
COPLAS: a COnditional PLAnner with Sensing actions

Jorge Lobo*
Department of EECS

University of Illinois at Chicago
851 S. Morgan St Chicago, IL 60607, USA

jorge@eecs.uic.edu

Abstract

This paper describes a partial order planner writ-
ten in prolog. The planner handles sensing ac-
tions, thus, generating conditional plans.

Background

The language A of Gelfond and Lifschitz (GL93) was
designed as the basis of a high level language to repre-
sent and reason about actions and their effects. Domain
descriptions written in this language define state au-
tomata that describe how situations in the world change
after actions defined in the domain are executed. A has
served as a platform to study the formalization of ac-
tion theories. Extensions of .4 have been developed to
study and reason about the concurrent execution of ac-
tions, the non-deterministic effects of some actions and
to study many instances of the qualification and rami-
fication problems.

Baral at University of Texas at E1 Paso, together with
his students has implemented a liner planner based on
.4 (Kah96) that in many instances compares very well
to standard planners such as UCPOP (BCF+95), one
of the most commonly used (partial order) planners.

In (LMT97) we had proposed a new action descrip-
tion language called .4K..4K is a minimal extension
of ,4 to handle sensing actions. A sensing action is an
action that does not have any effect in the world. The
effect is only in the perception of the reasoning agent
about the world. The execution of a sensing action will
increase the agent knowledge about the current state
of the world. Take for example a deactivated agent
placed inside a room. The agent has duties to carry
out and will be activated by a timer. Let us assume
the agent is always placed facing the door. The agent,
once activated, may become damaged if it attempts to
leave the room since the door may be closed. Before the
agent tries to leave the room it needs to perform some
act of sensing in order to determine whether the door
is opened or not. The agent has incomplete knowledge

Funding for this project has been provided by the
Research Institute for Advanced Information Technology
(AITEC) of Japan.

with respect to the door. A sensing action such as look-
ing at the door would provide information to the agent
concerning the status of the door. The major advantage
of adding sensing action is that they give an agent the
ability to reason about complex plans that include con-
ditionals and iterations (Lev96). This paper describes
a prototype planner systems that handles sensing ac-
tions. Similar the planner described in (Kah96), our
planner works bottom-up starting from the initial sit-
uation searching for plans that reach a situation where
the goal is achieve. The planner in (Kah96) is based
on the logic programming translations developed for ‘4.
Our implementation runs several orders of magnitude
faster but we do not have a very clean code, and we do
not have proof of correctness of any of the algorithms.
We have encoded in prolog the transition functions as-
sociated with domain descriptions written in .4 or ‘4K.

The planner

With the support of The Research Institute for Ad-
vanced Information Technology (AITEC) of Japan
we have developed a domain independent, logic
programming-based planner for action domain descrip-
tions written in a language designed under the basis
of ‘4K. The planner, called COPLAS, is able to gen-
erate conditional plans from domains with sensing ac-
tions. The domain can also describe actions with non-
deterministic effects. An action can cause the lost of
knowledge if its effect is non-deterministic. Take for
example the action of tossing a coin. Assume that in
the initial situation we knew that the coin was showing
heads. If we toss the coin we know it will land with
either heads showing or with tails showing, but exactly
which cannot be predicted. Non-deterministic actions
and sensing actions have opposite effects on an agent’s
knowledge. The planer can also handle a limited class
of ramification constra~n.q in the form of axioms and
actions with universally quantified effects. This is an
experimental systems and there are many areas where
it could be improved. We comment on some of them at
the end the paper.

109

From: AAAI Technical Report FS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The domain description language
COPLAS requires two pieces of information to run. A
description of the domain where the planning is going
to take place plus a goal. In this section we describe
how domains are specified in the COPLAS language.
We will refer to both the planner and the language
to specify the domain as COPLAS. COPLAS has five
classes of symbols: object symbols, type symbols, fluent
symbols, non-sensing action symbols and sensing action
symbols plus a countably infinite set of variables. Each
fluent and action symbol has associated a positive inte-
ger called the arity of the symbol. A fluent is a term of
the form f(tl,..., tn), where f is a fluent symbol and
and each ti is either a variable or an object symbol.
Similarly, a non-sensing action is a term of the form
a(tl,...,tn), where a is a non-sensing action symbol
and each ti is a variable or an object symbol. A sensing
action is a term of the form a(tl , t~), where a is a
sensing action symbol and each ti is a variable or an
object symbol.

A domain description for COPLAS consists of four
sections: the declaration of types, the action proposi-
tions, the axiom set and the initial situation description.

The type declaration section is a collection of flu-
ent declarations, non-sensing action declarations and
sensing action declarations. Declarations restrict the
kind of fluents and actions allowed in a domain by typ-
ing the arguments of the fluent and action symbols.

A fluent declaration is an expression of the form:

¯ fluent(f (X1,..., Xn)) : -tl (X1),..., t,(X,),

where f is a fluent symbol of arity n, the Xis are vari-

ables, the tis type symbols, and Ieq a set of inequalities
involving variables in the expression or object symbols.
An inequality of two terms el and e2 is tested by the
predicate dill(el, e2) that is true if el and e2 do not
unify; otherwise it is false. A non-sensing action decla-
ration is an expression of the form:

action(a(X1, . . . , X,~)) : -tl (X1) , . . . , t, (X,

where a is a non-sensing action symbol of arity n, the

)(is are variables, the tis type symbols and Ieq a set of
inequalities as above. Similarly, a sensing action decla-
ration is an expression of the form:

sensing(a(Xh..., X,)) : -tl (X1),..., tn(Xn),

The action proposition section is a collection of
deterministic and non-deterministic effect propositions
and action laws plus a set of action executavility con-
ditions.

¯ A deterministic effect proposition is an expression of
the form:

causes(A, F, [P1, . . . , P~])
where A is a non-sensing action, and F and each of the
Pi is a fluent literal or equality or inequality conditions

involving variables from the propositions or objects. A
fluent literal is either a fluent f or its negation denoted
by neg(f). The intuitive reading of this proposition is:
the execution of A in a situation where P1,. ¯., P~ are
true causes F to be true.

¯ A non-deterministic effect proposition is an expression
of the form:

affects(A, F, [P1, . . . , P,])

where A is a non-sensing action, F is a fluent and
each of the Pi is either a fluent literal, an equality or
an inequality as above. The intuitive reading of this
proposition is: the execution of A in a situation where
P1,..., Pn are true causes F to be unknown.

¯ A knowledge law is an expression of the form:

causes_to_know (A, F, D)

where A is a sensing action and F is a (non-negated)
fluent. The intuitive reading of this proposition is: the
execution of A causes the value of F to be known.1.

¯ Executavility conditions impose restrictions on the
situations where an action can be executed. For a non-
sensing action A, its executavility conditions are de-
scribed with propositions of the form:

possible(A, [P1, . . . , Pn])

where each Pi is a fluent literal. This intuitively says
that A is executable in a state where P1,...,Pn are
true. For a sensing action A the executav!lity conditions
are expressions of the form:

sensing_possible(A, [P1,..-, P,~])

with similar meaning than the executavility conditions
of non-sensing actions.

The axiom set is a collection of terms of the form:

axiom(El, F~
where F1 and F2 are fluent literals. The intuitive mean-
ing of this axiom is that in any state where F1 is true
then F2 most be true too. The use of axioms is very lim-
ited at this point in the planner. It is assumed that the
ramification effects of axioms are one step only. That is,
there cannot be two ground instances (i.e. replacement
of variables with object symbols) of axioms such that
the ground axioms are of the form axiom(fl, f2) and
axiom(f2, f3)- The reader must note that the mean-
ing of axiom(fl, f2) is not equivalent to the material
implication fl ::~ f2 since -~f2 does not imply "~fl.

1In the current implementation the third argument of
the knowledge laws is empty. However, in general, this ar-
gument could be a list PI,..., P, of fluent literals equalities
and inequalities with the meaning that in a situation where
P1,..., P,~ are true if A is executed then F will be known

110

The initial situation description comprises two
subsections. The first subsection introduces the ob-
jects of the domain and their types. This is defined
with terms of the form:

t(o)
where t is a type symbol and o is an object symbol.
The second subsection introduces the state of the initial
situation. This is defined with terms of the following
two forms:

intiaUy(fl)
intially_unknown(f 2

where fl and f2 are ground fluents (i.e. fluents with no
variables). The intended meaning of these terms are:
In the initial situation fl is true and f2 is unknown. If
a ground fluent f is not mentioned in any of the initial
terms it is assumed false in the initial situation.

Semantics of COPLAS domains
The semantics of COPLAS must describe how an agent
knowledge changes according to the effects of actions
defined by a domain description. We begin by pre-
senting the structure of an agent’s knowledge. We
will represent the knowledge of an agent by a pair
(T, F) called a situation, where T and F are set
legal fluents. A legal fluent is a ground fluent of
the form f(ol,...,on) such that there exists a flu-
ent declaration of the form fluent(f(X1,...,X~))
-tl(X1),... ,tn(Xn), and tl(Ol),... ,tn(On) are mem-
bers of the initial situation description. For the rest of
the paper a fluent will be assumed to be a legal fluent.
A situation (T, F) is consistent if T n F = 0. A fluent
f is true in a situation (T, F) if f E T. It is false (and
therefore neg(f) is true) if f E F. Otherwise f (and
neg(f)) is unknown.

Interpretations for COPLAS are transition func-
tions ¯ , that map pairs of legal actions and situa-
tions into situations. A legal action is ground ac-
tion of the form a(ol,...,On) such that there ex-
ists either a non-sensing declaration of the form
action(a(X1, . . . , Xn)) : -tl (X1), . . . , tn(Xn) or sensing
action declaration of the form sensing(a(X1,..., Xn))
-tl(X1),...,tn(X,~), with tl(o1),...,tn(on) members
of the initial situation description. For the rest of the
paper an action refers to a legal action, and action
propositions and axioms refer to ground instances of
action propositions and axioms that refer to legal ae-
tions and legal fluents only.

An interpretation ¯ is a model of a domain descrip-
tion D iff for every situation a = (T, F), O(a, a) is
that

1. For a fluent literal f of any deterministic effect propo-
sition of the form causes(a, f, [Pb... ,Pn]) in D, f is
true in O(a,a) if pl,... ,Pn is true in a,

2. For a fluent literal f of any deterministic effect propo-
sition of the form causes(a, f, [Pl,... ,Pn]) in D, / is
unknown in O(a, o’) if pl,... ,Pn is unknown in a and
] is false in o,

3. For a fluent f of any knowledge law of the form
causes_to_know(a,f,~l,...,pn]) in D, f must be
known in ~(a,a) (i.e. f is either in the T or the
F part of 0) ifpl,...,p,~ is true in a,2

4. For any fluent literal f of any axiom of the form
axiom(p, f) in D, f must be true in ~(a, a) if p
true in o,

5. For a fluent / such that there are no effect propo-
sitions of the above types, f is true/false/unknown
in ¢(a, 0) if and only if f is true/false/unknown
a unless there is a non-deterministic effect proposi-
tion of the form affects(a, f, ~1,... ,p,~]) for which

Pl,...,Pn is true or unknown in 0, in which case, f
must be unknown in ~(a, 0).

and when there exists at least one executability con-
dition either of the form possible(a, [Pl,... ,phi) or of
the form sensing_possible(a, [Pl,... ,Phi) in D then at
least one of the preconditions Pl,-.-,Pn in one of the
executability conditions must be true in 0. Otherwise,
¢(a, or) is undefined.

Plans and plan evaluations
Our next step is to define the structure of our plans.
In the simplest case a plan is a sequence of actions.
However, with sensing we are able to verify plans that "
contain branching. At the root of the branch a sensing
action will be executed and depending on the outcome
the correct plan will be chosen. For example, a robot is
planning to visit my office, and its plan may have the
following structure. First, it will enter in the elevator;
then it will push the button to go to ~he eleventh floor;
it will get off the elevator in the eleventh floor; it will
look at the bulletin board (it will sense); if my office
number is even it will go to the left corridor; eLse it will
go to the right corridor.

We recursively define a plan as follows,

1. an empty sequence denoted by e is a plan.

2. If a is an action and a is a plan then the concatena-
tion of a with a denoted by a; a is also a plan.

3. If f is a fluent and a, al and a2 are plans then
if f then al else a2; c~ is also a plan.

4. Nothing else is a plan.

The meaning of a plan depends on the interpretation
we give to actions. Thus, we will define how a plan will
change an initial situation based on an interpretation.

Definition 1 The plan evaluation function Fo of an
interpretation ¯ is a function such that/or any situa-
tion

1. r~ (~, ~) =
2. F~(a;a,a) = Fc(a, ~(a,a)) for any action a.

2Recall that in the current implementation n is always
assumed to be 0.

111

3. F¢([if f then al else a2;a,a) = F¢(a;a’),
where o’ =

{F~(al,a) if f is true in a
Fap ((22, o’) if f is false in a
undefined otherwise

Notice that before we test the value of a fluent in an
if-condition we must be sure that the value is not un-
known, otherwise the evaluation of the plan is not de-
fined.

Goal and plans

A goal will consists of a set of properties that we would
like them to hold in any situation we reach after the
execution of our selected plan. The plan will be ex-
ecuted starting from an initial situation derived from
the domain description. This situation is unique and is
defined as follows. The initial situation ao for a domain
description D is the situation where every fluent f of a
term intiaUy(f) in D is true in a0, every fluent f of a
term initially_unknown(f) in D is unknown in 00 and
any other fluent is false in ao. It is also assumed that
every axiom holds in a0. If there is no consistent situa-
tion with such a structure or the domain has no models
we will say that the domain D is inconsistent.

We will restrict our goals to be a conjunction of fluent
literals denoted by Pl,...,Pn. We say that a plan a
achieves a goal pl,..-,pn in a domain D if for every
model ̄ of D, if each fluent literal in the goal is true in
F¢(a, 00). That is, for any possible interpretation that
models the domain, the evaluation of the plan produces
a situation where the goal is true.

We will write

D ~Pl,..-,Pn after a

when the plan a achieves Pl,.--,Pn in D. COPLAS
takes a consistent domain description D and a goal,
and returns a plan a that achieves the goal, if that
plan exists.

This achieves relation between domains, goals an
plans is equivalent to the consequence relation called 0-
approximations of Son and Baral (SB98), and it sounds
with respect to the consequence relation introduced in
(LMT97).

An example

The following example adapted from Pednault (Ped88)
illustrates a domain with sensing actions and universal
effects. The domain refers to situations where we would
like to move objects from different locations using a
briefcase.

There are three non-sensing action symbols that have
the following type declarations:

action(rnove_b(L))
location(L).

action(take_out(O))
object(O), di f f (O , briefcase).

action(put_in(O)):-
object(O), di f f (O, briefcase).

The first action will move the briefcase from its current
location to location L. The second action will take the
object O out of the briefcase. The last action will put
the object inside the briefcase. Note that these defini-
tions are encoding many legal actions. The number will
depend on the number of objects and locations defined
in the domain.

There is one sensing action symbol with the following
declaration:

sensing(check_in(O)) : -object(O), dill(O, briefcase).

The action checks whether the object O is inside the
briefcase.

There are two fluent symbols with following type defi-
nitions:

fluent(in(O)) : -object(O), di f f(O, briefcase).
fluent(at(O, L)) : -object(O), location(L).

The first fluent is true when the object 0 is inside the
briefcase. The second fluent is true when the object O
is at location L.

executavility conditions are defined as follows:
possible(move_b(L), [at(briefcase, LO), dill(L, L0)]).

It says that the briefcase can be moved to location L if
it is currently in a different location.

possible(take_out(X), [in(X), at(briefcase, L)]).

This condition says that an object can be taken out of
the briefcase only if it is inside the briefcase.

possible(put_in(X),
[neg(in(X)) , at(briefcase, L), L)]).

This condition says that an object can be put inside the
briefcase if it is not already inside and it is locate at the
same place than the briefcase.

The executavility condition for the sensing actions says
that we should check if an object O is inside the brief-
case if we do not know about it.

sensing.possible(check_in(O),

Observe that for this example to have meaning if we
do know know whether an object is inside the briefcase
then either we do not know where the object is located
or it must be located at the same place where the brief-
case is.

We have four effect propositions associated with the
action symbol rnove_b.

causes(move_b(L), neg(at(brie f case, LO)
[at(briefcase, L0)]).

causes(rnove_b(L), at(briefcase, L),
causes(move_b(L), at(Object, L), [in(Object)f).
causes(move_b(L), neg(at(Object, LO

[in(Object), at(Object, L0)]).

The first proposition says that when we move the brief-
case to location L from location L0, it will not be in lo-
cation L0 anymore. The second propositions says that

112

briefcase most be at location L. The third proposition
is an application of universal quantification. The vari-
able Object does not appear in the action, this when a
legal action move_b(location) is applied all the objects
that are inside the briefcase are also moved.3 The last
effect proposition it also has a universal quantification
to make sure that all objects in the briefcase are in only
one location, where the briefcase was moved.

The effect propositions for the two other action symbols
are as follows:

causes(put_in(Object), in(Object),
[at(briefcase, n), at(Object, L)]).

causes(take_out(Object), neg(in(Obj ect
[in(Object)f).

The knowledge law for check_in is:

causes_to_know(check_in(O), in(O),

The execution of the action on an object O determines
if the object is inside or not of the briefcase.

An initial situation description where there are two
location, home and office, and three objects, the brief-
case, a dictionary and a paycheck is the following

location(home).
location(office).

object(briefcase).
object(paycheck).
object(dictionary).

initially(at(briefcase, home)).
initially(at(paycheck, home)).
initially(at(dictionary, home)).
initially_unknown(in(paycheck)).

A plan that achieves the goal at(briefcase, office),
at(dictionary, office), at(paycheck, home)]) in this do-
main is

put_in(dictionary);
check_in(paycheck);
if in(paycheck) then

take_out(paycheck);
move_b(of fice);

else
move_b(of fice);

Suppose we add to initial situation the location
bank (i.e. location(bank)). A plan that achieves
the goal at(paycheck, bank), at(dictionary, office),
at(briefcase, home) is

3The first proposition is also using a universal quantified
variable but we are assuming in the example that an object
cannot be in two places at the same time. Thus the universal
quantification does not have any effect in that proposition.

put_in(dictionary);
check_in(paycheck);
if in(paycheck) then

move_b(o f f ice);
rnove_b(bank)
take_out(paycheck);
move_b(o f fice);
take_out(dictionary);
raove_b(home);

else
put_in(paycheck);
move_b(of fice);
take_out(dictionary);
move_b(bank);
take_out(paycheck);
move_b(home);

How to run the planner
COPLAS is written in Sicstus prolog version 3. It has
been tested in a Ultra 1 station running Solaris Sys-
tem 2.5.1. Sources and many examples can be found in
the web server of the Research Institute for Advanced
Information Technology at the following address:

http ://www. icot. or. jp/AITEC/FGCS
/funding/it aku-Hg- index-E, html

Although the planner has not been tested in other plat-
forms it it should work in any system running Sicstus
3.

The interaction with the planner is using the predi-
cate query. A query is a conjunction of ground fluent
literals representing a goal for the planner. In your do-
main description you must include the goal for which
you would like to find a plan. The format for a goal of
the form fll fln is:

query([fll,... ,fln]).

For example, in the first example above the query will
be:

query ([at (paycheck, home),
at (dictionary, office) , at (briefcase, home)]

Order in the list is irrelevant.
Before r~mnirig the planner is necessary to create a

file with a domain description. You must also add the
following heading to the domain file:

Y.-- -HEADINfiS:
¯ - multifile causes/3.
¯ - multifile affects/3.
:- multifile sensing/l.
:- multifile initially/l.
:- multifile initially_unknown/l.
:- multifile axiom/P.

You must a/so define for each action symbol a heuristic
function and rewrite the executavility conditions in a
special format. How these functions can be defined and
the re-writing rules will be explained in the next section.

113

After you create your domain file do the following
steps. Let us assume the file where the domain is stored
is called domain.pl

1. Start your prolog interpreter.

2. Consult the planner: consult (planner).
The file planner.pl must be in your local directory
in order for this command to execute successfully.

3. Consult your domain description:
consult (’ domain.pl’). The file domain.pl must
be in your local directory in order for this command
to execute successfully.

4. Run the query: query([fll,... ,fln]).

If you would like to run a new example with a new
domain, let say, domainl .pl, after you get the answer
for the previous query do the following.

1. Clean the environment by typing the query:
clean_all.

2. Consult your
new domain description: consult (’ domainl .pl’).
The file domainl.pl must be in your local directory
in order for this command to execute successfully.

3. Answer "y" to all the renamings, if any.

4. Run the query: query([fll,... ,fln]).

If the planner is compiled before loading it the system
will have much better per performance. To compile
using Sicstus execute the following steps.

1. Start your prolog interpreter.

2. Compile the planner: fcompile(pl~nner).
The file planner.pl must be in your local directory
in order for this command to execute successfully.

3. Exit the the interpreter.

This sequence of steps will generate a new file
pl~nner.ql the compiled version of the planner. To
run the example using the compiled planner do the fol-
lowing steps.

1. Start your prolog interpreter.

2. Load the planner: load(pl;,nner).
The file planner, ql must be in your local directory
in order for this command to execute successfully.

3. Consult your domain description:
consult (’ domain.pl’). The file domain.pl must
be in your local directory in order for this command
to execute successfully.

4. Run the query: query([fll fln]).

You can switch domains by following the same steps as
above. Notice also that making modifications to your
current domain is very simple. You can go edit the do-
main description file changing any part of the domain
(i.e., effect propositions, heuristics, executability con-
ditions, etc) and re-consult the domain file to try new
goals.

There is an alternative to run queries to the one de-
scribed above. The user can include in his/her domain
description file one query using the following format:

goal([fll fln]).

This goal corresponds
to the query: query([fll fln]). Now after
loading the domain description file following the steps
above, the user can run the query by merely typing
plan as the query. This option is useful when queries
are long and the user may want to type them once.

Limitations and features of heuristic
definitions in the current version

Planning is a computational complex process. There
will be very few examples that will run without guid-
ing the planner on how to search for a plan in the
search space. There several domain independent heuris-
tics that can be implemented. The most obvious is to
avoid plans that take you back to a previous visited
situation. In the current implementation there is only
a simple check done. When an actions is executed the
planner verify that the actions does not take you back
to the previous state.

In addition to domain independent heuristics is also
important to have domain dependent heuristics. In the
current version the user can add heuristics by defining
prolog predicates of the form:

heuristic (Act ion, Situat ion, Plan)

where Situation is the situation where the Action is
about to be applied and Plan is the plan where the
Action will be added. In its current version the pa-
rameter Plan has very little for non-sequential plans
(i.e. plans that includes if) because it does not identify
to which branch the Action will be added.

An example of heuristic functions in the briefcase do-
main is the following:

heuristic (move_b (_)).

heuristic(take_out(X), Situation, _)
goal(Goal),
location(L),
true in_state(at(X, L), Situation),
member(at(X, L), Goal).

heuristic(put_in(X), Situation, _)
object(X),
location(L),
true_in_state(at(X, L), Situation),
goal(Goal),
\+ member(at(X, L), Goal).

The first rule defines no heuristic for the action move-b.4

In general, for an action symbol a of adty n, if no heuris-
tic is defined the domain description must include:

heuristic(a(.......)

4The "~ symbol repr~ents a don’t cue variable
prolog.

114

The second rule defines a heuristic for the action
take_out. An object will be taken out from the brief-
case only if that object must state at its current lo-
cation according to the goal. The last rule says that
if an object is not located in the place where the
goal specifies the object should be, the planner should
put the object in the briefcase (to be moved). Both
heuristic functions use the predicate true_in_state(
Fluent, Situation). As the name suggests this pred-
icate checks if the Fluent is true in the Situation. The
predicates false_in_state and unknown_in_state are
also available to the user for heuristic definitions.

Executavility conditions

To improve performance you must re-write the executa-
vility conditions of your domain into new prolog predi-
cates. If you have a executavility condition of the form:

possible(A, [P1, . . . , Pn])

write in your domain:

possible (A, Situation)
fluentliteral (LI), test (LI, Situation),
’ "° 3

fluentliteral (Ln), test (Ln, Situation).

where Li is equal to Pi and test is true_in_state if Pi
is positive fluent literal. Otherwise, if Pi is of the form
net(F), Li is F and test is false_in_state. For ex-
ample, the condition possible(put_in(X), [net(in(X)),
at(briefcase, L), at(X, L)]) is translated into:

possible(put_in(X), Situation)
fluentliteral(in(X)),
false_in_state(in(X), Situation),
fluentliteral(at(briefcase,L),
true_in_state(at(briefcase,L), Situation),
fluentliteral(at(X,L)),
true_in_state(at(X,L), Situation).

For sensing action symbols we will restrict the do-
mains to only one knowledge law per action and no
preconditions.5 Thus, for a executavility condition of
the form:

sensing_possible(A, [P1,..., Pn])

write in your domain:

sensing_possible (A,Situation)
unknown_ in_state (F, Situat ion),
fluentliteral (LI), test (LI, Situation),

f luentliteral (In), test (Ln, Situation).

5The semantics of COPLAS can deal with both exten-
sions, but they will be developed in future versions of the
system.

where F is the fluent being sensed by the action A and
the rest is defined as above. For example, the condition
sensing_possible(check_in(O), is translated int o:

sensing_possible(check_in(O),Situation)
unknown_in_state(in(O),Situation).

If you are using the planner in classroom situation
where you would like to strictly separate the domain
description from the planner implementation you can
make the following modifications to the planner.

Find in the planner the two lines with the comment
~, independent exec. conditions and remove
the ~, symbol from the front of the line.
Find in the planner the two lines with the comment
~, dependent exec. conditions and add the ~,
symbol to the front of the line.

This modification to the coding of executavility con-
ditions will slow down the performance of the planner
about 10%.

Notes about the plans generated by the
planner

Similar to the partial order planner described in Rusell
and Norvig (RN95) that handles sensing actions, once
an if-then-else has been introduced in a plan no other
actions will appear after the if-then-else. If a sequence
of actions is needed after the if-then-else, that sequence
will be repeated in both the "then" part and the "else"
part. In other words the structure of the program is a
tree where each branch corresponds to a different set of
models of the domain. We can also associate a situation
with each branch. All these situations represent all the
possible final situations that could result after the exe-
cution of the plan (module sensing actions). Detecting
when situations can be combined is not trivial and can
be expensive (since it might be necessary to check that
a collection of sets are equal). On the other hand, the
current implementation adds a new situation each time
a sensing action is executed and the planner must find a
plan for each situation. If most of the plan is repeated
among the branches this results in a large amount of
redundant computation.

There is also a property that holds for every plan. A
sensing action will appear in a plan if and only if the
action will be followed by a a conditional. Furthermore,
the condition tested is always the fluent that is sensed
by the action.

Using the planner for projections

There is a second kind of queries that can be solved
with COPLAS. Given an initial situation COPLAS can
verify if a conjunctions of fluent literals is true after the
execution of a given plan. This process is much simpler
than planning since there is no plan to generate, the
plan is part of the query. This mode is useful to debug
domain descriptions. Moreover, the plans in the queries

115

can be more complex than the plans generated during
planning mode. In addition to conditionals, plan can
also contain while loops. Queries in this mode are of
the form:

entails (goal ,Plan).

where the Goal is a list of fluent literals as indicated in
the previous queries and a plan is recursively defined as
follows:

1. [] (the empty list in prolog) is a plan.

2. H A is an action and P a plan then [A[P] is also a
plan. Arguments in A could be variables or ground
terms.

3. If F is a fluent literal and P1 and P2 are plans, then
[if(F,Pl) [P2] is also a plan. F most be a ground
literal, i.e. all its arguments most be object symbols.

4. If F is a fluent literal and P1, P2 and P3 are plans,
then [if(F,P1,P2) [P3] is also a plan. F most be
ground literal, i.e. all its arguments must be object
symbols.

5. If F is a fluent literal and P1 and P2 are plans, then
[while (F, P1) [P2] is also a plan. F most be a ground
literal, i.e. all its arguments must be object symbols.

6. Nothing else is a plan.

We can describe the meaning of a plan with loops for-
mally using standard fix-point techniques used in con-
ventional programming languages. For lack of space
will not present the formal semantics here but it is not
difficult to see how the semantics of .A[K described in
(LMT97) can be adapted to COPLAS domains.

Similar to the planning mode, After you create your
domain file do the following steps. Let us assume the
file where the domain is stored is called domain, pl

1. Start your prolog interpreter.

2. Consult the planner: consult (planner).
The file planner.pl must be in your local directory
in order for this command to execute successfully.

3. Consult your domain description:
consult (’ domain.pl’). The file domain.pl must
be in your local directory in order for this command
to execute successfully.

4. Run the query: entails([fll flu], Plan).

The answer for this query will be yes if all the fluent
literals in the query are true in the states that result
after the execution of the Plan. The answer is no if the
Plan does not have an infinite loop and terminates in a
set of states where where at least one of the literals in
the query is not true. There might be no answer if the
Plan has an infinite loop.

Final remarks
There are two fundamental ways this system can be
used:

1. As a planner: User can write domain descriptions in
the language, pose goals to generate plans. Ideally,
the system can be used as a sub-module for a robot
or a software intelligent agent. For a realistic ap-
plication the planner needs to be modified to prune
search space (specially redundant computation due
to revisits to the same situation).

2. As a platform for ,4 based action description lan-
guages: Recently, there has been a tremendous
amount of language extensions .A to include, concur-
rency, narratives, ramification constraints, temporal
queries, defeasible actions, etc. Our hopes is that
our system will encourage researchers in the field to
test their technical ideas by modifying our planner to
include such extensions.

To report bugs or for comments or suggestion to
improve the code you can wr.ite directly to me at
j orge@eecs, uic. edu.

References

A. Barrett, D. Christianson, M. Friedman, C. Kwok,
K. Golden, J. Penberthy, Y. Sun, and D. Weld.
UCPOP User’s manual, version 4.0. Technical Re-
port 93-09-06d, Department of Computer Science and
Engineering, University of Washington, 1995.
M. Gelfond and V. Lifschitz. Representing actions and
change by logic programs. Journal of Logic Program-
ming, 17(2,3,4):301-323, 1993.

Y. G. Kahl. Planning in complex domains: Expressive-
ness and efficiency. Master’s thesis, Dept of Computer
Science, University of Texas at E1 Paso, 1996.

Hector Levesque. What is planning in the presence of
sensing? In Proc. of AAAI-96, pages 1139-1146, 1996.

J. Lobo, G. Mendez, and S. Taylor. Adding knowl-
edge to the action description language A. In Proc. of
AAAIgZ AAAI Press, July 1997.
E. Pednault. Synthesizing plans that contain actions
with context-dependent effects. Computational Intel-
ligence, 4(4):356--372, 1988.

S. Russell and P. Norvig. Artificial Intelligence - A
Modern Approach. Prentice Hall, 1995.
T. C. Son and C. Baral. Formalizing Sensing Actions
- a transition function based approach. Technical Re-
port, University of Texas at E1 Paso. Short version of
this paper appeared in Proc. of ILPS97. MIT Press,
1997.

116

