

UVT – G6 /P6 Inverter User Manual

UV tech Variable Frequency Drive User Manual

Marketing By_

Yogeshwar Control

70, Mahavir Estate,

Singrava – Kathwada Road,

Singrava, Ahmedabad.

yogeshwarcontrol@gmail.com

www.yogeshwarcontrol.com

G6/P6 series inverter is a kind of high-performance error control inverter. The product adopts speed sensorless vector control technology, the internationally leading high-end inverters, and combines the application characteristics of China to further enhance the product reliability, environment adaptability and customized and industrialized design. It can better meet the demands of the various drive applications.

MARKETING BY : YOGESHWAR CONTROL 70 , MAHAVIR ESTATE , B/H KATHWADA G.I.D.C. NEAR ZAVERI ESTATE , SINGRAWA – KATHWADA ROAD , SINGRAWA , AHMEDABAD – 382430. EMAIL : <u>yogeshwarcontrol@qmail.com</u> CONTACT : 093274 44043 / 098246 92665.

Excellent performance

■Control mode

♦VVV/F control mode:

Startup torque: 1Hz 120% rated torque

Speed adjustment range: 1:120

Speed stabilization precision: ±0.5%

Vector control mode:

Precise speed sensorless vector control technology realizes AC motor decoupling, enabling the DC motorization of operation control.

Startup torque: 0.35Hz 150% rated torque

Speed adjustment range: 1:150

Speed stabilization precision: ±0.5%

Excellent control performance under speed sensorless vector control mode

◆Realizing AC motor decoupling, enabling the DC motorization of operation contress

◆ Figure 1 indicates the four-quadrant operation of motor under speed sensorless vector control. Torque,current,rotating, speed and DC bus voltage have quick response,and motor has stable operation.

♦0.1s command acceleration/deceleration is realized with rated motor load.

◆Upon the zero-crossing switching of the motor (forward/reverse switching), the current has no phase mutation or oscillation, and the rotating speed has no pulsation.

•The bus voltage is under stable control. Quick and reliable braking can be realized when decelerating under the condition of braking without power consumption.

It is especially suitable for: The reciprocating equipment, and as digital control machine tool, fountain control machine, weaving machine and jacquard.

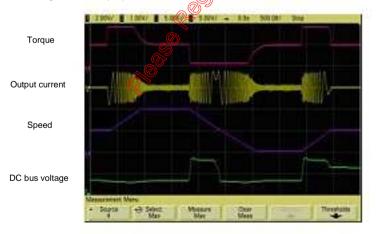


Fig. 1 Quick acceleration/deceleration four-quadrant running in the form of $0Hz \rightarrow Forward$ running $50Hz \rightarrow 0Hz \rightarrow Reverse$ running $50Hz \rightarrow 0Hz$

Realizing real tripless operation

With excellent current and voltage control technology, repetitive and alternate acceleration and deceleration is

performed through 0.2s command, and the inverter realizes stable and tripless operation.

♦ With extremely powerful loading capacity, the inverter can realize stable tripless operation in any acceleration/deceleration time and under any impact load condition.

With strong short-time overload capacity, the inverter can operate continuously for 0.5s under 200% rated load,

and 1 minute under 150% rated load.

◆The intelligent module temperature control maximizes the loading capacity of the inverter.

It is especially suitable for:

The heavy-duty equipment, such as extrusion machine (for modification for energy saving), lifting equipment, digital control machine tool, rolling mill, furnace feeding equipment.

Fig. 2 The inverter realizes stable control of current and voltage and will not trigger tripping protection under any acceleration/deceleration condition stable operation condition

Unique instantaneous mains failure reaction

◆Upon the instantaneous mains failure, the ended of the motor feedback bus will keep the inverter running till the mains resumes normal.

•When shutdown is caused by longerer power-failure during the operation of the inverter, the inverter will provide alarm message upon the power up at the next time.

It supports the automatic operation of the inverter upon power-up after power failure.

It is especially suitable for: Chemical fiber and weaving equipment, multi-point synchronization linkage equipment, fan/pump, instantaneous power-failure startup equipment.

Low frequency large torque stable operation under vector control

♦ With precise speed identification and rotor magnetic flux orientation, the torque can respond quickly and realize stable operation in the case of 0.25Hz load mutation.

Startup torque: Open loop vector control 0.35Hz; 180% rated torque

Speed stabilization precision: Open loop vector control ±0.5%

It is especially suitable for: Medium and large wire-drawing machine, pipe and cable processing, lifting equipment, rolling mill.

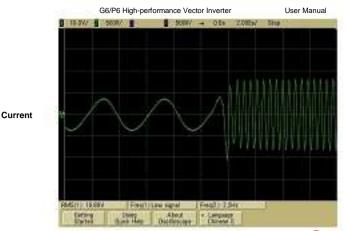


Fig.3 Abrupt increase to full load operation at 0.25Hz under speed sensorless vector control

Unique quick DC braking

◆Within the range of 0 to 60Hz, the inverter can realize back electromotive force elimination and quick DC braking within 0.3s.

- ◆DC current is input in the most efficient way to improve the braking capacity
- There is no initial waiting time for the DC braking.
- ◆ Special function code setting is provided to cancel the initial waiting time for DC braking.

It is especially suitable for: Lifting equipment, invertible roll table for rolling mill, weaving machine, paper making production line.

■Unique rotating speed tracing function

◆No special hardware detection circuit or special function and phase angle within the range of 0 to 60Hz, the inverter can complete the identification of the motor of the special specia

◆Tracing mode 1: Quick and smooth tracing on the ree rotating speed of the motor without any impact.

It is especially suitable for: Fan/pump, the equipment whose operation shall be traced upon the power recovery after instantaneous power failure.

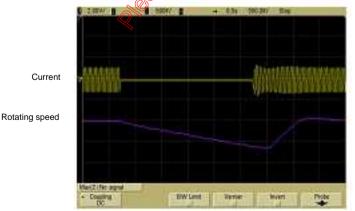


Fig. 4 Quick and impactless rotating speed tracing upon the free rotation of the motor

High reliability design

Meeting the relevant international product standards

IEC61800-2	General requirements-Rating specifications for low voltage adjustable frequency a.c. power drive systems				
IEC61800-3	EMC product standard including specific test methods				
IEC61000-6 Electromagnetic compatibility (EMC) -Part6: Generic standards					
IEC61800-5-1	Safety requirements -Electrical, thermal and energy				
Ultroacted desig	UL Standard for Safety for Power Conversion Equipment				

♦Integrated design of hardware interface: The control board, button type operating panel are integrated to facilitate the operation and maintenance of the user.

◆Integrated design of software protocol: Terminal 485, universal expansion port SPI protocols are integrated

(Modbus protocol).

◆Integrated design of main circuit terminals: 0.75G .to 15G integrated, 18.5G to 75© ntegrated, to facilitate the operation and maintenance of the user.

◆Built-in braking unit design: 0.75G to 15G as standard, 18.5G to 75G as option to reduce the cost and the installation space.

Integrated built-in expansion card design: Including extrusion machine interface card/water supply dedicated card/communication adapter card, meeting the industry application requirement.

◆Full series standard common DC bus design: The standard common DC bus scheme can be realized without modifying the product or adding peripheral circuit. It is applicable buch industry applications as paper making, chemical fiber, metallurgy and EPS.

Adaptability design

♦Independent duct design: The full series supports the application demand of mounting heatsink out of the

cabinet, and is applicable to the applications of spiriting machine, wire-drawing machine where there is too much cotton batting or dust.

◆Compact structure design: With complete thermal emulation and unique cold plate process, the product has compact structure, meeting the demand of ⊘ + M customers.

◆Complete system protection design: Based on the complete system design scheme, the PCB adopts protective coating, the copper bus adopts galyanization, the full series of product adopts sealed key components, the button type operating panel with potentiometer offers accessories meeting the IP54 requirement, which greatly improve the protection capacity of the system. It is applicable to the applications with dusty and corrosive environment, such as wire-drawing machine, printing and dyeing and ceramics.

♦ Wide voltage range design: the DC operating voltage range is DC 360–720V, with mains voltage fluctuation recording function.

◆Precise current detection and protection: The full series adopts precise Hall sensor to detect the output current, meeting the quick real time control and protection requirement of software and hardware, ensuring the performance and reliability of the system.

♦Independent power supply for control: The system provides independent switching power DC input port. External UPS power supply can be realized through option card. It is applicable to the applications of oilfield, chemical industry and printing and dyeing industry.

◆Power-up self-detection function: It realizes the power-up detection on the peripheral circuit, such as motor

grounding, disconnection, greatly improving the reliability of the system.

◆Comprehensive system protection function: Software/hardware current limiting protection, overcurrent and

5

overvoltage protection, grounding short circuit protection, overload protection, IGBT short circuit protection, abnormal current detection protection, abnormal relay contact protection.

◆Perfect terminal protection function: short circuit and overload protection for the +24V and +10V power supply of the control terminals, operating panel cable reverse connection protection, input signal cable disconnection and abnormal analog input protection.

◆ Over-temperature prealarm protection function: Automatic adjustment will be made according to the temperature to ensure the reliable operation of the product, and maximum operating temperature will be recorded.

◆ Comprehensive switching power protection function: Including switching power output short circuit protection, overload protection, power-up soft start function, open loop self-locking and voltage limiting protection function, ensuring the reliability of the system.

Cheese contraction of the second

Rich and flexible functions

■Multiple frequency given modes, flexible and convenient for the operation

◆Operating panel setting (digital given). The operating panel can be used to conduct v/∧ adjustment on the frequency given.

- Terminal reference
 - 1) Analog Al1/Al2: 0~10V or 0~20mA;
 - 2) Pulse frequency X8/DI: 0.2Hz~50kHz;
 - 3) Xi terminal: Up/Dn mode independent, able to superpose with any other frequency reference mode.
- Communication mode given: International standard Modbus protocol.
- The above given modes can be switched online.

Multiple channels for given input and feedback

◆Under the open loop or analog feedback close loop mode, the given input can define the main and auxiliary calculation relation:

- 1) Main given input + auxiliary given input;
- 2) Max (main given input, auxiliary giveninput)
- 3) Min (main given input, auxiliary given input)

◆Under the analog feedback close loop mode, the feedback value can also **define** the main auxiliary calculation relation before it enters the process PID for adjustment control.

It is especially suitable for: The continuous and automatic production lines including paper making, printing and dyeing, packaging and printing, and the temperature difference and pressure difference applications, including the chilled water control of the central air conditioner, the water supply system.

Digital operating panel

Button type standard TIP connection.

◆The button layout complies with the human engineerion principle. One-button function code access and exit,

making it easy for the operation.

With unique multifunctional button M, the following functions can be defined:

- 1) JOG;
- 2) FORWARD
- 3) REVERSE

Upper computer communication

◆Terminals provide 485 ports, the communication protocol is Modbus, and upper computer monitoring software is provided.

- Master slave communication control among several inverters can be realized.
- Parameter upload and download can be realized.

Customized functions

■Multiple function code display modes

- FU group menu can displays all the function codes.
- ♦Users can self-define the function codes for inquiry and modification

Multiple function code encryption modes (to protect the intellectual property of the customers)

♦ Users can set function parameter password protection.

User self-defined parameter display function

◆Users can choose the common parameters displayed by the operating panel and use keyto switch such parameters.

- ♦ Users can define the parameters displayed upon running and stopping respectively.
- ♦Users can define such parameters as voltage, given frequency, current.

Users can make secondary development

- Universal expansion port is provided as standard.
- Physical port SPI bus, software protocol Modbus.
- The ports provide +24V/500mA power supply.
- The CPU expansion scheme can realize PLC function.
- ◆It supports programming by user to realize process control.

Enhanced function

- The software filtering time for the Al1, Al2 analog input is settable to enhance the anti-interference capacity.
- ◆Independent multi-section modification can be made on the 1, Al2 analog input curve.
- Sulti-step speed setting is provided, with 15 speeds as standard.
- Standard output frequency is 600Hz,with a maximum output frequency of 2000Hz, it is applicable to such equipment as vacuum pump, grinding machine, female thread extrusion machine.
- •With the acceleration/deceleration time up to 10 hours, it is applicable to the bobbiner and other equipment of the textile industry.
- ♦ It supports the overload protection with motor temperature feedback.

◆Independent high-speed pulse input and output ports are provided to realize high-speed pulse cascade function.

Typical industry applications

Digital control machine

Compact structure: The size is equal to 70% of the inverter of the same power.

◆Low speed precise processing: The excellent low-frequency torque performance can meet the processing demand of the machine main shaft in low speed condition (when it is operating in motoring state, it can realize a frequency as low as 0.35Hz and output 180% rated torque)

◆Torque and rotating speed index: It can meet the sudden loading and unloading requirement upon the cutting processing, with the dynamic torque response time <20ms and speed stabilization precision of ±0.3%.

Special function for wire-drawing machine

Operation without swing link: It adopts open loop tension control to realize operation without swing link under speed sensorless control mode.

◆Operation with swing link: The user does not need to adjust the position of the swing link manually. When the system starts up, the swing link will get to the proper position automatically.

◆Powerful tensile capacity: It is suitable for the applications of large and medium wire-drawing machine. It features large torque upon low frequency operation and high speed stabilization precision.

• Double conversion scheme: It can realize the inverter application of the same power class with precise current

control and does not need to upgrade the level.

◆Environment adaptability: Independent duct design, protective coating treatment, high-temperature operation, and digital protection function.

Special function for textile

◆Traverse operation function: It can effectively lead the yarn into the yarn carrier on the yarn and chemical fiber equipment to prevent the overlapping of the yarn and facilitate the unreeling.

Constant line speed mode: It can effectively prevent the operation to maintain the constant tension.

◆ Fixed length calculation: It is convenient for the user to calculate the thread length. When the thread length reaches the preset value, the equipment will be shutdown automatically.

Extrusion machine energy saving

◆Extrusion machine interface board a can realize best flow and pressure distribution relation in different processes by receiving the extrusion machine feedback signal to realize optimized energy saving control of motor.

◆Customized process curve: The user does not need to change the inverter parameter when replacing the moulds. The process curve memory can be easily realized.

•Wide range torque output: Within the set range of pressure and flow, the motor torque output is stable to ensure the quality of the workpiece.

◆Tripless: With extremely powerful loading capacity, the inverter can realize stable tripless operation in any acceleration/deceleration time and under any impact load condition.

◆Green output: It adopts advanced power module drive mode to reduce the interference to the extrusion machine control circuit and sensor.

Lifting control

◆Step torque response: It can quickly follow the equipment load change to prevent the runaway situation and ensure the safe production.

Four quadrant operation: It can smoothly and quickly switch the forward and reverse motoring and generating

Please Register to remove stamp

state of the equipment.

Torque monitoring: It can adjust, limit, display and switch the torque output, so as to monitor the operating state

of the equipment.

the state of the s

Unpacking check

Check whether wearout was made to packingcase during transport. After unpacking, please check the following items:

- Check whether the products coincide with the packing list or not.
- Check if any damage was made to the inverter during transport (damage or gap on the body).
- Review the inverter's nameplate and check if it is the right model you've ordered.
- ◆ If you have ordered selected accessories, please also check the accessories. If any damage of the inverter or the accessories was found, please contact you supplier promptly or directly call 09327444043 / 09824692665.

Inverter use announcements

Motor insulation check

Motor insulation check should be conducted first, before first long time laydown then reuse and periodic inspection, in order to prevent inverter from damage due to motor winding insulation failure. Make sure that motor cable is disconnected from inverter when do isulation check, 500V voltage type megohmmeter is recommended, and should guarantee the measured resistance is no less than 5 megohm.

Thermal protection of motor

If the capacity of the chosen motor does not match with rated capacity of inverter, expecially if inverter's rated capacity is larger than motor's rated capacity, be sure to adjust motor protection parameters in inverter, or add thermal relay before the motor in order to protect motor.

Running above power frequency

The inverter's output frequency range is 0Hz~600Hz, If customers negative run inverter above 50 Hz, please consider the mechanical devices' bearing capacity.

Mechanical devices' vibration

At some output frequencies, inverter may reach the mechanical resonance point of the load device, then avoid by setting the parameters of the jump frequency.

Motor heat and noise

The inverter outputs PWM voltage wave, with a certain mount of harmonics, so that motor temperature rise, noise and vibration will increase slightly comparing with running under power frequency condition.

♦ Voltage sensitive devices and capacitors to involve power factor are prohibited.

The innverter outputs PWM wave, if voltages ensitive devices and capacitors to improve power factor are connected to the output circuit, it will bring about instantaneous large current or even damage to inverter, please do not use.

◆Contactor installed between the inverter input and output is not allowed to be used to control start/stop of inverter. When it is necessary to be used to control start /stop of inverter, there should be an interval of no less than an hour. Frequently charge and discharge may reduce the life of the capacitors in inverter. If switching devices such as contactors are equipped between inverter output end and motor, should ensure that the inverter with no output when on/off operation is conducted, otherwise may easily lead to the inverter inner module damage.

Use beyond rated voltage

Our inverters are not suitable for usage beyond the allowable operating voltage range which is stipulated by the manual, otherwise the inverter inner components might be easy to damage. If it is necessary, please use the appropriate boost or buck units to achieve.

Three-phase input used as two-phase input

Do not allow to use three-phase inverter of this series as two-phase input, otherwise fualt may occur or the inverter might be damaged.

Please Register to remove stamp

◆Lightning surge protection

The series inverters have built-in lightning over-current protection device, with a certain degree of self-protection capability for lightning. Customers in areas where lightning occurs frequently should install protection devices before inverter.

Altitude and derating use

For altitude above 1000m areas, the heat dissipation get worse due to the thin air, it is necessary to use by derating.Please consult our company if you encounter this kind of situation.

♦Some special use

If customers need to use wiring methods other than the recommended wiring diagram provided in this manual, such as the common DC bus, please consult our company.

Inverter scrap announcements

-) Electrolytic capacitors in the inverter may explode when burn.
-) Plastic, rubber and other matierals of inverter may give out harmful poisonous gases when burn, please take special care.

•) Dispose inverter as industrial waste.

Adaptive motor

•) Please choose four-pole squirrel cage induction motor as standard adaptive motor, otherwise please be sure to choose inverter according to motor's rated current. For occasions of driving permanent magnet synchronous motor, please consult us.

•) Cooling fan of the non-inverter motor and rotor shaft are coaxiate connected, so fan's cooling effect reduces as speed decreases, therefore, exhaust fan should be equipped when motor overheating occurs or replaces with variable-frequency motor.

•) The inverter has already built in standard parameters of adaptive motor. According to actual situation, there is need of doing motor parameter recognization or personalization default values setting to line with the actual value, otherwise it will affect performance and protective properties.

•) Cable or motor inner short circuit may lead to inverter alarm, even blow up. Therefore, insulation short-circuit test should be carried out on initial installation of the motor and cable, this test also need to be conducted in routine maintenance.Note: Be sure to cut off the connection between inverter and testing parts before test. Please read this manual carefully before use the inverter, comprehend every item in order to use correctly. This manual is a random accessory, be sure to appropriately preserve after use, for viewing at any time.

Safety precaution

Description of safety marks:

Danger: The misuse may cause fire, severe injury or even death.

Note: The misuse may cause medium or minor injury and equipment damage.

∎Use

• Do not use the damaged or uncompleted inverter, otherwise, injury may occur!

•Please use the motor above isolation class B, otherwise, electric shock may occur!

•This series of inverter is used to control the variable-speed operation of three-phase motor and cannot be used

for single-phase motor or other applications. Otherwise, inverter failure or fire may be caused.

• This series of inverter cannot be simply used in the applications directly related to the human safety, such as the medical equipment.

•This series of inverter is produced under strict quality management system. If the inverter failure may cause severe accident or loss, safety measures, such as redundancy or bypass, shall be taken.

Goods acceptance

•Check carefully whether damage or savage unloading was made to the goods, Ifsrews loose or lack parts is found, the inverter cannot be installed. Otherwise, even biggerubse or accident may be caused.

Installation environment

•When inverter is installed in a control cabinet the cabinet should equip with ventilation cooling fan meeting inverter requirement, to ensure the inner temperature of the cabinet below 50°C. Must make internal hot air smoothly discharge, and cold air inflowment the cabinet, so as to extend the service life and stable operation for users' use!

- Prevent cable cuts or screws entering the inverter, otherwise the inverter maybe damaged!
- •Please install on apyrous material like metal, keep away from flammable materials, otherwise, fire may occur!

Wiring

Danger:

- The wiring must be conducted by qualified electricians. Otherwise, electric shock mayoccur.
- Inverter must be disconnected with power supply be breaker, otherwise, fire alarm may occur.
- •Please make sure the power supply is off before wiring, otherwise, electric shock may occur.
- •The grounding terminal —EI must be reliably grounded, otherwise, inverter shell may be electrified and exits the risk of electric shock.

• Main circuit terminals must be carefully checked. Wiring must be operated in accordance with the formal wiring standard. Shall not cheat on workmanship and materials or operate not according to the ruls. Avoid short circuit or terminal contact undesirable caused fever leads to fire or damage to the equipment.

Wiring

•The three-phase power supply cannot connect to output terminals U/T1, V/T2 and W/T3, otherwise, the inverter may be damaged.

•It is forbidden to connect the output terminal of the inverter to the capacitor or LC/RC noise filter with phase lead, otherwise, the internal components of the inverter may be damaged.

•Please confirm that the power supply phases, rated voltage are consistent with that of the nameplate, otherwise, the inverter may be damaged.

•Do not perform dielectric strength test on the inverter, otherwise, the inverter may be damaged.

•The wires of the main circuit terminals and the wires of the control circuit terminals shall be laid separately or in

a square-crossing mode, otherwise, the control signal may be interfered.

•The wires of the main circuit terminals shall adopt lugs with insulating sleeves.

•The inverter input and output cables with proper sectional area tail be selected according to the inverter power.

•When the length of the cables between the inverter and the motor is more than 100m, it is suggested to use

output reactor to avoid the inverter failure caused by the overcurrent of the distribution capacitor.

• Inverter with standard configuration of DC reactor must connect DC reactor between $\oplus 1, \oplus 2$ terminals, otherwise inverter will do not disply after power on.

Check before operation

Danger:

•Please confirm whether power source voltage coincides with the inverter voltage, input andoutput wiring is correct, and check carefully whether there is short in the peripheral circuit, the circuit is fastened, otherwise inverter may be damaged!

Inverter needs no withstand voltage test which has been done before delivery, otherwise electric shock may occur!

 Make sure that all the peripheral accessories are connected according to the circuit diagram provided by the manual, otherwise electric shock may occur!

Charged commissioning

•Close the cover board then power on, otherwise electric shock may occur!

•Power supply can only be connected after the wiring is completed and the cover is installed. It is forbidden to remove the cover in live condition, otherwise, electric shock may occur.

•When the inverter is powered on, even when it is in the stop state, the terminals of the inverter are still live. Do not touch the inverter terminals, otherwise electric shock may be caused.

•The failure and alarm signal can only be reset after the running command has been cut off. Otherwise, personal injury may be caused.

Please Register to remove stamp

•Early on powering on, inverter carries out security detection to peripheral circuit automatically, at the moment,

do not touch the U、V、W terminals or motor terminals, otherwise electric shock may occur!

Note:

•When auto failure reset or power failure restart function is set, isolation measures shall betaken for the mechanical equipment, otherwise, personal injury may be caused.

•When it is used on lifting equipment, mechanical contracting brake shall also be equipped.

•Do not control the inverter's start/stop by connect/disconnect the power supply, otherwise equipments might be damaged!

•Do not touch the inverter terminals (including the control terminals), otherwise electric shock may occur!

If parameters recognition is needed, please note that the motor may hurt people during revolving, otherwise accident may occur!

•Do not chang factory parameters of the inverter at discretion, otherwise equipments might be damaged!

•If restart function was chosen, please keep away from the machines, otherwise human in the machines of the machines human in the machines human human

• Do not touch the cooling fan or the discharge resistor, otherwise burn may occur!

• In the applications with industrial frequency and variable frequency switching, the the transformation of the industrial frequency and variable frequency switching shall be interlocked.

■Maintenance, inspection

Danger:

•In the power-on state, please do not touch the invertee terminals, otherwise, there exists therisk of electric shock.

•If cover is to be removed, the power supply must be disconcepted first.

•Wait for at least 10 minutes after power off or confirm that the CHARGE LED is off before the maintenance and

inspection to prevent the harm caused by the residual voltage of the main circuit electrolytic capacitor to persons.

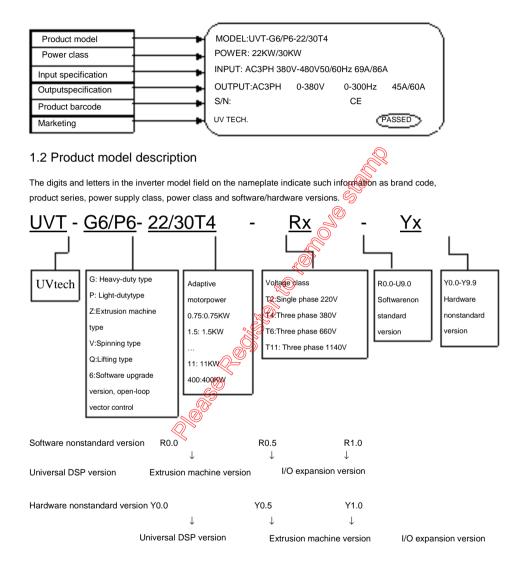
•The components shall be maintained, inspected meplaced by qualified electricians.

Note:

• The circuit boards have large scale CMOS OF: Please do not touch the board to avoid the circuit board damage caused by static.

Danger:

•It is forbidden to modify the inverter unauthorizedly, otherwise, personal injury may becaused.


Contents

Preface	1
Chapter 1 Introduction to G6/P6 Series Inverter	18
1.1 Product nameplate description	18
1.2 Product model description	18
1.3 Series model description	18
1.4 Technical specifications of product	
1.5 Description of each part of the product	22
1.6 Installation dimension figures of inverter	22
1.7 Description of optional accessories	25
1.7.1 Option description of DC reator	25
1.7.2 Braking resistor selection guideline	
1.7.3 Braking resistor connection description	
1.8 Connection description of extrusion machine's signal Board	27
Chapter 2 Inverter Installation	28
2.1 Installation environment	
2.2 Mounting direction and space	
2.3 Removal and mounting of operating panel and cover	
2.3.1 Removal and mounting of operating panel	29
2.3.2 Removal and mounting of covers of inverter with plastic enclosure	
2.4 Connection peripheral devices	30
2.5 Description of peripheral devices for main circuit	31
2.6 Lectotype of main circuit peripheral devices	31
2.7 Product terminal configuration	
2.8 Function of main circuit terminals	
2.9 Matters for attention for main circuit wiring	
2.9.1 Power supply wiring	
2.9.2 Motor wiring	
2.9.3 Grounding wiring	35
2.9.4 Countermeasures for conduction and radiation interference	35
2.10 Terminal wiring	37
2.10.1Control circuit and main circuit connection	37
2.10.2 Arrangement sequence of the control circuit terminals	38
2.10.3 Description of control circuit terminals	
2.10.4 Analog input terminals	39
2.10.5 Wiring mode of the multi-functional input/output terminals	40
2.10.6 Wiring mode of digital output terminal adopts internal and external power supply	42
2.10.7 Description of control circuit jumper and other interfaces	42
Chapter 3 Using Instructions of InverterOperation	
3.1 Introduction to operation panel	43
3.2 Descriptions of indicators	43
3.3 Descriptions of keys function	
3.4 Nixie tube Display and character recognition	44
3.5 Operation approch	45

Chapter 4 List of Function code		46
Chapter 5 Description of Function Code		57
5.1 Basic functional parameter		57
5.2 Motor parameters		65
5.3 V/F curve setting and torque adjustment parar	neter	65
5.4 Multi-function terminal parameter		68
5.5 Multi-step speed and simple PLC		75
5.6 PID control paranmeter		78
5.7 Traverse control parameter		
5.8 Serial communication 485 parameter		80
5.9 Parameter of internal counter, timer		81
5.10 Missing phase protectionof input and output.		82
5.11 Password protection and initialization parame	er	82
Chapter 6 Fault Alarm and Countermeasures		
6.1 Fault and Alarm		85
6.1.1 Fault indication and fault reset		
6.2 Fault alarm and contermeasures	-	
6.3 Solutions of common fault	\sim	
6.3.1 No display after power on		
6.3.2 Motor does not run after inverter ran		
Chapter 7 Serial 485 (MODBUS) Communication P		
7.1 Composition of MODBUS communication	······	88
7.1.1 Interface mode		88
7.1.2 Communication network mode		
7.2 Message Format		
7.3 MODBUS massege example	<u> </u>	90
7.3.1 Read register contents		90
7.3.2 Loop test		92
7.3.3 Write in of multiple memory registers		93
7.3.4 Data save directive		94
7.3.5 Broadcast sending data		
7.4 Slave inverter		
7.4.1 Directive data		
7.4.2 Monitoring data		95
7.4.3 Setting data		95
7.4.4 Testing data		95
7.5 Master Inverter		95
7.6 MODBUS communication error code		
7.7 No Response Fault Inspection of Slave Machin		
Chapter 8 Repair and Maintenance		
8.1 Periodic Inspection		
8.2 Components replacement age limit		
8.3 Warranty Description		

Chapter 1 Introduction to G6/P6 Series Inverter

1.1 Product nameplate description

1.3 Series model description

	- 000,000		-					V.cor	etant	torque		v dut			
applicat	,	1121	niee l	JIIase	singi	e pria:	Sezzu	V COI	Istant	loique	/neav	y-uut	y		
	Power (KW)		.4	0	.75		1.5	T -	2.2		3.7	T	5.5		7.5
	e motor power (KW)	-	.4	 	.75	+	1.5	+	2.2	+	3.7	+	5.5	+	7.5
, idap int	Voltage (V)							<u> </u>		_	-	_	0.0	_	
Output	Rated current (A)	┢	Three phase 0 to rated input voltage 3 4.7 7.3 11 17 24 30												30
Output	Overload capacity	┢						% 10cc		200% tr		stop			00
	Rated	╋	150% 1 minute; 180% 10seconds; 200% transient stop												
	voltage/frequency	1	Three phase/single phase 210 to 230V; 50/60Hz												
Input	Allowable voltage	+													
	range	1	DC 254-380V; Voltage unbalancedness ≤3%; allowable frequency fluctuation: "5%												
	Rated current (A)	2	.9	3	.8		5.7	8	3.25		3.5		19.5		25.5
	Braking unit						E	Built-in a	as stan	lard					
P	rotection class							_	P20	Ø					
(Cooling mode			Self-	cooling			Force	d air c	vectior	o cooling	J			
								. () 74						
G6-	III T4	-	r –	•			<u> </u>	a	, T	ty app	_				-
		0.75	1.5	2.2	3.7	5.5	7.5		-		2 3		_		75
Adaptive	e motor power (KW) Power (KW) Voltage (V)	0.75	0.75 1.5 2.2 3.7 5.5 7.5 15 18.5 22 30 37 45 55 75 Three phase 0 torated input voltage												
Output	Rated current (A)	2.5	3.8	5.5	9	13 📈				30	ige 6	0 7	5 90	110) 15
	Rated	2.5	0.0	0.0	5			45 1		30				, , , , , , , , , , , , , , , , , , , ,	, 10
	voltage/frequency	Three phase 380V to 480V; 50/60Hz													
Input	Allowable voltage														
	range		DC 460-780V; Voltage unbalancedness ≤3%; allowable frequency fluctuation: "5%												
	Rated current (A)	3.5	6.2		Ì	14	21		27	39		50	60		20
	Braking unit		69 Biff-in as standard 125 150 Built-in as option												
P	rotection class	⊢	G	8					P20						
	Cooling mode		Ň					orced fa							
	ng:Three phase 400\ abinet,220KW stand		~		-		plicatio	n (Not	e:for 1	32KW	and ab	ove pr	oducts	, DC	
		90	<u> </u>	132	160	· · ·	200	220	250	280	215	255	400	450	500
	Power (KW) daptive motor	90	110	132	100	185	200	220	250	200	315	355	400	450	500
	power (KW)	90	110	132	160	185	200	220	250	280	315	355	400	450	500
	Voltage (V)					Thre	e phas	e 0 to ra	ated inp	ut voltag	le				
Output	Rated current (A)	180	210	253	310	350	38	¢	430	480		680	750	800	900
	Rated					- 530		0							
	voltage/frequency					Thre	ee phas	e 380V	to 480	/;50/60⊦	z				
Input	Allowable voltage range		DC 460) to 780	√; Volta	ge unba	alanced	ness≤3°	%; allov	able fre	quency	fluctuati	ion: ±5%	6	
															_

G6/P6 High-performance Vector Inverter

User Manual

Braking unit	External DC braking
Protection class	IP20
Cooling mode	Forced fan-ventilated

∎P6 –		□□□ T 4	Three phase 400V constant torque/light-duty	application
-------	--	----------------	---	-------------

Power (KW)		5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
	Adaptive motor power (KW)	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
Output	Voltage (V)	e (V) Three phase 0 to rated input voltagte														
Output	Rated current (A)	13	17	24	30	39	45	1.50	80	75		90	180	210	253	310
	Rated voltage/frequency					-	Three p	phase 38	0V to 4	80V;50/	60Hz					
Input	Allowable voltage range		DC 460 to 780V; Voltage unbalancedness ≤3%; allowate frequency fluctuation: "5%									_				
	Rated current (A)	19	23	.,	5	45		54	62.1		7	94.5	11	2	135	261
	Braking unit		180	261 Bui	lt-in as	80 standa	208 ard		Č	F		Built-	in as op	otion		
	Protection class															
	Cooling mode Forces Tan-ventilated															
Continuing:Three phase 400V constant torque/light-duty application Note:for 132KW and above products, DC reactor,cabinet,220KW standard configuration are seletable)																
	Power (KW)	185	200	220) 2	50	280	315	355	400	450	500				
Adaptive motor power (KW)		185	200	220	2	50	280	315	355	400	450	500				
Output	Voltage (V)						hree pl	hase 0 to	o rated i	nput vo	ltage					
Output	Rated current (A)	350	380	430) (4	7	530 50	60 800)	680		900				
	Rated voltage/frequency		Three phase 380V-480V; 50/60Hz													
Input	Allowable voltage range	able voltage DC 460-780V; Voltage unbalancedness ≤3%; allowable frequency fluctuation: "5%														
	Rated current	<u> </u>	≪	Τ	Τ									Т	Т	
	(A)*coefficient	279	316	360	3	37 4	40.1	496	567	639	684	729				
	Braking unit							Externa	I DC br	aking						
	Protection class								IP20							
	Cooling mode							Forced f	an-vent	ilated						

1.4 Technical specifications of product

|--|

	G6/P6 High-performa	ance Vector Inverter User Manual					
	Frequency control range	0~400Hz					
	Output frequency	Digital directive ±0.01% (-10°C \sim +40°C)					
	precision						
		Digital set:0.01Hz.					
	Set frequency resolution	Analog set:maximum frequencyx0.1% .					
	Speed adjustable range	1:100					
		G type:150\% rated current 60s; 180% rated current 6s; 200% rated					
Control features		current transient stop.					
		P type:120% rated current 60s;150% rated current 6s; 180% rated					
	Overload capacity	current transient stop.					
		Z type:150% rated current 60s; 180% rated current 6s; 220% rated					
		current transient stop.					
	Control mode	Open-loop VVVF control; Open-loop vector control.					
	Torque boost	Manual torque boost;auto output torgeoboost during acceleration.					
	Startup torque	0.35Hz 150%rated torque					
		Linear or S curve acc/deceleration;4 kinds of acc/deceleration time; 0.1 \sim					
	Acc/deceleration curve	3000.0s adjustable continuously					
		JOG frequency:0.00~5000hz; JOG acc/deceleration:0.1~3000.0s					
	JOG function	adjustable continuque					
		Motor parameter auto detection function, simple vector control, multi-point					
		VF curve,manualtorqueboost,auto torque boost,auto slip					
		compensation(AVR),					
		speed tracking start function, DC braking when start, DC braking when					
		stop testart after instantaneous power failure, auto fault reset, overcurrent					
	Standard function	when accelerating, overcurrent descent frequency function					
Functiondescription		at constant speed, overvoltage compression when decelerating, jump					
	Q=	⁷ frequency function, carrier frequency automatic adjustment, automatic					
		economic running, simple one drive two water supply function, 16 steps					
	Ś	multi-step speed running,simple PLC program running,traverse function					
		for spinning,closed-loop PID adjustment control.					
	Running command	3 kinds of control mode:keypadcontrol,analog terminal control,serial					
	channel	communication control					
	Frequency source	Digital set,analog voltage set,analog current set,pulse input set,serial					
	selection	communication port set; through various method to combination switch.					
		8 digital input terminals, up to 25 kinds of self-defined function, Compatible					
		with active PNP input or NPN input,one can be used as a high speed					
	Input terminal	pulse input;					
	input terminal	2 analog analogterminals, can receive voltage signals (0~10V) or current					
		signal (0~20mA);					
		2 open-collector output terminals,up to 16 kinds of self-defined function;					
		2 relay output terminals, up to 20 kinds of self-defined function					
	Output terminal	2 analog output terminals, up to 20 kinds of self-defined function; can					
		output voltage signals (0~10V) or current signal (0~20mA);					
		ouput voitage signals (0~109) of current signal (0~2011A),					

G6/P6 High-performance	Vector	Inverter
------------------------	--------	----------

Efficiency	Under rated power, 7.5KW a	nd below \geq 93%; 45KW and below \geq 95%; 55KW and above \geq 98%					
Protection function	abnormal comparison reference protection, inverter overload pu ground short circuit,output mis	vercurrent protection, overvoltage protection, interference protection, e input, self-setting failure, module protection, heatsinkovertemperature rotection, motor overload protection, abnormal current detection, output to sing phase, EEPROM abnormal, abnormal relay contact, hardware ing phase, input to ground short circuit.					
	Operating site	Indoor,sea level below 1000m,no dust,corrosivegas,and direct sunlight					
Operation	Ambient temperature	-10 ${\rm C}$ \sim +40 ${\rm C}$ (Ambient temperature is higher than 40 ${\rm C}$,plea se use in derating)					
environment	Humidity	20%~90%RH (no condensing)					
	Vibration	<0.5g					

1.5 Description of each part of the product

Fig. 1.5- Distributor of each part

1.6 Installation dimension figures of inverter

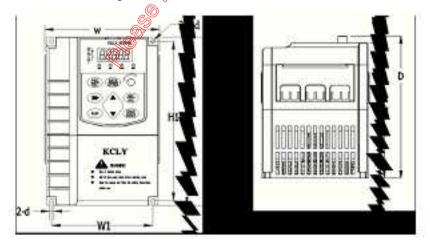


Fig. 1.6-1 Appearance and installation dimension scheme of 0.75~15KW inverter

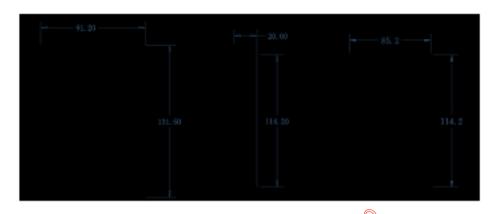


Fig. 1.6-6 Keypad pallet dimension and mounting hole

Keyboard installation method and dimension table:

0	Overall dimension		Case openin	ig size		
Length (mm)	Width (mm)	Thickness (mm)	Height (mm)	Width	Installation method	Figure
131.5	91.2	20	114.2	85.2	Button type	Fig.1.5 Fig.1.6

Three phase/single phase 200V series installation dimension table:

220V product models	W(mm)	(mm)	B(mm)	H(mm)	H1(mm)	D(mm)	D1(mm)	Mounting hole diameter (mm)	Net weight (Kg)
G6/P6-0.4T2									
G6/P6-0.7T2								φ5.0	
G6/P6-1.5T2									
G6/P6-2.2T2									
G6/P6-3.7T2									

Note:Other models are not included in the above table, please determine dimensions when place order.

GO/FO HIGH-performance vector inverte	G6/P6	High-performance	Vector	Inverter
---------------------------------------	-------	------------------	--------	----------

380V product models	W(mm) H2(mm)	W1(mm)	H(mm)	H1(mm)	D(mm) D1(mm)		Mounting hole diameter (mm)	Net weight (Kg)
G6/P6-0.75T4									
G6/P6-1.5T4	118	106.6	185	175.2		167.5	157.7	φ 4 .5	
G6/P6-2.2T4									
G6/P6-3.7/5.5T4									
G6/P6-5.5/7.5T4	160	148	247	235		187.5	177.1	φ5.5	
G6/P6-7.5/11T4									
G6/P6-11/15T4									
G6/P6-15/18T4	220	206	320	306		216	206.5	φ6	
G6/P6-18/22T4									
G6/P6-22/30T4	290	230	455	441		236.5		φ10	
G6/P6-30/37T4	1								
G6/P6-37/45T4							R		
G6/P6-45/55T4	320	230	555	536		236.6		φ10	
G6/P6-55/75T4						S			
G6/P6-75/90T4	410	320	634	611		236.6			
G6/P6-90/110T4									
G6/P6-110/132T4	1								
G6/P6-132/160T4					, O				
G6/P6-160/185T4	1							φ 1 3	
G6/P6-200/220T4	1								
G6/P6-220/250T4				м®					
G6/P6-250/280T4	1		00						
G6/P6-280/315T4	1		Ő	\sim					
G6/P6-315/350T4									
G6/P6-350/400T4	1								
G6/P6-400/450T4	1 · · ·	750	Y	1785			400		
G6/P6-450/500T4	1	Ö							

Note: The final interpretation owes to and design provider, If there are changes and update, we will notice when order is placed.

1.7 Description of optional accessories

1.7.1 Option description of DC reator

G6/P6 High-performance	Vector	Inverter
------------------------	--------	----------

laurates and la	DC reactor		Notes		
Inverter models	Built-in	extraposed	Notes		
G6/P6-0.75T4~G6/P6-5.5T4	× ×		No special instructions		
G6/P6-7.5T4~G6/P6-55T4 V		×	Inverter models		
G6/P6-75T4~G6/P6-200T4	×	~	Customers can add by their own		
G6/P6-220T4~G6/P6-355T4	V	V	Inverter models		

—√I said can, —×I said cannot.

1.7.2 Braking resistor selection guideline

When the control device driven by inverter needs to brake quickly, braking unit should be used to release the power back to DC bus when motor braking.

Braking resistor selection of different voltage classes and different power classes inverters is shown as below

(braking torque 100%) .

Inverter Models	Recommended power of braking resistor	Recommended resistance of braking
G6/P6-0.75T4	150W	≧300Ω
G6/P6-1.5T4	150W	≧220Ω
G6/P6-2.2T4	250W	≧200Ω
G6/P6-3.7T4	300W	≧130Ω
G6/P6-5.5T4	400W	≧90Ω
G6/P6-7.5T4	500W	≧65Ω
G6/P6-11T4	80000	≧43Ω
G6/P6-15T4	1900W	≧32Ω
G6/P6-18T4	4300W	≧25Ω
G6/P6-22T4	1500W	≧22Ω
G6/P6-30T4	2500W	≧16Ω
G6/P6-37T4		
G6/P6-45T4		
G6/P6-55T4	Choose according to brake unit's	Choose according to brake unit's
G6/P6-75T4	requirement and recommended value	requirement and recommended value
G6/P6-90T4]	
G6/P6-110T4		

1.7.3Braking resistor connection description

Brakingresistor connection of G6/P6 series inverters is shown as below.

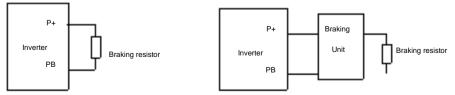


Fig. 1.7.3-1 Braking resistor installation[Below 30kW]Fig. 1.7.3-2 Braking resistor installation [Above 37kW]

1.8Connection description of extrusion machine's signal Board

UV TECH is anIO expansion optional component of extrusion machine promoted by our company, matingwith G6/P6 series inverters. It can directly inputs 0~1ADC current signals (through CI~COM terminals) or 0~24VDC voltage signals (through VI~COM terminals). After opto-couplersisolation processing, the signals can be converted into 0~10V voltage signal then internally connecting to inverterVClinterface directly through row cable, users don't need to additionally connect analog signalcable.

Note: When extrusion machine signal board is used, external analog input of Al1, Al2can not be used.

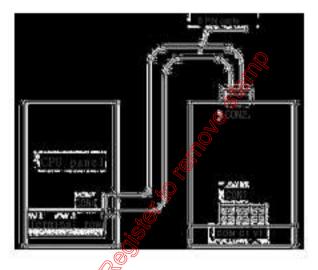


Fig. 1.8-1Connection of extrusion machine signal board

Wiringdescription of extrusionmachine:

One of the two connection mathods can be used, but cannot be used at the same time.

1. Control board of the extrusion machine outputs 0~24V voltage to injection molding signal board, VI connects positive voltage end, COM connects negative voltage end.

2. Control board of the extrusion machine outputs 0~1A current to injection molding signal board, CI connects current inflow end(Relative to signal board of extrusion machine), COM connects current outflow end(Relative to the signal board of extrusion machine).

Chapter 2 Inverter Installation

2.1 Installation environment

1. Indoor places with air-vents or ventilating devices.

2. Ambient temperature:-10°C~40°C. If the ambient temperature is greater than 40 °C but less than 50 °C, remove inverter cover board or open the front door of the installation cabinet, to facilitate heat dissipation.

3. As far as possible to avoid installing at high temperature and high humidityplaces.Humidityshould be less than 90%, and frost-free.

4. Keep out of direct sunlight.

- 5. Keep away from flammable, explosive, corrosive gas and liquid.
- 6. No dust, floating fiber or fine metal powder.
- 7. The installation plane should be strong and no vibration.
- 8. Keep away from electromagnetic interference source.

2.2 Mountingdirection and space

In order not to affect the use life of inverter and reduce its performance, should pay attention to mounting direction and surrounding space, and correctly fixed it.

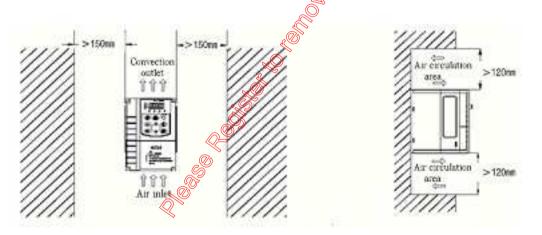


Fig. 2.2-1 Air duck ventilation

2.3Removal and mounting of operating panel and cover

2.3.1 Removal and mounting of operating panel

Fig. 2.3.1-1 Removal of operating panel

Fig.2.3.1-2 Mounting of operating panel

2.3.2 Removal and mounting of covers of inverter with plastic enclosure

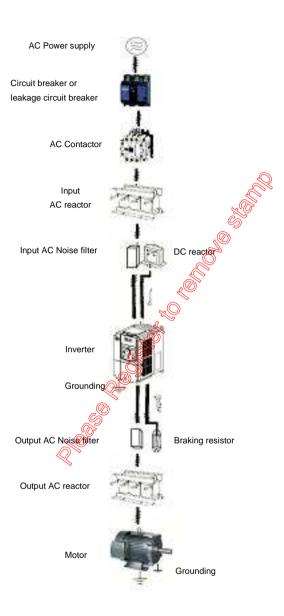

Fig.z.3.2-1 Removal of lower cover 22.2.3.2-2 Removal of upper cover

Fig.2.3.2-3 Mounting of upper coverFig.2.3.2-4 Mounting of lower cover

2.4 Connection peripheral devices

2.5 Description of peripheral devices for main circuit

	The capacity of the circuit breaker shall be 1.5 to 2 time of the rated current of the inverter.
Circuit breaker	The time features of the circuit breaker shall fully consider the time features of the inverter overload
Circuit breaker	· ·
	protection.
	Because the inverter output is the high-frequency pulse output, there will be high-frequency leakage
Leakage circuit	current. Special leakage circuit breaker shall be used when installing leakage circuit breaker at the input
breaker	end of the inverter.
breaker	It is suggested that B type leakage circuit breaker be used, and the leakage current value shall be set
	as
	300mA.
	Frequent open and close of contactor will cause inverter failure, so the highest frequency for the open and
Contactor	close of contactor shall not exceed 10 times/min.
Contactor	When braking resistor is used, to void the overtemperature damage of the braking resistor,
	thermal
	protection relay with braking resistor overtemperature detection shall be installed to disconnect
	the
	contactor at the contact control power side of the thermal protection relay.
	1. The inverter power supply capacity is more than 600kVA or 10 times of the inverter capacity.
Input AC reactor	
or DC reactor	2. If there is switch type reactive-load compensation capacitor or load with suitcon control at the same power
	node, there will be high peak current flowing into input power circuit, causing the damage of the
	rectifier
	components.
	3. When the voltage unbalancedness of the three-phase power supply of the inverter exceeds 3%, the
Input noise filter	rectifier component will be damaged.
input noise filter	4. It is required that the input power factor of the inverter shall be higher than 90%.
	When the above situations occur, install the AC reactor at the input end of the inverter or DC reactor to the
Thermal protection	DC reactor terminal.
relay	The noise input from the power end to the inverter or output from the inverter to the power end can
	be &
	reduced.
Output noise filter	Although the inverter has motor overload protection function, when one inverter drives two or more motors
	or multi-pole motors, to prevent the motor overtemperature failure, thermal protection relay shall
Output AC reactor	be
Culput AC reactor	installed between the inverter and each motor, and the motor overload protection parameter P9.16 shall be
	set as -21 (motor protection disabled).

set as -2I (motor protection disabled).

2.6 Lectotype of maine circuit perioneral coloritors noise filter, the conduction and radiation interference

	can be reduc									
	When the AC Circui	t N		U/T1, V/T2, W/T3			an 100m, it is suggested to install Grounding terminal E			
Inverter model	output reac leakage curr (A)	tor to Copparetss the			Wire Specification (mm2)	Terminal screw	Tightening torque (N·m)	Wire specification (mm2)		
G6/P6-0.4T2	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5		
G6/P6-0.75T4	25	16	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5		
G6/P6-1.5T4	32	25	M4	1.2~1.5	4	M4	1.2~1.5	2.5		
G6/P6-2.2T4	40	32	M4	1.2~1.5	6	M4	1.2~1.5	4		
G6/P6-0.75/1.5T4	10	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5		
G6/P6-1.5/2.2T4	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5		
G6/P6-2.2/3.7T4	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5		
G6/P6-3.7/5.5T4	25	16	M4	1.2~1.5	4	M4	1.2~1.5	4		
G6/P6-5.5/7.5T4	32	25	M4	1.2~1.5	6	M4	1.2~1.5	6		
G6/P6-7.5/11T4	40	32	M4	1.2~1.5	6	M4	1.2~1.5	6		

G6/P6 High-performance Vector Inverter

User Manual

		• ·						
G6/P6-11/15T4	63	40	M5	2.5~3.0	6	M5	2.5~3.0	6
G6/P6-15/18T4	63	63	M5	2.5~3.0	6	M5	2.5~3.0	6
G6/P6-18/22T4	100	63	M6	4.0~5.0	10	M6	4.0~5.0	10
G6/P6-22/30T4	100	100	M6	4.0~5.0	16	M6	4.0~5.0	16
G6/P6-30/37T4	125	100	M6	4.0~5.0	25	M6	4.0~5.0	16
G6/P6-37/45T4	160	100	M8	9.0~10.0	25	M8	9.0~10.0	16
	Circuit	Gardenter	R/L1, S/L2,	T/L3, ⊕ , U/T1, V/7	2/B1, B2, 1, W/T3	Gro	unding termina	I PE
Inverter model	breaker (A)	Contactor (A)	O Terminal screw	Tightening torque (N·m)	Wire specification (mm2)	Terminal screw	Tightening torque (N·m)	Wire specification (mm2)
G6/P6-45/55T4	200	125	M8	9.0~10.0	35	M8	9.0~10.0	16
G6/P6-55/75T4	315	250	M10	17.6~22.5	50	M10	14.0~15.0	25
G6/P6-75/90T4	350	330	M10	17.6~22.5	60	M10	14.0~15.0	35
G6/P6-90/110T4	315	250	M10	17.6~22.5	70	M10	14.0~15.0	35
G6/P6-110/1 32T4	350	330	M10	17.6~22.5	B	M10	14.0~15.0	50
G6/P6-132/160T4	400	330	M12	31.4~39.2	Ø ¹⁵⁰	M12	17.6~22.5	75
G6/P6-160/200T4	500	400	M12	31.4~39.2	185	M12	17.6~22.5	50×2
G6/P6-160/185T4	500	400	M12	31.4~39.2	185	M12	17.6~22.5	50×2
G6/P6-200/220T4	630	500	M12	48.6~59/4	240	M12	31.4~39.2	60×2
G6/P6-220/250T4	630	500	M12	48.6~59.4	240	M12	31.4~39.2	60×2
G6/P6-250/280T4	800	630	M12	48.6~59.4	150×2	M12	31.4~39.2	75×2
G6/P6-280/315T4	1000	630	M12	48.6~59.4	185×2	M12	31.4~39.2	100×2
G6/P6-315/355T4	1000	800	, MEA	48.6~59.4	250×2	M14	31.4~39.2	125×2
G6/P6-355/400T4	1200	800	MM4	48.6~59.4	325×2	M14	31.4~39.2	150×2
G6/P6-400/450T4	1500	1000	9 _{M14}	48.6~59.4	325×2	M14	31.4~39.2	150×2

2.7 Product terminal configuration

Fig. 2.7-1 Distribution of terminals

2.8 Function of main circuit terminals

G6/P6-0.4T2~G6/P6-2.2T2 andG6/P6-0.75/1.5T4~G6/P6-15/18.5T4

Fig. 2.8.1-1Wiring terminals distribution of models below 18.5KW

Terminal symbol	Terminal name and function description
⊕1/⊕2/B2	Connecting terminal of braking resistor
⊕1/B1, Ö	DC power input terminal; DC input terminal of external braking unit
۲	Grounding terminal E
R/L1, S/L2, T/L3	Three-phase AC input terminal
U/T1, V/T2, W/T3	Three-phase AC output terminal
G6/P6-18.5/22T4 ~G6/P6-	.75/90T4

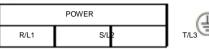
R/L1	S/L2	T/L3	⊕1	⊕2	Θ	Q.	U/T1	V/T2	W/T3
POWER			OPTION		E		MOTOR		

Terminal symbol	Terminal name and function description
R/L1, S/L2, T/L3	Three-phase AC input terminal
⊕1, ⊕2	DC reactor connecting terminal short circuited with copper bus upon delivery.
⊕2, O	DC power input terminal BC output terminal of external braking unit
U/T1, V/T2, W/T3	Three-phase AC capputerminal
Ð	Grounding terminal PE

Internal braking unit option for G6/P6-18 52274~G6/P6-75/90T4

				y *						
R/L1	S/L2	T/L3	B1	>	B2	Φ	Ð	U/T1	V/T2	W/T3
POWER			0	PTION		E		MOTOR		

Terminal symbol	Terminal name and function description			
R/L1, S/L2, T/L3	Three-phase AC input terminal			
в1, Ө	DC power supply input terminal			
B1, B2 [•]	Connecting terminal of braking resistor			
U/T1, V/T2, W/T3	Three-phase AC output terminal			
⊕	Grounding terminal PE			


Note:Products with tandard built-in braking unit can realize DC bus and braking function at the same time, if DC reactor and braking function are needed to be realized at the same time, please contact the

manufacturer. Meanwhile, main circuit terminals B4B2, are correspondingly changed to $\oplus 1, \oplus 2/B1, B2$.

G6-90T4~G6-400T4 and P6-110T4~P6-450T4

G6-90T4~G6-400T4 and P6-110T4~P6-450T4inverters employ top in bottom out wiring

type

⊕1	⊕2	Θ
	OPTION	

1	7	7
	Ξ	E)
	((1

U/T1	V/T2	W/T3
	MOTOR	

Terminal symbol	Terminal name and function description
R/L1, S/L2, T/L3	Three-phase AC input terminal
⊕1,⊕2	Connecting terminal of DC reactor;if don't connectreactor,interter do not display after power on
⊕2, ⊖	DC power supply input terminal;DC output terminal of external braking unit
U/T1、V/T2、W/T3	Three-phase AC output terminal
Ð	Grounding terminal PE

2.9 Matters for attention for main circuit wiring

2.9.1 Power supply wiring

◆It is forbidden to connect the power cable to the inverter atout terminal, otherwise, the internal components of the inverter will be damaged.

◆To facilitate the input side overcurrent protection and over failure maintenance, the inverter shall connect to the power supply through the circuit breaker or leakage circuit breaker and contactor.

◆Please confirm that the power supply phases to voltage are consistent with that of the nameplate, otherwise, the inverter may be damaged.

2.9.2 Motor wiring

◆It is forbidden to short circuit or ground the inverter output terminal, otherwise the internal components of the inverter will be damaged.

Avoid short circuit the output cable and the inverter enclosure, otherwise there exists the danger of electric shock.

◆It is forbidden to connect the output terminal of the inverter to the capacitor or LC/RC noisefilter with phase lead, otherwise, the internal components of the inverter may be damaged.

♦When contactor is installed between the inverter and the motor, it is forbidden to switch on/off the contactor during the running of the inverter, otherwise, there will be large current flowing into the inverter, triggering the inverter protection action.

Length of cable between the inverter and motor

If the cable between the inverter and the motor is too long, the higher harmonic leakage current of the output end will cause adverse impact on the inverter and the peripheral devices. It is suggested that when the motor cable is longer than 100m, output AC reactor be installed. Refer to the following table for the carrier frequency setting.

Length of cable between the inverter and motor	Less than 50m	Less than 100 m	More than 100m
Carrier frequency (PA.00)	Less than 15kHz	Less than 10kHz	Less than 5kHz

2.9.3 Grounding wiring

◆The inverter will produce leakage current. The higher the carrier frequency is, the larger the leakage current will be. The leakage current of the inverter system is more than 3.5mA, and the specific value of the leakage current is determined by the use conditions. To ensure the safety, the inverter and the motor must be grounded.

◆The grounding resistance shall be less than 10ohm. For the grounding wire diameter requirement, refer to 2.6lectotype of main circuit peripheral devices.

◆Do not share grounding wire with the welding machine and other power equipment.

In the applications with more than 2 inverters, keep the grounding wire from forming a loop.

Fig. 2.9.3-1 Correct and wrong connection grounding wiring

2.9.4 Countermeasures for conduction and radiation interference

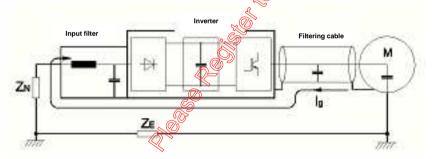


Fig. 2.9.4-1 Conection of onduction and radiation interference solutions

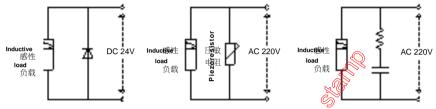
When the noise filter is installed, the wire connecting the filter to the inverter input power end shall be as short as possible.

◆The filter enclosure and mounting cabinet shall be reliably grounded in large area to reduce the back flow impedance of the noise current Ig.

◆The wire connecting the inverter and the motor shall be as short as possible. The motor cable adopts 4-core cable, with the grounding end grounded at the inverter side, the other end connected to the motor enclosure. The motor cable shall be sleeved into the metal tube.

- The input power wire and output motor wire shall be kept away from each other as long as possible.
- The equipment and signal cables vulnerable to influence shall be kept far away from the inverter.
- ♦Key signal cables shall adopt shielding cable. It is suggested that the shielding layer shall be grounded with

360-degree grounding method and sleeved into the metal tube. The signal cable shall be kept far away from the

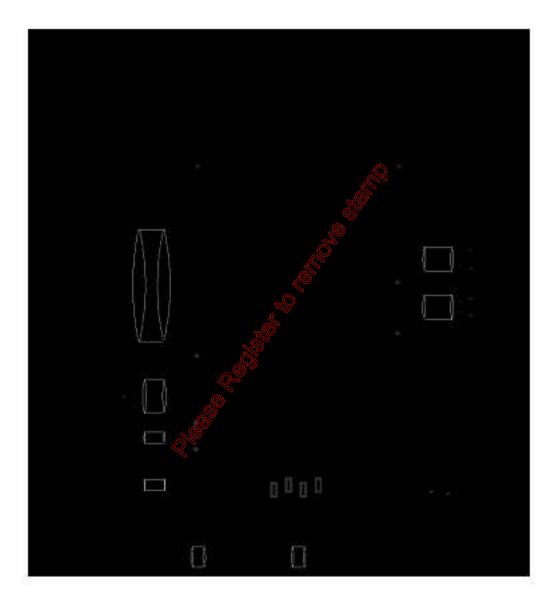

inverter input wire and output motor wire. If the signal cable must cross the input wire and output motor wire, they shall be kept orthogonal.

♦ When analog voltage and current signals are adopted for remote frequency setting, twinning shielding cable shall be used. The shielding layer shall be connected to the grounding terminal PE of the inverter, and the signal cable shall be no longer than 50m.

◆The wires of the control circuit terminals RA/RB/RC and other control circuit terminals shall be separately routed.

It is forbidden to short circuit the shielding layer and other signal cables and the equipment.

♦When the inverter is connected to the inductive load equipment (e.g. electromagnetic contactor, relay and solenoid valve), surge suppressor must be installed on the load equipment coil, as shown in Fig.3-5.



36

2.10 Terminal wiring

2.10.1Control circuit and main circuit connection

2.10.2Arrangement sequence of the control circuit terminals

2.10.3 Description of control circuit terminals

Туре		Terminal symbol	Terminal function description	Technical specification	Туре
		+10V	Analog 10V power supply	Output capacity: below 50mA	
	Analog	Al1	Analog frequency setting 1	DC: 0~10V or 0.20 mA (resolution 1/1000)	
	input	AI2	Analog frequency setting 2	DC: 0~10V or 0-2000 (resolution 1/1000)	
		GND	Analog common port	ov	
		X1/RUN	Multi-function input terminal X1/RUN	Leave factory setting: forward running	
		X2/REV	Multi-function input terminal X2/REV	Leave factory setting: reverse running	
	Digital input	ХЗ	Multi-function input terminal	Leave factory setting: multi-step speed terminal 1	Photo coupler isolation:
Input terminal		X4	Multi-function input terminal	Leave factory setting: multi-step speed terminal 2	DC24V/8mA When external
		X5	Multi-function in the terminal	Leave factory setting: multi-step speed terminal 3	Power supply is used, voltage
		X6/JOG	Multi-function nput terminal	Leave factory setting: forward JOG	range: 9 \sim 30VX8 can be set as high speed
		X7/RST	Mutti-Junction input terminal X7/RST	Leave factory setting: fault reset	pulse input terminal,maximum input
		X8/DI	Multi-function input terminal X8/DI	Leave factory setting:defaut pulse input	is 50KHZ.
			+24V	DC24V power supply positive end	Mating with —digital inputl,Idigital
		СОМ	DC24V power supply negtive end	outputi to use	
		AO1	Analog monitoring output 1	Voltage or current output; Leave factory setting:output frequency	Output capacity:
Output terminal	Analog output	AO2	Analog monitoring output 2	Voltage or current output; Leave factory setting:output current	Voltage: 0~10V, below 2mA; Current: 0~20mA,
		GND	Analog monitoring common port	0V	below 10V

	nverter User Manual					
		Y1	Photo coupler output 1	Leave factory setting: inverter running	Open collector output;	
	Digital output	Y2	Photo coupler output 2	Leave factory setting: running frequency reaches set value	Photo coupler output capacity:	
		сом	Photo coupler output common port	0V	DC36V,below 50mA .	
		RA1RA2	A node output	Leave factory setting: shutdown fault		
	Relay	RB1RB2	B node output	occur during running RA—RC: Normally closed RB—RC: Normally open	Node capacity: AC250V, below 2A ; DC30V,below 1A.	
	output	RC1RC2	Node point output common port			
		+24V	DC24V power supply positive end	Leave factory standard: +24V short	Output capacity: below 500mA; +24V short	
Power supply		PW	Multi-function input common port	circuit with PW by short or out plate	circuit with PW by short circuit plate when leave factory.	
		+485	RS485 communication port +	Ś		
Communica	Communication		RS485 communication port -	RS485 interface for MODBUS	MEMOBUS protocol Max38.4kBPS	
		GND	485 common port			

2.10.4 Analog input terminals

Voltage signal of analog input is vulnerable to outside interference, Please use shielding cable, and ensure that the shielding cable reliably grounding. The cable should be as hort as possible, and keep away from power lines. Serious interference occasions, you might consider to act a filter capacitor or ferrite core in signal cable.

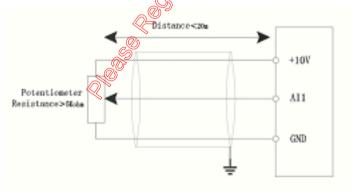


Fig. 2.10.4-1 Wiring of analog input terminals

2.10.5 Wiring mode of the multi-functional input/output terminals

■When the internal +24V power supply of the inverter is used

► The digital input adopts NPN sink current wiring mode. Terminal +24V short circuit with terminal PW; COM is common port.

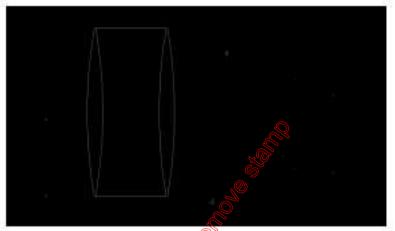


Fig. 2.10.5-1 Wiring of NPN transistor input (COM is common port)

The digital input adopts PNP draw-off current wiring mode.

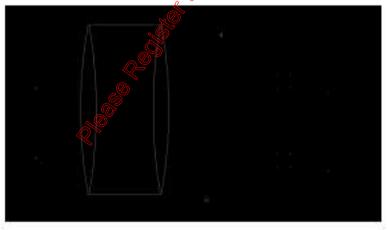


Fig. 2.10.5-2 Wiring of PNP transistor input

Note: The short circuit plate between terminal +24V and terminal PW must be removed. And connect the shot circuit plate between terminal PW and terminal COM.

■When the external power supply is used

► The digital input adopts NPN sink current wiring mode.External 24V power supply is used, terminal COM is common port.

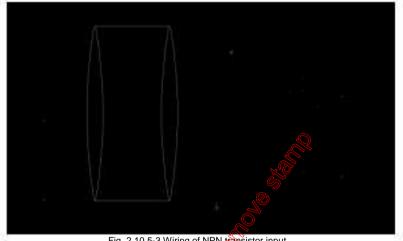


Fig. 2.10.5-3 Wiring of NPN transistor input

Note: The short circuit plate between terminal P24 and terminal PLC must be removed.

When PNP draw-off current wiring mode is adopted, negative end of external power supply connects to terminal PW;Positive end of the external power supply is common port.Voltage range of external power supply is 9∼30V.

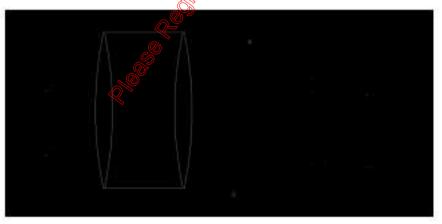


Fig. 2.10.5-4 Wiring of NPN transistor inputdraw-off current

- 2.10.6 Wiring mode of digital output terminal adopts internal and external power supply
- ▶ Wiring mode of digital output when open-collector output Y1,Y2 adopts internal +24V

Fig.2.10.6-1Digital output adopts internal power supply

Wiring mode of digital output when open-collector output Y1,Y2 adopts external gover supply

Note: When external power supply is adopted, please connect negative end of external power supply with terminal COM.Maximun current of open-collecter output is 5000. If external load is relay, please parallel a fly-wheel diode with it. Please correctly install the fly-wheel diode, where inverter internal panel and DSP can be damaged.

2.10.7 Description of control circuit jumper and other interfaces

Name	Function description	Leave factory setting
Al1 jumper	Select Al1 analog input quantity:V voltage 0~10V; I current 0~20mA	0-10V
Al2 jumper	Select Al2 analog inputquantity:V voltage 0~10V; I current 0~20mA	0-20mA
AO1 jumper	Select AO1 to output analog quantity:V voltage 0~10V; I current 0~20mA	0-10V
AO2 jumper	Select AO2 to output analog quantity:V voltage 0~10V; I current 0~20mA	0-20mA
CN5 interface	Keypad interface	
CN6 interface	Dedicated interface for extrusion	

Fig. 2.10.7-1Description of control circuit jumper and other interfaces

Chapter 3 Using Instructions of InverterOperation

3.1 Introduction to operation panel

3.2 Descriptions of indicators

Symbol of	indicator	Name	State description
	Hz	Frequency indicator	On: Current display parameter is set frequency Flash: Current display parameter is running frequency
	А	Current indicator	On Current display parameter is current
Unit indicator	v	Voltage indicator	of Current display parameter is voltage
l II	Hz+A	speed indicator	On: Current display parameter is speed
U	Hz+V	PID mode indicator	On: Current given mode is PID closed-loop given Flash: Current feedback mode is PID closed-loop feedback
	Hz+A+V	Inverter temperature value indicator	On: Current detected temperature value of inverter inner
	RUN	Running status indicator	On: Inverter is in running or JOG state Flash: Inverter is decelerating to stop Off: Inverter is in stop state
Status indicator	DIR	Run reverse indicator	On: Inverter is in reverse state Flash: Inverter is forward & reverse switching Off:IInverter is in forward state
Statu	LOCAL	Running command given mode indicator	On: Operation panel control mode (local control) Off: Terminals or serial communication control mode
	TRIP	Fault alarm indicator	On: Minor fault prealarm (overcurrent, overvoltage) Off: Outputcurrent of inverter and bus voltage are normal.

3.3 Descriptions of keys function

Кеу	Name	Function
PRC	Monitoring key/Exit key	.Used for switching system to monitoring state 2.Exit to the previous page 8.Clear alarm when the inverter is in alarm state
DATA ENTER	Data key/Confirm 1. key	Enter each level of menu 2. Confirm the modified data
	Shift key	. Under quick monitoring mode,switch the monitoring parameter 2. When modify data, switch bit; 8. Add by decade when modify function code (only valid for P0 group.)
	UP key	Increase function code or data.
	DOWN key	Decrease function code or data.
М	Multi-function key	According to function code (FU.114) to realize one of the following functions: I.Unsed 2.Change inverter running direction 3. When inverter is in JOG state best the key, JOG stop.
RUN	Run key	Inder keypad control moder we key start inverter running.
STOP RESET	Stop key/Reset key	. When inverter is in remail running state, stop inverter running. 2. When inverter in fault state, reset the fault. According function code can realiza emergency stop function.(Equal to external ault input).

3.4 Nixie tube Display and character recognition

It is comprised of 5 6-bit nixie tubes, to display set that value. The relationship between LED displayed symbols and characters are as follows:

LED display	Symbol meaning		Symbol meaning	LED display	Symbol meaning	LED display	Symbol meaning
				⊒.		о ^в ,	S
١ ا		۳.		s= .		<u>_</u>	Т
0 0_		-8_		=8.		Ē.	t
8 .		<u> </u>		<u> </u>		-	U
Į.		<u>م</u>		Ĉ.		0 <u>_</u> 0	V
a 0		8_				•	у
D				ĉ.		€.	
8— .		-°.		 ^_			8.
				<u> </u>		Ĵ	· .
ο _		ſ.		ņ			

3.5 Operation approch

Inverter has 5 kinds of operation state in all,as shown below:

Operation state	Main contents
м	Multi-function key, function state is set by FU.114.
Quick monitoring	Quick monitor 13 kinds of running state, including set frequency,output frequency,outputcurrent.
Function code setting	Modification of function code.FU function group of first level menu.
Information inquiry	Inquiry of inverter information, running state. FE function group of first level menu.
Fault alarm reset	Inverter fault alarm display and reset.
Quick modifying of keypad digital setting	When frequency setting source adopts keypad digital setting, quik modifying set frequency.(UP,DOWN function)

.gual setting.quik rr

Chapter 4 List of Function code

O of modification item indicates cannot be modified during running; while O indicates that can be modified during

running. The address item is register address of MODBUS protocol.

Code	Function code name	Function code selection	Setting range	Factory setting	modifiable	Address
Basic function	n	1	· · · · · ·			
FU.000	Type setting	0:G 1:P	0~1	0	O	оон
FU.001	Speed control mode	0:VVVF control 1:Open-loop vector control 2:Reserve 3:Reserve	0~3	0	Ø	01H
FU.002	Running directive given mode	0:Keypad control 1:Analog terminal control 2:Serial 485 communication control	OR OF	0	0	02H
FU.003	Frequency A directive selection	0:Keypad analog potentiometer 1:Digital given (keypad,terminal UP/DOWN) 2:Al1 3:Al2	0-8	0	0	03H
FU.004	Frequency directive B selection	4:Pulse input 5:Multi-step speed 6:RS485 setting 7:PLC running 8:PID	0~8	0	0	04H
FU.005	Combound mode of frequency source setting	0:A frequency directive 1:B frequency directive 2:AFP 2:MAX (A,B) 4:MIN (A,B)	0~4	0	0	05H
FU.006	Gain of frequency directive A	0.10~10.00	0.1~10	1.00	0	06H
FU.007	Gain of frequency directive B	0.10~10.00	0.1~10	1.00	0	07H
FU.008	Frequency setting of digital keypad	0.00~400.00Hz	0.00~600	50Hz	0	08H
FU.009	UP/DOWN digital given speed	0.01~100Hz/S	0.01~100	1.00Hz/S	0	09Н
FU.010	Valid selection of UP/DOWN function key	0:Invalid 1:Valid,don't save after power off 2:Valid,save after power off	0~2	1	O	0AH

G6/P6 High-performance Vector Inverter

		'6 Hign-performance Vector Inverter	User Manua			
FU.011	Upper limit of running frequency	0.00Hz~400.00Hz	0~400	50.00Hz	0	0BH
FU.012	Lower limit of running frequency	0.00Hz~400.00Hz	400~0	0.00Hz	0	осн
FU.013	Running mode when upper limit frequency is lower than lower limit frequency	0:Running at lower limit frequency 1:Standby (0Hz output)	0~1	0	0	ODH
FU.014	Acceleration time 1	0.1~3000.0s	0.1~3000	Depends on type	0	0EH
FU.015	Deceleration time 1	0.1~3000.0s	0.1~3000	Depends on type	0	0FH
FU.016	Acceleration time 2	0.1~3000.0s	0.1~3000	20s	0	10H
FU.017	Deceleration time 2	0.1~3000.0s	0.1~3000 🔗	20s	0	11H
FU.018	Acceleration time 3	0.1~3000.0s	0.1~3000	20s	0	12H
FU.019	Deceleration time 3	0.1~3000.0s	0.1~3000	20s	0	13H
FU.020	Acceleration time 4	0.1~3000.0s	0 1 ~3000	20s	0	14H
FU.021	Deceleration time 4	0.1~3000.0s	1~3000	20s	0	15H
FU.022	Carrier frequency	1.0~10.0KHz	1~10	Depends on type	0	16H
FU.023	Auto-adjustment selection of carrier frequency	0:Non auto-adjustment 1:Auto-adjustment	0~1	Depends on type	O	17H
FU.024	Revolving direction control	0:Running in defaut divertion 1:Running in opposite direction 2:Reverse prohibited	0~2	0	O	18H
FU.025	Startup mode	0:Start from startup frequency 1:DC bravies then start 2:Spear tracking is valid	0~2	0	0	19H
FU.026	Startup frequency	0.00-10.00Hz	0.00~10.00	0Hz	0	1AH
FU.027	Startup frequency holding	0.00~60.00s	0.00~60.00	0.00s	0	1BH
FU.028	DC braking current when start	0.0~100.0%	0.0~100.0	0.00%	0	1CH
FU.029	DC braking time when start	0.0~60.00s	0.0~60.00s	0.00s	0	1DH
FU.030	Acc/deceleration mode selection	0:Linear 1:S curve	0~1	0	0	1EH
FU.031	S curve acceleration characteristic time	0.2~2.0s	0.2~2.0	0.5s	0	1FH
FU.032	S curve deceleration characteristic time	0.2~2.0s	0.2~2.0	0.5s	0	20H

G6/P6 High-performance Vector Inverter

		-o nign-penomiance vector inverter				
FU.033	Motor stop mode	0:Decelerat to stop 1:Free stop	0~1	0	Ø	21H
FU.034	Initial frequency of DC braking when stop	0.00-50.00Hz	0.00~50.00	0.00Hz	0	22H
FU.035	Waiting time of DC braking when stop	0.01~30.00s	0.01~30.00	0.10s	0	23H
FU.036	DC braking current when stop	0.0~100.0%	0.0~100.0	0.00%	0	24H
FU.037	DC braking time when stop	0.0~60.00s	0.0~60.00	0.00s	0	25H
FU.038	Dynamic braking selection	0:unuse 1:Use	0~1	0	O	26H
FU.039	Initial voltage of dynamic braking	110.0%~140.0%	110~140.0	130.00%	0	27H
FU.040	Restart selection of instantaneous stop	0:Prohibited;1:Allowed	N.S.	0	0	28H
FU.041	Restart waiting time after instantaneous stop	0.01~60.00s	60.00	0.10s	0	29H
FU.042	JOG running frequency	0.00~50.00Hz	0.00~50.00	2.00Hz	0	2AH
FU.043	JOG acceleration time	0.1~3000.0s	0.1~3000.0	20.0s	0	2BH
FU.044	JOG deceleration time	0.1~3000.0s	0.1~3000.0	20.0s	0	2CH
FU.045	Prohibited setting frequency 1	0.00~400.00Hz	0.00~400.00	0.00Hz	0	2DH
FU.046	Prohibited setting frequency 2	0.00~400.00Hz	0.00~400.00	0.00Hz	0	2EH
FU.047	Width setting of prohibited frequency	0.00~50.00	0.00~50.00	0.00Hz	0	2FH
FU.048	Dead zone betweenfarward and reverse	0.01 (67 .00s	0.01~60.00	0.00s	0	30H
FU.049	Detection width of frequency arrival	0.00∼400.00Hz	0.00~400.00	1.00Hz	0	31H
FU.050	Detection value of frequency level	0.00~400.00Hz	0.00~400.00	50.00Hz	0	32H
FU.051	Lagged detection value of frequency level	0.00~50.00Hz	0.00~50.00	0.00Hz	0	33H
FU.052	Automatic voltage regulation output	0:Close 1:Open 2:Close when decelerating	0~2	2	O	34H
FU.053	Motor rated power	0.4~1000.0KW	0.4~1000.0	Depends on type	0	35H
FU.054	Motor rated frequency	1.00~400.00Hz	1.00~400.00	50.00Hz	O	36H

	80/1	6 High-performance Vector Inverter	User Manua	u		
FU.055	Motor rated voltage	10.0~440.0V (Depends on type)	10.0~440.0 (Depends on type)	380V	0	37H
FU.056	Motor rated current	1.0~2000.0A (Depends on type)	1.0~2000.0 (Depends on type)	Depends on type	O	38H
FU.057	Motor rated speed	5~30000rpm	5~30000	1460rmp	O	39H
FU.058	Motor primary resistor R1	0.001~65.000Ω	0.001~65	Depends on type	0	3AH
FU.059	Motor no-load current	10.0~100.0%	10.0~100.0	35.00%	0	3BH
FU.060	Motor parameter self-learning	0:Function is invalid 1:Static self-learning 2:Revolving self-learning	0~2	0	O	зсн
FU.061	V/F curve setting	0:Linear 1:1.3 power 2:1.7 power 3:2.0 power 4: Multi-point user-defined	OV BOR	0	Ø	ЗDH
FU.062	V/F voltage point 0	0.0~15.0%	0.0~15.0	1.00%	O	3EH
FU.063	V/F frequency point 1	0.0~100.0%	0.0~100.0	0.00%	O	3FH
FU.064	V/F voltage point 1	0.0~100.0%	0.0~100.0	0.00%	0	40H
FU.065	V/F frequency point 2	0.0~100.0%	0.0~100.0	0.00%	0	41H
FU.066	V/F voltage point 2	0.0~100.0%	0.0~100.0	0.00%	0	42H
FU.067	Gain of automatic torque compensation	0.0~200.0%	0.0~200.0	100.00%	0	43H
FU.068	Filtering of automatic torque compensation	0.01~500	0.01~5.00	0.10s	0	44H
FU.069	Gain of automatic slip compensation	00~200.0%	0.0~200.0	0.00%	0	45H
FU.070	Filtering of automatic slip compesation	0.01~5.00s	0.01~5.00	0.10s	0	46H
FU.071	Ecnomic running	0:Invalid;1;Valid	0~1	0	0	47H
FU.072	Voltage limit of economic running	20.0~100.0%	20.0~100.0	80.00%	0	48H
FU.073	Speed-loop gain	50.0~200.0%	50.0~200.0	100.00%	0	49H
FU.074	Speed-loop filtering	0.01~1.00s	0.01~1.00s	0.10s	0	4AH
FU.075	Current-loop gain	50.0~200.0%	50.0~200.0	100.00%	0	4BH
FU.076	Current-loop filtering	0.01~1.00s	0.01~1.00	0.10s	0	4CH
FU.077	VC torque compensation	50.0~250.0%	50.0~250.0	100.00%	0	4DH

	gain					
FU.078	VC slip compensation gain	50.0~250.0%	50.0~250.0	100.00%	0	4EH
FU.079	Filtering coefficient of multi-function terminal	1~10	1~10	4	0	4FH
FU.080	Function selection of programmable terminal X1/RUN	0:No operation 1:Forward running 2:Reverse running 3: 3-wire mode running		0	O	50H
FU.081	Function selection of programmable terminal X2/REV	4: Forward JOG 5: Reverse JOG 6: UP		0	O	51H
FU.082	Function selection of programmable terminal X3	7: DOWN 8:Free stop 9:Fault reset 10:External fault	J. C. L.	0	O	52H
FU.083	Function selection of programmable terminal X4	11:Acc/deceleration time selection1 12: Acc/deceleration time selection 2		0	O	53H
FU.084	Function selection of programmable terminal X5	13: Multi-step speed selection 1 14: Multi-step speed selection 2 15: Multi-step speed selection 3 16: Acc/deceleration page		0	O	54H
FU.085	Function selection of programmable terminal X6/JOG	17:PLC reset 18:PLC pause 19:Traverse (19:55)	0~25	0	O	55H
FU.086	Function selection of programmable terminal X7/RST	20:Traveres pause 21:PID pause 22:Imemal counter clock input 23:Internal counter clear		0	O	56H
FU.087	Function selection of programmable terminal X8/D1	24:Internal timer timing enables. 25:Internal timer clear. 26:retain 27:frequency source switched to A frequency order 28:frequency source switched to B frequency order 29:frequency order 30-31:retain Note: X8 is default for pulse input by software.If is programmed as other function,pulse input is		0	O	57H

	00/1	6 High-performance Vector Inverter	User Manua			
		invalid.				
	Running mode selection	0:2-wire mode 1				
FU.088		1:2-wire mode 2				
10.000	of terminal control	2:3-wire mode 1	0~3	0	O	58H
	start/stop	3:3-wire mode 2				
FU.089	Al1 min. input	0.00~10.00V	0.00~10.00	0.00V	0	59H
	Corresponding set					
FU.090		0.00~400.00Hz	0.00~400.00	0.00Hz	0	5AH
FU.090	frequency of Al1 min.	0.00~400.00H2	0.00~400.00	0.00H2	0	БАП
	input					
FU.091	Al1 max. input	0.00~10.00V	0.00~10.00	10.00V	0	5BH
	Corresponding set					
FU.092	frequency of VCI max.	0.00~400.00Hz	0.00-409.00	50.00Hz	0	5CH
			, O		-	
	input		A			
FU.093	Al1 input filtering time	0.01~5.00s	0.01~5.00	0.10s	0	5DH
FU.094	Al2 min. input	0.00~10.00V	0.00~10.00	0.00V	0	5EH
	Corresponding set					
FU.095	frequency of Al2 min.	0.00~400.00Hz 👷 🔘	0.00~400.00	0.00Hz	0	5FH
	input					
FU.096		0.00~10.00V	0.00~10.00	10.00V	0	60H
10.030	Al2 max. input	0.00-10.007	0.00~10.00	10.000	0	0011
	Corresponding set					
FU.097	frequency of AI2 max.	0.00~400.00	0.00~400.00	50.00Hz	0	61H
	input					
FU.098	Al2 input filtering time	0.01~500	0.01~5.00s	0.10s	0	62H
FU.099	PULSE min. input	0.00-50.00KHz	0.00~50.00	0.00KHz	0	63H
	Corresponding set					
FU.100	frequency of PULSE min.	0.00~400.00Hz	0.00~400.00	0.00Hz	0	64H
	input					-
FU.101	PULSE max. input	0.00~50.00KHz	0.00~50.00	50.00KHz	0	65H
10.101		0.00 00.001112	0.00-00.00	00.001112		0011
	Corresponding set					
FU.102	frequency of PULSE max. 0.0	0~400.00Hz	0.00~400.00	50.00Hz	0	66H
	input					
FU.103	PULSE input filtering time	0.01~5.00s	0.01~5.00	0.10s	0	67H
		0:Invalid				
	Output function selection 1:	Running				
FU.104	of relay 1	2:Frequency arrival		9	0	68H
	(RA1 RB1 RC1)	3: FDT frequency detection	0~20			
		4:External fault 51				

	G6/P	6 High-performance Vector Inverter	User Manua			
FU.105	Output function selection of relay 2 (RA2 RB2 RC2)	5:Output frequency reaches to lower limit 6: Output frequency reaches to upper limit 7:Overlooad alarm 8:0 speed running		9	0	69H
FU.106	Output function selection 11 of terminal Y1	9:Inverter fault 10:Inverter running ready Inverter stops due to undervoltage 12:Inverter forward running 13: Inverter reverse running		1	0	6AH
FU.107	Output function selection of terminal Y2	 14: Designated value arrival of internal counter 15: Final value arrival of internal counter 16: Final value arrival of internal timer 17-20:Reserve 	Ove Stamp	2	©	6BH
FU.108	Output function selection of terminal AO1	1:Running frequency 2:Setting frequency 3:Output current 4:Output voltage 5:PID given		1	o	6CH
FU.109	Output function selection of terminal AO2	6:PID feedback 7:Al1 input voltage 8:Al2 input voltage 9:PULSE frequency 10:Bus voltage 11 - 14 Reserve	1~15	2	0	6DH
FU.110	AO1 gain 🤞	0.10~10.00	0.10~10.00	1	0	6EH
FU.111	AO2 gain	0.10~10.00	0.10~10.00	1	0	6FH
FU.112	AO1 offset	0.00~10.00V	0.00~10.00	0.00V	0	70H
FU.113	AO2 offset	0.00~10.00V	0.00~10.00	0.00V	0	71H
FU.114	Definition of multi-function key M	0:Invalid 1:Forward and reverse switch 2:JOG running	0~2	0	0	72H
FU.115	Function setting of keypad STOP key	0:Valid only under keypad control 1:Valid under terminal and communication	0~1	0	0	73H
FU.116	Selection of display scenes when starting up	0:Set frequency 2:Output frequency 3:Outpuit current	0~9	9	0	74H

	G6/F	6 High-performance Vector Inverter	User Manua	ı		
FU.117	Protection coefficient of	4:DC bus voltage 5:Running speed 6:Inverter temperature 7:PID given 8:PID feedback 9:Display set frequency when stop;display output frequency during running 50.0%~120.0%	50.0~120.0	100.00%	0	75H
FU.118	motor overload Prealarm value of motor overload	100.0%~180.0% (Motor rated current)	100.0~180.0	130.00%	0	76H
FU.119	Protection value of overcurrent stalling	110.0%~200.0%	110.0-200.0	Depends on type	0	77H
FU.120	Protection value of overcurrent descending frequency	110.0%-220.0%	1100-220.0	Depends on type	0	78H
FU.121	Lagged time of overcurrent descending frequency	1~1000ms	1~1000	20ms	0	79H
FU.122	Coefficient of oscillation suppression	0~50	0~50	20	0	7AH
FU.123	Protection voltage coefficient of overvoltage stalling	120.0%-150.0%	120.0%~150.0%	130.00%	0	7BH
FU.124	reserve				0	7CH
FU.125	Times of fault automatic	0-3	0~3	0	0	7DH
FU.126	Interval time of fault	0:01-60.00s	0.01~60.00	1.00s	0	7EH
FU.127	Alarm or not when fault	0:No 1:Yes	0~1	0	Ø	7FH
FU.128	Multi-step speed 0	0.00~400.00Hz	0.00~400.00	5.00Hz	0	80H
FU.129	Multi-step speed 1	0.00~400.00Hz	0.00~400.00	15.00Hz	0	81H
FU.130	Multi-step speed 2	0.00~400.00Hz	0.00~400.00	25.00Hz	0	82H
FU.131	Multi-step speed 2	0.00~400.00Hz	0.00~400.00	30.00Hz	0	83H
FU.132	Multi-step speed 4	0.00~400.00Hz	0.00~400.00	35.00Hz	0	84H
FU.133	Multi-step speed 5	0.00~400.00Hz	0.00~400.00	40.00Hz	0	85H

G6/P6 High-performance Vector Inverter

ELL 404	Marki etca eno. 10			45.0011	C	0011
FU.134	Multi-step speed 6	0.00~400.00Hz	0.00~400.00	45.00Hz	0	86H
FU.135	Multi-step speed 7	0.00~400.00Hz	0.00~400.00	50.00Hz	0	87H
FU.136	PLC running mode	0:Single cycle 1:Keep final value after single cycle 2:Singuler cycle	0~2	0	O	88H
FU.137	Time unit of PLC running	0:second 1:hour	0~1	0	0	89H
FU.138	0th step running time of PLC	0.0~6553.5s(h)	0.0~6553.5	0.0s	0	8AH
FU.139	1st srteprunning time of PLC	0.0~6553.5s(h)	0.0~6553.5	0.0s	0	8BH
FU.140	2nd step running time of PLC	0.0v6553.5s (h)	0.0~6553.5	0.0s	0	8CH
FU.141	3rd step running tine of PLC	0.0~6553.5s (h)	0.0~6553.5	0.0s	0	8DH
FU.142	4th step running time of PLC	0.0~6553.5s (h)	0.0-6553.5	0.0s	0	8EH
FU.143	5th step running time of PLC	0.0~6553.5s (h)	0.0~6553.5	0.0s	0	8FH
FU.144	6th step running time of PLC	0.0-6553.5s (h)	0.0~6553.5	0.0s	0	90H
FU.145	7th step running time of PLC	0.0~6553.5s (h)	0.0~6553.5	0.0s	0	91H
FU.146	Acc/deceleration time setting of PLC	0~65535 (Binary conversion)	0~65535 (Binary conversion)	0	0	92H
FU.147	Running direction setting of PLC	0~255 (Binary conversion)	0~255 (Binary conversion)	0	0	93H
FU.148	KPID given selection	0:Digner given 2:Al2 3:PULSE input 4:RS485 given 5:Keypad potentiometer	0~5	0	0	94H
FU.149	PIDdigital given	0.0~100.0%	0.0~100.0	50.00%	0	95H
FU.150	Reserve			150		96H
FU.151	Reserve			150		97H
FU.152	PID feedback selection	0:Al1 1:Al2 2:PULSE input 3:Keypad potentiometer (for test	0~3	0	0	98H

		6 High-performance vector inverter	User Mariua			
		use)				
FU.153	Gain of PID feedback	0.10~10.00	0.10~10.00	1	0	99H
FU.154	Reserve	-		-		9AH
FU.155	Characteristic selection of cha	0: PID output is positive racteristic 1: PID output is negative characteristic	0~1	0	0	9BH
FU.156	Proportional gain KP	0.00~10.00	0.00~10.00	1	0	9CH
FU.157	Integral time TI	0.00~100.00s	0.00~100.00	2.00s	0	9DH
FU.158	Differential time TD	0.00~100.00s	0.00~100.00	0.00s	0	9EH
FU.159	Sampling periodT	0.01~10.00s	0.01~10.00	0.10s	0	9FH
FU.160	Deviation limit	0.0~100.0%	0.0~100.0	2.00%	0	A0H
FU.161	PID display proportion	0.01~10.00	0.01~10.00	1	0	A1H
FU.162	Traverse amplitude	0.0%~100.0% (Relative to set frequency)	0.0~100.0	0.00%	0	A2H
FU.163	Kick frequency amplitude	0.0%~50.0%	0.0~50.0	0.00%	0	АЗН
FU.164	Traverse raising time	0.1~3200.0s	0.1~3200.0	15.0s	0	A4H
FU.165	Traverse descenting time 0.4		0.1~3200.0	15.0s	0	A5H
FU.166	Data transmission speed	0 : 2400bps 1 : 4800bps 2 : 9600bps 3 : 19200bps 4 : 38400bps	0~4	2	0	A6H
FU.167	Data format of communication (RTU)	0:1 start bit,8 data bits,1 stop bit,nocted 1:1 start bit,8 data bits,1 stop bit,even parity check 2:1 start bit,8 data bits,1 stop bit,odd parity check	0~2	0	0	A7H
FU.168	RS485 communication address	1~247,0 are broadcast address,248 is main machine address	1~248	1	0	A8H
FU.169	Answer delay	1~150ms	1~150	10ms	0	A9H
FU.170	Slave receive proportioncoefficient	0.00~10.00	0.00~10.00	1	pending	AAH
FU.171	Fractional frequency of internal counter clock input	1~65535	1~65535	1	0	ABH
FU.172	Designated value of internal counter	1~65535	1~65535	100	0	ACH

FU.173	Final value of internal counter	1~65535	1~65535	200	0	ADH
FU.174	Timing unit of internal timer	0.01s~655.35s	0.01s~655.35s	1.00s	0	AEH
FU.175	Internal timer cycle	1~65535	1~65535	10	0	AFH
FU.176	Enable of input missing phase protection	0:Prohibit 1:Enable	0~1	0	pending	вон
FU.177	Enable of output missing phase protection	0:Prohibit 1:Enable	0~1	0	pending	B1H
FU.178 ~ FU.198	Reserve	-	-	-		В2Н~ С6Н
FU.199	Initialization of function code	0:No operation 1: Initialized to factory default values 2:Clear fault record	0~2	0	O	С7Н
FU.200	Function code write protection	0:Invalid 1:Valid		0	pending	С8Н

Chapter 5 Description of Function Code

This chapter introduces function code setting.FE,Fd function group is for inverter information inquiry.

5.1 Basic functional parameter

FU.000	Type seeting	Setting range :0~1	Factory value: 0				
0: G Type Su	0: G Type Suitable for heavy-duty devices (Generally for plastic packaging machinery and drawing machine).						
1: P Type	P Type Suitable for heavy-duty devices (Generally forfans and water pumps).						

FU.001	Speed control mode	Setting range:0~1	Factory value: 0

0:Open-loop VVV/Fcontrol,VVV/Fcontrol is suitable for when high control precision is not required, as well as the occasion that one inverter drives multiple motors.

1:Open-loop vector control, indicates without encoder, isapplicapbale to universal occasion of high-performance without encoder, one inverter only drives one motor.such as CNC machine, centrifugal machine, lifting, extrusion machine and so on.Before this control mode is used, please carry out FU.060 motor presenter self-learning. Note: Function group FU.061 V/F curve parameter is also valid under vector control.

FU.002	Running directive given mode	Setting range:0~2	Ĩ	Factory value: 0
	······································			

,Øs

There are up to 3 kinds of running directive given modes seletable.

0:Running directive given via operating keypad, via keys of RUN, STOR RESET, multi-function M FU.114.

1:Running directive given via terminals, X1/RUN is for the forward running, X2/REV is fordefaut reverse running, X6/JOG is for JOG, X7/RST.

2: Running directive given via serial 485communication, to achieve inverter run, stop, forward/reverse runand other operation. Refer to Modbus communication protocol.

Note: Switch to local control (keypad control) through

State of running directive control terminal X1/RUN	U.002software state setting	Running directive given mode in-sevice
Invalid	0	0
Invalid	0	0
Invalid	1	1
Invalid	2	2
Valid	0	0
Valid	1	0
Valid	2	0

Fig.5.1-1 Description of command resource switch

Running and JOG commands separately control set frequency, it will be in in running state when both of them are valid.

FU.003	Frequency A directive selection Set	ng range:0~8	Factory value: 0
FU.004	Frequency directive B selection Setti	ıg range:0~8	Factory value:0

0: Keypad potentiometer.Adjustment range is between the lower limit frequency and the upper limit frequency. keypad, multi-function terminals X1-X8 UP DOWN 1: Digital directive aiven (Via to realize and adjustment).Refering to parameter FU.080-FU.087. When inverter is in stop state, UP/DOWN adjustment is valid when monitoring given frequency under guick monitoring mode: while inverter is in running state. UP/DOWN adjustment is valid under quick monitoring mode. 2:Al1 analog input quantity. 3:Al2analog input quantity. by analog Frequency is set input terminals.Inverter provides 2 input terminalS of analog quantity as multi-function I/O expansion cards standard.besides.optional can provide 2 input terminals of analog quantity(AI3,AI4), AI1, AI2 can supply 0-10V voltage or 0/4-20mA current, Voltage and current can switched via jumper Al1 Al2 of control board: Al3 is 0-5V, Al4is 0-5V/4-20mA. 4 ; High speed pulse input setting, frequency is given via high speed pulse input terminal. One high speed pulse (x8/di) as inverter standard configuration, set frequency is controlled via input pulse quantity of pulse input specification of pulse setting:Pulse terminal.Signal voltage range is 0-20 pulse frequency range is 0.0-50.0kHz.Refer to FU.087 parameter description. 5:Multi-step speed running mode.When this mode is chose inverter runs under multi-step speed mode.Current step is chose via terminal combination set by FU.080-FU.087 parameters, while choosing current running frequency via FU.128-FU.135 parameters. 485 communication setting.Frequency 6:Serial directive is given via upper computer in the way of communication. Details refer to chapter 7 Modbus communication protoco 7:Simple PLC program setting When this frequency set mode is chose inverter will run according to simple PLC program. FU.137-FU.147 parameter groups are need be set to confirm corresponding running frequency, running direction, acc/deceleration time.Details refer to FU.137-FU.147 parameter description, 8:PID control setting. The parameter is chose, then inverter faming mode is PID processing control, meanwhile, needing to set FU.148-FU.161.Inverter running frequency is the frequency value after PID operation.Meanings of PID given source, given quantity, feedback source reterio detailed description of FU.148-FU.161. Combound mode of frequency FU.005 etting range:0~4 actory value : 0

0: Frequency directive A, current frequency given mode is A.

ource setting

1: Frequency directive B, current frequency given mode is B.

2:A+B, current frequency given mode is frequency directive A + frequency directive A.

3:Max (A,B), indicating if frequency directive A is larger than frequency directive B, then, frequency directive A is

set frequency, otherwise, frequency directive B is set frequency.

4:MIN (A,B), indicating if frequency directive A is less than frequency directive B, then, frequency directive A is set frequency, otherwise, frequency directive B is set frequency.

Selection terminal Al2 of	Frequency source in-sevice				
frequency directive B					
Invalid	0				
Valid	1				
	A>B	2(A)			
	B>A	2(B)			
Valid	A <b< td=""><td>3(A)</td></b<>	3(A)			
	B <a< td=""><td>3(B)</td></a<>	3(B)			
	frequency directive B Invalid	frequency directive B Invalid O Valid A>B B>A A <b a<b<="" td="">			

Fig. 5.1-2Description of selection terminal of frequency source

FU.006	Gain of frequency directive A	Setting range:0.10~10.00	Factory value:1.00
FU.008	Gain of frequency directive B	Setting range:0.10~10.00	Factory value:1.00

Set gain of frequency directive.0.10 means 0.1 times;10.00 means magnifying 10 times

FU.008	Frequency setting of digital keypad	Setting range:0.00~400.00Hz	Factory value:50.00Hz
Set freque	ncy value of keypad digital setting.		

FU.009 JP/DOWN digital given speed Setting range:0.01	0.00Hz/S Factory value:1.00Hz/S
---	---------------------------------

R

Set response speed of digital given value of keypad or multi-function terminal.

FU.010	Valid selectio	on of UP	/DOWN f	unctior	n key Se	tting range					Factory value:1		
0: Invalid.						, North Contraction of the second sec							
1:Valid,do	not store	after	power	off.	After	sectrequency	FU.008	was	modified	via	UP/DOWN,	when	power
off,FU.008	will not be	stored	in EPP		4	QE							

2: Valid. After set frequency FU.008 was modifi@yia UP/DOWN, when power off, FU.008 will be stored in EPP.

FU.011		Setting range:0.00~400.00Hz	Factory value:50.00Hz
FU.012	_ower limit of running frequency	Setting range:0.00~400.00Hz	Factory value:0.00Hz

Set maximum output frequency value and minimum output frequency of inverter.

Note: Set upper and lower limit frequency is mainly to prevent misoperation of field personnel, and avoid probable

heat due to motor running frequency too low, or machinery wear caused due to running frequency is too high.

The function is for running state when set frequency is lower than lower limit frequency, validwhen the lower frequency is higher than 0.

0:Run at lower limit frequency.

Figure description of terminals:

1:Standby,when set frequency is lower than lower limit frequency,inverter free stop;Whensetfrequency is large or equal to upper limit frequency again,inverter will run automatically.

FU.014	Acceleration time 1	Setting range:0.1~3000.0s	Factory value:depends on power capacity
FU.015	Deceleration time 1	Setting range:0.1~3000.0s	Factory value: depends on power capacity
FU.016	Acceleration time 2	Setting range:0.1~3000.0s	Factory value:15.0s
FU.017	Deceleration time 2	Setting range:0.1~3000.0s	Factory value:15.0s
FU.018	Acceleration time 3	Setting range:0.1~3000.0s	Factory value:15.0s
FU.019	Deceleration time 3	Setting range:0.1~3000.0s	Factory value:15.0s
FU.020	Acceleration time 4	Setting range:0.1~3000.0s	Factory value:15.0s
FU.021	Deceleration time 4	Setting range:0.1~3000.0s	Factory value:15.0s

The 2nd,3rd,4th froupacc/deceleration time can be chose via multi-function terminal.And canalso be chose during PLC running.

Factory setting for models is shown as below:

Inverter models	Input power supply	Rated output power (KW)	Set value of FU.014,FU.015
G6/P6-0.4T4-15T4	3 phase AC380V	0.4-15	10.0s
G6/P6-18T4-37T4	3 phase AC380V	18-37	15.0s
G6/P6-45T4-75T4	3 phase AC380V	45-75	25.0s
G6/P6-90T4-132T4	3 phase AC380V	90-132	60.0s
G6/P6-160T4-200T4	3 phase AC380V	160-200	100.0s
G6/P6-200T4 以上	3 phase AC380V	200 H.L	150.0s

Note: Factory setting will differ according to inverter over According to users' field condition, the above factory setting can be adjusted to fit requirement most appropriately.

FU.	FU.014 Carrier frequency		Betting range:1.0~10.0KHz				Fa	Factory value:Depends on type						
Set heat	carrier	frequency	of	PWM	output.Carrier	frequency	has	an	impact	on	motor	noise,	inver	ter

dissipation, environment interference, thermal of inverter and motor.

When carrier frequency is high		value, inverter hea Noise, leakage	i increases, p Inverter	Motor	nderating. Motor	Output
Carrier frequency	Electromagnetic noise	current	thermal	thermal	noise	current wave
2KHZ	small	small	small	large	large	bad
5KHZ	¢	¢	↓	¢ 	¢ 	‡
10KHZ	large	large	large	small	small	good

Fig.5.1-3 Impact of carrier frequency on environment

Advantages of high carrier frequency: Ideal current wave, less current harmonics, low motor noise;

Disadvantage of high cattier frequency: Switch loss increases, inverter thermal rises, inverter output capacity will be affected. At high carrier frequency, inverter output capacity should be reduced to use; Meanwhile the leakage current of inverter as well as its electromagnetic interference with external will increase. While at lower carrier frequency, the contrary is the case, Low carrier frequency will cause low-frequency operation untable, torque reduce even oscillation phenomena.

Before leave factory, the carrier frequency has been set properly. Generally, the user does not need to change to the parameter. when user adopts defaut carrier frequency, running the inverter by derating, the rated output shall be decreased by 20% for every carrier frequency rise of 1K.

FU.023	Auto-adjustment selection of carrier requency	Setting range:0~1	Factory value: Depends on type
--------	--	-------------------	--------------------------------

0: Non auto-adjustment.

1: Auto-adjustment.

FU.024 Revolving direction control Setting range:0~2 Factory value: 0	
---	--

0:Running in defaut direction.After power on, inverter runs according to the actual direction.

1:Running in opposite direction.Change motor running direction,its role is equal to change motor direction of rotation by adjusting any two motor cables.

2: Reverse prohibited.Is suitable for application in particular occasion motor reverse running isn't needed.don't

need motor running the reversal of the occasion. In running or jog state, revolving direction control refers to the following logical chart:

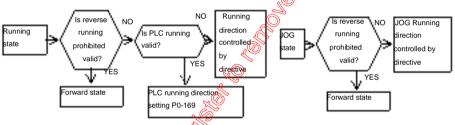


Fig. 5.1-4 Priority explanations of revolving direction control

FU.025	Startup mode	Set	1998	range:0~2	Factory value: 0

0: Directly startup. The inverter begins to run train the startup frequency

1: DC braking then start.DC brake in according with the mode set by FU.028 and FU.029, then start from startup

frequency. Applicable to occasion of small inertial load on startup may run reversely.

2: Speed tracing startup. Inverter calculate the speed and direction of motor, then start from the current speed, to

realize motor start smoothly without impact, is suitable for large inertia load restart after instantaneous power off.

FU.026	Startup frequency	Setting range:0.00~10.00Hz	Factory value: 0.00Hz
FU.027	Startup frequency holding time	Setting range:0.00~60.00s	Factory value: 0.00s

Set startup frequency and startup frequency holding time when start running.

ļ	FU.028	DC braking current when start	Setting range:0.0~150.0%	Factory value: 0.0%
	FU.029	DC braking time when start	Setting range:0.0~60.00s	Factory value: 0.00s

Set DC braking current and braking time when start.

-		0 1		
ľ	FU.030	Acc/deceleration mode selection	Setting range:0~1	Factory value:0

0:Linear acc/deceleration.Change output frequency according to set acc/deceleration time.There 4 groups of acc/deceleration time seletablevia multi-function input terminal.See fig.5.1.1-5.

1:S curve acc/deceleration. Smooth the start and ending section during the acceleration and deceleration, and

G6/P6 High-performance Vector Inverter

reduce the impact on mechanical devices.

Acc/deceleration selection1	Acc/deceleration selection2	Selecteacc/deceleration time
Off	Off	Acceleration1,deceleration1
Off	On	Acceleration 2, deceleration2
On	Off	Acceleration 3, deceleration 3
On	On	Acceleration 4, deceleration 4

Fig.5.1-1Acc/deceleration time select via terminals

FU.031	S curve acceleration characteristic	time Setting range:0.2~2.0s	Factory value: 0.5s
FU.032	S curve deceleration characteristic	time Setting range:0.2~2.0s	Factory value: 0.5s

S curve characteristic time means the time from 0 to set ac/deceleration time .Acceleration and deceleration set separately.

			$(\bigcirc$	
FU.033	Motor stop mode	Setting range:0~1	C	Factory value: 0

0: Decelerate to stop. Inverter reduces output frequency according to set deceleration time after received stop

command, then motor gradually decelerates according to deceleration time until stop running.

1: Free stop. Inverter stop outputing frequency after received stop command, and will freely coast to stop.

_			
FU.034	Setting range:	Setting range:	Factory value: 0.00Hz
FU.035	Waiting time of DC braking when stop	enting range:0.01~60.00s	Factory value: 0.01s
FU.036	DC braking current when stop	Setting range:0.0~150.0%	Factory value: 0.0%
FU.037	DC braking time when stop	Setting range:0.0~60.00s	Factory value: 0.00s

-

During decelerating to stop, when output frequency reduces to DC braking starting frequency, inverter will stop outputing for some time (DC braking waiting time when stop), then, starts DC braking. Braking current and braking time of DC braking when stop can be set separately.

FU.036=0, indicates that DC braking when stop is valid.

FU. 038	Dynamic braking selection	Setting range:0~1	Factory value: 0

0:Unuse

1: Use

r r			
FU. 039 Init	itial voltage of dynamic braking	Setting range:110.0~140.0%	Factory value: 130.0%

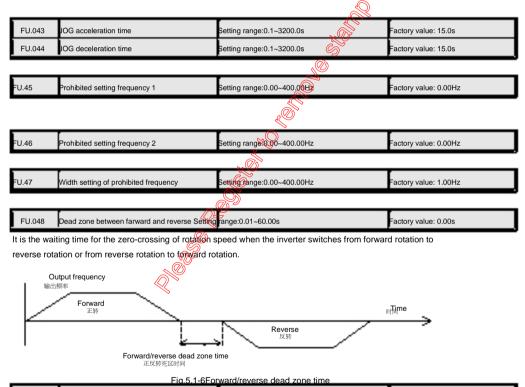
Set voltage value of dynamic braking, 100.0 % $\,$ is relative to bus voltage 537V.

Dynamic braking means that by connecting inverter built-in braking resistor or external braking resistor to consume inverter bus electrical energy, this method can effectively avoid bus overvoltage fault.

	G6/P6 High-pe	erformance Vector Inverter	User Manual	
FU.040	Restart selection of instantaneous stop	Setting range:0~1		Factory value: 0

0: Invalid.

FU.049


1: Valid.Whenundervoltage fault occur due to bus voltage is too low, inverter will reset the fault automatically, and automatically run.

FU.041	Restart waiting time after instantaneous stop	Setting range:0.01~60.00s	Factory value: 0.10s
--------	---	---------------------------	----------------------

Set restart waiting time after instantaneous stop.Afterundervoltage fault occur, inverter will wait for a time set by the function code, then reset the fault, and automatically run.

ĺ	FU.42	JOG running frequency	Setting range:0.00~400.00Hz	Factory value: 5.00Hz

After received JOG command, inverter will run at the frequency set be the function code.

Mating with multi-function terminals to use.When the difference of running frequency and set frequency is less than the value set by this function code, output valid signal.

actory value: 1.00Hz

 \bigcirc

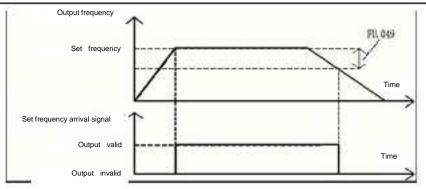


Fig. 5.1-7 Frequency arrival detective bandwidth description

) >
FU.050	Detection value of frequency level	Setting range:0.00~400.00Hz	Factory value: 50.00Hz
FU.051	Lagged detection value of frequency evel	Setting range:0.00~50.00Hz	Factory value: 0.00Hz

Combined with multi-function terminal to use. Output valid signal when running frequency is biger than set value of function code FU.050. Function code FU.051 set lagging-loop of inspection.

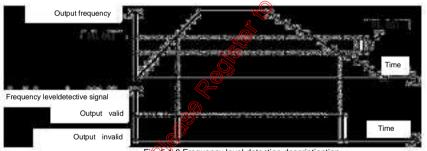


Fig. 5. P-8 Frequency level detection descriptiontion

FU.052	Automatic voltage regulation output	Setting range:0~2	Factory value: 2	14

0: Invalid.

1: Valid in whole course. Automatically regulates output voltage when output voltage fluctuates, prevents output voltage being affected by input voltage.

2: Invalid only under deceleration stop. Because braking torque will reduce when automatic voltage regulation function is used during decelerating stop, please close the function

5.2Motor parameters

FU.053	Notor rated power	Setting range:0.4~1000.0KW	Factory value:Depends on type
FU.054	Notor rated frequency	Setting range:1.00~400.00Hz	Factory value: 50.00Hz
FU.055	Notor rated voltage	Setting range:10.0~440.0V	Factory value: Depends on type
FU.056	Motor rated current	Setting range:1.0~2000.0A	Factory value: Depends on type
FU.057	Notor rated speed	Setting range:5~30000rpm	Factory value: 1460rmp

Note: Please set in accordance with motor nameplate.

Good control performance of vector control needs accurate motor parameters. Inverter provides motor parameter self-learning function. Accurate parameter self-learning is from accurate input of motor parameters. To ensure control performance, please make sure inverter and motor are matched in power. If the gap is too large, inverter control performance will be obviously reduced.

FU.058	Motor primary resistor R1	Setting range:0.001~65.000 Ω	r D	Factory value: Depends on type

The parameter has an impact on performance of vector control, please use motor parameter self-learning function to automatically detect.

Under VVVF control, the parameter also affects automatic torque compensation and automatic slip compensation.

FU.059	Motor no-load current	Setting range:10.0~100.0%	Factory value: 40.0%
			· · ·

The parameter has an impact on performance of vector control, please use motor parameter self-learning function to automatically detect.

FU.060	Motor parameter self-learning	Setting range 042	Factory value: 0
F0.000	wotor parameter ser-rearring	betting range of a	actory value. 0

0: Invalid. After test finished successfully the code will be automatically set to 0.

1: Revolving test.Detect motor no-load currernt and stator resistor when motor revolves in no-load state

2: Static test. Detect a parameter of stator research when motor is connected with load and cannot run with no-load normally.

Detailed description please refer to 5,3 motor parameter self-learning.

5.3V/F curve setting and torque adjustment parameter

Note:4.1.3This function group is valid both under VVVF control and vector control.

FU.061	V/F curve setting	Se	etting range:0~4	Factory value: 0
0: Linear;	1:1.3 power;	2:1.7 power;	3:2.0 power;	

4: Multi-point self-defined curve.

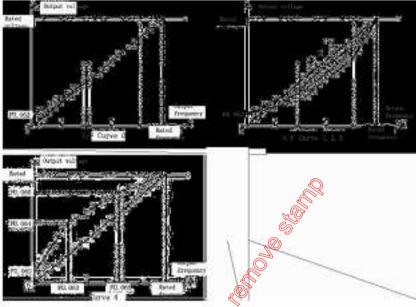


Fig.5.3-1 VF curve

0: Linear V/F curve. Applicaple to constant torque load.

1~3: Many power V/F curve.Applicaple to variab@torque load, such as: fan, water pumps. Many power V/F

curves shown an in fig. 5.3-1.

4: Multi-point V/F curve. V/F curve can be defined via set FU.062~FU.066.

	22 · · · · · ·		72	19 41
FU.062	V/F voltage point 0	\bigcirc	Setting range:0.0~15.0%	Factory value: 1.0%
		CX III		
-				

Set output voltage corresponding to 942.1.0% of the function code indicates 1.0% motor rated coltage (FU.018). For heavy-duty load increase the value by 1.0% each step.

FU.063	V/F frequency point 1	Setting range:0.0~100.0%	Factory value: 40.0%
FU.064	V/F voltage point 1	Setting range:0.0~100.0%	Factory value: 40.0%
FU.065	V/F frequency point 2	Setting range:0.0~100.0%	Factory value: 80.0%
FU.066	V/F voltage point 2	Setting range:0.0~100.0%	Factory value: 80.0%

Set frequency and voltage of the intermediate two points of the four-piont curve. 1.0% of the function code

indicates 1.0% motor rated frequency (FU.017) or 1.0% motor rated voltage (FU.018).

Note:V1<V2,f1<f2.If the voltage of low frequency is set too high,may cause motor overterheat or even burn,and inverter will triggle overcurrent stalling or overcurrent protection.

FU.067 Gain of automa	tic torque compensation	Setting range: 0.0~250.0%	Factory value: 100.0%	121
-----------------------	-------------------------	---------------------------	-----------------------	-----

The inverter will automatically adjust output voltage to keep motor torque constant, especially under low frequency

running state to make up for stator resistor voltage drop, increase the function code when torque is not enough,

decrease the function code when motor current is too large.

0.0 of the function code indicates that automatic torque compensation is prohibited.

FU.068	Filtering of automatic torque compensation Se	etting range: 0.01~5.00s	Factory value: 0.10s
	on code is used to set response speed of an or shakes and speed fluctuates severely.	utomatic torque compensation.Increase the	function code
FU.069	Gain of automatic slip compensation	Setting range:0.0~250.0%	Factory value: 0.0%
ignificantl	tion code is used to improve motor y when load is stable, reduce the function c function code indicates that automatic slip c	code.	if motor speed fluctuates
FU.070	Filtering of automatic slip compesation	Setting range:0.01~5.00s	Factory value: 0.10s
/hen moto	or shakes and speed fluctuates severely.		
FU.071	Economic running	Setting range:	Factory value: 0
: Invalid. : Valid. A			
): Invalid. I: Valid. A	Economic running		
): Invalid. I: Valid. An neavy-duty FU.072 Set the min putput acc	Economic running utomatically decrease output voltage accord y load, the function should be prohibited.	ding to inverter's output power, in order to s	ave energy.For Factory value: 80.0%
FU.072	Economic running utomatically decrease output voltage accord y load, the function should be prohibited. Voltage limit of economic running nimum voltage of economic running.1005% ording to V/F curve.	ding to inverter's output power, in order to s	ave energy.For Factory value: 80.0%

FU.075	Current-loop gain	Setting range:50.0~200.0%	Factory value: 100.0%
FU.076	Current-loop filtering	Setting range:0.01~1.00s	Factory value: 0.10s

PI adjustment of current-loop. Add current-loop filtering when speed fluctuates.

FU.077	/C torque compensation gain	Setting range:50.0~250.0%	Factory value: 100.0%			
Set the torque compensation value under vector control.						

mpensation gain Setting range:50.0~250.0% Factory value: 100.0%	
---	--

Set the slip compensation value under vector control.

5.4 Multi-function terminal parameter

FU.079	Filtering coefficient of multi-function terminal Setting range:1~10	Factory value: 4
0.073	Thening coefficient of multi-function terminal Cetting range. 14 To	Factory value: 4

Set the filtering of the 8 X terminals, the larger the value is, the larger the filtering is.whenmisoperation of X terminal is found, please increase the value.

FU.080	Function selection of terminal X1/RUN	Setting range:0~26	Factory value: 1
FU.081	Function selection of terminal X2/REV	Setting range:0~26	Factory value: 2
FU.082	Function selection of terminal X3	Setting range:0~26	Factory value: 13
FU.083	Function selection of terminal X4	Setting range:0~26	Factory value: 14
FU.084	Function selection of terminal X5	Setting range:0~26	Factory value: 15
FU.085	Function selection of terminal X6/JOG	Setting range:0~26	Factory value: 4
FU.086	Function selection of terminal X7/RST	Setting range:0~26	Factory value: 9
FU.087	Function selection of terminal X8/DI	Setting range:0~26	Factory value: 0

Note: When terminal X is used as internal timer input, please set FU.079 to 1.

0: No operation. Input termianls are in idle.

1:Forward running. Forward running directive input.

2:Reverse running. Reverse running directive input.

3: 3-wire mode running.

4: Forward JOG. Forward jog command input.

5: Reverse JOG. Reverse jog command input.

6: UP function. Frequency increase directive input.

7: DOWN function. Frequency decrease directive input

8:Free stop. At receiving the directive, inverter stop outputting immediately, motor freely coast to stop.

9: Fault reset. Fault reset directive input, is equal to resetlkey of keypad.

10:External fault input. As external mechanical fault signal connects to inverter.

11: Acc/deceleration time selection 1.See description of function code FU.014-FU.015.

12: Acc/deceleration time selection 2. See description of function code FU.016-FU.017.

13:Multi-step speed selection 1.

14: Multi-step speed selection 2.

15: Multi-step speed selection 3.

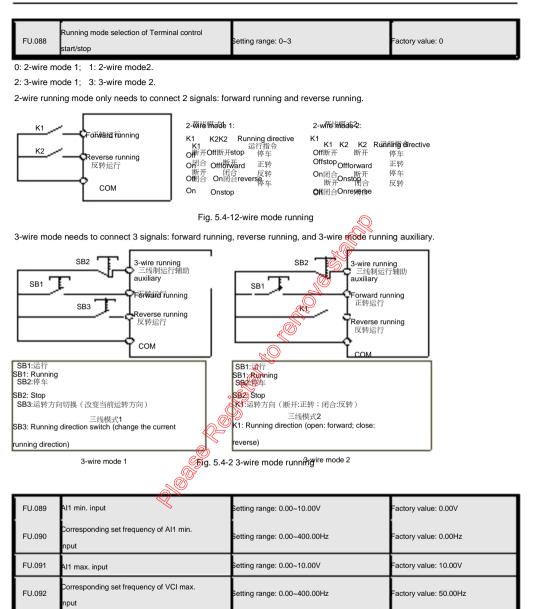
16: Acc/deceleration pause. The directive suspends ac/decelerating, output frequency keep constant.

17:PLC running reset. The directive resets PLC running, PLC will reatarts from 0th step.

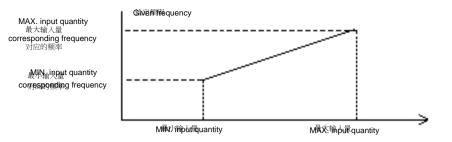
18:PLC pause. The directive suspends PLC running, PLC internal timer stop timing.

19:Traverse running reset. The directive makes traverse running reset, after output frequency reached to set frequency, traverse running will restart.

20:Traverse pause. The directive suspends traverse running. Output frequency will keep constant.


21:PID operation pause. The directive suspends PID operation. Set frequency of PID operation will keep constant.

22:Internal counter clock input. Clock input of the counter. When this function is used, please set FU.054 to 1.


23:Internal counter clear. The counter will clear.

24:Internal timer timing enables. Timer starts timing when the signal is valid.

25:Internal timer clear. Timer will clear.

Input curve diagram shown as chart fig.5.4-3.

FU.093	AI1 input filtering time	Setting range: 0.01~5.00s	Factory value: 0.10s			
Set filtering time of AI1 analog input. When analog quantity fluctuates severely, increase the value.						
FU.094	AI2 min. input	Setting range: 0.00~10.00	Factory value: 0.00V			
FU.095	Corresponding set frequency of Al2 min. nput	Setting range: 0.00-00.00Hz	Factory value: 0.00Hz			
FU.096	Al2 max. input	Setting range	Factory value: 10.00V			
FU.097	Corresponding set frequency of AI2 max. nput	Setting Parge: 0.00-400.00Hz	Factory value: 50.00Hz			
Input curv	Input curve is an shown in figure 5.4-3.					

FU.098	AI2 input filtering time	<u> </u>	Setting range: 0.01 \sim 5.00s	Factory value: 0.10s
		((//))		

Set filtering time of AI2 analog input. When analog quantity fluctuates severely, increase the value.

FU.099	PULSE min. input	Setting range: 0.00~50.00KHz	Factory value: 0.00KHz
FU.100	Corresponding set frequency of PULSE min. input	Setting range: 0.00~400.00Hz	Factory value: 0.00Hz
FU.101	PULSE max. input	Setting range: 0.00~50.00KHz	Factory value: 50.00KHz
FU.102	Corresponding set frequency of PULSE max. input	Setting range: 0.00~400.00Hz	Factory value: 50.00Hz

Pulse inputs only via terminal X8. When X8 is used as high-peed pulse input, please set FU.087 to 0.

FU.103 PULSE input filtering time Setting range: 0.01~5.00s Factory value: 0.10s	FU.103	PULSE input filtering time	Setting range: 0.01~5.00s	Factory value: 0.10s
--	--------	----------------------------	---------------------------	----------------------

Set filtering time of pulse input. When pulse input fluctuates severely, increase the value.

FU.104	Dutput function selection of relay 1	Setting range: 0~19	Factory value: 2
FU.105	Output function selection of relay 2	Setting range: 0~19	Factory value: 3
FU.106	Y1 function definition	Setting range: 0~19	Factory value: 2
FU.107	Y2 function definition	Setting range: 0~19	Factory value: 3

0: No output function.Output terminal are in idle.

1: Shutdown fault occurs during running.Output valid signal when shutdown fault occurs.

2: During inverter running.Output valid signals during inverter running.

3: Running frequency reaches to set value. See description of function code FU.049.

4: FDT frequency inspection.see description of function code FU.050

5: External fault shutdown. Output valid signals when there is external fault signal.

6: Lower limit frequency running. Output valid signal when running frequency reaches to the limit frequency.

7: Upper limit frequency running.Output valid signal when running frequency reaches to upper limit frequency.

8: Overload pre-alarm.When output current is bigger than or equal to werload pre-alarm value,outputs valid signals.

9: Minor fault occurs during running.Output valid signals when minor overcurrent or overvoltage fault occurs.

10:Inverter ready for running. When no fualt occurs and is waiting for running directive,inverter outputs valid signals.

11: Undervoltage shutdown during running.Output valid signal when watervoltage fault occurs during running.

12: Inverter forward running.Output valid signals during forward running.

13: Inverter reverse running.Output valid signals during reverse running.

14: Internal counter designated value arrival.See description of function code FU.171~FU.173.

15: Internal counter final value arrival.See description of twiction code FU.171~FU.173.

16: Internal counter cycle arrival. See description of function code FU.174~FU.175.

17-20: reserve.

FU.108	Output function selection of terminal	Setting range: 0~7	Factory value: 0
FU.109	Dutput function selection of terminal AO2	Setting range: 0~7	Factory value: 1

Set the physical meaning of analog quantity output. Maximum output measuring range is 0-10V/0-20mA.

1: Inverter running frequency. Output frequency 50.00Hz corresponds to 10V/20mA output.

2: Setting frequency.Set frequency 50.00Hz corresponds to 10V20mA output.

3 : Output current. Output current is motor's rated current corresponding to 10V20mA output.

4: Output voltage.Output voltage 500.0V corresponds to 10V20mA output.

5: PIDgiven value.

6: PID feedback value.

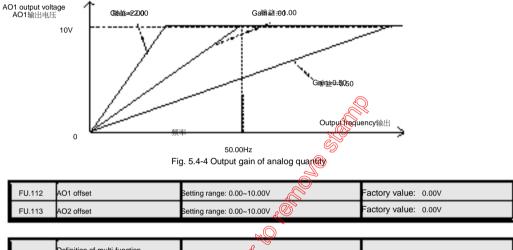
7: Al1 input voltage.Al1 input voltage 10V/20mA corresponds to 10V/20mA output (When Al1 is for current input,

20mA corresponds to 10V/20mA)

8: Al2 input voltage.Al2 input voltage 10V/20mA corresponds to 10V/20mAoutput. (When Al2 is for current input,

20mA corresponds to 10V/20mA)

9: PULSEinput. Pulse input 50.00KHz correspond to 10V output.


10: DC bus voltage. DC bus voltage 500V corresponds to 10V output.

11-15: Reserve.

FU.110	AO1 gain	Setting range: 0.10~10.00	Factory value: 1.00
FU.111	AO2 gain	Setting range: 0.10~10.00	Factory value: 1.00

Set analog output gain.

The following figure takes AO1 as analog indicating function of -output frequencylanalog indicating, gives an example of output gain setting.

FU.114	Definition of multi-function key M	Setting range: 0-2	Factory value: 0			
0: The key is invalid.						
1: Running direction switch. The key is for running direction switch.						
2: Jog command.The key is for JOG running.						

FU.115	Function setting of keypad STOP key	Setting range: 0-1	Factory value: 0
0. Valid onl	v under keypad control		

0: Valid only under keypad control.

1:Valid both under terminal/serial communication control mode (Equal to external fault input).

FU.116	Selection of display scenes when starting up	Setting range: 0~9	Factory value: 0
--------	--	--------------------	------------------

The function code is for set of defaut monitoring parameter under quick monitoring state.

0: Set frequency;

- 1: Output frequency;
- 2: Output current;
- 3: Output voltage;
- 4: DC bus voltage;
- 5: Running speed;
- 6: Inverter temperature;

7: PID closed-loop given;

8: PID closed-loop feedback;

9: Display set frequency when stop; Display output frequency during running.

FU.117		Setting range: 80.0%~110.0%	Factory value: 100.0%
	overload		

Overload protection is based on rated current of motor. When the function mode 100.0% corresponds to overload capacity: G type overload capacity is 150% motor rated current for 1 minute; P type is 120% motor rated current for 1 minute, adopting inverse time limit curve control. 110.0% of this function code corresponds overload capacity: G type overload capacity is 165% motor rated current for 1 minute; P type is 132% motor rated current for 1 minute, adopting inverse time limit curve control.

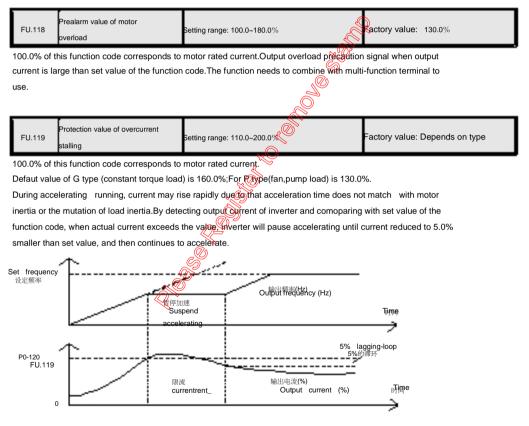
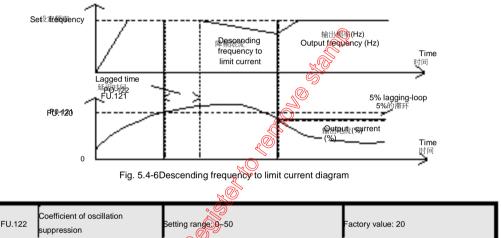


Fig. 5.4-5 overcurrent stalling protection diagram

G6/P6 High-performance	Vector	Inverter	
------------------------	--------	----------	--


User Manual

FU.120	Protection value of overcurrent descending frequency	Setting range: 110.0%~220.0%	Factory value:Depends on type
FU.121	Lagged time of overcurrent descending frequency	Setting range: 1~1000ms	Factory value: 20ms

Function code FU.120 100.0% corresponds to motor rated current. Defaut value of G type (constant torque load) is 170.0%; for P type(fan,pump load) is 140.0%.

During constant speed (output frequency) running, current may rise rapidly due to the mutation of the load. By detecting output current of inverter and comparing with set value of FU.120, when actual current exceed the set value of FU.120 and holding on for the set time of FU.121, inverter will reduce output frequency to 5% smaller than set value, then increases to set output frequency.

Note: During traverse running, the parameter is invalid.

FU.123 Protection voltage coefficient of Setting range: 1	20.0%~150.0% Factory value: 130.0%

During inveter decelerating running, due to setting deceleration time too short, not matched with motor in capacity, inverter bus voltage may raise rapidly.By detecting inverter bus voltage and comparing with set value of the function code, when the actual bus voltage exceeds the value, inverter will suspend decelerating untill the bus voltage down to 5.0% smaller than the set value, and then continues to decelerate.

ľ	FU.124	reserve	Setting range:	Factory value:

Γ	FU.125	Times of fault automatic reset	Setting range: 0~3 times	Factory value: 0 time
	FU.126	Interval time of fault automatic reset	Setting range: 0.01~60.00s	Factory value: 1.00s

After inverter fault occured and delayed for a certain time(FU.126), will automatically clear the fault according to times of fault automatic reset times (FU.125), and sends out running command to inverter.

FU.125=0 indicates that fault automatic reset function is invalid, and times of fault occurred in the past will be cleared.

Note: After normally running for 60s, times of fault occurred in the past will be cleared.

Alarm or not when fault FU.127 automatic reset	Setting range: 0~1	Factory value: 0
---	--------------------	------------------

0: No action.Shutdown fault output is invalid with no alarm.

1: Action.Shutdown fault output is valid with alarm.

5.5 Multi-step speed and simple PLC

Multi-function terminal X set multi-step speed according to the following form, there are up to 16 steps of speed:

When frequency source is —AI1 mode 2I or —AI2 mode 2I, —multi-step speed 0I will not be used.

Multi-step speed terminal1	Multi-step speed terminal2	Multi-step speed terminal3	Multi-step speed terminal4	Enced step under combination mode
Off	Off	Off	Off 🔗	Multi-step speed 0
Off	Off	Off	On 🔊	Multi-step speed 1
Off	Off	On	Off	Multi-step speed 2
Off	Off	On	9	Multi-step speed 3
Off	On	Off	N	Multi-step speed 4
Off	On	Off	On	Multi-step speed 5
Off	On	On	Off Off	Multi-step speed 6
Off	On	On 😽	On On	Multi-step speed 7
On	Off	Off	Off	Multi-step speed 8
On	Off	Off 🕥	On	Multi-step speed 9
On	Off	On	Off	Multi-step speed 10
On	Off	100	On	Multi-step speed 11
On	On	A	Off	Multi-step speed 12
On	On	Off	On	Multi-step speed 13
On	On	On On	On	Multi-step speed 14
On	On	On	On	Multi-step speed 15

Set of corresponding frequency of multi-step speed:

FU.128	Multi-step speed 0	Setting range: 0.00~400.00Hz	Factory value: 5.00Hz
FU.129	Multi-step speed 1	Setting range: 0.00~400.00Hz	Factory value: 15.00Hz
FU.130	Multi-step speed 2	Setting range: 0.00~400.00Hz	Factory value: 25.00Hz
FU.131	Multi-step speed 3	Setting range: 0.00~400.00Hz	Factory value: 30.00Hz
FU.132	Multi-step speed 4	Setting range: 0.00~400.00Hz	Factory value: 35.00Hz
FU.133	Multi-step speed 5	Setting range: 0.00~400.00Hz	Factory value: 40.00Hz
FU.134	Multi-step speed 6	Setting range: 0.00~400.00Hz	Factory value: 45.00Hz
FU.135	Multi-step speed 7	Setting range: 0.00~400.00Hz	Factory value: 50.00Hz

G6/P6 High-performance Vector Inverter User Manual Multi-step speed 8 Setting range: 0.00~400.00Hz actory value: 8.00Hz Multi-step speed 9 Setting range: 0.00~400.00Hz Factory value: 9.00Hz Multi-step speed 10 Setting range: 0.00~400.00Hz Factory value: 10.00Hz Multi-step speed 11 Setting range: 0.00~400.00Hz Factory value: 11.00Hz Multi-step speed 12 Setting range: 0.00~400.00Hz Factory value: 12.00Hz Multi-step speed 13 Setting range: 0.00~400.00Hz Factory value: 13.00Hz Multi-step speed 14 Setting range: 0.00~400.00Hz Factory value: 14.00Hz Multi-step speed 15 Betting range: 0.00~400.00Hz Factory value: 15.00Hz

Set frequency of 16 steps of multi-step speed.

FU.136	PLC running mode	Setting range: 0~2	Factory value: 0

0: Single cycle. PLC only circulates one time, after ran over 15 steps of speeds, wilkstop.

1: Single cycle then run at the 15th multi-step speed.After finished 15 steps of speed, keep running at the 15th multi-step speed.

2: Singular cycle. PLC circulates unceasingly, after finished 15 steps of speeds, will start the new circulation from 0th step speed.

FU.137	Time unit of PLC running	Setting range: 0~1	Factory value: 0

0: Second. PLC running time unit is second, set unit of FU.138 FU.145.

1:Hour. Unit of PLC running time unit is hour, set unit of FU138~FU.145.

Set the frequency of 16 steps of multi-step speed.

FU.138	Oth step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.139	1st srtep running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.140	2nd step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.141	3rd step running tine of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.142	4th step running time of PL	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.143	5th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.144	6th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
FU.145	7th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	8th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	9th srtep running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	10th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	11th step running tine of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	12th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s
	13th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s

	G6/P6 High-perfo	rmance Vector Inverter User Manual	
	14th step running time of PLC	Setting range: 0.0~6553.5s(h)	Factory value: 0.0s
	15th step running time of PLC	Setting range: 0.0~6553.5s (h)	Factory value: 0.0s

Set the running time of each PLC step.

|--|

Set ac/deceleration time of each PLC step, need for binary conversion. For binary number of 16 bits, its lowest order is BIT0, highest order is BIT15.

	EU 147	Pupping direction setting of PLC	Sotting range: 0, 255 binany conversion	Factory value: 0
ļ	FU.147	Running direction setting of PLC	Setting range: 0~255 binary conversion	Factory value: 0

Set running direction of each PLC step,need for binary conversion.For binary number of 16 bits, its lowest order is BIT0, highest order is BIT15.

BIT0 corresponds to running direction of the 0th step. BIT0=0, the 0th step running direction is forward;BIT0=1, the 0th step running direction is reverse.

• • • • • •

BIT15 corresponds to running direction of the 15th step. BIT15=0, the 15th step runnig direction is forward;BIT15 = 1, the 15th step runnig direction is reverse.

After the combined 16-bit binary number is converted into decimal number, then set it to the function code.

Function code	Binary bits	PLC step	Acc/dec time	Acc/dec time 1	Acc/dec time 2	Acc/dec time 3
FU.146	BIT1 BIT0	0	00,00	01	10	11
FU.146	BIT3 BIT2	1	, Contraction of the second se	01	10	11
FU.146	BIT5 BIT4	2	• 00	01	10	11
FU.146	BIT7 BIT6	3	00	01	10	11
FU.146	BIT9 BIT8	4	00	01	10	11
FU.146	BIT11 BIT10		00	01	10	11
FU.146	BIT13 BIT12	6	00	01	10	11
FU.146	BIT15 BIT14	7	00	01	10	11
FU.146	BIT1 BIT0	8	00	01	10	11
FU.146	BIT3 BIT2	9	00	01	10	11
FU.146	BIT5 BIT4	10	00	01	10	11
FU.146	BIT7 BIT6	11	00	01	10	11
FU.146	BIT9 BIT8	12	00	01	10	11
FU.146	BIT11 BIT10	13	00	01	10	11
FU.146	BIT13 BIT12	14	00	01	10	11
FU.146	BIT15 BIT14	15	00	01	10	11

User Manual

Select one group of acc/deceleration time via two binary bits. There is 4 groups of acc/deceleration time are

selectable in all. After the combined 16-bit binary number is converted into decimal number, then set it to the function code.

5.6PID control paranmeter

FU.148 PID given selection	Setting range: 0~5	Factory value: 0
----------------------------	--------------------	------------------

0: Keypad digital setting.PID given is set by FU.148, given by PID.

1: AI1(0~10V/0-20mA).PID given is set by AI1 voltage or current of control terminal. When current inputs, is automatically converted into voltage, 20 mA corresponds to 10V.

2: Al2(0~10V/0-20mA). PID given is set by Al2 voltage or current of control terminal. When current inputs, is

automatically converted into voltage, 20 mA corresponds to 10V.

3: PULSE input setting. Through internal conversion, pulse 10.00 KHz is converted into 10.00 V.

4: Serial communication setting. Please refer to serial communication protocol description.

5: Keypad potentiometer. Automatically converted into voltage 0-10V.

Note: Should select current input for input jumper of Al2.

FU.149 given	PID digital	Setting range: 0.00~100%	Factory value: 50%
PIDdigital percentage settingis50 ⁴	factory	digital given, current input quantity is	s expressed by
FU.150	Reserve	Q ₂	
FU.151	Reserve		

FU.152 PID feedback selection Setting range: 0~3 Factory value: 0

0: Al1($0 \sim 10V$). PID given is set by Al1 voltage of control terminal. When current inputs, is automatically converted into voltage, 20 mA corresponds to 10V.

1: Al2($0 \sim 10V$). PID given is set by Al2 $\sqrt{20}$ and $\sqrt{2}$ by a control terminal. When current inputs, is automatically converted into voltage, 20 mA corresponds to $\sqrt{20}$

2: PULSE input setting. Through internal conversion, pulse 10.00KHz is converted into 10V.

3: Keypad potentiometer.(for testing use).

Note: Should select current input for input jumper of Al2.

FU.153 Gain of PID feedback Set	etting range: 0.10~10.00	Factory value: 1.00
---------------------------------	--------------------------	---------------------

Set gain of PID feedback.

FU.154 Reserve	
----------------	--

FU.155 C	Characteristic selection of PID output	Setting range: 0~1	Factory value: 0
----------	--	--------------------	------------------

0: Positive characteristic. When feedback quantity is larger than PID given quantity, inverter is required to reduce output frequency, to make PID balanced.

1: Inverse characteristic. When feedback quantity is larger than PID given quantity, inverter is required to raise output frequency, to make PID balanced.

FU.156	Proportional gain KP	Setting range: 0.00~10.00	Factory value: 1.00
FU.157	Integral time TI	Setting range: 0.00~100.00s	Factory value: 2.00s
FU.158	FU.158 Differential time TD Setting range: 0.00~100.00s		Factory value: 0.00s

Proportional, integral, and derivative in PID regulator is independent of each other, regulated through their respective function code.

Proportional gain KP: the larger the q is the stronger the proportional regulation. The function code 1.00 indicates when the deviation of PID feedback quantity and given quantity is 10.00V, the output frequency directive of PID regulator is 10.00Hz (ignore integral and differential effect).

Note: the function code 0 indicates prohibiting proportional regulation.

Integration time TI: the smaller the Value is the stronger the integration regulation. The function code 1.00s indicates when the deviation of PID feedback quantity and given quantity is 10.00V, after continuously regulating

for 1s, output frequency directive of PID regulator is 10.00Hz (ignore proportional and differential effect)

Note: the function code 0 indicates prohibiting integration regulation.

Differential time TD: the larger the Value is the stronger the differential regulation. The function code 1.00s indicates when change rate of deviation of PID feedback quantity and give quantity is 10.00V during 1.00s, the

output frequency directive of PID regulator is 10.00Hz (ignore the propertional and integral effect).

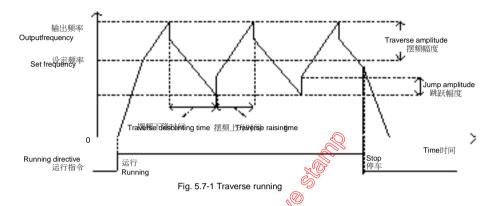
Note: the function code 0 indicates prohibiting differential regulation

FU.159	Sampling period T	Setting range: 0.01~10.00s	Factory value: 0.10s

Setting refresh cycle of given quantity and feedback quantity of PID regulator.

FU.160	D Deviation limit	Setting range: 0.00~100%	Factory value: 2.0%

When the d-value of given value and feedback value of PID is less than this value, PID stop operation, keeping output frequency.


FU.161 PID display pro	oportion Setting range: 0.01~10	0.00 Factory value: 1.00
------------------------	---------------------------------	--------------------------

5.7 Traverse control parameter

	FU.162	Traverse amplitude	Setting range: 0.0~100.0%(relative to set requency)	Factory value: 0.0%	
	FU.163	Kick frequency amplitude	Setting range: 0.0~50.0% (relative to traverse amplitude)	Factory value: 0.0%	
	FU.164	Traverse raising time	Setting range: 0.1~3200.0s	Factory value: 15.0s	
ĺ	FU.165	Traverse descenting time	Setting range: 0.1~3200.0s	Factory value: 15.0s	

Traverse function is applicapable to textile, chemical fiber and other industries. During traverse running, inverter's output frequency takes set frequency as center to swing up and down. Traverse amplitude is set by FU.162, when FU.162 is set to 0, traverse running is invalid.

Note: When FU.162 is set too large,output frequency will be large than upper limit frequency during traverse running.then.traverse running will be invalid automatically.

5.8Serial communication 485 parameter

0: 1 start bit, 8 data bits, 1 stop bit, no check

1: 1 start bit, 8 data bits, 1 stop bit, even parity check.

2: 1 start bit, 8 data bits, 1 stop bit, odd parity check.

FU.168 RS485 communication address Setting range:1~248 Factory value: 1	
---	--

Inverter's identifying address of during serial communication.

1~247:Slave inverter address

248: Master inverter address (more than one inverters are used synchronously)

FU.169 Answer delay Setting range:1~150ms Factory	value: 10ms
---	-------------

During serial communication, after received data, inverter will delay for the function code setting time, then sends answer data.

proportion coefficient	FU.170	Slave machine receive proportion coefficient	Setting range:0.00~10.00	Factory value: 1.00
------------------------	--------	---	--------------------------	---------------------

When counting function is used, please set FU.079 filering times of terminal XI to 1.Clock cycle of counter clock input is required bigger than 4ms,minimum pulse width bigger than 1.5ms.

5.9Parameter of internal counter, timer

FU.171	Fractional frequency of internal counter clock input	Setting range:1~66535	Factory value: 1					
After interna	ter internal counter clock input received signal,should go through internal fractional frequency operation ,then is							
accumulated	cumulated to internal counter.							
For examp	ele: When the parameter is	set to 100, after 100 pulses weter received,	the internal counter count					
accumulates	s 1.	se s						
		<u>so</u>						
FU.172	Designated value of internal	Setting range:1~65535	Factory value: 100					
	counter							
FU.173	Final value of internal counter	Setting range:1~65535	Factory value: 200					
Combined w	vith output terminals to use.Wher	n counting value is larger than designated value,output	terminals will					
output inte	rnal counter designated valu	e arrival signa@When counting value is eque	el to final value, output					
terminals wi	Il output internal counter final val	ue arrival signation						
Note: Clear	counter by using terminal function	on of —internal counter clearl						
For example	e: When FU.171 is set to 2, FU.1	72 is set to 5, FU.173 is set to 9,counting and signal di	agram is shown					
below.		[®]						
	bunter clock input 计数器时钟输入	Mana Mana Mana Mana Mana Mana Mana Mana	www					
Count	ter counting value 计数器计数值	2 3 4 5 6 7 8 9 0	1 2 3					
Counter f	inal计数组90度时刻	Vali連続情報						
Counter de	esignated value arrival	有效信号 Valid signal						
		-						

Fig. 5.9-1 Counter, timer	
---------------------------	--

FU.174	Timing unit of internal timer	Setting range:0.01s~655.35s	Factory value: 1.00s
FU.175	Internal timer cycle	Setting range:1~65535	Factory value: 10

Combined with output terminals to use. When internal timer arrives to timing cycle, output terminals will output internal timer cycle arrival signal. The timer's time cycle is the product of parameter FU.174 and parameter FU.175.

Note: Internal timer starts timing only by using terminal function of —internal timer timing enablesI.Clear timer by using terminal function of —internal timer clearI.Clear counter by using terminal function of —internal counter clearI.

For example: When FU.174 is set to 0.1s, FU.175 is set to 5,time cycle of timer is 0.1s x5=0.5s.Timing and signal diagram is shown below.

Timer timing enable sign	al		Γ √āŘ	信号 signal									
定时器计时使能信号 Timer timing	()	0.0	p.1	0 .2	0.3	04	0.5	0.0	0.1	0.2	0.3	
value arrival 定时器暗期镇达			_										
Timer cycle arrival								Valid	ਰਿੰਡੀgnal				

Fig. 5.9-2 Timing function diagram

5.10 Missing phase protection of input and output

FU.176	Enable of input missing phase protection	Setting range:0~1	Factory value:
0: Prohibite	d		
1: Enable			\gg
FU.176	Enable of output missing phase protection	Setting range:0~1	Factory value:
0: Prohibite	d		
1: Enable		<u>s</u>	
FU.176	Deserve	, Q	
FU.198	Reserve		

5.11Password protection and initialization parameter

FU.199	Initialization of function code	Setting range 0-2	Factory value: 0		
0: No opera	ition.				
1:Initialized to factory defaut value. Function group restore to factory state.2: Clear fault record.					
	Function code write	<u>a</u>			
FU.200		Setting range:0~1	Factory value: 0		
	protection				

0:Invalid.Function group FU can be changed.

1: Valid. Function group cannot be changed.

	FE Fault factors		
FE.000	current fault type	0(No Fault)∼18	DDH
FE.001	current fault type output frequency	0.00~400.00Hz	DEH
FE.002	current fault type output current	0.00~2000.0A	DFH
FE.003	current fault type busbar voltage	0.00~1000V	EOH
FE.004	current fault type move direction		E1H
FE.005	last fault type	0(No Fault)∼18	E2H
FE.006	last fault type output frequency	0.00~400.00Hz	E3H
FE.007	last fault type output current	0.00~2000.0A	E4H
FE.OO8	last fault type busbar voltage	0.00~1000V	E5H
FE.009	last fault type move direction	R	E6H
FE.O10	The first two fault type	Fault)~18	E7H
FE.011	The first two fault type output frequency	60.00~400.00Hz	E8H
FE.012	The first two fault type output current	0.00~2000.0A	E9H
FE.013	The first two fault type busbar voltage	0.00~1000V	EAH
FE.014	The first two fault type move direction		EBH

FD human-computer interface display factor

Fd.000 frequency setting 0.00~400.0Hz ECH Fd.001 input frequency 0.00~400.0Hz EDH Fd.002 input current 0.1~2000.0Hz EEH Fd.003 input voltage 0.1~2000.0V EFH Fd.004 Current voltage 100~1000V FOH Fd.005 Generating speed 0~3000mp F1H Fd.006 frequency inverter temperature 0~10 celsius degree F2H Fd.007 FD 0.00~10.00V F3H Fd.008 frequency inverter temperature 0.00~10.00V F3H Fd.009 Input pulse frequency 0.00~10.00V F4H Fd.009 Input pulse frequency 0.00~10.00V F3H Fd.010 CCl input voltage 0.00~10.00V F3H Fd.011 CCl input voltage 0.00~10.00V F3H Fd.012 input terminal status 0.00~10.00V F3H Fd.013 AO1 output voltage 0.00~10.00V F3H Fd.014 AO2 output voltage 0.00~10.00V <				
Fd.002 input current 0.1~2000.0A EEH Fd.003 input voltage 0.1~2000.0V EFH Fd.004 Current voltage 100~1000V FOH Fd.005 Fd.004 Current voltage 0~3000rmp F1H Fd.005 frequency inverter temperature 0~100 celsius degree F2H Fd.006 frequency inverter temperature 0.00~10.00V F3H Fd.007 PID 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F4H Fd.009 Input pulse frequency 0.00~10.00V F3H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F6H Fd.012 input terminal status Input terminal status F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V F9H	Fd.000	frequency setting	0.00~400.00Hz	ECH
Fd.003 input voltage 0.1~2000.0V EFH Fd.004 curren voltage 100~1000V FOH Fd.005 curren voltage 0~3000rmp F1H Fd.006 frequegory inverter temperature 0~100 celsius degree F2H Fd.007 PID 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F3H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F6H F8H Fd.013 AO1 output voltage 0.00~10.00V F7H Fd.014 AO2 output voltage 0.00~10.00V F8H	Fd.001		0.00~400.00Hz	EDH
Fd.004 Current voltage 100~1000V FOH Fd.005 F0 F0 F0 Fd.005 Image: Frequency inverter temperature 0~3000mp F1H Fd.006 frequency inverter temperature 0~100 celsius degree F2H Fd.007 PID 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F4H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCI input voltage 0.00~10.00V F7H Fd.012 input terminal status F0H F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V F9H	Fd.002	input current	0.1~2000.0A	EEH
Fd.005 For root F1H Fd.005 frequency inverter temperature 0~100 celsius degree F2H Fd.007 F0D 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F3H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F7H F7H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V F9H	Fd.003	input voltage	0.1~2000.0V	EFH
Fd.006 frequency inverter temperature 0~100 celsius degree F2H Fd.007 PID 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F4H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCI input voltage 0.00~10.00V F7H Fd.012 input terminal status F6H F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V F9H	Fd.004	curenvoltage	100~1000V	FOH
Fd.007 PID 0.00~10.00V F3H Fd.008 PID Feedback 0.00~10.00V F4H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F7H F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.005	Gerating speed	0~30000rmp	F1H
Fd.008 PID Feedback 0.00~10.00V F4H Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F000~10.00V F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.006	frequency inverter temperature	$0{\sim}100$ celsius degree	F2H
Fd.009 input pulse frequency 0.01~50.00KHz F5H Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCI input voltage 0.00~10.00V F7H Fd.012 input terminal status F7H F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.007	PID	0.00~10.00V	F3H
Fd.010 VIC input voltage 0.00~10.00V F6H Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F8H F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.008	PID Feedback	0.00~10.00V	F4H
Fd.011 CCl input voltage 0.00~10.00V F7H Fd.012 input terminal status F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.009	input pulse frequency	0.01~50.00KHz	F5H
Fd.012 input terminal status F8H Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.010	VIC input voltage	0.00~10.00V	F6H
Fd.013 AO1 output voltage 0.00~10.00V F9H Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.011	CCI input voltage	0.00~10.00V	F7H
Fd.014 AO2 output voltage 0.00~10.00V FAH	Fd.012	input terminal status		F8H
0.00 - 10.00 -	Fd.013	AO1 output voltage	0.00~10.00V	F9H
Fd.015 output terminal status FBH	Fd.014	AO2 output voltage	0.00~10.00V	FAH
	Fd.015	output terminal status		FBH

Fd.016		accumulated running hours	0∼65535h		FCH
	Fd.017	software edition No.			FDH
	Fd.018	Retain			FEH
	Fd.019	Retain			FFH
	Fd.020	Retain			100H

or Monual

- V/-

Cheese the second secon

Chapter 6 Fault Alarm and Countermeasures

6.1 Fault and Alarm

Fault and alarm are both abnormal states. But there is obvious difference between them.

Inverter self-monitors during running. If fault occurs, inverter will display fault code, and cut off inverter output to make motor in free running state and stop revolving; while if alarm occurs, inverter will display alarm code, inverter do not cut off output under alarm state, motor is still controlled by inverter.

6.1.1 Fault indication and fault reset

1~15 are for fault indication.

There are a number of ways of inverter fault reset: keyboard "reset button", terminal reset function, or, if necessary, fault reset can also be achieved by turning off the main power supply for some time. If fault has disappeared, inverter will resume normal operations; otherwise inverter will trip again.

Note: If start command is valid, fault reset will start transmission equipment.

6.2 Fault alarm and contermeasures

Fault Co	ode	4	F	
No.	English Abbr.	Туре	Fault causes	Countermeasures
1	oc	Overcurrenziault	Inverter power is too small.	ong ac/deceleration time. Choose one level bigger inverter Check input voltage.
2	Sc	Power module fault	Output side of inverter is short.	Prolong ac/deceleration time. Check motor insulation. Seek for support. Check whether peripherals are with strong interference source.
3	ou	Bus overvoltage fault	regeneration energy is too large. Che	Prolong deceleration time. k input voltage. Choose one level bigger inverter.

User Manual

			Load inertia is too large,	
			regeneration energy is too large.	
4	Lu	Bus undervoltage fault	Grid voltage is too low.	Check input voltage.
5	oL	Motor overload fault	Grid voltage is too low. Load inertia is too large. Votor rated current setting wrong.	Check input voltage. Check load, adjust torque boost quantity. Reset motor rated current.
			Inverter power is too small.	Choose one level bigger inverter.
6	оН	Inverter overheating fault	Ambient temperature is too high. Poor ventilation of inverter. Cooling fan fault. Temperature inspection circuit	heck whether ambient temperature meets requirement. morove ventilation. Check whether cooling fan run. Seek for support.
7	cno	Soft start fault	Soft start circuit or contactors	Seek for support.
8	ILP	Input missing phase fault	3-phase AC input resing phase.	Check input power supply and the cable.
9	OLP	Output missing phase fault	Current of 3-phase input side is asymmetric	Check output cable and motor insulation.
10	EF	External equipment fault	Externational signal input termine acting. STOPI key of keypad is set to mergency stop.	Check external fault cause. Check keypad —stopl key setting.
11	tA	Lifetime arrival taut	Lifetime set by manufacturer arrival.	Contact manufacturer
12	cdE	Current detecting circuit fault	Current detecting component damaged.	Seek for support.
13	EEP	EEPROM read-write fault	Control panel component damaged. External interference.	Seek for support. Check if peripherals are with strong interference source.
14	AUE	Motor parameter inspection fault	Deviation between test results and theoretical value is too large. s Motor parameter set wrong setting.	Confirm motor is under no load ate. Check motor parameter

12	EIF	CPU disturbed fault	kternal interference.	Check if peripherals are with strong interference source.
----	-----	---------------------	-----------------------	---

6.3 Solutions of common fault

Inverter may encounter several of the following failure in use, please follow the steps as below to do simple fault analysis:

6.3.1 No display after power on

1. With a multimeter check whether the input power source of inverter is consistent with the rated voltage of inverter.

2. Check inverter bus voltage with a multimeter, determine whether three-phase rectifier is good.

3.Check if the -CHARGEI light is lit.

4. If the above are OK, fault may exist in switching power supply section. Please seek service.

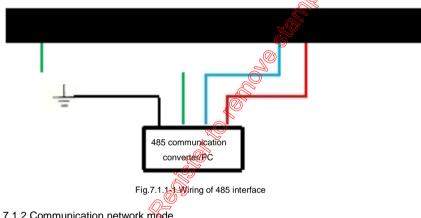
6.3.2 Motor does not run after inverter ran

1. For motors with band-type brake, please make sure that the motor is not in band-type braking state.

2. Disconnecting inverter and motor, runninginverter at 50Hz, and with a multimeter, check

whether there is balanced voltage among whether there is balanced voltage among whether there is balanced voltage among u, v, w. Note that since that among u, v, w arehigh frequency pulses analog voltage meter(range: AC 500V) should be used. If voltage is unbalanced or there is no voltage, the inverter module is damaged. Please seek service.

3. If the above are OK, please seek service 09327444043 / 09824692665.


Chapter 7 Serial 485 (MODBUS) Communication Protocol

The inverter supports Modbus protocol, RTU format, Broadcast address 0, master address 248. slave address -1-247I.

7.1 Composition of MODBUS communication

7.1.1 Interface mode

RS485: asynchronous, half duplex, LSB sending priority. Low byte is after the high byte. Inverter communication port: terminal RS485+/-, default data format: 8-N-1, 9600 bps.

7.1.2 Communication network mode

MODBUS communication is composed by 1 master station and up to 31 slave stations at most, and takes the form of master station sending directives and slave station responding. Each time master station takes serial communication with one slave station. Therefore, assign address number in advance for each station, main station directives conduct signal communicates in accordance with the number. After Received instruction from main station, slave station performs assigned functions, to respond to the main station.

The following intervals must be kept between the messages:

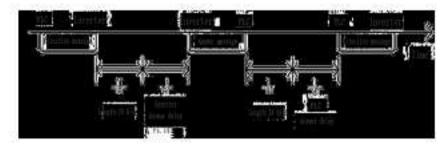


Fig. 7.1.2-1 Serial communication

7.2 Message Format

MODBUS communication takes the form of master station sending directives and slave station responding. Massage format of sending and receive is composed as shown in fig. 7.2-1,data length changes along with different directive (function) contents.

Slave station address		
Function code		
Data		
Error inspection		

Fig. 7.2-1 Serial communication message format

1. Slave station address

Inverter address range is $(0 \sim C7Hex)$ is set to 0, master station sends to all the slave stations, but slave stations do not respond

2. Function code

Function	Function	Directive me	Directive message		Response message	
(Hex)	Function	Mini.(byte)	Max.(byte)	Mini.(byte)	Nax.(byte)	
03H	Read the contents of register	8	8	7	37	
08H	Loopback test	8	8	8	8	
10H	Multiple memory registers write in	11	41	8	8	
80H	Slave register receive data error			5	5	

Fig. 7.2-2serial communication function code explanation

3. Data

User Manual

Memory register number (test code when number) and its datenverbund constitute a series of data. Data length changes according to the directive content.

4. Error detection

CRC-16 (CRC: Cyclic Redundancy Check, checksum method) is used to check out errors in communication.

Check and operation results are saved in a data (16 bits), the start value is FFFFH. Put the data packet that is to be sent (slave station address, function code and data) and fixed value A001H together to conduct oxr and shift operation. After the operation is finished, checksum value is included in the data.

Check and operation proceed in accordance with the following methods:

- 1) Start value of the 16-bit data used for operation must be set to start FFF.
- 2) Must conduct xor operation by using start value and slave station address.
- 3) Must right shift the result until the overflow bit turn out to be

4) When the overflow bit turns out to be 1, must conduct oxr operation by the third step result and fixed value A001H.

5) After 8 times shift operations (whenever the overflow bit becomes 1, it must, as described in step 4 carry on oxr operation), carry on oxropereation with the last operation result and the next data packet (8-Bit function code). The result must execute 8 times shift operations again, when the overflow bit becomes 1 feeds to carry out oxr operation with the fixed value A001H.

6) To process the data in the same processing the high byte is processed first, and then the low byte, until all of the data processing the completed.

7) The operation result is checksure, consisting of a high byte and a low byte.

Note: When add checksum into data me, add low byte first, then add the high byte.

7.3 MODBUS massege example

7.3.1 Read register contents

At most 16 inverters'momery register contents can be read each time.

Firstly,the directive message must contain the start address of the first register to read and the quantity of the registers to read.Response message will contain the contents of the registers to read.The contents of memory register is divided into the high 8 bits and the low 8 bits,becoming data of response massege in numerical order.

Read message from 000H, 001H registers of slave inverter 2, which is shown as below.

Directive massage			
Slave station address Founction code		02H	
		03H	
Start address	High order	00H	
Start address	Low order	00H	

	High order	00H
quantity	Low order	02H
000.40	High order	C4H
CRC-16	Low order	38H

Response massege (normal state)	Response massege (normal state)		
Slave station address		02H	
Function code		08H	
Taskaada	High order	01H	
Test code	yourorder	02H	
Dete	High order	03H	
Data	Low order	04H	
	High order	41H	
CRC-16	Low order	37H	

Response massege (fault state)			
Slave station address		02H	
Function code	Function code		
Error code		F1H	
	High order	C1H	
CRC-16	Low order	03H	

Q

Fig. 7.3.1-1 Serial communicationread command example

7.3.2 Loop test

Directive message returned directly as a response message, using communication detection between master and slave stations. Any calue can be used for test code and data. Loop test message of the slave inverter 2 is demonstrated as follows.

Directive massege			
Slave station address	02H		
Function code		08H	
Test and	High order	01H	
Test code	Low order	02	
Dete	High order	08F	
Data	Low order	04H	
CRC-16	High order	41H	
CRC-16	Low order	37H	
Response massege (normal state)	Ň		
Slave station address		02H	
Function code		08H	
Test es de	High order	01H	
Test code	Lowerder	02H	
Dete	Hige order	03H	
Data	Low order	04H	
000 40	High order	41H	
CRC-16	Low order	37H	

Response massege (fault state)			
Slave station address		02H	
Function code		80H	
Error code	Error code		
CRC-16	High order	F1H	
	Low order	C1H	

Fig. 7.3.2-1 Serial communication loop test example

7.3.3 Write in of multiple memory registers

At most 16 inverter memory registers can be writedin.Begin with the assigned number, write the assigned data into assigned quantity of memory registers.Write in data must conduct in accordance with numbered order of the Registers, respectively, in order of high 8 bits and low 8 bits aligned in directive message.

From PLC modify 000H, 001H registers' messages of slave inverter, which is shown as follows:

directive mesage		
Slave station address		02H
Function code		10H
Start address	High order	A CONTRACTOR
	Low order	90H
quantity	High order	00H
	Low order	02H
The number of data		04H
Otast data	High order	00H
Start data	Low order	01H
The next data		00H
	Lowereer	01H
CRC-16	High order	6CH
	Cow order	ЕВН
Note : The number of data=quantity		

Response massege (normal state)		
Slave station address		02H
Function code		10H
Start address	High order	00H
	Low order	00H
Quantity	High order	00H
	Low order	02H
CRC-16	High order	51H
	Low order	9FH

907

Response massege (fault state)		
Slave station address		02H
Function code		80H
Error code		01H
CRC-16	High order	31H
	Low order	C2H

Fig. 7.3.3-1 Example of serial communication write in

Read contents. MODBUS register address of each function code refers to function code list.

The data is transmitted as an integer, pay attention to the units of the function code.

7.3.4 Data save directive

When MODBUS communication is used, if write function data in inverter from PLC,

function code data will be saved in inverter internal data fields temporarily.

The function code data of the RAM is written to inverter internal EEPROM (permanent storage) by the save directive.Write 1 in 0909H register,thenData save directive can be carried on by writing 1 into 0909H register.

7.3.5 Broadcast sending data

When send data by broadcast, one directive carbe sent simultaneously to all slave stations. Slave station address of directive message must be set to 00H. All slave stations receive the information, without response.

7.4 Slave inverter

When inverter address is 1~31,the slave station will receive the following data.

7.4.1 Directive data

Directive data is shown a MODBUS Register address	contents	
	Bit0 Running directive 1: running, 0: stop	
900Н	Bit1	Direction directive 1: reverse, 0: forward
	Bit2	JOG directive 1: JOG, 0: stop
	Bit3	Reset directive 1: fault reset, 0:no
	Bit4~F	Retained
901H	Frequency directive	

902H	PID given value	
903H~908H	Retained	
909H	Save directive 1: save parameter to EEPROM	
Note : Bit 0 is the lowest order bit		

Fig. 7.4.1-1 Data defination of serial communication directive

7.4.2 Monitoring data

Function code of function group d0, d1, d2, d3 can act as monitoring data by using function code 003H.

7.4.3 Setting data

Function code of function group P0 can be modified, writing in by function code 10H. MODBUS register address of each function group refers to function group list. The data is transmitted as an integer, pay attention to the units of each function code.

7.4.4 Testing data

Receive test data of function code 08H during loop (est, and respond.

7.5 Master Inverter

When inverter address is 32, the inverter address a master inverter and sends the following broadcast data. At this time master inverter sends running and stop directive according to

current operating state, the set frequency is sent as a frequency directive. MODBUS register address is 900H and 901H.

Master inverter sends frequency directive 50.0Hz and set forward running message, which is

storyings below:	contents	
Register address		
	Bit 0	Running directive 1:running,0:stop
900H	Bit 1	Direction directive 1:reverse running,0:forward running
	Bit 2	Retained
	Bit 3~F	Retained
901H	Frequency directive	
Note: Bit 0 is the lowest order bit		

Directive message		
Slave station address		00H
Function code		10H
Start addree	High order	09H
	Low order	00H
	High order	00H
Quantity	Low order	02H
The number of data		04H
	High order	00H
Start data	Low order	01H
The next data	High order	13H
	Low order	88H
000.40	High order	C1H
CRC-16	Low order	95H

Fig. 7.5-1 Serial command example when inverter is master station

7.6 MODBUS communication error code

When slave inverter receives error data, will move that fram of function code 80H, error code is shown as below:

Error code	Contents
01H	Do not allowed to write in the data during running
02H	Data overflow 1. MODBUS address out of range. 2. Number of data out of range. 3. When writing data, the data contents exceed the upper and lower limits.
03H	Function code overflow

Fig. 7.6-1 serial communication error code

7.7 No Response Fault Inspection of Slave Machine

Under the following condition, salve station ignore directive message of master station, does not sent response message.

1. Transmission error is checked out in directive message (over adjustment, framing, parity, CRC-16)

2. Slave address in directive message is not accordance with the slave address of inverter side.

3. When time interval between data and data that constitutes message exceeds 24 bits.

the terms of terms

Chapter 8 Repair and Maintenance

8.1 Periodic Inspection

As a result of inverter use environment changes, such as temperature, humidity, smog and so on, as well as aging of inverter internal parts, kinds of faults may occur. Therefore, in the course of storage and use, daily inspection and periodic maintenance should be carried on.

Inspection Items	Inspection contents	Solutions
Terminal screws	Whether the screws are loosen	Screw up by screwdriver.
Heatsink	Whether there is dust	Blow the dust off with 4~6kg/cm ² dried compressed are
PCB(printed circuit board)	Whether there is dust	Blow the d ot of with 4~6kg/cm ² dried compressed air.
Cooling fan	Whether there is abnormal noise, abnormal vibration.	Replace the cooling fan.
Power component	Whether there is dust	Bow the dust off with 4–6kg/cm ² driedcompressed air.
Bus aluminum electrolytic capacitor	Is there color change, strange smell, Konger bubble or leak.	Replace aluminum electrolytic capacitor.

Fig. 8.1-1 Inverter periodic inspection

8.2 Components replacement agelimit

Fansand bus aluminum electrolytic capacities are easy to damage parts of inverter, to ensure long-term security work of inverter, please replace periodically. Under condition of ambient temperature below 30°C, 80% rate replace, running time of 12 hours/day, replacement time is as follows:

1. Fan: should be replaced after 3 years.

2. Aluminum electrolytic capacitor: should be replaced after 5 years.

8.3 Warranty Description

Calculating from the date of leaving factory, the warranty period is 18 months. Manufacturer is responsible only for quality issues due to improperdesign and productive process, not for the damage caused by transport or unpacking. Regarding incorrect installation and use, such as temperature, dust, corrosion, which do not comply with the prescribed working conditions, as well as damage caused by overload running, manufacturer is irresponsible.