to

restore balance in red-black tree should be an easy extension of rebalancing in B-trees. We

simply see what a B-tree would do in a particular circumstance, and �gure out what the

equivalent rebalancing in the red-black tree is needed. Here is where the similarity with AVL

trees comes in, because it turns out that the fundamental steps needed to rebalance red-black

trees are just rotations. Let's start by considering node insertion.

To insert a key K into a red-black tree, we begin with the standard binary tree insertion.

Search for the key until we either �nd the key, or until we fall out of the tree at some node x.

If the key is found, generate an error message. Otherwise create a new node y with the new

key value K and attach it as a child of x. Assign the color of the newly created edge (y; x) to

be RED. Observe at this point that the black-depth to every extended leaf node is unchanged

(since we have used a red edge for the insertion), but we may have have violated the red-edge

constraints. Our goal will be to reestablish the red-edge constraints. We backtrack along

the search path from the point of insertion to the root of the tree, performing rebalancing

operations.

Our description of the algorithmwill be nonrecursive, because (as was the case with splay trees)

some of the operations require hopping up two levels of the tree at a time. The algorithm begins

with a call to Insert(), which is the standard (unbalanced) binary tree insertion. We assume

that this routine returns a pointer y to the newly created node. In the absence of recursion,

walking back to the root requires that we save the search path (e.g. in a stack, or using parent

pointers). Here we assume parent pointers (but it could be done either way). We also assume

we have two routines LeftRotate() and RightRotate(), which perform a single left and single

right rotation, respectively (and update parent pointers).

Whenever we arrive at the top of the while-loop we make the following assumptions:

� The black-depths of all external leaf nodes in the tree are equal.

� The edge to y from its parent is red (that is, y->COLOR == red).

� All edges of the tree satisfy the red-conditions (2) and (3) above, except possibly for the

edge to y from its parent.

RBInsert(K, T) {

y = Insert(K, T); // usual tree insertion

y->COLOR = red; // y's incoming edge is red

while (y != T) { // repeat until y == root

x = y->PARENT; // x is y's parent
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if (x->COLOR == black) { // edge above x is black

z = OtherChild(x,y); // z is x's other child

if (z == NULL or z->COLOR == black)

return; // no red violation - done

else { // Case 1

y->COLOR = black; // reverse colors

z->COLOR = black;

x->COLOR = red;

y = x; // move up one level higher

}

}

else { // edge into x is red

w = x->PARENT; // w is x's parent

if (x == w->LLINK) { // x is w's left child

if (y == x->RLINK) { // Case 2(a): zig-zag path

LeftRotate(x); // make it a zig-zig path

swap(x,y); // swap pointers x and y

}

RightRotate(w); // Case 2(b): zig-zig path

}

else { // x is w's right child

...this case is symmetric...

}

y->COLOR = black; // reverse colors

w->COLOR = black;

x->COLOR = red;

y = x; // move up two levels

}

}

T->COLOR = black; // edge above root is black

}

Here are the basic cases considered by the algorithm. Recall that y is the current node, whose

incoming edge is red, and may violate the red-constraints. We let x be y's parent, and z be

the other child of x.

Case 1: (Edge above x is black:) There are two subcases. If z is null or the edge above z is

black, then we are done, since edge (x; y) can have no red neighboring edges, and hence

cannot violate the red-constraints. Return.

Otherwise if (x; z) exists and is red, then we have violated property (3). Change the color

of edges above y and z to be black, change the color of the edge above x to be red. (Note:

This corresponds to a node split in a 2-3 tree.)

y

x

zy

x

z

Figure 62: Case 1.

Case 2: (Edge above x is red:) Since the root always has an incoming black edge we know x

is not the root, so let w be x's parent. In this case we have two consecutive red edges on

99



Lecture Notes CMSC 420

a path. If the path is a zig-zag path (Case 2(a)), we apply a single rotation at x and swap

x and y to make it a zig-zig path, producing Case 2(b). We then apply a single rotation

at w to make the two red edges siblings of each other, and bringing x to the top. Finally

we change the lower edge colors to black, and change the color of the edge above x to be

red. (Note: This also corresponds to a node split in a 2-3 tree.)
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Figure 63: Case 2.

We will not discuss red-black deletion, but su�ce it to say that it is only a little more compli-

cated, but operates in essentially the same way.

Lecture X2: Dynamic Storage Allocation

(Supplemental)
Reading: Chapter 3 in Samet's notes.

Storage Allocation: When dealing with dynamically varying data structures, one of the major

problems is how to dynamically allocate and deallocate storage for the various records that

will be used by the data structure.

The �rst question is whether memory allocation/deallocation is to be handled implicitly or

explicitly. Sometimes, as in our k-d tree program, we know that on insertion a node must be

allocated, and on deletion a node must be deallocated. Explicit allocation/deallocation is the

natural things to use here. For systems like Lisp, when we perform a cons we clearly must

allocate a node of storage. However in Lisp it is not so obvious when we should deallocate a

node. The problem is that it is possible to share pointers in Lisp, and when one object is no

longer being pointed to (e.g. an argument of a function that has �nished returning) we would

like to return its storage to the system, but we do not necessarily know that this storage may

not be shared by someone else that is still active (e.g. the result of the function).

Implicit allocation/deallocation is handled by a method called garbage collection where the

system reclaims storage in one big step by determining which words of memory can be accessed

and which cannot. For this lecture, we will concentrate on explicit allocation/deallocation.

Explicit Allocation/Deallocation: The obvious answer to the question is to just use the system's

memory allocation/deallocation utilities! But someone had to write these procedures. Because

of their frequent use, they need to be 
exible and e�cient strategies. How are they written?

If the records are all of the same size, then this is easy. Basically a chunk of memory can be

allocated, and we link the unused blocks onto an available space list from which we take nodes

to allocate, and return them to deallocate.

However if the records are of di�erent sizes what can we do? If the records are of roughly the

same size, we can simply allocate the maximum size every time, and treat the records as if they
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are the same size. The resulting loss in memory utilization is called internal fragmentation

because it occurs within each allocated block.

On the other hand, if records are of varying sizes, then the internal fragmentation will be too

high to make this simple scheme tractable. For this reason most systems support dynamic

memory management that can handle requests for arbitrary sizes of objects. The idea is that

we reserve a small amount of each variable sized block (typically one word or a small number

of bytes) for storing information to be used by the memory allocator. The memory allocator

organizes the blocks of storage, where they are, how large they are, and whether they are in-use

or available. It's job is to perform allocation/deallocation requests as e�ciently as possible.

The biggest problem in such systems is the fact that after a series of allocation and deallocation

requests the memory space becomes fragmented into small chunks. This external fragmentation

is inherent to all dynamic memory allocators. The quality of a memory manager is how well

it limits this fragmentation.

Overview: When allocating a block we must search through the list of available blocks of memory

for one that is large enough to satisfy the request. The �rst question is, assuming that there

does exist a block that is large enough to satisfy the request, how do we select the proper

block. There are two common, con
icting strategies:

First �t: Search the blocks sequentially until �nding the �rst block that is big enough to

satisfy the request.

Best �t: Search all available blocks and use the smallest one that is large enough to ful�ll

the request.

Samet says that both methods work well in some instances and poorly in others. Other people

say that �rst �t is prefered because (1) it is fast (it need only search until it �nds a block), (2)

if best �t does not exactly �ll a request, it tends to produce small \slivers" of available space,

which tend to agravate fragmentation.

One method which is commonly used to reduce fragmentation is when a request is just barely

�lled by an available block that is slightly larger than the request, we allocate the entire block

(more than the request) to avoid the creation of the sliver. This keeps the list of available

blocks free of large numbers of tiny fragments which increase the search time.

In addition, when deallocating a block, it is understood that if there is available storage we

should merge the newly deallocated block with any neighboring available blocks to create large

blocks of free space. This process is called merging. See Figure 3.1 in Samet's notes. Next we

will provide details on the implementation of this scheme.

Implementation: Last time we proposed a general solution to the problem of explicit dynamic

storage allocation. The big question is how to implement these operations. For example, how

to we store the available blocks so we can search them quickly (skipping over used blocks),

and how do we determine whether we can merge with neighboring blocks or not. We want the

operations to be e�cient, but we do not want to use up excessive pointer space (especially in

used blocks).

Here is a sketch of a solution. For each block of used memory we record the following infor-

mation in the �rst word of each block.

Size (int): Indicates the size of the block of storage. (Note that this include space for these

�elds also.)

InUse (bit): Set to 1. Indicates that this block is in use.

PrevInUse (bit): Set to 1 if the previous block is in use.
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1 ? Size 0 1 Size

Size

PrevAvail

NextAvail

Prev InUse

InUse

Prev InUse

InUse

Used Block Available Block

Figure 64: Block structure.

We assume that these are packed into a single word. The purpose of the PrevInUse will be

explained later.

For an available block we store more information. These blocks are stored in a doubly-linked

circular list. There is also a header pointer that points to the �rst available block, AvailHead.

Size (int): Indicates the size of the block of storage. (Note that this include space for these

�elds also.)

InUse (bit): Set to 0. Indicates that this block is not in use.

PrevInUse (bit): Set to 1 if the previous block is in use.

Prev (ptr): Pointer to the previous available block.

Next (ptr): Pointer to the next available block.

In addition, in the LAST WORD of each available block, we store the size of this block. Note

that available blocks require more space for pointers, but this space is less critical, because the

space is not needed by the user.

To allocate a block we search through the linked list of available blocks until �nding one of

su�cient size. If the request is about the same size as the block we just remove the block

from the list of available blocks and return a pointer to it. (We also may need to update the

PrevInUse bit of the next block since this block is no longer free.) Otherwise we split the block

into two smaller blocks, return one to the user, and leave the other on the available space list.

Here is a description of the allocation routine. The argument N is the size of the allocation. We

keep a constant TOOSMALL that indicates the smallest allowable available block. The program

is not quite in \o�cial" C, but it is not hard with appropriate pointer arithmetic to implement

it in C or C++.

procedure Allocate(N) {

p = Search for first available block of sufficient size;

if (p->Size < N) {error - overflow}

else {

if (p->Size - N < TOOSMALL) { // unlink p

p->Prev->Next = p->Next;

p->Next->Prev = p->Prev;

q = p;

}
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else {

p->Size = p->Size - N;

q = p + p->Size;

Store p->Size in last word before prior to q;

q->Size = N;

q->PrevInUse = 0;

}

q->InUse = 1;

(q+q->Size)->PrevInUse = 1;

return q;

}

}

To deallocate a block, we check whether either the next block or the preceding block are

available. (For the next block we can �nd its �rst word and check its InUse 
ag. For the

preceding block we use our PrevInUse 
ag. If the previous block is not in use, then we can

use the size value stored in the last word to �nd the block's header.) If either of these blocks

is available, we merge the two blocks and update the header values appropriately. If no merge

took place we link the �nal block into the list of available blocks (e.g. at the head of the list).

There is not much theoretical analysis of this method. Simulation studies have shown that

this method achieves utilizations of around 2/3 of available storage, and much higher if blocks

are small relative to the entire space. A rule of thumb is set the memory size to at least 10

times the size of the largest blocks to be allocated.

Buddy System: Last time someone made the observation that in the standard memory allocation

scheme presented in the previous lecture, there was no organization of the available space list.

Thus if we need a very large block, we may be forced to search much of the list. An interesting

variation of the memory allocation scheme presented last time is called the buddy system.

The buddy method uses essentially the same structure to represent blocks as used in the

standard memory allocation method, but it enforces a particular discipline on the allowable

sizes of allocated blocks and the manner in which neighboring blocks are merged. The �rst

aspect of the buddy system is that the sizes of all blocks (allocated and unallocated) are

required to be powers of 2. When a request comes for an allocation, the request is arti�cially

increased to the next larger power of 2. (Actually one less than the next larger power of 2,

since recall that the system uses one word of each allocated block for its own purposes.) This

will result in internal fragmentation of course. However, note that we never waste more than

half a allocated block.

The second aspect of the buddy system is that blocks of size 2k must start at addresses that

are multiples of 2k. (We assume that addressing starts at 0, but it is easy to update this

scheme to start at any arbitrary address by simply shifting addresses by some o�set.)

The �nal aspect of the buddy system is that we do not always merge adjacent available blocks.

We do so ONLY if they result in a block that satis�es the above conditions. For example, the

resulting set of possible blocks is shown below. Note that blocks [4::7] could not be merged

with block [8::11], however [4::7] could be merged with [0::3].

Note that for every block there is exactly one other block that this block can be merged with.

This is called its buddy. In general, if a block b is of size 2k, and is located at address x, then

its buddy is the block of size 2k located at address

buddy
k
(x) =

�
x+ 2k if 2k+1 divides x

x� 2k otherwise.
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0 7 8 1511 121 2 543 6 9 10 13 14

0 7 8 1511 121 2 543 6 9 10 13 14

0 15

0 7 8 15

0 7 8 1511 1243

Figure 65: Buddy method.

Although this function looks fancy, it is very easy to compute in a language like C. Basically

the buddy's address is formed by complementing bit k (least signi�cant bit = 0) in the binary

representation of x. That is

buddy(k,x) = (1 << k) ^ x;

This means shift a single bit k places to the left, and then take the exclusive-or with x.

As we mentioned earlier, one principle advantage of the buddy system is that we can exploit

the regular sizes of blocks to search e�ciently for available blocks. We maintain an array of

linked lists, one for the available block list for each size, thus Avail[k] is the header pointer

to the available block list for blocks of size k.

Here is how the basic operations work. We assume that each block has the same basic structure

it had before, but that the available block lists have been separated by block sizes.

Allocation: To allocate a block of size N , let k = dlgne. Find the smallest j � k such that

there is an available block of size 2j . Split this block down until creating a block of size

2k. (Note that if j > k this involves removing the block from the j-th available block list,

and creating new free blocks in lower level lists.) Allocate a block of size 2k using the

standard allocation algorithm.

Deallocation: To free a block, mark the current block as available. Determine whether its

buddy is available. If so, merge them together into a free block of twice the size (and

delete both from their available space lists.) Repeat the process (checking if its buddy is

free). When merging can no longer be done, insert the �nal block into the head of the

available space at the appropriate level.

Allocation and deallocation are shown in the associated �gures. In the case of allocation there

was no available block of size 1. Thus we went to the next larger block size, 4, and broke this

into two blocks of size two, and then broke one of these into two blocks of size 1, and returned

this block. (As in the standard allocation routine, the allocated portion comes at the end of

the block.) In the case of deallocation, the deletion of block at 10 resulted in a merger with

11, then a merger with 8, and �nally a merger with 12. The �nal available block of size 8 is

stored in the free block list.

Lecture X3: Graphs, Digraphs and Planar Graphs

(Supplemental)
Readings: Section 1.6 and 1.7 in Samet's notes.
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Figure 66: Buddy allocation.
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Figure 67: Buddy deallocation.
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Graphs and Digraphs: A directed graph (or digraph) G = (V;E) consists of a �nite set of vertices

V (also called nodes) and E is a binary relation on V (i.e. a set of ORDERED pairs from V )

called the edges.

For example, the �gure below (left) shows a directed graph. Observe that self-loops are allowed

by this de�nition. Some de�nitions of graphs disallow this. Multiple edges are not permitted

(although the edges (v; w) and (w; v) are distinct). This shows the graph G = (V;E) where

V = f1; 2; 3g and E = f(1; 1); (1; 2); (2; 3); (3;2); (1;3)g.

4

3

2

1

32

1

Figure 68: Digraphs and graphs.

In an undirected graph (or just graph) G = (V;E) the edge set consists of unordered pairs of

distinct vertices (thus self-loops are not allowed). The �gure above (right) shows the graph G =

(V;E), where V = f1; 2; 3; 4gand the edge set consists ofE = ff1; 2g; f1;3g;f1;4g;f2;4g; f3; 4gg.

Typically the vertices and edges of a graph or digraph may be associated with data: numeric,

strings, etc.

In a digraph, the number of edges coming out of a vertex is called the out-degree of that vertex,

and the number of edges coming in is called the in-degree. In an undirected graph we just talk

about the degree of a vertex, as the number of edges which are incident on this vertex.

In a directed graph, each edge contributes 1 to the indegree of a vertex and contributes one to

the outdegree of each vertex, and thus we have

Claim: For a digraph G = (V;E),X
v2V

indeg(v) =
X
v2V

outdeg(v) = jE j:

(jEj means the cardinality of the set E, i.e. the number of edges).

In an undirected graph each edge contributes once to the degree of two di�erent edges and

thus we have

Claim: For an undirected graph G = (V;E),X
v2V

deg(v) = 2 jE j:

An interesting corollary of this fact is that the number of vertices of odd degree is necessarily

even (because the total sum of degrees must be even).

When refering to graphs and digraphs we will typically let n = jV j (or we might call this v)

and e = jEj.

Because the running time of an algorithm will depend on the size of the graph, it is important

to know how n and e relate to one another.

Claim: For a directed graph e � n
2 2 O(n2). For an undirected graph e �

�
n

2

�
= n(n�1)=2 2

O(n2).
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Notice that in both cases e 2 O(n2). But generally e does not need to be this large. We say

that a graph is sparse if e is much less than n
2. For example, the important class of planar

graphs (graphs which can be drawn on the plane so that no two edges cross over one another)

e 2 O(n).

Representations of Graphs and Digraphs: Wewill describe two ways of representing digraphs.

We can represent undirected graphs using exactly the same representation, but we will dou-

ble each edge, representing the undirected edge fv; wg by the two oppositely directed edges

(v; w) and (w; v). Notice that even though we represent undirected graphs in the same way

that we represent digraphs, it is important to remember that these two classes of objects are

mathematically di�erent from one another.

We say that vertex w is adjacent to vertex v if there is an edge from v to w.

Let G = (V;E) be a digraph with n = jV j and let e = jEj. We will assume that the vertices

of G are indexed f1; 2; : : : ; ng.

Adjacency Matrix: An n� n matrix de�ned for 1 � v; w � n.

A[v; w] =

�
1 if (v; w) 2 E

0 otherwise.

If the digraph has weights we can store the weights in the matrix. For example if (v; w) 2 E

then A[v; w] = W (v; w) (the weight on edge (v; w)). If (v; w) =2 E then generally W (v; w) need

not be de�ned, but often we set it to some \special" value, e.g. A(v; w) = �1, or 1. (By 1
we mean (in practice) some number which is larger than any allowable weight. In Pascal this

might be MAXINT.)

Adjacency List: An array Adj[1 : : :n] of pointers where for 1 � v � n, Adj[v] points to a linked

list containing the vertices which are adjacent to v (i.e. the vertices that can be reached from

v by a single edge). If the edges have weights then these weights may also be stored in the

linked list elements. The �gure shows an example from the earlier digraph.

Adj

2

3

321

3

2

1

010

100

111

3

2

1

321

Figure 69: Adjacency matrix and adjacency list.

An adjacency matrix requires �(n2) storage and an adjacency list requires �(n + e) storage

(one entry for each vertex in Adj and each list has outdeg(v) entries, which when summed is

�(e). For sparse graphs the adjacency list representation is more cost e�ective.

Adjacency matrices allow faster access to edge queries (e.g. is (u; v) 2 E) and adjacency lists

allow faster access to enumeration tasks (e.g. �nd all the vertices adjacent to v).

Planar Graphs: An important class of graphs that arise in many applications is planar graphs

(and more generally graphs representing subdivisions of a surface).
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An undirected graph is planar if it can be drawn in the plane so that no two edges cross over

one another. An embedding is a drawing of a planar graph so that edges do not cross over

one another. The same planar graph may have many essentially di�erent embeddings. The

�gure below shows two graphs, one planar, an alternative embedding of this planar graph, and

the graph K5 which is the completely connected graph on 5 vertices (having 10 edges) and is

NOT planar. Note that generally planar graphs can be embedded in the plane in a number of

di�erent ways.

Figure 70: Planar graphs and embeddings.

In many geometric applications, the graphs we will be using arise from subdividing a two-

dimensional surface into regions. For example, in VLSI (circuit design) these graphs may

be used to represent circuit elements on a printed circuit board, in cartography (map making)

these regions might be state or county boundaries, in �nite element analysis (a numerical tech-

nique used in many engineering applications) a domain is subdivided into simple regions, and

in computer graphics and computer-aided design we use subdivisions to represent polyhedral

shapes (e.g. for machine parts). In addition to storing the graph, we will also be interested

in storing all sorts of other types of data, for example, the coordinates of the vertices, the

equations of the lines on which the edges lie, etc.

Planar Graphs: We introduced the notion of a planar graph and an embedding of a planar graph.

When dealing with embedded planar graphs the vertices and edges of the graph partition the

plane into regions called faces. There is one special face, called the unbounded face which

include everything outside of the graph. An example is shown below with 10 vertices, 4 faces

(including the unbounded face), and 12 edges.

f2

v9

v8

v4f4 v10

f3

v7 f1

v6

v5

v3

v2v1

Figure 71: Faces, edges, vertices.

An interesting property of planar graphs was observed by the mathematician Euler (who is one

of the founders of graph theory). Let v denote the number of vertices, e denote the number of

edges, and f denote the number of faces in a planar graph. Euler's formula gives a relationship

between these three quantities. If that the graph is connected and planar, then

v + f = e+ 2
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This formula can be used to prove a number of interesting facts about planar graphs.

Theorem: Planar graphs are sparse, that is e 2 O(v).

Proof: Consider a planar graph G. De�ne the degree of a face to be the number of edges

bounding this face.

If there are any faces of G that have degree greater than 3, then we add an edge through

this face and repeat until all faces have degree 3. This only increases the number of edges

in the graph, so if our bound holds for this modi�ed graph it holds for the original graph.

We know that every edge is incident to 2 faces, thus if we sum all the degrees of all the

faces we count every edge twice. Since every face is a triangle, all the degrees are equal

to 3. Thus the total sum of all face degrees is:

3f = 2e or equivalently f = (2=3)e:

Plugging this into Euler's equation we get:

v + (2=3)e = e+ 2

and thus

e = 3(v � 2):

Thus, e 2 O(v).

Representations of Geometric Models: One application of planar graphs is that of represent-

ing geometric objects, especially in computer-aided design and manufacturing and computer

graphics. We are all familiar with these wire-frame images of automobile bodies that car

manufacturers like to show on their commercials.

There are two common ways of representing geometric objects in 3-d. One is volume-based

which represents an object as the union/intersection/di�erence of various primitive shapes.

This is called constructive solid geometry (or CSG). In CSG one represents an object by a

process of adding and subtracting volumes from one another. For example, the object shown

below could be created by starting with a block of square material, subtracting a rectangular

slot, subtracting a cylindrical hole, and then adding a rectangle.

The other way, that we will concentrate on, is boundary-based by representing the outer bound-

ary of the object. Most systems support both representations, since volume-based representa-

tions are often easier for designer's use, but boundary based is easier for computation.

When storing the boundaries of geometric objects there are two distinctions that are made,

and are usually handled by di�erent systems. The �rst is geometry, which speci�es exactly

where everything is, and the second is topology which speci�es how things are connected.

Geometry is continuous, and typically involves numerical computations. At the simplest level

it may involve points, line segments, plane equations, etc., but it may generally involve more

complex things such as spline curves and surfaces. Since complex objects are typically made

up of many curves and surfaces that are pieced together, we must represent which surfaces and

edges are contacting which others. This gives rise to the topology of the object. This part of

the representation is discrete, and it is what we will concentrate on here. Once the topology

is known, any number of di�erent ways of specifying geometry can be used.

For our purposes we will assume that geometric objects are represented topologically by 3

types of entities: vertices, edges, and faces. We assume that the object is an two-manifold

whose faces have connected boundaries, which means that:

(1) each vertex is incident to a single alternating ring of edges and faces.
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Figure 72: Constructive Solid Geometry.

(2) each edge is incident to two faces (usually distinct, but need not be).

(3) each face is surrounded by a single alternating chain of vertices and edges (i.e. there are

no holes in the middle of a face).

One tricky thing about representing this topological information is that each vertex is incident

to an arbitrary number of edges, as are faces. Ideally we would like a data structure that

requires only a constant amount of information for each element. The winged-edge data

structure does this for us.

Winged-Edge Data Structure: A data structure which is often used for representing solids and

subdivisions of the plane is the winged-edge data structure. The reason for developing this data

structure is that we want to record topological information that is not immediately apparent

from the graph of vertices and edges, and we want to be able to traverse the structure e�ciently

(i.e like a bug walking from one face to another).

We will need to talk about the face on the left side of an edge versus the face on the right

side of an edge. Which side is the left and which is the right? It is entirely arbitrary, but

we have to �x one. To do this, we assign an arbitrary direction, or orientation, to each edge.

It is important to emphasize that this orientation is entirely arbitrary, and is simply for the

purpose of decided left from right. Thus the edge between vertices v1 and v2 is represented

by the directed edge (v1; v2) (or vice versa, just pick one). Vertex v1 is called the start of the

edge and v2 is called the end of the edge.

Consider the two faces on either side of some directed edge. Imagine that you are standing on

this edge, facing in the same direction that the edge is pointing. The face to left of such an

observer is called the left face and the face to the right of the observer is called the right face

for this edge. Notice that left and right are dependent on the arbitrary orientation we gave to

the edge.

Now we can de�ne the data structure. We assume that each vertex is numbered from 1 to v,

each edge is numbered from 1 to e, and each face is numbered from 1 to f (or alternatively

pointers could be used). We maintain three arrays, a vertex table, an edge table, and a face

table.
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The vertex table stores geometric information (e.g. the coordinates of the vertex) and the

index of any ONE edge incident to this vertex, EStart. (We'll see later how to get the other

edges). This edge may be directed into the vertex or directed out, we don't care.

The face table stores any geometric information for the face (e.g. the plane equation for the

face), and any ONE edge incident to this face, also called EStart.

The edge table holds all the real information. It stores the indices of the starting and ending

vertices of the edge, VStart and VEnd, the left and right faces for the (directed) edge, FLeft

and FRight, and �nally it stores the previous and next edges around each of these faces.

For every face we think of its edges as being oriented clockwise around the bounary. For

a directed edge, let ENLeft be the next edge in clockwise order around the left face, and

let EPLeft be the previous edge in clockwise order about the left face (i.e. the edge just

counterclockwise from this edge). Let ENRight to be the next edge in clockwise order around

the right face, and let EPRight be the previous edge in clockwise order (i.e. the next edge in

counterclockwise order) around the right face.

Example: See Samet's book, page 334-335.

eFLeft(e) FRight(e)

VEnd(e)

VStart(e)

ENRight(e)

EPRight(e)

EPLeft(e)

ENLeft(e)

Figure 73: Winged-Edge Edge Structure.

Traversing the Boundary: Let's consider the task of visiting all the edges that lie on a given face

f in clockwise order. We can use the f.EStart to �nd the index of the initial edge e, but we

have to use the edge table to walk around the face. To do this, �rst we need to know which face

f is relative to e. (This depends on e's direction, which was chosen arbitrarily.) By checking

whether f == FLeft(e) or f == FRight(e)we can determine this, suppose the former. Then

to get the next edge we simply take ENLeft(e) (N because we are going in clockwise order

about f and Left because we have determined that f is to the left of e). Otherwise we take

ENRight(e). The entire code appears below.

procedure List_Edges_CW(f) {

e = first = EStart(f);

repeat

output(e);

if (FLeft(e) == f)

e = ENLeft(e);

else

e = ENRight(e);

until (e == first);

}
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To list edges in counterclockwise order just use EPLeft and EPRight instead.

Lecture X4: Range Trees

(Supplemental)
Reading: Samet's textbook, Section 2.5.

Range Queries: Last time we saw how to use k-d trees to solve rectangular range queries. We

are given a set of points in, say, 2-dimensional space, and we want to count or report all the

points that lie within a given rectangular region (where the sides of the rectangle are parallel

with the coordinate axes). We argued that if the data points are uniformly distributed, the

expected running time is close to O(r +
p
n to report r points in the k-d tree with n points.

The question we consider today is, if rectangular range queries are the ONLY type of query

you are interested in, can you do better than a k-d tree. The answer is yes.

Range Trees (Basics): A range tree is a data structure which uses O(n logn) space, and can

answer rectangular queries in O(r + log2 n) time (thus it misses the goal by a small logn

factor).

The data structure works by reducing a range query in 2-dimensions (and in general d-

dimensions) to a collection of O(logn) range queries in 1-dimension (and in general (d � 1)-

dimensions). We'll see later exactly how this is done.

The range tree data structure is actually a combination of two very simple 1-dimensional data

structures, one is used for storing the x-coordinates and one for storing the y-coordinates.

Before describing the �nal data structure, we present these two substructures and how they

are used.

1-dimensional Range Tree: What does it mean to solve a range query in 1-dimension? Given a

set of points, we want to preprocess these points so that given a 1-dimensional range [Lo;Hi],

we can report all the points which lie between Lo and Hi.

This is very easy to solve if the points have been sorted and stored in an array A[1::n]. We use

binary search to �nd the �rst point A[l] � Lo and proceed to list points sequentially until we

either come to the end of the list or �nd one point whose value is greater than Hi (at which

point we stop). The time to do this is O(r + logn), as desired. (O(logn) to �nd the initial

point, and O(r) to list the points that were found. We visit one extra point after Hi, but that

doesn't a�ect the asymptotic time.

Find by binary search

R=27L=7

35302824211615105

Figure 74: 1-dimensional range reporting.

Notice that this works �ne for static point sets. If we wish to handle insertion and deletion

of points we could store all the points in the leaves of a balanced binary search tree (e.g. a

2-3 tree). It is possible to design a simple recursive algorithm which achieves the O(r+ logn)

time bound.
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Breaking up ranges: So we know that 1-dimensional range reporting is easy. How can we extend

this to work on 2-dimensional ranges. The k-d tree approach was to store everything in one tree,

and to alternate between splitting along the x-coordinates and y-coordinates. The range tree

approach is to use two di�erent data structures (and in fact, a collection of di�erent structures).

We break the 2-dimensional range query down into a small collection of 1-dimensional range

queries. We then invoke an algorithm for 1-dimensional range queries. In this case the number

of 1-dimensional range queries we will have to solve will be O(logn). We will store separate

data structures for all the potential 1-dim range queries we will have to answer.

To see how to do this, let us begin by storing all the points in our data set, S, in any balanced

binary tree T , sorted by their x-coordinates. For each node q in this tree, let S(q) denote

all the points lying in the subtree rooted at q. We claim that given any range of x-values,

[Lox;Hix], the set of all points in S whose x-coordinate lies within this range can be described

as the disjoint union of O(logn) of the sets S(q) and individual nodes. This is somewhat

remarkable. We are asserting that any set de�ned by a range, S \ [Lox;Hix], can be broken

down into O(logn) disjoint subsets, no matter how large the intersection is (and in general

it could be as large as O(n)). The idea of breaking complex ranges down into a collection of

subtrees is an important one in range searching.

We do this by a procedure which walks around the tree and determines which nodes and

subtrees are entirely contained within the range. It stores each such node and subtree in a list

U. The initial range [Lo, Hi] is stored as a global variable. We keep track of two additional

values Min and Max. Min contains the lowest possible value that any descendent of the current

node might have, and Max contains the largest possible value of any descendent of this node.

The inital call is to Decompose(Root, Lo, Hi, Empty);

procedure Decompose(T, Min, Max, ref U) {

if (T == NULL) return;

if (Lo <= Min && Max <= Hi) { // all elements within range

U = U + S(T); // add entire subtree to U

return;

}

if (T->DATA > Lo) { // decompose left subtree

Decompose(T->LLINK, Min, T->DATA, U);

}

if (T->DATA >= Lo && T->DATA <= Hi) {

U = U + {T->DATA}; // add this item to U

}

if (T->DATA < Hi) { // decompose right subtree

Decompose(T->RLINK, T->DATA, Max, U);

}

}

The algorithm is illustrated in the �gure below.

Observe that there are roughly 4 logn elements in U at the end of the algorithm. The reason is

that the algorithm basically recurses down two paths, one search for Lo and the other searching

for Hi. All the elements and subtrees found in between are stored in the set U . Because each

path has length roughly logn (assuming a balanced binary tree) there are 2 logn subtrees that

can be added (one for each of the two paths) and 2 logn individual items.

Range Tree: A range tree is a combination of these two ideas. We �rst create a balanced binary

tree in which we store the points sorted by increasing x-coordinate. For each node q in this
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Figure 75: Range as a collection of subtrees.
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tree, recall that S(q) denotes the points associated with the leaves rooted at q. Now, for each

node q of this tree we build a 1-dimensional range tree for the points of S(q), but we do so on

the y-coordinates. Thus the data structure consists of a regular binary tree, but each node of

this binary tree contains a pointer to an auxilliary data structure (potentially a tree of trees).

Notice that there is duplication here, because a given leaf occurs in the sets associated with

each of its parents. However, each point is duplicated only logn times (because the tree is

balanced, so you only have logn ancestors) and so the total space used to store all these sets

is O(n logn).

Let's see what this would look like on the following set of points. We have only listed the

1-dimensional range sets for some of the subtrees.

Now, when a 2-dimensional range is presented [Lo[2];Hi[2]] we do the following. First, use the

decomposition procedure to break the range down [Lox;Hix] into O(logn) disjoint sets,

U = S(qi) [ S(q2) [ : : :[ S(qk):

For each such set, we know that all the points of the set lie within the x range, but not

necessarily in the y range. So we apply a 1-dimensional range search to each S(qi) along the

y-coordinates and report those that lie within the y range. The process is illustrated below.

(To simplify things we have assumed all the data points are stored at the leaves of the tree.)

Ry

Ly

RxLx
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[10 9 11 12][6 7 5 8]

[3 4]
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Figure 76: Range tree.

Analysis: It takes O(logn) time to �nd the sets S(qi). For each of these O(logn) sets, we have

to perform a 1-dimensional range serch which takes O(logn) time (plus the number of points

reported) for a total of O(log2 n) time. To this we add the time needed to report the points,

which is O(r) time, for a total time of O(r+ log2 n). (With a quite a bit more cleverness, this

can be reduced to O(r+ logn) but this modi�cation uses a technique that would take another

full lecture to explain.)

116



Lecture Notes CMSC 420

As mentioned before, the space is O(n logn). Each of the data structures only require O(n)

storage, but because we duplicate each point O(logn) times in the 1-dimensional range trees,

we create this extra O(logn) factor.
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