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Abstract

DAGitty is a software for drawing and analyzing causal diagrams, also known as directed
acyclic graphs (DAGs). Functions include identification of minimal sufficient adjustment sets
for estimating causal effects, diagnosis of insufficient or invalid adjustment via the identification
of biasing paths, identification of instrumental variables, and derivation of testable implications.

DAGitty is provided in the hope that it is useful for researchers and students in Epidemiology,
Sociology, Psychology, and other empirical disciplines. The software should run in any modern
web browser that supports JavaScript, HTML, and SVG.

This is the user manual for DAGitty version 2.3. The manual is updated with every release
of a new stable version. DAGitty is available at dagitty.net.
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1 Introduction

DAGitty is a web-based software for analyzing causal diagrams. It contains some of the fastest
algorithms available for this purpose.

This manual describes how causal diagrams can be created (Section 3) and manipulated
(Section 4) using DAGitty. In Section 5, DAGitty’s capabilities to analyze causal diagrams are
described. A brief introduction to causal diagrams is given in Section 2.

1.1 Citing DAGitty

Developing and maintaining DAGitty requires a substantial amount of work; thus, if you publish
research results obtained with the help of DAGitty, please consider giving us credit by citing our
work. Depending on the context, you could cite the letter in Epidemiology where DAGitty has first
been announced [16], or the research papers describing the specific algorithms used to identify
biasing paths [18], adjustment sets [20], and instrumental variables [21].

1.2 Running DAGitty online

There are two ways to run DAGitty: either from the internet or from your own computer. To
run DAGitty online, visit the URL dagitty.net. DAGitty should run in every modern browser.
Specifically, I expect it to work well on recent versions of Firefox, Chrome, Opera, and Safari as
well as on Internet Explorer (IE) version 9.0 or later, which all support scalable vector graphics
(SVG). IE versions prior to 9.0 do not support SVG. These should be able to perform all diagnosis
functions but cannot display the graphics as well as modern browsers can1. If you encounter any
problems, please send me an e-mail so I can fix them (my contact information is at the end of
this manual). Keep in mind that DAGitty is often used by hundreds of people per day from all

1While this would be redeemable, I’d much rather invest my time in improving DAGitty for modern browsers than
fixing it for old IE versions. If you absolutely need to run DAGitty on older IEs and encounter severe problems, please
contact me.
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over the world – these people all benefit if the problem you found is fixed so please do consider
investing the time to notify me if you encounter any bugs.

1.3 Installing DAGitty on your own computer

DAGitty can be “installed” on your computer for use without an internet connection. To do
this, download the file dagitty.net/dagitty.zip which is a ZIP archive containing DAGitty’s
source. Unpack this ZIP file anywhere in your file system. To run DAGitty, just open the file
dags.html in the unpacked folder.

Some features of DAGitty will not work in the offline version, because they are actually
implemented on the web server. Currently, these features are:

• Exporting model drawings as PDF, JPEG or PNG files.

• Publishing models on-line.

1.4 Migrating from earlier versions of DAGitty

The following two issues are important for users of older DAGitty versions. New users can skip
this section.

• It is now possible to have more than one exposure and/or outcome variable. This means
that the old model code convention where the variable in the first line is the exposure
and the variable in the second line is the outcome no longer works. Hence, if you open a
model created with an earlier version in DAGitty 2.0, exposure and outcome will appear
like normal variables. To fix this, simply set exposure and outcome again using the “e” and
“o” keys and save the new model code.

• Spaces in variables are now finally reliably supported. The way this works is that any
variable name containing spaces or other special symbols is stored using “URL encoding”
– e.g. “patient sex” will turn into “patient%20sex” (of course DAGitty will do this auto-
matically for you). This may look strange but ensures that DAGitty models can be safely
e-mailed, posted on websites, stored in word documents and so forth without having to
worry about line breaks messing up variable names. If you have an older DAGitty model
containing spaces in variable names, DAGitty 2.0 or higher should open this model correctly
and perform the conversion itself. If it does not, consider sending me your model so I can
investigate.

2 A brief introduction to causal diagrams

In this section, we will briefly review what causal diagrams are and how they can be applied in
empirical sciences. For a more detailed account, we recommend the book Causality by Judea Pearl
[8], or the chapter Causal Diagrams in the Epidemiology textbook of Rothman, Greenland, and
Lash [10]. Also take a look at the web page dagitty.net/learn/, where I am collecting several
tutorials (some of them interactive) on specific DAG-related topics.

In Epidemiology, causal diagrams are also frequently called DAGs.2 In a nutshell, a DAG is
a graphic model that depicts a set of hypotheses about the causal process that generates a set
of variables of interest. An arrow X → Y is drawn if there is a direct causal effect of X on Y.
Intuitively, this means that the natural process determining Y is directly influenced by the status
of X, and that altering X via external intervention would also alter Y. However, an arrow X→ Y
only represents that part of the causal effect which is not mediated by any of the other variables in
the diagram. If one is certain that X does not have a direct causal influence on Y, then the arrow

2The term “DAG” is somewhat confusing to computer scientists and mathematicians, for whom a DAG is simply an
abstract mathematical structure without specific semantics attached to it.
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is omitted. This has two important implications: (1) arrows should follow time order, or else the
diagram contradicts the basic principle that causes must precede their effects; (2) the omission of
an arrow is a stronger claim than the inclusion of an arrow – the presence of an arrow depicts
merely the “causal null hypothesis” that X might have an effect on Y.

Mathematically, the semantics of an arrow X → Y can be defined as follows. Given a DAG
G and a variable Y in G, let X1, . . . ,Xn be all variables in G that have direct arrows Xi → Y (also
called the parents of Y). Then G claims that the causal process determining the value of Y can be
modelled as a mathematical function Y := f (X1, . . . ,Xn, εY), where εY (the “causal residual”) is a
random variable that is jointly independent of all Xi.

For example, the sentence “smoking causes lung cancer” could be translated into the following
simple causal diagram:

smoking

lung cancer

We would interpret this diagram as follows: (1) The variable “smoking” refers to a person’s
smoking habit prior to a later assessment of cancer in that same person; (2) the natural process
by which a person develops cancer might be influenced by the smoking habits of that person; (3)
there exist no other variables that have a direct influence on both smoking habits and cancer. A
slightly more complex version of this diagram might look as follows:

smoking

tar deposit in lungs

lung cancer

This diagram is about a person’s smoking habits at a time t1, the tar deposit in her lungs at a
later time t2, and finally the development of lung cancer at an even later time t3. We claim that (1)
the natural process which determines the amount of tar in the lungs is affected by smoking; (2)
the natural process by which lung cancer develops is affected by the amount of tar in the lung; (3)
the natural process by which lung cancer develops is not affected by the person’s smoking other
than indirectly via the tar deposit; and finally (4) no variables having relevant direct influence on
more than one variable of the diagram were omitted.

In an epidemiological context, we are often interested in the putative effect of a set of variables,
called exposures, on another set of variables called outcomes. A key question in Epidemiology (and
many other empirical sciences) is: how can we infer the causal effect of an exposure on an outcome
of interest from an observational study? Typically, a simple regression will not suffice due to the
presence of confounding factors. If the assumptions encoded in a given the diagram hold, then
we can infer from this diagram sets of variables for which to adjust in an observational study to
minimize such confounding bias. For example, consider the following diagram:

smoking

carry matches cancer?

If we were to perform an association study on the relationship between carrying matches
in one’s pocket and developing lung cancer, we would probably find a correlation between
these two variables. However, as the above diagram indicates, this correlation would not imply
that carrying matches in your pocket causes lung cancer: Smokers are more likely to carry
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matches in their pockets, and also more likely to develop lung cancer. This is an example of a
confounded association between two variables, which is mediated via the biasing path (bold). In
this example, let us assume with a leap of faith that the simplistic diagram above is accurate.
Under this assumption, would we adjust for smoking, e.g. by averaging separate effect estimates
for smokers and non-smokers, we would no longer find a correlation between carrying matches
and lung cancer. In other words, adjustment for smoking would close the biasing path. Adjustment
sets will be explained in more detail in Section 5.5.1.

The purpose of DAGitty is to aid study design through the identification of suitable, small suf-
ficient adjustment sets in complex causal diagrams and, more generally, through the identification
of causal and biasing paths as well as testable implications in a given diagram.

3 Loading, saving and sharing diagrams

This section covers the three basic steps of working with DAGitty: (1) loading a diagram; (2)
manipulating the graphical layout of the diagram; and (3) saving the diagram. First of all,
any causal diagram consists of vertices (variables) and arrows (direct causal effects). You can
either create the diagram directly using DAGitty’s graphical user interface (explained in the next
section), or prepare a textual diagram description in a word processor and then import this
description into DAGitty. In addition, DAGitty contains some pre-defined examples that you can
use to become familiar with the program and with DAGs in general. To do so, just select one of
the pre-defined examples from the “Examples” menu.

3.1 DAGitty’s textual syntax for causal diagrams

DAGitty’s textual syntax for causal diagrams is based on the one used by the DAG program by
Sven Knüppel [6]. A diagram description (model code, somewhat clumsily called model text data in
older DAGitty versions) consists of two parts:

1. A list of the variables in the diagram

2. A list of arrows between the variables

The list of variables consists of one variable per line. After each variable name follows a
character that indicates the status of the variable, which can be one of “1” (normal variable), “A”
(adjusted for), “U” (latent/unobserved), “E” (exposure), or “O” (outcome). If you prepare your
diagram description in a word processor rather than constructing the diagram in DAGitty itself,
you may encounter problems when you use spaces or other special symbols in variable names
(e.g. instead of “patient sex” you should write “patient sex”). This restriction does not apply
when you construct the diagram using DAGitty’s graphical user interface.

The list of arrows consists of several lines each starting with a start variable name, followed
by one or more other target variables that the start variable is connected to. Figure 1 contains a
worked example of a textual model description. When you modify a diagram within DAGitty,
the vertex labels will be augmented by additional information to help DAGitty remember the
layout of the vertices and for other purposes (see rightmost column in Figure 1).

3.2 Loading a textually defined diagram into DAGitty

To load a textually defined diagram into DAGitty, simply copy&paste the variable list, followed
by a blank line, followed by the list of arrows into the “Model code” text box. Then click on “Update
DAG”. DAGitty will now generate a preliminary graphical layout for your diagram on the canvas,
which may not yet look the way you intended, but can be freely modified.
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(a) vertex labels
E E
D O
A 1
B 1
Z 1

(b) adjacency list
E D
A E Z
B D Z
Z E D

(c) resulting graph

E D

Z

A B
(d) augmented vertex labels
E E @-2.2,1.6
D O @1.4,1.6
A 1 @-2.2,-1.5
B 1 @1.4,-1.5
Z 1 @-0.3,-0.1

Figure 1: Example for a textual model definition with DAGitty (a,b: model code; c: resulting
diagram). When the diagram is edited within DAGitty, the vertex labels and adjustment status
are augmented with additional information that DAGitty uses to layout the vertices on the canvas
(d): the layout coordinates of each variable are indicated behind the @ sign.

3.3 Modifying the graphical layout of a diagram

To layout the vertices and arrows of your diagram more clearly than DAGitty did, simply drag the
vertices with your mouse on the canvas. You may notice that DAGitty modifies the information
in the “Model code” field on the fly, and augments it with additional position information for
each vertex. In general, all changes you make to your diagram within DAGitty are immediately
reflected in the model code.

3.4 Saving the diagram

To save your diagram locally, just copy&paste the contents of the “Model code” field to a text file,
and save that file locally to your computer3. When you wish to continue working on the diagram,
copy the model code back into DAGitty as explained above.

3.5 Exporting the diagram

DAGitty can export the diagram as a PDF or SVG vector graphic (publication quality) or a JPEG
or PNG bitmap graphic (e.g. for inclusion in Powerpoint). Select the corresponding function
from the “Model” menu. If you want to edit the graphical layout of the diagram or annotate it, it
is recommended to export the diagram as an SVG file and open that in a vector graphics program
such as Inkscape.

3.6 Publishing diagrams online

Part of the appeal of using DAGs is that the assumptions underlying one’s research are made
explicit, and the conclusions drawn from the data can be later re-checked if some of the assump-
tions are found to not hold. Of course, this requires to make the DAG available together with
the data and interpretation. I have however seen many articles where people report having used
DAGs but do not actually show them. If researchers, reviewers or editors deem it inappropriate
to include the DAG (or its model code) in the manuscript itself, here’s another option: Store the
DAG on the DAGitty website and get a short URL under which this DAG will be accessible.
Then include this URL in the manuscript, or its supporting information. For example, one of the
DAGitty examples is stored at the URL dagitty.net/mvcFQ.

Here’s how it works: Draw your DAG to full satisfaction, then choose “Publish on dagitty.net”
from the “Model” menu. You have two options how to publish your DAG: anonymously, or
linking it to an e-mail address. If you store the DAG anonymously, you will later on not be able
to edit it or delete it from the server.

After choosing “Publish on dagitty.net” from the “Model” menu, a small form will appear where
you can enter some metadata on the DAG, and provide your e-mail address if you so wish. Upon

3This is most easily done by clicking in the text field, pressing “CTRL + A” to select the entire content of the text field,
then pressing “CTRL + C” to copy the content. You can then paste the content in another program using “CTRL + V”.
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clicking “Publish”, the DAG will be sent to the dagitty.net server, and you will receive a URL under
which the DAG is now available. If you provided your e-mail address, you will also receive a
message requesting you to confirm your ownership of the DAG. This is simply done by clicking
on a confirmation link. Only then will the DAG be linked to your e-mail address, and you will
receive a password to use when deleting or modifying the published DAG.

If you did link your DAG to your e-mail address, you can delete it by choosing “Delete on
dagitty.net” from the “Model” menu, which will prompt you to enter the DAG’s URL and the
password. If the URL and password match, the DAG will be deleted. Similarly, you can update a
stored DAG using the “Load from dagitty.net” function from the “Model” menu, modifying it, and
saving it again. You can view published DAGs (if you know their URL) by just putting the URL
into your address bar of course, but you can also do so using the “Load from dagitty.net” function.

Please note that all DAGs stored on dagitty.net are meant to be public information. Do not
store any data that you consider private or in any way secret. Once stored on dagitty.net, every
person in the world who knows your DAG’s URL can view it (but not your e-mail address if you
provided one). Also note that there is no guarantee that dagitty.net will keep running forever.
Storing your DAGs is done at your own risk. Still, you may find this feature useful, for instance to
e-mail your DAGs to colleagues or to include links to DAGs in papers under review. For archival
purposes, it may be more appropriate to include the DAG or the model code in the paper itself
or its supporting information.

4 Editing diagrams using the graphical user interface

You are free to make changes directly to the textual description of your diagram, which will
be reflected on the canvas next time you click on “Update DAG”. However, you can also create,
modify, and delete vertices and arrows graphically using the mouse.

4.1 Creating a new diagram

To create a new diagram, select “New Model” from the “Model” menu. You will be asked for
the names of the exposure and the outcome variable, and an initial model containing just those
variables and an arrow between them will be drawn. Then you can add variables and arrows to
the model as explained below.

4.2 Adding new variables

To add a new variable to the model, double-click on a free space in the canvas (i.e., not on an
existing variable) or press the “n” key. A dialog will pop up asking you for the name of the
new variable. Enter the name into the dialog and press the enter key or click “OK”. If you click
“Cancel”, no new variable will be created.

4.3 Renaming variables

To rename an existing variable, move the mouse pointer over that variable and hit the “r” key. A
dialog will pop up allowing you to change the variable name.

4.4 Setting the status of a variable

Variables can have one of the following statuses:

• Exposure

• Outcome

• Unobserved (latent)
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• Adjusted

• Other

To turn a variable into an exposure, move the mouse pointer over that variable and hit the
“e” key; for an outcome, hit the “o” key instead. To toggle whether a variable is observed or
unobserved, hit the “u” key; to toggle whether it is adjusted, hit the “a” key. Changing the
status of variables may change the colors of the diagram vertices to reflect the new structure and
information flow in the diagram (see below).

At present, these statuses are mutually exclusive – e.g., a variable cannot be both unobserved
and adjusted or both exposure and unobserved. This could change in future versions of DAGitty.

4.5 Adding new arrows

To add a new arrow, double-click first on the source vertex (which will become highlighted) and
then on the target vertex. The arrow will be inserted. If an arrow existed before in the opposite
direction, that arrow will be deleted, because otherwise there would now be a cycle in the model.

Instead of double-clicking on a vertex, you can also move the mouse pointer over the vertex
and press the key “c”. Arrows are by default drawn using a straight line, but you can change
that moving the mouse pointer to the line, pressing and holding down the left mouse button, and
“bending” the line by dragging as appropriate.

4.6 Deleting variables

To delete a variable, move the mouse pointer over that variable and hit the “del” key on your
keyboard, or alternatively the “d” key (the latter comes in handy if you’re on a Mac, which has no
real delete key). All arrows to that variable will be deleted along with the variable. In contrast to
DAGitty versions prior to 2.0, all variables can now be deleted including exposure and outcome.

4.7 Deleting arrows

An arrow is deleted just like it has been inserted, i.e., by double-clicking first on the start variable
and then on the target variable. An arrow is also deleted automatically if a new one is inserted in
the opposite direction (see above).

4.8 Choosing the style of display

At present, you can choose between two DAG diagram styles: “classic”, where nodes and their
labels are separate from each other, and SEM-like, where labels are inside nodes. Both have their
advantages and disadvantages. By the way, “SEM” refers to structural equation modeling.

5 Analyzing diagrams

5.1 Paths

Causal diagrams contain two different kinds of paths between exposure and outcome variables.

• Causal paths start at the exposure, contain only arrows pointing away from the exposure,
and end at the outcome. That is, they have the form e→ x1 → . . .→ xk → o.

• Biasing paths are all other paths from exposure to outcome. For example, such paths can
have the form e← x1 → . . .→ xk → o.
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With respect to a set Z of conditioning variables (that can also be empty if we are not condi-
tioning on anything), paths can be either open or closed (also called d-separated [8]). A path is
closed by Z if one or both of the following holds:

• The path p contains a chain x→ m→ y or a fork x← m→ y such that m is in Z.

• The path p contains a collider x→ c← y such that c is not in Z and furthermore, Z does not
contain any successor of c in the graph.

Otherwise, the path is open. The above criteria imply that paths consisting of only one arrow
are always open, no matter the content of Z. Also it is possible that a path is closed with respect
to the empty set Z = {}.

5.2 Coloring

It is not easy to verify by hand which paths are open and which paths are closed, especially
in larger diagrams. DAGitty highlights all arrows lying on open biasing paths in red and all
arrows lying on open causal paths in green. This highlighting is optional and is controlled via
the “highlight causal paths” and “highlight biasing paths” checkboxes.

5.3 Effect analysis

As mentioned above, arrows in DAGs represent direct effects. That is, in a DAG with three
variables X, M, and Y, an arrow X → Y means that there is a causal effect of X on Y that is not
mediated through the variable M. Often when building DAGs, people tend to forget this aspect
and think only about whether any kind of causal effect exists, without paying attention to how it
is mediated. This may result in DAGs with too many arrows.

To aid users with this, George Ellison (Leeds University) suggested to implement a function
that identifies arrows for which also a corresponding indirect pathway exists. After drawing an
initial DAG, one might reconsider these arrows and judge whether they are really necessary given
the indirect pathways already present in the diagram.

For example, suppose after thinking about the pairwise causal relationships between our
variables X, M, Y we came up with this DAG:

X M Y
For the arrows drawn in bold, there is no corresponding indirect path – removing one of

these arrows from the diagram means that there will no longer be any causal effect between the
corresponding variables. These arrows are called atomic direct effects in DAGitty, and they can be
highlighted – like in the above DAG – by ticking the checkbox with that name. On the other hand,
for the thin arrow X → Y, there is also the indirect pathway X → M → Y. One may therefore
reconsider whether the arrow X→ Y is truly necessary – perhaps the causal effect from X to Y is
entirely mediated through M.

5.4 View mode

There are several ways to transform a given DAG such that it becomes better suited for a particular
purpose. We call such a transformed DAG a derived graph. Currently DAGitty can display two
kinds of derived graphs: correlation graphs, and moral graphs. These derived graphs can be
shown by clicking on the respective radio button in the “View mode” field on the left-hand side of
the screen.
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5.4.1 The correlation graph

The correlation graph is not a DAG, but a simple graph with lines instead of arrows. It connects
each pair of variables that, according to the diagram, could be statistically dependent. In other
words, variables not connected by a line in the correlation graph must be statistically independent.
These pairwise independencies are also listed in the “Testable implications” field on the right-hand
side of the screen, and so the correlation graph could be seen as encoding a subset of those
implications.

Although this is not implemented in DAGitty yet, it is also possible to take a given correlation
graph (which can be obtained e.g. by thresholding a covariance matrix) and list all the DAGs that
are “compatible” with it in the sense that they entail exactly the given correlation graph [17].

5.4.2 The moral graph

To identify minimal sufficient adjustment sets, DAGitty uses the so-called “moral graph”, which
results from a transformation of the model to an undirected graph. This procedure is also highly
recommended if you wish to verify the calculation by hand. See the nice explanation by Shrier
and Platt [13] for details on this procedure.

In DAGitty, you can switch between display of the model and its moral graph choosing “moral
graph” in the“view mode” section on the left-hand side of the page.

5.5 Causal effect identification

Some of the most important features of DAGitty are concerned with the question: how can causal
effects be estimated from observational data? Currently, two types of causal effect identification
are supported: adjustment sets, and instrumental variables.

5.5.1 Adjustment sets

Finding sufficient adjustment sets is one main purpose of DAGitty. In a nutshell, a sufficient
adjustment set Z is a set of covariates such that adjustment, stratification, or selection (e.g. by
restriction or matching) will minimize bias when estimating the causal effect of the exposure on
the outcome (assuming that the causal assumptions encoded in the diagram hold). You can read
more about controlling bias and confounding in Pearl’s textbook, chapter 3.3 and epilogue [8].
Moreover, Shrier and Platt [13] give a nice step-by-step tutorial on how to test if a set of covariates
is a sufficient adjustment set.

To identify adjustment sets, the diagram must contain at least one exposure and at least one
outcome.

Total and direct effects. One can understand adjustment sets graphically by viewing an adjust-
ment set as a set Z that closes all all biasing paths while keeping desired causal paths open (see
previous section). DAGitty considers two kinds of adjustment sets:

• Adjustment sets for the total effect are sets that close all biasing paths and leave all causal
paths open. In the literature, if the effect is not mentioned (e.g. [13, 6]), then usually this
kind of adjustment set is meant.

• Adjustment sets for the direct effect are sets that close all biasing paths and all causal paths,
and leave only the direct arrow from exposure X to outcome Y (i.e., the path X → Y, if it
exists) open.

In a diagram where the only causal path between exposure and outcome is the path X → Y,
the total effect and the direct effect are equal. This is true e.g. for the diagram in Figure 1. An
example diagram where the direct and total effects are not equal is shown in Figure 2.
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Figure 2: A causal diagram where the total and direct effects of exposure X on outcome Y are not
equal. The total effect is the effect mediated only via the thick (both dashed and solid) arrows,
while the direct effect is the effect mediated only via the thick arrow.

As proved by Lauritzen et al. [7] (see also Tian et al. [19]), it suffices to restrict our attention
to the part of the model that consists of exposure, outcome, and their ancestors for identifying
sufficient adjustment sets. This is indicated by DAGitty by coloring irrelevant nodes in gray. The
relevant variables are colored according to which node they are ancestors of (exposure, outcome,
or both) – see the legend on the left-hand side of the screen. The highlighting may be turned on
and off by toggling the “highlight ancestors” checkbox.

Minimal sufficient adjustment sets. A minimal sufficient adjustment set is a sufficient adjust-
ment set of which no proper subset is itself sufficient. For example, consider again the causal
diagram in Figure 1. The following three sets are sufficient adjustment sets for the total and direct
effects, which are equal in this case:

{A,B,Z}

{A,Z}

{B,Z}

Each of these sets is sufficient because it closes all biasing paths and leaves the causal path
open. The sets {A,Z} and {B,Z} are minimal sufficient adjustment sets while the set {A,B,Z} is
sufficient, but not minimal. In contrast, the set {Z} is not sufficient, since this would open the path
E← A→ Z← B← D: Because both E and D depend on Z, adjusting for Z will induce additional
correlation between E and D.

Finding minimal sufficient adjustment sets. To find minimal sufficient adjustment sets, select
the option “Adjustment (total effect)” or “Adjustment (direct effect)” in the “Causal effect identification”
field. DAGitty will then calculate all minimal sufficient adjustment sets and display them in that
field. Any changes made to the diagram will be instantly reflected in the list of adjustment sets.

Forcing adjustment for specific covariates. You can also tell DAGitty that you wish a specific
covariate to be included into every adjustment set. To do this, move the mouse over the vertex
of that covariate and press the a key. DAGitty will then update the list of minimal sufficient
adjustment sets accordingly – every set displayed is now minimal in the sense that removing any
variable except those you specified will render that set insufficient. However, when you adjust for
an intermediate or another descendant of the exposure, DAGitty will tell you that it is no longer
possible to find a valid adjustment set.
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Avoiding adjustment for unobserved covariates. You can tell DAGitty that a certain variable
is unobserved (e.g. not measured at present, or not measurable because it is a latent variable) by
moving the mouse over that covariate and pressing the u key. DAGitty will only calculate ad-
justment sets that do not contain unobserved variables. However, if too many or some important
variables are unobserved, then it may be impossible to close all biasing paths.

5.5.2 Instrumental variables

Sometimes it is not possible to estimate a causal effect by simple covariate adjustment. For
example, this is the case whenever there is an unobserved confounder that directly effects the
exposure and outcome variables. However, this does not necessarily mean that it is impossible
to estimate the causal effect at all. Instrumental variable regression is a technique that is often
used in situations with unobserved confounders. Note that this technique depends on linearity
assumptions. For further information on instrumental variables, please refer to the literature
[2, 5]. DAGitty can find instrumental variables in DAGs, as explained below.

The validity of an instrumental variable I depends on two causal conditions – exogeneity and
exclusion restriction. These two conditions can be expressed in the language of DAGs and paths
as follows: (1) there must be an open path between I and the exposure X; and (2) all paths between
I and the outcome Y must be closed in a modified graph where all edges out of X are removed. A
variable that fulfills these two conditions is called an instrumental variable or simply an instrument.

Instrumental variables can also be generalized such that the two conditions are required to
hold conditional on a set of covariates Z [4]. The two conditions then read as follows: (1) there must
be a path between I and X that is opened by Z; and (2) all paths between I and Y must be closed
by Z in a modified graph where all edges out of X are removed. A variable that fulfills these two
conditions is called a conditional instrument.

DAGitty will find both “classic” and conditional instruments when the option “Instrumental
Variable” is selected under the “Causal effect identification” field. Note that DAGitty will not always
list all possible instruments; instead, it will restrict itself to a certain well-defined subset that
we call “ancestral instruments”. However, whenever any instrument or conditional instrument
exists at all, then DAGitty is guaranteed to find one. Note also that if there are several instruments
available, then it is best to choose the one that is most strongly correlated with X (conditional on
Z in the case of a conditional instrument).

For details regarding ancestral instruments and how DAGitty computes them, please refer to
the research paper where we describe these methods [21].

5.6 Testable implications

Any implications that are obtained from a causal diagram, such as possible adjustment sets or
instrumental variables, are of course dependent on the assumptions encoded in the diagram. To
some extent, these assumptions can be tested via the (conditional) independences implied by the
diagram: If two variables X and Y are d-separated by a set Z, then X and Y should be conditionally
independent given Z. The converse is not true: Two variables X and Y can be independent given
a set Z even though they are not d-separated in the diagram. Furthermore, two variables can
also be d-separated by the empty set Z = ∅. In that case, the diagram implies that X and Y are
unconditionally independent.

DAGitty displays all minimal testable implications in the “Testable implications” text field.
Only such implications will be displayed that are in fact testable, i.e., that do not involve any
unobserved variables. Note that the set of testable implications displayed by DAGitty does not
constitute a “basis set” [8]. Future versions will allow choosing between different basis sets.

In general, the less arrows a diagram contains, the more testable predictions it implies. For
this reason, “simpler” models with fewer arrows are in general easier to falsify (Occam’s razor).
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Institute for Theoretical Computer Science, University of Lübeck, Germany) for our collaborations
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7 Legal notice

Use of DAGitty is (and will always be) freely permitted and free of charge. You may download a
copy of DAGitty’s source code from its website at www.dagitty.net. The source code is available
under the GNU General Public License (GPL), either version 2.0, or any later version, at the
licensee’s choice; see the file LICENSE.txt in the download archive for details. In particular, the
GPL permits you to modify and redistribute the source as you please as long as the result remains
itself under the GPL.

8 Bundled libraries

DAGitty ships along with the following JavaScript libraries:

• Prototype.js, a framework that makes life with JavaScript much easier. Only some parts of
Prototype (mainly those focusing on data structures) are included to keep the code small.
Developed by the Prototype Core Team and licensed under the MIT license [15].

Furthermore, DAGitty uses some modified code from the Dracula Graph Library by Philipp
Strathausen, which is also licensed under the MIT license [14].

Versions of DAGitty prior to 2.0 used the Raphaël library for smooth cross-browser vector
graphics in SVG and VML, developed by Dmitry Baranovskiy [3]. However, the dependency on
Raphaël was removed starting from version 2.0, and only SVG-capable browsers will be supported
in the future.

I am grateful to the authors of these libraries for their valuable work.

9 Bundled examples

DAGitty contains some builtin examples for didactic and illustrative purposes. Some of these
examples are taken from published papers or talks given at scientific meetings. These are, in
inverse chronological order:

• van Kampen 2014 [22]

• Polzer et al., 2012 [9]

• Schipf et al., 2010 [11]
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• Shrier & Pratt, 2008 [13]

• Sebastiani et al.4, 2005 [12]

• Acid & de Campos, 1996 [1]

Another example was provided by Felix Thoemmes via personal communication (2013).

10 Author contact

I would be glad to receive feedback from those who use DAGitty for research or educational
purposes. Also, you are welcome to send me your suggestions or requests for features that you
miss in DAGitty.

Johannes Textor
Theoretical Biology & Bioinformatics
Universiteit Utrecht, The Netherlands

johannes.textor@gmx.de

theory.bio.uu.nl/textor/

Twitter: #dagitty
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