

» VX3230 «

3U VPX SBC User's Guide

CA.DT.A63-1e - September 2010

If it's embedded, it's Kontron.

Revision History

	Publication Title:	VX3230 User's Guide	
Doc. ID: CA.DT.A63-1e		CA.DT.A63-1e	
Rev.		Brief Description of Changes	Date of Issue
1e	Support of 1000BA	ASE-BX Ethernet interfaces	09-2010
0e	Initial Version	Initial Version 10-2009	

Copyright © 2010 Kontron AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Kontron and the Kontron logo and all other trademarks or registered trademarks are the property of their respective owners and are recognized. Specifications are subject to change without notice.

Proprietary Note

This document contains information proprietary to Kontron. It may not be copied or transmitted by any means, disclosed to others, or stored in any retrieval system or media without the prior written consent of Kontron or one of its authorized agents.

The information contained in this document is, to the best of our knowledge, entirely correct. However, Kontron cannot accept liability for any inaccuracies or the consequences thereof, or for any liability arising from the use or application of any circuit, product, or example shown in this document.

Kontron reserves the right to change, modify, or improve this document or the product described herein, as seen fit by Kontron without further notice.

Trademarks

This document may include names, company logos and trademarks, which are registered trademarks and, therefore, proprietary to their respective owners.

Environmental Protection Statement

This product has been manufactured to satisfy environmental protection requirements where possible. Many of the components used (structural parts, printed circuit boards, connectors, batteries, etc.) are capable of being recycled.

Final disposition of this product after its service life must be accomplished in accordance with applicable country, state, or local laws or regulations.

Environmental protection is a high priority with Kontron. Kontron follows the DEEE/WEEE directive. You are encouraged to return our products for proper disposal.

The Waste Electrical and Electronic Equipment (WEEE) Directive aims to:

- > reduce waste arising from electrical and electronic equipment (EEE)
- make producers of EEE responsible for the environmental impact of their products, especially when they become waste
- encourage separate collection and subsequent treatment, reuse, recovery, recycling and sound environmental disposal of EEE
- > improve the environmental performance of all those involved during the lifecycle of EEE

Conventions

This guide uses several types of notice: Note, Caution, ESD.

Note: this notice calls attention to important features or instructions.

Caution: this notice alert you to system damage, loss of data, or risk of personal injury.

ESD: This banner indicates an Electrostatic Sensitive Device.

All numbers are expressed in decimal, except addresses and memory or register data, which are expressed in hexadecimal. The prefix `0x' shows a hexadecimal number, following the `C' programming language convention.

The multipliers `k', `M' and `G' have their conventional scientific and engineering meanings of $*10^3$, $*10^6$ and $*10^9$ respectively. The only exception to this is in the description of the size of memory areas, when `K', `M' and `G' mean $*2^{10}$, $*2^{20}$ and $*2^{30}$ respectively.

In PowerPC terminology, multiple bit fields are numbered from 0 to n, where 0 is the MSB and n is the LSB. PCI and CompactPCI terminology follows the more familiar convention that bit 0 is the LSB and n is the MSB.

Signal names ending with an asterisk (*) or a hash (#) denote active low signals; all other signals are active high.

Signal names follow the PICMG 2.0 R3.0 CompactPCI Specification and the PCI Local Bus 2.3 Specification.

For Your Safety

Your new Kontron product was developed and tested carefully to provide all features necessary to ensure its compliance with electrical safety requirements. It was also designed for a long fault-free life. However, the life expectancy of your product can be drastically reduced by improper treatment during unpacking and installation. Therefore, in the interest of your own safety and of the correct operation of your new Kontron product, you are requested to conform with the following guidelines.

High Voltage Safety Instructions

Warning! All operations on this device must be carried out by sufficiently skilled personnel only.

Caution, Electric Shock!

Before installing a not hot-swappable Kontron product into a system always ensure that your mains power is switched off. This applies also to the installation of piggybacks. Serious electrical shock hazards can exist during all installation, repair and maintenance operations with this product. Therefore, always unplug the power cable and any other cables which provide external voltages before performing work.

Special Handling and Unpacking Instructions

ESD Sensitive Device!

Electronic boards and their components are sensitive to static electricity. Therefore, care must be taken during all handling operations and inspections of this product, in order to ensure product integrity at all times

Do not handle this product out of its protective enclosure while it is not used for operational purposes unless it is otherwise protected.

Whenever possible, unpack or pack this product only at EOS/ESD safe work stations. Where a safe work station is not guaranteed, it is important for the user to be electrically discharged before touching the product with his/her hands or tools. This is most easily done by touching a metal part of your system housing.

It is particularly important to observe standard anti-static precautions when changing piggybacks, ROM devices, jumper settings etc. If the product contains batteries for RTC or memory backup, ensure that the board is not placed on conductive surfaces, including anti-static plastics or sponges. They can cause short circuits and damage the batteries or conductive circuits on the board.

General Instructions on Usage

In order to maintain Kontron's product warranty, this product must not be altered or modified in any way. Changes or modifications to the device, which are not explicitly approved by Kontron and described in this manual or received from Kontron's Technical Support as a special handling instruction, will void your warranty.

This device should only be installed in or connected to systems that fulfill all necessary technical and specific environmental requirements. This applies also to the operational temperature range of the specific board version, which must not be exceeded. If batteries are present, their temperature restrictions must be taken into account.

In performing all necessary installation and application operations, please follow only the instructions supplied by the present manual.

Keep all the original packaging material for future storage or warranty shipments. If it is necessary to store or ship the board, please re-pack it as nearly as possible in the manner in which it was delivered.

Special care is necessary when handling or unpacking the product. Please consult the special handling and unpacking instruction on the previous page of this manual.

Table Of Contents

Chapter 1	- Introduction	1
1.1 Ma	anual Overview	3
1.1.1	Objectives	3
1.1.2	Audience	3
1.1.3	Scope	3
1.1.4	Structure	3
1.2 VF	PX Overview	4
1.3 Bo	oard Overview	4
1.3.1	Main Features	4
1.3.2	Order Code Table	6
1.3.3	I/O Interfaces	7
1.3.4	Ethernet Connectivity	9
1.4 Bo	oard Diagram	11
1.4.1	0	11
1.4.2		13
1.4.3	VX3230 Components Layout	14
1.5 Te	chnical Specification	15
1.5.1	MTBF Data	17
1.6 So	oftware Support	18
1.7 Sta	andard	19
1.7.1		19
1.8 Re		20
Chapter 2	- Functional Description	21
2.1 Pr	ocessor and System Memory	23
2.1.1	Processor	23
2.1.2		24
2.2 PC	CI Express Buses	25
2.2.1	•	25
2.2.2		25
2.3 St		26
2.3.1		26
2.3.2	,	26
2.3.3		26
2.3.4	NOVRAM	26
2.3.5	Dual Serial ATA	26
2.4 Pe	ripherals	27
2.4.1	Timer	27
2.4.2	Watchdog Timer	27
2.5 Sy	rstem FPGA	27

2.6 I2C	C Buses	28
2.6.1	Internal I2C Slaves	28
2.6.2		28
2.6.3		28
2.6.4		29
2.6.5	5	31
2.6.6		31
2.7 VX	(3230 Connectors Layout	32
2.8 Bo	ard Interfaces	33
2.8.1		33
2.8.2		34
2.8.3	5	37
		38
2.8.4		39
		39
	,	40
2.8.5		47
2.8.6		47
2.8.7		48
2.8.8	5	49
2.8.9		51
2.8.10 2.8.11	8 1	52 53
		ეკ 53
		54
2.9.1	Signaling Voltage Keying Pin	55
Chapter 3	- Installation	56
-		56
3.2 Bo	ard Identification	57
3.3 Bo	ard Configuration	59
3.3.1	DIP Switch SW1 Description	59
3.4 Pa	ckage Content	60
3.5 Init	tial Installation Procedures	61
3.6 Sta	andard Removal Procedure	62
		63
3.7.1	•	63
3.7.1		63 64
3.7.2		64 65
3.7.3		67
		68
0.0 00		50

Chapter	4 - Programming Interface
4.1	nterrupt Routing
4.2	Memory Mapping
4.3	CPLD System Registers Mapping
4.4	CPLD System Registers Description
4.4.1	Firmware POST Code Register
4.4.2	
4.4.3	Memory Configuration Register 73
4.4.4	Local I2C Command Register
4.4.5	0
4.4.6	6 6
4.4.7	0 0
4.4.8	
4.4.9	5 5
4.4.1	
4.4.1	5 5
4.4.1	8
4.4.1	5
4.4.1	8 8
4.4.1	8
4.4.1	8
4.4.1	0
4.4.1 4.4.1	1 6 6
4.4.1	
4.4.2	
4.4.2	
4.4.2	
4.4.2	
4.4.2	
	6 COM1/2 Configuration Register
	7 VPX Register
	8 VPX Reset Register
	9 Geographical Addressing Register
4.4.3	
4.4.3	
4.4.3	•
4.4.3	3 GPIO4 Register
Chapter	5 - Power Considerations
=	System Power
5.1.1	
5.1.1 5.1.2	
5.1.2	
0.1.0	5.1.3.1 Start-Up Requirement
	5.1.3.2 Power-Up Sequence

		5.1.3.3 Tolerance	92
		5.1.3.4 Regulation	92
		5.1.3.5 Rise Time Diagram	93
5.2	Po	wer Consumption	94
5.2	2.1	Real Applications	94
Chapt	er 6	- VX3230-RTM Characteristics	95
6.1		erview	95
6.2		chnical Specifications	97
		•	
6.3		M Configuration	98
6.4		nnectors	99
	4.1	RTM Connectors Identification	99
	4.2 4.3	Front Panel Connectors Onboard Connectors	100 101
6.5			101
	5.1	odules Interfaces	104
	5.1 5.2	USB Interfaces	104
	5.3	Gigabit Ethernet Interfaces	108
6.	5.4	Serial ATA Interfaces	109
	5.5	GPIO Connector	110
	5.6		111
	5.7	I2C System Management Connector	112
6.6		set	113
6.7	Po	wer Consideration	113
6.8	Re	ar I/O Interfaces	114
	8.1	RP2 Connector	115
	8.2	RP1 Connector	116
	8.3		119
6.9		CI 64 PIM Connector	121
	9.1	J10 Connector	121
0.3	9.2	J14 Connector	122
Chapt	er 7	- VX3230-RC Characteristics	123
7.1	VX	3230-RC Specificities	124
7.2	Во	ard Identification	125
7.3		vironmental Specifications	126
7.4		· ſBF Data	126
7.5		ripheral Connectivity	127
7.6		IC/PMC Installation	128

List Of Figures

Figure 1: VX3230-SA Overview	2
Figure 2: VX3230 Functional Block Diagram (Type 1)	11
Figure 3: VX3230 Functional Block Diagram (Type 2)	12
Figure 4: Front Panel Connectors	13
Figure 5: Reset Button and LEDs	13
Figure 6: VX3230 Components Layout (Top View)	14
Figure 7: VX3230 Board Components Layout (Bottom View)	14
Figure 8: MPC8544 Block Diagram	24
Figure 9: Location of Board and Processor Sensors	30
Figure 10: VX3230 Connectors Layout (top)	32
Figure 11: Front Panel Connectors Layout	32
Figure 12: Serial Connector	33
Figure 13: USB Connector	35
Figure 14: USB Onboard Connector	35
Figure 15: USB Flash Disk Overview	36
Figure 16: Dual Gigabit Ethernet Connector	37
Figure 17: VPX Connectors	39
Figure 18: Connector Identification for 3U VPX Board	39
Figure 19: COP Header	53
Figure 20: JTAG Connector	53
Figure 21: VX3230 Identification (Top Side)	57
Figure 22: VX3230 Identification (Bottom Side)	58
Figure 23: Board Configuration	59
Figure 24: USB Flash Disk Bottom View	63
Figure 25: USB Flash Installation	63
Figure 26: PMC Installation on PMC Site	66
Figure 27: Example of XMC Board	67
Figure 28: XMC Installation on XMC Site	67
Figure 29: Start-Up Ramp of the CP3-SVE180 AC Power Supply	93
Figure 30: VX3230-RTM Overview	96
Figure 31: VX3230-RTM MicroSwitch Location	98
Figure 32: Connector Identification for 3U RTM	99
Figure 33: VX3230-RTM Front Panel Connectors	100
Figure 34: VX3230-RTM Onboard Connectors (PB-VX3-001)	101
Figure 35: VX3230-RTM Onboard Connectors (PB-VX3-000)	102
Figure 36: Serial Port Connector	104
Figure 37: Front Panel USB Connector	105

Figure 38: Onboard USB Connector	106
Figure 39: USB Flash Disk Overview	106
Figure 40: USB Flash Disk Layout	107
Figure 41: Gigabit Ethernet Connectors	108
Figure 42: Onboard SATA Connectors	109
Figure 43: Onboard GPIO Connector	110
Figure 44: Onboard JTAG Connector	111
Figure 45: Onboard JTAG Connector	112
Figure 46: VX3230-RTM Reset Push Button	113
Figure 47: Rear I/O VPX Connectors	114
Figure 48: VX3230-RC Overview	123
Figure 49: VX3230-RC Identification (Top Side)	125
Figure 50: Standard Anchorage Points on VX3230-RC Board	128
Figure 51: Additional Anchorage Point on VX3230-RC Board	129
Figure 52: Usage of Fastening Kit Ribs on VX3230-RC Board	130

List Of Tables

Table 1: Order Code	6
Table 2: Front I/O Interfaces (no PMC/XMC slot Manufacturing Option)	7
Table 3: Front I/O Interfaces (PMC/XMC slot Manufacturing Option)	7
Table 4: Rear I/O Interfaces	7
Table 5: Peripheral Connectivity	8
Table 6: VX3230 Main Specifications	16
Table 7: VX3230-SAA1N-000 MTBF Data	17
Table 8: VX3230-RC1N-000 MTBF Data	17
Table 9: Standards	19
Table 10: Environmental Specifications	19
Table 11: Related Publications	20
Table 12: Ports Configuration of the PCI Express Switch	25
Table 13: Serial Connector Pin Assignment	33
Table 14: Serial Connector Signal Description	33
Table 15: USB Connector Pin Assignment	35
Table 16: USB Onboard Pin Assignment	35
Table 17: Gigabit Ethernet Connectors ETH0 and ETH1 Pin Assignment	38
Table 18: VPX Connector P0 Wafer Assignment	40
Table 19: VPX Connector P0 Signal Definition	41
Table 20: VPX Connector P1 Wafer Assignment (10/100/1000BASE6TX Ethernet Manufacturing Option)42)
Table 21: VPX Connector P1 Wafer Assignment (1000BASE-BX Ethernet Manufacturing Option)	43
Table 22: VPX Connector P1 Signal Definition	44
Table 23: USB Port Features	45
Table 24: Ethernet Port Features	45
Table 25: SATA Port Features	45
Table 26: VPX Connector P2 Wafer Assignment	46
Table 27: VPX Connector P2 Signal Definition	46
Table 28: PMC J11 Connector Pin Assignment	47
Table 29: PMC J12 Connector Pin Assignment	47
Table 30: PMC J14 Connector Pin Assignment	48
Table 31: PMC Signal Description	50
Table 32: XMC J15 Connector Pin Assignment	51
Table 33: XMC Signal Description	52
Table 34: COP Header Pin Assignment	53
Table 35: JTAG Connector Pin Assignment	53
Table 36: PCI 32 XMC/PMC Site Information	54
Table 37: Interrupt Routing	69

Table 38: Memory Mapping	70
Table 39: CPLD System Registers Mapping	71
Table 40: User-Specific LED Configuration Register	81
Table 41: DC Operational Input Voltage Ranges	90
Table 42: Input Voltage Characteristics	92
Table 43: Power Consumption	94
Table 45: Order Code	95
Table 46: VX3230-RTM Main Specifications	97
Table 47: Serial Port Connector Pin Assignment	104
Table 48: Front Panel USB Connector Pin Assignment	105
Table 49: Onboard USB Connector Pin Assignment Image: Connector Pin Assignment <th< td=""><td>106</td></th<>	106
Table 50: Gigabit Ethernet Connectors Pin Assignment	108
Table 51: Onboard SATA Connectors Pin Assignment	109
Table 52: Onboard GPIO Connector Pin Assignment Image: Connector Pin Assignment <t< td=""><td>110</td></t<>	110
Table 53: Onboard JTAG Connector Pin Assignment Image: Connector Pin Assignment	111
Table 54: Onboard I2C Connector Pin Assignment Image: Connector Pin Assignment	112
Table 55: Rear I/O VPX Connector RP2 Wafer Assignment	115
Table 56: Rear I/O VPX Connector RP2 Signal Definition	115
Table 57: Rear I/O VPX Connector RP1 Wafer Assignment (10/100/1000BASE-TX Ethernet Manufacture Option)	ring 116
Table 58: Rear I/O VPX Connector RP1 Wafer Assignment (1000BASE-BX Ethernet Manufacturing Op 117	tion)
Table 59: Rear I/O VPX Connector RP1 Signal Definition	118
Table 60: Rear I/O VPX Connector RP0 Wafer Assignment	119
Table 61: Rear I/O VPX Connector RP0 Signal Definition	120
Table 62: VX3230-RC Order Code	123
Table 63: VX3230-RC Specificities	124
Table 64: Environmental Specifications	126
Table 65: VX3230-RC11N-000 MTBF Data	126
Table 66: Peripheral Connectivity	127

Chapter 1 - Introduction

The VX3230 is a member of the Kontron's VITA 46 VPX range of products. Its 1 GHz 8544 PowerPC processor gives you coolest implementation of a E500 core with plenty of features. With a requirement as low as 18 Watts between -40°C and +85°C, the VX3230 is a major breakthrough for small form factor rugged computers.

Applications targeting Vetronics and onboard UAV which operate on a tight power budget will welcome its innovative design.

In this document, the term:

» VX3230	will be associated to the 3U VPX board	
> VX3230-SA> VX3230-RC	will be associated to the standard commercial version of the board. will be associated to the rugged conduction-cooled version of the board.	
» VX3230-RTM	will be associated to the 3U VPX Rear Transition Module (RTM).	

Figure 1: VX3230-SA Overview

1.1 Manual Overview

1.1.1 **Objectives**

This guide provides general information, hardware preparation and installation instructions, operating instructions and a functional description of the VX3230 board. The onboard programming, onboard firmware and other software (e.g. drivers and BSPs) are described in detail in separate guides (see section 1.8 "Related Publications").

As the standard policy for all the Kontron, hardware technical documentation reflects the most recent Note version of our products. The "Hardware Release Notes" (see section 1.8 "Related Publications") is to help to keep track of various evolutions that have happened during the early steps of the VX3230 ramp-up or later in its lifetime.

Functional changes that differ from previous version of the document are identified by a vertical bar in the Note margin.

1.1.2 Audience

This guide is written to cover, as far as possible, the range of people who will handle or use the VX3230, from unpackers/inspectors, through system managers and installation technicians to hardware and software engineers. Most chapters assume a certain amount of knowledge on the subjects of single board computer architecture, interfaces, peripherals, systems, cabling, grounding and communications,

1.1.3 Scope

This guide describes all variants of the VX3230 series. It does not cover any PMC modules which are described in specific guides (see section 1.8 "Related Publications").

1.1.4 Structure

This guide is structured in a way that will reflect the sequence of operations from receipt of the board up to getting it working in your system. Each topic is covered in a separate chapter and each chapter begins with a brief introduction that tells you what the chapter contains. In this way, you can skip any chapters that are not applicable or with which you are already familiar.

The chapters are:

- > Chapter 1 Introduction (this chapter)
- > Chapter 2 Functional Description
- > Chapter 3 Installation
- > Chapter 4 Programming Interface
- > Chapter 5 Power and Thermal Considerations
- > Chapter 6 VX3230-RTM Characteristics
- > Chapter 7 VX3230-RC Characteristics

1.2 VPX Overview

VPX (VITA 46) specifications establish a new direction for the next revolution in bus boards. VPX is a proposed ANSI standard which breaks out from the traditional connector scheme of VMEbus to merge the latest in connector and packaging technology with the latest in bus and serial fabric technology. VPX combines best-in-class technologies to assure a very long technology cycle similar to that of the original VMEbus solutions. Traditional parallel VMEbus will continue to be supported by VPX through bridging schemes that assure a solid migration pathway.

For further information regarding this standards and its use, visit the home page of the VITA - Open Standards, Open Markets.

1.3 Board Overview

1.3.1 Main Features

>> Freescale MPC8544 PowerPC Architecture

The VX3230 3U VPX SBC is based on the Freescale MPC8544 integrated host processor, clocked at 1 GHz.

The MPC8544 integrates an e500v2 core, built on Power Architecture[™] technology, with system logic required for networking, telecommunications, and wireless infrastructure applications. The MPC8544 is a member of the PowerQUICC[™]III family of devices that combine system-level support for industry-standard interfaces with processors that implement Power Architecture[™] technology.

The MPC8544 uses the e500 core and high-speed interconnect technology to balance processor performance with I/O system throughput. The e500 core implements embedded resources defined by the Power ISA and provides unprecedented levels of hardware and software debugging support.

Additionally, the MPC8544 offers a double-precision floating-point auxiliary processing unit (APU), 256 Kbytes of level-2 cache, two integrated 10/100/1Gb enhanced three-speed Ethernet controllers (eTSECs) with TCP/IP acceleration and classification capabilities, a DDR/DDR2 SDRAM memory controller, a 32-bit PCI controller, a programmable interrupt controller, two I²C controllers, a four-channel DMA controller, a general-purpose I/O port, and dual universal asynchronous receiver/transmitters (DUART).

For high speed interconnect, the MPC8544 provides a set of multiplexed pins that support up three PCI Express interfaces. The high level of integration in the MPC8544 helps simplify board design and offers significant bandwidth and performance.

>> Soldered DDR2 Memories with the Support of ECC

The MPC8544 provides DDR2 memory controller operating at a rate up to 266 MHz, with 72-bit wide DDR2 SRAM configured with 8 bits for Error-Correcting Code (ECC). The resulting peak memory bandwidth is 4.2 GB/s.

>> Numerous Storage Interface

128 kb of Auto-store, Non-volatile Random Access Memory allows backup of critical dta when power is removed. Dual redundant 32 Mb NOR Flash is used to store firmware code, and two serial 256 Kbit EEPROMs are dedicated to system and application data storage.

An USB 2.0 Flash drive slot is available onboard supporting low profile USB 2.0 Flash disk modules up to 4 GB. Two SATA II and one USB 2.0 ports available on the P1 backplaen connector.

>>> Backplane Switch

Available on P1 connector:

- Two compliant VITA 31.1 Gigabit Ethernet links,
- One 4x PCI Express link.

>> Extensive I/O Connectivity

The VX3230 provides up to two 10/100/1000BASE-TX or 1000BASE-BX Ethernet interfaces, two EIA-232/EIA-485 serial lines, two general purpose I/Os, three USB 2.0 links, two SATA interfaces and one 4x PCI-Express link.

>> Software

The VX3230 is delivered with the OpenSource U-Boot firmware.

The VX3230 supports Linux Fedora 9 distribution. Contact Kontron for other Operating Systems support.

>> Harsh Environments

The VX3230 has been designed using the same PCB for both air and conduction-cooled boards. Builds variants span a complete range of temperature, shock and vibration requirements as specified in the VITA 47 standards.

>> Rear Transition Module

The VX3230 supports the VX3230-RTM, a 3U VPX rear Transition Module compliant to Rear Transition Module on VPX standard - VITA 46.10.

1.3.2 Order Code Table

Several manufacturing options are available:

- Air-cooled or rugged conduction-cooled builds
- XMC/PMC slot or no XMC/PMC slot
- ▶ 10/100/1000BASE-TX or 1000BASE-BX Ethernet interfaces

Available order codes are listed in table below:

	Order Code	Description
		3U VPX Air-Cooled Commercial Build SBC
VX3230-SA	VX3230-SAA1N-000	VX3230 Air-Cooled Commercial Build, 1GB SDRAM, No User Flash, XMC/PMC slot, 10/100/1000BASE-TX Ethernet interfaces
VX3230-SA	VX3230-SAA1N-001	VX3230 Air-Cooled Commercial Build, 1GB SDRAM, No User Flash, no XMC/PMC slot, 10/100/1000BASE-TX Ethernet interfaces
VX3230-SA	VX3230-SAA1N-010	VX3230 Air-Cooled Commercial Build, 1GB SDRAM, No User Flash, XMC/PMC slot, 1000BASE-BX Ethernet interfaces
VX3230-SA	VX3230-SAA1N-011	VX3230 Air-Cooled Commercial Build, 1GB SDRAM, No User Flash, no XMC/PMC slot, 1000BASE-BX Ethernet interfaces
		3U VPX Rugged Conduction-Cooled Build SBC
VX3230-RC	VX3230-RCA1N-000	VX3230 Rugged Conduction-Cooled Build, 1GB SDRAM, No User Flash XMC/PMC slot, 10/100/1000BASE-TX Ethernet interfaces
VX3230-RC	VX3230-RCA1N-010	VX3230 Rugged Conduction-Cooled Build, 1GB SDRAM, No User Flash XMC/PMC slot, 1000BASE-BX Ethernet interfaces
		Associated Products
VX3230-RTM	PB-VX3-000	VX3230 VPX Rear Transition Module (with PIM connectors), 10/100/1000BASE-TX Ethernet interfaces
VX3230-RTM	PB-VX3-001	VX3230 VPX Rear Transition Module (no PIM connector), 10/100/1000BASE-TX Ethernet interfaces
VX3230-RTM	PB-VX3-010	VX3230 VPX Rear Transition Module (with PIM connectors), 1000BASE-BX Ethernet interfaces
VX3230-RTM	PB-VX3-011	VX3230 VPX Rear Transition Module (no PIM connector), 1000BASE-BX Ethernet interfaces
FLASH Module	FDM-USB-4GB-2MM-IV	4 GB Flash Device, industrial version, conformaly coated
FLASH Module	FDM-USB-8GB-2MM-IV	8 GB Flash Device, industrial version with conformal coating
COP/JTAG Module	COP-PN3-B	COP JTAG Equipment
Kit Rib PMC	KIT-RIBPMC1V01-1	Fastening kit for a rugged conduction-cooled PMC

Table 1: Order Code

1.3.3 I/O Interfaces

>> Front Interfaces

FUNCTION	DESCRIPTION	
Gigabit Ethernet	ernet Depenping on Ethernet interfaces manufacturing option: Up to 2 1000BASE-T on RJ-45 connectors	
Serial	1x EIA-232/485 UART interface, RJ-11 connector	
USB	1x USB 2.0 interface	
LEDs	5 LEDS reporting main interfaces activities	
Reset	Board Reset Button	

Table 2: Front I/O Interfaces (no PMC/XMC slot Manufacturing Option)

FUNCTION	DESCRIPTION	
PMC/XMC	PMC/XMC slot, 3.3V signaling	
LEDs	5 LEDS reporting main interfaces activities	
Reset	Board Reset Button	

Table 3: Front I/O Interfaces (PMC/XMC slot Manufacturing Option)

>> Rear Interfaces

FUNCTION	DESCRIPTION
VPX	VPX standard on P0/P1/P2
PMC I/Os	64 bits of I/Os PMC, on P2
Gigabit Ethernet	Depending on Ethernet interfaces manufacturing option: Up to 2 1000BASE-T on P1 (VITA 46.9), configurable by firmware or Up to 2 1000BASE-BX on P1 (VITA 46.9), configurable by firmware
PCI Express	4x PCI Express x1 on P1 (VITA 46.4)
Serial	2x EIA-232/485 serial interfaces on P2, configurable by firmware
USB	2x USB ports on P1 (VITA 46.9), configurable by firmware
SATA	2x Serial ATA ports on P1 (VITA 46.9)
Reset	Main reset input available on P0 connector
GPIOs	2x user GPIOs on P1
SMB	2x System Management Bus on P0

Table 4: Rear I/O Interfaces

>> Peripheral Connectivity

FUNCTION	VX3230-SA no PMC/XMC slot		VX3230-SA PMC/XMC slot		VX3230-RTM	
	Front Panel	Onboard	Front Panel	Onboard	Front Panel	Onboard
Gigabit Ethernet	Y (x2)	-	-	-	Y (x2)	-
USB0	Y	-	-	-	Y	-
USB1	-	Y (Flash mod.)	-	Y (Flash mod.)		Y (Flash mod.)
SATA	-	-	-	-	-	Y (x2)
COM1 - (EIA-232/485)	Y	-	-	-	Y	-
COM2 - (EIA-232 /485)	-	-	-	-	-	Y
GPIO	-	-	-	-	-	Y (x2)
LED	Y (x5)	-	Y (x5)	-	-	-
Reset Button	Y	-	Y	-	Y	-

Table 5: Peripheral Connectivity

1.3.4 Ethernet Connectivity

Depending on the Ethernet interface manufacturing option, and

> 10/100/1000BASE-TX Ethernet interfaces

The Ethernet channels of the MPC8544 can be routed either to the front panel RJ-45 connectors or to the VPX P1 connectors thanks to the use of the LAN Switch (Texas instrument TS3L301).

Front panel interface is connected to RJ-45 connectors with magnetics and LEDs.

Backplane copper goes to P1 (complying with VITA 46.9 standard) through onboard magnetics.

The configuration (front panel or backplane) for each port (ETH0 or ETH1) is set up via the Host I/O Configuration register, see section 4.4.14 page 79.

ETH0 and ETH1

LAN Switch (1)	ETH0 or ETH1			
Front	10/100/1000BASE-TX on front panel			
Rear	10/100/1000BASE-TX on backplane			

> 1000BASE-BX Ethernet interfaces

The PHY (Marvell 88E1112 transceiver) can also be used in 1000-BASE-BX (serdes) mode to comply with the Open VPX specification. In this mode:

- > The ETH0 10/100/1000BASE-TX (copper) interface is not available anymore on P1 backplane
- ETH0 and ETH1 1000BASE-BX (serdes) interfaces are routed to P1 backplane (instead of ETH0 copper interface)

The PHY has a patented feature to automatically detect and switch between 1000BASE-BX (serdes) and 1000BASE-T (copper) cable detection. It can also be forced to 1000BASE-T (copper) mode, via the Open VPX register, see section 4.4.32 page 88.

Thereof, several configurations are available depending on the LAN Switch and PHY configurations:

► ETH0

LAN Switch (1)	Interface Mode (2)	ETH0
Front	Force 1000BASE-T	10/100/1000BASE-TX on front panel
Front	Auto-Selection	10/100/1000BASE-TX on front panel or 1000BASE-BX on backplane
Rear	Force 1000BASE-T	1000BASE-BX on backplane
Rear	Auto-Selection	1000BASE-BX on backplane

► ETH1

LAN Switch (1)	Interface Mode (2)	ETH1
Front	Force 1000BASE-T	10/100/1000BASE-TX on front panel
Front	Auto-Selection	10/100/1000BASE-TX on front panel or 1000BASE-BX on backplane
Rear	Force 1000BASE-T	10/100/1000BASE-TX on backplane
Rear	Auto-Selection	10/100/1000BASE-TX on backplane or 1000BASE-BX on backplane

(1) Lan Switch configured via the Host I/O Configuration register, see section 4.4.14 page 79.

(2) Interface Mode configured via the Open VPX register, see section 4.4.32 page 88.

1.4 Board Diagram

The following diagrams provide additional information concerning board functionality and component layout.

1.4.1 Functional Block Diagram

Figure 2: VX3230 Functional Block Diagram (Type 1)

Figure 3: VX3230 Functional Block Diagram (Type 2)

1.4.2 Front Panel

Figure 4: Front Panel Connectors

Figure 5: Reset Button and LEDs

>> Reset Button

>> Status LEDs Default Settings

▶ L1	<mark>red</mark> green	Reset Thermal Alert PCI Activity	
▶ L2	<mark>red</mark> green	CPU Checkstop Local Bus Activity	
▶ L3	<mark>red</mark> green	Factory Mode SATA Activity	
▶ L4	red green red + green	ETH0 - On: Link 10. ETH0 - On: Link 1000. ETH0 - On: Link 100.	Blink: Activity Blink: Activity Blink: Activity
▶ L5	red green red + green	ETH1 - On: Link 10. ETH1 - On: Link 1000. ETH1 - On: Link 100.	Blink: Activity Blink: Activity Blink: Activity

1.4.3 VX3230 Components Layout

Figure 6: VX3230 Components Layout (Top View)

Figure 7: VX3230 Board Components Layout (Bottom View)

1.5 Technical Specification

	VX3230	SPECIFICATIONS
P r c e s	Processor	Freescale MPC8544 running at 1 GHz 32-bit PowerPC E500 Core Double precision embedded scalar and vector floating-point APUs Memory Management Unit (MMU) Integrated Security Engine
s O r	Cache Structure	L1 cache: 32 KB Data + 32 KB Instruction L2 cache: 256 KB
& C h	Gigabit Ethernet Controller	Two on-chip, triple-speed Ethernet controllers supporting 10 Mbps, 100 Mbps and 1 Gbps Ethernet/IEEE®802.3 networks with SGMII utilization
i p s	Memory Controller	Integrated DDR2 memory controllet with ECC support, up to 533 MHz, 72-bit
e t	UARTs	2x UART, 16550-style, 4-wires
	System memory	1 GB of DDR2-533 SDRAM 64-bit wide, ECC support, soldered Secure Boot Support Dual boot storage (automatic boot failover, safe "on-the field" firmware upgrade)
M e	Boot Device	32 Mb soldered NOR flash for U-Boot redundant boot sector
m o	User Flash	Up to 16 GB USB NAND flash with USB flash mezzanine card (optional)
r y	EEPROM	1 serial 256 Kbit EEPROM dedicated to system data 1 serial 256 Kbit EEPROM dedicated to application data
	NvSRAM	128 kb autostore NvSRAM with hardware autostore
O n b	Watchdog	CPLD connected to the local bus
o a r	Real Time Clock	RV-8564-C2 from Micro-Crystal Switzerland
d C o n	Temperature and Voltage Monitoring	LM95231 and LM73 temperature sensors connected to the I ² C bus ADS7830I analog to digital converter for voltage monitoring
t r	Gigabit Ethernet PHY	Two Marvell 88E1112 transceivers with SerDes and Copper media interfaces
0 	USB Controller	Dual USB Controller NXP ISP1562
e r s	SATA Controller	Dual SATA Controller Silicon Image Sil3132
	1	Page 1 of 2

	VX3230	SPECIFICATIO	ONS					
Ρ	MPC8544 - PCI Express (x4)	x4 PCI Express	s links connec	ted to PLX P	CI-E swtich PEX	8608		
C I	MPC8544 - PCI Express (x4)	x4 PCI Express	s links connec	ks connected to XMC slot				
 E	MPC8544 - PCI Express (x1)	x1 PCI Express						
L i	PEX 8608 - Upstream PCI Express (x4)	x4 PCI Express links connected to MPC8544						
n k s	PEX 8608- PCI Express	or	 4 x1 PCI Express links connected to VPX backplane (P1) or 1 x4 PCI Express link connected to VPX backplane (P1) 					
I	Front Interfaces	Refer to section	n 1.3.3 "I/O In	terfaces" page	e 7			
n t	Rear Interfaces	Refer to section	n 1.3.3 "I/O In	terfaces" page	e 7			
e r f	PMC/XMC Site	33 MHz / 32-bit	PCI or x4 XI	/IC interface (3.3V only)			
a USB Mezzanine Card USB mezzanine card interface compatible with SMAR						DDULAR product family.		
e s	Debug Interface	JTAG/COP port for emulation probe connection						
	Firmware	U-Boot						
	Operating Systems	Fedora 9						
	Mechanical	3U, VPX comp	liant form fact	or				
	Power Supply	3.3 V, 5V, +/-12	2V if required	for mezzanine	e board			
G	Power Consumption			+5 VDC	+3.3 VDC	Total		
e n e		Under U-Boot	(typical) (maximal)	12.33 W 13.55 W	1.68 W 1.68 W	14 W 15.23 W		
r a		Under OS	(typical) (maximal)	15.74 W 16 W	1.95 W 1.95 W	17.7 W 17.95 W		
1	Standard Commercial Environmental Specification	Refer to section 1.7.1 "Environmental Specifications" page 19						
	Rugged Conduction-Cooled Environmental Specification	Refer to section 1.7.1 "Environmental Specifications" page 19						
	Dimensions	99.85 mm x 162.54 mm						
	Board Weight SA environmental class RC environmental class	~ 210g with heat sink ~ 280g with ruggedizer						
	MTBF	Refer to section	า 1.5.1 "MTBI	- Data" page	17			
		•				Page 2 of 2		

Table 6: VX3230 Main Specifications

For a detailed description of the VX3230-RTM (Rear Transition Module), refer to the Technical Specifications table in Chapter 6 " VX3230-RTM Characteristics", section 6.2 "Tehcnical Specifications" page 97.

1.5.1 MTBF Data

Calculations are made according to the standard MIL-HDBK217F-2 for following types of environment:

- Ground Benign (GB)
- > Air Inhabited Cargo (AIC)
- Naval Sheltered (NS),
- > Air Rotary Wing (ARW)

>> VX3230-SAA1N-000

	GB (Hours)		AIC NS (Hours)		lours)	ARW (Hours)
	25°C	40°C	40°C	25°C	40°C	55°C
VX3230/SA Order Code: VX3230-SAA1N-000	307179	230620	41416	55116	47092	11151

Table 7: VX3230-SAA1N-000 MTBF Data

>> VX3230-RCA1N-000

	GB (Hours)		AIC (Hours) NS (H		Hours) ARW (Hours	
	25°C	40°C	40°C	25°C	40°C	55°C
VX3230/RC Order Code: VX3230-RCA1N-000	582 211	434 888	82 223	106 714	89 796	21 154

Table 8: VX3230-RC1N-000 MTBF Data

1.6 Software Support

Kontron is one of the few cPCI, VME and VPX vendors providing inhouse support for most of the industry-proven real-time operating systems that are currently available. Due to its close relationship with the software manufacturers, Kontron is able to produce and support BSPs and drivers for the latest operating system revisions thereby taking advantage of the changes in technology.

Finally, customers possessing a maintenance agreement with Kontron can be guaranteed hotline software support and are supplied with regular software updates. A dedicated web site is also provided for online updates and release downloads.

The VX3230 can operate under the following operating system:

> Linux

Please contact Kontron for further information concerning other operating systems and software support.

1.7 Standard

This Kontron product complies with the requirements of the following standards.

ТҮРЕ	ASPECT	DESCRIPTION
CE	Emission	EN55022 EN61000-6-3
	Immission	EN55024 EN61000-6-2
	Electrical Safety	EN60950-1
Mechanical	Mechanical Dimensions	IEEE1101.10
Environmental	WEEE	Waste electrical and electronic equipment
	RoHS	Restriction of the use of certain hazardous substances in electrical and electronic equipment

Table 9: Standards

1.7.1 Environmental Specifications

ENVIRONMENTAL SPECIFICATIONS		
	SA - Standard Commercial	RC - Rugged Conduction-Cooled
Conformal Coating	Optional	Standard
Airflow	1.5 m/s without throttling at 55°C	N.A.
Temperature	VITA 47-Class AC1	VITA 47-Class CC4
Cooling Method	Convection	Conduction
Operating	0°C to +55°C	-40°C to +85°C
Storage	-45°C to +85°C	-45°C to +85°C
Vibration Sine (Operating)	2g / 20-500 Hz acceleration / frequency range	2g / 22-2,000 Hz acceleration / frequency range
Random	VITA 47-Class V1	VITA 47-Class V3
Shock (Operating)	20g / 11ms peak accel. / shock duration half sine	40g / 11ms peak accel. / shock duration half sine
Altitude (Operating)	-1,640 to 15,000 ft	-1,640 to 50,000 ft
Relative Humidity	90% non-condensing	95% non-condensing

Table 10: Environmental Specifications

1.8 Related Publications

The following publications contain information relating to this product:

PRODUCT	PUBLICATION		
VX3230 Boards	VX3230 Hardware Release NotesCA.DT.A64VX3230 U-Boot User ManualSD.DT.F46VX3230 PBIT User 's GuideSD.DT.F48VX3230 Releases Notes Fedora 9SD.DT.F47VX3230 VxWorks B.S.P. User's GuideSD.DT.F56		
EZ3-VX3230 Systems	EZ3-VX3230-00-L Quick StartSD.DT.F53EZ3-VX3230-0P-V Quick StartSD.DT.F61EZ3-VX3230 Getting Started - EZ3-VX3230-00-L - EZ3-VX3230-00-V - EZ3-VX3230-0P-VSD.DT.F52EZ3-VX3230 Getting Started - EZ3-VX3230-00-1K - Wind River VxWorks Live USB EvaluationSD.DT.F68		
MPC8544	MPC8544E PowerQUICC™ III Integrated Host Processor Family Reference Manual MPC8544ERM - Rev. 1 -10/2007		
Serial ATA	Serial ATA 1.0a Specification		
VITA 38	System Management for VME - ANSI/VITA 38-2003		
VITA 46.0	VPX Base Standard - ANSI/VITA 46.0-2007		
VITA 46.4	PCI Express® on VPX Fabric Connector - VITA Draft Standard		
VITA 46.6	Gigabit Ethernet Control Plane on VPX - VITA Draft Standard		
VITA 46.9	PMC/XMC/Ethernet Signal Mapping to 3U/6U on VPX Modules - VITA Draft Standard		
VITA 46.10	Rear Transition Module on VPX - ANSI-VITA 46.10-2009		

Table 11: Related Publications

Chapter 2 - Functional Description

Refer to following sections for detailed information:

Section 2.1 page 23

- > Section 2.1.1 page 23
- > Section 2.1.2 page 24

Section 2.2 page 25

- > Section 2.2.1 page 25
- > Section 2.2.2 page 25

Section 2.3 page 26

- > Section 2.3.1 page 26
- > Section 2.3.2 page 26
- > Section 2.3.3 page 26
- > Section 2.3.4 page 26
- > Section 2.3.5 page 26

Section 2.4 page 27

- > Section 2.4.1 page 27
- > Section 2.4.2 page 27

Section 2.5 page 27

Section 2.6 page 28

- > Section 2.6.1 page 28
- > Section 2.6.2 page 28
- Section 2.6.3 page 28
- > Section 2.6.4 page 29
- > Section 2.6.5 page 31
- > Section 2.6.6 page 31

Section 2.7 page 32

Processor and System Memory Processor System Memory **PCI-Express Buses** MPC8544 PCI Express Links Internal PCI Express Links Storage Flash Memory Serial EEPROMs SPI EEPROM NOVRAM **Dual Serial ATA** Peripherals Timer Watchdog Timer System FPGA **I2C Buses** Internal I2C Buses

RTC

- VPD EEPROM
- Thermal Sensor
- 6.5 page 31 Voltage Sensor
 - External SM bus

Connectors Layout

Section 2.8 page 33

Board Interfaces Serial Interfaces

USB Interfaces

VPX Bus Interface

PMC J11 Connector

PMC J12 Connector

PMC J14 Connector

XMC J15 Connector

COP Connector

JTAG Connector

PMC Signal Description

XMC Signal Description

Gigabit Ethernet Interfaces

Board Connectors Identification VPX Connectors Description

- > Section 2.8.1 page 33
- Section 2.8.2 page 34
 Section 2.8.3 page 37
- Section 2.8.4 page 39
 - Section 2.8.4.1 page 39
 - Section 2.8.4.2 page 40
- > Section 2.8.5 page 47
- > Section 2.8.6 page 47
- Section 2.8.7 page 48
- Section 2.8.8 page 49
- Section 2.8.9 page 51
- > Section 2.8.10 page 52
- > Section 2.8.11 page 53
- > Section 2.8.12 page 53

Section 2.9 page 54

PMC Site

2.1 Processor and System Memory

2.1.1 Processor

The VX3230 is build around the Freescale MPC8544 e500 processor.

The following list provides an overview of the MPC8544 feature set:

- High-performance 32-bit e500 core that implements resources for embedded processors defined by the Power ISA:
 - ▶ 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection. Caches can be locked entirely or on a per-line basis, with separate locking for instructions and data.
 - Signal-processing engine (SPE) instructions. Extensive instruction set for vector (64-bit) integer and fractional operations.
 - > Double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
 - Embedded vector and scalar single-precision (32-bit) floating-point instructions.
 - ▶ 36-bit real addressing (up to 64 Gbytes of memory).
 - Memory management unit (MMU) especially designed for embedded applications that support 4-Kbyte–4-Gbyte page sizes.
- > 256-Kbyte L2 cache/SRAM
- > Address translation and mapping unit (ATMU)
- > DDR/DDR2 memory controller
- > Programmable interrupt controller (PIC)
- > Dual I2C controllers
- > Boot sequencer
- > DUART
- > Local bus controller (LBC)
- > Two enhanced three-speed Ethernet controllers (eTSECs)
- > OCeaN Switch Fabric
- > Integrated DMA controller
- > PCI controller
- > PCI Express interfaces
- > Power Management
- > System performance monitor
- > System access port
- > IEEE 1149.1 compliant, JTAG boundary scan

Figure 8: MPC8544 Block Diagram

2.1.2 System Memory

The VX3230 supports a single-channel (72-bit), registered Doble Data Rate (DDR2) memory with Error Checking and Correcting (ECC).

- > The DDR2 interface operates at a rate up to 266 MHz resulting in a peak bandwidth of 4.2 GB/s.
- > The available memory configuration is 1 GB.
- > ECC is able to correct single-bit errors and detect multiple-bit errors.

2.2 PCI Express Buses

2.2.1 MPC8544 PCI Express Links

The MPC8544 provides three flexible high-speed interfaces fully complaint with PCI Express standard:

- > Two x4 links
- > One x1 link

PCI Express bus interface operates at 2.5 Gbps on each lane resulting in a peak bandwith of 250 MB/s per lane (250 MS/s on RX way and 250 MB/S on TX way). As an example; the bandwidth of a x4 PCI Express link is 1 GB/s (4 x 250 MB/s) per way.

The first MPC8544 x4 PCI Express link is routed to P1 connector through a PCI Express Switch (PEX8608).

The second MPC8544 x4 PCI Express link is connected to the XMC connector.

The first MPC8544 x1 PCI Express link is connected to the dual SATA bridge (Sil3132)

2.2.2 Internal PCI Express Links

The PEX8608 is a height lanes / 8 ports PLX PCI Express switch.

Port Number	Link Width	Max. Link Rate up / down	Connected to
0 (upstream)	x4	1 GB / 1 GB	MPC8544 PCi Express 1
1	x1	250 MB / 250 MB	P1 VPX connector (port 4)
5	x1	250 MB / 250 MB	P1 VPX connector (port 3)
7	x1	250 MB / 250 MB	P1 VPX connector (port 2)
9	x1	250 MB / 250 MB	P1 VPX connector (port 1)

Table 12: Ports Configuration of the PCI Express Switch

2.3 Storage

2.3.1 Flash Memory

The VX3230 provides one 4 MB flash device.

This flash device (NOR flash) is organized in two partitions of 2 MB which operate as redundant boot devices. The selection of the active boot flash partitions is controlled by a DIP switch.

2.3.2 Serial EEPROMs

There are two 256-kbit onboard serial EEPROMS:

- > One is used for the CPU boot sequencing and is connected to the CPLD (I2C address 0xA8).
- One is used to store the Operating System boot parameters and user data and is connectd to the I2C controller (I2C address 0xA0).

2.3.3 SPI EEPROM

A serial EEPROM using the Serial Peripheral Interface (SPI) is available and contains the PCI Express switch configuration.

2.3.4 NOVRAM

A 128 KB NOVRAM (NOn Volatile Random Access Memory) provides fast, nin-volatile storage of mission state data not to be lost when the power is removed.

During standard operations, software applications read and write in the autostore NOVRAM just like in a standard SRAM.

Upon detection of a power loss, an autostore cycle is performed and all the 128 KB are automatically moved from the onchip SRAM to the onchip EEPROM using the energy stored in an onboard capacity.

At the next system power up, a recall cycle is performed to dump the EEPROM contents back to the SRAM.

The number of recall cycles is unlimited. The maximum of store cycles is 500 000, and the data retention period is 20 years at maximum temperature (+85°C).

2.3.5 Dual Serial ATA

The VX3230 provides two Serial ATA 1.0 (1.5 Gbps) interfaces based on the Silicon Image Sil3132 component, a two-port PCI Express to Serial ATA controller.

The two SATA ports are available on P1 connector. Refer to section 2.8.4.2 "VPX Connector Description" page 40 for more information on P1 wafer assignment.

2.4 Peripherals

The following standard peripherals are available on the VX3230 board.

2.4.1 Timer

The VX3230 is equipped with the following timers:

> Real-Time Clock (RTC)

The VX3230 is equipped with an onboard high-precision real-time clock RV-8564-C2. it provides a very tight frequency tolerance at low power consumption. This RTC provides a programmable clock output, interrupt output and voltage low detector.

All address and data are transferred serially via the I²C bus. The RTC is connected to the second I²C controller of the MPC8544 at I²C address 0x51.

- Read I²C slave address: A3h
- Write I2C slave address: A2h
- Nominal operating voltage: 3.3V
- Minimal clock operating voltage: 1.2V

A 3V RTC backup battery can be equipped in a keystone socket. This battery supports extended temperature range: -40 $^{\circ}$ C / + 85 $^{\circ}$ C

> Hardware delay timer for short reliable delay times

2.4.2 Watchdog Timer

The VX3230 provides a Watchdog Timer that is programmable for a timeout period ranging from 125 ms to 256 s in 12 steps. Failure to trigger the Watchdog Timer in time results in an interrupt or a system reset. In the dual-stage mode, a combination of both interrupt and reset is generated if the Watchdog is not serviced. A hardware status flag will be provided to determine if the Watchdog Timer generated the reset.

2.5 System FPGA

The following functions are implemented in the CPLD device:

- > CPU reset configuration
- > Power supply monitoring and board reset control
- > Board registers
- > LED control port
- > Watchdog timer
- > Delay timer
- > Serial hardware debug port
- > I2C master interface

2.6 I2C Buses

2.6.1 Internal I2C Slaves

The I2C buses controller allows interfacing to a wide number of 2-wire serial standards based on the original I2C concepts. The controller has two multi-master I2C buses (Master and Slave). The master interface is used to drive commands on to the I2C and get responses from other devices. The slave section monitors the I2C and will accept commands that are addressed to it. The slave section can also be put in a monitoring mode, where it will report all activity on the bus but not respond.

I2C BUS NAME	FUNCTION
I2C one	VPX SMB 1
I2C two	XMC Switch RTC EEPROM Thermal Sensor Voltage Sensor

2.6.2 RTC

The VX3230 RTC is based on ther RV-8564-C2 CMOS real-time clock/calendar optimized for low power consumption (-40 °C / +85 °C). This RTC provides a programmable clock output, interrupt output and voltage low detector. An internal timer is also available. All address/data are transferred serially via the I2C bus, at a maximal spped of 400 Kbit/s. The built-in word address register is incremented automatically after each writing or read data byte.

The VX3230 RTC includes a built-in crystal oscillating at 32.768 MHz. Crystal accuracy accross temperature: -160 ppm at -40 °C, 0 ppm at 25 °C, -140 ppm at +85 °C.

The RTC will be connected to the second I2C controller inside the MPC8544 at I2C address 0X51.

Nominal operating voltage 3V3. Minimal clock operating voltage 1.2V

A 3V RTC backup battery, BR1225 can be equipped in a keystone socket. This battery support extended temperature range.

2.6.3 VPD EEPROM

One M24C256 eeprom (256 kb serial eeprom) contains Vital Product Data. This memory is organized as 8192x8 bits.

2.6.4 Thermal Sensors

Four thermal sensors, located on the I2C bus, are available on the VX3230.

LM95231 CPU sensor: the CPU core temperature is monitored by a LM95231CIMM device, at I2C hardware address 0x2b. This devices uses remote sensing on CPU thermal diode and also indicates local board temperature. This sensor temperature is dedicated to junction processor temperature and check only maximal Tj temperature.

Key features:

- ► Local temperature accuracy: +/- 3 °C
- ▶ Remote temperature accuracy: +/- 0.75 °C
- Operating temperature: 0 °C / 125 °C
- LM73 board sensor: the board temperature is monitored by three LM73 devices, at I2C hardware addresses 0x48 (#1 top), 0x49 (#2 bottom) and 0x4a (#3 top).

Key features:

- ► Local temperature accuracy: +/- 2 °C (-40 °C to +150 °C)
- Operating temperature: -40 °C / +150 °C

Figure 9: Location of Board and Processor Sensors

2.6.5 Voltage Sensors

The ADS7830I, at I2C hardware address 0x4b, is an Analog to Digital Converter with I2C interface used to measure the internal and external power supplies of the VX3230 board.

Key features:

- Accuracy: 8 bits
- Analog Input 0: VCC
- Analog Input 1: VDD
- Analog Input 1: P3V3
- Analog Input 3: P2V5
- Analog Input 3: P1V8
- Analog Input 5: P1V2
- Analog Input 6: P1V0
- Analog Input 7: Not Used
- Analog Input COM: GND

2.6.6 External SMB Bus

The VPX backplane supports two SMB buses:

- SMB one: SM0/SM1 with SM0 the clock line and SM1 the data line
- SMB two: SM2/SM3 with SM2 the clock line and SM3 the data line

The SMB one is directly connected to the internal I2C one bus.

The SMB two is connected to the internal I2C two bus through a buffer which is no activated to allow all the local devices to be disconnected from the backplane. Enabling the buffer may cause an I2C address conflict with the local devices if several VX3230 are plugged.

2.7 VX3230 Connectors Layout

Figure 11: Front Panel Connectors Layout

2.8 Board Interfaces

2.8.1 Serial Interfaces

The VX3230 integrates two 16550 style serial communications ports, S0 and S1. S0 and S1 are also called COM1 and COM2 in PC parlance.

COM1 and COM2 are available via the VPX P2 connector.

COM1 is also available via the front panel connector.

- > COM1: EIA-232/485 (simplified RX/TX) port on RJ-11 front panel connector or on the rear P2 connector
- > COM2: EIA-232/485 (simplified RX/TX) port on the rear P2 connector

Each serial port is configurable via the CPLD as EIA-232 or EIA-485. Each port operates in full or half-duplex mode. Slow slew rate is also CPLD-programmable in EIA-485 mode.

The signaling level of EIA-485 is compatible with EIA-422, so full duplex EIA-485 may also be used for point-to-point communications with an EIA-422 serial port.

Refer to section 2.8.3 "VPX Bus Interface" page 37 for more information on the serial lines wafer assignment on P2 connector.

>> Serial Front Panel

PIN	SIGNAL
1	RTS/TXDb
2	Shell
3	TXD/TXDa
4	RXD/RXDa
5	GND
6	CTS/RXDb

Table 13: Serial Connector Pin Assignment

Figure 12: Serial Connector

MNEMONIC	DESCRIPTION
CTS/RXDb	EIA-232 Clear-To-Send / EIA-485 Receive Data (pair b)
RTS/TXDb	EIA-232 Ready-To-Send / EIA-485 Transmit Data (pair b)
RXD/RXDa	EIA-232Receive Data / EIA-485 Receive Data (pair a)
TXD/TXDa	EIA-232 Transmit Data / EIA-485 Transmit Data (pair a)
GND	Ground
Shell	Chassis Ground

Table 14: Serial Connector Signal Description

>> Serial Cable Designation

Serial cable is:

- RJ-14 (6 pin, 4 conductor) for a simple EIA-232 without handshake support.
- RJ-12 (6 pin, 6 conductor) for EIA-232 with handshaking.
 - A RJ-12 to DB9/DB25 male or DB9/DB25 female adapter is available from multiple sources, such as: Kontron Order Code KIT-RJ12DB9
 - Triangle Cable http://www.trianglecables.com/db9m-rj12.html

Pin Connector DB9	Signal	Pin Connector RJ-12
1	RTS	1
2	TXD	3
3	RXD	4
4	CTS	6
5	GND	5

2.8.2 USB Interfaces

The VX3230 incorporates one PCI to USB bridge (NXP Philips ISP1562) that provides up to two USB 2.0 ports.

- One USB port is available on the front panel or on P1 connector, and selectable by an hardware configuration MUX.
- One USB port is available on P1 connector or on an onboard 2 mm pitch HE10 connector dedicated to low profile USB flash mezzanine card (like Intel Zepher card), and selectable by an hardware configuration MUX.

Each port provides a +5V output to power external USB devices such as keyboards.

Those USB devices are on the PCI bus, forced to 32 bits / 33 MHz.

On the USB 2.0 Rear I/O ports, it is strongly recommended to use a cable below 3 meters in length for USB 2.0 devices.

The USB 2.0 ports are high-speed, full-speed, and low-speed capable. Hi-speed USB 2.0 allows data transfers of up to 480 Mb/s - 40 times faster than a full-speed USB (USB 1.1).

Refer to section 2.8.3 "VPX Bus Interface" page 37 for more information on the USB interfaces wafer assignment on P1 connector.

>> USB Front Panel

PIN	SIGNAL	FUNCTION	I/O
1	VCC (1)	VCC	
2	USB_D-	Differential USB-	I/O
3	USB_D+	Differential USB+	I/O
4	GND	GND	

Table 15: USB Connector Pin Assignment

Figure 13: USB Connector

(1) +5V protected power up to 720 mA continuous, short circuit current limited (1.2 A max.) with thermal **Note** shutdown, and automatic restart when short is removed.

>> USB onboard

The onboard USB device (CN5 connector) is used to connect an USB Flash Disk (low profile USB flash mezzanine card, like Intel Zepher card).

The following figure and table provide pinout information for the onboard USB connector CN5:

PIN	SIGNAL	FUNCTION	I/O
1	PWR	VCC	
3	Data-	Differential USB-	I/O
4	N.C.	Not Connected	
5	Data+	Differential USB+	I/O
6	N.C.	Not Connected	
7	GND	GND	
8	N.C.	Not Connected	
10	N.C.	Not Connected	

 Table 16: USB Onboard Pin Assignment

Figure 14: USB Onboard Connector

The USB Flash module is fixed to the board, by using on one side the CN5 connector, and on the other side, a standoff screwed to the VX3230 board and to the USB Flash module.

Order Code for the USB flash disk:

FDM-USB-*x***GB-2MM-IV**: industrial version with conformal coating for use with rugged versions (x = 4 or 8 GB)

Contact Kontron for available capacity.

USB Flash Disk Layout:

- Maximum space reserved for USB flash disk is 36.9 mm x 26.6 mm (LxW)
- The distance between connector and screw hole is 27.3 mm~27.9mm
- Maximum allowable connector height is 3.68 mm

Figure 15: USB Flash Disk Overview

2.8.3 Gigabit Ethernet Interfaces

The MPC8544 integrates two triple-speed Ethernet controllers which are associated on the VX3230 board with two external Marvell 88E1112 Ethernet PHY.

The Ethernet channels 0 and 1 can either be routed to:

- the front panel RJ-45 connectors,
- the VPX P1 connector, thanks to the use of a Texas Instrument TS3L301 LAN Switch.

Refer to section 1.3.4 "Ethernet Connectivity" page 9 for more information on the ethernet configuration depending on the ethernet board manufacturing option.

Refer to section 2.8.4.2 "VPX Connectors Description" page 40 for more information on the gigabit ethernet wafer assignment on P1 connector.

Front Panel Gigabit Ethernet

Figure 16: Dual Gigabit Ethernet Connector

The Ethernet transmission can operate effectively using a CAT5 cable with a maximum length of 100 m.

The Ethernet connectors are realized as RJ-45 connectors. The interfaces provide automatic detection and switching between 10Base-T, 100Base-TX and 1000Base-T data transmission (Auto-Negotiation). Auto-wire switching for crossed cables is also supported (Auto-MDI/X).

2.8.3.1 ETH0 and ETH1 Pinouts

The ETH0 / ETH1 connectors supply the 10Base-T, 100Base-TX and 1000Base-T interfaces to the Ethernet controller.

PIN	10BASE-T		100BASE-TX		1000BASE-T	
FIN	I/O	SIGNAL	I/O	SIGNAL	I/O	SIGNAL
1	0	TX+	0	TX+	I/O	BI_DA+
2	0	TX-	0	TX-	I/O	BI_DA-
3	I	RX+	I	RX+	I/O	BI_DB+
4	-	-	-	-	I/O	BI_DC+
5	-	-	-	-	I/O	BI_DC-
6	I	TX-	I	RX-	I/O	BI_DB-
7	-	-	-	-	I/O	BI_DD+
8	-	-	-	-	I/O	BI_DD-

Table 17: Gigabit Ethernet Connectors ETH0 and ETH1 Pin Assignment

2.8.4 VPX Bus Interface

The complete VPX connector configuration comprises three connectors named P0, P1 and P2

- > P0: one 8-wafer 7-row connector
- > P1: one 16-wafer 7-row connector
- > P2: one 16-wafer 7-row connector

The VX3230 is not hot-swappable but supports the addition or removal of other boards whilst in a powered-up state.

The VX3230 is designed for a VPX bus architecture.

Figure 17: VPX Connectors

Figure 18: Connector Identification for 3U VPX Board

2.8.4.2 VPX Connectors Description

The VX3230 is provided with three VPX bus connectors, P0, P1 and P2

The VX3230 board provides Rear I/O connectivity for special compact systems.

When the Rear I/O module is used, the signals may be routed to the Rear I/O module interface. Thus the Rear I/O module makes it much easier to remove the CPU in the rack as there is practically no cabling on the CPU board.

The VX3230 Rear I/O provides the following interfaces:

- > Two USB 2.0 ports P1
- > Two Gigabit Ethernet ports without LED signals P1
- > Two SATA ports P1
- > Two GPIOs P1
- > x4 or 4x1 PCI-Express P1
- > Two EIA-232 COM ports P2

>> P0 Wafer Assignment

Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A
1	+12V	+12V	+12V	N.C.	+3V3	+3V3	+3V3
2	+12V	+12V	+12V	N.C.	+3V3	+3V3	+3V3
3	+5V	+5V	+5V	N.C.	+5V	+5V	+5V
4	SMB1 CLK	SMB1 DAT	GND	-12V_AUX	GND	SYSRESET*	NVMRO
5	GAP*	GA4*	GND	3V3_AUX	GND	SMB0 CLK	SMB0 DAT
6	GA3*	GA2*	GND	+12V_AUX	GND	GA1*	GA0*
7	ТСК	GND	TDO	TDI	GND	TMS	TRST*
8	GND	REF_CLK-	REF_CLK+	GND	N.C. (RFU)	N.C. (RFU)	GND
CASE	GND						

* signal active when low

Table 18: VPX Connector P0 Wafer Assignment

>> P0 Signal Definition

MNEMONIC	SIGNAL DEFINITION
+12V	+12 Volts DC power
+/-12V_AUX	+/-12 Volts auxiliary power
+3V3	+3.3 Volts DC power
+5V	+5 Volts DC power
GA0* to GA4*	Geographical Address Inputs 0-4
GAP	Geographical Address Parity
GND	Ground
N.C.	Not Connected
N.C. (RFU)	Not Connected (Reserved for Future Use)
NVMRO	Non-Volatile Memory Read Only. When asserted, prevents any non-volatile memory from being updated.
REF_CLK+/-	Reference Clock, bussed differentail pair. It enables the entire system to synchronize to a common clock if desired.
SMBx	System Management Bus <i>x</i>
SYSRESET*	System Reset
ТСК	JTAG signal - Test Clock
TDI	JTAG signal - Test Data Input
TDO	JTAG signal - Test Data Output
TMS	JTAG signal - Test Mode Select
TRST*	JTAG signal - Test Reset

Table 19: VPX Connector P0 Signal Definition

>> P1 Wafer Assignment

P1 wafer pin assignment, for wafers 13 up to 16, depends on the Ethernet manufacturing option. Refer to Table 20 and Table 21 below.

>> 10/100/1000BASE-TX Ethernet Manufacturing Option

> Legend for Table 20:

ETHx	Gigabit Ethernet port	GPIO <i>x</i>	GPIO
PEX RXL <i>x</i>	x4 or 4x1 PCI-Express	SATA <i>x</i>	Serial ATA port
PEX TXLx	x4 or 4x1 PCI-Express	USB <i>x</i>	USB port

Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A
1	SMB ALERT	GND	PEX TXL0-	PEX TXL0+	GND	PEX RXL0-	PEX RXL0+
2	GND	PEX TXL1-	PEX TXL1+	GND	PEX RXL1-	PEX RXL1+	GND
3	VBAT	GND	PEX TXL2-	PEX TXL2+	GND	PEX RXL2-	PEX RXL2+
4	GND	PEX TXL3-	PEX TXL3+	GND	PEX RXL3-	PEX RXL3+	GND
5	SYS_CON*	GND	Reserved	Reserved	GND	Reserved	Reserved
6	GND	Reserved	Reserved	GND	Reserved	Reserved	GND
7	REFCLK0_SE	GND	Reserved	Reserved	GND	Reserved	Reserved
8	GND	Reserved	Reserved	GND	Reserved	Reserved	GND
9	USB0 PWR	GND	SATA0 TX-	SATA0 TX+	GND	SATA0 RX-	SATA0 RX+
10	GND	SATA1 TX-	SATA1 TX+	GND	SATA1 RX-	SATA1 RX+	GND
11	USB1 PWR	GND	Reserved	Reserved	GND	Reserved	Reserved
12	GND	USB0 DA-	USB0 DA+	GND	USB1 DA-	USB1 DA+	GND
13	GPIO1	GND	ETH1 BI_DB-	ETH1 BI_DB+	GND	ETH1 BI_DA-	ETH1 BI_DA+
14	GND	ETH1 BI_DD-	ETH1 BI_DD+	GND	ETH1 BI_DC-	ETH1 BI_DC+	GND
15	GPIO2	GND	ETH0 BI_DB-	ETH0 BI_DB+	GND	ETH0 BI_DA-	ETH0 BI_DA+
16	GND	ETH0 BI_DD-	ETH0 BI_DD+	GND	ETH0 BI_DC-	ETH0 BIDC+	GND
CASE	GND						

* signal active when low

Table 20: VPX Connector P1 Wafer Assignment (10/100/1000BASE6TX Ethernet Manufacturing Option)

>> 1000BASE-BX Ethernet Manufacturing Option

> Legend for Table 21:

ETH <i>x</i> PEX RXL	Gigabit Ethernet port GPIOx GPIO XLx x4 or 4x1 PCI-Express SATAx Serial ATA			GPIO Serial ATA port				
PEX TXL	(x4 or 4x1 PCI-E	Express	USB <i>x</i>		USB port		
Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A	
1	SMB ALERT	GND	PEX TXL0-	PEX TXL0+	GND	PEX RXL0-	PEX RXL0+	
2	GND	PEX TXL1-	PEX TXL1+	GND	PEX RXL1-	PEX RXL1+	GND	
3	VBAT	GND	PEX TXL2-	PEX TXL2+	GND	PEX RXL2-	PEX RXL2+	
4	GND	PEX TXL3-	PEX TXL3+	GND	PEX RXL3-	PEX RXL3+	GND	
5	SYS_CON*	GND	Reserved	Reserved	GND	Reserved	Reserved	
6	GND	Reserved	Reserved	GND	Reserved	Reserved	GND	
7	REFCLK0_SE	GND	Reserved	Reserved	GND	Reserved	Reserved	
8	GND	Reserved	Reserved	GND	Reserved	Reserved	GND	
9	USB0 PWR	GND	SATA0 TX-	SATA0 TX+	GND	SATA0 RX-	SATA0 RX+	
10	GND	SATA1 TX-	SATA1 TX+	GND	SATA1 RX-	SATA1 RX+	GND	
11	USB1 PWR	GND	Reserved	Reserved	GND	Reserved	Reserved	
12	GND	USB0 DA-	USB0 DA+	GND	USB1 DA-	USB1 DA+	GND	
13	GPIO1	GND	ETH1 BI_DB-	ETH1 BI_DB+	GND	ETH1 BI_DA-	ETH1 BI_DA+	
14	GND	ETH1 BI_DD-	ETH1 BI_DD+	GND	ETH1 BI_DC-	ETH1 BI_DC+	GND	
15	GPIO2	GND	ETH1 TX-	ETH1 TX+	GND	ETH1 RX-	ETH1 RX+	
16	GND	ETH0 TX-	ETH0 TX+	GND	ETH0 RX-	ETH0 RX+	GND	
CASE		GND						

* signal active when low

Table 21: VPX Connector P1 Wafer Assignment (1000BASE-BX Ethernet Manufacturing Option)

>> P1 Signal Definition

MNEMONIC	SIGNAL DEFINITION
ETH <i>x</i> BI_DA+/-	10/100/1000BASE-TX Ethernet <i>x:</i> First pair of Transmit/Receive data.
ETH <i>x</i> BI_DB+/-	10/100/1000BASE-TX Ethernet x: Second pair of Transmit/Receive data.
ETH <i>x</i> BI_DC+/-	10/100/1000BASE-TX Ethernet x: Third pair of Transmit/Receive data.
ETH <i>x</i> BI_DD+/-	10/100/1000BASE-TX Ethernet x: Fourth pair of Transmit/Receive data.
ETH <i>x</i> RX+/-	1000BASE-BX Ethernet x: Receive data +/-
ETH <i>x</i> TX+/-	1000BASE-BX Ethernet x: Transmit data +/-
GND	Ground
GPIO <i>x</i>	General Purpose I/O x
N.C. (RFU)	Not Connected (Reserved for Future Use)
PEX RXL <i>y</i> +/-	x4 PCI Express Link - Receive +/- Lane y
PEX TXLy+/-	x4 PCI Express Link - Transmit +/- Lane y
REFCLK0_SE	Single Ended Reference Clock
Reserved	Reserved
SATA <i>x</i> RX+/-	Serial ATA x Receive +/-
SATA <i>x</i> TX+/-	Serial ATA <i>x</i> Transmit +/-
SMB ALERT	System management Bus Alert
SYS_CON*	System Controller
USB <i>x</i> DA+/-	Differential Data Pair of USB Line x
USB <i>x</i> PWR	USB Line <i>x</i> Power
VBAT	Battery Voltage

Table 22: VPX Connector P1 Signal Definition

> USB Interfaces

There are up to two independent USB interfaces available as described below:

USB PORT	CONNECTOR	USAGE
USB0	USB on the VX3230 (front panel) or CN11-R on the VX3230-RTM (front panel)	External USB devices
USB1	CN5 on the VX3230 (onboard) or CN21-R on the VX3230-RTM (onboard)	USB Flash

Table 23: USB Port Features

All USB ports may be used at the same time. It is strongly recommended to use cables less than 3 metres in length for the Rear I/O interfaces.

> Ethernet Interfaces

Gigabit Ethernet signals are available on the Rear I/O interface (ETH0 and ETH1 in above Table).

Ethernet PORT	CONNECTOR
ETH0	ETH0 on the VX3230 (front panel) or CN12-R on the VX3230-RTM (front panel)
ETH1	ETH1 on the VX3230 (front panel) or CN13-R on the VX3230-RTM

Table 24: Ethernet Port Features

> SATA Interface

The VX3230 provides two SATA interfaces (SATA0 and SATA1 in above Table).

The two SATA ports, SATA0 and SATA1, can be used only on the Rear I/O interface. All SATA ports can be used simultaneously.

SATA PORT	CONNECTOR	USAGE
SATA0	CN14-R on the VX3230-RTM	External SATA HDD drives, e.g. 2.5" or 3.5" SATA HDDs
SATA1	CN15-R on the VX3230-RTM	External SATA HDD drives, e.g. 2.5" or 3.5" SATA HDDs

Table 25: SATA Port Features

>> P2 Wafer Assignment

> Legend for Table 26:

COMx	CON	N port		PMCIO xx	PM	C I/O	
							-
Wafer	Row G	Row F	Row E	Row D	Row C	Row B	Row A
1	COM1 RTS/TXDb	GND	PMCIO 01	PMCIO 03	GND	PMCIO 02	PMCIO 04
2	GND	PMCIO 05	PMCIO 07	GND	PMCIO 06	PMCIO 08	GND
3	COM1 TXD/TXDa	GND	PMCIO 09	PMCIO 11	GND	PMCIO 10	PMCIO 12
4	GND	PMCIO 13	PMCIO 15	GND	PMCIO 14	PMCIO 16	GND
5	COM1 CTS/RXDb	GND	PMCIO 17	PMCIO 19	GND	PMCIO 18	PMCIO 20
6	GND	PMCIO 21	PMCIO 23	GND	PMCIO 22	PMCIO 24	GND
7	COM1 RXD/RXDa	GND	PMCIO 25	PMCIO 27	GND	PMCIO 26	PMCIO 28
8	GND	PMCIO 29	PMCIO 31	GND	PMCIO 30	PMCIO 32	GND
9	COM2 RTS/TXDb	GND	PMCIO 33	PMCIO 35	GND	PMCIO 34	PMCIO 37
10	GND	PMCIO 37	PMCIO 39	GND	PMCIO 38	PMCIO 40	GND
11	COM2 TXD/TXDa	GND	PMCIO 41	PMCIO 43	GND	PMCIO 42	PMCIO 44
12	GND	PMCIO 45	PMCIO 47	GND	PMCIO 46	PMCIO 48	GND
13	COM2 CTS/RXDb	GND	PMCIO 49	PMCIO 51	GND	PMCIO 50	PMCIO 52
14	GND	PMCIO 53	PMCIO 55	GND	PMCIO 54	PMCIO 56	GND
15	COM2 RXD/RXDa	GND	PMCIO 57	PMCIO 59	GND	PMCIO 58	PMCIO 60
16	GND	PMCIO 61	PMCIO 63	GND	PMCIO 62	PMCIO 64	GND
CASE				GND			

Table 26: VPX Connector P2 Wafer Assignment

>> P2 Signal Definition

MNEMONIC	SIGNAL DEFINITION
COMx CTS/RXDb	Channel EIA-232 x Clear To Send / EIA-485 Receive Data (pair b)
COMx RTS/TXDb	Channel EIA-232 x Ready To Send / EIA-485 Transmit Data (pair b)
COM <i>x</i> RXD/RXDa	Channel EIA-232 x Receive Data / EIA-485 Receive Data (pair a)
COM <i>x</i> TXD/TXDa	Channel EIA-232 <i>x</i> Transmit Data / EIA-485 Transmit Data (pair a)
GND	Ground
PMCIO 01 64	I/O 01 through 64

Table 27: VPX Connector P2 Signal Definition

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	N.C.	17	REQ#	33	FRAME#	49	AD[09]
2	-12V	18	+5V	34	GND	50	+5V
3	GND	19	V(I/0) (1)	35	GND	51	GND
4	INTA#	20	AD[31]	36	IRDY#	52	C/BE0#
5	INTB#	21	AD[28]	37	DEVSEL#	53	AD[06]
6	INTC#	22	AD[27]	38	.+5V	54	AD[05]
7	BUSMODE1#	23	AD[25]	39	PCIXCAP	55	AD[04]
8	+5V	24	GND	40	LOCK#	56	GND
9	INTD#	25	GND	41	SDONE#	57	V(I/O) (1)
10	N.C.	26	C/BE3#	42	SBO#	58	AD[03]
11	GND	27	AD[22]	43	PAR	59	AD[02]
12	+3.3V_SUS	28	AD[21]	44	GND	60	AD[01]
13	CLK	29	AD[19]	45	V(I/O) (1)	61	AD[00]
14	GND	30	+5V	46	AD[15]	62	+5V
15	GND	31	V(I/0) (1)	47	AD[12]	63	GND
16	GNT#	32	AD[17]	48	AD[11]	64	REQ64#

2.8.5 PMC J11 Connector Pin Assignment

(1) V(I/O) is 3.3V only. Neither PMC site provides a 3.3V keying pin

PCI signals active when low.

Table 28: PMC J11 Connector Pin Assignment

2.8.6 PMC J12 Connector Pin Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	+12V	17	N.C.	33	GND	49	AD[08]
2	N.C.	18	GND	34	IDSEL B (1)	50	+3.3V
3	Pulled to +3.3V via 10K	19	AD[30]	35	TRDY#	51	AD[07]
4	Pulled to +3.3V via 10K	20	AD[29]	36	+3.3V	52	REQ B# (1)
5	Pulled to +3.3V via 10K	21	GND	37	GND	53	+3.3V
6	Ground	22	AD[26]	38	STOP#	54	GNT B# (1)
7	GND	23	AD[24]	39	PERR#	55	PMC-RSVD
8	N.C.	24	+3.3V	40	GND	56	GND
9	N.C.	25	IDSEL	41	+3.3V	57	PMC-RSVD
10	N.C.	26	AD[23]	42	SERR#	58	EREADY
11	Pulled to +3.3V via 2.7K	27	+3.3V	43	C/BE1#	59	GND
12	+3.3V	28	AD[20]	44	GND	60	N.C.
13	RST#	29	AD[18]	45	AD[14]	61	ACK64#
14	GND	30	GND	46	AD[13]	62	+3.3V
15	+3.3V	31	AD[16]	47	M66EN	63	GND
16	GND	32	C/BE2#	48	AD[10]	64	N.C.

(1) IDSEL B, REQ B# and GNT B# are provided for use by dual-function PMC modules or processor-PMC modules

PCI signals active when low.

Table 29: PMC J12 Connector Pin Assignment

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	PMC IO 01	17	PMC IO 17	33	PMC IO 31	49	PMC IO 49
2	PMC IO 02	18	PMC IO 18	34	PMC IO 34	50	PMC IO 50
3	PMC IO 03	19	PMC IO 19	35	PMC IO 35	51	PMC IO 51
4	PMC IO 04	20	PMC IO 20	36	PMC IO 36	52	PMC IO 52
5	PMC IO 05	21	PMC IO 21	37	PMC IO 37	53	PMC IO 53
6	PMC IO 06	22	PMC IO 22	38	PMC IO 38	54	PMC IO 54
7	PMC IO 07	23	PMC IO 23	39	PMC IO 39	55	PMC IO 55
8	PMC IO 08	24	PMC IO 24	40	PMC IO 40	56	PMC IO 56
9	PMC IO 09	25	PMC IO 25	41	PMC IO 41	57	PMC IO 57
10	PMC IO 10	26	PMC IO 26	42	PMC IO 42	58	PMC IO 58
11	PMC IO 11	27	PMC IO 27	43	PMC IO 43	59	PMC IO 59
12	PMC IO 12	28	PMC IO 28	44	PMC IO 44	60	PMC IO 60
13	PMC IO 13	29	PMC IO 29	45	PMC IO 45	61	PMC IO 61
14	PMC IO 14	30	PMC IO 30	46	PMC IO 46	62	PMC IO 62
15	PMC IO 15	31	PMC IO 31	47	PMC IO 47	63	PMC IO 63
16	PMC IO 16	32	PMC IO 32	48	PMC IO 48	64	PMC IO 64

2.8.7 PMC J14 Connector Pin Assignment

Table 30: PMC J14 Connector Pin Assignment

2.8.8 PMC Signal Description

MNEMONIC	SIGNAL DESCRIPTION
AD[00] to AD[31]	Address/Data bits. Multiplexed address and data bus.
ACK64#	Acknowledge 64-bit Transfer. Driven low by the device to indicate that the target is willing to transfer data using 64 bits.
BUSMODE1#	Bus Mode 1. Driven low by a PMC module to indicate that it supports the current bus mode
C/BE0# to C/BE1#	Command/Byte Enables. During the address phase, these signals specify the type of cycle to carry out on the PCI bus. During the data phase the signals are byte enables that specify the active bytes on the bus.
CLK	Clock. Except RST*, the 64-bit PCI bus signals are synchronous to 33 or 66 MHz clock.
DEVSEL#	Device Select. Driven low by a PCI agent to signal that it has decoded its address as the target of the curren access.
FRAME#	FRAME. Driven low by the current master to signal the start and duration of an access.
EREADY	EREADY. Output of non-monarch PPMCs that indicates it has completed its onboard initialization and can respond to PCI bus enumeration by the monarch via configuration cycles. Input to the monarch PPMC that indicates all non-monarch PPMCs have completed their onboard initialization and can respond to PCI bus enumeration by the monarch via configuration cycles.
GNT#	Grant. Driven low by the arbiter to grant PCI bus ownership to a PCI agent. GNT B# is provided for use by dual-function PMC modules or processor-PMC modules.
IDSEL	Initialization Device Select. Device chip select during configuration cycles. IDSEL B is provided for use by dual-function PMC modules or processor-PMC modules.
INTA# to INTD#	Interrupt lines. Level-sensitive, active-low interrupt requests.
IRDY#	Initiator Ready. Driven low by the initiator to signal its ability to complete the current data phase.
LOCK#	LOCK. Driven low to indicate an atomic operation that may require multiple transactions to complete.
M66EN	66 MHZ Enable. Indicates to a device if the bus segment is operating at 66 or 33 MHz. If it is high then the bus speed is 66 MHz and if it is low then the bus speed is 33 MHz.
N.C.	This pin is not connected.
PAR	Parity. Parity protection bit for AD0 to AD31 and C/BE0# to C/BE3#.
PERR#	Parity Error. Driven low by a PCI agent to signal a parity error.
PMC IO 01 to PMC IO 64	64-bit PCI bus PMC 64 signals. Used to transmit I/O signals from PCI 64 PMC connector (J14) to P2 connector.
PMC-RSVD	Reserved. Do not connect this pin.
REQ#	Request. Driven low by a PCI agent to request ownership of the PCI bus. REQ B# is provided for use by dual-function PMC modules or processor-PMC modules.
REQ64#	Request 64-bit Transfer. Driven low by the current bus master, indicates that it desires to transfer data using 64 bits.
RST#	Reset. Driven low to reset the PCI bus.
SBO#	Snoop Backoff. Indicates a hit of a modified line asserted.
SDONE#	Snoop Done. Indicates the status of the snoop for the current access.
SERR#	System Error. Driven low by a PCI agent to signal a system error.
STOP#	STOP. Driven low by a PCI target to signal a disconnect or target-abort.
TRDY#	Target Ready. Driven low by the current target to signal its ability to complete the current data phase.
V(I/O)	Power supply delivered by the board. On the PCI 64 PMC slots, +3.3 Volts power is supplied. +5 Volts signaling PMCs are not supported. Contact Kontron for more information.
	Page 1 of

MNEMONIC	SIGNAL DESCRIPTION	
+3.3V	+3.3 Volts DC power	
+5V	+5 Volts DC power	
+12V	+12 Volts DC power	
-12V	-12 Volts DC power	
		Page 2 of 2

Table 31: PMC Signal Description

2.8.9 XMC J15 Connector Pin Assignment

One XMC sites is provided to allow the installation of VITA 42.3, PCI-Express mezzanine cards. The signals assignments are as shown in the following table. The encoding for GA[2:0] should not conflict with other SMbus/IPMI devices.

Pin	Row A	Row B	Row C	Row D	Row E	Row F
1	PET0p0	PET0n0	3.3V	PET0p1	PET0n1	VPWR (1)
2	GND	GND	TRST#	GND	GND	MRSTI#
3	PET0p2	PET0n2	3.3V	PET0p3	PET0n3	VPWR (1)
4	GND	GND	ТСК	GND	GND	MRSTO#
5	PET0p4	PET0n4	3.3V	PET0p5	PET0n5	VPWR (1)
6	GND	GND	TMS	GND	GND	+12V
7	PET0p6	PET0n6	3.3V	PET0p7	PET0n7	VPWR (1)
8	GND	GND	TDI	GND	GND	-12V
9	RFU	RFU	N.C.	RFU	RFU	VPWR (1)
10	GND	GND	TDO	GND	GND	GA0
11	PER0p0	PER0n0	MBIST#	PER0p1	PER0n1	VPWR (1)
12	GND	GND	GA1	GND	GND	MPRESENT#
13	PER0p2	PER0n2	3.3V AUX	PER0p3	PER0n3	VPWR (1)
14	GND	GND	GA2	GND	GND	MSDA
15	PER0p4	PER0n4	N.C.	PER0p5	PER0n5	VPWR (1)
16	GND	GND	NVMRO	GND	GND	MSCL
17	PER0p6	PER0n6	N.C.	PER0p7	PER0n7	N.C.
18	GND	GND	N.C.	GND	GND	N.C.
19	REFCLK+0	REFCLK-0	N.C.	N.C.	N.C.	N.C.

(1) VPWR is connected to +5V via a 0 ohm resistor.

The +12V option is available, please contact Kontron for more information on this topic.

Signals active when low.

Table 32: XMC J15 Connector Pin Assignment

2.8.10 XMC Signal Decription

MNEMONIC	LEGEND	SIGNAL DESCRIPTION	
GA[02]		I2C channel select. These signals allow a carrier to address a specific XMC slot on an IPMI I2C bus shared by multiple XMCs.	
GND		Ground	
MBIST		XMC Built In Self Test. This signal allows the carrier to determine whether an XMC has completed its built-in self test.	
MPRESENT		Module present. This signal allows the carrier to determine whether an XMC is present.	
MRSTI		XMC Reset In. When this signal is asserted low by the carrier, the mezzanine card shall initialize itself into a known state.	
MRSTO		XMC Reset Out. As input to the carrier, this optional signal provides an input to the carrier's reset logic in order to support a reset button or other reset source on the XMC.	
MSCL		IPMI I2C serial clock.	
MSDA		IPMI I2C serial data.	
NVMRO		XMC Write Prohibit. When this signal is asserted high, the XMC shall disable writes to non-volatile memory on the XMC.	
N.C.		Not Connected. Do not Used	
PET0p/n[07]		Link 0 Differential Transmit. These signals are used by the XMC to receive high-speed protocol-specific data TO the carrier over the PCI Express interface.	
PER0p/n[07]		Link 0 Differential Receive. These signals are used by the XMC to receive high-speed protocol-specific data FROM the carrier over the PCI Express interface.	
REFCLK+/-0		Differential reference clock for Link 0 PCI Express interface.	
RFU		Reserved for Future Use	
ТСК		JTAG Clock.	
TDI		JTAG Data In	
TDO		JTAG Data Out	
TMS		JTAG Mode Select	
TRST		JTAG Reset.	
VPWR		Power pins. These signals carry either +12V or +5V power from the carrier to the XMC.	
3.3V			
3.3V AUX			
+/-12V			

Table 33: XMC Signal Description

2.8.11 COP Header

Pin	Signal	Pin	Signal
1	PPC_TDO	9	PPC_TMS
2	N.C.	10	N.C.
3	PPC_TDI	11	SRESET#
4	TRSTb	12	N.C.
5	N.C.	13	HRESET#
6	VCC	14	Key Pin
7	PPC_TCK	15	PPC_CHKSTP_OUT#
8	PPC_CHKSTP_IN#	16	GND
# Signals active when low.			

4 6 8 10 12 14 16 2 CN4 57 9 11 13 15 1 3

Signals active when low.

Table 34: COP Header Pin Assignment

Figure 19: COP Header

δ

2.8.12 **JTAG Connector**

Pin	Signal	Pin	Signal
1	ТСК	6	N.C.
2	GND	7	N.C.
3	TDO	8	N.C.
4	VCC	9	TDI
5	TMS	10	GND

The CPLD is programmed via the JTAG (CN3) connector. The CPLD is the only device on the JTAG chain.

Signals active when low.

 Table 35: JTAG Connector Pin Assignment

œ യ CN3

10

Figure 20: JTAG Connector

2.9 XMC/PMC Site

The VX3230 provides one XMC/PMC site:

> The PCI 32 XMC/PMC site, 32-bit wide, operates at 33 MHz.

Kontron products include standard XMCs/PMCs such as Graphics XMC (XMC-G72), Ethernet XMC (XMC-ETH2).

Refer to the Release Notes associated with your operating system for more information about the supported PMC/XMCs.

For EMC protection reasons, when not used, the PMC slots are fitted with a blanking plate.

Electrostatic Discharge (ESD) can damage components. To avoid ESD damage, the board should be kept in its protective antistatic packaging until it is ready to be installed. During installation make sure to wear an antistatic wrist strap to discharge static electricity.

PMC Site can alternately be used as an XMC site with a x4 PCI-Express link to the MPC864x processor. A XMC card installed in this location uses its P5 (J15 on the VX3230) for the Express Link. The installed XMC should provide either front panel I/O or utilize a P4 (J14 on the VX3230) for I/O.

The following table sums up all information concerning the PCI 32 XMC/PMC Site. It gives information needed for software and hardware configuration.

FUNCTION	VALUE	DESCRIPTION	
	J11	Connects the signals for the 32-bit PCI bus.	
PMC Connectors	J12	Connects the signals for the 32-bit PCI bus.	
	J14	Connects the User Defines I/O signals.	
XMC Connector	J15	Connects the signals for the switched communications.	
V(I/O) Voltage Level	+3.3V	The signaling voltage of the 32-bit PCI bus is +3.3V. It is not +5V tolerant. The user must check that its PMC type is compatible with this signaling voltage (refer to section 2.9.1 page 55).	
PCI Bus Mode	32 Bits	The 32-bit PCI bus is in 32-bit mode.	
PCI Bus Rate	33 MHz	The 32-bit PCI bus can run at 33 MHz (refer to the Hardware Release Notes for possible restrictions).	
PCI Interrupts	INTA INTB INTC INTD	Connected to the Interrupt Controller.	
REQ/GNT IDSEL	0 AD[18]	For single function PMC's	

Table 36: PCI 32 XMC/PMC Site Information

2.9.1 Signaling Voltage Keying Pin

The 32-bit PCI bus of the VX3230 and the PMC plugged on the 32-bit PCI slot have to operate on the same signaling level. The VX3230 sets the signaling level for the 32-bit PCI bus to +3.3V (i.e. V(I/O)=+3.3V). The V(I/O) pins of the PCI 32 PMC are connected to +3.3V.

The distinction between PMC types is the signaling level they use, not the power rails they connect to, nor the component technology they contain.

On the VX3230 PCI 32 XMC/PMC slot, only two XMC/PMC types must be intalled:

>> +3.3V PMC

It is designed to work only in a +3.3V signaling level and will only have a keying hole.

>>> Universal PMC

It supports both voltages (+5V and +3.3V). This PMC is capable of detecting the signaling level in use and adapting itself to that environment. It has two keying holes (+5V and +3.3.V) and can, therefore, be plugged into either signaling level.

As no PMC voltage selection key is provided on the board, make sure not to insert a +5V PMC on the board. Failture to observe this restriction may result in damage to the PMC or the VX3230.

Chapter 3 - Installation

The VX3230 has been designed for easy installation. However, the following standard precautions, installation procedures, and general information must be observed to ensure proper installation and to preclude damage to the board, other system components, or injury to personnel.

3.1 Safety Requirements

The following safety precautions must be observed when installing or operating the VX3230. Kontron assumes no responsibility for any damage resulting from failure to comply with these requirements.

Due care should be exercised when handling the board due to the fact that the heat sink can get very hot. Do not touch the heat sink when installing or removing the board.

In addition, the board should not be placed on any surface or in any form of storage container until such time as the board and heat sink have cooled down to room temperature.

This board contains electrostatically sensitive devices. Please observe the necessary precautions to avoid damage to your board:

- Discharge your clothing before touching the assembly. Tools must be discharged before use.
- Do not touch components, connector-pins or traces.
- If working at an anti-static workbench with professional discharging equipment, please do not omit to use it.

3.2 Board Identification

The VX3230 boards are identified by labels fitted to the top and bottom sides.

>> Top Side

C

- "Order Code" label.
- B "Serial Number" label.
 - "Functional Identification" label (Variant + E.C. level)

Figure 21: VX3230 Identification (Top Side)

>> Bottom Side

- "GbE1 Ethernet Number" label: This number is in hexadecimal.
- "GbE2 Ethernet Number" label: This number is in hexadecimal.

Е

"U-Boot Firmware" label.

Figure 22: VX3230 Identification (Bottom Side)

3.3 Board Configuration

Figure 23: Board Configuration

One 4-bit DIP switches are available on the VX3230: SW1.

3.3.1 DIP Switch SW1 Description

DIP Switch SW1	Function	Description
1	Not used	
2	Flash Boot Mode#	ON(0)Boot in Rescue ModeOFF(1)Boot in Standard Mode
3	Boot Flash WP#	ON(0)Boot Flash Write ProtectedOFF(1)Boot Flash Write Enabled
4	Factory Mode#	ON (0) Factory Mode OFF (1) Normal Mode
3.4 Package Content

The VX3230 is packaged with several components. The packing contents of the VX3230 Series may vary depending on customer requests.

- > CPU Module
 - Order Code: refer to section 1.3.2 "Order Code Table" page 6
 - Processor specifications differ depending on Order Code
 - Heat sink assembled on the board
- > Rear Transition Module
 - Order Code: refer to section 1.3.2 "Order Code Table" page 6
- > USB Flash Disk Module
 - Order Code: refer to section 1.3.2 "Order Code Table" page 6
- > CD-ROM Technical Documentation

3.5 Initial Installation Procedures

The following procedures are applicable only for the initial installation of the VX3230 in a system. Procedures for standard removal and hot swap operations are found in their respective chapters.

To perform an initial installation of the VX3230 in a system proceed as follows:

1. Ensure that the safety requirements indicated in Chapter 3.1 are observed.

Failure to comply with the instruction below may cause damage to the board or result in improper system operation.

2. Ensure that the board is properly configured for operation in accordance with application requirements before installing. For information regarding the configuration of the VX3230 refer to Chapter 4. For the installation of VX3230 specific peripheral devices and Rear I/O devices refer to the appropriate chapters in Chapter 3.

Care must be taken when applying the procedures below to ensure that neither the VX3230 nor other system boards are physically damaged by the application of these procedures.

- 3. To install the VX3230 perform the following:
 - 1. Ensure that no power is applied to the system before proceeding.

When performing the next step, DO NOT push the board into the backplane connectors. Use the ejector handles to seat the board into the backplane connectors.

- 2. Carefully insert the board into the slot designated by the application requirements for the board until it makes contact with the backplane connectors.
- 3. Using the ejector handle, engage the board with the backplane. When the ejector handle is locked, the board is engaged.
- 4. Fasten the front panel retaining screws.
- 5. Connect all external interfacing cables to the board as required.
- 6. Ensure that the board and all required interfacing cables are properly secured.

The VX3230 is now ready for operation. For operation of the VX3230, refer to appropriate VX3230 specific software, application, and system documentation.

3.6 Standard Removal Procedure

To remove the board proceed as follows:

1. Ensure that the safety requirements indicated in Chapter 3.1 are observed. Particular attention must be paid to the warning regarding the heat sink!

Care must be taken when applying the procedures below to ensure that neither the VX3230 nor system boards are physically damaged by the application of these procedures.

- 2. Ensure that no power is applied to the system before proceeding.
- 3. Disconnect any interfacing cables that may be connected to the board.
- 4. Unscrew the front panel retaining screws.
- 5. Disengage the board from the backplane by first unlocking the board ejection handles and then by pressing the handles as required until the board is disengaged.
- 6. After disengaging the board from the backplane, pull the board out of the slot.

Due care should be exercised when handling the board due to the fact that the heat sink can get very hot. Do not touch the heat sink when changing the board.

7. Dispose of the board as required.

3.7 Installation of Peripheral Devices

The VX3230 is designed to accommodate a variety of peripheral devices whose installation varies considerably. The following chapters provide information regarding installation aspects and not detailed procedures.

3.7.1 USB Device Installation

The VX3230 supports all USB plug and play computer peripherals.

All USB devices may be connected or removed while the host or other peripherals are powered up.

>>> USB Flash Disk Installation

Figure 24: USB Flash Disk Bottom View

The USB Flash module is fixed to the board, by using:

- on one side the CN5 connector,
- on the other side, a screw (1) maintained on the VX3230 board allows the USB Flash module to be screwed with a nut (2).

Figure 25: USB Flash Installation

3.7.2 Battery Replacement

The lithium battery must be replaced with an identical battery or a battery type recommended by the manufacturer.

To replace the battery, proceed as follows:

- > Turn off power.
- Use a thin plastic tool to push the battery outside the safety cache. Push from the right or left top side of the safety cache.
- > Remove the battery.
- > Place the new battery in the socket.
- > Make sure that you insert the battery the right way round. The plus pole must be on the top!

Care must be taken to ensure that the battery is correctly replaced. The battery should be replaced only with an identical or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

3.7.3 PMC Installation

PMC modules are delivered with a full kit of parts for mounting them, and the user guide for the module normally contains instructions on how to fit the module.

The installation of the PMC on the VX3230 conforms to the IEEE P1386.1 standard.

To install the XMC/PMC module, refer to Figure 26 to Figure 28 and follow the steps below:

To avoid ESD damage, wear an antistatic wrist strap to discharge static electricity while performing any part of the installation that involves touching the VX3230 board or the XMC/PMC.

If you can't wear an antistatic wrist strap, touch one hand to the bare metal surface to provide grounding.

- 1. Place carefully the VX3230 with the backplane connectors facing you on a static dissipative surface connected to a common ground by a low-resistance connection. Do not slide the board over any surface.
- 2. Remove the blanking plate from the appropriate XMC/PMC slot of the VX3230.
- 3. Check that the standoffs are attached to the XMC/PMC.
- 4. Install the XMC/PMC, component-side down, aligning the PCI connectors with their mating connectors on the VX3230 and the XMC connector if available. Press them together so that the friction from the pins holds them together. Insert the standoff plug mounted on the VX3230 into the keyhole. The module's bezel will fill the slot and provide a connection to the module.

As no PMC voltage selection key is provided on the board, make sure not to insert a +5V PMC on the board. Failture to observe this restriction may result in damage to the PMC or the VX3230. Refer to section 2.9.1 "Signaling Voltage Keying Pin" page 55 for more information on this topic.

- 5. Screw the XMC/PMC in place using the 4 mounting points, on the bottom side of the VX3230 . You need a Phillips screwdriver for this stage.
- 6. The XMC/PMC attachment is now complete.
- 7. Insert the VX3230 into the chassis making sure it is plugged into the backplane.

Figure 26: PMC Installation on PMC Site

3.7.4 XMC Installation

The XMC board standard is based on the PMC mechanical definition, and occupies the same board area.

The XMC board adds one new connector to the connectors already on a PMC. The new connector supports high-speed differential signals for fabric communications.

Figure 27: Example of XMC Board

Figure 28 shows a XMC installation on the PMC/XMC Site.

Figure 28: XMC Installation on XMC Site

3.8 Software Installation

The installation of all onboard peripheral drivers is described in detail in the relevant Driver Kit files or Board Support Packages (BSP).

Installation of an operating system is a function of the OS software and is not addressed in this manual. Refer to appropriate OS software documentation for installation.

Chapter 4 - Programming Interface

4.1 Interrupt Routing

The MPC8544 controller has twelve dedicated interrupt inputs. These inputs are used on the VX3230 board according to the following table:

Pin	Desc	ription
IRQ0	Reserved	PCIe1 INT1
IRQ1	PCI_INTC#	PCIe1 INTB
IRQ2	PCI_INTD#	PCIe1 INTC
IRQ3	PCI_INTA#	PCIe1 INTD
IRQ4	PCI_INTB#	PCIe2 INTA
IRQ5	Reserved	PCIe2 INTB
IRQ6	Reserved	PCIe2 INTC
IRQ7	Reserved	PCIe2 INTD
IRQ8	Watchdog Timer	PCIe3 INTA
IRQ9	Thermal Alert / Timer	PCIe3 INTB
IRQ10	GPIO Interrupt	PCIe3 INTC
IRQ11	Reserved	PCIe3 INTD

Table 37: Interrupt Routing

4.2 Memory Mapping

LAW	BAT	LCS	Description	Size	Start Address
		CS0	NOR Flash 0	8 MB	0xFF80_0000
-	-	-	Unused	120 MB	0xF800_0000
		CS4	NvSRAM	64 MB	0xF400_0000
		CS3	Onboard Registers	64 MB	0xF000_0000
-	-	-	Unused	192 MB	0xE400_0000
8	1	-	PCI Express 2 I/O	16 MB	0xE300_0000
6	2	-	PCI Express 1 I/O	16 MB	0xE200_0000
3	0	-	PCI I/O	16 MB	0xE100_0000
-	-	-	Unused	15 MB	0xE010_0000
-	-	-	CCSRBAR	1 MB	0xE000_0000
2	0	-	PCI MEM	512 MB	0xC000_0000
-	-	-	Unused	224 MB	0xB200_0000
9	3	-	PCI Express 3 I/O	16 MB	0xB100_0000
9	3	-	PCI Express 3 MEM	16 MB	0xB000_0000
7	1	-	PCI Express 2 MEM	512 MB	0x9000_0000
5	2	-	PCI Express 1 MEM	256 MB	0x8000_0000
1	F	-	DDR2 SDRAM	2 GB	0x0000_0000

Table 38: Memory Mapping

4.3 CPLD System Registers Mapping

Register	Address	See
Firmware POST Code	0xF000_0080 - 0xF000_0081	section 4.4.1
Debug POST Code	0xF000_0084 - 0xF000_0085	section 4.4.2
Memory Configuration	0xF000_0002	section 4.4.3
Local I2C Command	0xF000_0004	section 4.4.4
Local I2C Data	0xF000_0005	section 4.4.5
Reserved	0xF000_0006	
Interface Configuration	0xF000_0008	section 4.4.6
Reserved	0xF000_0009	
Firmware Configuration	0xF000_0280	section 4.4.7
CPLD Interrupt	0xF000_0281	section 4.4.8
Watchdog Timer Control	0xF000_0282	section 4.4.9
GPIO Interrupt Configuration	0xF000_0283	section 4.4.10
Logic Revision	0xF000_0284	section 4.4.11
Host Reset Status	0xF000_0285	section 4.4.12
Host I/O Status	0xF000_0286	section 4.4.13
Host I/O Configuration	0xF000_0287	section 4.4.14
Board ID	0xF000_0288	section 4.4.15
GPIO Status / Command	0xF000_0289	section 4.4.16
GPIO Control	0xF000_028A	section 4.4.17
User-Specific LED Configuration	0xF000_028B	section 4.4.18
Reserved	0xF000_028C	
User-Specific LED Control	0xF000_028D	section 4.4.19
PCI Mode	0xF000_028E	section 4.4.20
Timer MSB Byte	0xF000_028F	section 4.4.21
Timer MUB Byte	0xF000_0290	section 4.4.22
Timer MLB Byte	0xF000_0291	section 4.4.23
Timer LSB Byte	0xF000_0292	section 4.4.24
Logic Sub-Revision	0xF000_0293	section 4.4.25
COM1/2 Configuration	0xF000_0294	section 4.4.26
VPX	0xF000_0295	section 4.4.27
VPX Reset	0xF000_0296	section 4.4.28
Geographical Addressing	0xF000_0297	section 4.4.29
VPX Common Clock	0xF000_0298	section 4.4.30
VPX PCIe Switch	0xF000_0299	section 4.4.31
Open VPX	0xF000_029A	section 4.4.32
GPIO4	0xF000_029B	section 4.4.33

Table 39: CPLD System Registers Mapping

4.4 CPLD System Registers Description

4.4.1 Firmware POST Code Register

>> Firmware Post Code register low

REGISTER NAME		POST CODE low			
ADDRESS		0xF000_0080			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7 - 0	PST	Default POST code output low byte	0x00	R/W	

>> Firmware Post Code register high

REGISTER NAME		POST CODE low			
ADDRESS		0xF000_0081			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7 - 0	PST	Default POST code output high byte	0x00	R/W	

4.4.2 Debug POST Code Register

>> Debug Post Code register low

REGISTER NAME		DEBUG POST CODE low		
ADDRESS		0xF000_0084		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	PST	Debug POST code output low byte	0x00	R/W

>>> Debug Post Code register high

REGISTER NAME		DEBUG POST CODE low		
ADDRESS		0xF000_0085		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	PST	Debug POST code output high byte	0x00	R/W

4.4.3 Memory Configuration Register

This register is used to inform the formware about the characteristics of the memory on the VX3230 board.

	ER NAME	Memory Configuration			
ADD	RESS	0xF000_0002			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7	Res	Reserved	0	R	
6 - 5	MEM_SP	DDR2 memory speed: 00 = DDR2 333 MHz / CPU 667 MHz 01 = DDR2 400 MHz / CPU 800 MHz 10 = DDR2 533 MHz / CPU 1067 MHz 11 = DDR2 400 MHz / CPU 1000 MHz	N/A	R	
4	ECC	Error Checking and Correcting: 0 = ECC not enabled 1 = ECC enabled	N/A	R	
3	Res.	Reserved	0	R	
2 - 1	MEM_SZ	Memory size: 00 = reserved 01 = reserved 10 = Chip size 1 Gb 11 = Chip size 2 Gb	N/A	R	
0	MEM_BK	Memory bank: 0 = one physical Bank is equipped 1 = two physical banks are populated	N/A	R	

4.4.4 Local I2C Command Register

This register control the CPLD system I2C master module of the VX3230 board.

	ER NAME RESS	Local I2C Command 0xF000_0004		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7	Strobe/- Busy	Read: Busy 0 = Interface is idle 1 = Interface is not idle, no futher access allowed Write: Strobe 0 = Interface is idle 1 = Interface generates condition (defined by ModeBits)	0	R/W
6	SetAck/- GetAck	Read: getAck 0 = last recept bit was no acknowledge bit 1 = last recept bit was acknowledge bit Write: setAck 0 = NACK will be sent after next transferred bit 1 = ACK will be sent after next transferred bit	0	R/W
5 - 2	Res.	Reserved	0	R
1 - 0	Mode[1:0]	00 generate Stop Condition 01 generate Start Condition 10 send byte 11 receive byte	0	R/W

4.4.5 Local I2C Data Register

	REGISTER NAME		Local I2C data				
ADDRESS 0		0xF000_0005					
	BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
	7 - 0	I2C_DATA	Local I2C bus data	0	R/W		

4.4.6 Interface Configuration Register

REGISTER NAME		Interface Configuration			
ADDRESS		0xF000_0008	0xF000_0008		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7 - 0	Res.	Reserved	1	R	

4.4.7 Firmware Configuration register

REGISTER NAME		Firmware Configuration			
ADD	RESS	0xF000_0280			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7 - 0	Res.	Reserved	0	R	

4.4.8 **CPLD** Interrupt Register

REGISTER NAME		CPLD Interrupt		
ADE	DRESS	0xF000_0281		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7	TIM	Timer interrupt 1 = Timer interrupt is occured 0 = No interrupt occurs Writing '1' to this bit clears the bit	0	R/W
6	TEMP_LED	Temperature Alert indicator 1 = Temperature Alert indicator is on 0 = Temperature Alert indicator is off Writing '1' to this bit clears the bit	0	R/W
5	SMB	SMB_ALERT interrupt 1 = No interrupt occurs 0 = SMB_ALERT is activated Writing '0' to this bit clears the bit	1	R
4	TEMP	TEMP_ALERT interrupt 1 = No interrupt occurs 0 = TEMP_ALERT is activated Writing '0' to this bit clears the bit	1	R
3	GPIO3_IRQ	GPIO3 interrupt 1 = Interrupt occurs on GPIO1 signal 0 = No interrupt occurs Writing '1' to this bit clears the bit	0	R/W
2	GPIO2_IRQ	GPIO2 interrupt 1 = Interrupt occurs on GPIO1 signal 0 = No interrupt occurs Writing '1' to this bit clears the bit	0	R/W
1	GPIO1_IRQ	GPIO1 interrupt 1 = Interrupt occurs on GPIO1 signal 0 = No interrupt occurs Writing '1' to this bit clears the bit	0	R/W
0	GPIO0_IRQ	GPIO0 interrupt 1 = Interrupt occurs on GPIO0 signal 0 = No interrupt occurs Writing '1' to this bit clears the bit	0	R/W

- A GPIO*x* interrupt causes a rising edge or a high level on IRQ10 signal. - A thermal interrupt (SMB_ALERT or TEMP_ALERT) causes a rising edge or a high level on IRQ9 signal.

- When a thermal interrupt occurs, the temperature alert indicator (LED1 in red) is switcghed on until the bit TEMp_LED of the CPLD Interrupt register is cleared.

4.4.9 Watchdog Timer Control Register

REGIST	ER NAME	Watchdog Timer Control		
ADE	DRESS	0xF000_0282		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7	WTE	Watchdog timer expired status bit:	0	R
6-5	WMD[1:0]	Watchdog Mode: 00 = Timer only mode 01 = Reset mode 10 = Interrupt mode 11 = Cascaded mode (dual-stage mode)	00	R/W
4	WEN/WTR	Watchdog enable /Watchdog trigger control bit: 0 = Watchdog Timer not enabled 1 = Watchdog Timer enabled / Watchdog Trigger See also WDG_LOCK bit register 0xF000_0287	0	R/W
3-0	WTM	Watchdog Timer timeout Time: 0000 = 0.125 s 0001 = 0.25 s 0010 = 0.5 s 0011 = 1 s 0100 = 2 s 0101 = 4 s 0110 = 8 s 0111 = 16 s 1000 = 32 s 1001 = 64 s 1010 = 128 s 1011 = 256 s 1100 = reserved 1101 = reserved 1110 = reserved 1111 = reserved	0	R/W

GPIO Interrupt Configuration Register 4.4.10

REGISTER NAME ADDRESS		GPIO Interrupt Configuration 0xF000 0283		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7		GPIO3 sensitivity: 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W
6	IRQSENS [7:4]	GPIO2 sensitivity: 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W
5	- [/. -]	GPIO1 sensitivity: 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W
4		GPIO0 sensitivity: 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W
3		GPIO3 Interrupt mode: 0 = GPIO3 IRQ is in edge mode 1 = GPIO3 IRQ is in level mode	0	R/W
2	IRQMODE [3:0]	GPIO2 Interrupt mode: 0 = GPIO2 IRQ is in edge mode 1 = GPIO2 IRQ is in level mode	0	R/W
1		GPIO1 Interrupt mode: 0 = GPIO1 IRQ is in edge mode 1 = GPIO1 IRQ is in level mode	0	R/W
0		GPIO0 Interrupt mode: 0 = GPIO0 IRQ is in edge mode 1 = GPIO0 IRQ is in level mode	0	R/W

4.4.11 Logic Revision Register

REGISTER NAME			Logic Revision Register		
ADD	RESS		0xF000_0284		
BIT	NAME		DESCRIPTION	RESET VALUE	ACCESS
7-0	LR[7:0]	Logic Revision: Start Value = 0x01		N/A	R

4.4.12 Host Reset Status Register

REGISTER NAME ADDRESS		Host Reset Status 0xF000_0285		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7	PHRST	Power-on host reset detection: 0 = System reset generated by software (warm reset) 1 = System reset generated by power-on (cold reset)	N/A	R
6-5	Res.	Reserved	00	R
4	SYRST	System reset function: 0 = VX3230 is running 1 = A reset condition will be generated	0	R/W
3	Res.	Reserved	0	R
2	VPXRST	VPX Controller reset function: 0 = System reset generated by other reset sources 1 = System reset generated by the VPX Writing a logical '1' clears the bit	0	R/W
1	MANRST	Manual Button reset function: 0 = System reset generated by other reset sources 1 = System reset generated by the push button Writing a logical '1' clears the bit	0	R/W
0	HWRST	Watchdog timer resets: 0 = System reset generated by other reset source 1 = System reset generated by Watchdog timer Writing a logical '1' clears the bit	0	R/W

4.4.13 Host I/O Status Register

REGISTER NAME		Host I/O Status			
ADD	RESS		0xF000_0286		
BIT	NAME	DESCRIPTIO	NC	RESET VALUE	ACCESS
7	FACT.	Factory Mode: 0 = Factory mode is enabled 1 = Factory mode is disabled		0	R
6	F_LOC (1)	Flash Location in Normal Mode 0 = Lower location 1 = Upper location		0	R/W
5	BFC	Boot Flash Configuration 0 = Boot from Rescue Mode 1 = Boot from Normal Mode		N/A	R
4-0	Res.	Reserved		0	R
(1) F_LOC is writable only if BFC is in "Normal Mode".					

4.4.14 Host I/O Configuration Register

REGISTER NAME ADDRESS		Host I/O Configuration			
BIT	NAME	0xF000_0287 DESCRIPTION	RESET VALUE	ACCESS	
7	WDG_LOCK	Lock/Unlock Watchdog: 0 = watchdog is unlocked and can be stopped for test mode 1 = watchdog is locked after setting WEN bit register 0xF000_0282 Only a board reset can clear WDG_LOCK bit	0	R/WO	
6-4	Res.	Reserved	0	R	
3	USB1_DIR	USB1 Direction 0 = USB Flash 1 = Rear panel	0	R/W	
2	USB0_DIR	USB1 Direction 0 = Front panel 1 = Rear panel	0	R/W	
1	ETH1_LS	ETH1 Lan Switch 0 = Front panel 1 = Rear panel	0	R/W	
0	ETH0_LS	ETH0 Lan Switch 0 = Front panel 1 = Rear panel	0	R/W	

4.4.15 Board ID Register

REGISTER NAME		Board ID			
ADDRESS		0xF000_0288			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7	BID	Board Identification 0 = VM6250 board 1 = VX3230 board	N/A	R	

4.4.16 GPIO Status / Command Register

	ER NAME RESS	GPIO Status / Command 0xF000 0289		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7-4	Res.	Reserved	0	R
3	GPIO	GPIO3 Status in input mode GPIO3 Command in output mode	1	R/W
2		GPIO2 Status in input mode GPIO2 Command in output mode	1	R/W
1		GPIO1 Status in input mode GPIO1 Command in output mode	1	R/W
0		GPIO0 Status in input mode GPIO0 Command in output mode	1	R/W

4.4.17 GPIO Control Register

	REGISTER NAME ADDRESS		GPIO Control 0xF000_028A		
	BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
	7		GPIO3 interrupt activation 0 = GPIO3 interrupt mode is disabled 1 = GPIO3 interrupt mode is enabled	0	R/W
	6	GPIOIRQ [7:4]	GPIO2 interrupt activation 0 = GPIO2 interrupt mode is disabled 1 = GPIO2 interrupt mode is enabled	0	R/W
	5	[7.4]	GPIO1 interrupt activation 0 = GPIO1 interrupt mode is disabled 1 = GPIO1 interrupt mode is enabled	0	R/W
	4		GPIO0 interrupt activation 0 = GPIO0 interrupt mode is disabled 1 = GPIO0 interrupt mode is enabled	0	R/W
	3		GPIO3 mode 0 = GPIO3 is configured in input 1 = GPIO3 is configured in output	0	R/W
	2	GPIOCTRL [3:0]	GPIO2 mode 0 = GPIO2 is configured in input 1 = GPIO2 is configured in output	0	R/W
_	1		GPIO1 mode 0 = GPIO1 is configured in input 1 = GPIO1 is configured in output	0	R/W
	0		GPIO0 mode 0 = GPIO0 is configured in input 1 = GPIO0 is configured in output	0	R/W

4.4.18 User-Specific LED Configuration Register

The User-Specific LED Configuration Register holds a series of bits defining the onboard configuration for the front panel User-Specific LEDs.

REGISTER NAME		User-Specific LED Configuration			
ADD	RESS	0xF000_028B			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS	
7-4	Res.	Reserved	0000	R	
3-0	ULCON	User-Specific LED Configuration 0000 = Reserved 0001 = Normal Mode ⁽¹⁾ 0010 = User Mode ⁽²⁾ 0011 - 1111 = Reserved	0001	R/W	

Table 40: User-Specific LED Configuration Register

Regardless of the selected configuration, the User-Specific LEDs are used to signal some fatal onboard hardware errors, such as:

- ULED0: Board or VPX over temperature alarm (red)
- ▶ ULED1: MPC8544 is stopped in CHECKSTOP state (red)
- ULED2: Factory mode is activated (red)

⁽¹⁾ Configured for Normal Mode, the User-Specific LEDs are dedicated to functions as follows:

- ULED0: PCI activity (green)
- ULED1: MPC8641 local bus activity (green)
- ULED2: LINK SATA activity (green)

For further information on reading the 8-Bit POST Code, refer to section 2.3.1, "Front Panel LEDs".

⁽²⁾ Configured for User Mode, the User-Specific LEDs are dedicated to functions as follows:

- ▶ ULED0: Module LED 0, controlled by user (green/amber/red)
- ▶ ULED1: Module LED 1, controlled by user (green/amber/red)
- ▶ ULED2: Module LED 2, controlled by user (green/amber/red)

4.4.19 User-Specific LED Control Register

REGISTER NAME ADDRESS		User-Specific LED Control 0xF000 028D		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7-4	ULCMD	User-Specific LED command: 0000 = get Module LED 0 0001 = get Module LED 1 0010 = get Module LED 2 0111 = Reserved 1000 = set Module LED 0 1001 = set Module LED 1 1010 = set Module LE 2 1111 = Reserved	0000	R/W
3-0	ULCOL	User-Specific LED color: 0000 = off 0001 = green 0010 = red 0011 = amber reserved 1001 = green, fast blinking 1010 = red, fast blinking 1011 = amber, fast blinking	0000	R/W

4.4.20 PCI Mode Register

		PCI Mode				
ADL	DRESS	0xF000_028E				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
7-4	Res.	Reserved	0000	R		
3	PCI_FREQ	PCI Frequency: 0 = PCI frequency equal to 33 MHz 1 = PCI frequency equal to 66 MHz	0	R		
2	PCI_ BUSMODE1	PCI BUSMODE1: 0 = PMCB board is connected 1 = PPMCB board is not present	1	R		
1	XMC_MPRES	XMC_MPRES# : 0 = XMC board is connected 1 = XMC board is not present	1	R		
0	PCI_RST	PCI Reset 0 = PCI Reset activated 1 = PCI Reset deactivated	0	R		

4.4.21 Timer MSB Byte Register

REGISTER NAME Timer MSB Byte Register				
ADDRESS 0xF000_028F				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	MSB	Counter value	0	R

4.4.22 Timer Middle Upper Byte Register

REGISTER NAME		Timer Middle Upper Byte Registe	ister			
ADDRESS 0xF000_0290						
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
7 - 0	MUB	Counter value	0	R		

4.4.23 Timer Middle Lower Byte Register

REGISTER NAME		Timer Middle LSB Register		
ADD	RESS	0xF000_0291		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	MLB	Counter value	0	R

4.4.24 Timer LSB Byte Register

REGIST	ER NAME	Timer LSB Register		
ADDRESS 0xF000_0292				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	LSB	Counter value	0	R

4.4.25 Logic Sub-Reviision Register

REGISTER NAME		Logic Sub-Revision		
ADDRESS		0xF000_0293		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 0	LSR	Logic Sub-Revision: Start Value = 0x00	N/A	R

4.4.26 COM1/2 Configuration Register

	ER NAME	COM1/2 Configuration		
ADDRESS		0xF000_0294		
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7	Res.	Reserved	0	R
6 - 4	COM2	COM2 Port Function 000 = interface is off 001 = 231, full duplex 010 - 011 = 232, half duplex, RTS# controlled: 1/0 send/receive In the following, s = slew rate: 1/0 = slow/fast. Also, if the port is configured for full duplex mode, the receiver is always on. 10s = 485, full duplex, RTS# controlled: 1/0 = trans- mitter off/on 11s = 485, half duplex, RTS# controlled: 1/0 = send/- receive	001	R/W
3	Res.	Reserved	0	R
2 - 0	COM1 (1)	COM1 Port Function 000 = interface is off 001 = 231, full duplex 010 - 011 = 232, half duplex, RTS# controlled: 1/0 send/receive In the following, s = slew rate: 1/0 = slow/fast. Also, if the port is configured for full duplex mode, the receiver is always on. 10s = 485, full duplex, RTS# controlled: 1/0 = trans- mitter off/on 11s = 485, half duplex, RTS# controlled: 1/0 = send/- receive	001	R/W

(1) In "Rescue Mode" (BFC in Host I/O Status Register = 0), COM1 is forced in EIA-232 full duplex mode.

4.4.27 VPX Register

	ER NAME RESS	VPX register 0xF000_0295				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
7	SW_NT	PCIe Switch Non Transparent port activation 0 = Non Transparent port activated 1 = Non Transparent port deactivated	0	R/W		
6	SW_INT1	PCIe Switch Interrupt	1	R		
5	SMB1_ENA	SMBUS #1 Activation 0 = SMB #1 not used 1 = I2C two connected to SMB #1	0	R/W		
4	SW_ERR	PCIe Switch Fatal Error 0 = Fatal Error generated	1	R		
3	NT_RST	Non Transparent PCIe Switch reset 0 = Non Transparent reset activated	1	R		
2	Res.	Reserved	0	R		
1	NVMRO	VPX NVMRO 0 = All non-volatile memory is write enabled 1 = All non-volatile memory is write protected	N/A	R/W (1)		
1	NVMRO	VPX NVMRO 0 = all non-volatile memory is write protected 1 = I2C two connected to SMB #1	N/A	R/W (1)		
0	SPI_CS	PCIe Switch SPI EEPROM 0 = Read allowed 1 = Read not allowed	N/A	R/W		

(1) NVMRO is writable when System controller.

VPX Reset Register 4.4.28

	ER NAME RESS	VPX Reset 0xF000 0296				
BIT			RESET VALUE	ACCESS		
7 - 3	Res.	Reserved	0	R		
2	VPX_RST	VPX reset 0 = Generate VPX reset (1)	1	R/W		
1	VPX2LOC	Propagation of VPX reset (SYSRESET*) to the local reset 0 = Reset not propagated 1 = Reset propagated	1	R/W		
0	LOC2VPX	Propagation of local reset (Toggle Switch) to the VPX reset (SYSRESET*) 0 = Reset not propagated 1 = Reset propagated	SYSCON (2)	R/W		

(1) VPX Reset generated only if LOC2VPX = 1

Note (2) Reset value = 1 when System slot, 0 when Peripheral slot

4.4.29 Geographical Addressing Register

REGISTER NAME ADDRESS		Geographical Addressing 0xF000 0297				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
7	SYSCON	VPX System Controller 0 = System Controller 1 = Not System Controller	N/A	R		
6	Res.	Reserved	0	R		
5	GAP	Geographical Address Parity	N/A	R		
4 - 0	GA	Geographical Address	N/A	R		

4.4.30 VPX Common Clock Register

REGISTI	ER NAME	VPX Common Clock					
ADD	RESS	0xF000_0298	0xF000_0298				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS			
7 - 4	Res.	Reserved	0	R			
3	CLK_EN1	P1 PCIe VPX Clock[74] Generation 0 = Enable 1 = Disable	1	R/W			
2	CLK_EN0	P1 PCIe VPX Clock[30] Generation 0 = Enable 1 = Disable	1	R/W			
1	CLK_OE	P0 PCIe VPX Common Clock Activation 0 = Enable 1 = Disable	1	R/W			
0	CLK_SEL	P0 PCIe VPX Common Clock Direction 0 = Enable 1 = Disable	1	R/W			

4.4.31 VPX PCIe Switch Register

REGISTER NAME				
ADD	ADDRESS 0xF000_0298			
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS
7 - 5	Res.	Reserved	0	R
4	FREQ	Maximum Link Speed 0 = 2.5 GT/s 1 = 5 GT/s	0	R/W
3	UPSTRM	Non Transparent Upstream Port Selection 0 = Port 1 1 = Port 9	1 (1)	R
2 - 1	CFG[1:0]	Port Configuration 00 = Reserved 01 = x4, x1, x1, x1, x1 10 = x4, x4 11 = Reserved	01	R/W
0	SSC	VPX PCIe Switch Dual Clocking Operation 0 = Enable 1 = Disable	1 (2)	R/W

(1) UPSTRM = 0 when CFG[1:0] = 10, UPSTRM = 1 when CFG[1:0] = 01 (2) CLK_SEL must be set to input whn asserting the dual clock mode.

4.4.32 Open VPX Register

REGISTER NAME		Open VPX Register				
ADDRESS		0xF000_0298				
BIT	NAME	DESCRIPTION		ACCESS		
7	P1G1	VPX P1G1 (Connector VPX P1 pin G1) Status in input mode VPX P1G1 (Connector VPX P1 pin G1) Command in output mode	1	R/W		
6	P1G1SENS	VPX P1G1 (Connector VPX P1 pin G1) sensitivity: 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W		
5	P1G1MODE	VPX P1G1 (Connector VPX P1 pin G1) interrupt mode activation 0 = P1G1 IRQ is in edge mode 1 = P1G1 IRQ is in level mode	0	R/W		
4	P1G1IRQ	VPX P1G1 (Connector VPX P1 pin G1) interruption: activation 0 = P1G1 IRQ is disabled 1 = P1G1 IRQ is enabled	0	R/W		
3	P1G1CTRL	VPX P1G1 (Connector VPX P1 pin G1) mode: 0 = P1G1 is configured in input 1 = PIG1 is configured in output	0	R/W		
2	MSKR2LOC	propagation of VPX Maskable Reset (MaskableReset*) to the local reset 0 = Reset not propagated 1 = Reset propagated	0	R/W		
1	ETH1_SRDS	ETH1 Interface Mode 0 = Force 1000BASE-T 1 = Auto-Selection	0	R/W		
0	ETH0_SRDS	ETH0 Interface Mode 0 = Force 1000BASE-T 1 = Auto-Selection	0	R/W		

4.4.33 GPIO4 Register

REGISTER NAME		GPIO4 Register				
ADD	RESS	0xF000_0298				
BIT	NAME	DESCRIPTION	RESET VALUE	ACCESS		
7 - 5	Res.	Reserved	0	R		
4	GPIO4_IRQ	GPIO4 Interrupt 1 = Interrupt is occurred on GPIO4 signal 0 = No interrupt occurs Writing '1' to this bit clears the bit.	0	R/W		
3	IRQSENS[4]	GPIO4 sensitivity 0 = IRQ is activated on a falling edge in edge mode or on level 0 in level mode 1 = IRQ is activated on a rising edge in edge mode or on level 1 in level mode	0	R/W		
2	IRQMODE[4]	GPIO4 Interrupt mode 0 = GPIO4 IRQ is in edge mode 1 = GPIO4 IRQ is in level mode	0	R/W		
1	GPIOIRQ[4]	GPIO4 interrupt activation 0 = GPIO4 interrupt mode is disabled 1 = GPIO4 interrupt mode is enabled	0	R/W		
0	GPIOCTRL[4]	GPIO4 mode 0 = GPIO4 is configured in input 1 = GPIO4 is configured in output	0	R/W		

Chapter 5 - Power Considerations

5.1 System Power

The considerations presented in the ensuing chapters must be taken into account by system integrators when specifying the VX3230 system environment.

5.1.1 VX3230

The VX3230 has been designed for optimal power input and distribution. Still it is necessary to observe certain criteria essential for application stability and reliability.

The following table specifies the ranges for the different input power voltages within which the board is functional. The VX3230 is not guaranteed to function if the board is not operated within the prescribed limits.

INPUT SUPPLY VOLTAGE	ABSOLUTE RANGE
+3.3V	3.2V min. to 3.47V max.
+5V	4.85V min. to 5.25V max.
+12V	11.4V min. to 12.6V max.

Table 41: DC Operational Input Voltage Ranges

5.1.2 Backplane

Backplanes to be used with the VX3230 must be adequately specified. The backplane must provide optimal power distribution for the +3.3 V, +5 V and +12 V power inputs. It is recommended to use only backplanes which have at least two power planes for the +3.3 V and +5 V voltages.

Input power connections to the backplane itself should be carefully specified to ensure a minimum of power loss and to guarantee operational stability. Long input lines, under dimensioned cabling or bridges, high resistance connections, etc. must be avoided.

5.1.3 **Power Supply Units**

Power supplies for the VX3230 must be specified with enough reserve for the remaining system consumption. In order to guarantee a stable functionality of the system, it is recommended to provide more power than the system requires. An industrial power supply unit should be able to provide at least twice as much power as the entire system requires. An ATX power supply unit should be able to provide at least three times as much power as the entire system requires.

As the design of the VX3230 has been optimized for minimal power consumption, the power supply unit shall be stable even without minimum load.

Where possible, power supplies which support voltage sensing should be used. Depending on the system configuration this may require an appropriate backplane. The power supply should be sufficient to allow for die resistance variations.

WW Non-industrial ATX PSUs may require a greater minimum load than a single VX3230 is capable of Note creating. When a PSU of this type is used, it will not power up correctly and the VX3230 may hangup. The solution is to use an industrial PSU or to add more load to the system.

The start-up behavior of VPX power supplies is critical for all new CPU boards. These boards require a defined power of sequence and start-up behavior of the power supply.

For information on the required behavior refer to the power supply specifications on the formfactors, org web site and to the VPX specification on the VITA web site (http://www.vita.com)

5.1.3.1 Start-Up Requirement

Power supplies must comply with the following guidelines, in order to be used with the VX3230.

- > Beginning at 10% of the nominal output voltage, the voltage must rise within > 0.1 ms to < 20 ms to the specified regulation range of the voltage. Typically: > 5 ms to < 15 ms.
- > There must be a smooth and continuous ramp of each DC output voltage from 10% to 90% of the regulation band.
- > The slope of the turn-on waveform shall be a positive, almost linear voltage increase and have a value from 0 V to nominal Vout.
- > Maximal power supplies needs during a system start-up:
 - VCC: 1.23A max. during 1.6 milli. sec.
 - VDD: 2.21A max. during 400 micro. sec.

5.1.3.2 Power-Up Sequence

The +5 VDC output level must always be equal to or higher than the +3.3 VDC output during power-up and normal operation.

The time from +5 VDC until the output reaches its minimum in regulation level and from +3.3 VDC until the output reaches its minimum in regulation level must be < 20 ms.

5.1.3.3 Tolerance

The tolerance of the voltage lines is described in the VITA specification (VITA 46.0). The recommended measurement point for the voltage is the VPX connector on the CPU board.

The following table provides information regarding the required characteristics for each board input voltage.

VOLTAGE	NOMINAL VALUE	TOLERANCE	MAX. RIPPLE (P-P)	REMARKS
5V	+5.0 VDC	+5%/-2.5%	50 mV	Main voltage
3.3V	+3.3 VDC	+4.5%/-1.5%	50 mV	Main voltage
+12V	+12 VDC	+5%/-5%	50 mV	Required for PMC/XMC slot
-12V	-12 VDC	+5%/-5%	50 mV	Required for PMC/XMC slot
GND	G	round, not directly co	nnected to potentia	al earth (PE)

Table 42: Input Voltage Characteristics

The output voltage overshoot generated during the application (load changes) or during the removal of the input voltage must be less than 5% of the nominal value. No voltage of reverse polarity may be present on any output during turn-on or turn-off.

5.1.3.4 Regulation

The power supply shall be unconditionally stable under line, load, unload and transient load conditions including capacitive loads. The operation of the power supply must be consistent even without the minimum load on all output lines.

If the main power input is switched off, the supply voltages will not go to 0V instantly. It will take a couple of seconds until capacitors are discharged. If the voltage rises again before it went below a certain level, the circuits may enter a latch-up state where even a hard RESET will not help any more. The system must be switched off for at least 3 seconds before it may be switched on again. If problems still occur, turn off the main power for 30 seconds before turning it on again.

5.1.3.5 Rise Time Diagram

The following figure illustrates an example of the recommended start-up ramp of a VPX power supply for all Kontron boards delivered up to now.

Figure 29: Start-Up Ramp of the CP3-SVE180 AC Power Supply

5.2 Power Consumption

The goal of this description is to provide a method to calculate the power consumption for the VX3230 and for additional configurations. The processor dissipates the majority of the thermal power.

The power consumption tables below list the voltage and power specifications for the VX3230 board. The values were measured using an 5-slot passive VPX backplane.

The operating system used was Linux Fedora 9. All measurements were conducted at a temperature of 25°C. The measured values varied, because the power consumption was dependent on processor activity.

5.2.1 Real Applications

The following tables indicate the power consumption, using real applications with soldered DDR2 SDRAM. The Power Consumption was measured under:

- the BIOS
- Linux IDLE Mode
- Linux with 100% processor load

POWER	MPC8544 1 GHz BIOS measured at 25°C	MPC85441 . GHz Linux IDEL Mode measured at 25°C	MPC85441. GHz Linux 100% Proc. Load measured at 25°C	MPC85441. GHz Linux 100% Proc. Load measured at 85°C	
5V	13.55W	15.74W	16.00W	16.22W	
3.3V	1.68W	1.95W	1.95W	2.77W	
Total	15.23W	17.69W	17.95W	19W	

Table 43: Power Consumption

Chapter 6 - VX3230-RTM Characteristics

6.1 Overview

The VX3230 provides optional Rear I/O connectivity for peripherals, a feature which may be particularly useful in specialized CompactPCI systems. Some standard PC interfaces are implemented and assigned to the front panel and to the Rear I/O connector J2 on the VX3230.

When the VX3230-RTM is used, the signals of some of the main board/front panel connectors may be routed to the module interface. Thus, the VX3230 Rear Transition Module makes it much easier to remove the CPU in the rack as there is practically no cabling on the CPU board.

For the system Rear I/O feature a special backplane is necessary. The CPU board with Rear I/O is compatible with all standard CompactPCI passive backplanes with Rear I/O support on the system slot.

The VX3230-RTM provides the following functions:

- > VPX Rear I/O
- > Two USB 2.0 ports
- > Two Gigabit Ethernet ports without LED signals
- > Two COM (Serial) ports
- > Three SATA ports
- > Two GPIOs
- > One Reset Button
- > One System Management Bus connector
- > One JTAG connector

Several manufacturing options are available:

- ▶ PIM connectors or no PIM connector
- ▶ 10/100/1000BASE-TX or 1000BASE-BX Ethernet interfaces

Available order codes are listed in table below:

Article	Order Code	Description
VX3230-RTM	PB-VX3-000	VX3230 VPX Rear Transition Module, with PIM connectors, 10/100/1000BASE-TX Ethernet interfaces
VX3230-RTM	PB-VX3-001	VX3230 VPX Rear Transition Module, no PIM connector, 10/100/1000BASE-TX Ethernet interfaces
VX3230-RTM	PB-VX3-010	VX3230 VPX Rear Transition Module; with PIM connectors, 1000BASE-BX Ethernet interfaces
VX3230-RTM	PB-VX3-011	VX3230 VPX Rear Transition Module, no PIM connector 1000BASE-BX Ethernet interfaces

Table 44: Order Code

Regarding the Ethernet interfaces manufacturing option, it is strongly recommended to the to use a RTM and a SBC compatible \rightarrow same ethernet manufacturing option.

VX3230-RTM - PB-VX3-001 (no PIM connector)

VX3230-RTM - PB-VX3-000 (with PIM connectors)

Figure 30: VX3230-RTM Overview

6.2 Technical Specifications

VX3230	D-RTM	SPECIFICATIONS	PB-VX3-000 PB-VX3-010	PB-VX3-001	PB-VX3-011
	USB	JSB One USB 2.0 interface: 4-pin connector		Y	Y
Front Panel	Ethernet	Up to two Gigabit Ethernet interfaces implemented as dual RJ-45 connector without LEDs	-	Y (x2)	Y (x1) ETH1 only
Interfaces	СОМ	One serial port (COM1), RS-232 simplified, RJ-11 connector	-	Y	Y
	Reset	One Push Button	Y	Y	Y
	SATA	Three SATA interfaces; SATA1, SATA2 and SATA3	Y (on bottom face)	Y	Y
Onboard	VPX	VPX connector for connecting Rear I/O to the backplane	Y (on bottom face)	Y	Y
Interfaces	СОМ	One serial port (COM2) implemented as a RJ-11 onboard connector, RS-232 simplified	Y	Y	Y
	GPIOs	Two General Purpose I/Os	Y	Y	Y
	USB	One USB interface used to connect a Flash disk	Y (if no PIM module installed)	Y	Y
	SMBus	System management	-	Y	Y
	JTAG		Y	Y	Y
	12C	SMB buses	Y	Y	Y
	PIM	PCI 64 PIM connector	Y	-	-
	Temperature Range	Operational:0°C to +55°CStorage:-55°C to +85°C			
General	Climatic Humidity	99% non-condensing			
	Dimensions	Dimensions: 99.85 mm x 82.54 mm			
	Board Weight	120g			

Table 45: VX3230-RTM Main Specifications

6.3 RTM Configuration

Figure 31: VX3230-RTM MicroSwitch Location

MicroSwitch SW2	FUNCTION	DESCRIPTION
1	NVMRO Non-Volatile Memory Read Only	ON (0) Set NVMRO VPX signal to Ground OFF (1) No action on NVMRO VPX signal Default setting
2	Reserved	Reserved
3	COM1 Differential Termination	ON(0)Connect a 100 Ohms parallel termina- tion between RXD+ and RXD-OFF(1)No differential termination/mode Default setting
4	COM2 Differential Termination	ON(0)Connect a 100 Ohms parallel termina- tion between RXD+ and RXD- OFFOFF(1)No differential termination/ mode Default setting

6.4 Connectors

6.4.1 RTM Connectors Identification

Figure 32: Connector Identification for 3U RTM

6.4.2 Front Panel Connectors

Figure 33: VX3230-RTM Front Panel Connectors

6.4.3 Onboard Connectors

Figure 34: VX3230-RTM Onboard Connectors (PB-VX3-001)

Figure 35: VX3230-RTM Onboard Connectors (PB-VX3-000)

» CN10-R, CN19-R	See section 6.5.1 "COM Interfaces"	page 104
» CN11-R, CN21-R	See section 6.5.2 "USB Interfaces"	page 105
» CN12-R, CN13-R	See section 6.5.3 "Gigabit Ethernet Interfaces"	page 108
» CN14-R, CN15-R, CN16-R	See section 6.5.4 "Serial ATA Interfaces"	page 109
» CN17-R	See section 6.5.5 "GPIO Connector"	page 110
» CN18-R	See section 6.5.6 "JTAG Connector	page 111
» CN20-R	See section 6.5.7 "I2C SM Connector"	page 112
» Reset	See section 6.6 "Reset"	page 113
» RP0, RP1, RP2	See section 6.8 "Rear I/O Interfaces"	page 114
» J10, J14	See section 6.9 "PCI 64 PIM Connector"	page 121

6.5 Modules Interfaces

6.5.1 COM Interfaces

The VX3230-RTM provides two COM (COM1 and COM2) ports for connecting devices to the VX3230-RTM. COM1 serial port RJ-11 connector is located on the front panel of the RTM. COM2 serial port RJ-11 connector is located onboard.

>> COM1 - EIA-232/EIA-485 Simplified

>> COM2 - EIA-232/EIA-485 Simplified

The following figure and table provide pinout information for:

- the 6-pin RJ-11 COM1 connector CN10-R located on the board front panel,
- the 6-pin RJ-11 COM2 connector CN19-R located onboard.

PIN	SIGNAL	FUNCTION
1	RTS/TXDb	EIA-232 Ready-To-Send / EIA-485 Transmit Data (pair b)
2	Shell	Chassis Ground
3	TXD/TXDa	EIA-232 Transmit Data / EIA-485 Transmit Data (pair a)
4	RXD/RXDa	EIA-232Receive Data / EIA-485 Receive Data (pair a)
5	GND	Ground
6	CTS/RXDb	EIA-232 Clear-To-Send / EIA-485 Receive Data (pair b)

CN10-R CN19-R

Table 46: Serial Port Connector Pin Assignment

Figure 36: Serial Port Connector

6.5.2 USB Interfaces

There are two USB 2.0 ports available on the VX3230-RTM, each with a maximum transfer rate of 480 Mb/s provided for connecting USB devices.

- One interface is available on the VX3230-RTM front panel. One USB peripheral may be connected to this port. To connect more USB devices, an external hub is required.
- > The second USB interface is onbard and used to connect a Flash disk.

>> USB Front Panel

The following figure and table provide pinout information for the CN11-R connector located on the front panel.

PIN	SIGNAL	FUNCTION	I/O
1	VCC	VCC	
2	UV0-	Differential USB-	I/O
3	UV0+	Differential USB+	I/O
4	GND	GND	

Table 47: Front Panel USB Connector Pin Assignment

The USB host interfaces on the VX3230-RTM can be used with maximum 500 mA continuous load current as specified in the Universal Serial Bus Specification, Revision 2.0. Short-circuit protection is provided. All the signal lines are EMI-filtered.

Note recommended to use a cable length not exceeding 3 meters.

Figure 37: Front Panel USB Connector

>>> USB Onboard

The onboard USB device (CN21-R connector) is used to connect an USB flash disk module. The following figure and table provide pinout information for the onboard USB connector.

PIN	SIGNAL	FUNCTION	I/O
1	USB_PWR	VCC	
2	N.C.	Not Connected	
3	USB_D-	Differential USB-	I/O
4	N.C.	Not Connected	
5	USB_D+	Differential USB+	I/O
6	N.C.	Not Connected	
7	GND	GND	
8	N.C.	Not Connected	
9	N.C.	Not Connected	
10	N.C.	Not Connected	

Figure 38: Onboard USB Connector

Table 48: Onboard USB Connector Pin Assignment

The USB Flash module is fixed to the board, by using on one side the CN21-R connector, and on the other side, a standoff screwed to the VX3230-RTM board and to the USB Flash module.

Figure 39: USB Flash Disk Overview

Order Code for the USB flash disk:

FDM-USB-xGB-2MM-IV: industrial version with conformal coating for use with rugged versions (x = 4 or 8 GB)

Note Contact Kontron for available capacity.

USB Flash Disk Layout:

- Maximum space reserved for USB flash disk is 36.9 mm x 26.6 mm (LxW)
- ▶ The distance between connector and screw hole is 27.3 mm~27.9mm
- Maximum allowable connector height is 3.68 mm

Figure 40: USB Flash Disk Layout

6.5.3 Gigabit Ethernet Interfaces

The Ethernet connectors are realized as RJ-45 connectors. The interfaces provide automatic detection and switching between 10Base-T, 100Base-TX and 1000Base-T data transmission (Auto-Negotiation). Auto-wire switching for crossed cables is also supported (Auto-MDI/X).

Refer to section 1.3.4 "Ethernet Connectivity" page 9 for more information on the ethernet configuration depending on the ethernet board manufacturing option.

Regarding the Ethernet interfaces manufacturing option, it is strongly recommended to the to use a RTM and a SBC compatible \rightarrow same ethernet manufacturing option.

VX3230-RTM	SPECIFICATIONS	PB-VX3-000 PB-VX3-010	PB-VX3-001	PB-VX3-011
Ethernet Front Panel Interfaces	Up to two Gigabit Ethernet interfaces implemented as dual RJ-45 connector without LEDs	-	Y (x2)	Y (x1) ETH1 only

Figure 41: Gigabit Ethernet Connectors

The two RJ-45 ethernet ports have identical signal assignment. The Ethernet transmission can operate effectively using a CAT5 cable or higher specifications.

	MDI/STANDARD ETHERNET CABLE				MDIX/CROSSED ETHERNET CABLE			ABLE				
10E	BASE-T	100E	BASE-TX	1000	BASE-T	PIN	10BA	SE-T	100E	ASE-TX	1000	BASE-T
I/O	SIGNAL	I/O	SIGNAL	I/O	SIGNAL		I/O	SIG- NAL	I/O	SIGNAL	I/O	SIGNAL
0	TX+	0	TX+	I/O	BI_DA+	1	I	RX+	I	RX+	I/O	BI_DB+
0	TX-	0	TX-	I/O	BI_DA-	2	I	RX-	I	RX-	I/O	BI_DB-
I	RX+	I	RX+	I/O	BI_DB+	3	0	TX+	0	TX+	I/O	BI_DA+
-	-	-	-	I/O	BI_DC+	4	-	-	-	-	I/O	BI_DD+
-	-	-	-	I/O	BI_DC-	5	-	-	-	-	I/O	BI_DD-
I	TX-	I	RX-	I/O	BI_DB-	6	0	TX-	0	TX-	I/O	BI_DA-
-	-	-	-	I/O	BI_DD+	7	-	-	-	-	I/O	BI_DC+
-	-	-	-	I/O	BI_DD-	8	-	-	-	-	I/O	BI_DC-

Table 49: Gigabit Ethernet Connectors Pin Assignment

6.5.4 Serial ATA Interfaces

The onboard Serial ATA connectors CN14-R, CN15-R and CN16-R allow the connection of standard HDDs and other Serial ATA devices to the VX3230 Rear Transition Module.

The following figure and table provide pinout information for the SATA connectors CN14-R, CN15-R and CN16-R.

PIN	SIGNAL	FUNCTION	I/O
1	GND	Ground signal	
2	SATA_TX+	Differential Transmit +	0
3	SATA_TX-	Differential Transmit -	0
4	GND	Ground signal	
5	SATA_RX-	Differential Receive -	I
6	SATA_RX+	Differential Receive +	I
7	GND	Groudn Signal	

Table 50: Onboard SATA Connectors Pin Assignment

Figure 42: Onboard SATA Connectors

When using a Serial ATA cable, it is recommended to use a special right-angled Serial ATA cable due to possible space limitations within the system. For further information, contact Kontron's Technical Support.

6.5.5 GPIO Connector

Routed from RP1 to CN17-R connector (right angle HE10 10-pin connector male).

PIN	SIGNAL	FUNCTION
1	COM1 RXD/RXDa (1)	COM1 EIA-232Receive Data / EIA-485 Receive Data (pair a)
2	COM1 CTS/RXDb (1)	COM1 EIA-232 Clear-To-Send / EIA-485 Receive Data (pair b)
3	GND	Ground
4	GND	Ground
5	COM2 RXD/RXDa (1)	COM2 EIA-232Receive Data / EIA-485 Receive Data (pair a)
6	COM2 CTS/RXDb (1)	COM2 EIA-232 Clear-To-Send / EIA-485 Receive Data (pair b)
7	GPIO 1	General Purpose IO 1
8	GND	Ground
9	GPIO 2	General Purpose IO 2
10	GND	Ground

CN17- R

(1) Pins 1, 2, 5 and 6 can be used to populate a specific differential termination for COM1 and COM2 when used in EIA-422 or EIA-485.

Table 51: Onboard GPIO Connector Pin Assignment

Figure 43: Onboard GPIO Connector

6.5.6 JTAG Connector

Routed from RP0 to CN18-R connector (right angle HE10 10-pin connector male).

PIN	SIGNAL	FUNCTION
1	ТСК	JTAG Test Clock
2	GND	Ground
3	TDO	JTAG Test Data Out
4	3.3V sense	
5	TMS	JTAG Test Mode Select
6	N.C.	Not Connected
7	N.C.	Not Connected
8	TRST*	JTAG Test Reset
9	TDI	JTAG Test Data In
10	GND	Ground

CN18- R

* signal active when low

Table 52: Onboard JTAG Connector Pin Assignment

Figure 44: Onboard JTAG Connector

6.5.7 I2C System Management Connector

Routed from RP0 to CN20-R connector (right angle HE10 10-pin connector male).

PIN	SIGNAL	FUNCTION
1	SMB0 CLK	SM Bus 0 Serial Clock
2	SMB1 CLK	SM Bus 1 Serial Clock
3	GND	Ground
4	GND	Ground
5	SMB0 DAT	SM Bus 0 bi-directional serial data
6	SMB1 DAT	SM Bus 1 bi-directional serial data
7	+3V3_AUX	+3.3V auxiliary power supply
8	+3V3_AUX	+3.3V auxiliary power supply
9	N.C.	Not Connected
10	SMB1 ALERT* (1)	System Management Bus 1 Alert

CN20- R

* signal active when low

(1) SMB1 ALERT* is not defined in the VPX standard and is connected (default) to RESBUS_SE VPX signal.

Table 53: Onboard I2C Connector Pin Assignment

Figure 45: Onboard JTAG Connector

6.6 Reset

Figure 46: VX3230-RTM Reset Push Button

>> Reset and SW1 Reset Switch

The VX3230-RTM generates a system reset signal on the VPX bus at each +5V power-on for a duration of 140 ms to 560 ms.

In addition, the front panel reset push button of the VX3230-RTM is used to generate a VPX bus reset with the same minimum duration.

LEDs

The five LEDs are not connected, and unused.

6.7 Power Consideration

Only the 5V main power from the VPX is used.

The 3.3V and +12V VPX main power are not used in order to accomodate 6U VPX backplane.

Auxiliary VPX voltages 3.3V (I2C connector), +/- 12V (PIM J10 connector) are used.

The 3.3V on the J10 connector is regulated from the 5V input through a 1.5A max linear regulators.

6.8 Rear I/O Interfaces

The VX3230 Rear Transition Module conducts a wide range of I/O signals through the Rear I/O connectors RP0, RP1 and RP2.

- > RP0: one 15-wafer 7-row connector
- > RP1: one 16-wafer 7-row connector
- > RP2: one 8-wafer 7-row connector

To support the Rear I/O feature a special backplane is necessary. Do not plug a Rear I/O configured board in a non-system slot Rear I/O backplane. Failure to comply with the above may result in damage to your board.

Figure 47: Rear I/O VPX Connectors

The VX3230-RTM provides the following interfaces:

- > Two USB 2.0 ports (USB1 and USB2 via RP1 connector)
- > Two Gigabit Ethernet ports without LED signals (ETH0 and ETH1 via RP1 connector)
- > Three SATA ports (SATA0, SATA1 and SATA2 via RP1 connector)
- > Two GPIOs (GPIO1 and GPIO2 via RP1 connector)
- > Two EIA-232/EIA-485 COM ports (COM1 via RP1 connector, COM2 via RP2 connector)

6.8.1 RP2 Connector

>> RP2 Wafer Assignment

RPM Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A	Board Wafer
1	COM2 RTS/TXDb	GND	PMCIO 33	PMCIO 35	GND	PMCIO 34	PMCIO 36	P2 w09
2	GND	PMCIO 37	PMCIO 39	GND	PMCIO 38	PMCIO 40	GND	P2 w10
3	COM2 TXD/TXDa	GND	PMCIO 41	PMCIO 43	GND	PMCIO 42	PMCIO 44	P2 w11
4	GND	PMCIO 45	PMCIO 47	GND	PMCIO 46	PMCIO 48	GND	P2 w12
5	COM2 CTS/RXDb	GND	PMCIO 49	PMCIO 51	GND	PMCIO 50	PMCIO 52	P2 w13
6	GND	PMCIO 53	PMCIO 55	GND	PMCIO 54	PMCIO 56	GND	P2 w14
7	COM2 RXD/RXDa	GND	PMCIO 57	PMCIO 59	GND	PMCIO 58	PMCIO 60	P2 w15
8	GND	PMCIO 61	PMCIO 63	GND	PMCIO 62	PMCIO 64	GND	P2 w16
CASE	GND							

Table 54: Rear I/O VPX Connector RP2 Wafer Assignment

>> RP2 Signal Definition

MNEMONIC	SIGNAL DEFINITION
COM2 CTS/RXDb	Channel EIA-232 x Clear To Send / EIA-485 Receive Data (pair b)
COM2 RTS/TXDb	Channel EIA-232 x Ready To Send / EIA-485 Transmit Data (pair b)
COM2 RXD/RXDa	Channel EIA-232 x Receive Data / EIA-485 Receive Data (pair a)
COM2 TXD/TXDa	Channel EIA-232 <i>x</i> Transmit Data / EIA-485 Transmit Data (pair a)
GND	Ground
PMCIO [3364]	PCI PMC signals - I/Os signals from PMC connector (J14) to RP2 connector

Table 55: Rear I/O VPX Connector RP2 Signal Definition

6.8.2 RP1 Connector

>> RP1 Wafer Assignment

RP1 wafer pin assigment, for wafers 5 up to 8, depends on the Ethernet manufacturing option. Refer to Table 56 and Table 57 below.

> Legend for Table 56:

ETH <i>x</i>	Gigabit Ethernet port	GPIO <i>x</i>	GPIO
COM1	COM1 Serial port	SATAx	Serial ATA port
PMCIO 0132	PMC I/O	USB <i>x</i>	USB port

RPM Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A	Board Wafer
1	USB1 PWR	GND	SATA0 TX-	SATA0 TX+	GND	SATA0 RX-	SATA0 RX+	P1 w09
2	GND	SATA1 TX-	SATA1 TX+	GND	SATA1 RX-	SATA1 RX+	GND	P1 w10
3	USB2 PWR	GND	SATA2 TX-	SATA2 TX+	GND	SATA2 RX-	SATA2 RX+	P1 w11
4	GND	USB1 DA-	USB1 DA+	GND	USB2 DA-	USB2 DA+	GND	P1 w12
5	GPIO1	GND	ETH1 BI_DB-	ETH1 BI-DB+	GND	ETH1 BI_DA-	ETH1 BI-DA+	P1 w13
6	GND	ETH1 BI_DD-	ETH1 BI-DD+	GND	ETH1 BI_DC-	ETH1 BI_DC+	GND	P1 w14
7	GPIO2	GND	ETH0 BI_DB-	ETH0 BI_DB+	GND	ETH0 BI_DA-	ETH0 BI_DA+	P1 w15
8	GND	ETH0 BI_DD-	ETH0 BI_DD+	GND	ETH0 BI_DC-	ETH0 BI_DC+	GND	P1 w16
9	COM1 RTS/TXDb	GND	PMCIO 01	PMCIO 03	GND	PMCIO 02	PMCIO 04	P2 w01
10	GND	PMCIO 05	PMCIO 07	GND	PMCIO 06	PMCIO 08	GND	P2 w02
11	COM1 TXD/TXDa	GND	PMCIO 09	PMCIO 11	GND	PMCIO 10	PMCIO 12	P2 w03
12	GND	PMCIO 13	PMCIO 15	GND	PMCIO 14	PMCIO 16	GND	P2 w04
13	COM1 CTS/RXDb	GND	PMCIO 17	PMCIO 19	GND	PMCIO 18	PMCIO 20	P2 w05
14	GND	PMCIO 21	PMCIO 23	GND	PMCIO 22	PMCIO 24	GND	P2 w06
15	COM1 RXD/RXDa	GND	PMCIO 25	PMCIO 27	GND	PMCIO 26	PMCIO 28	P2 w07
16	GND	PMCIO 29	PMCIO 31	GND	PMCIO 30	PMCIO 32	GND	P2 w08
CASE	GND							

Table 56: Rear I/O VPX Connector RP1 Wafer Assignment (10/100/1000BASE-TX Ethernet Manufacturing Option)

> Legend for Table 57:

ETH <i>x</i> Gigabit Ethernet port			ernet port	GPIOx	GPIO <i>x</i> GPIO			
COM1			•		(Serial ATA port		
PMCIO	0132	PMC I/O	PMC I/O			USB port		
RPM Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A	Board Wafer
1	USB1 PWR	GND	SATA0 TX-	SATA0 TX+	GND	SATA0 RX-	SATA0 RX+	P1 w09
2	GND	SATA1 TX-	SATA1 TX+	GND	SATA1 RX-	SATA1 RX+	GND	P1 w10
3	USB2 PWR	GND	SATA2 TX-	SATA2 TX+	GND	SATA2 RX-	SATA2 RX+	P1 w11
4	GND	USB1 DA-	USB1 DA+	GND	USB2 DA-	USB2 DA+	GND	P1 w12
5	GPIO1	GND	ETH1 BI_DB-	ETH1 BI-DB+	GND	ETH1 BI_DA-	ETH1 BI-DA+	P1 w13
6	GND	ETH1 BI_DD-	ETH1 BI-DD+	GND	ETH1 BI_DC-	ETH1 BI_DC+	GND	P1 w14
7	GPIO2	GND	ETH1 TX-	ETH1 TX+	GND	ETH1 RX	ETH1 RX+	P1 w15
8	GND	ETH0 TX-	ETH0 TX+	GND	ETH0 RX-	ETH0 RX+	GND	P1 w16
9	COM1 RTS/TXDb	GND	PMCIO 01	PMCIO 03	GND	PMCIO 02	PMCIO 04	P2 w01
10	GND	PMCIO 05	PMCIO 07	GND	PMCIO 06	PMCIO 08	GND	P2 w02
11	COM1 TXD/TXDa	GND	PMCIO 09	PMCIO 11	GND	PMCIO 10	PMCIO 12	P2 w03
12	GND	PMCIO 13	PMCIO 15	GND	PMCIO 14	PMCIO 16	GND	P2 w04
13	COM1 CTS/RXDb	GND	PMCIO 17	PMCIO 19	GND	PMCIO 18	PMCIO 20	P2 w05
14	GND	PMCIO 21	PMCIO 23	GND	PMCIO 22	PMCIO 24	GND	P2 w06
15	COM1 RXD/RXDa	GND	PMCIO 25	PMCIO 27	GND	PMCIO 26	PMCIO 28	P2 w07
16	GND	PMCIO 29	PMCIO 31	GND	PMCIO 30	PMCIO 32	GND	P2 w08
CASE	GND							

Table 57: Rear I/O VPX Connector RP1 Wafer Assignment (1000BASE-BX Ethernet Manufacturing Option)

>> RP1 Signal Definition

MNEMONIC	SIGNAL DEFINITION		
COM1 CTS/RXDb	Channel EIA-232 <i>x</i> Clear To Send / EIA-485 Receive Data (pair b)		
COM1 RTS/TXDb	Channel EIA-232 <i>x</i> Ready To Send / EIA-485 Transmit Data (pair b)		
COM1 RXD/RXDa	Channel EIA-232 x Receive Data / EIA-485 Receive Data (pair a)		
COM1 TXD/TXDa	Channel EIA-232 <i>x</i> Transmit Data / EIA-485 Transmit Data (pair a)		
ETH <i>x</i> BI_DA+/-	Ethernet <i>x:</i> First pair of Transmit/receive data.		
ETH <i>x</i> BI_DB+/-	Ethernet <i>x:</i> Second pair of Transmit/receive data.		
ETH <i>x</i> BI_DC+/-	Ethernet <i>x:</i> Third pair of Transmit/receive data.		
ETH <i>x</i> BI_DD+/-	Ethernet <i>x: Fourth</i> pair of Transmit/receive data.		
ETH <i>x</i> RX+/-	1000BASE-BX Ethernet x: Receive data +/-		
ETH <i>x</i> TX+/-	1000BASE-BX Ethernet x: Transmit data +/-		
GND	Ground		
GPIO x	General Purpose I/O x		
PMCIO [0132]			
SATA <i>x</i> RX+/-	Serial ATA <i>x</i> Receive +/-		
SATA <i>x</i> TX+/-	Serial ATA <i>x</i> Transmit +/-		
USB <i>x</i> DA+/-	Differential Data Pair of USB Line <i>x</i>		
USB <i>x</i> PWR	USB Line x		

Table 58: Rear I/O VPX Connector RP1 Signal Definition

6.8.3 RP0 Connector

>> RP0 Wafer Assignment

RPM Wafer	ROW G	ROW F	ROW E	ROW D	ROW C	ROW B	ROW A	Board Wafer
2	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	N.C.	P0 w02
3	+5V	+5V	+5V	+5V	+5V	+5V	+5V	P0 w03
4	SMB1 CLK	SMB1 DAT	GND	-12V_AUX	GND	SYSRESET*	NVMRO	P0 w04
5	N.C.	N.C.	GND	3V3_AUX	GND	SMB0 CLK	SMB0 DAT	P0 w05
6	N.C.	N.C.	GND	+12V_AUX	GND	N.C.	N.C.	P0 w06
7	тск	GND	TDO	TDI	GND	TMS	TRST*	P0 w07
8	GND	N.C.	N.C.	GND	N.C.	N.C.	GND	P0 w08
9	RESBUS_SE	GND	N.C.	N.C.	GND	N.C.	N.C.	P1 w01
10	GND	N.C.	N.C.	GND	N.C.	N.C.	GND	P1 w02
11	N.C.	GND	N.C.	N.C.	GND	N.C.	N.C.	P1 w03
12	GND	N.C.	N.C.	GND	N.C.	N.C.	GND	P1 w04
13	N.C.	GND	N.C.	N.C.	GND	N.C.	N.C.	P1 w05
14	GND	N.C.	N.C.	GND	N.C.	N.C.	GND	P1 w06
15	N.C.	GND	N.C.	N.C.	GND	N.C.	N.C.	P1 w07
16	GND	N.C.	N.C.	GND	N.C.	N.C.	GND	P1 w08
CASE	GND							

* signal active when low

Table 59: Rear I/O VPX Connector RP0 Wafer Assignment

>> RP0 Signal Definition

MNEMONIC	SIGNAL DEFINITION	
+/-12V_AUX	Auxiliary Power Supplies	
3V3_AUX	3.3V Auxiliary Power, System Management	
+5V	+5V Power Input	
GND	Ground	
NVMRO	Non-Volatile Memory Read Only	
N.C.	Not Connected	
SMBy CLK	System Management Bus y - I ² C Bus Clock	
SMBy DAT	System Management Bus y - I ² C Bus Data	
SYSRESET*	System Reset	
ТСК	JTAG signal - Test Clock	
TDI	JTAG signal - Test Data Input	
TDO	JTAG signal - Test Data Output	
TMS	JTAG signal - Test Mode Select	
TRST*	JTAG signal - Test Reset	

* signal active when low

Table 60: Rear I/O VPX Connector RP0 Signal Definition

6.9 PCI 64 PIM Connector

6.9.1 J10 Connector

>> J10 Connector Pin Assignment

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
01	N.C.	02	+12V_AUX	03	N.C.	04	N.C.
05	+5V	06	N.C.	07	N.C.	08	N.C.
09	N.C.	10	+3.3V	11	N.C.	12	N.C.
13	GND	14	N.C.	15	N.C.	16	N.C.
17	N.C.	18	GND	19	N.C.	20	N.C.
21	+5V	22	N.C.	23	N.C.	24	N.C.
25	N.C.	26	+3.3V	27	N.C.	28	N.C.
29	GND	30	N.C.	31	N.C.	32	N.C.
33	N.C.	34	GND	35	N.C.	36	N.C.
37	+5V	38	N.C.	39	N.C.	40	N.C.
41	N.C.	42	+3.3V	43	N.C.	44	N.C.
45	GND	46	N.C.	47	N.C.	48	N.C.
49	N.C.	50	GND	51	N.C.	52	N.C.
53	+5V	54	N.C.	55	N.C.	56	N.C.
57	N.C.	58	+3.3V	59	N.C.	60	N.C.
61	-12V_AUX	62	N.C.	63	N.C.	64	N.C.

>>> Signal Description

MNEMONIC	DESCRIPTION
+/-12V-AUX	Auxiliary Power Supplies
+3.3V	+3.3V Power Input
+5V	+5V Power Input
GND	Ground
N.C.	Not Connected

6.9.2 J14 Connector

>> J14 Connector Pin Assignment

PIN	SIGNAL	FUNCTION
01	PMC64 IO 01	I/O 01 of the motherboard
64	PMC64 IO 64	I/O 64 of the motherboard

Chapter 7 - VX3230-RC Characteristics

Figure 48: VX3230-RC Overview

Several manufacturing options are available:

▶ 10/100/1000BASE-TX or 1000BASE-BX Ethernet interfaces

Available order codes are listed in table below:

	ORDER CODE	DESCRIPTION
		3U VPX Rugged Conduction-Cooled Build SBC
VX3230-RC	VX3230-RCA1N-000	VX3230 Rugged Conduction-Cooled Build, 1GB SDRAM, No User Flash XMC/PMC slot, 10/100/1000BASE-TX Ethernet interfaces
VX3230-RC	VX3230-RCA1N-010	VX3230 Rugged Conduction-Cooled Build, 1GB SDRAM, No User Flash XMC/PMC slot, 1000BASE-BX Ethernet interfaces
		Associated Products
Kit Rib PMC	KIT-RIBPMC1V01-1	Fastening kit for a rugged conduction-cooled PMC

Table 61: VX3230-RC Order Code

7.1 VX3230-RC Specificities

FUNCTION	DESCRIPTION	SEE ALSO
Battery	No battery available onboard	
Board Identification	Specific ruggedizer identification	Section 7.2 page 125
Environmental Specifications	Environmental specifications depend on environmental class	Section 7.3 page 126 Section 1.7.1 page 19
MTBF	MTBF depends on the environmental class	Section 7.4 page 126 Section 1.5.1 page 17
Peripheral Connectivity	No connector available on the board front panel	Section 7.5 page 127
PMC Installation		Section 7.6 page 128

Table 62: VX3230-RC Specificities

7.2 Board Identification

The VX3230-RC boards are identified by labels fitted on top and bottom sides.

These labels are at the same location and have the same meaning as the VX3230-SA boards (refer to section 3.2 "Board Identification" page 57).

In addition, the ruggedizer is identified by:

- AA "Ruggedizer Identification" (printed on the ruggedizer)
- AB "Ruggedizzer dated from" (printed on the ruggedizer)
- AC "Ruggedizer Engineering Change Level" (E.C. Level) label

Figure 49: VX3230-RC Identification (Top Side)

7.3 Environmental Specifications

ENVIRONMENTAL SPECIFICATIONS					
	RC - Rugged Conduction-Cooled				
Conformal Coating	Standard				
Airflow	N.A.				
Temperature	VITA 47-Class CC4				
Cooling Method	Conduction				
Operating	-40°C to +85°C				
Storage	-45°C to +85°C				
Vibration Sine (Operating)	2g / 22-2,000 Hz acceleration / frequency range				
Random	VITA 47-Class V3				
Shock (Operating)	40g / 11ms peak accel. / shock duration half sine				
Altitude (Operating)	-1,640 to 50,000 ft				
Relative Humidity	95% non-condensing				

Table 63: Environmental Specifications

7.4 MTBF Data

Calculations are made according to the standard MIL-HDBK217F-2 for following types of environment:

- > Ground Benign (GB)
- > Air Inhabited Cargo (AIC)
- > Naval Sheltered (NS),
- > Air Rotary Wing (ARW)

>> VX3230-RCA1N-000

	GB (Hours)		AIC NS (H (Hours)		lours)	ARW (Hours)
	25°C	40°C	40°C	25°C	40°C	55°C
VX3230/RC Order Code: VX3230-RCA1N-000	582 211	434 888	82 223	106 714	89 796	21 154

Table 64: VX3230-RC11N-000 MTBF Data

7.5 Peripheral Connectivity

	VX3230-RC				
FUNCTION	PMC/XMC slot				
	Front Panel	Onboard			
Gigabit Ethernet	-	-			
USB0	-	-			
USB1	-	Y (Flash module)			
SATA	-	-			
COM1 -(EIA-232/485)	-	-			
COM2 - (EIA-232 /485)	-	-			
GPIO	-	-			
LED	-	-			
Reset Button	-	-			

Table 65: Peripheral Connectivity

7.6 XMC/PMC Installation

>> Standard Anchorage Points

Attach the XMC/PMC (XMC-ETH2-RC for example) to the VX3230-RC according to the following steps.

- 1. Check that the standoffs are attached to the XMC/PMC. Align the standoffs and the holes at the front, the middle and the rear of the PMC with the matching holes on the VX3230-RC board.
- 2. Lower the XMC/PMC component side down, fitting the mezzanine board connectors into their mating connectors on the VX3230-RC. Press them together so that the friction from the pins holds the mezzanine board in place.
- 3. Screw the XMC/PMC in place using mounting screws (5 at front of the board, 5 in the middle of the board and 2 at the rear of the board). Screws dimension: M2x6mm. Tighten with a torque of 0.383 Nm (0.233 lbf ft). Figure 50 shows the location of the standard anchorage points on an VX3230-RC board.

Figure 50: Standard Anchorage Points on VX3230-RC Board

>> Additional Anchorage Point

In order to satisfy the shock and vibration specifications, foresee an additional anchorage point that could either be the 3.3V keying pin hole. Figure 51 shows the location for an additional anchorage point on an VX3230-RC board.

Figure 51: Additional Anchorage Point on VX3230-RC Board

>> Fastening Kit

Order Code: KIT-RIBPMC1V01-1

- 2x RIB-PMC-1-V01 Two additional ribs
 Only one rib can be installed on the VX3230-RC board.
- 4x VIS-CZX-M2X5-INOX For the ribs assembly on the board
- 10x VIS-CZX-M2.5X6-INOX

▶ 10x VIS-CZX-M2X6-INOX

- For the PMC assembly on the ribs For the PMC assembly on the board For PMC assembly on the board
- black marks below
- (6x)(4x) red marks belowblue marks below

Figure 52: Usage of Fastening Kit Ribs on VX3230-RC Board

MAILING ADDRESS Kontron Modular Computers S.A.S. 150 rue Marcelin Berthelot - BP 244 ZI TOULON EST 83078 TOULON CEDEX - France TELEPHONE AND E-MAIL +33 (0) 4 98 16 34 00 sales@kontron.com support-kom-sa@kontron.com

For further information about other Kontron products, please visit our Internet web site: <u>www.kontron.com</u>.

If it's embedded, it's Kontron.