
COSI-NoC User Manual

(Version 1.2)

Alessandro Pinto
University of California at Berkeley,
545P Cory Hall, Berkeley, CA 94720

apinto@eecs.berkeley.edu

September 23, 2007



Copyright (c) 2007 The Regents of the University of California.
All rights reserved.

Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its documentation for any purpose, provided that the
above copyright notice and the following two paragraphs appear in all
copies of this software and that appropriate acknowledgments are made
to the research of the COSI group.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

1



Contents

1 Introduction 3
1.1 Content of the (v1.2) Distribution . . . . . . . . . . . . . . . . . 4
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Input Format 18
2.1 Configuration of COSI-NoC . . . . . . . . . . . . . . . . . . . . 18
2.2 Description of a COSI-NoC Project . . . . . . . . . . . . . . . . 19
2.3 Specification of the Communication Constraints . . . . . . . . . . 20
2.4 Specification of the Library Components . . . . . . . . . . . . . . 25
2.5 Specification of the Synthesis Parameters . . . . . . . . . . . . . 28
2.6 Specification of the Required Output . . . . . . . . . . . . . . . . 29

3 The Output Format 31
3.1 The Svg Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Dot Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 The SystemC Output . . . . . . . . . . . . . . . . . . . . . . . . 32

2



Chapter 1

Introduction

COSI-NoC is an open source software for the automatic synthesis of networks-
on-chip (NoC). COSI-NoC is part of the Communication Synthesis Infrastruc-
ture (COSI) under development at the University of California at Berkeley. The
goal of the COSI project is to develop a formal framework, and a methodology,
to address the problem of synthesizing embedded networks. A Network-on-Chip
(NoC) is an embedded network that provides the communication service to a
heterogeneous or homogeneous Multi-Processor System on Chip (MPSoC)..

The user of COSI-NoC specifies the communication synthesis problem by
providing a description of: (1) the end-to-end communication requirements and
(2) the performance/cost trade-off of routers and links.

An end-to-end communication requirement (also called point-to-point com-
munication constraint) defines the minimum required bandwidth and the max-
imum allowed latency between a source IP core and a destination IP core.

The performance and cost of a point-to-point link are computed analytically.
The user can specify the parameters of the model that include the physical
characteristics of the silicon technology. For routers, we use Orion to estimate
the power consumption and the area occupation.

To synthesize an optimal network, COSI-NoC 1.2 uses an algorithm based
on an iterative application of a modified version of Dijkstra shortest path al-
gorithm [Alg00]. The adoption of the simple shortest path algorithm has been
advocated by many researchers in this field like in [MMA+06, HGR05]. The
main difference with other approaches is the definition of a graph from which
the shortest path is drawn. In particular, such graph, called the NoC platform,
captures the set of all possible NOC implementations that satisfy the design
specification constraints.

COSI-NoC takes into account the chip floor-plan, the limited area available
for the communication infrastructure, the maximum distance that wires can
span on a chip, the constraints on the input and output degree for routers and
network interfaces, the constraints imposed by the flow control algorithm like
deadlock avoidance, and the maximum throughput of wires and routers.

3



1.1 Content of the COSI-NoC (v1.2) Distribu-
tion

This distribution of COSI-NoC contains the following directory:

• bin contains the main executable called CosiNoc.x.

• doc contains this document.

• systemc contains a library of SystemC components to simulate a Network-
on-Chip. The components provided with this library are: a model for
sources and destinations, a model for routers, a model for point-to-point
links implemented as bundle of wires, a simulation monitor.

• techlib contains performance and cost parameters of the on-chip com-
munication components at 100,70 and 50 nm.

• tests contains three examples: cmp2x2placed used as a reference example
in this manual, an advanced set-top-box (ADSTB), and a tVOPD example.

1.2 Installation

The installation of COSI-NoC is a straightforward process. We denote the
current directory (where the COSI-NoC .tgz tar-ball resides) with current.
Expand the tar-ball using the command:

current > tar -zxvf COSI-NoC.tgz

Directory current now contains a new directory COSI-NoC that contains the
source code of the distribution. Change directory to current/COSI-NoC .

Before compiling COSI-NoC, you must define the environment variable
COSIROOT to point to current/COSI-NoC. If you are using the bash shell, you
can use the following command to set up the environment variable:

export COSIROOT=current/COSI-NoC

In order to compile the static libraries that are used by COSI-NoC and the
executable file CosiNoc.x, simply execute the following command:

current/COSI-NoC> make

Two libraries are generated: libcosi.a that contains the objects files of COSI-
NoC, and libtinyxml.a that contains the objects files of the XML parser that
we use (TinyXML) [tin]. One executable is generated:

current/COSI-NoC/bin/CosiNoc.x

4



that is the main executable file.
This release contains already a compiled version of PARQUET [AM03].

We are not allowed to distribute the source code. This executable has been
compiled under Fedora 6, with g++ 4.1.1. If you want to run COSI-NoC on a
different platform you can obtain the source code of PARQUET from

http://vlsicad.eecs.umich.edu/BK/parquet/

Remark 1.2.1 (On floor-planning) If the placement of each IP core is known,
the user can pass this information directly to COSI-NoC. Section 2.2 explains
how to provide a placement of the IP cores as an additional input to the synthesis
problem. Section 2.3 explains how to include the placement information in the
specification of the communication constraints.

In these two cases, there is no need to floor-plan the chip before synthesizing
the NoC. COSI-NoC needs PARQUET only if the chip floor-plan is not known
or only partially known.

It is convenient to add the path where the COSI-NoC executable is to
your PATH environment variable. If you use the bash shell, run the following
command to add the path:

export PATH=$PATH:current/COSI-NoC/bin

Before running COSI-NoC, there is one more configuration step to com-
plete. The file cosiconfig.xml that is in current/COSI-NoC is a configuration
file that is read by COSI-NoC every time at the beginning of its execution.
The configuration file has the following structure:

<?xml version="1.0" ?>
<Configuration>
<COSI version="NOC 1.2"/>
<TMP root="/tmp" />
<SYSTEMC root="/usr/share/systemc-2.1.v1"/>
<PARQUET root="/home/apinto/Projects/cosi/tools/PARQUET_050330"

exec="Parquet" />
</Configuration>

The COSI element defines the version of COSI-NoC that you are using (and
you should not change it unless you make modifications to the infrastructure
and you want to distinguish you release from the original one).

The root attribute of the TMP element defines the directory that shall be
used for temporary files. Some independent modules of the COSI-NoC soft-
ware release exchange information through temporary files. For instance, the
communication constraints are parsed by the input module that writes the files
needed by the PARQUET floor-planner in the temporary directory. The floor-
plan module runs PARQUET that writes the chip placement file in the tem-
porary directory. The placement parser module reads the placement from the
temporary directory and initializes a data structure with the position of each
IP core.

5



Core P0 Core P1

Core P2 Core P3

P0

P2

P1

P3

B = 192 Gbps

T = 10 Cycles

25 mm2

(0, 0)

(10, 10)

Figure 1.1: Example of a Chip-Multi-Processor (CMP) composed of four pro-
cessors.

The root attribute of the SYSTEMC element defines the installation direc-
tory of the SystemC library. This information is used by the SystemC code
generator of COSI-NoC that writes also a Makefile to compile an executable
simulation of the synthesized NoC.

The root and exec attributes of the PARQUET element define the installation
directory of the PARQUET floor-planner and the executable file to run, re-
spectively. When PARQUET is compiled as a set of dynamically linked library
plus an executable file, the directory defined by the root attribute is also used
to set the LD LIBRARY PATH environment variable before runningPARQUET.

1.3 Getting Started

In this section we explain how to use COSI-NoC to synthesize an NoC and
analyze the synthesis result.

We use a very simple example of a 2 × 2 Chip Multi-Processor (CMP). We
start from the specification of the communication constraints of our chip as
shown in Figure 1.1 (all the necessary files for this example can be found in the
directory COSIROOT/tests/cmp2x2placed).

We assume that all the cores are already placed on the chip so that even if you
don’t have PARQUET installed you can still follow this example. Each core is
5×5 mm2 and needs to communicate with all the other cores with an aggregate
bandwidth equal to 192 Gbps. First, decide the path of two directories: the input
directory that contains the specification of the communication constraints and
the library of communication components and the output directory where the
synthesis results will be saved. For instance, let these two directories be denoted
by /home/myname/project and /home/myname/project/results. The project
file (that we show in a moment), will be saved in /home/myname/project (this

6



is also the directory structure used for all the tests accompanying this release).
Create a project file called project.xml. The content of a project file is divided
in sections: the definition of properties related to the project, the definition of
the constraints, the definition of the synthesis parameters and the definition of
the type of results that you need. An XML project file starts as follows:

<?xml version="1.0" ?>
<Project

name="cmp2x2"
input="."
output="./results" >

<!-- Other things to be added later -->

</Project>

The Project element defines a project called cmp2x2. The input and output
attributes define the directories where the input files and output files are saved,
respectively.

The communication constraints and the library of communication compo-
nents are going to be described in two separate files. The name of such files are
defined by two elements in the project file:

<?xml version="1.0" ?>
<Project

name="cmp2x2"
input="."
output="./results" >

<Constraints file="constraints.xml" />

<Library
name="Mylib"
file="mylib.xml" />

<!-- Other things to be added later -->

</Project>

COSI-NoC parses the communication constraints from
/home/myname/project/constraints.xml
and the description of the library components from
/home/myname/project/mylib.xml.
The constraint file contains the specification of all the cores and all the end-to-
end communication requirements among the cores. Create the file
/home/myname/project/constraints.xml
and start with the following elements:

7



<?xml version="1.0" ?>
<Constraints>
<Core

name="P0" type="Placed"
xbl="0" ybl="0"
xtr="5000" ytr="5000"

/>
<Core

name="P1" type="Placed"
xbl="5000" ybl="0"
xtr="10000" ytr="5000"

/>
<Core

name="P2" type="Placed"
xbl="0" ybl="5000"
xtr="5000" ytr="10000"

/>
<Core

name="P3" type="Placed"
xbl="5000" ybl="5000"
xtr="10000" ytr="10000"

/>

<!-- PtP constraints to be added here -->

</Constraints>

We have just defined the IP cores. Each core has a name and a type. In this
case all the cores are already placed on the chip and they are characterized by
the bottom left and top right corner coordinates in µm units.

Communication constraints are included as follows:

<?xml version="1.0" ?>
<Constraints>
<Core

name="P0" type="Placed"
xbl="0" ybl="0"
xtr="5000" ytr="5000"

/>
<Core

name="P1" type="Placed"
xbl="5000" ybl="0"
xtr="10000" ytr="5000"

/>
<Core

name="P2" type="Placed"
xbl="0" ybl="5000"

8



xtr="5000" ytr="10000"
/>
<Core

name="P3" type="Placed"
xbl="5000" ybl="5000"
xtr="10000" ytr="10000"

/>

<Constraint name="P0P1"
source="P0" dest="P1" bw="192000000000" T="10" />

<Constraint name="P0P2"
source="P0" dest="P2" bw="192000000000" T="10" />

<Constraint name="P0P3"
source="P0" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P2"
source="P1" dest="P2" bw="192000000000" T="10" />

<Constraint name="P1P3"
source="P1" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P0"
source="P1" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P3"
source="P2" dest="P3" bw="192000000000" T="10" />

<Constraint name="P2P0"
source="P2" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P1"
source="P2" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P0"
source="P3" dest="P0" bw="192000000000" T="10" />

<Constraint name="P3P1"
source="P3" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P2"
source="P3" dest="P2" bw="192000000000" T="10" />

<!-- Mutual exclusions to be added here -->

</Constraints>

Each constraint is identified by a name, a source core, a destination core, a min-
imum bandwidth and a maximum latency requirements. The last (optional)
set of elements are mutual exclusions among constraints. We know that each
processor can only send packets to one other processor at the time. This implies
that, for instance, constraints P0P1 and P0P2 are mutually exclusive (see Sec-
tion 2.3 for an explanation of the meaning of mutual exclusions). The complete
set of constraints is defined by the following xml file:

<?xml version="1.0" ?>
<Constraints>

9



<Core
name="P0" type="Placed"
xbl="0" ybl="0"
xtr="5000" ytr="5000"

/>
<Core

name="P1" type="Placed"
xbl="5000" ybl="0"
xtr="10000" ytr="5000"

/>
<Core

name="P2" type="Placed"
xbl="0" ybl="5000"
xtr="5000" ytr="10000"

/>
<Core

name="P3" type="Placed"
xbl="5000" ybl="5000"
xtr="10000" ytr="10000"

/>

<Constraint name="P0P1"
source="P0" dest="P1" bw="192000000000" T="10" />

<Constraint name="P0P2"
source="P0" dest="P2" bw="192000000000" T="10" />

<Constraint name="P0P3"
source="P0" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P2"
source="P1" dest="P2" bw="192000000000" T="10" />

<Constraint name="P1P3"
source="P1" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P0"
source="P1" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P3"
source="P2" dest="P3" bw="192000000000" T="10" />

<Constraint name="P2P0"
source="P2" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P1"
source="P2" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P0"
source="P3" dest="P0" bw="192000000000" T="10" />

<Constraint name="P3P1"
source="P3" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P2"
source="P3" dest="P2" bw="192000000000" T="10" />

10



<Exclusion set="P0P1 P0P2 P0P3"/>
<Exclusion set="P1P2 P1P3 P1P0"/>
<Exclusion set="P2P3 P2P0 P2P1"/>
<Exclusion set="P3P0 P3P1 P3P2"/>

</Constraints>

The library of communication components, that include wires and routers,
are all defined in the library file. The library file contains three kinds of in-
formation: the parameters of the silicon technology, the characterization of the
copper wires and the characterization of the on-chip routers as a function of the
number of inputs and outputs.

<?xml version="1.0" ?>
<Library name="Mylib">

<Technology fclk="1.6e9" vdd="1.2" wmin="200e-9"
ioff="0.15" isc="65e-6"
r0="10.0e3" cp="2.5e-15"
c0="1.5e-15"
nlayers="7" />

<!-- Wires and Routers to be added here -->

</Library>

Each library is identified by a unique name. The first element that we have
defined specifies many parameters of the silicon technology. The details about
these parameters can be found in Section 2.4. The parameters here refer to a
100 nm technology.

The other elements that can be added to the library specification are the
wires and the routers. For instance, we add the characterization of a global wire
(Metal 6):

<?xml version="1.0" ?>
<Library name="Mylib">

<Technology fclk="1.6e9" vdd="1.2" wmin="200e-9"
ioff="0.15" isc="65e-6"
r0="10.0e3" cp="2.5e-15"
c0="1.5e-15"
nlayers="7" />

<Wire
type="copper" layer="6"
r="103.9e3" c="154.0e-12" pitch="460e-9" />

11



<!-- Routers to be added here -->

</Library>

For each wire, three attributes must be specified: the resistance and capacitance
per unit length and the wire pitch that is used to compute the area occupied
by a point-to-point link. The last component to characterize is the on-chip
router. While the model that we use for wires is an analytical model, routers
are characterized by tables that give the energy-per-flit and area of a router
depending on the number of input and output ports.

<?xml version="1.0" ?>
<Library name="Mylib">

<Technology fclk="1.6e9" vdd="1.2" wmin="200e-9"
ioff="0.15" isc="65e-6"
r0="10.0e3" cp="2.5e-15"
c0="1.5e-15"
nlayers="7" />

<Wire
type="copper" layer="6"
r="103.9e3" c="154.0e-12" pitch="460e-9" />

<Router maxin="3" maxout="3" maxbw="1.6e9"

energy ="1.8e-11 1.2e-12 2e-11 2e-12 2.3e-11 2.7e-12
3.3e-11 2e-12 4.7e-11 3.3e-12 5.2e-11 4.5e-12
4.7e-11 3e-12 6.4e-11 4.6e-12 8.7e-11 6.2e-12"

area= "7168 25600 34816
32768 51200 69632
49152 76800 104448"

/>
</Library>

The values are approximations of the real numbers that we previously derived
using Orion [Wan02]. The energy consumption are expressed in Joule consid-
ering a switching factor equal to one. The area is expressed in µ2. Entry (i, j)
of these matrices characterize a router with i inputs and j outputs.

Remark 1.3.1 (On network interfaces.) In this example we are assuming
that network interfaces have the same cost of the routers. We are aware of the
fact that interfaces might have a different cost and we will add more accurate
interface models in future releases.

Before running the synthesis we need to complete the project description by
adding input parameters/constraints and specifying the desired outputs.

12



<?xml version="1.0" ?>
<Project

name="cmp2x2"
input="."
output="./results" >

<Constraints
file="constraints.xml" />

<Library
name="Mylib"
file="mylib.xml" />

<Parameters
switchingfactor="0.5"
maxindegree="3"
maxoutdegree="3"
allowptp="0"
density="50"
powervsarea="1"
/>

<!-- Other things to be added later -->

</Project>

The parameters that we have just added define:

• the switching factor used to compute the power consumption;

• the maximum input degree and output degree of each router;

• a switch that does not allow point-to-point (one hop) connections between
a source and a destination;

• the density of points that are considered as potential installation points
for routers (expresses in number of points per mm2);

• a parameter that balances the importance of minimizing power vs mini-
mizing area (if P is the power consumption and A the area occupied by
the network, the cost function used in this case is λP + (1− λ)A where λ
is defined by the powervsarea attribute. The cost function is not always
defined in this way but depends on the optimization strategy chosen by
th user).

All this parameters have defaults values, and other parameters can be specified
(for a complete list of synthesis parameters see Section 2.5).

The last part of the project definition is used to ask COSI-NoC to generate
some outputs (for a complete list of output options see Section 2.6):

13



<?xml version="1.0" ?>
<Project

name="cmp2x2"
input="."
output="./results" >

<Constraints
file="constraints.xml" />

<Library
name="Mylib"
file="mylib.xml" />

<Parameters
switchingfactor="0.5"
maxindegree="3"
maxoutdegree="3"
allowptp="0"
powervsarea="1"
/>

<Output>
<Svg name="cmp2x2.svg" />
<SystemC name="cmp2x2.cpp" mk="cmp2x2.mk" />
<Report name="cmp2x2.rep" />
<Dot name="cmp2x2.dot" />

</Output>

</Project>

We are asking COSI-NoC to generate an Svg graphical representation of the
network that is going to be saved as /home/myname/project/results/cmp2x2.svg.
We are also asking to generate other outputs like a textual report
/home/myname/project/results/cmp2x2.rep
and a SystemC simulator
/home/myname/project/results/cmp2x2.cpp.

In order to run a synthesis you first need to make sure that the COSIROOT
environment variable is set. If it is not, use the following command:

>export COSIROOT=current/COSI-NOC

also, you might want to add the directory where the COSI-NoC executable is
located to your PATH environment variable:

> export PATH=$PATH:current/COSI-NOC/bin

In order to run the synthesis, use the following command:

/home/myname/project> CosiNoc.x project.xml

14



After the synthesis is completed, the results can be found in the directory
/home/myname/project/results. To know how to use and interpret the re-
sults, please refer to Section 3.

With the project file that we have just set up, the synthesis ends with the
following message:

The problem is not feasible,
please increase the number of input ports of a destination
Destination P0 input bandwidth 5.76e+11

maximum input bandwidth 2.048e+11

Let’s revisit the synthesis parameters that we specified. Among these, we didn’t
include two parameters that define the maximum outdegree of a source and the
maximum indegree of a destination. We only specified these values for the
routers. The default values for the source maximum output degree and for the
destination maximum input degree is 1. Since our target clock frequency is
1.6GHz, the capacity of a point-to-point connection is 1.6 Gflitps that, for
a flit with width equal to 128 corresponds to 204.8 Gbps. This means that
each link can only carry one constraint. For a source, one output connection
only is sufficient because the constraints out of a source are mutually exclusive.
On the other hand, each destination receives three non exclusive inputs that
cannot share the same link, thus requiring three distinct input ports. In order
to account for this modify the parameters as follows:

<Parameters
switchingfactor="0.5"
maxindegree="3"
maxoutdegree="3"
destindegree="3"
allowptp="0"
powervsarea="1"
/>

and run the synthesis again. The number of points considered during synthesis
is about 1000. This synthesis takes about 100 second to complete on an Intel
Core Due @ 2GHz. Step into directory /home/myname/project/results.

File cmp2x2.rep contains a textual description of the synthesis result. It
contains many interesting properties of the network like the number average
number of hops for all point-to-point connections, the power consumption and
the area occupation. For instance, the power report for this example looks as
follows:

Power report
Wires :
Dynamic power = 4.66758 W
Static power = 0.00787755 W
Total power = 4.67546 W

Routers :

15



Figure 1.2: Visualization of the NoC using Inkscape.

Dynamic power = 0.42825 W
Static power = 0.02736 W
Total power = 0.45561 W

---------------------
Network dynamic power = 5.09583
Network power = 5.13107

Among the many file that you can in this directory, you can visualize Svg
file containing the graphical representation of the synthesized network using
Inkscape.

Figure 1.2 shows the graphical representation of the synthesis result using
Inkscape. Each source to destination path is saved as a different layer in order
to be able to visualize the choices taken by the algorithm. Routers (depicted as
green rectangles) and links (depicted as black arrows) are drawn to scale. Notice
that the representation of links is only logical in the sense that the real layout
will route wires only along the x and y coordinates (i.e. Manhattan routing).

The logical structure of the network is saved in cmp2x2.dot. Figure 1.3
shows the graphical representation of the logical structure of the network using
dotty. Each core is represented simply by a square. Routers are represented
by records. Each record represents one entry of the routing table. The first
row of the record corresponds to the source-to-destination flows that cross the
router while the second row correspond to the next hop the packets should be
forwarded to.

Finally, it is possible to generate an executable simulation of the NoC. Enter
the directory /home/myname/project/results and type:

make -f cmp2x2.mk

16



Figure 1.3: Visualization of the NoC using dotty.

an executable file called cmp2x2.x is generated. Running the simulation will
print out the simulation results at run-time. In particular, the average band-
width and delay for each constraint is printed to screen. The following snippet
is the report relative to the destination core P4:

Bandwidth report for D4
Average bandwidth from source 1 = 1.88975e+10
Average bandwidth from source 2 = 1.88936e+10
Average bandwidth from source 3 = 1.88923e+10

Delay report for D4
Average latency from source 1 = 4.53227
Average latency from source 2 = 5.0427
Average latency from source 3 = 5.21759

The report shows the average bandwidth from each source and the average delay
of packets from each source.

17



Chapter 2

The Input Format

COSI-NoC takes as input an XML [XML] file called project. A project contains
the description of the communication synthesis problem, i.e. the input that
are necessary to the COSI-NoC synthesis engine. The structure of a COSI-
NoC XMLproject is shown in Figure 2.1.

The root element is the Project that is made of up to four elements. The
elements that must be present are the Constraints, the Library and the
Parameters. These three elements are necessary for the synthesis: the con-
straints define the problem in terms of the IP cores and the communication
requirements among them; the library defines the available on-chip communica-
tion components and the rules to install and connect them; the parameters fix
some constants and options that are needed by the synthesis algorithm.

The output element is optional. There are many possible outputs that a
user can ask COSI-NoC to generate. Some of them are graphical or logical
representation of the NOC and can be effectively used to have an idea of the
NOC complexity and of the decisions that the algorithm has made. The Sys-
temC [Sys] output is very useful to simulate the NOC under synthetic or real
traffic conditions. Notice that if no output option is specified then no output is
generated by COSI-NoC.

This chapter describes the COSI-NoC input format, more specifically: how
a project is specified, how constraints are defined, how the library is described,
and how the user specifies the output to be generated.

2.1 Configuration of COSI-NoC

The configuration file must be placed in the root directory of the distribution.
This file is written in XML format and must be called cosiconfig.xml. An
example of the content of the configuration files is the following:

<?xml version="1.0" ?>
<Configuration>
<COSI version="NOC 1.2"/>

18



Constraints Library Parameters

Svg Dot

Otter SystemC

Project

Output

Report

Figure 2.1: Xml structure of a COSI-NoC project.

<TMP root="/tmp" />
<SYSTEMC root="/usr/share/systemc-2.1.v1"/>
<PARQUET root="/home/apinto/Projects/cosi/tools/PARQUET_050330"

exec="Parquet.exe" />
</Configuration>

The TMP element is a temporary directory where COSI-NoC saves all temporary
files used to communicated with external tools like PARQUET. The SYSTEMC
element defines the installation directory of SystemC. This element is used in
the generation of the makefile to compile the SystemC simulator that can be
generated as one of the results of the NoC synthesis. The PARQUET element
defines the installation directory of the PARQUET floor-planner and the name
of the executable file to run.

A configuration file is already provided with the current distribution of
COSI-NoC. The user needs only to change the pointers to the SystemC and
PARQUET distributions.

2.2 Description of a COSI-NoC Project

A project is an xml description of a communication synthesis task. We use
the simple example shown in Figure 1.1 to explain all the different parts that
compose the synthesis task specification.

This example represents a Chip-Multi-Processor (CMP) composed of four
cores. Each of them is a processor of specific area (25 mm2 in our example).

19



Communication requirements among the processors are captured by a point-to-
point graph. Each arc corresponds to an end-to-end communication constraint
that must be satisfied. The constraints that we consider are bandwidth and
latency. For instance, Figure 1.1 explicitly shows a communication constraint
between P2 and P3: the required minimum bandwidth is 192 Gbps and the
maximum delay is 10 1. The project file for this example is the following:

The root element, specified by the tag Project, defines the project. Its
attributes are the project name, the directory where all the input files are
stored inputdir and the directory where all the output files should be saved
outputdir. The attribute inputdir is considered a prefix for all input files (
i.e the file containing the constraints and the file containing the library descrip-
tion), and outputdir is considered a prefix for all output files (i.e. any output
that the user asks COSI-NoC to generate).

The Project element contains four elements:

• the specification of the point-to-point constrains marked with the tag
Constraints. This information is stored in a separate XMLfile. The
attribute of this elements is just a pointer to an external XMLfile that
describes the communication constraints (refer to Section 2.3).

• The description of the library components marked with the tag Library.
This information is also stored into a separate XMLfile. The attribute
of this element is just a pointer to an external XMLfile that contains the
description of the library elements (refer to Section 2.4).

• The set of synthesis parameters marked with the tag Parameters (refer
to Section 2.5).

• The specification of the desired outputs marked with the tag Output.
COSI-NoC can generate many different outputs for analysis, visualiza-
tion, and simulation purposes (refer to Section 3).

2.3 Specification of the Communication Constraints

The specification of the communication synthesis problem comprises two parts:
the communication agents and their interaction. In the case of NOC synthesis,
the communication agents are intellectual property (IP) cores on the chip. Their
physical sizes are treated as constraints to the communication synthesis engine.
In fact, once the floor-plan has been decided, each IP core becomes a piece of
logic on the chip that cannot be touched. This means that additional circuitry
for the communication infrastructure can only be installed in those parts of the
chip that are not already occupied by any IP core.

End-to-end communication constraints are captured by a set of arcs. Each
arc connects a source IP core to a destination IP core. In the specification file,

1Currently, this number is interpreted as the maximum number of hops. For a different
delay model (e.g. a cycle accurate delay model of routers) its meaning can change.

20



<?xml version="1.0" ?>
<Project name="cmp2x2"
input="."
output="./results" >

<Constraints file="constraints.xml" useplacement="Soc_placed.pl" />

<Library name="100nm4ch128" file="library100nm.xml" />

<Parameters

sparearea="0.25"
step="0.01"
flitwidth="128"
switchingfactor="0.5"
maxindegree="3"
maxoutdegree="3"
destindegree="3"
sourceoutdegree="1"
allowptp="1"
allowtwohops="1"
powervsarea="1.0"
hopconstraints="0"
areaconstraint="0"
area="1"
density="10"

/>

<Output>
<Svg name="cmp2x2.svg" />
<SystemC name="cmp2x2.cpp" mk="cmp2x2.mk" />
<Report name="cmp2x2.rep" />
<TabAppend name="cmp.txt" />
<Dot name="cmp2x2.dot" />
<Otter name="cmp2x2.odf" />

</Output>

</Project>

Figure 2.2: Example of COSI-NoCproject file.

21



"P0"
Id = 0

"P0"
Id = 4

"P2"
Id = 6

"P2"
Id = 2

"P3"
Id = 3

"P3"
Id = 7

"P1
Id = 5

"P1"
Id = 1

Figure 2.3: Bipartite graph representation of the communication constraints.

sources and destinations are denoted by string identifiers. At the specification
level, each identifier denotes an IP core, therefore it is possible to assign the
same identifier to a source and a destination. When the specification is parsed,
a bipartite graph is generated where sources and destinations are distinct. Each
node represents a directional interface (input or output but not bidirectional).
Figure 2.3 shows the bipartite graph representation. Each node is an interface
(sources are denoted by double circles) of an IP core that can have multiple
inputs or multiple outputs but neither bidirectional nor mixed-type ports. By
setting the synthesis parameters properly, the user can force the final imple-
mentation to have one port per core or many (see Section 2.5). Each node in
the bipartite graph has a name (the same name of the IP core) and a unique
integer identifier.

Figure 2.4 shows the XML description of the communication constraints
for the 2 × 2 CMP. The root element is marked with the tag Constraints. It
contains three type of elements: Core, Constraint and Exclusion.

A Core element specifies an IP core with the following attributes:

• name is a string that uniquely identifies the IP core.

• type refers to the type of the specification. It can be Area or Placed.
If the value of this attribute is Placed then the core has a fixed position
on the chip and a fixed horizontal and vertical dimension. In this case
four additional attributes must be specified: xbl , ybl , xtr and ytr

22



<?xml version="1.0" ?>

<Constraints>

<!--

This test case contains four processors P0,P1,P2 and P3.

Each processor is 25mm^2.

Each processor needs to communicate with all other

processors at 192Gb/s. Constraints having the same source

are mutually exclusive.

-->

<Core type="Area" area="25000000" name="P0" />

<Core type="Area" area="25000000" name="P1" />

<Core type="Area" area="25000000" name="P2" />

<Core type="Area" area="25000000" name="P3" />

<Constraint name="P0P1"

source="P0" dest="P1" bw="192000000000" T="10" />

<Constraint name="P0P2"

source="P0" dest="P2" bw="192000000000" T="10" />

<Constraint name="P0P3"

source="P0" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P2"

source="P1" dest="P2" bw="192000000000" T="10" />

<Constraint name="P1P3"

source="P1" dest="P3" bw="192000000000" T="10" />

<Constraint name="P1P0"

source="P1" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P3"

source="P2" dest="P3" bw="192000000000" T="10" />

<Constraint name="P2P0"

source="P2" dest="P0" bw="192000000000" T="10" />

<Constraint name="P2P1"

source="P2" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P0"

source="P3" dest="P0" bw="192000000000" T="10" />

<Constraint name="P3P1"

source="P3" dest="P1" bw="192000000000" T="10" />

<Constraint name="P3P2"

source="P3" dest="P2" bw="192000000000"T="10" />

<Exclusion set="P0P1 P0P2 P0P3"/>

<Exclusion set="P1P2 P1P3 P1P0"/>

<Exclusion set="P2P3 P2P0 P2P1"/>

<Exclusion set="P3P0 P3P1 P3P2"/>

</Constraints>

Figure 2.4: XML description of the communication constraints.

23



that are the coordinates of the bottom-left and top-right corner of the IP,
respectively. If the value of this attribute is Area then the position of
the IP core is not fixed and must be determined before synthesis using a
floor-planner (we use PARQUET [AM03] to floor-plan a chip). If this is
the case, an area attribute must be specified. Positions must be expressed
in µm and areas in µm2.

Remark 2.3.1 (Technical remark on the IP fixed placement) . When the type
for an IP core is specified Placed, the IP core is placed in a specific position on
the chip and the vertical and horizontal dimensions are also fixed. As every IP
core in a specification is passed to the floor-planner, we need to make sure that
a specific position gets assigned to the lower left corner of each placed IP and
that the dimensions are also preserved. The way in which we achieve this is to
tell the floor-planner that each placed IP is a hard rectilinear block defined by
four vertices (the four corners of the IP). In order to place the IP in the desired
position, we insert a pad for each placed IP in such position and assign a very
high weight to the net connecting the pad and the IP.

When the prefix of a core name is CosiComm, the core is considered a spare
block used only for the communication infrastructure. During floor-planning,
these cores are treated as any other core: they can be placed or not. In many
practical cases, the communication designer is assigned a fixed position for a
few cores (typically the off-chip memory interface and the CPUs), and a fixed
position for a few areas that can be used for communication. Our input format
supports all such cases.

An end-to-end communication requirement is specified by a Constraint
element, which has the following attributes:

• name is a string identifier. Each constraint should have a unique identifies
that can be referenced later to define exclusion sets.

• source is the identifier of the IP core that is the source of this constraint.

• dest is the identifier of the IP core that is the destination of this constraint.

• bw is the bandwidth requirement in bps.

• T is the latency requirement in number of hops (recall that COSI-NoCcurrently
supports only synchronous implementations of NOCs where each router
operates at the same clock frequency).

For each constraint, both the source and the destination IP core identifiers must
have been specified in the name attribute of some previously defined IP core.

Usually, a source IP core communicates with many other sources. To specify
that some data must be broadcasted to several destinations it is equivalent
to say that all the corresponding constraints are active at the same time. If
broadcast communication is not supported, then the IP core can send data to
one destination at the time. In order to model this situation, the user can define
sets of constraints that are mutually exclusive using an Exclusion element.

24



The semantics of exclusion sets is tightly related to the dynamic behav-
ior of the application. Two constraints that are in an exclusion set are never
“active” at the same time. Since we don’t explicitly capture the notion of
time, this statement simply means that when two paths, that implement a pair
of mutually-exclusive constraints, share the same resources only the one with
tighter constraints determines the performance/cost trade-off of such resources.
An Exclusion element has one attribute:

• set is a space-separated list of constraint identifiers.

Remark 2.3.2 (On exclusion sets) One might think that exclusion sets are
not needed since it should be always possible to transform the specification into
another one with average or worst case end-to-end constraints. It turns out that
this is not always true. Consider the 2×2 CMP design in Figure 1.1. One might
be tempted to transform that design into another one where each constraint
has a bandwidth requirement equal to 192 Gbps without specifying any mutual
exclusion. This is the case of worst case design. If the clock frequency is
1.6 Ghz and the flit-width is 128 the problem is unfeasible because both source
and destination interfaces can only handle one constraints ( 1.6e9 × 128 =
192Gbps). The other transformation is to assign a bandwidth requirement equal
to 192/3 Gbps to each constraint. This is the case of average design where
the solution could have links with an assigned bandwidth that is a fraction of
192 Gbps leading to a under utilization of the network capacity.

2.4 Specification of the Library Components

The library of communication components is also described in an XML file.
A library file can contain more than one library each identified by a unique
name. For instance, a library could contain the performance/cost characteriza-
tion of on-chip routers and links for the same technology but for different clock
frequencies of different flit-widths.

In COSI-NoC on-chip wires and routers are characterized in different ways.
For wires, we use an analytical model [MBM04] assuming that they will be opti-
mally buffered in the final implementation. For routers, we use Orion [Wan02]
to derive an estimation of the area and energy per flit of each router. We run
Orion for different configurations of a router in terms of number of inputs and
outputs and we collect the results into a matrix. We are interested in two met-
rics: energy per flit and area. The energy per flit is further decomposed into
two components: dynamic energy and static energy dissipation.

Figure 2.5 shows the typical description of a library of communication com-
ponents that consists of the following elements:

• Library that contains the library description. The only attribute is the
library name. The same XML file may contain many library descriptions
that are distinguished by unique names.

25



<?xml version="1.0" ?>
<Library name="100nm1ch128">

<Technology fclk="1.5e9"
vdd = "1.2"

ioff = "0.15"
wmin = "200e-9"
isc = "65e-6"
r0 = "10.0e3"
cp = "2.5e-15"
c0 = "1.5e-15"
nlayers = "7" />

<Wire type="copper" layer="6" r="103.9e3" c="154.0e-12" pitch="460e-9" />
...
<Router maxin="10" maxout="10" maxbw="300e6"

energy = "1.81013e-11 1.21089e-12 2.06545e-11 1.96132e-12 ...
3.26714e-11 2.098e-12 4.70244e-11 3.27506e-12 ...
... "

area="7168 25600 ...
32768 51200 ...
..."

/>
...

</Library>

Figure 2.5: Example of the xml description of the library of communication
components for a 100nm technology and operating frequency equal to 1.5Ghz.

26



• Technology that contains the value of all the parameters needed to char-
acterize the impact of the technology node on the performance and cost of
the communication links. In this release we only consider copper wires but
the library con be easily extended to include other types of interconnect.
The attributes that must be specified are:

– fclk that denotes the operating frequency. We characterize the en-
ergy dissipation and we derive the power consumption depending on
the switching factor (see Section 2.5) and the actual bandwidth car-
ried by a point-to-point link. The clock frequency is used to compute
the leakage power that does not depend on the effective bandwidth
carried by a link.

– vdd that denotes the supply voltage.

– ioff that denotes the transistor’s off current.

– wmin that denotes the width of the minimum sized inverter.

– isc that denotes the transistor’s short circuit current.

– r0 that denotes the transistor’s output resistance.

– cp that denotes the transistor’s output capacitance

– c0 that denotes the transistor’s input capacitance.

– nlayers that denotes the number of metal layers. In this implemen-
tation of COSI-NoC we assume that the network links are imple-
mented by global wires (i.e. metal layer 6).

• Wire that describe the properties of a link. The attributes that can be
set are the type of the wire (only copper is supported by now) and all the
important physical properties for that type. In the case of copper wires,
the following data must be specified: the metal layer, the resistance per
unit length r and the capacitance per unit length c.

• Routers that describes the energy dissipation and area of a router as a
function of the number of inputs and number of outputs. These two quan-
tities are given as two matrices where the value of the entry (i, j) defines
that quantity for a router with i inputs and j outputs. The two attributes
maxin and maxout are bounds on the maximum number of inputs and
outputs of the model. The real bounds are set as attributes of the pa-
rameters of the project. The attribute maxbw is the maximum bandwidth
that a router can handle. It represents the maximum throughput for each
input/output port. Notice that this library is very different from the one
used in the cmp2x2 example. To avoid a router to get congested, we limit
the maximum bandwidth per input port to a flit rate that is much smaller
than the clock frequency. This is a more realistic case since a the imple-
mentation of a router with flit traversal latency of one clock cycle is still
hard.

27



The same file can contain the specification of many libraries and each library
can contain the specification of many types of wires and many types of routers.
In this first release, though, we only handle one type of link and one type of
router. The extension to many types does not change the approach that we
follow for communication synthesis. The same algorithms can be reused while
the size of the design space exploration increases.

Remark 2.4.1 (On the router’s maximum bandwidth) Figure 2.5 shows a
library where the maximum bandwidth supported by a router is equal to the
clock frequency. Usually, the number of clock cycles necessary to transfer a
flit from the input queues to the output is N > 1. In this case the effective
maximum bandwidth of a router is less than the clock cycle. In particular,
after the arbitration of the input queues has resulted in the input to output
assignment, each flit is transferred in N cycles, therefore a packet is transferred
at fclk/N flits per second.

2.5 Specification of the Synthesis Parameters

The algorithm that is used by COSI-NoC to synthesis a network is very flexible
and the result depends on the various parameters that must be set in the project
file.

There are two sets of parameters that can be specified. One set contributes to
the definition of the set of admissible implementations and consists of additional
resource constraints. This set of parameters includes:

• sparearea (default 0.25%) defines the amount of area around the IP core
that is considered available to install routers. Given an IP core with area
A, a portion of area equal to sparearea·A is evenly distributed around
the core and considered open space, i.e. available to implement the com-
munication infrastructure (additional area can be reserved by defining
CosiComm IP core, see Section 2.3).

• step (default 0.1) defines the minimum distance (in terms of critical se-
quential length) from the port of core and the closest interface/router.

• flitwidth (default 128) is the flit width. This value directly impacts the
capacity of each link as the clock frequency is fixed.

• switchingfactor (default 0.5) is the percentage of bits that switch be-
tween two consecutive flits.

• maxindegree (default 2) is the maximum input degree for routers.

• maxoutdegree (default 2) is the maximum output degree for routers.

• sourceoutdegree (default 1) is the maximum number of outputs of a
source network interface.

28



• destindegree (default 1) is the maximum number of inputs of a destina-
tion network interface.

• allowptp (default 0) is a switch to allow direct point-to-point connection
between a source and a destination. If this switch is equal to 1 then such
connections are allowed, if it is equal to 0 that point-to-point connections
are not allowed.

• allowtwohops (default 0) is a switch to allow the connection between a
source and a destination through a single interface. If the value of this
switch is 1, each source and destination par is separated by a minimum of
three hops.

• powervsarea (default 0.5) The cost of a network is the convex sum of
power and area:

C = λP + (1− λ)A

The weighting constant λ is specified by this attribute.

• hopconstraints (default 0). If the value of this switch is 1 the algorithm
tries to meet the input delay constraints, otherwise such constraints are
disregarded.

• areaconstraint (default 0). If the value of this switch is 1, the synthesis
algorithm tries to implement a network that occupies and area as close as
possible to the value specified by the attribute area.

• density (default unspecified). This parameter specifies the number of
points per millimeter square to be considered as installation points for
routers.

2.6 Specification of the Required Output

COSI-NoC can generate a set of outputs to analyze the synthesis result. The
synthesis result is guaranteed to satisfy all communication constraints and to be-
long to the set of admissible implementations. Yet, if you are interested in check-
ing whether the implementation satisfies your expectations, COSI-NoC is able
to generate a graphical representation of the implemented network (in Svg for-
mat [Svg]), a logical representation (in Dot format [Dot]), a SystemC simu-
lation [Sys], an input file for the Otter network visualization tool [Ott] and a
textual report.

In order to request the generation of a specific output, you can include an
Output element in the XML project as follows:

<Output>
<Svg name="cmp2x2.svg" />
<SystemC name="cmp2x2.cpp" mk="cmp2x2.mk" />
<Report name="cmp2x2.rep" />

29



<TabAppend name="cmp.txt" />
<Dot name="cmp2x2.dot" />
<Otter name="cmp2x2.odf" />

</Output>

The Output element can contain one element for each required output. The
recognized elements are:

• Svg to request the generation of an Svg file that depicts the network.
The only attributes that can be specified is the name of the Svg file.
The file name is relative to the outputdir parameter of the project (see
Section 2.2).

• Dot to request the generation of a Dot file that represents the logical
structure of the network. The only attribute that can be specified is the
name of the Dot file. The file name is relative to the outputdir parameter
of the project (see Section 2.2).

• Otter to request the generation of an OSDfile that can be read from the
Otter visualization tool. The only attribute that can be specified is the
name of the osd file. The file name is relative to the outputdir parameter
of the project (see Section 2.2).

• SystemC to request the generation of a SystemC netlist of the imple-
mented network. Two parameters can be specified: name is the netlist file
name and mk is the name of the makefile to compile the SystemC netlist
and obtain an executable simulation. The file name and the makefile are
relative to the outputdir parameter of the project (see Section 2.2). Make
sure that the COSIROOT environment variable and the SYSTEMC element in
the COSI-NoC configuration file are correctly specified.

• Report to request a report of the synthesis result in textual format. The
only attribute that can be specified is the name of the text file. The
file name is relative to the outputdir parameter of the project (see Sec-
tion 2.2).

• TabAppend to request COSI-NoC to append the synthesis results as a
single row in a tab separated file. This feature is very useful when COSI-
NoC is used to synthesis many SoCs and the results must be then visu-
alized using Excel.

If an element is not specified, the corresponding output is not generated by
COSI-NoC. Please refer to Chapter 3 for an explanation of how to use the
generated output.

30



Chapter 3

The Output Format

This chapter describes the various outputs tha can be generated by COSI-
NoC and how these outputs can be used to analyze the network.

3.1 The Svg Output

The Svg output is the pictorial description of the on-chip network. An Svg file
is an XML description that can be interpreted and rendered to create a picture.
The XML elements that we use are simple circles and rectangles. Sources and
destinations are represented by filled circles. Sources are colored in red while
destination are colored in black. We assume that ports are located at the bottom
left corner of each IP even if this information can be explicitly given to the floor
planner and retrieved by parsing the floor-planning result. Note that the (0, 0)
corner of the Svg representation is the top-left corner.

Routers are represented by green squares and latches by orange squares.
The distinction between routers and latches is the following: if, for all inputs,
all and only the flows entering the router go to the same output then the router
does not have to arbitrate among input queues or decide which output to send
the input to. In this case, this piece of logic is reduced to be just a latch. Note
that it is not possible to get rid of the latch because it was introduced by the
synthesizer in order to break the wire that is longer than the critical sequential
length.

Each link is represented by an arrow. Links are directional.
Sizes are actual physical sizes. When the Svg file is generated, the visible

area is defined in µm and all dimensions are scaled appropriately in order to
have a real idea of the area that is occupied by each block and the one taken by
the wires.

Svg files can be opened with standard Svgenhanced browser or with tools
like Inkscape [Ink]. If Inkscape is adopted as a viewer then two extra features
are gained. The Svg file contains the definition of many layers. One layer is
dedicated to the IP cores and it is the only one that is visible. The other layers

31



S1

D1
D2

S2

NoC

S1

NIS1

S2

D1 D2

NIS2

NID1
NID2

NoC

To SystemC

Figure 3.1: Transformation from the implementation graph to the Sys-
temCnetlist.

contain the source-to-destination paths. There is one layer for each path and
they can be visualized and superimposed using the layers menu of Inkscape.
Moreover the rendered image can be saved in any other format.

3.2 The Dot Output

The Dot language was originally developed at AT & T Research Labs. It
allows to describe a graph in a textual format independently from the final
visualization. A set of rendering engine is available to read the graph description
and automatically present a laid out graph to the user.

The Dot representation is very useful to understand the logical structure
of the synthesis result. Each IP core is represented by a rectangle with an
associated name (the name of the IP core). Each router is a record. The
information stored in the record are the entries of the routing table. The first
column of the record is the name of the router. By convention, the name of a
router is obtained by the prefix R followed by a unique integer identifier. The
following columns are the entry of the routing table. Each entry has two rows.
The top row identifies a flow by its source and its destination. The bottom row
denotes the next router to which the current router sends packets belonging to
that flow.

3.3 The SystemC Output

COSI-NoC can generate a SystemC netlist of the implemented network. In
order to generate an executable simulation, the netlist must be compiled to-
gether with the SystemC library of components provided in the distribution.
For convenience, a makefile that compiles the netlist can be also generated.

When we generate the netlist, we transform the result of the synthesis as in
Figure 3.1.

32



For each source and destination, we introduce a network interface. We con-
nect each source and destination core to its network interface and then we con-
nect the network interfaces to the rest of the network. Point-to-point links from
source to destinations become point-to-point links between network interfaces.
In this way, each core has at most one input and one output port. Notice that,
if the allowptp parameter is set to zero, no point-to-point links are synthesized.

The SystemC library that is provided in the distribution implements a
wormhole switching technique and a weighted fair queuing technique. COSI-
NoC generates the routing tables and the weights for each router. The weight
vector for a router R is a vector wR that has an element for each input queue.
The total bandwidth bwR is distributed among the input queues such that
bwi/bwR = wR[i]/

∑
i wR[i].

The generation of a makefile requires the correct definitions of the SYSTEMC
element in the COSI-NoC configuration file and of the COSIROOT environment
variable. This variables are needed to point at the correct include and library
directories. In this distribution, we target the Linux and Mac Os X platforms
only.

33



Bibliography

[Alg00] Introduction to Algorithms. MIT Press, 2000.

[AM03] Saurabh N. Adya and Igor L. Markov. Fixed-outline floorplanning
: Enabling hierarchical design. IEEE Trans. on VLSI, 11(6):1120–
1135, December 2003.

[Dot] Graphviz: Graph Visualization Software.
http://www.graphviz.org/.

[HGR05] Andreas Hansson, Kees Goossens, and Andrei R&#462;dulescu. A
unified approach to constrained mapping and routing on network-
on-chip architectures. In CODES+ISSS ’05: Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 75–80, 2005.

[Ink] Inkscape. http://www.inkscape.org/.

[MBM04] Man Lung Mui, K. Banerjee, and A. Mehrotra. A global intercon-
nect optimization scheme for nanometer scale vlsi with implications
for latency, bandwidth, and power dissipation. IEEE Transactions
on Electron Devices, 2004.

[MMA+06] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. De Micheli, and L. Raffo. Design of Application-Specific Net-
works on Chips with Floorplan Information. In International Con-
ference on Computer-Aided Design (ICCAD), 2006. to appear.

[Ott] Otter: Tool for Topology Display.
http://www.caida.org/tools/visualization/otter/.

[Svg] Scalable Vector Graphics (SVG).
http://www.w3.org/Graphics/SVG/.

[Sys] SystemC 2.1 Language Reference Manual.
http://www.systemc.org/web/sitedocs/lrm 2 1.html.

[tin] TinyXml. http://www.grinninglizard.com/tinyxml/.

34



[Wan02] H. Wang. Orion: A power-performance simulator for interconnec-
tion networks, 2002.

[XML] Extensible Markup Language (XML). http://www.w3.org/XML/.

35


