An Introduction to Python

Concurrency

David Beazley
http://www.dabeaz.com

Presented at USENIX Technical Conference
San Diego, June, 2009

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

This Tutorial

® Python : An interpreted high-level programming
language that has a lot of support for "systems
programming” and which integrates well with
existing software in other languages.

® Concurrency : Doing more than one thing at a
time. Of particular interest to programmers
writing code for running on big iron, but also of
interest for users of multicore PCs. Usually a
bad idea--except when it's not.

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Support Files

® Code samples and support files for this class

http://www.dabeaz.com/usenix2009/concurrent/

® Please go there and follow along

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Overview

® We're going to explore the state of concurrent
programming idioms being used in Python

® A look at tradeoffs and limitations
® Hopefully provide some clarity
® A tour of various parts of the standard library

® Goal is to go beyond the user manual and tie
everything together into a "bigger picture."

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Disclaimers

® The primary focus is on Python

® This is not a tutorial on how to write
concurrent programs or parallel algorithms

® No mathematical proofs involving "dining
philosophers" or anything like that

® | will assume that you have had some prior
exposure to topics such as threads, message
passing, network programming, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Disclaimers

® | like Python programming, but this tutorial is
not meant to be an advocacy talk

® In fact, we're going to be covering some
pretty ugly (e.g., "sucky") aspects of Python

® You might not even want to use Python by
the end of this presentation

® That's fine... education is my main agenda.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Part |

Some Basic Concepts

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Concurrent Programming

® Creation of programs that can work on
more than one thing at a time

® Example : A network server that
communicates with several hundred clients
all connected at once

® Example :A big number crunching job that
spreads its work across multiple CPUs

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Multitasking

® Concurrency typically implies "multitasking”

TaskA: —— S —
run . * run : run
task switch?
: H § i
Task B: — —
run run

® [f only one CPU is available, the only way it
can run multiple tasks is by rapidly switching
between them

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Parallel Processing

® You may have parallelism (many CPUs)

® Here, you often get simultaneous task execution

CPU |

v
v

Task A: >

run run run

\ 4
v
\ 4

CPU 2

M run run run

® Note: If the total number of tasks exceeds the
number of CPUs, then each CPU also multitasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.c




Task Execution

® All tasks execute by alternating between
CPU processing and I/O handling

run D run DE.D run

I/ O systen'; cal

® For I/O, tasks must wait (sleep)

® Behind the scenes, the underlying system will
carry out the /O operation and wake the
task when it's finished

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Tasks

® A task is "CPU Bound" if it spends most of

its time processing with little I/O
/O /O

| =D
run |—| run run

® Examples:
® Crunching big matrices

® Image processing

v



/O Bound Tasks

® A task is "lI/O Bound" if it spends most of its
time waiting for I/O

— | |/O |— I/O — I/O — | 1/O
run run run run
® Examples:

® Reading input from the user

® Networking
® File processing

® Most "normal” programs are 1/O bound

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Shared Memory

® Tasks may run in the same memory space

Process
run run run
Task A: > > > CPU |
read |
write
. > —> > CPU 2
Task B: run run  run

® Simultaneous access to objects

® Often a source of unspeakable peril

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Processes

® Tasks might run in separate processes

Process
run run run
Task A: > > > CPU |
IPC
Process
. > > > CPU 2
Task B: run run run

® Processes coordinate using IPC

® Pipes, FIFOs, memory mapped regions, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 5

Distributed Computing

® Tasks may be running on distributed systems

Task A: > > >

> ‘¥ ‘I > D
Task B run run run @

P S=
=2 o =
=

=

® For example, a cluster of workstations

® Communication via sockets

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 6



Part 2

Why Concurrency and Python?

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Some lIssues

® Python is interpreted

"What the hardware giveth, the software taketh away."

® Frankly, it doesn't seem like a natural match
for any sort of concurrent programming

® Isn't concurrent programming all about high
performance anyways???

N

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Why Use Python at All?

® Python is a very high level language

® And it comes with a large library
® Useful data types (dictionaries, lists,etc.)
® Network protocols
® Text parsing (regexs, XML, HTML, etc.)
® Files and the file system
® Databases

® Programmers like using this stuff...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 9

Python as a Framework

® Python is often used as a high-level framework

® The various components might be a mix of
languages (Python, C, C++, etc.)

® Concurrency may be a core part of the
framework's overall architecture

® Python has to deal with it even if a lot of the
underlying processing is going on in C

20

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Programmer Performance

® Programmers are often able to get complex
systems to "work" in much less time using a
high-level language like Python than if they're
spending all of their time hacking C code.

"The best performance improvement is the transition from
the nonworking to the working state."
- John Ousterhout

"Premature optimization is the root of all evil."
- Donald Knuth

"You can always optimize it later."
- Unknown

Copyright (C) 2009, David Beazley, http://www.dabeaz.co 2 I

Performance is Irrelevant

® Many concurrent programs are "l/O bound"

® They spend virtually all of their time sitting
around waiting

® Python can "wait" just as fast as C (maybe
even faster--although | haven't measured it).

® |f there's not much processing, who cares if
it's being done in an interpreter! (One
exception : if you need an extremely rapid
response time as in real-time systems)

22

Copyright (C) 2009, David Beazley, htt,



Copyright (C) 2009, Davi

id Beazley, httj

You Can Go Faster

Python can be extended with C code
Look at ctypes, Cython, Swig, etc.

If you need really high-performance, you're
not coding Python--you're using C extensions

This is what most of the big scientific
computing hackers are doing

It's called "using the right tool for the job"

23

Copyright (C) 2009, Davi

Commentary

Concurrency is usually a really bad option if
you're merely trying to make an inefficient
Python script run faster

Because its interpreted, you can often make
huge gains by focusing on better algorithms
or offloading work into C extensions

For example,a C extension might make a
script run 20x faster vs. the marginal
improvement of parallelizing a slow script to
run on a couple of CPU cores

24

d Beazley, http://www.dabeaz.com




Part 3

Python Thread Programming

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

25

Concept: Threads

® What most programmers think of when they
hear about "concurrent programming”

® An independent task running inside a program

® Shares resources with the main program
(memory, files, network connections, etc.)

® Has its own independent flow of execution
(stack, current instruction, etc.)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

26



Thread Basics

% python program.py

statement Program launch. Python
statement loads a program and starts
<o executing statements

¥
["main thread"]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 27

Thread Basics

% python program.py

°

statement
statement Creation of a thread.
cee Launches a function.
create thread(foo) e » def foo():

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 28



Thread Basics

% python program.py

statement
statement

y

create thread(foo) s » def foo():
statement Concurrent statement
statement execution statement

V

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

of statements

V

29

Thread Basics

°

statement
statement

y

% python program.py

create thread(foo) e » def foo():

V

statement
statement

V

statement
statement

V

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

statement
statement

thread terminates .o
on return or exit ¢

D T LT TP PRI return or eXit

30



Thread Basics

[

% python program.py

statement
statement

Key idea: Thread is like a little
"task" that independently runs
inside your program

’ ¢ ’ thread /

create thread(foo)
statement statement
statement statement

V v

statement D N return or exit

statement

V

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

31

threading module

® Python threads are defined by a class

import time
import threading

class CountdownThread(threading.Thread):
def init (self,count):
threading.Thread. init (self)
self.count = count
def run(self):
while self.count > 0:
print "Counting down", self.count
self.count -=1
time.sleep(5)
return

® You inherit from Thread and redefine run()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

32



threading module

® Python threads are defined by a class

import time
import threading

class CountdownThread(threading.Thread):
def init (self,count):
threading.Thread. init (self)
self.count = count
def run(self):

This code while self.count > O:
) print "Counting down", self.count
executes in self.count -=1
the thread time.sleep(5)
return

® You inherit from Thread and redefine run()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 3 3

threading module

® To launch, create thread objects and call start()

tl = CountdownThread(10) # Create the thread object
tl.start() # Launch the thread

t2 = CountdownThread(20) # Create another thread
t2.start() # Launch

® Threads execute until the run() method stops

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 34



Functions as threads

® Alternative method of launching threads

def countdown(count):
while count > 0:
print "Counting down", count
count -=1
time.sleep(5)

tl = threading.Thread(target=countdown,args=(10,))

tl.start()

® Creates a Thread object, but its run()
method just calls the given function

35

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Joining a Thread

® Once you start a thread, it runs independently

® Use t.join() to wait for a thread to exit

t.start() # Launch a thread
# Do other work

# Wait for thread to finish
t.join() # Waits for thread t to exit

® This only works from other threads

® A thread can't join itself

36

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Daemonic Threads

® |f a thread runs forever, make it "daemonic"

t.daemon = True
t.setDaemon (True)

® |f you don't do this, the interpreter will lock
when the main thread exits---waiting for the
thread to terminate (which never happens)

® Normally you use this for background tasks

37

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Interlude

® Creating threads is really easy
® You can create thousands of them if you want
® Programming with threads is hard

® Really hard

Q: Why did the multithreaded chicken cross the road?
A: to To other side. get the
-- Jason Whittington

38

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Access to Shared Data

® Threads share all of the data in your program
® Thread scheduling is non-deterministic

® Operations often take several steps and might
be interrupted mid-stream (non-atomic)

® Thus, access to any kind of shared data is also
non-deterministic (which is a really good way
to have your head explode)

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

39

Accessing Shared Data

® Consider a shared object

x =0

® And two threads that modify it

Thread-1 Thread-2

® |t's possible that the resulting value will be
unpredictably corrupted

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

40



Accessing Shared Data

® The two threads

® Low level interpreter execution
Thread-1 Thread-2

LOAD GLOBAL 1 (x)
LOAD CONST 2 (1)

—_—
thread LOAD GLOBAL 1 (x)
switch LOAD_CONST 2 (1)
BINARY_ SUB
STORE_GLOBAL 1 (x)
BINARY ADD
— thread
STORE GLOBAL 1 (x) switch
Copyright (C) 2009, David Beazley, http://www.dabeaz.com 4 I

Accessing Shared Data

® Low level interpreter code
Thread-1 Thread-2

LOAD GLOBAL 1
LOAD CONST 2 (1)
thread LOAD GLOBAL 1 (x)
switch LOAD CONST 2 (1)
BINARY SUB
STORE_GLOBAL 1 (x)

BINARY ADD " thread
STORE_GLOBAL 1 (X) . switch

These operations get performed with a "stale”
value of x. The computation in Thread-2 is lost.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 42




Accessing Shared Data

® |[s this actually a real concern?

x =0 # A shared value
def foo():
global x
for i in xrange(100000000): x += 1

def bar():

global x

for i in xrange(100000000): x -= 1
tl = threading.Thread(target=foo)

t2 = threading.Thread(target=bar)

tl.start(); t2.start()

tl.join(); t2.join() # Wait for completion
print x # Expected result is 0

® Yes, the print produces a random nonsensical
value each time (e.g.,-83412 or 1627732)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 43

Race Conditions

® The corruption of shared data due to
thread scheduling is often known as a "race
condition."

® |t's often quite diabolical--a program may
produce slightly different results each time
it runs (even though you aren't using any
random numbers)

® Or it may just flake out mysteriously once
every two weeks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 44



Thread Synchronization

® |dentifying and fixing a race condition will
make you a better programmer (e.g., it
"builds character")

® However, you'll probably never get that
month of your life back...

® To fix :You have to synchronize threads

45

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Part 4

Thread Synchronization Primitives

46

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Synchronization Options

® The threading library defines the following
objects for synchronizing threads

® Lock

® RlLock

® Semaphore

® BoundedSemaphore
® Event

® Condition

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

47

Synchronization Options

® |In my experience, there is often a lot of
confusion concerning the intended use of
the various synchronization objects

® Maybe because this is where most
students "space out" in their operating
system course (well, yes actually)

® Anyways, let's take a little tour

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

48



Mutex Locks

® Mutual Exclusion Lock

m = threading.Lock()

® Probably the most commonly used
synchronization primitive

® Primarily used to synchronize threads so
that only one thread can make modifications
to shared data at any given time

49

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Mutex Locks

® There are two basic operations

m.acquire() # Acquire the lock
m.release() # Release the lock

® Only one thread can successfully acquire the
lock at any given time

® [f another thread tries to acquire the lock
when its already in use, it gets blocked until
the lock is released

50

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Use of Mutex Locks

® Commonly used to enclose critical sections

x =0
x_lock = threading.Lock()

Thread-1 Thread-2

x_lock.acquire() x_lock.acquire()
Cr‘ItI.C3| x=x + 1 x =x -1
Section

X _lock.release() x_lock.release()

® Only one thread can execute in critical section
at a time (lock gives exclusive access)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 5 I
® |t is your responsibility to identify and lock
all "critical sections”

x =0
x_lock = threading.Lock()
Thread-1 Thread-2
;;iock.acquire() fﬂ X =X - 1.
x=x+1 B eee
x_lock.release() . e f .................

If you use a lock in one place, but

not another, then you're missing

the whole point. All modifications

to shared state must be enclosed

by lock acquire()/release(). 5

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Locking Perils

® [ocking looks straightforward
® Until you start adding it to your code

® Managing locks is a lot harder than it looks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

53

Lock Management

® Acquired locks must always be released

® However, it gets evil with exceptions and
other non-linear forms of control-flow

® Always try to follow this prototype:

x =0
x lock = threading.Lock()

# Example critical section
x_lock.acquire()
try:

statements using x
finally:

x_lock.release()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

54



Lock Management

® Python 2.6/3.0 has an improved mechanism
for dealing with locks and critical sections

x =0
x_lock = threading.Lock()

# Critical section
with x_lock:
statements using x

® This automatically acquires the lock and
releases it when control enters/exits the
associated block of statements

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

55

Locks and Deadlock

® Don't write code that acquires more than

one mutex lock at a time

X 0

y 0
x_lock = threading.Lock()
y_lock = threading.Lock()

with x_lock:
statements using x

%iéh y_lock:
statements using x and y
® This almost invariably ends up creating a
program that mysteriously deadlocks (even
more fun to debug than a race condition)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

56



RLock

® Reentrant Mutex Lock

m = threading.RLock() # Create a lock
m.acquire() # Acquire the lock
m.release() # Release the lock

® Similar to a normal lock except that it can be
reacquired multiple times by the same thread

® However, each acquire() must have a release()

® Common use : Code-based locking (where
you're locking function/method execution as
opposed to data access)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

57

RLock Example

® |mplementing a kind of "monitor” object

class Foo(object):
lock = threading.RLock()

def bar(self):
with Foo.lock:

def spam(self):
with Foo.lock:

self.bar()

® Only one thread is allowed to execute
methods in the class at any given time

® However, methods can call other methods that
are holding the lock (in the same thread)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

58



Semaphores

® A counter-based synchronization primitive

m = threading.Semaphore(n) # Create a semaphore
m.acquire() # Acquire
m.release() # Release

® acquire() - Waits if the count is 0, otherwise
decrements the count and continues

® release() - Increments the count and signals
waiting threads (if any)

® Unlike locks, acquire()/release() can be called
in any order and by any thread

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

59

Semaphore Uses

® Resource control. You can limit the number
of threads performing certain operations.
For example, performing database queries,
making network connections, etc.

® Signaling. Semaphores can be used to send
"signals" between threads. For example,
having one thread wake up another thread.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

60



Resource Control

® Using a semaphore to limit resources

sema = threading.Semaphore(5) # Max: 5-threads

def fetch_page(url):
sema.acquire()
try:
u = urllib.urlopen(url)
return u.read()
finally:
sema.release()

® In this example, only 5 threads can be
executing the function at once (if there are
more, they will have to wait)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 6 I
® Using a semaphore to signal
done = threading.Semaphore(0)
Thread | Thread 2
;;;tements done.acquire()
statements statements
statements statements
done.release() statements
® Here, acquire() and release() occur in different
threads and in a different order
® Often used with producer-consumer problems
62

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Events

® Event Objects

e = threading.Event()

e.isSet() # Return True if event set
e.set() # Set event

e.clear() # Clear event

e.wait() # Wait for event

® This can be used to have one or more
threads wait for something to occur

® Setting an event will unblock all waiting
threads simultaneously (if any)

® Common use : barriers, notification

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 63
® Using an event to ensure proper initialization
init = threading.Event()
def worker():
init.wait() # Wait until initialized
statements
def initialize():
statements # Setting up
statements # ..
init.set() # Done initializing
Thread(target=worker).start() # Launch workers
Thread(target=worker).start()
Thread(target=worker).start()
initialize() # Initialize
64

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



® Us

Event Example

ing an event to signal "completion”

def master():

item = create item()
evt = Event() Worker Thread

worker.send((item,evt)).,_~_§§~~

# Other processing processing

# Wait for‘szfff_________,,,,———\ Y,

e N
> item, evt = get work()

processing

# Done
|_evt.set()

evt.wait ()

® Might use for asynchronous processing, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 65

Condition Variables

® Condition Objects

cv

Cv.

cv

CVv.
Cv.
CVv.

o A

= threading.Condition([lock])

acquire() # Acquire the underlying lock
.release() # Release the underlying lock
wait() # Wait for condition

notify() # Signal that a condition holds
notifyAll() # Signal all threads waiting

combination of locking/signaling

® Lock is used to protect code that establishes
some sort of "condition" (e.g., data available)

® Signal is used to notify other threads that a
"condition" has changed state

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 66



Condition Variables

® Common Use : Producer/Consumer patterns

items = []
items cv = threading.Condition()

Producer Thread

item = produce_item()
with items_cv:
items.append(item)

Consumer Thread

with items_cv:

X = items.pop(0)

# Do something with x

® First, you use the locking part of a CV
synchronize access to shared data (items)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

67

Condition Variables

® Common Use : Producer/Consumer patterns

items = []

items cv = threading.Condition()

Producer Thread Consumer Thread
item = produce item() with items cv:
with items cv: while not items:

items.append(itemi——”’///,————“—’*'%temS_CV-Wait()
items_cv.notify() x = items.pop(0)

# Do something with x
® Next you add signaling and waiting

® Here, the producer signals the consumer
that it put data into the shared list

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

68



Condition Variables

® Some tricky bits involving wait()

. Consumer Thread
® Before waiting, you have —— with items_cv:

. while not items:
to acquire the lock items_cv.wait ()
,///////”//;/;?items.pop(O)

# Do something with x

® wait() releases the lock
when waiting and
reacquires when woken

® Conditions are often transient and may not
hold by the time wait() returns. So, you must
always double-check (hence, the while loop)

69

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

® Working with all of the synchronization
primitives is a lot trickier than it looks

® There are a lot of nasty corner cases and
horrible things that can go wrong

® Bad performance, deadlock, livelock,
starvation, bizarre CPU scheduling, etc...

® All are valid reasons to not use threads

Copyright (C) 2009, David Beazley, http://www.dabeaz.c 70




Part 5

Threads and Queues

71

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Threads and Queues

® Threaded programs are often easier to manage
if they can be organized into producer/
consumer components connected by queues

Thread | send(item) QueuE Thread 2
(Producer) L (Consumer)

® |nstead of "sharing” data, threads only
coordinate by sending data to each other

® Think Unix "pipes" if you will...

72

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Queue Library Module

® Python has a thread-safe queuing module

® Basic operations

from Queue import Queue

q = Queue([maxsize]) # Create a queue

g.put(item) # Put an item on the queue
g.get() # Get an item from the queue
g.empty() # Check if empty

gqg.full() # Check if full

® Usage :You try to strictly adhere to get/put
operations. If you do this, you don't need to
use other synchronization primitives.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 73

Queue Usage

® Most commonly used to set up various forms
of producer/consumer problems

from Queue import Queue
q = Queue()

Producer Thread Consumer Thread
for item in produce_ items(): while True:
g.put(item) item = g.get()

consume_item(item)

® Ciritical point :You don't need locks here

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 74



Queue Signaling

® Queues also have a signaling mechanism

g.task_done() # Signal that work is done
g.join() # Wait for all work to be done

® Many Python programmers don't know
about this (since it's relatively new)

® Used to determine when processing is done

Producer Thread Consumer Thread

for item in produce items(): while True:
g.put(item) item = g.get()

# Wait for consumer consume item(item)

g.join() q.task_done()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

75

Queue Programming

® There are many ways to use queues

® You can have as many consumers/producers
as you want hooked up to the same queue

~

producer : consumer
producer / Queue

producer consumer

® In practice, try to keep it simple

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

76



Part 6

The Problem with Threads

77

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

An Inconvenient Truth

® Thread programming quickly gets hairy

® End up with a huge mess of shared data, locks,
queues, and other synchronization primitives

® Which is really unfortunate because Python
threads have some major limitations

® Namely, they have pathological performance!

78

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




A Performance Test

® Consider this CPU-bound function

def count(n):
while n > O0:
n-=1

® Sequential Execution:

count (100000000)
count (100000000)

® Threaded execution

tl = Thread(target=count,args=(100000000,))
tl.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

® Now, you might expect two threads to run
twice as fast on multiple CPU cores

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

79

Bizarre Results

® Performance comparison (Dual-Core 2Ghz
Macbook, OS-X 10.5.6)

Sequential :24.6s
Threaded :45.5s (1.8X slower!)

® [f you disable one of the CPU cores...

Threaded :38.0s

® |nsanely horrible performance. Better
performance with fewer CPU cores? It
makes no sense.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

80



Interlude

® |t's at this point that programmers often
decide to abandon threads altogether

® Or write a blog rant that vaguely describes
how Python threads "suck" because of their
failed attempt at Python supercomputing

® Well, yes there is definitely some "suck"
going on, but let's dig a little deeper...

Copyright (C) 2009, David Beazle;

8l

Part /7

The Inside Story on Python Threads

"The horror! The horror!" - Col. Kurtz

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

82



What is a Thread!?

® Python threads are real system threads
® POSIX threads (pthreads)
® Windows threads

® Fully managed by the host operating system
® All scheduling/thread switching

® Represent threaded execution of the Python
interpreter process (written in C)

83

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

The Infamous GIL

® Here's the rub...

® Only one Python thread can execute in the
interpreter at once

® There is a "global interpreter lock" that
carefully controls thread execution

® The GIL ensures that sure each thread gets
exclusive access to the entire interpreter
internals when it's running

84

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




GIL Behavior

® Whenever a thread runs, it holds the GIL

® However, the GIL is released on blocking I/O

run run run run
—| /O |— I/O — I/O —
@/ e/ ¢ e/ e,/ e/
& s@ RS S RS S &
S & & P N &
®g°~ (é £ @ oL @ o

® So,any time a thread is forced to wait, other
"ready” threads get their chance to run

® Basically a kind of "cooperative" multitasking

85

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Processing

® To deal with CPU-bound threads, the
interpreter periodically performs a "check"

® By default, every 100 interpreter "ticks"

-

-
C C
\\Q/

S
& &
& o)

X X Nl
CPU Bound > U R |

Thread Run 100 Run 100 Run 100
ticks ticks ticks

v

86

Copyright (C) 2009, David Beazley, http://www.dabeaz.c




The Check Interval

® The check interval is a global counter that is
completely independent of thread scheduling

0& Qd. Qc\'{-
100 ticks < 100 ticks < 100 ticks S 100 ticks
Main Thread >

\ 4

Thread 2 >

Thread 3 —>

Thread 4 >

® A "check" is simply made every 100 "ticks"

87

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

The Periodic Check

® What happens during the periodic check?

® In the main thread only, signal handlers
will execute if there are any pending
signals

® Release and reacquisition of the GIL

® That last bullet describes how multiple CPU-
bound threads get to run (by briefly releasing
the GIL, other threads get a chance to run).

88

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




What is a "Tick?"

® Ticks loosely map to interpreter instructions

def countdown(n):
while n > O:
print n E—

n-=1

® |[nstructions in  Tick|
the PythonVM

Tick 2

Tick 3

Tick 4

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

>>> import dis

>>> dis.dis (countdown)

0 SETUP_LOOP
3 LOAD FAST

6 LOAD CONST
9 COMPARE_OP

12
15
16
19
20
21
24
27
28
31

JUMP_IF FALSE
POP_TOP
LOAD_FAST

PRINT ITEM

PRINT NEWLINE
LOAD_FAST
LOAD_CONST
INPLACE SUBTRACT
STORE_FAST
JUMP_ABSOLUTE

33 (to 36)

0 (n)
1 (0)
4 (>)

19 (to 34)

0 (n)

o

(n)
(1)

N

0 (n)

89

Tick Execution

® Interpreter ticks are not time-based

® Ticks don't have consistent execution times

® [ong operations can block everything

>>> nums = xrange(100000000)

>>> -1 in nums
False
>>>

> | tick (~ 6.6 seconds)

® Try hitting Ctrl-C (ticks are uninterruptible)
>>> nums = xrange(100000000)

>>> -1 in nums

~crecre (nothing happens, long pause)

KeyboardInterrupt
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

90



Thread Scheduling

® Python does not have a thread scheduler

® There is no notion of thread priorities,
preemption, round-robin scheduling, etc.

® For example, the list of threads in the
interpreter isn't used for anything related to
thread execution

® All thread scheduling is left to the host
operating system (e.g., Linux,Windows, etc.)

91

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

GIL Implementation

® The GIL is not a simple mutex lock
® The implementation (Unix) is either...
® A POSIX unnamed semaphore
® Or a pthreads condition variable
® All interpreter locking is based on signaling

® To acquire the GIL, check if it's free. If
not, go to sleep and wait for a signal

® To release the GIL, free it and signal

92

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Thread Scheduling

® Thread switching is far more subtle than most
programmers realize (it's tied up in the OS)

N N N
5 g g
100 ticks 100 ticks
Thread | > |:| > |:|—> - — |:|| SUSPENDED
signal signal
> ¥ Thread
Operating Context
System Switch : )
. p { signal i signal
signal "; i i i
Thread 2 | SUSPENDED | iﬂ =|:|
& &
& &

® The lag between signaling and scheduling may
be significant (depends on the OS)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

93

CPU-Bound Threads

® As we saw earlier, CPU-bound threads have
horrible performance properties

® Far worse than simple sequential execution
® 24.6 seconds (sequential)
® 455 seconds (2 threads)

® A big question :Why!?

® What is the source of that overhead?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

94



Signaling Overhead

® GIL thread signaling is the source of that
® After every 100 ticks, the interpreter
® [ocks a mutex

® Signals on a condition variable/semaphore
where another thread is always waiting

® Because another thread is waiting, extra
pthreads processing and system calls get
triggered to deliver the signal

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

95

A Rough Measurement

® Sequential Execution (OS-X, | CPU)
® 736 Unix system calls
® | |7 Mach System Calls

® Two threads (OS-X, | CPU)
® | 149 Unix system calls

® ~ 3.3 Million Mach System Calls

® Yow! Look at that last figure.

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

96



Multiple CPU Cores

® The penalty gets far worse on multiple cores

® Two threads (OS-X, | CPU)

® | 149 Unix system calls

® ~3.3 Million Mach System Calls
® Two threads (OS-X, 2 CPUs)

® | 149 Unix system calls

® ~9.5 Million Mach System calls

Copyright (C) 2009, David Beazley, http://www.dabeaz.col 97
® With multiple cores, CPU-bound threads get
scheduled simultaneously (on different
processors) and then have a GIL battle
Thread | (CPU 1) Thread 2 (CPU 2)
_Lrun
Release GIL signal
Acquire ] | e > _\Wake
_l_r”" Y Acquire GIL (fails)
Release GIL ional
Acquire ]| I —— sugna .................................... Wake
lrun TAcquire GIL (fails)
® The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success
Copyright (C) 2009, David Beazley, http://www.dabeaz.com 98




The GIL and C Code

® As mentioned, Python can talk to C/C++

® C/C++ extensions can release the
interpreter lock and run independently

® Caveat : Once released, C code shouldn't
do any processing related to the Python
interpreter or Python objects

® The C code itself must be thread-safe

99

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions

® Having C extensions release the GIL is how
you get into true "parallel computing”

e @
> N
(ée 'zrc'o?
Cp\\’ 0\\’
Thread I: > ¥
Python . C extension i Python
instructions code instructions
: Python
{ instructions
Thread 2 > >
& 2
(S ¥
2 <
O\\' O\\'

100

Copyright (C) 2009, David Beazley, http://www.dabeaz.c




How to Release the GIL

® The ctypes module already releases the GIL
when calling out to C code

® |n hand-written C extensions, you have to
insert some special macros

PyObject *pyfunc(PyObject *self, PyObject *args) {

Py BEGIN ALLOW_THREADS
// Threaded C code

Py END ALLOW_ THREADS

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I O I

The GIL and C Extensions

® The trouble with C extensions is that you
have to make sure they do enough work

® A dumb example (mindless spinning)

void churn(int n) {
while (n > 0) {
n--;
}
}

® How big do you have to make n to actually see
any kind of speedup on multiple cores?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 02



The GIL and C Extensions

® Here's some Python test code

def churner(n):
count = 1000000
while count > 0:
churn(n) # C extension function
count -=1

# Sequential execution
churner(n)
churner (n)

# Threaded execution

tl = threading.Thread(target=churner, args=(n,))
t2 = threading.Thread(target=churner, args=(n,))
tl.start()

t2.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 03

The GIL and C Extensions

® Speedup of running two threads versus
sequential execution

2.0 <L
1.5 (,c,
Speedup 1.0 8‘\\ Extension code
“ runs for ~4
0.5 00 Q0 microseconds
. ©o o per call

0 2,500 5,000 7,500 10,000

(n)
® Note: 2 Ghz Intel Core Duo, OS-X 10.5.6

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 04




Why is the GIL there?

® Simplifies the implementation of the Python
interpreter (okay, sort of a lame excuse)

® Better suited for reference counting
(Python's memory management scheme)

® Simplifies the use of C/C++ extensions.
Extension functions do not need to worry
about thread synchronization

® And for now, it's here to stay... (although
people continue to try and eliminate it)

105

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Part 8

Final Words on Threads

106

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Using Threads

® Despite some "issues," there are situations
where threads are appropriate and where
they perform well

® There are also some tuning parameters

107

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

/O Bound Processing

® Threads are still useful for I/O-bound apps

® For example :A network server that needs to
maintain several thousand long-lived TCP
connections, but is not doing tons of heavy
CPU processing

® Here, you're really only limited by the host
operating system's ability to manage and
schedule a lot of threads

® Most systems don't have much of a problem--
even with thousands of threads

108

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Why Threads!?

® [f everything is I/O-bound, you will get a very
quick response time to any I/O activity

® Python isn't doing the scheduling

® So, Python is going to have a similar response
behavior as a C program with a lot of /O
bound threads

® Caveat: You have to stay I/O bound!

109

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Final Comments

® Python threads are a useful tool, but you
have to know how and when to use them

® |/O bound processing only

® Limit CPU-bound processing to C
extensions (that release the GIL)

® Threads are not the only way...

10

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Part 9

Processes and Messages

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Concept: Message Passing

® An alternative to threads is to run multiple
independent copies of the Python interpreter

® |n separate processes
® Possibly on different machines

® Get the different interpreters to cooperate
by having them send messages to each other

112

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Message Passing

= = (_Python ]
pipe/socket ” m

® On the surface, it's simple

® Each instance of Python is independent
® Programs just send and receive messages
® Two main issues

® What is a message!

® What is the transport mechanism?

113

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Messages

® A message is just a bunch of bytes (a buffer)
® A "serialized" representation of some data

® Creating serialized data in Python is easy

114

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




pickle Module

® A module for serializing objects
® Serializing an object onto a "file"
import pickle
éiékle.dump(someobj,f)
® Unserializing an object from a file

someobj = pickle.load(f)

® Here, a file might be a file, a pipe, a wrapper
around a socket, etc.

15

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

pickle Module

® Pickle can also turn objects into byte strings

import pickle
# Convert to a string
s = pickle.dumps (someobj)

# Load from a string
someobj = pickle.loads(s)

® You might use this embed a Python object
into a message payload

116

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



cPickle vs pickle

® There is an alternative implementation of
pickle called cPickle (written in C)

® Use it whenever possible--it is much faster
import cPickle as pickle

pickle.dump (someobj, f)

® There is some history involved. There are a
few things that cPickle can't do, but they are
somewhat obscure (so don't worry about it)

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

117

Pickle Commentary

® Using pickle is almost too easy

® Almost any Python object works
® Builtins (lists, dicts, tuples, etc.)
® |nstances of user-defined classes
® Recursive data structures

® Exceptions
® Files and network connections

® Running generators, etc.

118

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Message Transport

® Python has various low-level mechanisms
® Pipes
® Sockets
® FIFOs

® Libraries provide access to other systems
e MPI
® XML-RPC (and many others)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I | 9

An Example

® Launching a subprocess and hooking up the
child process via a pipe

® Use the subprocess module

import subprocess

p = subprocess.Popen([ 'python', 'child.py'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)

p.stdin.write(data) # Send data to subprocess
p.stdout.read(size) # Read data from subprocess
Python Python

p.stdin 5 > sys.stdin
p.stdout |« Ipe sys.stdout

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 20



Pipes and Pickle

® Most programmers would use the subprocess
module to run separate programs and collect
their output (e.g., system commands)

® However, if you put a pickling layer around the
files, it becomes much more interesting

® Becomes a communication channel where you
can send just about any Python object

121

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Message Channel

® A class that wraps a pair of files

# channel.py
import pickle

class Channel(object):

def  init (self,out f,in f):
self.out f = out £
self.in £ = in f

def send(self,item):
pickle.dump(item,self.out f)
self.out f.flush()

def recv(self):
return pickle.load(self.in f)

® Send/Receive implemented using pickle

122

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Some Sample Code

® A sample child process

# child.py
import channel
import sys

ch = channel.Channel(sys.stdout,sys.stdin)
while True:
item = ch.recv()
ch.send(("child",item))

® Parent process setup

# parent.py
import channel
import subprocess

p = subprocess.Popen([ 'python', 'child.py'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)

ch = channel.Channel(p.stdin,p.stdout)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

123

Some Sample Code

® Using the child worker

>>> ch.send("Hello World")
Hello World <«—
>>> ch.send (42)

42 - produced by the child
>>> Ch.send( [}w/
(1, 2, 3, 4]

>>> ch.send({'host': 'python.org', 'port’':80})
{'host': 'python.org', 'port': 80}
>>>

® You can send almost any Python object
(numbers, lists, dictionaries, instances, etc.)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

This output is being

124



Big Picture

® Can easily have 10s-1000s of communicating
Python interpreters

Python

Python
Python

‘\
Python Python

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

125

Interlude

® Message passing is a fairly general concept

® However, it's also kind of nebulous in Python
® No agreed upon programming interface

® Vast number of implementation options

® Intersects with distributed objects, RPC,
cross-language messaging, etc.

126

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Part |10

The Multiprocessing Module

127

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

multiprocessing Module

® A new library module added in Python 2.6

® Originally known as pyprocessing (a third-
party extension module)

® This is a module for writing concurrent
Python programs based on communicating
processes

® A module that is especially useful for
concurrent CPU-bound processing

128

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Using multiprocessing

® Here's the cool part...
® You already know how to use multiprocessing

® At a very high-level, it simply mirrors the
thread programming interface

® [nstead of "Thread" objects, you now work
with "Process" objects.

129

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

multiprocessing Example

® Define tasks using a Process class

import time
import multiprocessing

class CountdownProcess(multiprocessing.Process):
def init (self,count):
multiprocessing. Process. init (self)
self.count = count
def run(self):
while self.count > 0:
print "Counting down", self.count
self.count -=1
time.sleep(5)
return

® You inherit from Process and redefine run()

130

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Launching Processes

® To launch, same idea as with threads

if name == ' main ':
pl = CountdownProcess(10) # Create the process object
pl.start() # Launch the process
p2 = CountdownProcess(20) # Create another process
p2.start() # Launch

® Processes execute until run() stops

® A critical detail : Always launch in main as
shown (required for Windows)

131

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Functions as Processes

® Alternative method of launching processes

def countdown(count):
while count > 0:
print "Counting down", count
count -=1
time.sleep(5)

if name == ' main ':
Pl = multiprocessing.Process (target=countdown,
args=(10,))
pl.start()

® Creates a Process object, but its run()
method just calls the given function

132

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Does it Work!?

® Consider this CPU-bound function

def count(n):
while n > 0:
n-=1

® Sequential Execution:

count(100000000)

count(100000000)
® Multiprocessing Execution

pl = Process(target=count,args=(100000000,))

pl.start() —>

p2 = Process(target=count,args=(100000000,))
p2.start()

® Yes, it seems to work

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 33

Other Process Features

® Joining a process (waits for termination)

p = Process(target=somefunc)
p.start()

p.Jjoin()

® Making a daemonic process

p = Process(target=somefunc)
p.daemon = True
p.start()

® Terminating a process

p = Process(target=somefunc)
é:éerminate()
® These mirror similar thread functions

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 34



Distributed Memory

® With multiprocessing, there are no shared
data structures

® Every process is completely isolated

® Since there are no shared structures,
forget about all of that locking business

® Everything is focused on messaging

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 35

Pipes

® A channel for sending/receiving objects

(cl, c2) = multiprocessing.Pipe()

® Returns a pair of connection objects (one
for each end-point of the pipe)

® Here are methods for communication

c.send(obj) # Send an object
c.recv() # Receive an object

c.send bytes(buffer) # Send a buffer of bytes
c.recv_bytes([max]) # Receive a buffer of bytes

c.poll([timeout]) # Check for data

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 36



Using Pipes

® The Pipe() function largely mimics the
behavior of Unix pipes

® However, it operates at a higher level
® |t's not a low-level byte stream

® You send discrete messages which are
either Python objects (pickled) or buffers

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 37

Pipe Example

® A simple data consumer

def consumer(pl, p2):
pl.close() # Close producer's end (not used)
while True:
try:
item = p2.recv()
except EOFError:
break
print item # Do other useful work here

® A simple data producer

def producer(sequence, output_p):
for item in sequence:
output p.send(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 38



Pipe Example

if name_ == '_main_':
pl, p2 = multiprocessing.Pipe()

cons = multiprocessing.Process(
target=consumer,
args=(pl,p2))
cons.start()

# Close the input end in the producer
p2.close()

# Go produce some data
sequence = xrange(100) # Replace with useful data

producer (sequence, pl)

# Close the pipe
pl.close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 39

Message Queues

® multiprocessing also provides a queue

® The programming interface is the same
from multiprocessing import Queue
g = Queue()

g.put(item) # Put an item on the queue
item = g.get() # Get an item from the queue

® There is also a joinable Queue

from multiprocessing import JoinableQueue
g = JoinableQueue()

g.task_done() # Signal task completion
g.join() # Wait for completion

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 40



Queue Implementation

® Queues are implemented on top of pipes

® A subtle feature of queues is that they have
a "feeder thread" behind the scenes

® Putting an item on a queue returns
immediately (allowing the producer to keep
working)

® The feeder thread works on its own to
transmit data to consumers

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

141

Queue Example

® A consumer process

def consumer(input q):
while True:

# Get an item from the queue
item = input g.get()
# Process item
print item
# Signal completion
input g.task done()

® A producer process

def producer (sequence,output_q):
for item in sequence:
# Put the item on the queue
output g.put(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

142



Queue Example

® Running the two processes

if name == "' main ':
from multiprocessing import Process, JoinableQueue
g = JoinableQueue()

# Launch the consumer process

cons _p = Process(target=consumer,args=(q,))
cons_p.daemon = True

cons_p.start()

# Run the producer function on some data
sequence = range(100) # Replace with useful data
producer (sequence, q)

# Wait for the consumer to finish
g.join()

143

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Commentary

® If you have written threaded programs that
strictly stick to the queuing model, they can
probably be ported to multiprocessing

® The following restrictions apply

® Only objects compatible with pickle
can be queued

® Tasks can not rely on any shared data
other than a reference to the queue

| 44

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Other Features

® multiprocessing has many other features
® Process Pools
® Shared objects and arrays
® Synchronization primitives
® Managed objects
® Connections

® Will briefly look at one of them

145

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Process Pools

® Creating a process pool

p = multiprocessing.Pool([numprocesses])

® Pools provide a high-level interface for
executing functions in worker processes

® | et's look at an example...

146

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Pool Example

® Define a function that does some work

® Example : Compute a SHA-512 digest of a file
import hashlib

def compute digest(filename):
digest = hashlib.sha512()
f = open(filename, 'rb')
while True:
chunk = f.read(8192)
if not chunk: break
digest.update(chunk)
f.close()
return digest.digest()

® This is just a normal function (no magic)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 47
® Here is some code that uses our function
® Make a dict mapping filenames to digests
import os
TOPDIR = "/Users/beazley/Software/Python-3.0"
digest map = {}
for path, dirs, files in os.walk(TOPDIR):
for name in files:
fullname = os.path.join(path,name)
digest map[fullname] = compute digest(fullname)
® Running this takes about 10s on my machine
148

Copyright (C) 2009, David Beazley, http://www.dabeaz.com



Pool Example

® With a pool, you can farm out work

® Here's a small sample

p = multiprocessing.Pool(2) # 2 processes

result = p.apply async(compute_digest, ('README.txt',))
. various other processing

éiéest = result.get() # Get the result

® This executes a function in a worker process
and retrieves the result at a later time

® The worker churns in the background allowing
the main program to do other things
149

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pool Example

® Make a dictionary mapping names to digests

import multiprocessing
import os
TOPDIR = "/Users/beazley/Software/Python-3.0"

p = multiprocessing.Pool(2) # Make a process pool
digest map = {}
for path, dirs, files in os.walk(TOPDIR):
for name in files:
fullname = os.path.join(path,name)
digest map[fullname] = p.apply_ async(
compute digest, (fullname,)

)

# Go through the final dictionary and collect results
for filename, result in digest map.items():
digest map[filename] = result.get()

® This runs in about 5.6 seconds

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

150



Part | |

Alternatives to Threads and Processes

51

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Alternatives

® |n certain kinds of applications, programmers
have turned to alternative approaches that
don't rely on threads or processes

® Primarily this centers around asynchronous I/O
and /O multiplexing

® You try to make a single Python process run as
fast as possible without any thread/process
overhead (e.g., context switching, stack space,
and so forth)

152

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Two Approaches

® There seems to be two schools of thought...
® Event-driven programming

® Turn all I/O handling into events

® Do everything through event handlers

® asyncore, Iwisted, etc.
® Coroutines

® Cooperative multitasking all in Python

® Tasklets, green threads, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 53

Events and Asyncore

® asyncore library module

® Implements a wrapper around sockets that
turn all blocking I/O operations into events

from asyncore import dispatcher
class MyApp(dispatcher):

= socket(...) ”///”’,,»def handle_ accept(self):
.accept()’,,/—””/—’——’—’,,a def handle connect(self):

.connect(addr)— | cen
.recv(maxbytes) > def handle_ read(self):

n

.send(msg) — |

e D . W W

[ def handle write(self):

# Create a socket and wrap it
s = MyApp(socket())

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 54



Events and Asyncore

® To run,asyncore provides a central event loop
based on I/O multiplexing (select/poll)

import asyncore

asyncore.loop() # Run the event loop
Event Loop
socket socket socket socket
select()/poll()

\ 4

dispatcher

|

handle *()

155

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Asyncore Commentary

® Frankly, asyncore is one of the ugliest, most
annoying, mind-boggling modules in the entire
Python library

® Combines all of the "fun" of network
programming with the "elegance" of GUI
programming (sic)

® However, if you use this module, you can
technically create programs that have
"concurrency" without any threads/processes

156

Copyright (C) 2009, David Beazley, http://www.dabeaz.c




Coroutines

® An alternative concurrency approach is
possible using Python generator functions
(coroutines)

® This is a little subtle, but I'll give you the gist

® First,a quick refresher on generators

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 57

Generator Refresher

® Generator functions are commonly used to
feed values to for-loops (iteration)

def countdown(n):
while n > O0:
yield n
n-=1

for x in countdown(10):
print x

® Under the covers, the countdown function
executes on successive next() calls

>>> ¢ = countdown(10)
>>> c.next ()
10
>>> c.next ()
9
>>>
Copyright (C) 2009, David Beazley, http://www.dabeaz.com 158



An Insight

® Whenever a generator function hits the yield
statement, it suspends execution

def countdown(n):
while n > O0:
yield n
n-=1

® Here's the idea : Instead of yielding a value, a
generator can yield control

® You can write a little scheduler that cycles
between generators, running each one until it
explicitly yields

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

159

Scheduling Example

® First, you set up a set of "tasks"

def countdown task(n):
while n > 0:
print n
yield
n-=1

# A list of tasks to run

from collections import deque

tasks = deque(]
countdown_task(5),
countdown_task(10),
countdown_task(15)

1)

® Each task is a generator function

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

160



Scheduling Example

® Now, run a task scheduler

def scheduler(tasks):
while tasks:

task = tasks.popleft()

try:
next (task) # Run to the next yield
tasks.append(task) # Reschedule

except StopIteration:
pass

# Run it
scheduler (tasks)

® This loop is what drives the application

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 6 I

Scheduling Example

e Output

® You'll see the different tasks cycling

Copyright (C) 2009, David Beazley, http://www.dabeaz.com I 62



Coroutines and I/O

® |t is also possible to tie coroutines to I/O

® You take an event loop (like asyncore), but
instead of firing callback functions, you
schedule coroutines in response to I/O activity

Scheduler loop

socket socket socket socket

select()/poll()

next ( )\y

coroutine

® Unfortunately, this requires its own tutorial...
163

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Commentary

® Usage of coroutines is somewhat exotic

® Mainly due to poor documentation and the
"newness" of the feature itself

® There are also some grungy aspects of
programming with generators

164

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




Coroutine Info

® | gave a tutorial that goes into more detail

® "A Curious Course on Coroutines and
Concurrency" at PyCON'09

® http://www.dabeaz.com/coroutines

165

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Part |2

Final Words and Wrap up

166

Copyright (C) 2009, David Beazley, http://www.dabeaz.co




Quick Summary

® Covered various options for Python concurrency
® Threads
® Multiprocessing
® Event handling
® Coroutines/generators

® Hopefully have expanded awareness of how
Python works under the covers as well as some
of the pitfalls and tradeoffs

167

Copyright (C) 2009, David Beazley, http://www.dabeaz.co

Thanks!

® | hope you got some new ideas from this class

® Please feel free to contact me

http://www.dabeaz.com

® Also, | teach Python classes (shameless plug)

168

Copyright (C) 2009, David Beazley, http://www.dabeaz.com




