

TKScope Emulator for AVR User Manual

AN05220023 V1.02

Date: 2011/02/10

Application Note

Categories	Content		
Keywords	TKScope AVR IAR AVR Studio		
Summary	TKScope Emulator for AVR User Manual		

The revision of history

Version	Date	Reason
V1.00	2009/09/03	Create a document
V1.01	2010/08/11	Support All 8bit AVR Device
V1.02	2011/02/10	Support JTAG Chain

Table of Contents

Chapter	TIK	Scope Emulator Introduction	I
1.1	A	AVR Emulator Support Devices	1
1.2	A	VR Emulator Feature	2
1.3	A	AVR Emulator Support IDE Environment	2
1.4	C	Connect with TKScope	3
Chapter	2 Sim	ulation AVR in AVR Studio	5
2.1	Iı	nstall Driver	5
2.2	Iı	nstall USB Driver	7
2.3	Iı	nstall JTAGICEmkII driver	9
2.4	S	tart Debugging	11
2.5	S	etting Emulator Parameter	13
2.6	Γ	Debug Tools	16
2.7	S	top Debugging	17
2.8	U	Jse AVR Studio Programmer	17
2.9	E	Exit TKScpe Service	19
Chapter	3 Sim	ulation AVR in IAR	20
3.1	Iı	nstall Driver	20
3.2	Iı	nstall USB Driver	22
3.3	A	Add Driver File	22
3.4	E	mulator Parameter Setup	26
	3.4.1	Harware Select	26
	3.4.2	Main Options	26
	3.4.3	Aux options	28
	3.4.4	TAP cofig	28
	3.4.5	Prog optoins	29
	3.4.6	TKScope doctor	31
3.5	D	Debug	31
	3.5.1	Debug Tools	32
	3.5.2	Stop Debug	34

Chapter 1 TKScope Emulator Introduction

1.1 AVR Emulator Support Devices

TKScope emulator able to support AVR core simulation models are summarized as follows:

- K Series: K8 / K9;
- DK Series: DK9 / DK10.

AVR emulator support AVR emulate Atmel AVR device which has JTAG port and all device ISP, the emulator support he device as follows:

- ATmega16,ATmega16A,ATmega162
- ATmega165,ATmega165P,ATmega165PA
- ATmega169,ATmega169PA
- ATmega32,ATmega32A,ATmega323
- ATmega325,ATmega325P,ATmega3250,ATmega3250P
- ATmega329,ATmega329P,ATmega329PA,ATmega3290,ATmega3290P
- ATmega64,ATmega64A,ATmega644
- ATmega645,ATmega6450,ATmega649,ATmega6490
- ATmega640,ATmega1280,ATmega1281,ATmega2560,ATmega2561
- ATmega128,ATmega128A,
- ATmega164P,ATmega164PA,ATmega324P,ATmega324PA,ATmega644PA,ATmega1284P
- AT90CAN32,AT90CAN64,AT90CAN128
- AT90USB646,AT90USB647,AT90USB1286,AT90USB1287
- ATmega48,ATmega48A,ATmega88,ATmega88A,ATmega168,ATmega168A
- ATtiny13,ATtiny13A
- ATtiny2313,ATtiny2313A,ATtiny4313
- ATtiny25, ATtiny45, ATtiny85
- ATtiny24,ATtiny24A,ATtiny44,ATtiny44A,ATtiny84A
- ATtiny261,ATtiny261A,ATtiny461,ATtiny461A, ATtiny861,ATtiny861A
- ATtiny87,ATtiny167
- AT90PWM2,AT90PWM2B,AT90PWM216
- AT90PWM3,AT90PWM3B,AT90PWM316
- AT90USB82,AT90USB162
- ATxmega64A1,ATxmega128A1,
- ATxmega64A3, ATxmega128A3, ATxmega192A3, ATxmega256A3
- ATxmega256A3B,
- ATxmega16A4,ATxmega32A4,
- ATxmega16D4,ATxmega32D4,
- ATxmega64D3,ATxmega128D3,ATxmega192D3,ATxmega256D3

More devices will be support in the near future.

TKScope emulate AVR device use the POD is: **POD-JTAG-AVR-P10**.

Date: 2011/02/10 Rev 1.02

Figure 1.1 POD-JTAG-AVR-P10

1.2 AVR Emulator Feature

TKScope AVR emulator feature:

- USB2.0(High Speed)communication interface, fast prommning speed, save your developing time;
- JTAG programming speed is ATMEL's JTAGICE mkII 2.8 times;
- ISP(1MHz clock)speed is ATMEL's JTAGICEmkII 4.7 times;
- Support K-Flash programming software, support fast speed promming;
- Support programming Flash, EEPROM, Fuse, LockBits;
- Support all MEGA device JTAG programming and debuge;
- Support all debugWIRE device debug;
- Support ISP programming;
- Support XMEGA device PDI programming and debuge;
- Auto detect AVR Studio Version, you can use all AVR Studio Version did NOT need change driver;
- Support High level language and assembler language debuge;
- Support data break point and no limit flash break point;
- Support dynamic break point, you can set and clear break poit when the target is running;
- Support code modify, Make you debuge more convenient;
- Hardware selftest;
- Code and data cache, improve the debugging performace;
- Emulator can follow the target device volatage.

1.3 AVR Emulator Support IDE Environment

TKScope simuation AVR device support multiple IDE environment, Engineers can be Choose the familiar IDE, support the IDE as follows:

- TKStudio, Zhiyuan company, Chinese/english environment, multi-core compiling /debugging, powerful built-in editor
- AVR Studio, Atmel Corp., English environment, Can be plug-in GCC comlier.
- IAR, IAR Corp, Engish, multi-core compiling/debugging.

Figure 1.2 Support IDE Environment

1.4 Connect with TKScope

POD_JAG_AVR_P10 has 2 ports,40P connect to Emulator's JP4,10P connect to your target (JTAG interface).

ADP_AVR_P10_P6 use in ISP proggrame and debugWIER simulation(support in the near future), Connect the J3(10P) to POD_JTAG_AVR_P10, and J4 connect to your target.

JTAG and ISP interface the same as Atmel's define, as Figure 1.3.

Figure 1.3 JTAG & ISP Interface

We suggest use the 6PIN ISP connects when you use the debugWIRE simulation. Notice: the Adaptor RESET pint connects to TMS, NOT nSRST!

The APD AVR P10 P6 connect as Table 1.1.

Table 1.1 ADP_AVR_P10_P6 signal connect

JTAG	ISP	debugWIRE	PDI
Pin 1 TCK	Pin3 SCK		
Pin 2 GND	Pin6 GND	Pin6 GND	Pin6 GND
Pin3 TDO	Pin1 MISO		
Pin4 VTref	Pin2 Vcc	Pin2 Vcc	Pin2 Vcc
Pin5 TMS	Pin5 REST	Pin5 debugWIRE	Pin5 PDI_CLK
Pin9 TDI	Pin4 MOSI		Pin4 PDI_DATA

Tips: We can see when use PDI signal Vcc, GND, PDI_CLK is the same with ATMLE's define, but PDI_DATA is use pin 4, NOT pin 1, you need connect you target board pin1 and pin4 to use the adaptor.

Application Note

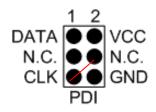


Figure 1.4 PDI Hardware connect

Date: 2011/02/10 Rev 1.02 4

Chapter 2 Simulation AVR in AVR Studio

2.1 Install Driver

The Driver is only for AVR Studio, befor you install this driver, sugest you install AVR Studio (Support AVR Studio 4.13 or later). Double click Setup_TKScope_AVRStudio.EXE, the system pop-up dialog box as show in Figure 2.1, click[Next] and to continue.

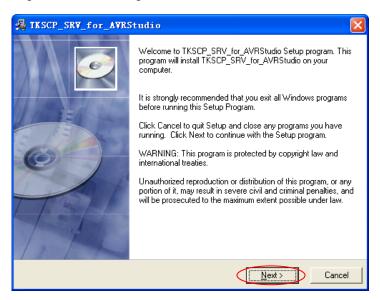


Figure 2.1 Install Driver

You may install the driver in the path where you want to.

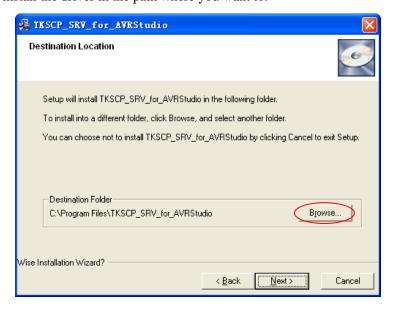


Figure 2.2 Select install path

Click [Next] and go on until the driver install finish. Afer the driver setup finish, you can see the start menu has "AVRStudio with TKScope" & "Uninstall AVR Studio with TKScope", "AVRStudio with TKScope" is use to startup AVRStudio will TKScope service, use TKScope in AVR Studio Emulate AVR use this to start (before you start it, May sure you had turn on the

Application Note

emulator and connect the emulator to your computer through USB). "Uninstall AVR Studio with TKScope" is to unstall this driver.

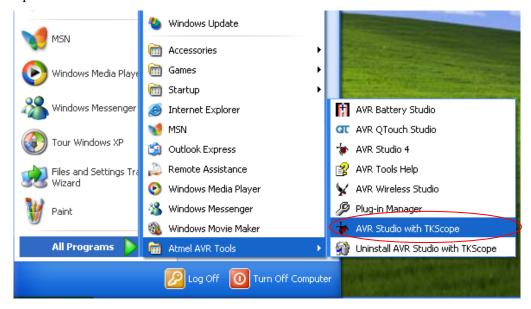


Figure 2.3 Start menu after Install driver

After install the Drivers, suggest user install the Mrosoft VC9 run lib. Double vcredist_x86_en.exe, sytem will display Figure 3.3 the dialog box,click [next].

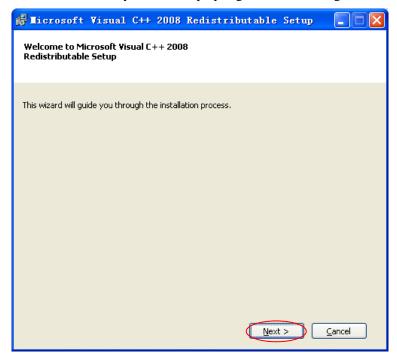


Figure 2.4 Install VC9 Run Lib

In the license terms dialog, choose[I have read and accept the license terms], then click install to start setup up.

Date: 2011/02/10 Rev 1.02

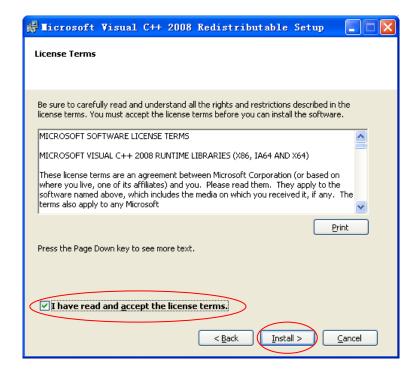


Figure 2.5 Accept the license terms and Install

2.2 Install USB Driver

When you connect the TKScope emulator whith you computer through the USB interface the first time, the system will pop-up dialog box as shown in Figure 2.6.

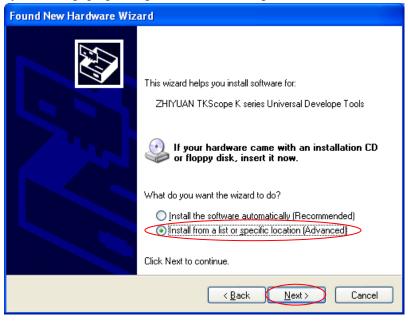


Figure 2.6 New Hardware Installation Wizard

Select [Install from a list or specific loaction(Advanced)] options in Figure 2.6, click [Next], system will pop-up dialog box as shown in Figure 2.7.

Application Note

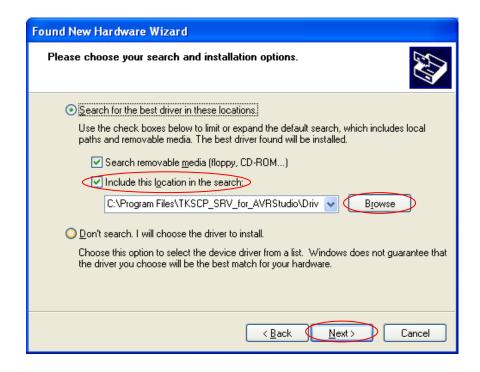


Figure 2.7 Select Drive Box

In Figure 2.7, click [Browse], open the dialog box as shown in Figure 2.7. Find the driver files in TKScope_AVRStudio installation directory (example is C:\Program TKSCP_SRV_for_AVRStudio\Driver\TKScope K Driver\TKScopeK\WinXP), click [OK].

Figure 2.8 Designated Driver

After the driver installed, system will pop-up dialog box as shown in Figure 2.9, click [finish] to finish.

Application Note

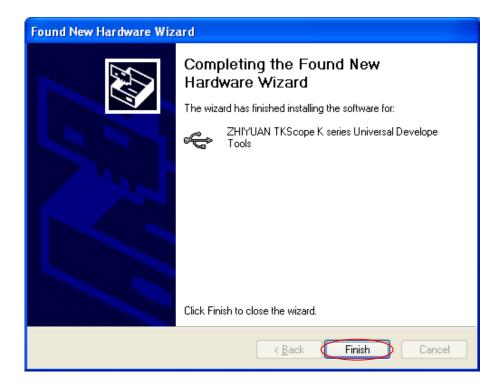


Figure 2.9 New Hardware Installation Completed

2.3 Install JTAGICEmkll driver

Please make sure you has install USB driver when you install AVR Studio, when you install AVR Studio, select Install/upgrade Jungo USB Deiver(default install), as Figure 2.10.

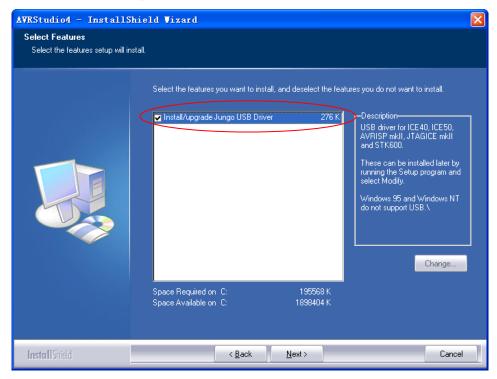


Figure 2.10 Instal AVR Studio USB driver

Application Note

After Install it, you can fine the USB driver int the AVR Studio install path(for example: C:\Program Files\Atmel\AVR Tools), there is a folder name usb, this folder is AVR Studio USB driver. If you had not install USB driver when install AVR Studio, please Install AVR Studio again.

Befor start up the IDE you should turn on the emulator and connect with your computer through USB interface, click "AVR Studio with TKScope", The first time need install JTAG ICE mkII Driver, as shown in Figure 2.11, in the dialog choose [Install from a list or specific location(Advanced)], click [Next].

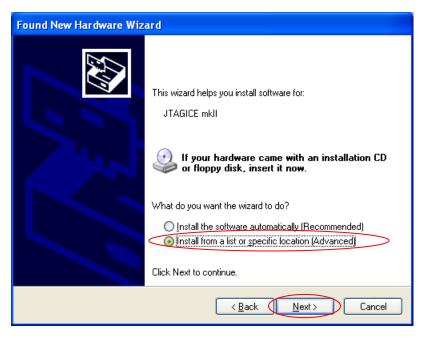


Figure 2.11 Install JTAG ICE mkll driver

Choose [Include this location in the search], In the explorer select AVR Studio install path, the USB folder, click [Next].

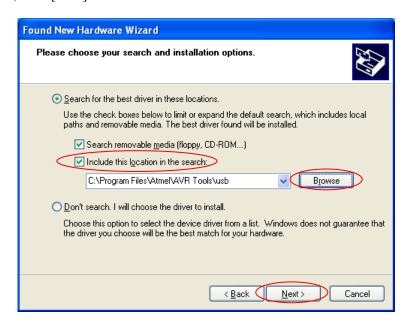


Figure 2.12 Select install path

Application Note

Waiting the system install finish, you can see the Figure 2.13 dialog box; click [Finish] to finish the driver install.

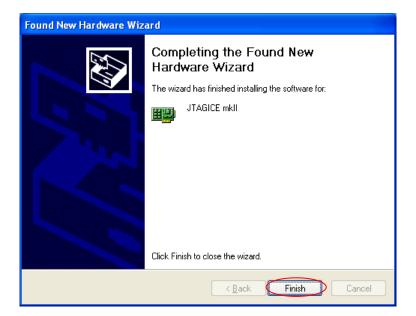


Figure 2.13 Finish install

After install, you can see the taskbar the icon, as Figure 2.14, when AVR Studio communicate with TKScope, this icon wil be flash.

Figure 2.14 AVR Studio TKScope Service

2.4 Start Debugging

In AVR Studio, after builded success, click "Start Debug", Figure 2.15, AVR Studio will setting the emulator parameter and made the target device enter debug mode.

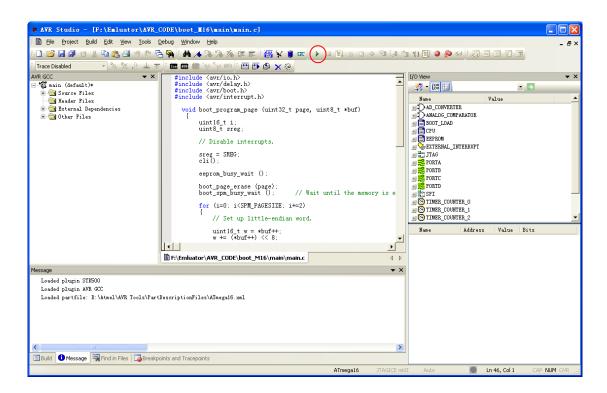


Figure 2.15 Start Debug

After enter debug mode, you can see the debug widows, as Figure 2.16, and this window can be open through the menu "View -> Toolbars".

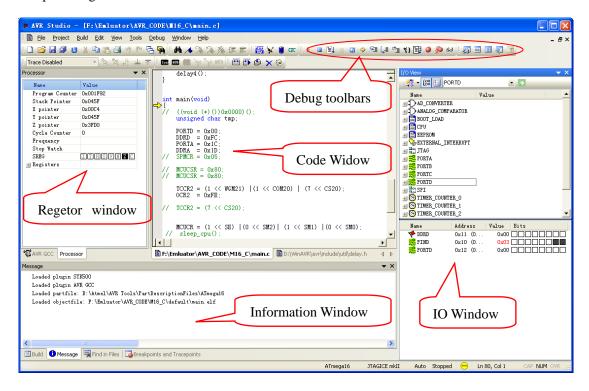


Figure 2.16 Debug Window

Application Note

Date: 2011/02/10

2.5 Setting Emulator Parameter

In the debug mode, you can select the [Debug] menu and Choose [JTAGICE mkII Options] to open the emulator parameter setting dialog, sehown as in Figure 2.17.

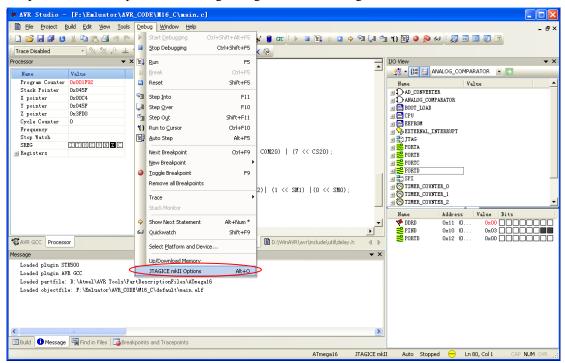


Figure 2.17 Debug parameter Setting

The Setting has 4 tags, the [Connect] tag is use to setting connect options, use to setting JTAG frequency and daisy chain, before enter debug mode, AVR Studio will set this parameter. Notice change JTAG frequency should be slower than 1/4 of target frequency.

The [Disable debugWIRE] boton is effect when use debugeWIRE simulation, for disable debugeWIRE function and reable ISP, when press this botton, IDE will exit debuge mode.

Rev 1.02

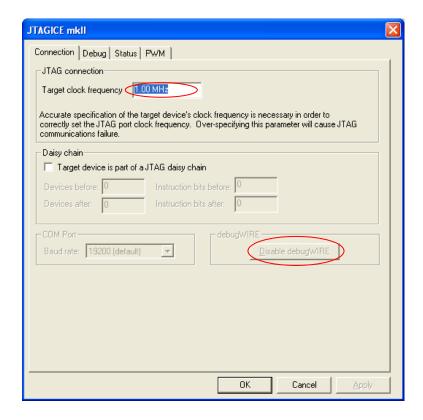


Figure 2.18 Connection

The second tag use setting the debug options, as shown in Figure 2.19.

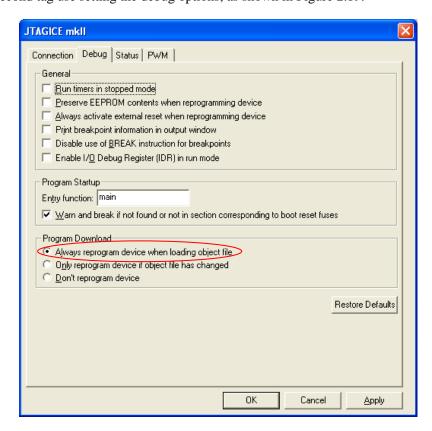


Figure 2.19 Debug

Application Note

General group items function as Table 2.1.

Table 2.1 General Debug Option

Item	Function
Dun timous in stonned mode	Whether timers running when the targer device in stopped
Run timers in stopped mode	mode
Preserver EEPROM contents when reprogramming	Reprogramming target device whether save the EEPROM
device	content(through program EESAVE Fuse)
Always activate external reset when reprogramming	D 41 41 41 41 41 41
device	Reprogram wether use the extend reset
Print breakpoint information in output windows	In the ouput windows display breakpoint inforeamtion
Disable use of BREAK instruction for breakpoints	Not use software breakpoint
Enable I/O Debug Register(IDR)in run mode	Whether Enable User to assess the debug register(IDR)

Program Startup is setting the program entrance fution and Boot Reset fuse set not correct warnig.

Program Download is choose whether program flash when enter debugging, suggest select [Alwasys reprogram].

The third tag is Status options, in this can be see the emulator and targer device inforamtion.

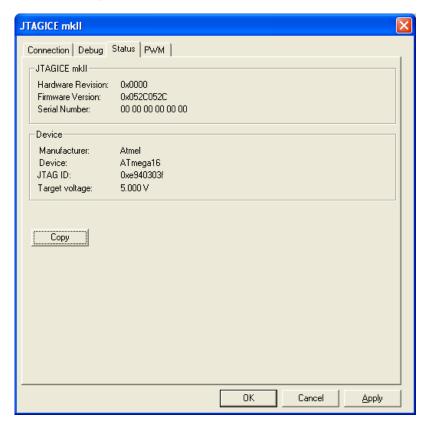
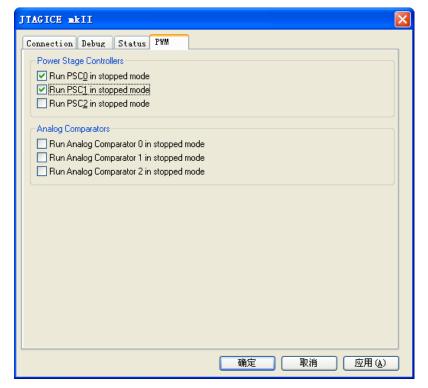


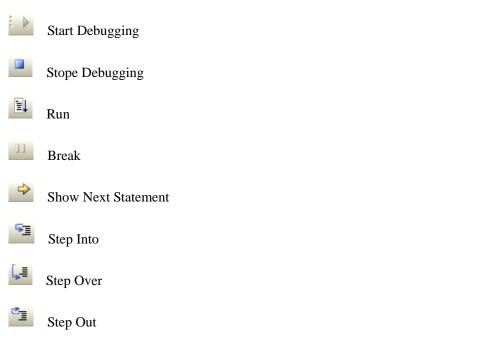
Figure 2.20 Status

The fourth tag is PWM options, only for AT90PWM device. You can control the PSC

Date: 2011/02/10 Rev 1.02

controller and Analog Comparator whether run when the target in the stop mode when in debug.




Figure 2.21 PWM

2.6 Debug Tools

AVR Studio Debug tools as Figure 2.22.

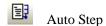
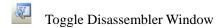


Figure 2.22 Debug Tools

Application Note

*{}	Run to Cursor
	Null to Chison



Stop Debugging 2.7

When user want to stop debugging, Press

Use AVR Studio Programmer

If you want to use AVR Studio programmer to program the target device, click the [display the "connect" dialog], then the IDE show as in Figure 2.24 dialog, Select [JTAGICE mkII], Click [Connect](Notice: Before you connect the programmer, you should stop debugging).

Rev 1.02 17

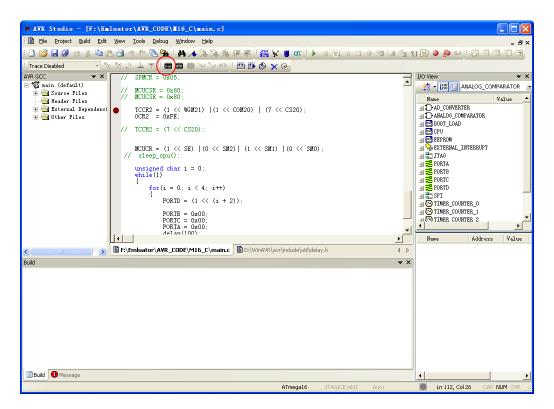


Figure 2.23 Coonect AVR Programmer

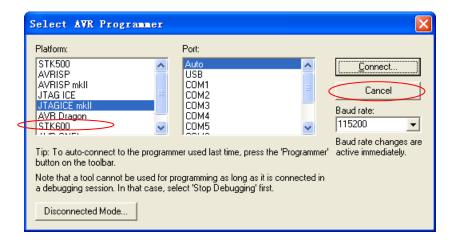


Figure 2.24 Select AVR Programmer

Connect with emulator successful system will pop-up the Figure 2.25 dailog. In the [Device and Sigature Bytes] select the target device; [Programming Mode and Target Settings] select the programming mode.

Notice: when use ISP mode needs the Addapt P10-P6, connect with the target device use the IDC6 cable.

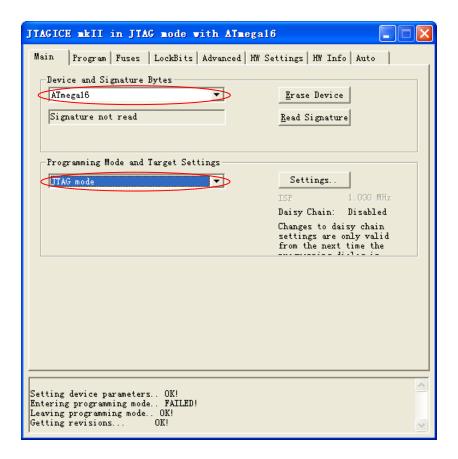


Figure 2.25 Program Dialog

In the programming dialog other tags, you can program the Flash, EEPROM, Fuse, Lock bits and read the calibrate bytes and so on.

2.9 Exit TKScpe Service

When you stop debugging and leave programming, if you want to use IAR,K-Flash, you should exit the TKScope service, then other software can use the emulator. Right click the service icon, select [Quit], and then you can use other software.

Figure 2.26 Exit TKScope Service

Chapter 3 Simulation AVR in IAR

3.1 Install Driver

In the IAR use TKScope emulator should install the driver.

Double click "TKScopeSetup_AVR8.EXE", system will pop-up the Figure 3.1 daigure box, click [Next] to install.

Figure 3.1 Install Emulator Driver

The driver can be installed in the path which you want to as Figure 3.2.

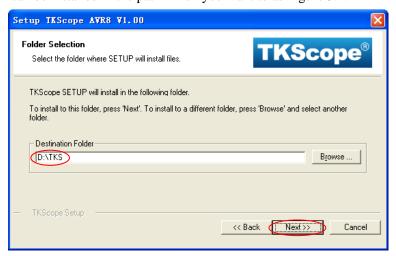


Figure 3.2 Select Install Path

After install the drivers, suggest user install the Microsoft VC8 run lib.

Double "vcredist_x86_en.exe", sytem will dislay Figure 3.3 the dialog box.Click [Yes], system will finish setup automation.

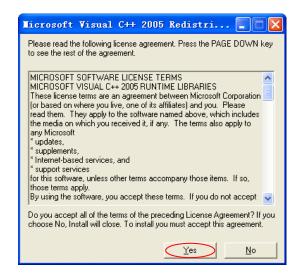


Figure 3.3 Install VC8 Run Lib

Now the emulator drivers install finish.

In the install folder(this example is "D:\TKS\TKScope"), you can see the .Dll files, as Figure 3.4.

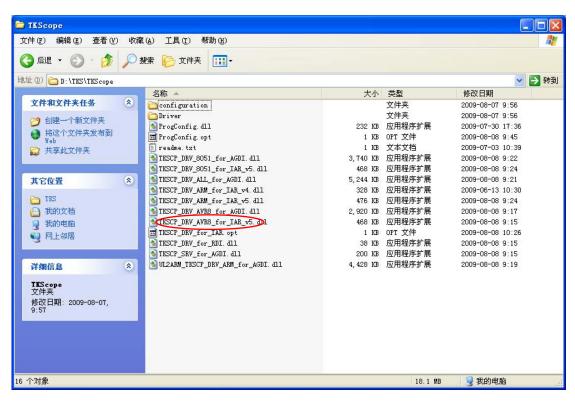


Figure 3.4 Driver Files

After setup the driver, you can see the dll files in the folder, the driver file as Table 3.1

Table 3.1 Driver for IDE

Driver File	Туре	IDE
TKSCP_DRV_AVR8_for_IAR_v5.dll	AVR	In IAR V5 Version Driver

Application Note

©2011 Guangzhou Zhiyuan Electronics CO., LTD.

Date: 2011/02/10 Rev 1.02 21

3.2 Install USB Driver

When you connect the TKScope emulator whith you computer through the USB interface the first time, you need to install the TKScope USB driver, how to install the driver you can reference the 2.2Install USB Driver, and you also you fine the driver files in the TKScopeSetup_AVR8.EXE install path.

3.3 Add Driver File

After install the driver, open a project wich buided finish, as Figure 3.5, choose the Project menu, click [Option] enter the Project option.

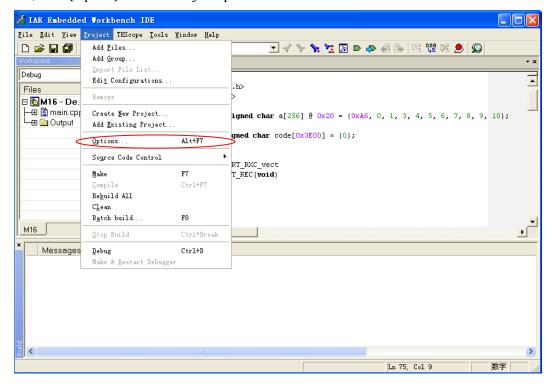


Figure 3.5 IAR Environment

In the setting dialog, choose [Debugger] option, in the [Setup] window setup as Figure 3.6, [Driver] choose [Third-Party Driver], select [Run to main].

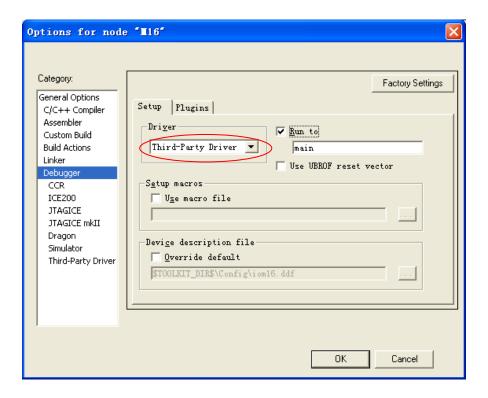


Figure 3.6 Select Driver

Choose [Third-Party Driver], as Figure 3.7.Click ..., add emulator driver.

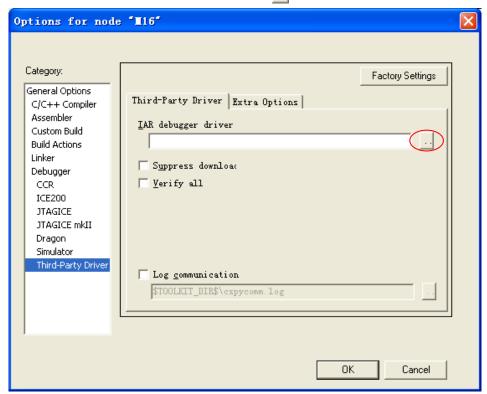


Figure 3.7 Third-Party Driver

As Figure 3.8, choose"TKSCP_DRV_AVR8_for_IAR_v5.dll", click [Open] button to add the driver file.

Application Note

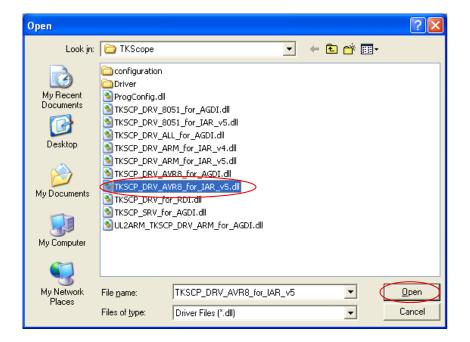


Figure 3.8 Select IAR Driver File

After setting driver file as Figure 3.9, click [OK] button finish setting.

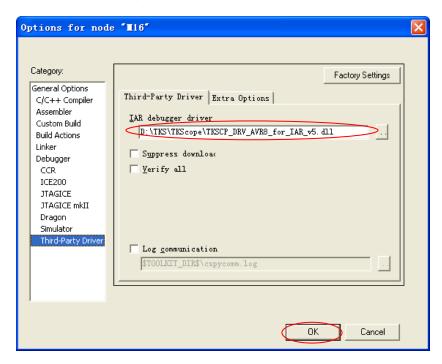


Figure 3.9 Finish Driver Load

TKScope emulator parmeter must set correct, otherwise the emulator can't work! as Figure 3.10, click menu [TKScope] choose[Setup], then enter the setup dialog.

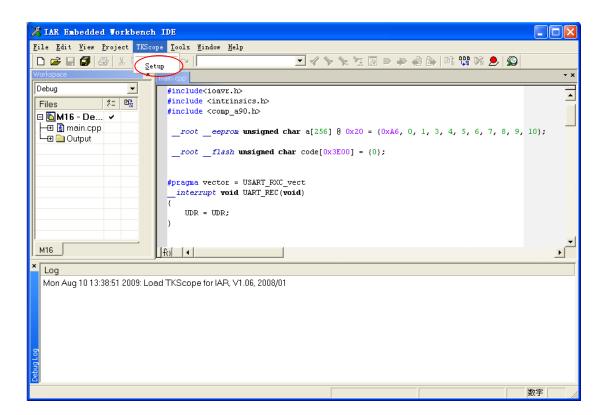


Figure 3.10 IDR After Add Driver

Select the [TKScope] menu, click [Settings] enter TKScope emulator setting interface as Figure 3.11.

Figure 3.11 Emulator Setting

In Figure 3.11, click the left side of the various options, the system will pop-up the appropriate settings interface, while the right side of the information prompt box will appear the specific meaning of the various setting.

Application Note
Date: 2011/02/10

3.4 Emulator Parameter Setup

3.4.1 Harware Select

Click Figure 3.11 the [Device & hadware], enter the setting information of Figure 3.12 the setting interface.

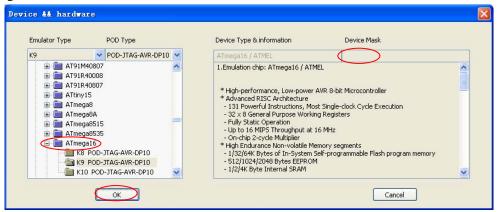


Figure 3.12 Device & hardware Select

Choose the chip which you want to emulator, In the device list, Click [OK] return to Figure 3.11. You Can Input the device name in the Device Mask box to find the device quick.

Press [Search], system will auto serch the all emulators which connect in your computer, Choose the emulator which you want tou use as Figure 2.13, Press [OK] to save the settings.

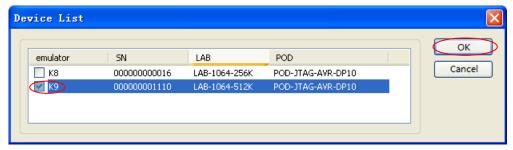


Figure 3.13 Search

3.4.2 Main Options

Press Figure 3.11[Main Options], enter Figure 3.14 the main option interface.

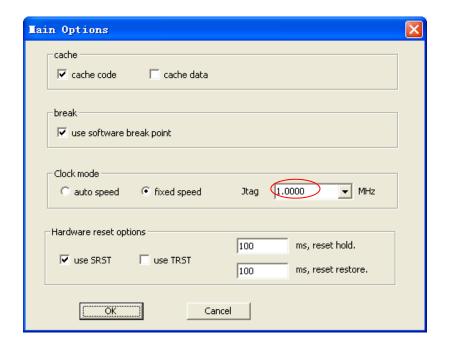


Figure 3.14 Main Options

1. Cache

Cache Config is user to solution the screen and emulator speed.

If choose the cache, screen will be bush afer user pograming is running, it can be faster the dissplay spped, but if a operation can course the data change may not display in time.

If not choose cache, user any operate will course the data brush the screen, but the speed will be slow.

[cache code]: Use Code Cache.

[cache data]: Use Data Cache.

Suggest user set as the default settings, only choose [cache code].

2. Break

[use software break point]: Select ths item, can use no limit flash breakpoints.

3. Clock Mode

[auto speed]: Auto selects the enable highest speed.

[fixed speed]: Use the user input JTAG frequre.

[Jtag]: Choose JTAG frequre, only in the fixed speed effect. In order to may the Target device run correct, JTAG Frequre should be slow than the system clock 1/4 or more slowly.

Hardware reset options

[user SRST]: Use the Harware System Resset nSRST.

[user TRST]: Use the Harware JTAG Reset nTRST, 8-bit AVR device has not JTAG reset pin, so this setting is reserve.

[reset hold]: Select rese hold time in ms.

[reset restore]:Select reset restorer time in ms.

3.4.3 Aux options

Click Figure 3.11 [Aux options], enter the Aux Setup as Figure 3.15.

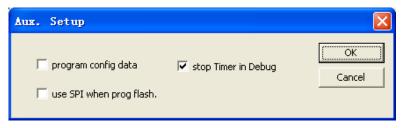


Figure 3.15 Aux Setup

[Program config data]: After downloaer program config the Fuse, as the AVR device Fuse Config is can be save after chip erase, so this option is only select when use K-Flash in program, In the mulat not program config to save time.

[Stop Timer in Debug]: Whether the device in stoped mode timers running.

[Use SPI when prog flash]: Whether use ISP program flash (Only in K-flash available, use the ADP-AVR-P10-P6 adapter).

3.4.4 TAP cofig

Click Figure 3.11 [TAP config], enter the Figure 3.16 TAP setting dialog.

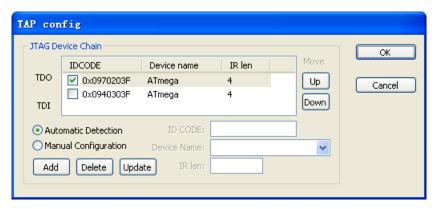


Figure 3.16 TAP Setup

TAP configations to setup the JTAG chian, include number of devices IR length, active device.

It's important to setup when there is unkown device in the JTAG chian. Normally, [Automatic Detection] option will be ok.

[Automatic Detection]: Setup scans chian automatically.

[Manual Configuration]: Setup manually.

[Devices list]: List all devices in scan chain; include Device Name, IR len & IDCODE.

[IDCODE]: The idcode of the device, for add, update operations.

[Device Name]: The name of the device.

[IR len]: The IR length of the JTAG device.

[Add]: Add a new device in the devices list.

[Delect]: Delect a device in the device list.

[Update]: Update the device in the device list.

Application Note© 2011 Guangzhou Zhiyuan Electronics CO., LTD.Date: 2011/02/10Rev 1.02

[Up]: Move the selected device upward.

[Down]: Move the selected device downward.

3.4.5 Prog optoins

Program Config has 4 tags, the first tag is Fuse, Fuse seting, as Figure 3.17, difference device has difference Fuse bits, how to setting this Fuse please reference the datasheet of device.



Figure 3.17 Configure Fuse

The second tag is Lock bits settings, use to progaram Lock bist as Figure 3.18.

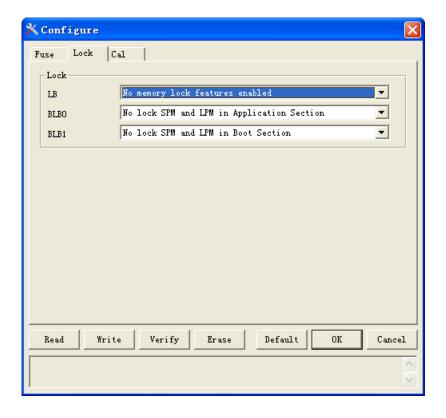


Figure 3.18 Configure Lock

The last tag is use to read the RC oscillator calibrate bytes and write the calibrate byte to Flash or EEPROM in a fix address.

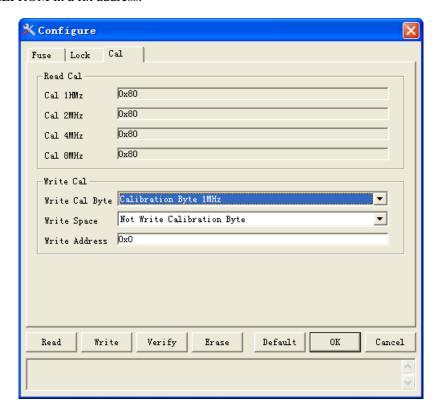


Figure 3.19 Configure Cal

Application Note
Date: 2011/02/10

The dialog has 6 bottoms, the funtion of buttons as Table 3.2.

Table 3.2 Configure Button function

Button	Function
Read	Read the confige in the target board and brush the
Keau	window
Write	Write the config data in the target Device
Verify	Read the config data from target device and compare
verny	with the dialog box
Erase	Erase the chip
OK	Exit and save the config data
Cancel	Exit and not save the cofig data
Default	Set config data to default value

3.4.6 TKScope doctor

Click Figure 3.11 [TKScope doctor], enter the TKScope doctor.

TKScope doctor's function is very powerful, detecting own hardware init, USB communication, hardware reset, and reading AVR core ID 100000 times.

Notice: Use the TKScope doctor need in JTAG Mode, NOT use the ADP-AVR-P10-P6 adapter!

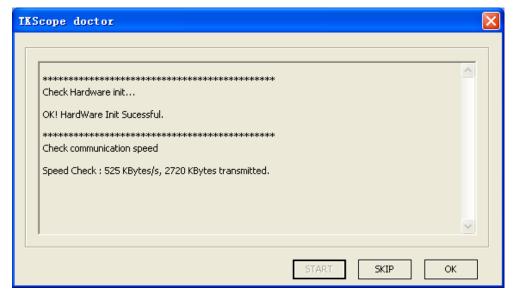


Figure 3.20 TKScope doctor

3.5 Debug

After config finish, now you can start debugging.

3.5.1 Debug Tools

In IAR IDE, after driver installs and setup parameter, you can start debugging, the debug tools as Figure 3.21.

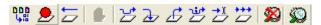


Figure 3.21 Debug Tools

After settup drivers and parameter, as Figure 3.22 return to IAR IDE, click [Make], then press [Debug] in the debug mode.

Date: 2011/02/10 Rev 1.02

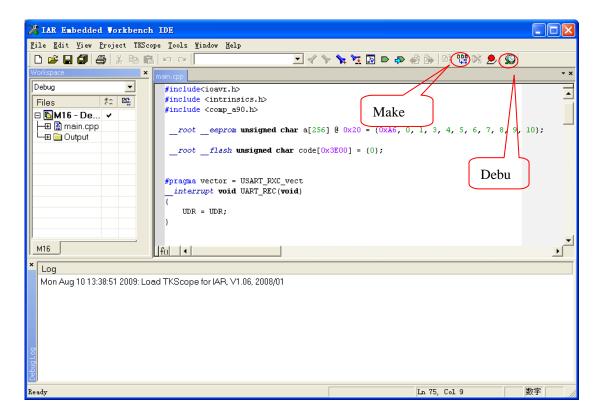


Figure 3.22 Setup Finish

After enter debug environment, as Figure 3.23, click [View] menu, select [Register], you can see the register, others are the similarity.

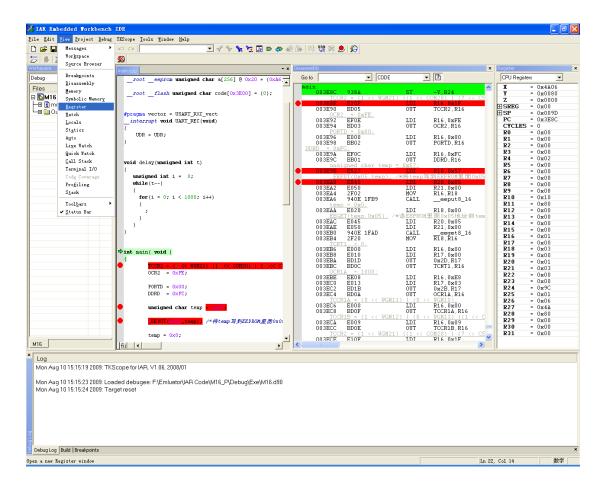


Figure 3.23 Debug Widows

In IAR environment, you can modify the use code in memory window, and you can set breakpoint when the target device is running.

3.5.2 Stop Debug

If you want to stop debug, click button acan exit the debug mode.

Rev 1.02