
July 2003 Telelo

Chapter
33 The TTCN to C Compiler 

(in Windows)
This chapter describes what the TTCN to C compiler is used for, 
how to run it and the structure of the generated code.

When the TTCN to C compiler has translated TTCN into C code, 
the code must be adapted with the system that is to be tested. The 
adaption process is described in chapter 37, Adaptation of Generat-
ed Code.

Note: ASN.1 support

The TTCN to C compiler supports only a limited subset of 
ASN.1. See “Support for External ASN.1 in the TTCN Suite” on 
page 729 in chapter 14, The ASN.1 Utilities, in the User’s Manual 
for further details on the restrictions that apply.

Note: Windows version

This is the Windows version of the chapter. The UNIX version 
is chapter 28, The TTCN to C Compiler (on UNIX).
gic Tau 4.5 User’s Manual ,um-st1 1285



Chapter 33 The TTCN to C Compiler (in Windows) 
Introduction to the TTCN to C Compiler
When developing new systems or implementations of any kind, the de-
veloping process is divided into well defined phases. Most commonly, 
the first phases involve some kind of specification and abstract design 
of the new system. After a while the implementation phase is entered 
and finally, when all parts are joined together, the test phase is activated.

In any case when a system is tested, we want to make sure that its be-
havior conforms to a set of well defined rules. TTCN was developed for 
the specification of test sequences. Unfortunately, as very few systems 
interpret or compile pure TTCN, we need to translate the TTCN nota-
tion into a language which can be compiled and executed. In the case of 
the TTCN suite, the TTCN to C compiler translates TTCN to ANSI-C.

Even after the TTCN code has been translated, there are a couple of 
things that need to be taken care of. In this case, we must adapt the gen-
erated code with the system it intends to test. This chapter describes 
how the TTCN to C compiler is used. The adaption process is described 
in “Adaptation of Generated Code” on page 1449 in chapter 37, Adap-
tation of Generated Code.

Getting Started
Unfortunately, a test sequence description expressed in TTCN cannot 
easily be executed as it is. This, because the test notation is not execut-
able and only few test environments interpret pure TTCN. A different 
approach to create an executable test suite (ETS), is to translate the for-
mal test description into a language which can be compiled into an ex-
ecutable format. 

The TTCN to C compiler translates TTCN into ANSI-C which can be 
compiled by an ANSI-C compiler. Figure 230 depicts the first step in 
the process of creating an ETS using the TTCN to C compiler.

The generated code, called the TTCN runtime behavior, is only one of 
the two major modules of an ETS.

The second module which is needed includes test support functions 
which are dependent on the protocol used, the host machine, test equip-
ment, etc. For this reason, it is up to the user to write this second module 
and in such way adapt the TTCN runtime behavior to the system he/she 
wants to test.
1286 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Getting Started
The adaption process is described in “Adaptation of Generated Code” 
on page 1449 in chapter 37, Adaptation of Generated Code. Figure 231 
displays the anatomy of the final result.

Figure 230: Translating TTCN to ANSI-C

Figure 231: The anatomy of an ETS

ATS

TTCN
Runtime Behavior

TTCN to C compiler
TTCN

ANSI-C

TTCN runtime behavior

Test support functions

PCOs

Implementation Under Test
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1287



Chapter 33 The TTCN to C Compiler (in Windows) 
Running the TTCN to C Compiler

Note that every active TTCN document has its own code generation set-
tings, so in practice, two or more TTCN documents can be edited and/or 
viewed at the same time in the TTCN suite, and yet have individual set-

To generate C code for the currently selected test document:

• Select Generate Code from the Build menu.
– The shortcut is <F8>.

This will open a dialog where you may change settings for code 
generation (see Figure 232).

You can also open this dialog by the menu choice Build > Options 
or by the shortcut <Alt+F8>.

Note:

Observe that the TTCN to C compiler is unable to function correctly 
if the test suite is not fully verified correct. This verification is ac-
complished by running the Analyzer tool on all the parts of the test 
suite.
1288 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Getting Started
tings. (Multiple views on the same TTCN document does of course 
share the same settings.)

Options

• If the Ignore bodies of test suite operations option is checked, the 
compiler will ignore to generate code for test suite operations. This 
is useful if you already have a file with your own test suite opera-
tions that only need to be linked to the rest of the code. If the option 
is not checked, the test suite operators will be generated and includ-
ed in the file tsop_gen.c.

Encoders/Decoders

• By selecting one of the alternatives None, Generate BER encod-
ers/decoders or Generate PER encoders/decoders in the drop down 
list the compiler will either omit generation of encoders/decoders or 
generate extra code for BER or PER encoding and decoding sup-
port, see chapter 37, Adaptation of Generated Code.

Figure 232: Options dialog for code generation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1289



Chapter 33 The TTCN to C Compiler (in Windows) 
Kernel

• To build a TTCN Exerciser, select the option Target/Stand-alone 
simulator. For more information about the TTCN Exerciser, see 
chapter 35, The TTCN Exerciser.

• Select Co-simulator if you want to execute a test suite together with 
a simulated SDL system.

• To build a user-defined adaptor, select User-defined adaptor.

MSC Trace

• Enable MSC/PR file tracing

Generates MSC/PR format files that are saved in the current work-
ing directory. By default, the MSC file names will be on the form   

log_<TestCaseId>_<SequenceNo>.mpr, where <TestCaseId> 
is substituted by the test case name of the logged test case. <Se-
quenceNo> is an integer that is started by 0000 and increased by 
one if there is already a version n in the working directory. 

The preprocessor constant MSC_FILE_MODE should be defined at   
compile-time of mscgen.c to get this mode. The constant 
GENMSC should be defined for compiling globalvar.c to acti-
vate appropriate calls.

If the file cannot be created, a new attempt will be done at the start   
of the next test case. No file log will be created.

The function MscSetPrefix can be used to change the path and 
prefix of generated files at runtime.

• Enable MSC Editor tracing

Creates a new diagram in the MSC Editor when a new test case is 
started and then appends and displays the events as they are execut-
ed. This mode assumes that an MSC Editor license is available and 
that Telelogic Tau is running at the host where the ETS is running 
and provides run-time MSC logging.

The preprocessor constant MSC_MSCE_MODE should be defined 
at compile-time of genmsc.c to get this mode. The constant 
GENMSC should be defined for compiling globalvar.c for ac-
tivation of the appropriate calls.
1290 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Getting Started
If the creation of events in the MSC Editor fails, it will be retried at 
the next event, possibly creating an inconsistent MSC.

This mode may also require access to the Telelogic Tau Public In-
terface libraries and include files that can be found in the installation 
of Telelogic Tau. 

For more information, see “TTCN Test Logs in MSC Format” on page 
1295.

Output Directory

The final thing you have to do is to set the output directory.

OK

When you have set the options, click OK to start the generation of code. 
When the generation phase is started, information about the code gen-
eration will be displayed in the Log Manager. You will receive informa-
tion about what parts that were generated and also some statistics about 
the amount of tables traversed during the generation phase.

If code is being generated for a large test suite, the status bar will show 
the progress.

Running the TTCN to C Compiler from the 
Command Line
You can start the TTCN to C compiler by executing ttcn2c with com-
mand line switches. The usage is ttcn2c [switches] filename.

Example 205 –––––––––––––––––––––––––––––––––––––––––––––––

To generate C code for example.itex in the current directory, with 
hard values and in silent mode, use the command:

ttcn2c -ms example.itex

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1291



Chapter 33 The TTCN to C Compiler (in Windows) 
C Code Generator Parameters

Switch Explanation

-a <objs> Link with objs as adaptor

-A <ASN1files> File containing filenames of ASN.1 module files.

-b <dir> Search in <dir> for static files

-B Generate BER encoding/decoding interface

-d Debug information in C code

-D Step through ETS execution

-e <file> Use file to be included in the make file

-f Forced mode – always overwrite files

-g Ignore bodies of test suite operations
See also “Options” on page 1289.

-h Help

-j <file> User file name for types

-k <file> Use file name for constraints

-l <file> Specify log file

-M file Enable MSC/PR file tracing

-M msce Enable MSC Editor tracing

-o <dir> Specify output directory

-p <file> Use file name for behavior

-P Generate PER encoding/decoding interface

-r <file> Use file name to generate a makefile

-R Disable makefile generation

-s Silent mode – do not display messages

-t Generate simulator
See also “Kernel” on page 1290.

-T Generate targe/stand-alone kernel

-u bc Generate code for Borland compiler
1292 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 Getting Started
Generating C Code for Modular Test Suites

Generating C code for modular test suites from the command line, may 
be a bit tricky. Please see the example below for an explanation of how 
to proceed.

Example 206 –––––––––––––––––––––––––––––––––––––––––––––––

You want to generate C code for the modular test suite mts.itex, 
which depends on module1.itex, module2.itex, module3.itex 
and module4.itex. To do this enter:

ttcn2c """mts.itex""""""module1.itex""""""module2.itex""""""module3.itex"
"""""module4.itex"""

Note that there are six quotation marks between the file names.

This will generate code for the entire modular test suite.

It is also possible to use MP documents in the same manner.

For a description of file naming, see “Files in the TTCN Suite” on page 
24 in chapter 2, Introduction to the TTCN Suite (in Windows), in the 
TTCN Suite Getting Started.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

-u vc Generate code for Microsoft Visual compiler

-v Verbose

-w No warning mode

-z <lines> Aim at splitting generated file at <lines> number 
of lines

Switch Explanation
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1293



Chapter 33 The TTCN to C Compiler (in Windows) 
What Is Generated?
Figure 230 shows how ANSI-C code is generated from a TTCN test 
suite. The generated code alone is not executable as it needs the test sup-
port functions module (see Figure 231). 

In the case of the code generated from the compiler we also need a set 
of static functions which handle TTCN basics and other internal events. 
Even if these functions are vital for the successful compilation and ex-
ecution of the generated code, the user should not have to worry about 
this part. These functions are gathered in a small set of static files which 
are compiled by the generated makefile and linked with the rest of the 
code.

The Code Files
The generated makefile is the file containing a definition of how the 
code should be compiled and linked. This will not be needed if you are 
compiling the generated code in a separate development environment.

The adaptor.h and adaptor.c files are the files that contain the ad-
aptation code. If code is generated for the first time, these files will be 
generated by the compiler with empty function templates for the user to 
implement. On the other hand, if these files are present in the target di-
rectory the user does not have to worry about getting them overwritten.

The *_gen.{c,h} files contains the generated code from the TTCN test 
suite.

The asn1ende.h file contains the encode and decode functions for 
the ASN.1 Types. See chapter 59, ASN.1 Encoding and De-coding in 
the SDL Suite, in the User’s Manual. (Only if ASN.1 support has been 
selected)

The Adaptation
We are now ready to deal in greater detail with the adaptation phase 
which is the final phase to create an executable test suite. The adaptation 
process is described in “Adaptation of Generated Code” on page 1449 
in chapter 37, Adaptation of Generated Code.
1294 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 TTCN Test Logs in MSC Format
TTCN Test Logs in MSC Format
The TTCN standard conformance log, though it is a relatively complete 
logging format, has a few drawbacks for some purposes:

• The conformance log is very detailed.

• The conformance log requires knowledge of TTCN and its seman-
tics.

• The conformance log is not always particularly easy to read.

In order to get a more high-level view, the log must either be filtered or 
another approach needs to be taken – in this case the MSC log format. 
The current version of the TTCN suite has support for an additional log-
ging mode, to generate MSC/PR standard conformant logs – automati-
cally saved in files and also directly to the MSC Editor.

For limitations in the MSC logging, see “MSC Logging” on page 57 in 
chapter 2, Release Notes, in the Release Guide.

MSC Logging Applications
There are several applications of MSC logging. Here are some:

• Test reviews

The MSC log format is very readable and can be used for reviewing 
test progress and for evaluating test results with requirements spec-
ifications.

• Test result recreation

If an SDL model has been used to specify the system behavior, a 
composed MSC log can be used to re-create the test result by using 
the SDL Validator’s Verify-MSC feature. This will allow a particu-
lar test behavior to be handed to system designers who can recreate 
the result on a workstation level.

• Test re-engineering

If MSC traces are being used to generate test cases, the tests can be 
modified at the MSC level. A modified MSC can be used to gener-
ate a new tests. For instance – a test written in TTCN generates an 
MSC. At a review of the MSC logs a new scenario may be identi-
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1295



Chapter 33 The TTCN to C Compiler (in Windows) 
fied. The MSC can be changed to reflect the new scenario, and the 
MSC can be translated back to TTCN.

MSC Logging Modes
There are three major modes of logging, which can be toggled between 
the test cases. It is not possible to change the logging mode in a running 
test case since that would cause an inconsistency in the MSC file. The 
modes are:

• None

No MSC logs are generated at all. This mode improves performance 
somewhat compared to the other modes. For best performance, the 
MSC generation code can be entirely disabled. For more informa-
tion see “Compiling an ETS with MSC Generation” on page 1297.

• Composed

MSC generation of externally visible events of the ETS. This is suit-
able for test regeneration and for re-viewing test results. The perfor-
mance is better than Decomposed mode. The generated MSC views 
the ETS as a set of PCOs that interact with a IUT. The ETS is not 
visible as one particular instance. Some relative timing information 
may be lost in this mode.

• Decomposed

MSC generation of externally visible and internal events of the 
ETS. This is the most detailed mode and it produces MSC events for 
almost all actions of the ETS. The purpose of the MSCs that are gen-
erated is to visualize the internal events and configuration of the 
ETS, and for test case debugging purposes.

MSC Instances Generated

Entity Composed Decomposed Comment

SUT Yes No

PCO Yes Yes

MTC No Yes

PTC No Yes Dynamic
1296 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003



 TTCN Test Logs in MSC Format
 Events Logged

Compiling an ETS with MSC Generation
The ETS Generator can be compiled for a workstation or an embedded 
environment. Some modifications need to be done for applying it in the 
embedded environment if it lacks a file system. By default the tool will 
allow for any of these combinations at code generation time. For more 
information see “MSC Generation Modifications” on page 1298.

Definitions that may be changed to customize the MSC generation:

 Event Composed Decomposed Comment

Final Verdict Yes Yes MSC Text

Preliminary Verdict No Yes MSC Condi-
tion

Create No Yes

Done No Yes

Send to PCO Yes Yes

Send to CP No Yes

Receive from PCO Yes Yes

Receive from CP No Yes

Implicit send No Yes

Start Timer No Yes

Cancel Timer No Yes

Timeout Timer No Yes

Implicit Cancel No Yes End of TC

Implicit Receive No Yes End of TC

Message Values Yes Yes

Definitions Explanation

MSC_DEFAULT_SYSTEM_NAME Name of IUT instance in 
composed mode.
July 2003 Telelogic Tau 4.5 User’s Manual ,um-st1 1297



Chapter 33 The TTCN to C Compiler (in Windows) 
MSC Generation Modifications

Modifications to the MSC generation for running on an embedded en-
vironment include:

• The MscAppendPREvent function can be modified to transfer the 
PR events via any type of uni-directional communications device. It 
is recommended to create another definition similar to the 
MSC_MSCE_MODE or MSC_FILE_MODE and complement the 
mscgen.c file with these.

• Any place where MSC_FILE_MODE or MSC_MSCE_MODE is 
used should be having a new definition for the new logging mode.

MSC_MAX_VALUE_LEN Maximum length of an en-
coded message value.

MSC_NO_VALUE_LOGGING If defined, no message val-
ues are displayed – this may 
make the ETS more efficient 
and the MSC logs more read-
able when using complex 
messages.

Definitions Explanation
1298 ,um-st1 Telelogic Tau 4.5 User’s Manual July 2003


	33 The TTCN to C Compiler (in Windows)
	Introduction to the TTCN to C Compiler
	Getting Started
	Running the TTCN to C Compiler
	Options
	Encoders/Decoders
	Kernel
	MSC Trace
	Output Directory
	OK

	Running the TTCN to C Compiler from the Command Line
	C Code Generator Parameters
	Generating C Code for Modular Test Suites


	What Is Generated?
	The Code Files
	The Adaptation

	TTCN Test Logs in MSC Format
	MSC Logging Applications
	MSC Logging Modes
	MSC Instances Generated
	Events Logged

	Compiling an ETS with MSC Generation
	MSC Generation Modifications




