
.

Unimap

a map making software

for PACS and SPIRE

DIET dept. - University of Rome ’La Sapienza’.

ASDC - Italian Space Agency.

IAPS inst. - National Institute of Astrophysic.

Issue 6.2 - Date: August 20, 2015

1

Contents

1 Introduction 4

2 Unimap input and output 5

3 Unimap pipeline 7

3.1 TOP: making the Time Ordered Pixels . 8

3.2 Pre: signal pre-processing . 9

3.3 Glitch: glitch removal . 10

3.4 Drift: drift removal . 11

3.5 Noise: noise spectrum and GLS filter . 12

3.6 GLS: map making . 13

3.7 PGLS: post-processing of the GLS map . 14

3.8 WGLS: weighted post-processing of the GLS map 15

4 Using Unimap 16

4.1 Using Top . 16

4.2 Using Pre . 17

4.3 Using Glitch . 17

4.4 Using Drift . 17

4.5 Using Noise . 18

4.6 Using GLS . 18

4.7 Using PGLS . 19

4.8 Using WGLS . 19

5 Getting, installing and running Unimap 20

5.1 Getting Unimap and the MCR . 20

5.2 Installation overview . 21

5.3 Installing Matlab . 21

5.4 Installing Unimap . 21

2

5.5 Running Unimap . 21

5.6 Making input and running Unimap from HIPE 22

5.7 Performance and system requirements . 22

5.8 Getting help . 22

5.9 Installing and running Unimap on a Mac . 23

6 Appendix 24

6.1 Matlab input . 24

6.2 Fits input: UniHIPE and HIPE script . 25

6.3 Fits header . 25

6.4 Parameters . 25

6.5 Output files . 28

3

Chapter 1

Introduction

Unimap is a data processing software for PACS and SPIRE data. It is written in Matlab and

implements a full pipeline, starting from the level 1 data of the standard pipeline and delivering

high quality final maps. Unimap is the successor of and was obtained from the Hi-Gal/RomaGal

pipeline [1]. With respect to the Hi-Gal pipeline Unimap offers some improvements: it is

automatic and it is a stand alone, portable package. Furthermore several novel processing

approaches are introduced. The full description of the Unimap signal processing can be found

in [5, 6, 7].

This report is a user manual for Unimap. It is a draft document. Chapter 2 gives an overview

of the I/O files and of the directory organisation. Chapter 3 illustrates the Unimap pipeline,

giving details about the modules, their parameters and output. Chapter 4 discuss several ways

of evaluating and improving the quality of the images produced by Unimap. Chapter 5 explains

what are the Unimap versions, how to get, install and run one of the versions and how to get help

from the developers. The appendix gives a detailed description of the input data and a summary

of the program parameters and output. The Unimap release described in this document is 6.2.0.

4

Chapter 2

Unimap input and output

Two directories are needed in order to use Unimap. The first one, that will be indicated as

unimap path, is the one hosting the program files. The second one, that will be indicated

as data path, is the one hosting the I/O files. The unimap path also hosts a file named

unimap par.txt which is an ASCII file that stores the program parameters and that can be

modified with any text editor to customise the program functions. The unimap data may also

host a file named unimap header.txt which is an ASCII file that stores additional entries for

the fits header (see the appendix for a better description).

The input data must be stored in the data path before the program execution. This folder

is also used as the output folder by Unimap. The main input to Unimap is a set of bolometer

readouts and pointing information. These data can be represented by three matrices: Φ =

{φk,n}, A = {αk,n} and ∆ = {δk,n} giving, respectively, the readout, the right ascension and

the declination of the k-th bolometer at the n-th sampling instant. Additionally, a flag matrix

Fb = {fk,n}, such that fk,n = 1 is the readout is bad and fk,n = 0 otherwise, must be passed to

Unimap.

The input data for Unimap can be stored in two types of files: fits (.fits) or matlab (.mat).

The two types can be mixed. Specifically the input data is stored in files named unimap obsid ∗

.fits or unimap obsid ∗ .mat and these files have to be stored in the data path: they are

recognised and processed. Each of these files must contain the matrices Φ, A, ∆ and Fb for

some observation id. Any number of observations (within the memory limit) can be processed:

this means that Unimap can produce wide patches, involving several observations, and maps for

tiles with as many passes as desired. A description of the file formats is given in the appendix.

The file unimap par.txt stores the program parameters. When the program starts, if this file

is not found, a default copy is written in the unimap path which can next be edited by the user.

While Unimap recognises the parameters by their position in the file, for the user’s convenience

in the default file the parameter values are followed by a comment (starting with a % symbol)

the first field of which is a mnemonic name, that will be used in the following to identify the

5

parameter. For example the second line of the parameter file looks as follows

home/data/L048 psw/ % data path - working directory

and it defines a parameter, named data path, giving the I/O directory and the value of which

is home/data/L048 psw/. The parameters can be classified into two types: global and local.

Global parameters affect the whole program execution and are used by several processing steps

(modules). Local parameters only affect the functioning of one processing step (module). In the

par file, the global parameters appear first and are followed by the local parameters, grouped

by owning module. Each parameter will be better discussed in the next sections. A summary

of the parameters can be found in the appendix.

Unimap produces several output files. These can be grouped into four classes. Maps: these

are fits files, containing various versions of the final map. These files are always produced. TOP:

these are matlab files, containing various versions of input data, after the different processing

modules. They are huge files and do not really need to be saved because Unimap can store them

in RAM to speed up the execution. However, if they are saved, the execution can be repeated

starting from any module and not necessariliy from the first one. Whether they are saved of

not is controlled by the parameter run mode (see later). Work data: these are matlab files,

containing various ancillary data, that Unimap needs. These are always saved and the user has

no control on them. Evaluation data: these are fits files, containing various images that are

useful to evaluate the maps and the processing. These are useful files but not really needed

and their production can be suppressed. Whether they are saved of not is controlled by the

parameter save eval data (1 saves, zero does not). The output files will be better described in

the next sections. A summary can be found in the appendix.

The maps produced by Unimap are affected by an unknown offset and need to be calibrated

using an external, absolute reference to obtain the actual flux. This is because the PACS and

SPIRE timelines are affected by an unknown offset that cannot be estimated based on the data.

Concerning the unit of measure, Unimap follows the Hi-Gal assumptions. Namely it assumes

that the input data are MJy/sr for PACS and Jy/beam for SPIRE1. The user can select the

output map to be in MJy/sr or in Jy/pixel.

Concerning the coordinate systems, Unimap assumes that the input pointing information is

given in equatorial coordinates. The output can be produced either in equatorial or galactic

coordinates.

At each execution Unimap saves in the data path a copy of the parameter file and a file

named unimap log.txt where the program text output is saved. By default the log file is opened

in append mode, i.e. the new output is added to the previous output. However if the parameter

start module is set to zero, the log file is cleared and previous output deleted.

1Obviously, if the input data have a different unit, the Unimap output unit will be scaled by a multiplicative

factor.

6

Chapter 3

Unimap pipeline

In the following subsections we describe the Unimap pipeline steps, in the order in which they

are performed. We start by describing the global parameters meaning. To this end note that

each step is performed by a module and that the modules are numbered from 1 to 8. Note

that not all the steps need to be always performed; instead the user can specify a start module,

where the processing will start, and a stop module, which will be the last executed. The start

and stop module are specified by means of the parameters start module and stop module. If

the start and stop module are, respectively, 1 and 8 the whole pipeline is executed. If the start

module is zero, the log file is cleared and the program executed from module 1. By setting

these parameters equal, a single module can be executed. Note that, in order to execute an

intermediate step, all the preceding steps must have been executed in a preceding run and their

output saved (by setting to 1 or 3 the parameter run mode).

The run mode parameter determines which run mode Unimap should use. If 0, disk use is

minimised and speed is maximised; if 1, disk is maximised but step by step execution is allowed;

if 2, memory use is minimised, at the expense of some disk space; if 3, memory is minimised and

disk is maximised (to allow step by step).

Some of the modules (TOP, glitch) check whether a timeline is too flagged and discard

the data if this is true. There is a global parameter, max bad, which specifies the maximum

percentage of flagged readouts that a timeline can have to be kept in the processing.

Some of the modules (Noise, PGLS,WGLS) perform a morphological analysis of the image

in order to tune the processing. In the analysis the image is partitioned into three sets: border

(outer pixels, usually noisy and not reliable), background (inner pixels with a weak emission)

and signal (inner pixels with a strong emission). There is a global parameter controlling this

process, morpho sig thresh, which is the threshold used to detect the signal (higher means less

signal, lower more signal).

Some of the modules (drift, GLS and PGLS) perform an iterative processing. There is a

global limit to the number of iterations that can be performed which is stored in the parameter

7

max ite par.

3.1 TOP: making the Time Ordered Pixels

This module opens all the input files, which can be several, and merges the input data to form

the following three matrices: Φ = {φk,n}, A = {αk,n} and ∆ = {δk,n} containing, respectively,

the readout, the right ascension and the declination of the k-th bolometer at the n-th sampling

instant. Additionally, a flag matrix Fb = {fk,n}, such that fk,n = 1 is the readout is bad and

fk,n = 0 otherwise, is formed by this module. The matrix Fb is saved into file flag base.mat for

inspection and for use by the subsequent modules.

The module can filter out bolometers that are too bad. To this end the parameter max bad

is used, which is a number in the range 0 to 100 giving the maximum percent of flagged data

that a timeline can have to be accepted for processing. If a bolometer exceeds this threshold it

is discarded and not used to construct the map.

The module can discard initial samples from the timelines, which can be useful to remove

an initial deviation from the baseline, affecting some dataset and due to the memory of the

calibration phase. To this end the parameter top skip exists, which is the number of initial

samples to skip. This is normally useful for PACS only and therefore the skip is suppressed for

SPIRE data. However if top skip is negative, it apllies to SPIRE too and −top skip samples

are skipped. Moreover, in order to protect short observations, no more than ten percent of the

samples are skipped, overriding the parameter value if necessary.

Unimap assumes that the input data are MJy/sr for PACS and Jy/beam for SPIRE. The

unit measure of the output is controlled by the parameter top unit. If the parameter is 0 the

output is MJy/sr. If the parameter is 1 the output is Jy/pixel. For SPIRE data, If the parameter

is 2 the output is Jy/beam.

Unimap assumes that the pointing information is given in equatorial coordinates (right as-

cension, declination), as is true for the standard pipeline. If requested, this module can convert

the pointing information into galactic coordinates (glon, glat), which can be useful to map the

Galaxy. This is controlled by the parameter top use galactic (1 convert, 0 do not convert).

As the next step the module projects the polar (equatorial or galactic) coordinates onto

a plane. Currently there are three possible projections implemented: gnomonic (TAN), cylin-

dric equal area (CEA) and plate carree (CAR). The projection is controlled by the parameter

top use gnomonic (0 = CAR, 1=TAN, 2=CEA).

After projecting, the module makes a pixel grid on the projection plan, with a pixel edge that

can be specified by the user by means of the parameter top pixel size (arcsec). If this parameter

is set to zero, default values (Hi-gal) are used. It then assign numbers to all the pixels of the

grid and next assigns each readout to one of the pixel, based on the pointing information. The

8

result is a matrix P = {pk,n} giving the number of the pixel where the n-th readout of the k-th

bolometer falls. The matrices Φ and P are referred as a TOP (Time Ordered Pixels) and are

saved in the files top base.mat and poi.mat, since they are needed by the following modules.

The pixelisation can be controlled to some extent by the user. The user can specify the

dimensions of the final map, by means of the parameters top nax1 and top nax2. If top nax1

is set to zero then the dimension is automatic. The user can specify a reference point in the

projection plane, which is also used as the projection center, by means of the parameters top cva1

and top cva2 (degrees). If the first parameter is set to ’Inf’, the reference point is set to the map

center. The user can select the position of the reference point in the final map, by means of

the parameters top cpi1 and top cpi2 (pixels). If the first parameter is set to ’Inf’, the reference

point is positioned in the matrix center.

For huge maps it can be useful to run fast tests, where some of the input data is neglected

in order to speed up the processing. To this end the module may subsample the bolometers

and produce reduced output for the following modules. This is controlled by the parameter

top bolo sub, which tells this module to retain only one bolometer out of every top bolo sub

bolometers. Therefore if this parameter is one, no subsampling occurs, if it is two, half of the

bolometers timelines are dropped and so on.

As a last step, the matrix Φ is modified by subtracting the median to each timeline and the

result is saved again in the matrix Φ. If save eval data is one, the module makes a projection

of the Φ matrix at this stage and saves it in the file top base.fits; the standard deviation of

the readouts falling into each pixel is saved in top base noise.fits. The module also counts the

number of readouts per pixel and saves the corresponding image in cove full.fits. Moreover,

it save an image flag base.fits where each pixel’s value gives the number of flagged readouts

falling in the pixel. This module also computes ancillary data (like the instrument type, the

scan angles etc) that are saved into the file data base.mat.

3.2 Pre: signal pre-processing

As a first step the module fixes the flagged readouts (base flags) by means of a linear interpolation

between the preceding and following valid readuts. Next, if requested by the user, the module

tries to detect the presence of calibration blocks. Calibration blocks are segments of artificial

readouts inserted into the timeline (e.g. in tile Hi-GAL L030, L059) during the turnaround

period (i.e. when the scan direction is changed) and need to be eliminated from the matrix Φ.

This step is controlled by the parameter pre cal: when the parameter is zero the detection is

suppressed. If the parameter is Inf it is assumed that the cal blocks have been flagged in the

input data; this feature will be active in HIPE 14 but if the input data have been produced with

HIPE 13.0 or lower the cal blocks are not flagged. Therefore the module has a built in detection

9

procedure that checks the lengths of the turnaround sequences and looks for longer sequences,

which are candidate to host a cal block. Specifically the module finds the median length of

the turnaround sequences and then finds sequences having a length larger than pre cal times

the median length. These sequences are candidate to host a cal bolck. Afterwards, the power

(mean squar value) of each candidate is checked and compared with the minimum power of all

turnaround sequences: if the power is greater than pre cal thresh times the min power, the cal

block is confirmed and the whole turnaround sequence hosting it is flagged. If pre cal thresh is

zero, all candidates are confirmed.

The next task of the module is to detect signal jumps (hot cold bolometers). This is done

by dividing each timeline into blocks of 2 pre jump hfwin samples, computing the median and

detecting median jumps exceeding pre jump threshold times the timeline standard deviation.

When the threshold is exceeded a candidate jump is found which undergoes a set of morpho-

logical rules aiming at removing false candidates. If the candidate is confirmed, a sequence

pre jump len samples is flagged starting from the candidate. If the threshold is set to zero, the

jump detection is skipped.

As the next step the module merges (by means of a logical or) the (possible) calibration

blocks flags and signal jump flags and the result is saved into file flag pre.mat. Optionally, a

file flag pre.fits can be saved which is an image where the number of flagged (cal and jump)

readouts for each pixel is shown.

The module also produce a segmentation of the timelines, which is needed by GLS. Specifi-

cally each timeline is broken into segments in correspondence to any cal block or jump identified.

Moreover, also long sequences of base flags can be broken. This is controlled by the parameter

pre sat: specifically, the timeline is broken in correspondence of all sequences of base flags longer

than pre sat.

Finally the module fixes the flagged data (cal and jump). Specifically the flagged readouts

are replaced with a linear segment joining the good data and the result is still stored in the

matrix Φ. This matrix is then saved into file top pre.mat. Optionally the module can also

create an image obtained by rebinning the Φ matrix and save the image in the file top pre.fits

(the standard deviation of the rebin is also saved in the file top pre noise.fits).

3.3 Glitch: glitch removal

This module searches glitches. The first step of this module if to high-pass filter each bolometer

timeline (each row of the Φ matrix) with a non-linear, median, filter. In this way a high-pass

filtered TOP is obtained, which is stored in a matrix H = {hk,n}. The window length of

the median filter is controlled by the user by means of the parameter glitch hfwin, giving, in

samples, the half window length.

10

It next performs the glitch search on the high-pass filtered top H. Glitches are detected by

observing all the readouts falling into a pixel and marking as glitches all the outliers. Specifically

the mean and standard deviation of the readouts falling in the pixel are computed and all the

readouts having a difference with the mean larger than a user definable threshold are declared

a glitch (i.e. we use sigma-clipping). The threshold is controlled by means of the parameter

glitch max dev. If this parameter is zero a default threshold is used, if it is −1 deglitching is

switched off and skipped, otherwise the parameter gives the threshold value. A lower thresold

would result into more glitches detected. The module creates a matrix of flags where an el-

ement is one if a glitch was detected and zero otherwise. This matrix is saved into the file

flag glitch.mat. Optionally, a file flag glitch.fits can be saved which is an image where the

number of flagged readouts (glitches) for each pixel is shown.

Next the module repairs the TOP by replacing each detected glitch with a linear interpolation

between the preceding and following good readouts. Moreover timelines with more thanmax bad

percent of the readouts flagged are entirelly discarded. The repaired TOP is stored in the matrix

Φ and the matrix is saved into file top glitch.mat. Optionally the module can also create an

image obtained by rebinning the Φ matrix and save the image in the file top glitch.fits (the

standard deviation of the rebin is also saved in the file top glitch noise.fits).

Note that for the glitch detection to work well, it has to be guaranteed that a sufficient

number of readouts (say 50) fall into each pixel, otherwise the outliers detection is not accurate.

However it may happen that fewer readouts than needed fall into the pixels, for example in the

Hi-GAL SPIRE maps. In this case it is necessary to subsample the image before performing

the glitch detection, in order to increase the pixel size and the number of readouts falling into

a pixel. This can be done by means of the parameter glitch sub which is a positive integer

specifying the subsampling. If it is one, no subsampling takes place. If it is two, the glitch

search is carried out on a map with pixels having half the length (one fourth the area) of the

original map. And so on. If the parameter is set to zero, the subsampling level is computed

automatically, in order to guarantee that an average of 50 redaouts fall into each pixel after the

subsampling.

3.4 Drift: drift removal

If calibration blocks have been detected, this module tries to compensate the effects of the blocks.

To this end, the timelines of each observation where cal blocks have been detected are broken

into segments in correspondance to the identified cal blocks and a (single) straitght line is fit to

the segments of (all) the timelines. The timelines are next updated by subtracting the fit. The

cal blocks compensation can be suppressed using the parameter drift each bolo, setting it to 2

or 3 (see later).

11

Next, this module removes the drift affecting the timelines by fitting a polynomial to the

timeline. The fit procedure is better described in [6] and is based on an iterative approach.

At each iteration a better fit is obtained and the number of iterations can be controlled by

means of the parameter drift min delta which is a positive real number giving the minimum

improvement of the Mean Square Error (MSE) (in dB and with respect to the previous iteration)

needed in order to continue the iterations. Another important parameter is the polynomial order,

controlled by the parameter drift poly order, which is a positive integer.

After estimating the polynomial, the fit is subtracted from the original timelines of the matrix

Φ and the result still store in that matrix. The dedrifted Φ matrix is saved into file top drift.mat.

Optionally the module can also create an image obtained by rebinning the Φ matrix and save

the image in the file top drift.fits (the standard deviation of the rebin is also saved in the file

top drift noise.fits). Also some ancillary data are saved into file data drift.mat.

Note that the module can work in two different ways: either it computes a fit for each

individual timeline or it computes a single fit for all the bolometers belonging to a subarray

(recall that the PACS blue bolos are organised into 8 subarrays, PACS red into two subarrays

while SPIRE bolos all belong to the same subarray). Therefore, when the fit is carried out by

subarray only an average polynomial fit is computed, which is then subtracted to all the timelines

of the same subarray. Working by subarray is faster but may slow down the convergence of GLS.

Whether the procedure has to be carried out for each bolo or for the whole subarray is decided by

the parameter drift each bolo: if this parameter is 1 or 3, each bolo is dedrifted separately; if it

is 0 or 2 the fit is carried out by subarray; if the parameter is 2 or 3 the cal blocks compensation

is suppressed; if this parameter is -1, the whole drift module is suppressed (as can be useful to

save computation time in images with low drift).

3.5 Noise: noise spectrum and GLS filter

As a first step this module estimates the noise spectrum and constructs the noise filters to be

used by the GLS map maker. The GLS implementation used by Unimap controls the filter len

explicitely, by means of the parameter noise filter hflen, which is a positive integer giving the

response half length, in samples. Normally a few tens of samples, say 50, are sufficient to obtain

well working filters.

The GLS noise filters can be constructed in two different ways, as controlled by the parameter

noise filter type. If the parameter is 0 the raw filters estimated from the data are used (obtained

by inverse Fourier transforming the estimated noise spectrum). If the parameter is 1 the noise

spectrum estimated from the data is fitted with a spectrum model (1/f noise plus white noise)

and the filter response is obtained by inverse Fourier transform of the fitted spectrum. If the

parameter is set to Inf, it is reset to 1 for PACS and to zero for SPIRE. To check the filters,

12

the module saves two files: noise spec.fits, containing the estimated noise spectrum for each

bolometer, and noise filt.fits, containing the actual filter response used for each bolometer.

As a second step this module formats the data for the GLS step. It first load the signal jump

and the calibration block flags that were produce by the Pre module and breaks the timelines

into segments, by placing a break where a jump or a cal block was found. The segments will

be handled separately, as independent timelines, in the GLS iterations. Next the module may

or not remove the flagged values, as controlled by the parameter noise apply flag. If this

parameter is one, the flagged data will be skipped and not used during the GLS iterations. If

this parameters is zero the flagged data are replaced with the reconstructed data (obtained by

linear interpolation of the timeline) and used by the map maker.

Using the updated TOP, the module makes a projection to construct the naive map, which is

the first Unimap output, saved in the file img rebin.fits. The corresponding standard deviation

image is saved in file img noise.fits. Also a coverage image is saved, counting the valid readouts

(after flag removal), in file cove gls.fits. The module also computes the morphology of the

image, classifying each pixel into void (0), border (1), background (2) or signal(3). The process

is controlled by a global parameter: morpho sig thresh which is the threshold used to detect

the signal (higher means less signal, lower more signal). The morphology is saved in the file

flag morpho.fits. Ancillary information is saved in flag dive.fits, which gives a diversity score

for each pixel, counting the readouts from different bolometers.

3.6 GLS: map making

This module makes a map (image) from the timelines by exploiting a Generalised Least Square

(GLS) approach, e.g. [2]. The implementation exploits the Parallel Conjugate Gradient (PCG)

and is therefore similar to other implementations like [1, 3, 4]. However the implementation

has specific features that are better described in [7] but will not be covered in deep here. Nor

we will present a deep description of the GLS approach, which can be found in the references

just given. We will limit ourselves to a short description, useful to understand the Unimap

parameters affecting the GLS map maker.

The GLS map is obtained from the deglitched and dedrifted Φ matrix. The GLS approach

is an iterative one, where at each iteration the timelines are filtered with a noise whitening filter

and rebinned into a map. The number of iterations is controlled by means of the parameter

gls min delta as follows: at each iteration the variance of the correction applied to the map

normalised by the variance of the map is computed (in dB) and if it is lower than gls min delta

(in dB) the processing is stopped. By setting this parameter to -Inf, the number of iterations

performed will be exactly the one given by the parametermax ite par. By setting this parameter

to Inf, the stop level will be automatically selected based on the image morphology. At the end

13

of the iterations the module saves a GLS image, in the file img gls.fits. Some ancillary data are

saved into the files data gls.mat and data gls ite.mat. The module also saves a useful evaluation

image. Specifically the naive (rebin) image is subtracted from the GLS map and the result is

saved in the file delta gls rebin.fits.

The GLS needs a map to start with and there are three possible choices, as controlled by

the parameter gls start image. If this parameter is 0, the GLS will start from a zero map. If

the parameter is 1, the GLS will start from the rebinned map. If the parameter is 2, the GLS

will start from a mixture of a flat map (corresponding to the background) and the rebin (where

the signal is). If the parameter is 3, the GLS will start from the last saved GLS image and data,

which is useful to do more iterations on a previous GLS run. If the parameter is Inf, Unimap

will automatically select the start image based on the image morphology. In theory, after a

sufficent number of iterations, the GLS will converge to the same map irrespectively of the start

map. However the number of iterations required to converge will vary depending of the start

map. When the image has a strong signal it is better to start from the rebin. When the signal

is weak and the sky is essentially an almost flat background with a few sources it is better to

start from the zero or the mixture map. This is the rationale applied in the automatic start

image selection, which selects rebin or mixture depending on how much signal is found.

3.7 PGLS: post-processing of the GLS map

The GLS map maker is known to introduce some artifacts and distortion in the map [5]. There-

fore this module runs the PGLS algorithm [5], which is a way to (partially) remove the artifacts

and the distortion introduced by the GLS map maker, especially for PACS data. The PGLS

algorithm will not be discussed in deep here. We only mention that PGLS tries to estimate the

artifacts introduced by the GLS map maker and then subtracts the artifact estimate from the

GLS image, to produce a clean image which is saved in the file img pgls.fits. In so doing, the

PGLS algorithm may amplify the background noise of the image, so that it is not always obvious

that the PGLS image is better than the GLS one. The module also saves a useful evaluation

data that is the distortion estimate, i.e. the difference between the GLS and the PGLS map, in

the file delta gls pgls.fits. Furthermore it saves the difference between the PGLS map and the

rebinnaed image in the file delta pgls rebin.fits.

PGLS is an iterative process involving a non-linear, median high-pass filter. The length of the

median filter is controlled by the parameter pgls hfwin, which is a positive integer specifying

half of the filter length. Higher lens improve the artifact estimation and are needed if the

artifacts are wide, but also may increase the background noise level. Lower lens reduce both the

noise and the artifact estimation quality. If the parameter is set to zero, the module attempts

to determine an optimal value. This is done by running PGLS many times and measuring the

14

distortion and may greatly increase the computation time. There are two more parameters

controlling the convergence: pgls num ite which sets the numer of iterations to be performed,

and pgls min delta, having a meaning and an effect similar to gls min delta. If these parameters

are set to zero, the values are automatically computed.

3.8 WGLS: weighted post-processing of the GLS map

Since the PGLS remove the GLS distortion but increases the background noise, it is convenient

to make a mixed map, obtained from the PGLS image only where the distortion is strong (so that

it is removed) and from the GLS image where there is no distortion (so that the background

noise is not increased). This is done in this module which runs the WGLS algorithm [5, 7].

The algorithm computes a distortion mask, having the same size of the image, which is zero

where no distortion is detected and is one where distortion is detected. Then the WGLS image

is obtained from the PGLS image where the mask is one and from the GLS image when the

mask is zero. The WGLS image is saved into file img wgls.fits and the mask used may be

saved in the file flag wgls.fits. This module also saves a useful evaluation image. Specifically

the rebinned image is subtracted from the the WGLS image and the result is saved in the file

delta wgls rebin.fits.

The WGLS currently implemented in Unimap is the one described in [7] and creates the

distortion mask in two step. The first step creates anchor points for the distortion which are

grown in the second step. Specifically, in the first step the distortion image produced by the

PGLS is compared with a threshold, specified by the parameter wgls dthresh, and all the pixels

with a difference from the mean greater than the standard deviation times the threshold are

declared as distortion pixels and set to one in the WGLS mask. In the second step the distortion

image is compared with a threshold, specified by the parameter wgls gthresh, and all the pixels

with a difference from the mean greater than the standard deviation times the threshold and

adiacent to a pixel already flagged are declared as distortion pixels and are set to one in the

WGLS mask. The second step is repeated until no more pixels are added to the mask. If either

parameter is set to zero, its value is computed automatically.

15

Chapter 4

Using Unimap

Using the default parameters a decent image will be obtained for most of the PACS and SPIRE

observations. In this sense Unimap is an automatic map maker. However the image quality

needs to be checked and often it can be improved by tuning the parameters to the specific

observation. The parameter tuning is carried out by means of a trial and error approach, where

the user attempts to vary the parameters in order to improve the quality, and judges the results

based on the evaluation data saved by the program. In this sense Unimap is an interactive map

maker.

In this section we discuss the parameter optimization and how to evaluate the map quality

based on the evaluation data saved by Unimap. We also describe some known problems that

can arise and the way to mitigate them. The results reported in this chapter ar mainly based

on the reduction of PACS data. SPIRE data will be better investigated in the future.

As a general comment, observations which are large and signal rich (e.g. a Hi-GAL Galaxy

tile) are simpler and faster to process. The default parameters are optimised for the latter case

and the Unimap output is normally high quality. On the contrary when the observation is short

or it is signal poor (e.g. a small target embedded in a flat, void background) the processing is

more difficult and some trials are needed to obtain good maps. Also note that if the data is not

redundant (at least two passes with different scan orientation) the map quality will not be good.

4.1 Using Top

Keep an eye on the text outupt of the module. Check if too many bolometers are discarded,

and increase the top max bad value in this case.

Have a look to top base.fits and top base noise.fits to see if there is impact of the inital

calibration phase, seen as an area with high noise at the beginning of the scan. Increase top skip

if necessary.

The module prints the percentage of flagged readouts. A sane percentage is well below 1%.

16

If the percentage is much higher, the input data is not good. Have a look to flaf base.fits to

see where the flagged data are.

4.2 Using Pre

Check the impact of the jump and cal blocks detection by inspecting flag pre.fits. Also check

the top pre.fits map and the corresponding noise. Compare with top base.fits.

Keep an eye on the text output: if cal blocks were found, check whether this is correct or

not. In case modify pre cal.

The module prints (on the screen and in the log file) the percentage of readouts that were

flagged because recognised as jumps or saturated pixels. A sane percentage is well below 1%,

a typical percentage being 0.2%. If the percentage is much higher, you should adjust the jump

threshold to lower it! The module also prints the average number of segments per timeline.

Unless cal blcks were found, this number should be very close to 1.

4.3 Using Glitch

The glitch procedure normally works well with the default values (i.e. automatic subsample and

threshold). Check the impact of the glitch removal by inspecting the flag glitch.fits image and

by comparing the top glitch.fits (and noise) with the top pre.fits.

The module prints (on the screen and in the log file) the percentage of readouts that were

flagged because recognised as glitches. A sane percentage is well below 1%, a typical percentage

being 0.2%. If the percentage is much higher, you should adjust the glitch threshold to lower it!

4.4 Using Drift

The default polinomial order, 2, is often a good choice, but for some images different values

may yield better results. Moreover, especially when the scan is short, the drift may be small.

In this case it may be better to entirelly skip the dedrift and leave the task to the GLS map

maker. Inspect the top pre.fits to decide if the dedrifting is needed and the polynomial order.

Compare top pre.fits with top drift.fits to asses the results of the dedrifting step.

Dedrifting by bolometer is the default choice and it is normally ok: it produces better naive

maps than dedrifting by subarray. However it may occasionally introduce bowls around strong

sources (well, very strong sources). In this case use dedrift by subarray: the naive maps may be

more moisy but the GLS should be able to produce a good estimate in any case.

If you are making a patch using several partially overlapping observations, the different

observations may have a visibly different level in the top drift.fits map. If this is the case, GLS

17

will have problems. This can usually be corrected by increasing the numbr of drift iterations,

by lowering the parameter drift min delta.

4.5 Using Noise

The noise filters are obtained by IFT of the noise spectrum. In the IFT, the user can decide to use

the raw spectrum (filter types 0,2) or a fit (filter types 1,3) to the spectrum. In general fitted

filters yield smoother responses and improved numerical stability in the GLS step. However

wihich filter to use also depends on how well the fit model (1/f plus white noise) follows the raw

spectrum. We found that for PACS and SPIRE PSW the fit is a good model while for SPIRE

PMW and PLW the spectrum tends to rise at the high frequencies and the fit model is no more

good. Inspect the noise spec.fits file to check the raw spectrum.

The filter response should peak in the center and drop towards zero at the extremes. Inspect

the noise filt.fits file to observe the filter responses. If the reponse does not reach zero (well,

small values) you may increase the filter len. To be sure that the filter len is correct, you may

make a reduction with a double filter len and check that the results are unchanged.

Have a look to the image morphology in flag morpho.fits: this affects several following

steps. If this is badly wrong, play with the parameter morpho sig thresh to fix it.

Concerning the flags, the best option is to remove them (noise apply flag = 1), since in this

way no artificial data are injected in the map. However removing the flags may cause instabilities

in the GLS iterations and void pixels (NaN) in the final map. In this case you can try to use

the reconstructed values.

4.6 Using GLS

The Unimap implementation of the GLS map maker is normally safe but it can sometime become

unstable. In this case you have to change the previous steps (e.g. improve dedrift or the filter

type and len). During the iterations the GLS module prints the the Delta (variance of the

correction over variance of the map). In a stable iteration the Delta should have an decreasing

trend. Small variations from the trends are ok but long or large variations from the trends

indicate that the algorithm has become unstable.

The number of iterations required to converge depends of the observation type. If it is signal

rich, a few tens of iterations are enough. If it is dominated by the noise, hundreds of iterations

may be required.

Concerning the start image, note that, in theory, the GLS should arrive at the same map

independently of the start image. Therefore when the maps obtained starting from different

images are identical, this is a safe indication that convergence was achieved. In practice, real

18

convergence is difficult to obtain due to numerical noise (round offs): it may take too many

iterations to really obtain the same map. In this case one has to choose which image is better

to start with.

The selection of the start image depends on the observation. If the observation is signal

rich (e.g. the Galaxy), then it is better to start from the rebin. When the observation is a flat

background with a few sources, both start maps (zero and rebin) should be considered. Indeed

starting from the rebin may cause disuniformities in the background, which is not flat, but has

wide stripes of different level. Instead, starting from the zero image normally guarantees a flat

background but introduces black wide holes centered around the sources. Both problems tend to

disappear by doing more iterations, but by selecting the proper start image one may significantly

reduce the number of iterations required to obtain a satisfying map.

4.7 Using PGLS

PGLS is not always necessary, because in some cases (e.g. images dominated by the noise) the

GLS algorithm does not really introduces distortion. In order to decide if PGLS is to use and

to evaluate the results, a set of delta images is produced by Unimap.

The first is delta gls rebin.fits which is the difference between the GLS image and the rebin.

This image will contain the 1/f noise (which is removed by the GLS but not by the rebin) plus

the GLS distortion and residual white noise. Check this map and if you see only 1/f noise (i.e.

stripes following the scan lines) then probably PGLS is useless. On the contrary if you see signal

related structures in the image (anything different from 1/f and residual white noise), this is the

GLS distortion and PGLS will be useful.

The second is delta gls pgls.fits which is the difference between the GLS image and the

PGLS one and is theferore the distortion estimated by the PGLS. This image shall contain the

GLS distortion observed in the delta gls rebin.fits and residual noise. Finally you should check

delta pgls rebin.fits which is the difference between the PGLS image and the rebin. This image

shall contain only the 1/f noise and residual white noise. If you still see signal related structures

in this image, then PGLS was not able to remove all the distortion. In this case it is a good

idea to increase the length of the PGLS filter: in this way the distortion estimation is improved

at the cost of some additional noise. Doing more than 4 iterations is normally useless.

4.8 Using WGLS

Inspect the flag wgls.fits and delta wgls rebin.fits images to evaluate the results. Change

the WGLS thresholds if results are not satisfactory.

19

Chapter 5

Getting, installing and running

Unimap

Unimap can be used as a stand alone program or as a HIPE plug-in. In particular, starting from

HIPE 13, there is a HIPE script which is maintained by the PACS ICC and that can be used

to run Unimap directly from HIPE. See the HIPE documentation. In the following we discuss

the stand-alone option, focusing on the Linux case.

Unimap is written in Matlab and can run on any computer where Matlab can be installed

(including Windows, Linux and MAC). Furthermore the program can be compiled an run also

without installing Matlab: it suffices to install the Matlab Runtime Runtime (MCR).

If Matlab is installed you can use the Unimap source code directly (the source code of Unimap

5.5.0 is allowable on the page under an open source licese for you to play with and modify).

If Matlab is not installed you have to follow an installation procedure which varies depending

on the operating system. In the following we report the steps to follow to install Unimap on a

PC with Linux (specifically we tested the steps with Ubuntu 11.0.4 and 14.04 64bit and with

Debian 7.8).

5.1 Getting Unimap and the MCR

Unimap can be downloaded from http://infocom.uniroma1.it/unimap. For Linux, it comprises

the following three files:

run unimap.sh - shell for launching unimap

unimap - unimap executable

unimap par.txt - unimap default params

Additionally you have to download the MCR installer (MCRInstaller.bin): for MAC, this

is found on the Unimap page; for Linux, and starting from Unimap 6.0, you have to download

it from the Mathworks site. Select MCR version 8.4 for Matlab 2014b, 64 bit machine.

20

5.2 Installation overview

The installation is divided into two steps: installing MCR and installing Unimap. If the PC

already has (the correct) MCR installed, the first step can be skipped, but the path of the MCR

must be identified.

5.3 Installing Matlab

In order to install the Matlab Compiler Runtime (MCR) library we took the following steps

1) Copy MCRInstaller.bin to a working directory on the target PC.

2) Edit the file rights ofMCRInstaller.bin: make it executable (chmod 777MCRInstaller.bin).

3) From a terminal window, launch MCRInstaller.bin. (./MCRInstaller.bin or, if there

are writing problems, sudo./MCRInstaller.bin).

At this point the Matlab runtime library installation wizard will start and install matlab. It

will tell you what is the path to use to reach the library. It is something like /opt/MATLAB/

MATLAB Compiler Runtime/v84/. This path will be referred as MCR path.

5.4 Installing Unimap

Installing Unimap simply requires copying into any folder the following three files: run unimap.sh,

unimap and unimap par.txt. The folder will be termed the unimap path.

Next you have to change the mode of the run unimap.sh and unimap files and make them

executable (chmod 777 ...).

5.5 Running Unimap

Set up a data folder (data path, must be different from unimap path) and copy there the input

data: the input data are files of the form unimap obsid ∗ .fits or unimap obsid ∗ .mat. Next

section explains how to produce them.

Edit the unimap par.txt file. Write the data path as first parameter and modify the other

parameters according to your preferences.

Run Unimap by opening a terminal window, cding to unimap path and issuing the fol-

lowing command ./run unimap.sh MCR path where MCR path is the path where Matlab

is installed on the PC. If the data path requires privileged access you may need to issue

sudo./run unimap.sh MCR path.

21

5.6 Making input and running Unimap from HIPE

In order to use Unimap you have to build the input files. One option is to do this by yourself

(writing a wrapper producing either the .fits of the .mat input for unimap).

For PACS data, a second option is to use a HIPE script (available from HIPE 13 on) that

produces the input and runs Unimap directly from the HIPE environment. This is the recom-

mended way of producing inputs, because the script is maintained by the ICC and wil use the

best calibration options for Unimap. The script can also be used to produce the input only; next

you can use the stand-alone Unimap, running it from outside HIPE on the input just produced:

when the data set is huge, this is a better option, because takes less memory.

A third option, suitable for both SPIRE and PACS data, is to use a HIPE user-contributed

script, named UniHIPE, that has been written by the ASI Science Data Center (ASDC). The

script can be downloaded directly from the ASDC page or accessed as a HIPE plug-in. Also

UniHIPE can be used to run Unimap within HIPE or just to produce the input files for the

stand-alone Unimap version.

5.7 Performance and system requirements

The system parameter mainly affecting the Unimap performance is the RAM. The more RAM

there is, the bigger the images that can be produced and the faster the production. To give

an idea let us say that on a laptop with 8 Giga RAM, a single Hi-GAL blue tile (nominal and

orthogonal scans) is processed in half hour. From Unimap 6, an estimate of the RAM required

is as follows: if the data have N readouts in total, unimap take about 16N bytes.

The running time varies approximately linearly with the size of the input. However if the

input size grows too big to fit into the RAM, the execution time will increase sharply due to the

need of making disk access. For example processing two Hi-GAL blue tile takes more than five

hours on the 8 Giga laptop, due to the disk access.

When the input size grows beyond a limit, the operating system cannot allocate the memory

and the program stops with an error.

5.8 Getting help

If you have problems with Unimap write an email to lorenzo.piazzo@uniroma1.it. Attach the

unimap log.txt and unimap par.txt files to the email.

22

5.9 Installing and running Unimap on a Mac

The installation package and procedure for a Mac are almost identical to those described for

Linux. In the following we summarise the steps we took for a succesfull installation:

1) uncompress the Unimap package into a working directory. Rename the file readme.txt (it

contains some Matlab generated suggestions) to readme unimap.txt.

2) unzip the MCRInstaller and install it by starting the program in

/InstallForMacOSX.app/Contents/MacOS (InstallForMacOSX). This will probably install

the MCR in a directory called

/Applications/MATLAB/MATLAB Compiler Runtime/... make sure that you have the ver-

sion v716!

3) create a new directory where you wish to reduce your data

(e.g. /home/mycomputer/mymaps/) and where you will download your data

(e.g. /home/mycomputer/mymaps/Data/). cd /home/mycomputer/mymaps/

4) copy from the working directory the files run unimap.sh and unimap par.txt and the entire

directory unimap.app in /home/mycomputer/mymaps/.

5) transfer all data you wish to map into the /home/mycomputer/mymaps/Data/ directory

6) edit the unimap par.txt file according to your needs (especially the path of the data, first

line: in our case:

/home/mycomputer/mymaps/Data/)

7) If required, edit the script rununimap.sh : write the correct path to the unimap program in

the exe dir variable (line 8)

(e.g. unimap.app/Contents/MacOS/)

8) run unimap by typing :

./run unimap.sh/Applications/MATLAB/MATLAB Compiler Runtime/v716/

23

Chapter 6

Appendix

6.1 Matlab input

Unimap will process all Matlab files named unimap obsid ∗ .mat that it finds in the working

directory. A Matlab file is a collection of Matlab variables, that are loaded into the memory by

loading the file. Specifically a input for Unimap must contain the following variables:

val. This is a Nb by Nd matrix, where Nb is the number of bolometers stored in the matlab

file and Nd the number of readouts stored for each bolometer. val(k, n) is the n-th readout of

the k-th bolometer.

ra. This is a Nb by Nd matrix. ra(k, n) is the right ascension of the n-th readout of the k-th

bolometer (in degrees).

dec. This is a Nb by Nd matrix. dec(k, n) is the declination of the n-th readout of the k-th

bolometer (in degrees).

fla. This is a Nb by Nd matrix. fla(k, n) is one (true) if the n-th readout of the k-th

bolometer is saturated or corrupted, it is zero if the readout is good.

bno. This is a Nb by 1 vector. It gives the number (i.e. the position in the instrument grid)

of the k-th bolometer. For example PACS has 2048 bolometers, numbered from 1 to 2048, but

not all these bolometers need to be passed to Unimap (for example many are bad bolometers)

so that Nb may be less than 2048. bno(k) must contain the number of the k-th bolometer stored

in the Matlab file.

scn. This is a Nd by 1 vector. It gives the scan leg to which the readout belongs. The PACS

and SPIRE observations are typically carried out along several scan legs (line of observations)

which are numbered from 1 to the number of scan legs. scn(n) = j means that the n-th readouts

(of all the bolometers) has been taken along the j-th scan leg. scn(n) = 0 means that the n-th

readouts (of all the bolometers) has been taken during a turnaround (passing from one scan

leg to another one). scn(n) = −1 means that the n-th readouts (of all the bolometers) host a

calibration block and should be flagged.

24

ist. This is a scalar specifying the instrument. Value 2048 means the instrument is PACS

blue, 512 is PACS red, 144 is SPIRE PSW, 93 is SPIRE PMW and 48 is SPIRE PLW.

6.2 Fits input: UniHIPE and HIPE script

Unimap will process all files named unimap obsid ∗ .fits that it finds in the working directory.

Input data in FITS format suitable for Unimap can be produced on any machine where HIPE

is installed by means of a tool developed by the ASDC, named UniHIPE. The tool can be

downloaded, together with the documentation, from the ASDC site,

http : //herschel.asdc.asi.it/index.php?page = unimap.html or accessed as a HIPE plug-in.

The tool is also pointed from the Unimap home page. For PACS, since HIPE 13, there is HIPE

script maintained by the ICC that interfaces HIPE with Unimap.

6.3 Fits header

Unimap writes a simple header in the fits files it saves, with a few, self explanatory fields. The

header can be enriched and customised by storing a file named unimap header.txt together with

the Unimap input data. Each line of this file specifies a header keyword that will be added to

the fits header. Each line must have the following format: ’xxxxxxxx= *’, where ’xxxxxxxx’ are

8 chars giving the keyword name and ’*’ is a char value that will be added in the header.

If Unimap finds a file unimap header.txt at runtime, these data are added to the fits header.

Otherwise only the simple header is saved.

6.4 Parameters

GENERAL

data path Name of the I/O directory (must end with a slash).

max ite par Positive integer. Global iteration limit.

start module Integer in [0,8]. Start module (if 0 clears the log.)

stop module Integer in [0,8]. Last module.

max bad In [0, 100]. Max percent of flagged samples allowed for a bolometer.

morpho sig thresh Positive real. Threshold for signal detection in morpho analysis.

save eval data Binary 0/1. If 1 saves evaluation data, if zero does not.

run mode 0: max speed/min disk; 1: max disk; 2: min ram; 3: min ram/max disk.

25

TOP

top use galactic Binary (0/1). If 1 convert to galactic coord, if zero keep equatorial.

top use gnomonic

If 0 use no projection (CAR),

if 1 use gnomonic projection (TAN),

if 2 use cylindric equal area projection (CEA).

top bolo sub Positive integer. Bolometers subsampling

top skip Positive integer. Number of samples to discard at the beginning of each timeline.

top unit If 0 output is MJy/sr. If 1 is Jy/pix. If 2 is Jy/beam (SPIRE)

top pixel size
Positive real. If 0 use the default pixel size,

otherwise this is the pixel size to use (arcsec).

top cva1
Real. First coord of the map ref. point (degrees).

If Inf it is automatic.

top cva2 Real. Second coord of the map reference point (degrees).

top cpi1
Real. First coord of the map ref. point (pixels).

If Inf it is automatic.

top cpi2 Real. Second coord of the map reference point (pixel).

top nax1
Positive integer. Number of rows of the map.

If zero or negative the number of rows and cols is automatic.

top nax2 Positive integer. Number of cols of the map.

PRE

pre cal

Positive real. If 0 suppress calibration blocks detection,

if Inf use input flags

otherwise max/median len of turnarounds seqs to declare a candidate.

pre cal thresh max/min pow of turnarounds seqs to confirm a candidate.

pre sath min len of an input flag sequence to break into segments.

pre jump threshold
Positive real. If 0 suppress jump detection,

otherwise threshold for jump detection.

pre jump hfwin Half len of the jump search block (samples).

pre jump len Number of samples to flag after a detected jump.

26

GLITCH

glitch hfwin Positive integer. Half len of the highpass filter (samples).

glitch sub
Positive integer. Subsampling for glitch search (pixels).

If zero it is automatic.

glitch max dev
Positive real. Threshold to declare a readout a glitch,

if zero threshold is automatic. If -1 skip deglitch.

DRIFT

drift poly order Positive integer. Polynomial order.

drift min delta Real. Minimum improvement to continue iteration (dB).

drift each bolo

If -1 skip dedrift,

if 0 dedrift by subarray,

if 1 dedrift by bolo

if 2 by subarray no cal blocks

if 3 by bolo no cal blocks.

Noise

noise apply flag
If 0 use reconstructed values,

if 1 don’t use the flagged readouts.

noise filter type

If 0 use raw filters,

if 1 use fitted filters

if Inf set automatically.

noise filter hflen Positive integer. Half len of the noise filter response (samples).

GLS

gls start image

If 0 start from a zero image,

if 1 start from the rebin

if 2 start from the mixture

if Inf select start automatically.

gls min delta Real. Minimum variation to continue iteration (dB). Inf for auto select.

27

PGLS

pgls hfwin Positive integer. Half len of the pgls highpass filter (pixels). If 0 search for best.

pgls min delta Real. Minimum variation to continue iteration (dB). If 0 use automatic selection.

pgls num ite Integer. Number of iterations. If 0 select automatically.

WGLS

wgls dthresh Positive real. Threshold to declare a readout an artifact. 0 is auto.

wgls gthresh Positive real. Threshold to grow an artifact. 0 is auto.

6.5 Output files

• The following images are the main Unimap output.

MAPS

img rebin.fits The naive (simple projection) map.

img gls.fits The GLS map.

img pgls.fits The PGLS map.

img wgls.fits The WGLS map.

img noise.fits The standard deviation of the naive map.

• The following images are obtained by projecting flag matrices. They are images where

each pixel has a value equal to the number of flagged readouts falling in it. Exception is the

flag wgls.fits image that is one where WGLS detected an artifact and zero elsewhere. Other

exception is morphology (see the manual)

EVALUATION: FLAGS

flag base.fits The input flags.

flag pre.fits The PRE flags, jumps and cal blocks.

flag glitch.fits The Glitch flags.

flag wgls.fits The WGLS mask.

flag morpho.fits The morpho mask before GLS.

flag dive.fits Number of readouts from different bolos.

• The following images are obtained by rebinning (projecting) the matrix Φ after various

steps. In the projection no flags are applied. Also the standard deviation of the projection is

computed for each pixel and saved as ’noise’ image. These images are useful to check the results

28

of the steps.

EVALUATION: MAPS

top base.fits The projection of the Φ matrix after TOP.

top base noise.fits The standard deviation of the last projection.

top pre.fits The projection of the Φ matrix after PRE.

top pre noise.fits The standard deviation of the last projection.

top glitch.fits The projection of the Φ matrix after Glitch.

top glitch noise.fits The standard deviation of the last projection.

top drift.fits The projection of the Φ matrix after Drift.

top drift noise.fits The standard deviation of the last projection.

• The following images are useful for inspecting the noise spectrum estimation quality and

the filters used by the GLS module.

EVALUATION: NOISE

noise spec.fits The estimated noise spectrum for each bolometer.

noise filt.fits The filter response used for each bolometer.

• The following images are obtained by subtracting two other images and are very useful for

the evaluation of PGLS and WGLS.

EVALUATION: DELTA

delta gls pgls.fits
GLS minus PGLS map.

This is the GLS distortion estimate made by the PGSL.

delta gls rebin.fits
GLS minus rebin map.

Main components are the GLS distortion and 1/f noise.

delta pgls rebin.fits
PGLS minus rebin map.

Main component should be 1/f noise.

delta wgls rebin.fits
WGLS minus rebin map.

Main component should be 1/f noise.

• The following images contain coverage masks. Each pixel has a value equal to the number

of readouts falling into it.

29

EVALUATION: COVE

cove full.fits The full coverage, with no flagging at all.

cove gls.fits The GLS coverage, where the GLS flagging is considered.

• The following matlab files contain the matrix Φ after various steps and the pointing matrix.

TOP

poi.mat The pointing matrix computed by the TOP module.

poi glitch.mat The pointing matrix computed by the Glitch module.

poi noise.mat The pointing matrix computed by the Noise module.

top base.mat The Φ matrix after the TOP module.

top pre.mat The Φ matrix after the PRE module.

top glitch.mat The Φ matrix after the Gitch module.

top drift.mat The Φ matrix after the Drift module.

top noise.mat The Φ matrix after the Noise module.

• The following matlab files are used to store flags and ancillary data.

WORK

flag base.mat Base flags.

flag pre.mat PRE (jump and cal blocks) flags.

flag glitch.mat Glitch flags.

data base.mat Ancillary data from the TOP module.

data pre.mat Ancillary data from the Pre module.

data glitch.mat Ancillary data from the Glitch module.

data drift.mat Ancillary data from the Drift module.

data noise.mat Ancillary data from the Noise module.

data gls.mat Ancillary data from the GLS module.

data gls ite.mat Ancillary data from the GLS module.

data pgls.mat Ancillary data from the PGLS module.

data pgls ite.mat Ancillary data from the PGLS module.

30

Bibliography

[1] A. Traficante et al., ”The data reduction pipeline for the Hi-GAL survey”, Monthly Notices

of the Royal Astronomical Society, Volume 416, Issue 4, pp. 2932-2943, Oct. 2011.

[2] M. Tegmark, ”How to make maps from cosmic microwave background data without losing

information”, The Astrophysical Journal, 480, pp. L87-L90, May 1997.

[3] C. M. Cantalupo, J. D. Borrill, A. H. Jaffe, T. S. Kisner, R. Stompor, ”MADmap: A

massively parallel maximum likelihood cosmic microwave background map-maker”, Astro-

physical Journal, Supplement Series 187 (1), pp. 212-227, 2010.

[4] P. Natoli, G. De Gasperis, C. Gheller, N. Vittorio, ”A map-making algorithm for the Planck

surveyor”, Astronomy and Astrophysics 372 (1), pp. 346-356, 2001.

[5] L. Piazzo, D. Ikhenaode, P. Natoli, M. Pestalozzi, F. Piacentini, A. Traficante ”Artifact

Removal for GLS Map Makers by means of Post-Processing”, IEEE Trans. on Image Pro-

cessing, Vol. 21, Issue 8, pp. 3687-3696, 2012.

[6] L. Piazzo, P. Panuzzo, M. Pestalozzi: ”Drift removal by means of alternating least squares

with application to Herschel data”, Signal Processing, vol. 108, pp. 430-439, 2015.

[7] L. Piazzo, L. Calzoletti, F. Faustini, M. Pestalozzi, S. Pezzuto, D. Elia, A. di Giorgio and S.

Molinari: ’Unimap: a Generalised Least Squares Map Maker for Herschel Data’, MNRAS,

2015, 447, pp. 1471-1483.

31

