TRF-250 THREE-PHASE TRANSFORMER TURNS-RATIO METER

USER'S MANUAL

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave. Ontario, California 91761, USA

TEL: (909) 923-9390 FAX: (909) 923-9391

September 2014 Revision 1

SAFETY SUMMARY

FOLLOW EXACT OPERATING PROCEDURES

Any deviation from procedures described in this User's Manual may create one or more safety hazards, damage the TRF-250, damage the test transformer, or cause errors in the test results. Vanguard Instruments Company, Inc. assumes no liability for unsafe or improper use of the TRF-250. The following safety precautions must be observed during all phases of test setup, test hookups, testing, and test lead disconnection.

SAFETY WARNINGS AND CAUTIONS

The TRF-250 shall be used only by **trained operators**. All transformers under test shall be **off-line** and **fully isolated**. Always ground the TRF-250 to a substation ground before connecting the test cables to a transformer. Do not perform test procedures or service unless another person is also present who is capable of rendering aid and resuscitation.

SERVICE AND REPAIR

- Do not install substitute parts or perform any unauthorized modification to any TRF-250 test unit.
- Repairs must be performed only by Vanguard Instruments Company factory personnel or by an authorized repair service provider. Unauthorized modifications can cause safety hazards and will void the manufacturer's warranty.

EQUIPMENT RATINGS

IP Rating: The enclosure for TRF-250 has an IP rating of 32.

Pollution Degree: The TRF-250 has a pollution rating of 2.

Operating Voltage: The TRF-250 is rated for use with an operating voltage of 120V or 240V, auto-ranging ±10% of selected voltage.

Power Cord: The TRF-250 is supplied with a 16 AWG, 16A power cord with a NEMA 5-15P plug. Replacement cable shall have the same or better rating and is available through the manufacturer.

VENTILATION REQUIREMENTS

The TRF-250 must be operated with the enclosure lid open.

SAFETY SYMBOLS

Indicates that caution should be exercised

Indicates location of chassis ground terminal

CLEANING

To clean the TRF-250:

- Disconnect all cables and turn the unit off.
- Use a soft, lint-free cloth to wipe all surfaces clean.
- Avoid getting moisture in openings and connectors.
- Don't use any cleaning products or compressed air.

TABLE OF CONTENTS

CONVI	ENTION	IS USED IN THIS DOCUMENT	1
1.0	INTRO	DUCTION	2
1.1	Gen	eral Description and Features	2
1.2	TRF-	-250 Technical Specifications	4
1.3	Con	trols and Indicators	5
2.0	PRE-TE	EST SETUP	7
2.1	Ope	rating Voltages	7
2.2	LCD	Screen Control	7
2.3		ter Paper Control	
2.4	Prin	ter Paper	7
2.5		lacing the Load Tap Changer Controller Fuses	
3.0		ATING PROCEDURES	
3.1		nection Diagrams	
		ical Connections to a Load Tap Changer (LTC)	
3.1.		ical Connections to a Delta-Wye Transformer	
3.2		ing the Test Voltage	
3.3		ing the Date and Time	
3.4		ing the User Interface Language	
3.5		ring the List of Trusted Bluetooth Devices	
3.6		forming Tests	
3	.6.1.	Entering Test Record Header Information	
3	.6.2.	Testing a Single Phase Transformer	
	.6.3.	Testing a Dyn1 (12,000 V/208 V) Transformer	
3	.6.4.	Testing a Three Phase Transformer Using Auto Detect Mode	
3.7		king With Test Records	
	.7.1.	Saving Test Results to a Test Record	
	.7.2.	Restoring a Test Record From Flash EEPROM	
	.7.3.	Restoring a Test Record From a USB Flash Drive	
3	.7.4.	Copying Test Records to a USB Flash Drive	
3	.7.5.	Printing or Displaying a Test Record	
3	.7.6.	Printing a Test Record Directory	71
	.7.7.	Erasing Test Records from the Flash EEPROM	
3	.7.8.	Erasing Test Records from a USB Flash Drive	
3.8		king With Test Plans	
	.8.1.	Performing a Test Using a Transformer Test Plan	
	.8.2.	Unloading a Test Plan From the Working Memory	
3	.8.3.	Printing a Test Plan Directory	
	.8.4.	Printing a Test Plan	
	.8.5.	Saving a Test Plan	
	.8.6.	Copying a Test Plan to a USB Flash Drive	
3	.8.7.	Erasing Test Plans	98

4.0	DIAGNOSTICS, VERIFICATION, AND TROUBLESHOOTING	
	Performing an H and X Cable Diagnostic Test	
	Performing a Verification Test	
APPE	NDIX A – TRANSFORMER VECTOR GROUP CODES	106
APPE	NDIX B – Common ANSI Transformer Descriptions	107
APPEI	NDIX C – CEI/IEC 60076-1 Transformer Descriptions	
	NDIX D – Australian Std.2374 Transformer Descriptions	

LIST OF TABLES

Table 1. TRF-250 Technical Specifications	4
Table 2. Functional Descriptions of TRF-250 Controls and Indicators	6
Table 3. Descriptions of Single Phase Test Results Elements (Column Format)	35
Table 4. Descriptions of Single Phase Test Results Elements (Detailed Format)	
Table 5. Descriptions of Dyn1 Test Results Elements (Column Format)	45
Table 6. Descriptions of Dyn1 Test Results Elements (Detailed Format)	47
LIST OF FIGURES	
Figure 1. TRF-250 Controls and Indicators	5
Figure 2. Typical Connections to a Load Tap Changer (LTC)	
Figure 3. Typical H & X Cable Connections to a Delta-Wye Transformer	
Figure 4. Typical Connections to a Single Phase Transformer	
Figure 5. Typical Connections to a Single Phase Auto Transformer	
Figure 6. Typical Connections to a Type A Voltage Regulator	
Figure 7. Typical Connections to a Type B Voltage Regulator	
Figure 8. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)	
Figure 9. Typical Connections to a Multi-Tap Current Transformer	
Figure 10. Typical Connections to a Bushing Mount CT on a Single Phase Transformer	
Figure 11. Typical Connections to Bushing Mount CT's on Delta Transformer	
Figure 12. Typical Connections to Bushing Mount CT's on Wye Transformer	
Figure 13. Single Phase Test Results Printout - Column Format	35
Figure 14. Single Phase Test Results Printout - Detailed Format	
Figure 15. Dyn1 Test Results Printout - Column Format	
Figure 16. Dyn1 Test Results Printout - Detailed Format	46
Figure 17. Typical USB Flash Drive (Thumb Drive) Test Record Directory Printout	
Figure 18. Typical Internal Flash EEPROM Test Record Directory Printout	73

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

- A key, switch, or knob on the TRF-250 is indicated as [KEY], [SWITCH], [KNOB].
- Menu names are referenced as "MENU NAME"
- TRF-250 LCD screen output is shown as:

```
1. OPTION 1
2. OPTION 2
3. OPTION 3
4. OPTION 4
5. OPTION 5
```

• When instructions are provided, the menu item that should be selected is printed in bold as shown below (option 3 should be selected):

```
1. OPTION 1
2. OPTION 2
3. OPTION 3
4. OPTION 4
5. OPTION 5
```

• Warning messages are indicated as:

Warning message

WARNING

• Important notes are indicated as:

Note details

NOTE

1.0 INTRODUCTION

1.1 General Description and Features

The TRF-250 is Vanguard's fourth generation transformer turns ratio tester. This latest design provides a higher turns-ratio test voltage of 250Vac, provides a wireless Bluetooth PC interface, and features a 44-key "QWERTY"-style membrane keyboard. All these features greatly improve the accuracy of the turns ratio readings, ease of operation, and reliability.

The TRF-250 determines the turns ratio of the transformer under test using the IEEE C57.12.90 measurement method. The turns-ratio range is from 0.8 to 50,000 to 1. Transformer turns ratio, excitation current, and winding polarity are displayed on the built-in 128 x 64 pixels graphic LCD screen. The TRF-250 can be used as a standalone unit or can be computer-controlled.

Auto-Detect Transformer Configuration

The TRF-250 can automatically detect 130 specific vector groups for different transformer types defined by ANSI, CEI/IEC, and Australian standards.

Transformer Test Voltages

To prevent an accidental wrong test-lead hook-up (e.g., when the operator reverses H and X leads), the TRF-250 outputs a low-level test voltage to verify the hook-up condition before applying the full test voltage to the transformer. Four test voltages (4 Vac, 40 Vac, 100 Vac, 250 Vac) allow the TRF-250 to test CT's and PT's, as well as power transformers.

Transformer Load Tap Changer Control

Voltage regulator or LTC tap positions can be changed remotely using the unit's built-in transformer load tap changer. This feature eliminates the need to manually raise or lower tap positions from the transformer control panel.

Built-in Thermal Printer

The TRF-250 features a built-in 4.5-inch wide thermal printer that can be used to print test results.

User Interface

The TRF-250 features a back-lit LCD screen (128 x 64 pixels) that is viewable in both bright sunlight and low-light levels. The test results screen displays the transformer turns-ratio, excitation current, phase angle, and percentage error. The unit is controlled via a rugged, 44-key, "QWERTY"-style membrane keypad.

Computer Interface

In computer-controlled mode, the unit can be controlled via the Bluetooth or USB interface using the supplied PC software (Transformer Turns-Ratio Analyzer application provided with each unit). This Windows®-based application can be used to run tests and to store test results on a PC. Test results can also be exported to Excel, PDF, and XML formats for further analysis.

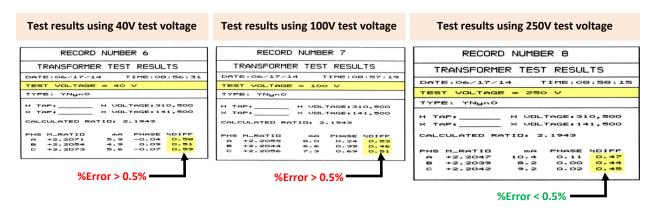
Bluetooth PC Interface

The TRF-250 offers an industry-first Bluetooth wireless interface along with an Android App that can be used to remotely control the unit.

USB Flash Drive Interface

A built-in USB Flash drive interface provides a convenient method for transferring test plans and test records to or from a USB Flash drive. The user can store up to 999 transformer test plans and test records on a USB Flash drive, and the supplied PC software can be used to view the test records.

Internal Test Record Storage


Up to 112 test records can be stored in the TRF-250's Flash EEPROM memory. Each test record may contain up to 99 turns-ratio, excitation current, phase angle and nameplate voltage readings. Test records can be recalled locally or transferred to a PC via the available interfaces (Bluetooth, USB port, USB Flash drive port).

Transformer Test Plans

The TRF-250 can store up to 128 transformer test-plans in its Flash EEPROM. A test-plan is comprised of the transformer nameplate voltages for each tap setting. The calculated turns ratio based on the nameplate voltages is compared with the measured turns-ratio to derive the percentage error and Pass/Fail results. By using a test plan, a transformer can be quickly tested and turns-ratio Pass/Fail reports can be reviewed. Test plans can be created with the PC software and can be transferred to the TRF-250 via the available interfaces (Bluetooth, USB port, USB Flash drive port).

The 250V Test Voltage Advantage

The 250V test voltage provided by the TRF-250 provides more accurate test results when measuring the transformer turns ratios of very large transformers with a built-in LTC. The three figures below show the turns ratio test results and corresponding percentage error of a 600MVA transformer with an LTC in the Lowest position using 40V, 100V, and 250V test voltages. At the 250V test voltage, the percentage error is less than 0.5% as specified in IEC 60076-1 and IEEE C57.12.00-2006-1 standards.

1.2 **TRF-250 Technical Specifications**

Table 1. TRF-250 Technical Specifications

TYPE	Portable, lightweight, automatic, 3-phase transformer turns-ratio meter
PHYSICAL SPECIFICATIONS	18"W x 5"H x 12"D(45.7 cm x 12.7 cm x 30.5 cm); Weight: 20 lbs(9.1 Kg)
OPERATING VOLTAGE	100 – 240 Vac, 50/60 Hz
MEASUREMENT METHOD	ANSI/IEEE C57.12.90
TURNS-RATIO MEASURING RANGE	0.8 – 50,000 to 1
TURNS-RATIO ACCURACY	$\begin{array}{c} 0.8-1,999:\pm0.1\%,\ 2,000-3,999:\pm0.25\%.\ 4,000-14,999:\pm1\%,\\ 15,000-50,000:\pm2\%\ @\ 4Vac\\ 0.8-1,999:\pm0.1\%,\ 2,000-3,999:\pm0.20\%.\ 4,000-14,999:\pm1\%,\\ 15,000-50,000:\pm1.5\%\ @\ 40Vac\\ 0.8-1,999:\pm0.1\%,\ 2,000-3,999:\pm0.20\%.\ 4,000-14,999:\pm1\%,\\ 15,000-50,000:\pm1.5\%\ @\ 100Vac\\ 0.8-1,999:\pm0.1\%,\ 2,000-3,999:\pm0.15\%.\ 4,000-14,999:\pm0.8\%,\\ 15,000-50,000:\pm1.2\%\ @\ 250Vac \end{array}$
TEST VOLTAGES	4 Vac @ 1 Amp, 40 Vac @ 200 mA, 100 Vac @ 100 mA, 250 Vac @ 50 mA
EXCITATION CURRENT READING RANGE	0 – 2 Amperes; Accuracy: ±0.1 mA, ±2% of reading (±1 mA)
PHASE-ANGLE MEASUREMENT	0 – 360 Degrees; Accuracy: ±0.2 degree (±1 digit)
DISPLAY	Back-lit LCD screen (128 x 64 pixels) viewable in bright sunlight and low-light levels
PRINTER	Built-in 4.5-inch wide thermal printer
COMPUTER INTERFACES	Bluetooth, USB port
EXTERNAL DATA STORAGE	One USB Flash drive interface port; Up to 999 transformer test records can be stored on a USB Flash drive (not included)
INTERNAL TEST RECORD STORAGE	Can store 112 transformer test records internally. Each record holds the test record header and up to 99 readings.
INTERNAL TEST PLAN STORAGE	Can store 128 transformer test plans internally. Test plans can be transferred to the unit from the PC via Bluetooth/USB port or via the USB Flash drive interface
PC SOFTWARE	Windows®-based Transformer Turns Ratio Analyzer application is included with purchase price
LOAD TAP CHANGER CONTACT	240 Vac, 2 Amps
SAFETY	Designed to meet UL 61010A-1 and CAN/CSA C22.2 No. 1010.1-92 standards
ENVIRONMENT	Operating: -10° to 50° C (15° to +122° F); Storage: -30° C to 70° C (-22° to +158° F)
HUMIDITY (MAX)	90% RH @ 40° C (104° F) non-condensing
ALTITUDE (MAX)	2000m (6562 ft) to fully safety specifications
CABLES	One 15-foot single-phase set, one 15-foot 3-phase set, one 25-foot extension set, one safety ground, one USB, cable bag
WARRANTY	One year on parts and labor

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.3 Controls and Indicators

The TRF-250 controls and indicators are shown in Figure 1. A leader line with an index number points to each control and indicator, which is cross-referenced to a functional description in the corresponding table. The purpose of the controls and indicators may seem obvious, but users should familiarize themselves with them before using the TRF-250. Accidental misuse of the controls will usually cause no serious harm. Users should also familiarize themselves with the safety summary information found on the front page of this User's Manual.

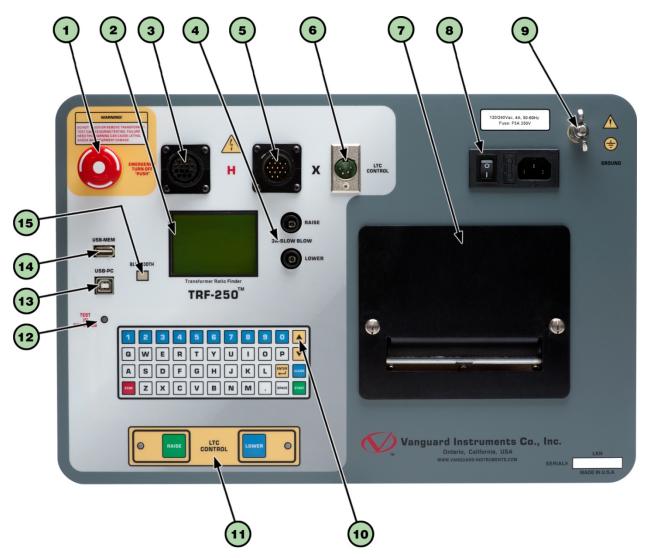


Figure 1. TRF-250 Controls and Indicators

Table 2. Functional Descriptions of TRF-250 Controls and Indicators

Item Number	Panel Markings	Functional Description
1	EMERGENCY TURN OFF "PUSH"	Emergency turn-off test voltage switch.
2		Back-lit LCD screen (128 x 64 pixels), viewable in bright sunlight and low-light levels.
3	Н	H voltage connector.
4	3A SLOW BLOW	Load Tap Changer controller fuses
5	X	X voltage connector.
6	LTC CONTROL	Load Tap Changer controller connector.
7		4.5-inch wide thermal printer (optional)
8	120/240 Vac, 4A, 50-60Hz Fuse: F5A 250V	Input power connector and fused power switch with third-wire safety ground.
9	GROUND	Ground stud for connecting to sub-station ground.
10		Rugged "QWERTY" style membrane keypad
11	LTC CONTROL	Load Tap Changer control buttons.
12	TEST IN PROGRESS	This LED flashes in response to commands or when a test voltage is applied to the test transformer.
13	USB PC	USB PC interface connector.
14	USB MEM	USB Flash drive interface port.
15	BLUETOOTH	Bluetooth status indicator.

2.0 PRE-TEST SETUP

2.1 Operating Voltages

The TRF-250 can be powered by ac line voltage of 100-240 Vac, 50/60 Hz.

2.2 LCD Screen Contrast Control

To increase the LCD screen contrast, press and hold the [A] key for two seconds. Release the button when the desired contrast level has been reached.

To decrease the LCD screen contrast, press and hold the **[▼]** key for two seconds. Release the button when the desired contrast level has been reached.

2.3 Printer Paper Control

To advance the thermal printer paper, press and release the [A] key.

To retract the thermal printer paper, press and release the **[▼]** key.

2.4 Printer Paper

The TRF-250's optional built-in thermal printers use 4.5-inch wide thermal paper for printing test results. To maintain the highest print quality and to avoid paper jams, the use of thermal paper supplied by Vanguard Instruments Company is highly recommended. Additional paper can be ordered from the following sources:

Vanguard Instruments Co, Inc.

1520 S. Hellman Avenue Ontario, CA 91761

Tel: 909-923-9390 Fax: 909-923-9391

Part Number: VIC TP-4 paper

BG Instrument Co.

13607 E. Trent Avenue Spokane, WA 99216 Tel: 509-893-9881

Fax: 509-893-9803

Part Number: VIC TP-4 paper

2.5 Replacing the Load Tap Changer Controller Fuses

The TRF-250 features a built-in Load Tap Changer (LTC) controller that can raise or lower the LTC tap position from the front panel. The LTC controller circuit uses two 250 Vac/2A, NO, relay contacts to simulate the LTC Raise/Lower switches. Each relay contact is protected by a 1A/250 Vac fuse (5 X 20mm, fast acting). The fuse should be replaced with a Littlefuse P/N 217001 or equivalent.

3.0 OPERATING PROCEDURES

The TRF-250 should always be grounded with the provided ground cable before connecting H and X cables. The transformer bushings should also be grounded before connecting test leads to the transformer. This will prevent inducing any voltages into the TRF-250. All transformer bus connections must be removed, and the transformer must be isolated before performing any tests. Typical transformer connection diagrams are illustrated in the sections below.

3.1 Connection Diagrams

3.1.1. Typical Connections to a Load Tap Changer (LTC)

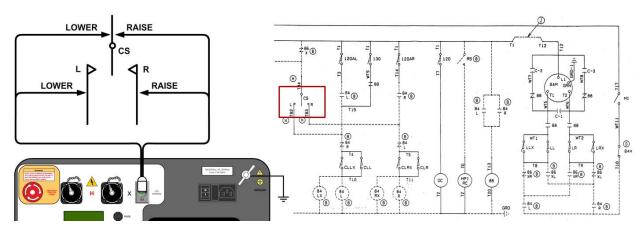


Figure 2. Typical Connections to a Load Tap Changer (LTC)

3.1.2. Typical Connections to a Delta-Wye Transformer

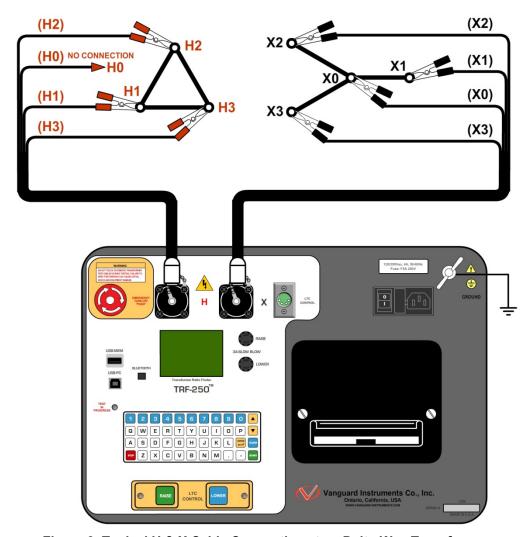


Figure 3. Typical H & X Cable Connections to a Delta-Wye Transformer

3.1.3. Typical Connections to a Single Phase Transformer

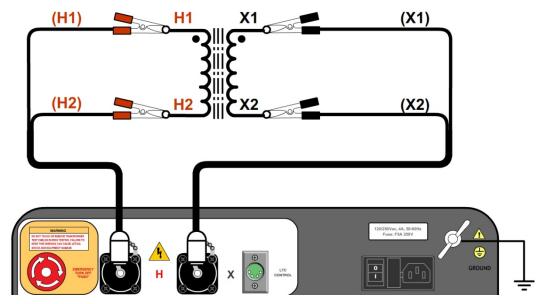


Figure 4. Typical Connections to a Single Phase Transformer

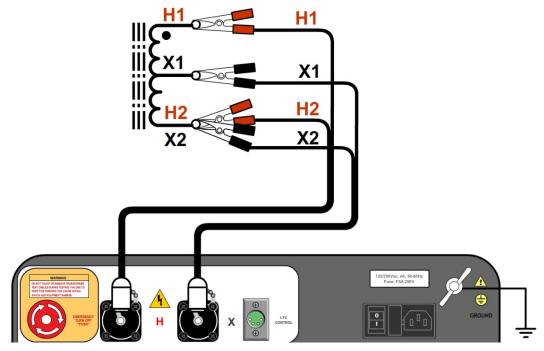


Figure 5. Typical Connections to a Single Phase Auto Transformer

3.1.4. Typical Connections to a Voltage Regulator

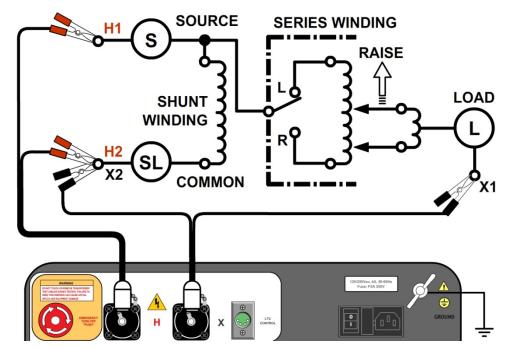


Figure 6. Typical Connections to a Type A Voltage Regulator

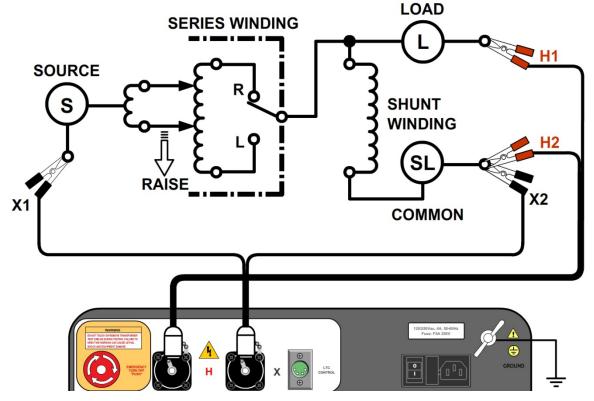


Figure 7. Typical Connections to a Type B Voltage Regulator

3.1.5. Typical Connections to a Donut Type (un-mounted) Current Transformer

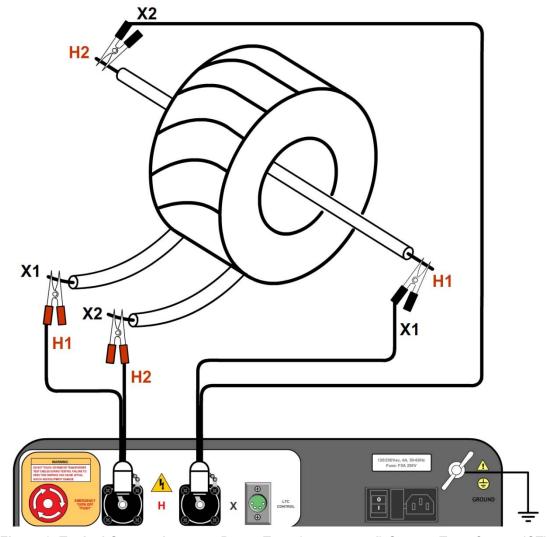


Figure 8. Typical Connections to a Donut Type (un-mounted) Current Transformer (CT)

The H and X test leads are reversed for the CT ratio test connections shown above.

NOTE

3.1.6. Typical Connections to a Multi-Tap Current Transformer

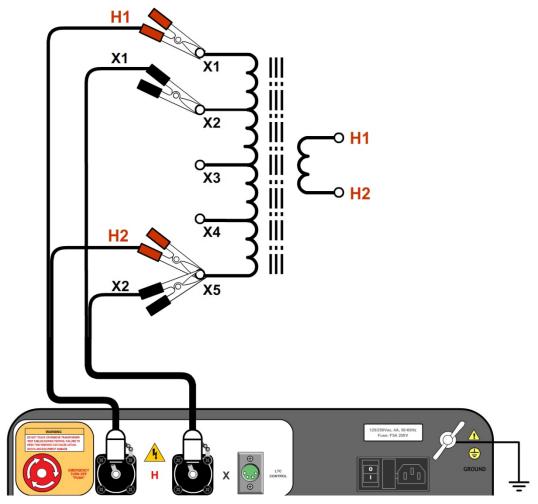


Figure 9. Typical Connections to a Multi-Tap Current Transformer

3.1.7. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

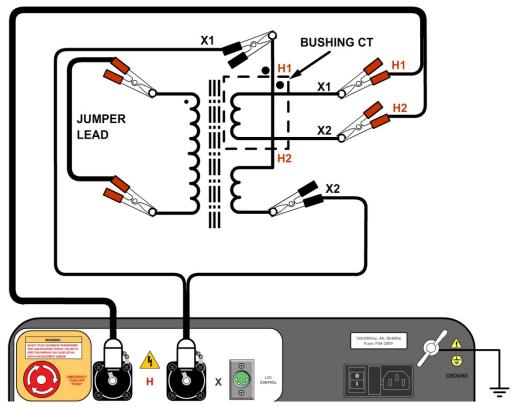
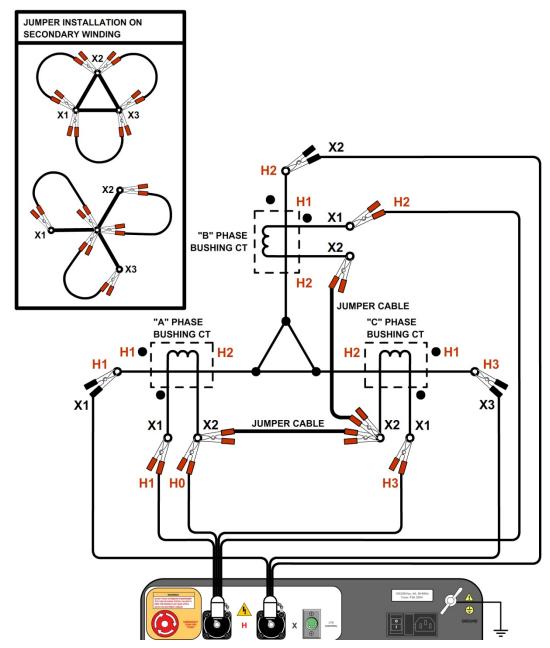
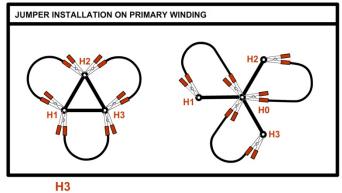


Figure 10. Typical Connections to a Bushing Mount CT on a Single Phase Transformer

3.1.8. Typical Connections to Bushing Mount CT's on Delta Transformer




Figure 11. Typical Connections to Bushing Mount CT's on Delta Transformer

The CT turns-ratio is obtained by performing a Ynd11 test.

NOTE

3.1.9. Typical Connections to Bushing Mount CT's on Wye Transformer

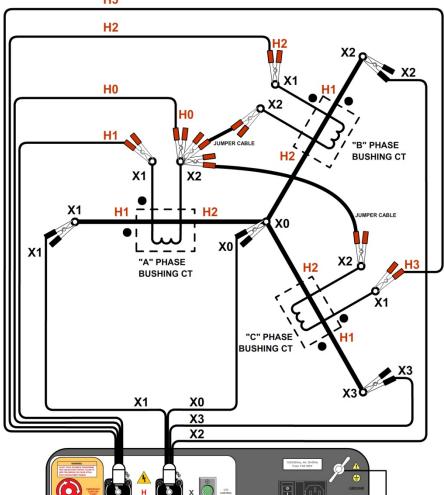
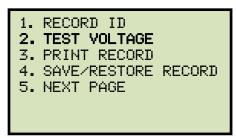


Figure 12. Typical Connections to Bushing Mount CT's on Wye Transformer

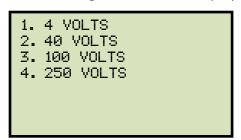
The CT turns-ratio is obtained by performing a Ynyn0 test.

NOTE

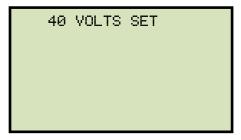
3.2 Setting the Test Voltage


The TRF-250 offers four test voltages, 4 Vac, 40 Vac, 100 Vac, and 250Vac. The unit always defaults to 40 Vac at power-on. The 4 Vac test voltage is for testing transformers which require low test voltages, such as metering Current Transformers (CT's). For metering CT's, higher voltages may drive the CT's into saturation, thus giving invalid results. The 40 Vac test voltage is recommended for testing power transformers. The 100 Vac test voltage is recommended for testing power transformers in noisy environments. The 250V test voltage provided by the TRF-250 provides more accurate test results when measuring the transformer turns ratios of very large transformers with a built-in LTC. Follow the steps below to set the test voltage:

a. Turn on the unit and start from the "START-UP" menu:


Press the [2] key (SETUP).

b. The following screen will be displayed:


Press the [2] key (TEST VOLTAGE).

c. The following screen will be displayed:

Select the desired test voltage by pressing the corresponding key on the numeric keypad ([1] for 4 volts, [2] for 40 volts, [3] for 100 volts, or [4] for 250 volts).

d. The voltage will be set and the following confirmation message will be displayed:

Press any key to return to the "START-UP" menu.

3.3 Setting the Date and Time

To set the date and time:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 08/29/14

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [5] key (NEXT PAGE).

c. The following screen will be displayed:

Press the [1] key (SET TIME).

d. The following screen will be displayed:

Enter the date using the keypad.

e. The following screen will be displayed:

Enter the current time using the keypad. When the complete time has been entered, you will be immediately returned to the "START-UP" menu.

3.4 Setting the User Interface Language

To set the user interface language:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```


Press the [5] key (NEXT PAGE).

c. The following screen will be displayed:

Press the [2] key (SET LANGUAGE).

d. The following screen will be displayed:

Press the key on the keypad corresponding to your preferred language.

e. The preferred user interface language will be set, and the following confirmation screen will be displayed:

Press any key to return to the "START-UP" menu.

3.5 Clearing the List of Trusted Bluetooth Devices

When the TRF-250 is connected to a PC via Bluetooth for the first time, the PC is added to the unit's list of trusted paired Bluetooth devices. The TRF-250 will then automatically connect to the PC for future uses. You can clear the unit's list of trusted Bluetooth devices using the steps below:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/04/14

Press the [2] key (SETUP).

b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE

Press the [5] key (NEXT PAGE).

c. The following screen will be displayed:

Press the [3] key (BLUETOOTH DEV RESET).

d. The following screen will be displayed:

CLEAR BLUETOOTH
TRUSTED DEVICE LIST.

ARE YOU SURE?
1. YES
2. NO

Press the [1] key (YES).

e. The Bluetooth trusted device list will be cleared and the following confirmation screen will be displayed:

Press any key to return to the "START-UP" menu.

3.6 Performing Tests

3.6.1. Entering Test Record Header Information

You can enter the test record header information before performing tests. The record header includes identifying information such as the company, station, circuit, manufacturer, etc. Once the header information has been set, it will apply to all subsequent test records. To enter the header information:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```

Press the [1] key (RECORD ID).

c. The following screen will be displayed:

```
COMPANY:

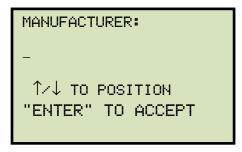
-

↑/↓ TO POSITION

"ENTER" TO ACCEPT
```

Type the company name using the keypad.

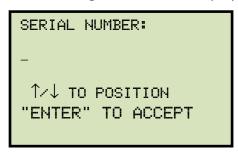
d. The following screen will be displayed:


Type the station name using the keypad and then press the **[ENTER]** key.

e. The following screen will be displayed:

Type the circuit information using the keypad and then press the **[ENTER]** key.

f. The following screen will be displayed:


Type the manufacturer name using the keypad and then press the **[ENTER]** key.

g. The following screen will be displayed:

```
MODEL:
-
^/↓ TO POSITION
"ENTER" TO ACCEPT
```

Type the transformer's model information using the keypad and then press the **[ENTER]** key.

h. The following screen will be displayed:

Type the transformer's serial number using the keypad and then press the **[ENTER]** key.

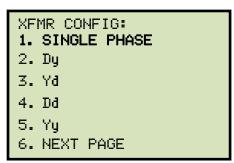
i. The following screen will be displayed:

Type the transformer's KVA rating using the keypad and then press the [ENTER] key.

j. The following screen will be displayed:

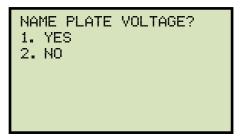
Type the operator's name using the keypad and then press the **[ENTER]** key. All header information will be saved, and you will be returned to the "START-UP" menu.

3.6.2. Testing a Single Phase Transformer


Follow the steps below to test a single phase transformer:

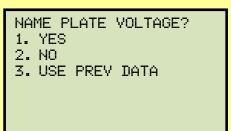
a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/08/14


Press the [1] key (RUN TEST).

b. The following screen will be displayed:

Press the [1] key (SINGLE PHASE).


c. The following screen will be displayed:

If you had entered name plate voltages for a previous test, the following screen will be displayed instead of the above screen:

NOTE

Press the [3] key if you would like to use the name plate voltage values from the previous test performed. Continue to step d.

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

```
NAME PLATE VOLTAGE:
H : X
Ø :
```

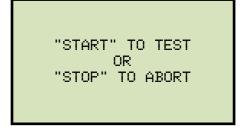
Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 :
```

Press the **[ENTER]** key. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 : 0
```

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

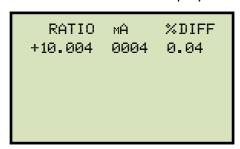

```
NAME PLATE VOLTAGE:
H : X
2,400 : 240
```

Press the **[ENTER]** key. **Continue to step d.**

2. NO

Press the [2] key (NO) if you do not want to enter the transformer name plate voltage values. Continue to step d.

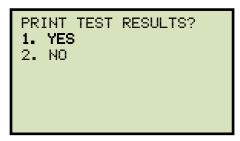
d. The following screen will be displayed:



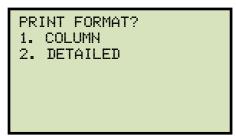
Press the [START] key to initiate the test.

e. The following screen will be displayed while the test is being performed:

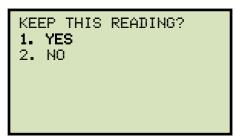
The test results will be displayed on the LCD screen when testing has finished:



The polarity is displayed as either a plus sign (+) for "in-phase" or a minus sign (-) for "out-of-phase". The value listed under "% DIFF" is the percentage error.


The percentage error (% DIFF) is calculated as the absolute value of: [(Calculated Ratio – Measured Ratio) / Calculated Ratio)] x 100

Press any key to continue.


Press the [1] key (YES) to print the test results.

g. The following screen will be displayed:

Press the [1] key (COLUMN) to print a columnar report (see Figure 13) or press the [2] key (DETAILED) to print a detailed report (see Figure 14).

h. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

i. The following screen will be displayed:

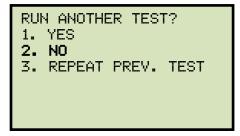
Press any key to continue.

The above screen will be displayed if there is currently no data in the unit's memory buffer. If a test was previously performed or a test record was

NOTE restored from Flash EEPROM or from a Flash drive, the following screen will be displayed instead:

PREVIOUS DATA IN BUF

- 1. APPEND PREV. DATA
- 2. CLEAR PREV. DATA

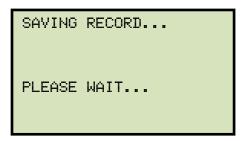

Press the **[1]** key (*APPEND PREV. DATA*) to append the data in the unit's working memory to the current test results, or press the **[2]** key (*CLEAR PREV. DATA*) to clear any previous data from the unit's memory buffer and only save the current test results.

The following screen will then be displayed:

TEST SAVED

Press any key to continue.

j. The following screen will be displayed:



Press the **[2]** key (*NO*).

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

I. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

The unit will automatically assign the record number and will not over-write existing test records.

Press any key to return to the "START-UP" menu.

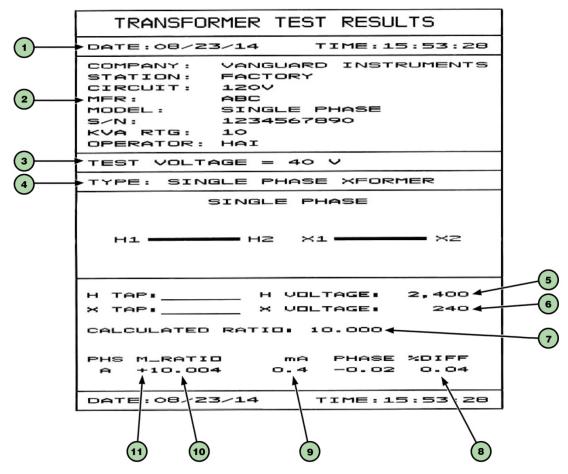


Figure 13. Single Phase Test Results Printout - Column Format

Table 3. Descriptions of Single Phase Test Results Elements (Column Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.6.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Percentage error between the calculated ratio and the measured ratio.
9	Excitation current.
10	Measured ratio.
11	Winding polarity.

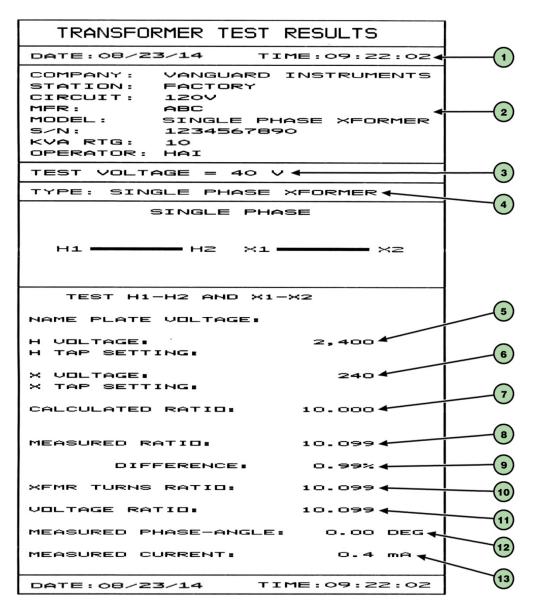


Figure 14. Single Phase Test Results Printout - Detailed Format

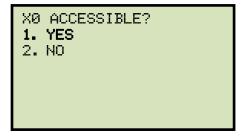
Table 4. Descriptions of Single Phase Test Results Elements (Detailed Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.6.1).
3	Test voltage.
4	Type of transformer under test.
5	H tap voltage.
6	X tap voltage.
7	Calculated ratio.
8	Measured ratio.
9	Percentage error between the calculated ratio and the measured ratio.
10	Measured transformer turns ratio.
11	Measured voltage ratio.
12	Winding phase angle.
13	Excitation current.

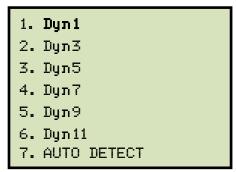
3.6.3. Testing a Dyn1 (12,000 V/208 V) Transformer

Follow the steps below to test a Dyn1 (12,000 V/208 V) transformer:

a. Start from the "START-UP" menu:


Press the [1] key (RUN TEST).

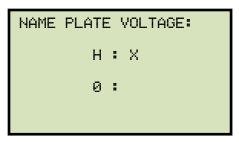
b. The following screen will be displayed:


```
XFMR CONFIG:
1. SINGLE PHASE
2. Dy
3. Yd
4. Dd
5. Yy
6. NEXT PAGE
```

Press the **[2]** key (*Dy*).

c. The following screen will be displayed:

Press the [1] key (YES).


Press the [1] key (Dyn1).

e. The following screen will be displayed:

```
NAME PLATE VOLTAGE?
1. YES
2. NO
```

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
2,400 :
```

Press the **[ENTER]** key. The screen will be updated as shown below:

NAME PLATE VOLTAGE: H : X 1,200 : 0

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

NAME PLATE VOLTAGE:
H : X
1,200 : 208

Press the [ENTER] key. Continue to step f.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage values. **Continue to step f.**

f. The following screen will be displayed:

"START" TO TEST THREE PHASE OR "STOP" TO ABORT

Press the **[START]** key to initiate the test.

g. The following screen will be displayed while the test is being performed:

The screen will be updated with the Phase A test results as shown:

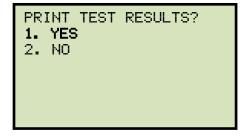
```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11

XFMR TYPE: Dyn1
```

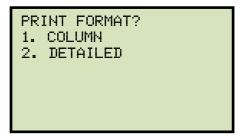
Testing will continue, and the screen will be updated with the Phase B test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11
B +100.05 0002 0.12

XFMR TYPE: Dyn1
```

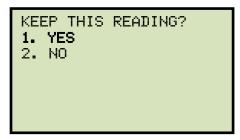

Finally, the screen will be updated with the Phase C test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +100.04 0002 0.11
B +100.05 0002 0.12
C +100.01 0002 0.09

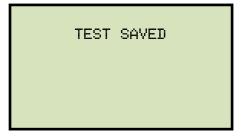

XFMR TYPE: Dyn1
```

Press any key to continue.

h. The following screen will be displayed:



Press the [1] key (YES) to print the test results.


Press the [1] key (COLUMN) to print a columnar report (see Figure 15) or press the [2] key (DETAILED) to print a detailed report (see Figure 16).

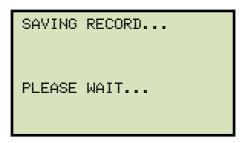
j. The following screen will be displayed:

Press the [1] key (YES) to save the reading.

k. The following screen will be displayed:

Press any key to continue.

I. The following screen will be displayed:


```
RUN ANOTHER TEST?
1. YES
2. NO
3. REPEAT PREV. TEST
```

Press the **[2]** key (*NO*).

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

n. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

Press any key to return to the "START-UP" menu.

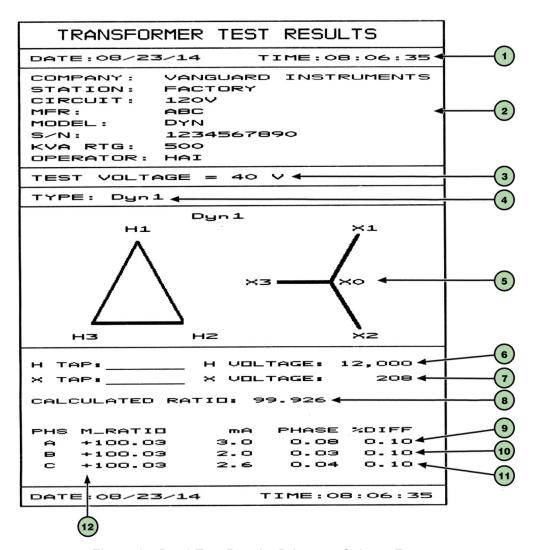


Figure 15. Dyn1 Test Results Printout - Column Format

Table 5. Descriptions of Dyn1 Test Results Elements (Column Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.6.1).
3	Test voltage.
4	Type of transformer under test.
5	Transformer configuration diagrams (H and X).
6	H tap voltage.
7	X tap voltage.
8	Calculated ratio.
9	Measured ratio, excitation current, phase angle, and percentage error for Phase A.
10	Measured ratio, excitation current, phase angle, and percentage error for Phase B.
11	Measured ratio, excitation current, phase angle, and percentage error for Phase C.
12	Winding polarity.

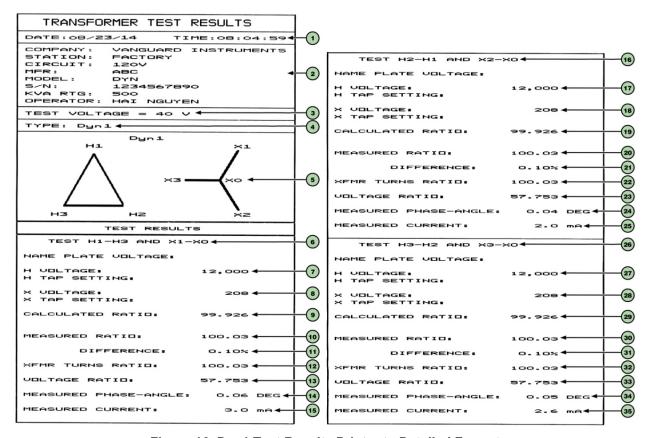
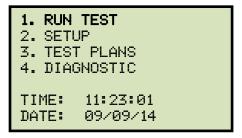
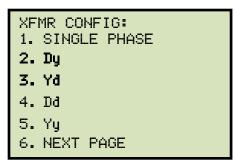


Figure 16. Dyn1 Test Results Printout - Detailed Format


Table 6. Descriptions of Dyn1 Test Results Elements (Detailed Format)

Item Number	Description
1	Test record date and time.
2	Test record header information (see section 3.6.1).
3	Test voltage.
4	Type of transformer under test.
5	Transformer configuration diagrams.
6	Test H1-H3 and X1-X0 section heading.
7	H1-H3 tap voltage.
8	X1-X0 tap voltage.
9	H1-H3, X1-X0 calculated ratio.
10	H1-H3, X1-X0 measured ratio.
11	H1-H3, X1-X0 percentage error between calculated ratio and measured ratio.
12	H1-H3, X1-X0 transformer turns ratio.
13	H1-H3, X1-X0 voltage ratio.
14	H1-H3, X1-X0 measured phase angle.
15	H1-H3, X1-X0 measured excitation current.
16	Test H2-H1 and X2-X0 section heading
17	H2-H1 tap voltage.
18	X2-X0 tap voltage.
19	H2-H1, X2-X0 calculated ratio.
20	H2-H1, X2-X0 measured ratio.
21	H2-H1, X2-X0 percentage error between calculated ratio and measured ratio.
22	H2-H1, X2-X0 transformer turns ratio.
23	H2-H1, X2-X0 voltage ratio.
24	H2-H1, X2-X0 measured phase angle.
25	H2-H1, X2-X0 measured excitation current.
26	Test H3-H2 and X3-X0 section heading.
27	H3-H2 tap voltage.
28	X3-X0 tap voltage.
29	H3-H2, X3-X0 calculated ratio.
30	H3-H2, X3-X0 measured ratio.
31	H3-H2, X3-X0 percentage error between calculated ratio and measured ratio.
32	H3-H2, X3-X0 transformer turns ratio.
33	H3-H2, X3-X0 voltage ratio.
34	H3-H2, X3-X0 measured phase angle.
35	H3-H2, X3-X0 measured excitation current.

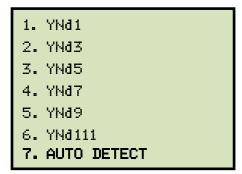
3.6.4. Testing a Three Phase Transformer Using Auto Detect Mode


The TRF-250 provides a convenient Auto Detect mode that can automatically detect 130 specific vector groups for different transformer types defined by ANSI, CEI/IEC, and Australian standards. The transformer configurations supported are listed in Appendix A. The TRF-250 can detect the vector diagrams for Delta-Delta, Wye-Wye, Delta-Wye, and Wye-Delta transformer types. Follow the steps below to test a three phase transformer using auto detect mode:

a. Start from the "START-UP" menu:

Press the [1] key (RUN TEST).

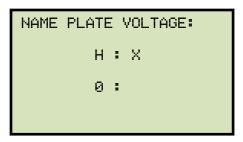
b. The following screen will be displayed:



Select a supported three phase transformer type by pressing the corresponding numeric key on the keypad ([2], [3], [4], or [5]. For this example, we will perform a Yd test (option 3).

c. The following screen will be displayed:

Press the [1] key (YES).


Press the [7] key (AUTO DETECT).

e. The following screen will be displayed:

```
NAME PLATE VOLTAGE?
1. YES
2. NO
```

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed.

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

```
NAME PLATE VOLTAGE:
H : X
1,734 :
```

Press the **[ENTER]** key. The screen will be updated as shown below:

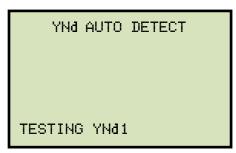
NAME PLATE VOLTAGE: H : X 1,734 : 0

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown below:

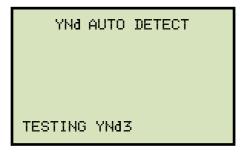
NAME PLATE VOLTAGE:
H : X
1,734 : 100

Press the [ENTER] key. Continue to step f.

2. NO


Press the [2] key (NO) if you do not want to enter the transformer name plate voltage values. Continue to step f.

f. The following screen will be displayed:


"START" TO TEST THREE PHASE OR "STOP" TO ABORT

Press the **[START]** key to initiate the test.

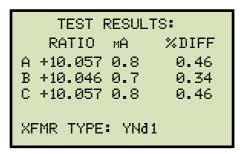
g. The following screen will be displayed while the unit determines the transformer configuration:

The TRF-250 will start testing the transformer configurations starting with YNd1. If the transformer is not a type YNd1, it will continue to test for the next type (YNd3, YNd5, etc.) until the transformer type has been determined. The screen will be updated as shown below to indicate which configuration is currently being tested for:

Once the transformer type has been determined, the unit will start performing the test.

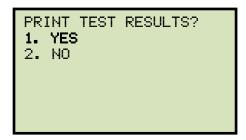
h. The screen will be updated with the Phase A test results as shown:

```
TEST RESULTS:
RATIO MA %DIFF
A +10.057 0.8 0.46

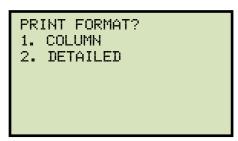

XFMR TYPE: YNd1
```

Testing will continue, and the screen will be updated with the Phase B test results as shown:

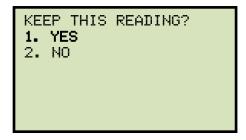
```
TEST RESULTS:
RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34


XFMR TYPE: YNd1
```

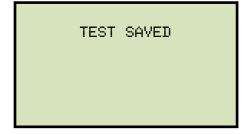
Finally, the screen will be updated with the Phase C test results as shown:


Press any key to continue.

i. The following screen will be displayed:

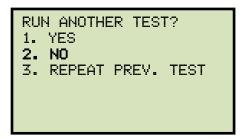

Press the [1] key (YES) to print the test results.

j. The following screen will be displayed:



Press the [1] key (COLUMN) to print a columnar report or press the [2] key (DETAILED) to print a detailed report.

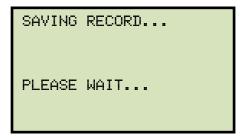
k. The following screen will be displayed:



Press the [1] key (YES) to save the reading.

Press any key to continue.

m. The following screen will be displayed:


Press the **[2]** key (*NO*).

n. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

o. The following screen will be displayed momentarily:

The following confirmation screen will then be displayed:

RECORD NUMBER 4 HAS BEEN SAVED!

Press any key to return to the "START-UP" menu.

3.7 Working With Test Records

3.7.1. Saving Test Results to a Test Record

After performing a test, the user is presented the option to save the test results to the unit's Flash EEPROM or to a USB Flash Drive. If the test results are not saved immediately after performing a test, they will still remain in the working memory and can be saved later, as long as a new test has not been performed and the unit has not been turned off. Follow the steps below to save the test results from the working memory to a test record (the following procedure can also be used to re-save a restored test record to a new memory location or to a USB Flash Drive):

a. Perform a test or restore a test record to the working memory (see section 3.7.2 and 3.7.3), and then start from the "START-UP" menu:

```
1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/09/14
```

Press the [2] key (SETUP).

b. The following screen will be displayed:

```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [2] key (SAVE RECORD).

If a USB Flash drive is connected to the unit, continue to step d.

If a USB Flash drive is NOT connected to the unit, continue to step e.

1. SAVE INTERNALLY

Press the **[1]** key (*SAVE INTERNALLY*) to save the test record to the unit's Flash EEPROM. **Continue to step e.**

2. SAVE TO THUMB DRIVE

Press the **[2]** key (*SAVE TO THUMB DRIVE*) to save the test record to the connected USB Flash drive. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

e. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

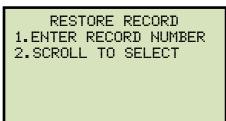
3.7.2. Restoring a Test Record From Flash EEPROM

Use the steps below to restore a test record from the TRF-250's Flash EEPROM to the working memory:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/09/14

Press the [2] key (SETUP).


b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE

Press the [4] key (SAVE/RESTORE RECORD).

- c. The following screen will be displayed:
 - 1. RESTORE RECORD
 2. SAVE RECORD
 3. RECORD DIRECTORY
 4. ERASE RECORD

Press the [1] key (RESTORE RECORD).

If you have a USB Flash drive inserted in the TRF-250's "USB MEM" port, the following screen will be displayed instead of the above screen:

NOTE

1.INTERNAL STORAGE 2.THUMB DRIVE

Press the [1] key (INTERNAL STORAGE).

The following screen will be displayed:

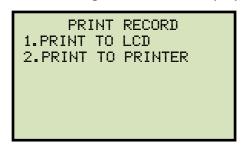
RESTORE RECORD 1.ENTER RECORD NUMBER 2.SCROLL TO SELECT

Continue with the steps below.

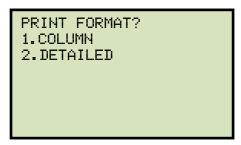
1. ENTER RECORD NUMBER

Press the **[1]** key (*ENTER RECORD NUMBER*) if you know the record number that you would like to restore.

1.1. The following screen will be displayed:



Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key.


Press the [1] key (YES) to print the test record.

1.3. The following screen will be displayed:

Press the [1] key (*PRINT TO LCD*) to display the restored test record data on the unit's LCD screen. **Continue to step 1.4.**

Press the [2] key (*PRINT TO PRINTER*) to print the restored test record data on the unit's built-in thermal printer. The following screen will be displayed:

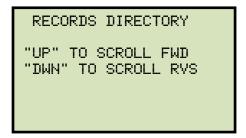
Press the [1] key (COLUMN) to print the test report in columnar format, or press the [2] key (DETAILED) to print the test report in detailed format.

The test report will be printed, and you will be returned to the "START-UP" menu. The restored test record will remain loaded in the working memory.

1.4. The basic information about the restored test record will be displayed as shown:

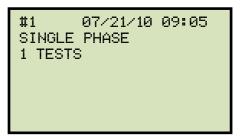
```
YNd1
NUM TESTS: 1
07/22/10 07:52:50
```

Press the **[**▼**]** key. The test record details will be displayed as shown:


```
1 YNd1
8 VOLTS
RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34
C +10.057 0.8 0.46
```

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

2. SCROLL TO SELECT


Press the **[2]** key (*SCROLL TO SELECT*) to scroll through a directory of the stored test records.

2.1. The following screen will be displayed:

Press the $[\triangle]$ key or the $[\nabla]$ key to display the next or previous test record, respectively.

The basic test record information will be displayed as shown:

When you have located the test record that you would like to restored, press the **[ENTER]** key. **Continue to step 1.2 on page 59.**

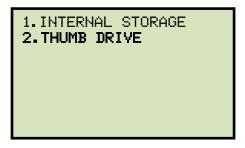
3.7.3. Restoring a Test Record From a USB Flash Drive

Use the steps below to restore a test record from a USB Flash drive to the TRF-250's working memory:

a. Make sure the USB Flash drive containing the test record(s) is inserted in the TRF-250's USB Flash drive port ("USB MEM" port). Then start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:


```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```

Press the [4] key (SAVE/RESTORE RECORD).

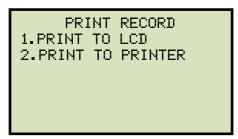
c. The following screen will be displayed:

1. RESTORE RECORD
2. SAVE RECORD
3. RECORD DIRECTORY
4. ERASE RECORD

Press the [1] key (RESTORE RECORD).

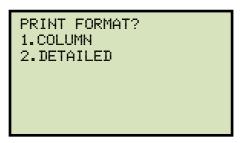
Press the [2] key (THUMB DRIVE).

e. The following screen will be displayed:


Type the record number that you would like to restore using the keypad. If you do not know the record number, you can first print a test record directory using the instructions in section 3.7.6.

Press the [ENTER] key.

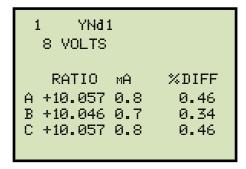
f. The test record will be restored to the unit's working memory and the following screen will be displayed:



Press the [1] key (YES) to print or display the restored test record.

Press the **[1]** key (*PRINT TO LCD*) to display the test record date on the unit's LCD screen. **Continue to step h.**

Press the **[2]** key (*PRINT TO PRINTER*) to print the restored test record on the unit's built-in thermal printer. The following screen will be displayed:



Press the [1] key (*COLUMN*) to print the test record in columnar format, or press the [2] key (*DETAILED*) to print the test record in detailed format. The test record will be printed, and you will be returned to the "START-UP" menu. The restored test record will remain loaded in the unit's working memory.

h. The basic information about the restored test record will be displayed as shown below:

```
YNd1
NUM TESTS: 1
07/22/10 07:52:50
```

Press the **[▼]** key. The test record details will be displayed as shown below:

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

3.7.4. Copying Test Records to a USB Flash Drive

Use the steps below to copy one or all test records from the unit's Flash EEPROM to a connected USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/09/14

Press the [2] key (SETUP).

b. The following screen will be displayed:


1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

1. RESTORE RECORD
2. SAVE RECORD
3. RECORD DIRECTORY
4. ERASE RECORD
5. COPY TO THUMB DRIVE

Press the [5] key (COPY TO THUMB DRIVE).

1. COPY SINGLE RECORD

Press the **[1]** key (*COPY SINGLE RECORD*) to copy a single test record from the TRF-250's Flash EEPROM to the connected USB Flash drive. The following screen will be displayed:

Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key (If you don't know the record number, you can first print a test record directory using the instructions in section 3.7.6). The test record will be copied to the USB Flash drive and the following screen will be displayed:

Press any key to return to the "START-UP" menu.

2. COPY ALL RECORDS

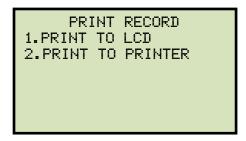
Press the **[2]** key (*COPY ALL RECORDS*) to copy all test records from the TRF-250's Flash EEPROM to the connected USB Flash drive. All test records will be copied from the unit to the connected USB Flash drive. The following screen will be displayed when the process is finished:

ALL RECORDS HAVE BEEN TRANSFERRED TO THUMB DRIVE!

3.7.5. Printing or Displaying a Test Record

You can print or display a test record at the time that it is restored (see section 3.7.1 and 3.7.3), or you can restore it to the working memory and print or display it later. To print or display the current test record in the working memory:

a. Perform a test or restore a test record to the working memory (see section 3.7.1 and 3.7.3) and then start from the "START-UP" menu:


Press the [2] key (SETUP).

b. The following screen will be displayed:

```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```

Press the [3] key (PRINT RECORD).

c. The following screen will be displayed:

Press the [1] key (*PRINT TO LCD*) to display the test record data on the unit's LCD screen. Continue to step d.

Press the [2] key (*PRINT TO PRINTER*) to print the restored test record on the unit's built-in thermal printer. The following screen will be displayed:

```
PRINT FORMAT?
1.COLUMN
2.DETAILED
```

Press the **[1]** key (*COLUMN*) to print the test record in columnar format, or press the **[2]** key (*DETAILED*) to print the test record in detailed format. The test record will be printed, and you will be returned to the "START-UP" menu.

d. The basic information about the restored test record will be displayed as shown below:

```
YNd1
NUM TESTS: 1
07/22/10 07:52:50
```

Press the **[▼]** key. The test record details will be displayed as shown below:

```
1 YNd1
8 VOLTS
RATIO MA %DIFF
A +10.057 0.8 0.46
B +10.046 0.7 0.34
C +10.057 0.8 0.46
```

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

3.7.6. Printing a Test Record Directory

Follow the steps below to print a directory of the test records stored in the unit's Flash EEPROM or on a connected USB Flash drive:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 11:23:01
DATE: 09/09/14

Press the [2] key (SETUP).

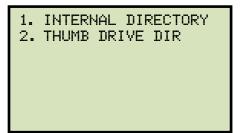
b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE

Press the [4] key (SAVE/RESTORE RECORD).

- c. The following screen will be displayed:
 - 1. RESTORE RECORD
 - 2. SAVE RECORD
 - 3. RECORD DIRECTORY
 - 4. ERASE RECORD
 - 5. COPY TO THUMB DRIVE

Option 5 (*COPY TO THUMB DRIVE*) is listed only if a USB Flash drive is connected to the unit.


NOTE

Press the [3] key (RECORD DIRECTORY)

If a USB Flash drive is connected to the unit, continue to step d.

If a USB Flash drive is NOT connected to the unit, continue to step e.

d. The following screen will be displayed:

1. INTERNAL DIRECTORY

Press the **[1]** key (*INTERNAL DIRECTORY*) to print a directory of the test records stored in the unit's Flash EEPROM. **Continue to step e.**

2. THUMB DRIVE DIR

Press the [2] key (THUMB DRIVE DIR) to print a directory of the test records stored on the connected USB Flash drive. A full directory of the test records stored on the USB Flash drive will be printed and you will be returned to the "START-UP" menu. Please see Figure 17 for a sample thumb drive directory printout.

e. The following screen will be displayed:

Press the **[1]** key (*FULL DIRECTORY*) to print a full directory listing. This option will print all test record headers. The full record directory will be printed and you will be returned to the "START-UP" menu.

Press the [2] key (SHORT DIRECTORY) to print a short directory consisting of the last twelve record headers. The short record directory will be printed and you will be returned to the "START-UP" menu.

Please see Figure 18 for a sample internal Flash ERRPROM test record directory printout.

THUMB DRV DIR THUMB DRV FILENAME: REC_000 DATE/TIME: 08/23/14 14:55:03 TYPE: YNd1 TESTS: 1 STATION: CIRCUIT: MFR: MODEL: S/N: KVA RTG: 3 THUMB DRV FILENAME: REC_001 DATE/TIME: 08/23/14 07:52:50 TYPE: YNd1 NUMBER OF TESTS: 1 STATION: CIRCUIT: MFR: MODEL: S/N: KVA RTG: 3

Figure 17. Typical USB Flash Drive (Thumb Drive) Test Record Directory Printout

TEST DIRECTORY RECORD NUMBER: 4 DATE/TIME: 08/23/14 07:52:50 TYPE: YNd1 NUMBER OF TESTS: 1 STATION: CIRCUIT: MFR: MODEL s/N: KVA RTG: RECORD NUMBER: 3 DATE/TIME: 08/23/14 07:44:36 TYPE: YNd1 NUMBER OF TESTS: 1 STATION: CIRCUIT: MFR: MODEL: S/N: KVA RTG: 3 RECORD NUMBER: 2 DATE/TIME: 08/23/14 14:59:35 TYPE: Dyn1 NUMBER OF TESTS: 1 STATION: CIRCUIT: MFR: MODEL : S/N: KVA RTG: 3 RECORD NUMBER: 1 DATE/TIME: 08/23/14 09:05:37 TYPE: SINGLE PHASE XFORMER NUMBER OF TESTS: 1 STATION: CIRCUIT: MFR: MODEL: S/N: KVA RTG: 3

Figure 18. Typical Internal Flash EEPROM Test Record Directory Printout

3.7.7. Erasing Test Records from the Flash EEPROM

Follow the steps below to erase test records from the Flash EEPROM:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14

Press the [2] key (SETUP).

b. The following screen will be displayed:

1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

1. RESTORE RECORD
2. SAVE RECORD
3. RECORD DIRECTORY
4. ERASE RECORD
5. COPY TO THUMB DRIVE

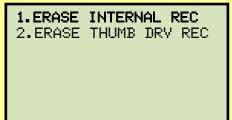
Press the [4] key (ERASE RECORD).

Option 5 (*COPY TO THUMB DRIVE*) is listed only if a USB Flash drive is connected to the unit.

NOTE

d. The following screen will be displayed:

ERASE RECORD


1.ERASE SINGLE REC.
2.ERASE ALL RECORDS

"STOP" TO EXIT

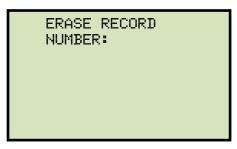
If you have a USB Flash drive inserted in the TRF-250's "USB MEM" port, the following screen will be displayed instead of the above screen:

NOTE

Press the [1] key (ERASE INTERNAL REC).

The following screen will be displayed:

ERASE RECORD


1.ERASE SINGLE REC.
2.ERASE ALL RECORDS

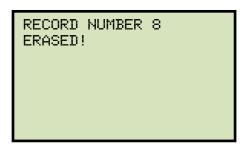
"STOP" TO EXIT

Continue with the steps below.

1. ERASE SINGLE REC.

Press the [1] key (ERASE SINGLE REC.) to erase a single test record from the unit's internal Flash EEPROM. The following screen will be displayed:

You can cancel the process and return to the "START-UP" menu by pressing the **[STOP]** key.


NOTE

Type the record number that you would like to erase using the keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first print or view a test record directory using the instructions in section 3.7.6.

The following screen will be displayed while the record is being erased:


The following screen will be displayed when the test record has been completely erased:

Press any key to continue. You will be returned to the beginning of step d.

2. ERASE ALL RECORDS

Press the [2] key (ERASE ALL RECORDS) to erase all the test records from the unit's internal Flash EEPROM. The following warning screen will be displayed:

You can press the **[STOP]** key to cancel the process and return to the "START-UP" menu.

Press the **[ENTER]** key to proceed with deleting all the test records from the unit's Flash EEPROM. The following screen will be displayed during the erasure process:

```
ERASING RECORDS
PLEASE WAIT...
```

The following screen will be displayed when all test records have been completely erased:

3.7.8. Erasing Test Records from a USB Flash Drive

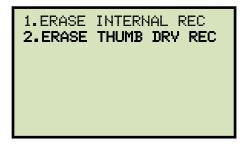
Follow the steps below to erase test records from a USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

```
1. RECORD ID
2. TEST VOLTAGE
3. PRINT RECORD
4. SAVE/RESTORE RECORD
5. NEXT PAGE
```

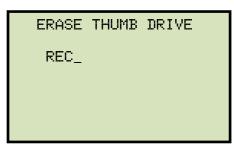

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

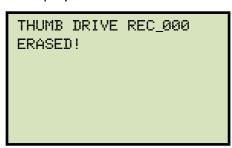
```
1. RESTORE RECORD
2. SAVE RECORD
3. RECORD DIRECTORY
4. ERASE RECORD
5. COPY TO THUMB DRIVE
```

Press the [4] key (ERASE RECORD).

d. The following screen will be displayed:

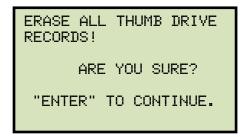

Press the [2] key (ERASE THUMB DRV REC).

e. The following screen will be displayed:


1. ERASE SINGLE REC.

Press the **[1]** key (*ERASE SINGLE REC.*) to erase a single test record from the connected USB Flash drive. The following screen will be displayed:

Type the record number that you would like to erase using the keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first print a test record directory using the instructions in section 3.7.6.


The test record will be erased from the USB Flash drive and the following screen will be displayed:

Press any key to continue. You will be returned to the beginning of step e. Press the **[STOP]** key to return to the "START-UP" menu.

2. ERASE ALL RECORDS

Press the **[2]** key (*ERASE ALL RECORDS*) to delete all test records from the connected USB Flash drive. The following warning screen will be displayed:

Press the **[STOP]** key if you do not want to erase all the test records. You will be returned to the "START-UP" menu.

Press the **[ENTER]** key to proceed with deleting all the test records from the connected USB Flash drive. The following screen will be displayed when all the records have been erased:

3.8 Working With Test Plans

The TRF-250 comes with the Vanguard Transformer Turns Ratio Analyzer Series 2 software (TTRA S2) that can be used to create transformer test plans on a PC (see the TTRA S2 software manual for details). Test plans can then be transferred to the TRF-250 and used to quickly perform tests.

3.8.1. Performing a Test Using a Transformer Test Plan

Follow the steps below to perform a test using a test plan:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE

NOTE

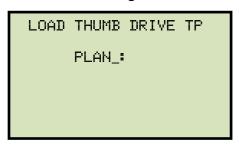
Option 7 (*COPY TO THUMB DRIVE*) will be available only if a USB Flash drive is connected to the "USB MEM" port.

Press the [1] key (LOAD TEST PLAN).

If you have a USB Flash drive connected to the unit, **continue to step c**.

If you do NOT have a USB Flash drive connected to the unit, **continue to step d**.

c. The following screen will be displayed:


```
1. INTERNAL STORAGE
2. THUMB DRIVE
```

1. INTERNAL STORAGE

Press the **[1]** key (*INTERNAL STORAGE*) to load a test plan from the unit's Flash EEPROM. **Continue to step d.**

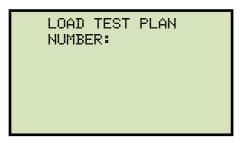
2. THUMB DRIVE

Press the **[2]** key (*THUMB DRIVE*) to load a test plan from the connected USB Flash drive. The following screen will be displayed:


Type the test plan number to load from the USB Flash drive and then press the **[ENTER]** key.

The following screen will be displayed:

```
PLAN_000 LOADED!
SAVE PLAN INTERNALLY?
1. YES
2. NO
```


Press the [2] key (NO) to not save the test plan in the unit's Flash EEPROM and to just load it in the working memory. The test plan will be loaded in the working memory and you will be returned to the "START-UP" menu. Continue to step e to perform a test using the loaded test plan.

Press the [1] key (YES) to load the test plan to the working memory and also save it in the unit's Flash EEPROM. The following screen will be displayed:

Press any key to continue. The test plan will be loaded in the working memory and also saved to the unit's Flash EEPROM. You will be returned to the "START-UP" menu. **Continue to step e to perform a test using the loaded test plan.**

d. The following screen will be displayed:

Type the test plan number to load from the unit's Flash EEPROM and then press the **[ENTER]** key. The test plan will be loaded from the Flash EEPROM and you will be returned to the "START-UP" menu. **Continue to step e to perform a test using the loaded test plan.**

e. Start from the "START-UP" menu again to run a test using the loaded test plan from the steps above:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14

Press the [1] key (RUN TEST).

f. The following screen will be displayed (test details will differ depending on the test type defined in the test plan):

```
TP #1 YND1
TAPS: 2
TEST PLAN LOADED
1. CONTINUE
2. UNLOAD TEST PLAN
```


The above screen will be displayed only if a test plan is loaded first.

NOTE

Press the [1] key (CONTINUE).

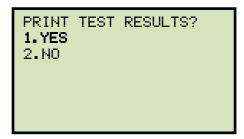
g. The following screen will be displayed:

```
TAP NUMBER 1
H VTG: 1734
X VTG: 100
"START" TO RUN TEST
```

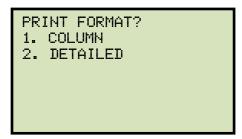
Set the transformer to the tap position indicated on the LCD screen. Press the **[START]** key to run the test using the test plan.

h. The unit will start performing the test and the screen will be updated with the test results as shown:

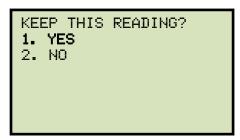
```
TEST RESULTS
RATIO MA %DIFF
A +10.057 0.8 0.46 P
B +10.046 0.7 0.34 P
C +10.057 0.8 0.46 P


XFMR TYPE: YND1
```


For each phase (A, B, and C) a "P" or "F" will be displayed to indicate Pass or Fail, respectively.


Press any key to continue.

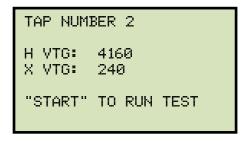
i. The following screen will be displayed:


Press the [1] key (YES) to print the test results.

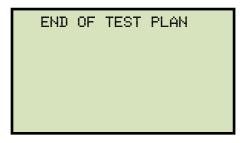
j. The following screen will be displayed:

Press the [1] key (COLUMN) to print a columnar report or press the [2] key (DETAILED) to print a detailed report. Please see Figure 19 for a sample test results printout.

k. The following screen will be displayed:


Press the [1] key (YES) to save the reading.

I. The following screen will be displayed:


Press any key to continue.

m. If the test plan included multiple tests, the start-up screen for the next test will be displayed as shown:

Repeat steps h through I for this test.

n. The following screen will be displayed after the last defined test in the test plan has been performed:

Press any key to continue.

o. The following screen will be displayed:

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

p. The following screen will be displayed momentarily:

```
SAVING RECORD...
PLEASE WAIT...
```

The following confirmation screen will then be displayed:

RECORD NUMBER 1 HAS BEEN SAVED!

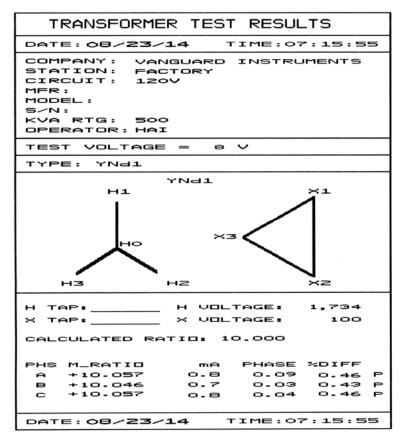
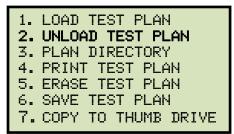
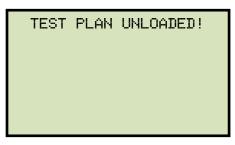


Figure 19. Test Plan Test Results Printout

3.8.2. Unloading a Test Plan From the Working Memory


Follow the steps below to unload a test plan from the working memory:

a. Start from the "START-UP" menu:


Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

Press the [2] key (UNLOAD TEST PLAN).

c. The test plan will be unloaded from the working memory, and the following screen will be displayed:

3.8.3. Printing a Test Plan Directory

Follow the steps below to print a directory of the test plans stored in the unit's Flash EEPROM or on a connected USB Flash drive:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE

Press the [3] key (PLAN DIRECTORY).

If a USB Flash drive is NOT connected to the unit, a directory of the test plans stored in the unit's Flash EEPROM will be printed, and then you will be returned to the "START-UP" menu.

If a USB Flash drive is connected to the unit, continue to step c.

c. The following screen will be displayed:

- 1. INTERNAL DIRECTORY 2. THUMB DRIVE DIR
 - 1. INTERNAL DIRECTORY

Press the [1] key (INTERNAL DIRECTORY) to print a directory of the test plans stored in the unit's Flash EEPROM. The directory will be printed and you will be returned to the "START-UP" menu.

2. THUMB DRIVE DIR

Press the [2] key (THUMB DRIVE DIR) to print a directory of the test plans stored on the connected USB Flash drive. A full directory of the test plans stored on the USB Flash drive will be printed and you will be returned to the "START-UP" menu.

3.8.4. Printing a Test Plan

Follow the steps below to print a test plan from the internal Flash EEPROM or from a connected USB Flash drive:

a. Start from the "START-UP" menu:

```
1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14
```

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

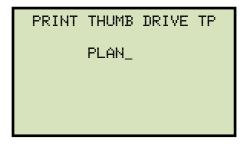
```
1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE
```

Press the [4] key (PRINT TEST PLAN).

If a USB Flash drive is connected to the unit, continue to step c.

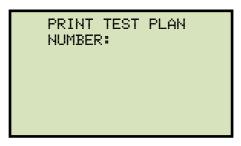
If a USB Flash drive is NOT connected to the unit, continue to step d.

c. The following screen will be displayed:


```
1. PRINT INTERNAL TP
2. PRINT FLASH DRV TP
```

1. PRINT INTERNAL TP

Press the **[1]** key (*PRINT INTERNAL TP*) to print a test plan from the unit's internal Flash EEPROM. **Continue to step d.**


2. PRINT FLASH DRV TP

Press the **[2]** key (*PRINT FLASH DRV TP*) to print a test plan from a connected USB Flash drive. The following screen will be displayed:

Type the test plan number using the keypad and then press the **[ENTER]** key. The test plan details will be printed on the unit's printer and you will be returned to the "START-UP" menu. A sample test plan printout is shown in Figure 20.

d. The following screen will be displayed:

Type the test plan number using the keypad and then press the **[ENTER]** key. The test plan will be printed on the unit's printer and you will be returned to the "START-UP" menu. A sample test plan printout is shown in Figure 21.

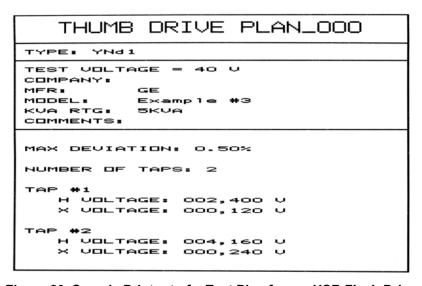


Figure 20. Sample Printout of a Test Plan from a USB Flash Drive

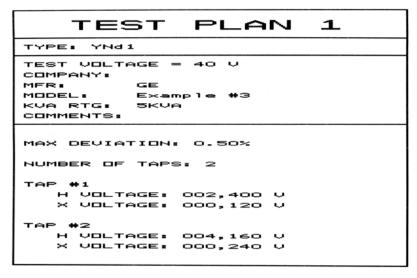


Figure 21. Sample Printout of a Test Plan from Internal Memory

3.8.5. Saving a Test Plan

Use the steps below to save a test plan from the working memory to the unit's Flash EEPROM or to a connected USB Flash drive:

a. Make sure a test plan is loaded in the working memory, and then start from the "START-UP" menu:

```
1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14
```

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

```
1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE
```

Press the [6] key (SAVE TEST PLAN).

If a USB Flash drive is connected to the unit, continue to step c.

If a USB Flash drive is NOT connected to the unit, continue to step d.

c. The following screen will be displayed:

1. SAVE INTERNALLY

Press the **[1]** key (*SAVE INTERNALLY*) to save the test plan to the unit's Flash EEPROM. **Continue to step d.**

2. SAVE TO THUMB DRIVE

Press the [2] key (SAVE TO THUMB DRIVE) to save the test plan to the connected USB Flash drive. The test plan will be saved to the USB Flash drive and the following screen will be displayed:

PLAN_001 SAVED TO THUMB DRIVE.

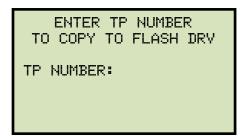
Press any key to return to the "START-UP" menu.

d. The test plan will be saved to the unit's Flash EEPROM and the following screen will be displayed:

3.8.6. Copying a Test Plan to a USB Flash Drive

Use the steps below to copy a test plan from the unit's Flash EEPROM to a connected USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:


Press the [3] key (TEST PLANS).

b. The following screen will be displayed:

```
1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE
```

Press the [7] key.

c. The following screen will be displayed:

Type the test plan number using the keypad and then press the **[ENTER]** key.

d. The selected test plan will be copied to the USB Flash drive and the following message will be displayed:

```
TP 1 SAVED TO THUMB
DRIVE AS PLAN_003
```


Any existing test plans in the Flash drive will NOT be over-written.

NOTE

3.8.7. Erasing Test Plans

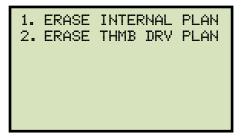
Follow the steps below to erase a test plan from the unit's Flash EEPROM or from a connected USB Flash drive:

a. Start from the "START-UP" menu:

1. RUN TEST
2. SETUP
3. TEST PLANS
4. DIAGNOSTIC
TIME: 09:10:15
DATE: 09/10/14

Press the [3] key (TEST PLANS).

b. The following screen will be displayed:


```
1. LOAD TEST PLAN
2. UNLOAD TEST PLAN
3. PLAN DIRECTORY
4. PRINT TEST PLAN
5. ERASE TEST PLAN
6. SAVE TEST PLAN
7. COPY TO THUMB DRIVE
```

Press the [5] key (ERASE TEST PLAN)

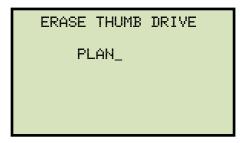
If a USB Flash drive is connected to the unit, continue to step c.

If a USB Flash drive is NOT connected to the unit, continue to step d.

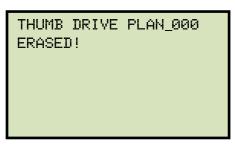
c. The following screen will be displayed:

1. ERASE INTERNAL PLAN

Press the [1] key (ERASE INTERNAL PLAN) to erase test plans from the unit's Flash EEPROM. Continue to step d.


2. ERASE THMB DRV PLAN

Press the [2] key (ERASE THMB DRV PLAN) to erase test plans from a connected USB Flash drive. The following screen will be displayed:


ERASE TEST PLAN 1. ERASE SINGLE PLAN 2. ERASE ALL PLANS

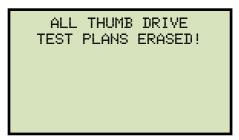
1. ERASE SINGLE PLAN

Press the **[1]** key (*ERASE SINGLE PLAN*) to erase a single test plan from the connected USB Flash drive. The following screen will be displayed:

Type the test plan number using the keypad and then press the **[ENTER]** key. The following screen will be displayed:

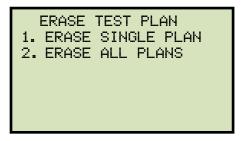
Press any key to return to the "START-UP" menu.

2. ERASE ALL PLANS

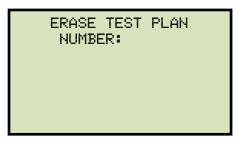

Press the [2] key (ERASE ALL PLANS) to erase all test plans from the connected USB Flash drive. The following warning screen will be displayed:

ERASE ALL THUMB DRIVE
TEST PLANS!

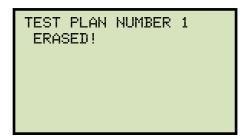
ARE YOU SURE?
"ENTER" TO CONTINUE


If you do NOT want to erase all the test plans from the connected USB Flash drive, press the **[STOP]** key. You will be returned to the "START-UP" menu.

To proceed with erasing all the test plans from the connected USB Flash drive, press the **[ENTER]** key. All test plans will be erased from the USB Flash drive and the following message will be displayed:

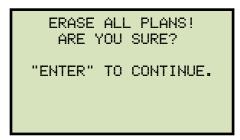

Press any key to return to the "START-UP" menu.

d. The following screen will be displayed:



1. ERASE SINGLE PLAN

Press the [1] key (*ERASE SINGLE PLAN*) to erase a single test plan from the unit's internal Flash EEPROM. The following screen will be displayed:



Type the test plan number using the keypad and then press the **[ENTER]** key. The test plan will be erased and the following message will be displayed:

2. ERASE ALL PLANS

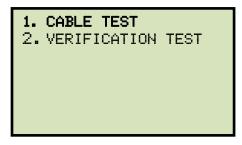
Press the **[2]** key (*ERASE ALL PLANS*) to erase all test plans from the unit's internal Flash EEPROM. The following warning screen will be displayed:

If you do NOT want to erase all the stored test plans from the unit's Flash EEPROM, press the **[STOP]** key. You will be returned to the "START-UP" menu.

To proceed with erasing all the test plans from the unit's Flash EEPROM, press the **[ENTER]** key. All test plans will be erased from the unit's Flash EEPROM and the following message will be displayed:

4.0 DIAGNOSTICS, VERIFICATION, AND TROUBLESHOOTING

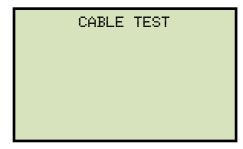
4.1 Performing an H and X Cable Diagnostic Test


Use the steps below to perform a diagnostic test on the H and X cables:

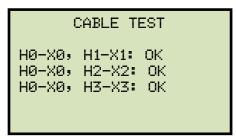
a. Start from the "START-UP" menu:

Press the [4] key (DIAGNOSTIC).

b. The following screen will be displayed:


Press the [1] key (CABLE TEST).

c. The following screen will be displayed:


```
CABLE TEST
CONNECT: H0-X0, H1-X1
H2-X2, H3-X3
"ENTER" TO CONTINUE..
```

Connect the H and X cables per the on-screen instructions and then press the **[ENTER]** key.

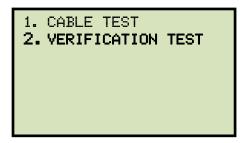
d. The following screen will be displayed while the cables are being tested:

The screen will be updated with the status of each test as shown:

"NOT OK" will be displayed for a failed diagnostic test.

NOTE

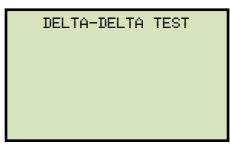
4.2 Performing a Verification Test


Use the steps below to perform a verification test on the TRF-250's electronics:

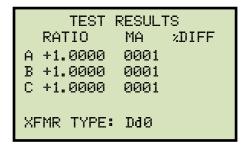
a. Start from the "START-UP" menu:

Press the [4] key (DIAGNOSTIC).

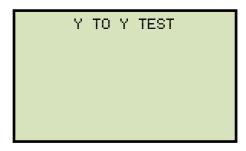
b. The following screen will be displayed:


Press the [2] key (VERIFICATION TEST).

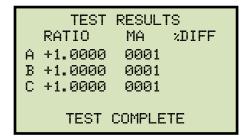
c. The following screen will be displayed:


```
VERIFICATION TEST
CONNECT: H0-X0, H1-X1
H2-X2, H3-X3
"ENTER" TO CONTINUE..
```

Connect the H and X cables per the on-screen instructions and then press the **[ENTER]** key.


d. The TRF-250 will start performing a DELTA-DELTA test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:


The unit will then proceed to perform a Y to Y test. The following screen will be displayed momentarily:

The screen will then be updated with the test results for each phase:

The following screen will be displayed when testing is finished:

The ratio reading should be 1.0000 ±0.1% for all tests.

NOTE

Press any key to return to the "START-UP" menu.

APPENDIX A – TRANSFORMER VECTOR GROUP CODES

Utility power transformers manufactured in accordance with IEC specifications have a Rating Plate attached in a visible location. This plate contains a list of the transformer's configuration and operating specifications. One such rating is the winding configuration and phase-displacement code. This code follows a convention that comprises letter and number sets that denote three-phase winding configurations (i.e., Wye, delta, or zig-zag). Letter symbols for the different windings are noted in descending order of their rated voltages. That is, symbols denoting higher voltage ratings will be in upper-case letters and symbols denoting lower or intermediate voltage ratings will be in lower-case letters. If the neutral point of either a wye or zig-zag winding is brought out, the indication will be an N (high voltage) or n (lower voltage). The end numeral is a 300 multiplier that indicates phase lag between windings.

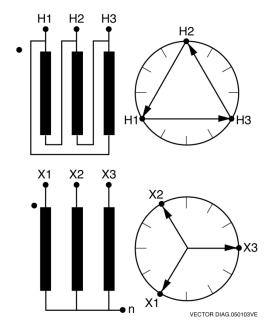
Accordingly, the following standard practice applies:

Wye (or star) = Y (high voltage) or y (low voltage)

Delta = D (high voltage) or d (low voltage)

Zig-zag = Z (high voltage) or z (low voltage)

For example, **Dyn11** decodes as follows:


D indicates that the high-voltage windings are connected in a Delta configuration

(Since delta windings do not have a neutral point, the N never appears after a D).

y indicates that the lower voltage winding is in a wye (or star) configuration.

n indicates that the lower voltage windings have the neutral point brought out.

11 indicates a phase-displacement lag of 330 degrees between the Wye and the Delta winding.

APPENDIX B – Common ANSI Transformer Descriptions

	TRANSF CONFIGU			WINDING	TESTED			
STD TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	TURNS RATIO	VECTOR GROUP	NOTES
1	н ₁ О——ОН ₂	x ₁ 0	1 Ø	H ₁ – H ₂	x ₁ -x ₂	V _H V _x	1ph0	SNG - PHS
	н ₂ Я	b/o ^{x2}	Α	H ₁ -H ₃	x ₁ -x ₀	٧ _{١١} , ٧ ₂		
2	B/C	$x_1 \circ \frac{a}{c} \circ x_0$	В	H ₂ -H ₁	x ₂ -x ₀	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	D _{yn1}	dt-Y
	H ₁ 0 A H ₃	° δ _{Χ3}	С	H ₃ -H ₂	x ₃ -x ₀			
	H ₂ O	a X2	Α	H ₁ -H ₀	X ₁ -X ₂	V		
3	B H ₀	X ₁	В	H ₂ -H ₀	x ₂ -x ₃	$\frac{V_H}{V_x \cdot V_3}$	YNd1	y – d t
	H ₁ 0 CO _{H₃}	c X ₃	С	H ₃ -H ₀	X ₃ -X ₁	, ,		
	H ₂	х ₂	Α	H ₁ -H ₃	X ₁ -X ₃			
4	ВСС	b C	В	H ₂ -H ₁	X ₂ -X ₁	$\frac{V_{H}}{V_{x}}$	Dd0	d t – d t
	$H_1 \xrightarrow{A} H_3$	X_1 X_3	С	H ₃ -H ₂	X ₃ - X ₂	·x		
	H ₂	х ₂ О	Α	H ₁ -H ₀	x ₁ -x ₀	V		
5	B H ₀	$\int_{a} X_0$	В	H ₂ -H ₀	x ₂ -x ₀	$\frac{V_{H}}{V_{x}}$	YNyn0	y – y
	H ₁ C O H ₃	X ₁ 0 C O X ₃	С	H ₃ -H ₀	x ₃ -x ₀	^		

VANGUARD.050207V1

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Η ₂	X ₃		Α	H ₁ – H ₃	$X_3 - X_1$			
1	ВСС	c b		В	H ₂ - H ₁	$X_1 - X_2$	$\frac{V_H}{V_X}$	Dd6	
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	о × ₂		С	H ₃ – H ₂	$X_2 - X_3$	X		
	H ₂ Q	х ₂		Α	H ₁ – H ₃	$X_1 - X_3$	V		
37	В	b C		В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{H}}{V_{x}}$	Dd0	
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	X_1 A		С	H3 – H2	$X_3 - X_2$	^		
	H O	X ₃ Q b X ₁		Α	H ₁ - H ₂	X3 – X2	V		
38	C/\A	a\/c		В	H ₂ – H ₃	X ₁ – X ₃	$\frac{V_H}{V_X}$	Dd2	
	H_3 H_2	о ^х 2		С	H3 – H1	$X_2 - X_1$,		
	н_ О	х ₃		Α	H ₁ - H ₂	$X_3 - X_1$			
39	C/A	c a		В	H ₂ – H ₃	$X_1 - X_2$		Dd4	
	H_3 H_2	x_2 \xrightarrow{b} x_1		С	H3 – H1	$X_2 - X_3$	X		
	H ₁ Q	х ₂ О		Α	H ₁ – H ₂	$X_2 - X_3$.,		
40	C/\A	c a	_	В	$H_2 - H_3$	$X_3 - X_1$	$\frac{V_H}{V_x}$	Dd8	
	H_3 H_2	$x_1 \xrightarrow{b} x_3$		С	H ₃ – H ₁	$X_1 - X_2$	_ ^		
	H ₁ Q	$X_1 Q \xrightarrow{b} X_2$		Α	H ₁ – H ₂	$X_1 - X_3$			
41	C/\A	a\/c		В	H ₂ – H ₃	$X_2 - X_1$		Dd10	
	H_3 H_2	о ^х з		С	H3 – H1	X3 - X2	Х		
	H ₁ O	و ^x 1		Α	H ₁ – H ₃	$X_1 - X_0$			
42	A B	$x_3 \circ c \circ x_0^a$	_	В	H ₂ – H ₁	$X_2 - X_0$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dyn1	
	H_3 C D H_2	δ_{x_2}		С	H3 – H2	$x_3 - x_0$	^		
	H ₂ O	ь уэ^х2	H ₃ -H ₂	Α	H ₁ – H ₃	$X_1 - X_3$			NO
2	В	v o a a	H ₁ -H ₃	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{H} \cdot V_{\overline{3}}}{V_{X}}$	Dy1	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	×10 c ×3	H ₂ -H ₁	С	H3 – H2	$X_3 - X_2$	^		WYE WINDING
	H ₂	^Х 1 Q с	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₂			NO
61	В	b x_0 a o x_2	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_{H} \cdot V_{\overline{3}}}{V_{X}}$	Dy3	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	_{x3} σ	H ₂ -H ₁	С	H ₃ – H ₂	X ₃ – X ₁	. x		WYE WINDING
	H ₂	^Х 1 Q _с		Α	H ₁ – H ₃	$X_0 - X_2$			
62	ВСС		—	В	H ₂ – H ₁	$x^{0} - x^{3}$	$\frac{V_{H} \cdot V_{\overline{3}}}{V_{X}}$	Dyn3	
	$H_1 \circ H_3$	x ₃ 0 ^0 -		С	H3 – H2	$X_0 - X_1$			

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	_b ρ^{X_1}		Α	H ₁ – H ₃	$x_3 - x_0$			
3	ВСС	x_3 x_0 x_0		В	H ₂ – H ₁	$X_1 - X_0$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dyn5	
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	° Ъх ₂		С	H3 – H2	$X_2 - X_0$	٧x		
	H ₂	_د ه ^X 1	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_2$			NO
4	В	x ₃ o a η	H ₁ -H ₃	В	H ₂ – H ₁	X ₁ – X ₃	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dy5	ACCESSIBLE NEUTRAL ON
	н ₁ Д	с р х ⁵	H ₂ -H ₁	С	H3 – H2	$X_2 - X_1$	*x		WYE WINDING
	н ₂ Q	X3 Q c		Α	H ₁ – H ₃	$X_0 - X_1$			
5	B/C	X_0 \xrightarrow{a} X_1		В	$H_2 - H_1$	$X_0 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dyn7	
	$H_1 \stackrel{\longleftarrow}{ \longrightarrow} H_3$	_{Х2} о -		С	$H_3 - H_2$	$X_0 - X_3$			
	H ₂	^{Х3} Q c	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_1$, ,-		NO
6	В	η	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dy7	ACCESSIBLE NEUTRAL ON
	$H_1 \stackrel{\longleftarrow}{\longrightarrow} H_3$	_{X2} o b	H ₂ -H ₁	С	H3 – H2	$X_2 - X_3$	Î		WYE WINDING
	H ₂ O	, ρ ^{x₃}	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
63	В	x_2 x_0 x_0	H ₁ -H ₃	В	H ₂ – H ₁	X3 - X2	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dy9	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	° Ъх,	H ₂ -H ₁	С	H3 – H2	X ₁ – X ₃	V _X		WYE WINDING
	H ₂	, ρ ^X 3		Α	H ₁ – H ₃	$X_2 - X_0$			
64	ВСС	$x_2 o \xrightarrow{a} o x_0$	_	В	H ₂ – H ₁	X3 - X0	$\frac{V_{H} \bullet V_{3}}{V_{x}}$	Dyn9	
	H ₁ 0 A H ₃	° ∕ >×₁		С	H3 – H2	$X_1 - X_0$	v×		
	H ₂	^Х 2 Q с		Α	H ₁ – H ₃	X ₀ – X ₃			
7	В	X_0 a X_3		В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dyn11	
	$H_1 \circ H_3$	X ₁ σ ^b		С	H ₃ – H ₂	$X_0 - X_2$	l *x		
	н ₂ Q	^{Х2} Q с	H ₃ -H ₂	Α	H ₁ – H ₃	X ₂ – X ₃	, , <u>,</u>		NO
8	BC	η	H ₁ -H ₃	В	H ₂ – H ₁	X3 – X1	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dy11	ACCESSIBLE NEUTRAL ON
	$H_1 \circ H_3$	X ₁ o b	H ₂ -H ₁	С	H3 – H2	X ₁ – X ₂			WYE WINDING
	Н ₁	Ř ¹	H ₂ -H ₃	Α	H ₁ – H ₂	$X_1 - X_0$			
45	C/A	c X ₀ a	H ₃ -H ₁	В	H ₂ – H ₃	$X_2 - X_0$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn0	
	H_3 H_2	X_3 $\sum_{b}^{X_2}$	H ₁ -H ₂	С	H ₃ – H ₁	$X_3 - X_0$	_ 'x		
	H ₁	x ₃ 0	H ₂ -H ₃	Α	H ₁ - H ₂	$X_0 - X_2$	\/		
46	C/\A	$_{a}$ \times_{0} $_{c}$	H ₃ -H ₁	В	H ₂ – H ₃	X ₀ – X ₃	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn2	
	H_3 H_2	x ₂	H ₁ -H ₂	С	H ₃ – H ₁	$X_0 - X_1$	x		

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₁	x ₃ 0		Α	H ₁ - H ₂	X ₃ – X ₂	V		NO
47	C/\A	a e c	—	В	H ₂ – H ₃	X ₁ – X ₃	$\frac{V_{H}}{V_{X}}$	Dz2	ACCESSIBLE NEUTRAL
	H_3 H_2	δx ₂		С	H3 – H1	X ₂ – X ₁			NEOTHAL
	H ₁ Q	ρ ^{x₃}	H ₂ -H ₃	Α	H ₁ - H ₂	$X_3 - X_0$, V _{LI}		
48	C/\A	$a \rightarrow X_0$ b	H ₃ -H ₁	В	H ₂ – H ₃	$X_1 - X_0$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn4	
	н ₃ б в бн ₂	x ₂ c x ₁	H ₁ -H ₂	С	H ₃ – H ₁	$X_2 - X_0$			
	н ₁ Q	₂ مر		Α	H ₁ - H ₂	X3 – X1	V		NO
49	C/A	n_b	—	В	H ₂ – H ₃	X ₁ – X ₂		Dz4	ACCESSIBLE NEUTRAL
	H ₃ B H ₂	x ₂ c x ₁ x ₂		С	H3 – H1	X ₂ – X ₃			
	н ₂ Я	Q ^{X2} ,		Α	H ₁ – H ₃	X ₁ – X ₃	\ _{V_}		NO
9	B/C	a n x ₃	—	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_{H}}{V_{X}}$	Dz0	ACCESSIBLE NEUTRAL
	н ₁ Д	x <mark>o c—o ³</mark>		С	H3 – H2	X3 – X2			
	A H ₂	X_3 $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\nearrow}$ $\stackrel{\circ}{\nearrow}$		Α	H ₁ – H ₃	$X_3 - X_1$	V		NO
10	B C	b η a		В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_H}{V_X}$	Dz6	ACCESSIBLE NEUTRAL
	H ₁	δx ₂		С	H ₃ – H ₂	$X_2 - X_3$			
	^н 1 Я	X_2 \sum_{b}^{b} $\sum_{j=1}^{N_3}$	H ₂ -H ₃	Α	H ₁ – H ₂	$X_0 - X_1$	3 V _H		
50	C/ A	$a \stackrel{X_0}{\stackrel{C}{\times}_0} c$	H ₃ -H ₁	В	H ₂ – H ₃	$X_0 - X_2$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn6	
	H ₃ d B H ₂	δx ₁	H ₁ -H ₂	С	H3 – H1	$x_0 - x_3$			
	н ₁ Я	$Q_{a}^{X_{2}}$	H ₂ -H ₃	Α	H ₁ – H ₂	X ₂ – X ₀	2 V _{LI}		
51	C/ A	$\int_{0}^{\infty} dx_{0} x_{3}$	H ₃ -H ₁	В	H ₂ – H ₃	X3 – X0	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn8	
	H ₃	Х1 Ь	H ₁ -H ₂	С	H ₃ – H ₁	$X_1 - X_0$			
	^н 1 Я	$Q_{a}^{X_{2}}$		Α	H ₁ - H ₂	X ₂ – X ₃	V _H		NO
52	C/ A	, , , , , , , , , , , , , , , , , , ,		В	H ₂ – H ₃	X3 – X1		Dz8	ACCESSIBLE NEUTRAL
	н ₃ б В Ън ₂	^1 D		С	H3 – H1	X ₁ – X ₂			
	н ₁ Я	Q^{X_1} C_{X_2} Q^{X_2}	H ₂ -H ₃	Α	H ₁ – H ₂	$X_0 - X_3$, V _{LI}		
53	C/ A	$b \longrightarrow 0$ a	H ₃ -H ₁	В	H ₂ – H ₃	$X_0 - X_1$	$\frac{3}{2} \cdot \frac{V_H}{V_X}$	Dzn10	
	H ₃	_{Х3} б	H ₁ -H ₂	С	H ₃ – H ₁	$X_0 - X_2$,		
	H ₁	Q^{X_1} \mathcal{C}^{X_2}		Α	H ₁ – H ₂	X ₁ – X ₃	V		NO
54	C/ A	b a	_	В	H ₂ – H ₃	X ₂ – X ₁	$\frac{V_H}{V_X}$	Dz10	ACCESSIBLE NEUTRAL
	н ₃ о В Р	_{Х3} d		С	H ₃ – H ₁	$X_3 - X_2$,		

TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
H ₂	X ₃ Р. с		Α	H ₁ - H ₀	$X_2 - X_1$			
B H ₀	b X1	_	В	H ₂ – H ₀	$X_3 - X_2$	V _H	YNd7	
H ₁ 0 C OH ₃	X ₂ a		С	H3 – H0	X ₁ – X ₃	vx •v3		
H ₂	a X ₂		Α	H ₁ – H ₀	$X_1 - X_2$			
B H ₀	X ₁ b	_	В	H ₂ – H ₀	$X_2 - X_3$	V _H V ₃	YNd1	
H ₁ 0 C OH ₃	° × x3		С	H3 – H0	$X_3 - X_1$	× • • • •		
H ₂	a X ₂	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₂			NO
B N	X ₁ b	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_H}{V_W} \cdot \frac{V_3}{2}$	Yd1	ACCESSIBLE NEUTRAL ON
н10 с он3	c \wedge	H ₂ -H ₁	С	H3 – H2	X3 – X1	*x 2		WYE WINDING
H ₂	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Α	H ₁ - H ₀	X3 - X ₁			
BHO	X ₃ b	_	В	H ₂ – H ₀	X ₁ – X ₂	VH VvVa	YNd5	
H ₁ 0 C OH ₃	° X _{x2}		С	H ₃ – H ₀	X ₂ – X ₃	·x •·3		
H ₂	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ -H ₂	Α	H ₁ – H ₃	X ₃ - X ₁			NO
B	X ₃ b	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_H}{V_V} \cdot \frac{V_3}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
н ₁ 0 С ОН ₃	c X ₂	H ₂ -H ₁	С	H ₃ – H ₂	$X_2 - X_3$	*x -		WYE WINDING
H ₂	Х ₃ Q	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
BIN	ь х1	H ₁ -H ₃	В	H ₂ – H ₁	$X_3 - X_2$	$\frac{V_H}{V} \cdot \frac{V_3}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
H ₁ 0 C OH ₃	X ₂ a	H ₂ -H ₁	С	H3 – H2	$X_1 - X_3$	VX Z		WYE WINDING
H ₂	Х ₂ Q .		Α	H ₁ – H ₀	X ₁ – X ₃			
BHO	р <u>с</u> Х ³		В	H ₂ – H ₀	X ₂ – X ₁	V _H	YNd11	
H ₁ 0 C OH ₃	X ₁ a		С	H ₃ – H ₀	X3 - X2	1, •.3		
H ₂	Х ₂ Q, а	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃			NO
B	p X3	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_H}{V} \cdot \frac{V_{\overline{3}}}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
H ₁ 0 C OH ₃	X ₁ a	H ₂ -H ₁	С	H ₃ – H ₂	X3 - X2	VX Z		WYE WINDING
H ₂	χ ₂ Q a,Οχ,		Α	H ₁ – H ₀	$X_0 - X_1$			
BHO	3 c X X 1		В	H ₂ - H ₀	$X_0 - X_2$		YNyn6	
H ₁ 0 C OH ₃	x ₂		С	H ₃ – H ₀	$X_0 - X_3$	×		
Н ₂	X ₂	H ₂ -H ₀	Α	H ₁ – H ₀	X ₁ – X ₂			NO
BH	bΩη	H ₃ -H ₀	В	H ₂ – H ₀	X ₂ – X ₃		YNy0	ACCESSIBLE NEUTRAL ON
H ₁ 0 C OH ₃	x_1 x_2 x_3	H ₁ -H ₀	С	H ₃ – H ₀	X ₃ – X ₁	v _x		LOW VOLTAGE WINDING
	HIGH-VOLTAGE WINDING (H) HIGH-VOLTAGE WINDING (H) HOW	HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) H2 H2 H2 H3 H4 C OH3 H2 H2 H3 H4 C OH3 H3 H2 H4 C OH3 H3 H4 C OH3 H4 H4 C OH3 H4	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) H12 H2 H2 H3 H2 H1 H2 H3 H2 H4 H2 H4 H2 H4 H4 H4 H4 H4	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIG	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING (X) A H1-H0 B H2-H0 C H3-H0 C H3-H0 C H3-H0 C H3-H0 C H3-H0 C H3-H1 C H3-H2 A H1-H3 B H2-H1 C H3-H2 A H1-H0 H2-H0 C H3-H0 C H3-H0 C H3-H1 C H3-H2 A H1-H0 H2-H1 C H3-H2 A H1-H3 B H2-H1 A H1-H3	CONFIGURATION HIGH-VOLTAGE WINDING (X) HIGH-VOLTAGE WINDING HIGH-VICH-PICH-VICH HIGH-VOLTAGE WINDING HIGH-VICH-PICH-VICH HIGH-VOLTAGE WINDING HIGH-VICH-PICH-VICH HIGH-VOLTAGE WINDING HIGH-VICH-PICH-VICH HIGH-VICH-PICH-VICH HIGH-VICH-PICH-VICH HIGH-VICH-PICH-VICH HIGH-VICH-PICH HIGH-VICH-PICH-VICH HIGH-VICH-PICH HIGH-VIC	CONFIGURATION HIGH-VOLTAGE MINDING (N) JUMPER PHASE VOLTAGE VOLTAGE VOLTAGE VOLTAGE VINDING (N) VINDING (N	High-yoltage Low-yoltage Winding (x) Jumper Phase Winding Voltage Volt

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	X ₂	x ₃ -x ₀	Α	H ₁ – H ₃	$X_1 - X_0$			NO ACCESCIBLE
20	B	b X ₀	x ₁ -x ₀	В	H ₂ – H ₁	$X_2 - X_0$		Yyn0	ACCESSIBLE NEUTRAL ON
	H ₁ 0 C OH ₃	X_1 C	x ₂ -x ₀	С	H ₃ – H ₂	X ₃ – X ₀	Х		HIGH VOLTAGE WINDING
	H ₂	x ₂		Α	H ₁ – H ₀	$X_1 - X_0$	V		
43	$_{A}^{B}$ $_{O}^{H_{0}}$	$\int_{a}^{b} X_{0}$	—	В	H ₂ – H ₀	$X_2 - X_0$	$\frac{V_{H}}{V_{I}}$	YNyn0	
	H ₁ 0 C OH ₃	X ₁ 0 C O X ₃		С	H3 – H0	$X_3 - X_0$			
	H ₂	X ₂		Α	H ₁ – H ₃	X ₁ – X ₃	.,		NO
21	B N	abη	_	В	H ₂ – H ₁	$X_2 - X_1$		Yy0	ACCESSIBLE NEUTRAL
	H ₁ 0 C OH ₃	X ₁ 0 c 0X ₃		С	H3 – H2	$X_3 - X_2$	^		
	H ₂ C	X ₃ 0 a 0 X ₁	H ₂ -H ₀	Α	H ₁ – H ₀	$X_2 - X_1$	V		NO ACCESSIBLE
22	$_{A}^{B}$ $_{H_{0}}^{H_{0}}$	bη	H ₃ -H ₀	В	H ₂ – H ₀	$X_3 - X_2$	$\frac{v_{H}}{v_{x}}$	YNy6	NEUTRAL ON LOW VOLTAGE
	н ₁ 0 С он ₃	x ₂	H ₁ -H ₀	С	H3 – H0	$X_1 - X_3$			WINDING
	H ₂ O	X ₃	x ₃ -x ₀	Α	H ₁ – H ₃	$X_0 - X_1$.,		NO ACCESSIBLE
23	B N N	b X ₀	x ₁ -x ₀	В	$H_2 - H_1$	$X_0 - X_2$	$\frac{V_H}{V_X}$	Yyn6	NEUTRAL ON HIGH VOLTAGE
	н ₁ 0 С он ₃	x ₂	x ₂ -x ₀	С	$H_3 - H_2$	$X_0 - X_3$	^		WINDING
	H ₂	X_3 a X_1		Α	H ₁ – H ₃	$X_3 - X_1$	V		NO
24	$A = \begin{bmatrix} B \\ A \end{bmatrix}$ N	b n	—	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_{H}}{V_{x}}$	Yy6	ACCESSIBLE NEUTRAL
	H ₁ 0 C OH ₃	x ₂		С	H3 – H2	$X_2 - X_3$	^		
	H ₂	0 X ₂		Α	H ₁ – H ₃	$X_1 - X_0$.,		
65	B H ₀	X_1 X_0 X_0	_	В	H ₂ – H ₁	$X_2 - X_0$	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{X}}$	YNzn1	
	н ₁ 0 с он ₃	° √ X3		С	H3 – H2	$X_3 - X_0$			
	H ₂	a Q ^X 2		Α	H ₁ – H ₃	$X_1 - X_0$	V Va		NO ACCESSIBLE
25	B N	X_1 X_0 X_0	—	В	H ₂ – H ₁	X ₂ – X ₀	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{X}}$	Yzn1	NEUTRAL ON WYE WINDING
	н ₁ 0 с он ₃	c ~X3		С	H3 – H2	X3 – X0			WIE WINDING
	H ₂ O	$_{a}$ $\overset{X_{2}}{Q^{2}}$	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₂	,, ,_		NO
26	A = N	χ ₁ σ η b	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₃	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yz1	ACCESSIBLE NEUTRAL
	H ₁ 0 C OH ₃	c \O _X 3	H ₂ -H ₁	С	H3 – H2	X ₃ – X ₁			
	H ₂	a Q ^X 1		Α	H ₁ – H ₃	$X_3 - X_0$	V 15		NO ACCESSIBLE
27	A = N	x ₃ 0	—	В	H ₂ – H ₁	$X_1 - X_0$	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Yzn5	ACCESSIBLE NEUTRAL ON
	н ₁ 0 С он ₃	° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		С	$H_3 - H_2$	$X_2 - X_0$			WYE WINDING

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	γ ^X 1	H ₃ -H ₂	Α	H ₁ – H ₃	X3 – X1			NO
28	BN	χ_3 η b	H ₁ -H ₃	В	H ₂ – H ₁	X ₁ – X ₂	$\frac{V_H}{V_{H}} \cdot \frac{V_3}{2}$	Yz5	NO ACCESSIBLE
	н ₁ 0 С ОН ₃	$^{\sim}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$	H ₂ -H ₁	С	H ₃ – H ₂	X ₂ – X ₃	VX Z		NEUTRAL
	H ² C	х ₃ о с		Α	H ₁ – H ₃	$X_0 - X_1$			
66	B H ₀	$\begin{bmatrix} x_0 & x_1 \\ x_0 & x_1 \end{bmatrix}$	—	В	H ₂ – H ₁	$X_0 - X_2$	$\frac{V_H}{V} \bullet \frac{V_3}{}$	YNzn7	
	н ₁ 0 С он ₃	x ₂ o		С	H3 – H2	X ₀ – X ₃	v _X		
	O _M H	х ₃ о с		Α	H ₁ – H ₃	$X_0 - X_1$			NO
29	B	b (X ₀ a α X ₁	—	В	H ₂ – H ₁	$X_0 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Yzn7	ACCESSIBLE NEUTRAL ON
	н ₁ 0 С ОН ₃	x ₂ d 0 0		С	H3 – H2	$X_0 - X_3$	^		WYE WINDING
	H ₂	х ₃ о с	H ₃ -H ₂	Α	H ₁ – H ₃	$X_2 - X_1$			NO
30	$_{A}^{B} \prod_{N}^{N}$	b Δη Δ ^X 1	H ₁ -H ₃	В	H ₂ – H ₁	$X_3 - X_2$	$\frac{V_H}{V_V} \cdot \frac{V_3}{2}$	Yz7	ACCESSIBLE NEUTRAL
	н10 С ОН3	_{x2} b "	H ₂ -H ₁	С	H3 – H2	$X_1 - X_3$			NEOTHAL
	H ₂	x ₂ 0 , c		Α	H ₁ – H ₃	$X_0 - X_3$	V V5		
67	BH ₀	$\int_{0}^{\infty} d^{X_0} d^{X_3}$	—	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	YNzn11	
	н10 с он3	_{X1} δ "		С	H3 – H2	$X_0 - X_2$			
	H ₂	x ₂ 0 , c		Α	H ₁ – H ₃	X ₀ – X ₃			NO
31	$_{\Delta}^{B} \prod_{N}^{N}$	β Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	—	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{X}}$	Yzn11	ACCESSIBLE NEUTRAL ON
	н ₁ 0 С ОН ₃	x ₁ b 0 °		С	H3 – H2	X ₀ – X ₂	V _X		WYE WINDING
	H ₂	x ₂ 0 c	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃	V VC		NO
32	$_{A}^{B} \prod_{N}^{N}$	b n N3	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Yz11	ACCESSIBLE NEUTRAL
	н ₁ 0 С ОН ₃	x ₁ d "	H ₂ -H ₁	С	H3 – H2	X ₃ – X ₂			-
	Q ^H 1,	χ ₁	x ₂ -x ₃	Α	$H_1 - H_0$	$X_1 - X_2$	V		
55	C Ho	c/\a	X ₃ -X ₁	В	$H_2 - H_0$	$X_2 - X_3$	$\frac{2}{3} \cdot \frac{V_H}{V_X}$	ZNd0	
	H_3 $B \longrightarrow O$	x_3 b b x_2	X ₁ -X ₂	С	H ₃ – H ₀	$X_3 - X_1$	^		
	Q ^H 1.	X ₁		Α	H ₁ – H ₂	$X_1 - X_2$.,		NO
56	C N	c a		В	H ₂ – H ₃	$X_2 - X_3$	$\frac{V_H}{V_X}$	Zd0	ACCESSIBLE NEUTRAL ON
	H ₃ B O H ₂	x_3 b x_2		С	H3 – H1	$X_3 - X_1$	X		HIGH VOLTAGE
	Q ^H 1	$X_2 \xrightarrow{b} X_3$	x ₂ -x ₃	Α	H ₁ – H ₀	$X_2 - X_1$	· ·		
57		a\/c	x ₃ -x ₁	В	H ₂ – H ₀	X3 – X2	$\frac{2}{3} \cdot \frac{V_H}{V_x}$	ZNd6	
	H_3 H_2	Х ₁	x ₁ -x ₂	С	H3 – H0	X ₁ – X ₃	y x		

	TRANSF CONFIGU				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	\mathbf{q}^{H_2}	а Р ^х 1		Α	H ₁ – H ₀	X3 – X1			NO
33	$A \rightarrow B$	Х ₃ О С П	_	В	H ₂ – H ₀	X ₁ – X ₂	$\frac{V_H}{V_x \cdot V_3}$	ZNy5	ACCESSIBLE NEUTRAL ON
	H ¹ C OH ₃	^υ δ ^λ 2		С	H3 – H0	X ₂ – X ₃			WYE WINDING
	\mathbf{q}^{H_2}	_a ρ^{x_1}	H ₃ -H ₂	Α	H ₁ – H ₃	$X_3 - X_1$,, ,,_		NO
34	A N	X ₃ о с	H ₁ -H ₃	В	H ₂ – H ₁	$X_1 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	Zy5	ACCESSIBLE NEUTRAL
	н <mark>о с он</mark> 3	^b ∕ ^X ₂	H ₂ -H ₁	С	$H_3 - H_2$	$X_2 - X_3$			
	H ₂	X ₂ Q		Α	H ₁ – H ₀	X ₁ – X ₃			NO
35	$A \longrightarrow B$	$a \rightarrow c \circ x_3$	_	В	H ₂ – H ₀	X ₂ – X ₁	$\frac{V_H}{V_X \bullet V_3}$	ZNy11	ACCESSIBLE NEUTRAL ON
	H_1 $C \rightarrow O H_3$	_{X1} d		С	H3 – H0	X3 - X2			WYE WINDING
	\mathbf{q}^{H_2}	X ₂ Q	H ₃ -H ₂	Α	H ₁ – H ₃	X ₁ – X ₃			NO
36	A N	$a \rightarrow c \circ x_3$	H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_H}{V_x} \cdot \frac{V_3}{2}$	Zy11	ACCESSIBLE NEUTRAL
	н <mark>1 С → н</mark> 3	_{X1} d	H ₂ -H ₁	С	H ₃ – H ₂	X3 - X2			NEOTINE
	۶ ^H 2	<i>ا</i> م		Α	H ₁ – H ₂	$X_1 - X_2$	V		
58	A_B	a b	H ₁ -H ₂				$\frac{V_H}{V_X}$	T-T 0	
	H ₁	$X_1^{d} \qquad \mathcal{O}_{X_3}$	$x_{1}^{1} - x_{2}^{2}$	В	H ₁ – H ₃	$X_1 - X_3$,	U	
	^Н 2 Q	, o ^{X2}	H ₂ -H ₃	Α	H ₁ – H ₃	$X_1 - X_2$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	T-T	
59	A B	X,O B					V _X 2	30	
	H ₁	^1	x ₁ -x ₂	В	H ₂ – H ₃	$X_1 - X_3$	$V_x V_{\overline{3}}$	Lag	
	H ₂ Q	X ₂ Q	H ₂ -H ₃	Α	H ₁ – H ₃	$X_1 - X_3$	$\frac{V_H}{V_X} \cdot \frac{V_3}{2}$	T-T	
60	AB							30	
	H ₁ 0 6H ₃	x ₁ 0 a	x ₁ -x ₃	В	H ₂ – H ₃	$X_2 - X_1$	$\frac{V_X}{V_H} \cdot \frac{2}{V_3}$	Lead	

APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	2W Q 2U		Α	1U – 1W	2W – 2U			
1	В	c b		В	1V – 1U	2U – 2V	U1 U2	Dd6	
	1U A 1W	8 2V		С	1W – 1V	2V – 2W			
	1V 8	2V Q		Α	1U – 1W	2U – 2W			
37	B/C	b c		В	1V – 1U	2V – 2U	U1 U2	Dd0	
	1U 0 A D 1W	2U d a 2W		С	1W – 1V	2W – 2V			
	1U A	2W 0 2U		Α	1U – 1V	2W – 2V	111		
38	C/ A	a\c		В	1V – 1W	2U – 2W	U1 U2	Dd2	
	1W 0 B D1V	8 2V		С	1W – 1U	2V – 2U			
	1U A	2W A		Α	1U – 1W	2W – 2U			
39	C/ A	c/a		В	1V – 1U	2U – 2V	U1 U2	Dd4	
	1W 0 B 01V	2V d b 2U		С	1W – 1U	2V – 2W			
	1U A	X2 A		Α	1U – 1V	2V – 2W			
40	C/\A	c a		В	1V – 1W	2W – 2U	U1 U2	Dd8	
	1W 0 B 1V	2U d b 2W		С	1W – 1U	2U – 2V			
	1U A	2U 0 b 2V		Α	1U – 1V	2U – 2W			
41	C/ A	a\/c		В	1V – 1W	2V – 2U	U1 U2	Dd10	
	1W 0 B 1V	2W		С	1W – 1U	2W – 2V			
	1U Q) 2U		Α	1U – 1W	2U – 2N	,-		
42	A B	2W O C C b	_	В	1V – 1U	2V – 2N	U1 • ^V 3 U2	Dyn1	
	1WO C 01V	b _{2V}		С	1W – 1V	2W – 2N			
	1V Q	b) 2V	1W – 1V	Α	1U – 1W	2U – 2V	,_		NO
2	B C	2U Ο α η c	1U – 1W	В	1V – 1U	2V – 2W	U1 • ^V 3 U2	Dy1	ACCESSIBLE NEUTRAL ON
Ш	1U 0 A 1W	° 5 _{2W}	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V A	2U Q c	1W – 1V	Α	1U – 1W	2U – 2V	,, ,-		NO 1005001DL5
61	В	b a 0 2V	1U – 1W	В	1V – 1U	2V – 2W	$\frac{V_{U1} \cdot V_3}{U2}$	Dy3	ACCESSIBLE NEUTRAL ON
	1U 0 A 01W	2W d	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V Ω	2U Q c		Α	1U – 1W	2N – 2V			
62	ВСС	b 2N 2V	_	В	1V – 1U	2N – 2W	U1 • V3	Dyn3	
	1U 0 A 1W	2W o		С	1W – 1V	2N – 2U			

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Ω	, p 2U		Α	1U– 1W	2W – 2N			
3	В	2W O a 2N		В	1V – 1U	2U – 2N	U1 •√3 U2	Dyn5	
	1U 0 A 1W	° ∂ 2∨		С	1W – 1V	2V – 2N	02		
	1V Q	<i>ه</i> کار	1W – 1V	Α	1U– 1W	2W – 2V			NO
4	В	2W O a b	1U-1W	В	1V – 1U	2U – 2W	<u>U1 •√3</u> U2	Dy5	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	° ∕ ≥∨	1V _ 1U	С	1W – 1V	2V – 2U	02		WYE WINDING
	1V Q	2W Q c		Α	1U – 1W	2N – 2U			
5	В	2N a 2U		В	1V – 1U	2N –2V	U1 •√3 U2	Dyn7	
	1U 0 A 01W	_{2V} o b		С	1W – 1V	2N- 2W			
	1V Q	2W Q c	1W-1V	Α	1U – 1W	2W – 2U			NO
6	В	a 2U	1U-1W	В	1V – 1U	2U – 2V	U1 • ^V 3 U2	Dy7	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	2V o D	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V Q	, 9 2W	1W-1V	Α	1U– 1W	2V – 2U			NO
63	ВСС	2V O a 2N	1U–1W	В	1V – 1U	2W – 2V	<u>U1 •√3</u> U2	Dy9	ACCESSIBLE NEUTRAL ON
	1U 0 A 1W	° b 2U	1V-1U	С	1W – 1V	2U – 2W	02		WYE WINDING
	1V Q	, p 2W		Α	1U– 1W	2V – 2N			
64	ВС	2V 0 a 0 2N	—	В	1V – 1U	2W – 2N	<u>U1 •√3</u> U2	Dyn9	
	1U O A	° > 2U		С	1W – 1V	2U – 2N	02		
	1V O	2 VQ _C		Α	1U – 1W	2N – 2W			
7	ВСС	2N a 0 2W	_	В	1V – 1U	2N- 2U	<u>U1 •√3</u> U2	Dyn11	
	1U 0 A 1W	2U o b		С	1W – 1V	2N – 2V	02		
	1V P	2V Q c	1W-1V	Α	1U – 1W	2V – 2W			NO
8	ВСС	a 0 2W	1U-1W	В	1V – 1U	2W – 2U	U1 •√3 U2	Dy11	ACCESSIBLE NEUTRAL ON
	1U 🗸 🗡 1W	2U o b	1V-1U	С	1W – 1V	2U – 2V			WYE WINDING
	1U Ω	2U Q	1V-1W	Α	1U – 1V	2U – 2N			
45	C/A	c 2N a	1W-1U	В	1V – 1W	2V – 2N	3 · U1 / U2	Dzn0	
	1W 0 B 1V	Ø	1U-1V	С	1W – 1U	2W – 2N			
	1U Ω	b 2U 2U 2	1V-1W	Α	1U– 1V	2N – 2V			
46	C/A	2W 2N c	1W-1U	В	1V – 1W	2N – 2W	$\frac{3}{2} \cdot \frac{\text{U1}}{\text{U2}}$	Dzn2	
	1W 0 B 1V	b ₂ V	1U-1V	С	1W – 1U	2N – 2U			

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1U Q	ob 2U		Α	1U – 1V	2W – 2V			NO
47	C/A	2W c	_	В	1V – 1W	2U – 2W	U1 U2	Dz2	ACCESSIBLE NEUTRAL
	1W 0 B 1V	ბ ₂v		С	1W – 1U	2V – 2U			NEOTIAL
	1U Ω	2W	1V_1W	Α	1U – 1V	2W – 2N	2 114		
48	C/\A	2N b	1W-1U	В	1V – 1W	2U – 2N	3 • U1 2 U2	Dzn4	
	1WO B 1V	o—, o o o	1U-1V	С	1W – 1U	2V – 2N			
	1U Q	9 2₩		Α	1U – 1V	2W – 2U			NO
49	C/\A	a b	—	В	1V – 1W	2U – 2V	U1 U2	Dz4	ACCESSIBLE NEUTRAL
	1W 0 B 1V	→ , δ _{2U}		С	1W – 1U	2V – 2W			NEOTHAL
	1V Q	2V Q		Α	1U – 1W	2U – 2W	U1		NO
9	B/C	a η b $_{2W}$	_	В	1V – 1U	2V – 2U	U2	Dz0	ACCESSIBLE NEUTRAL
	1U 0 A 1W	2U C		С	1W – 1V	2W – 2V			
	1V 8	c 2U		Α	1U – 1W	2W – 2U			NO
10	B/C	b η a		В	1V – 1U	2U – 2V	U1 U2	Dz6	ACCESSIBLE NEUTRAL
	1U 0 A 1W	ბ 2V		С	1W – 1V	2V – 2W			
	1U Q	ob 2W P	1V-1W	Α	1U – 1V	2N – 2U	3 U1		
50	C/A	2V 2N c	1W –1 U	В	1V – 1W	2N – 2V	3 · U1 2 · U2	Dzn6	
	1W 0 B 1V	b 2U	1U-1V	С	1W – 1U	2N – 2W			
	1U Q	2V Q a	1V-1W	Α	1U – 1V	2V – 2N			
51	C/\A	°—<2N	1W-1U	В	1V – 1W	2W – 2N	3 · U1 2 · U2	Dzn8	
	1W d B 1V	0	1U-1V	С	1W – 1U	2U – 2N			
	1∪ A	2V Q a		Α	1U– 1V	2V – 2W			NO
52	C/A	<u>څ</u> - (—	В	1V – 1W	2W – 2U	U1 U2	Dz8	ACCESSIBLE NEUTRAL
	1W 0 B 1V	∂		С	1W – 1U	2U – 2V			
	1U A	2U c 2V	1V-1W	Α	1U – 1V	2N – 2W			
53	C/A	b 2N a	1W-1U	В	1V – 1W	2N – 2U	3 · U1 / U2	Dzn10	
	1WO B 1V	2W o	1U-1V	С	1W – 1U	2N – 2V			
	1U Q	2U Q ^C /—O 2V		Α	1U – 1V	2U – 2W			NO
54	C/A	b a	_	В	1V – 1W	2V- 2U	U1 U2	Dz10	ACCESSIBLE NEUTRAL
	1W 0 B 1V	2W 0		С	1W –1U	2W – 2V			NEOTIAL

	TRANSF CONFIGU				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O	2W C		Α	1U – 1N	2V – 2U			
11	B 1N	b 2U	_	В	1V – 1N	2W – 2V	U1 U2 • V3	YNd7	
	1U O C O1W	2V 0 a		С	1W – 1N	2U – 2W			
	1V O B	a 2U		Α	1U – 1N	2U – 2V			
44	A N	2W C b	_	В	1V – 1N	2V – 2W	U1 U2 •√3	YNd1	
	1U O C O1W	y 2∨		С	1W – 1N	2W – 2U			
	1V O B I	a 2V	1W-1V	Α	1U – 1W	2U – 2V			NO
12	A A	2U C b	1U-1W	В	1V – 1U	2V – 2W	U1 V3 U2 2	Yd1	ACCESSIBLE NEUTRAL ON
	1U O C 01W	y 2W	1V-1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V O	a 2U		Α	1U– 1N	2W – 2U	114		
13	B 1N	2W C b	_	В	1V – 1N	2U – 2V	U1 U2 • V3	YNd5	
	1UO C 01W	° √ 2∨		С	1W – 1N	2V – 2W			
	1V O	a 2U	1W-1V	Α	1U – 1W	2W – 2U			NO
14	B A	2WO b	1U-1W	В	1V – 1U	2U – 2V	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_3}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	1U O C O1W	° → 2V	1V-1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V C	2W 0 c	1W-1V	Α	1U – 1W	2V – 2U			NO
15	B	b 2U	1U-1W	В	1V – 1U	2W – 2V	$\frac{U1}{U2} \cdot \frac{\sqrt{3}}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2V a	1V-1U	С	1W – 1V	2U – 2W			WYE WINDING
	1V C	2V Q c		Α	1U– 1N	2U – 2W			
16	B O 1N	b 2W	_	В	1V – 1N	2V-2U	U1 U2 •V3	YNd11	
	1U O C O1W	2U a		С	1W – 1N	2W – 2V			
	1V O	2V c	1W-1V	Α	1U– 1W	2U – 2W			NO
17	B B	b 2W	1U-1W	В	1V – 1U	2V – 2U	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_3}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	2U a	1V-1U	С	1W – 1V	2W – 2V			WYE WINDING
	1V O	2WO a 02U		Α	1U – 1N	2N – 2U			
18	B 1N	c b 2N		В	1V – 1N	2N – 2V	U1 U2	YNyn6	
	1U O C 0 1W	O 2V		С	1W – 1N	2N – 2W			
	1V Q	2V O	1V-1N	Α	1U – 1N	2U – 2V			NO ACCESSIBLE
19	B 1N	b a	1W-1N	В	1V – 1N	2V – 2W	U1 U2	YNy0	NEUTRAL ON
	1U O C O1W	2U 0 C 2W	1U-1N	С	1W – 1N	2W – 2U			LOW VOLTAGE WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V O	2V	2W-2N	Α	1U – 1W	2U – 2N			NO ACCESSIBLE
20	B	b 2N	2U-2N	В	1V – 1U	2V- 2N	U1 U2	Yyn0	NEUTRAL ON
	1U O C O1W	2U ° C 2W	2V-2N	С	1W – 1V	2W – 2N			HIGH VOLTAGE WINDING
	O C	2V O		Α	1U – 1N	2U – 2W	- 1		
43	B IN	a D 2N	_	В	1V – 1N	2V – 2N	U1 U2	YNyn0	
	1WO C 01V	2U 0 C 2W		С	1W – 1N	2W – 2N			
	1V O	2V Q		Α	1U – 1W	2U – 2W			NO
21	B	b	_	В	1V – 1U	2V – 2U	U1 U2	Yy0	ACCESSIBLE NEUTRAL
	1U O C O1W	2U 0 C 2W		С	1W – 1V	2W – 2V			1120111112
	1V O	2WO a 0 2U	1V-1N	Α	1U – 1N	2V – 2U			NO ACCESSIBLE
22	B IN	c b	1W-1N	В	1V – 1N	2W – 2V	U1 U2	YNy6	NEUTRAL ON
	1U O C O 1W	O 2V	1U-1N	C	1W – 1N	2U – 2W			LOW VOLTAGE WINDING
	1V O	2W Q a 0 2U	2W-2N	Α	1U – 1W	2N – 2U			NO ACCESSIBLE
23	B N	c b 2N	2U-2N	В	1V – 1U	2N – 2V	U1 U2	Yyn6	NEUTRAL ON HIGH VOLTAGE
	1U O C O1W	O 2V	2V-2N	С	1W – 1V	2N – 2W			WINDING
	17	2W Q a 0 2U		Α	1U – 1W	2W – 2U			NO
24	B A	c b	_	В	1V – 1U	2U – 2V	U1 U2	Yy6	ACCESSIBLE NEUTRAL
	1UO C 01W	6 2V		С	1W – 1V	2V – 2W			
	1V O	Q 2V		Α	1U – 1W	2U – 2N			
65	B 1N	a b	—	В	1V – 1U	2V – 2N	$\frac{V_{\text{H}} \cdot V_{3}}{V_{\text{x}}}$	YNzn1	
	1U O C O1W	c 2W		С	1W – 1V	2W – 2N	^		
	1V C	a O 2V		Α	1U – 1W	2U – 2N	ì		NO ACCESSIBLE
25	B B	b 2U 2N	_	В	1V – 1U	2V – 2N	U1 • [√] 3 U2	Yzn1	NEUTRAL ON WYE WINDING
	1U O C 01W	c > 2W		С	1W – 1V	2W – 2N			WTE WINDING
	1V C	a 0.2V	1W-1V	Α	1U – 1W	2U – 2V			NO
26	B A	b 2U	1U-1W	В	1V- 1U	2V – 2W	$\frac{\text{U1}}{\text{U2}} \cdot \frac{\text{V}_3}{2}$	Yz1	ACCESSIBLE NEUTRAL
	1U O C 01W	c > 2W	1V-1U	С	1W – 1V	2W – 2U			HEOTHAL
	1V O	a O 2U		Α	1U – 1W	2W – 2N			NO ACCESCIBLE
27	B A	b 2W 2N	_	В	1V – 1U	2U – 2N	U1 • [√] 3 U2	Yzn5	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	-11 c 0 2V		С	1W – 1V	2V – 2N			WYE WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	Q 2U	1W-1V	Α	1U – 1W	2W – 2U			NO
28	B	2W 0 b	1U-1W	В	1V – 1U	2U – 2V	U1 V3 2	Yz5	NO ACCESSIBLE
	1U O C O1W	c 2V	1V-1U	С	1W – 1V	2V – 2W			NEUTRAL
	1V O	2W Q C		Α	1U – 1W	2N – 2U			
66	B 1N	b X 2N 2U	_	В	1V – 1U	2N – 2V	$\frac{V_H}{V_x} \bullet \frac{V_3}{}$	YNzn7	
	1U O C O1W	27 0		С	1W – 1V	2N – 2W	v _x		
	1V	2W 🔾 C		Α	1U – 1W	2N – 2U			NO
29	B	b 2N 2U	_	В	1V – 1U	2N – 2V	U1 •√3 U2	Yzn7	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2V 0 "		С	1W – 1V	2N – 2W			WYE WINDING
	1V O	2W Q _C	1W-1V	Α	1U– 1W	2V – 2U			NO
30	B	b 2U	1U-1W	В	1V – 1U	2W – 2V	U1 V3	Yz7	ACCESSIBLE NEUTRAL
	1U O C O1W	2V o	1V-1U	С	1W – 1V	2U – 2W			NEOTHAL
	1V O	2V Q C		Α	1U – 1W	2N – 2W	V V-		
67	B 1N	b 2N 2W	_	В	1V – 1U	2N – 2U	$\frac{V_{\text{H}} \bullet V_{\overline{3}}}{V_{\text{X}}}$	YNzn11	
	1U O C O1W	20 6		С	1W – 1V	2N – 2V			
	1V O	2V Q _c		Α	1U – 1W	2N – 2W			NO
31	B	b 2N 2W	_	В	1V – 1U	2N – 2U	<u>U1 •√3</u>	Yzn11	ACCESSIBLE NEUTRAL ON
	1U O C O1W	2U 0		С	1W – 1V	2N – 2V	02		WYE WINDING
	1V Q	2V O	1W-1V	Α	1U – 1W	2U – 2W	114 1/5		NO
32	B N	b 2W	1U-1W	В	1V – 1U	2V – 2U	U1 V3 U2 2	Yz11	ACCESSIBLE NEUTRAL
	1UO C 01W	20 6	1V-1U	С	1W – 1V	2W – 2V			
	10 0	2U Q	1V-1W	Α	1U – 1N	2U- 2V			
55	C 1N	c/a	1W-1U	В	1V – 1N	2V – 2W	3 U2	ZNd0	
	0 B → 1V	2W 6 b 2V	1U-1V	С	1W – 1N	2W – 2U			
	10℃	2U Q		Α	1U – 1V	2U – 2V			NO
56	C_A^A	c a	_	В	1V – 1W	2V – 2W	U1 U2	Zd0	ACCESSIBLE NEUTRAL ON
	1WO B 1V	2W 0 b 2V		С	1W – 1U	2W – 2U			HIGH VOLTAGE
	10 ° 4	2VQ b 2W	1V-1W	Α	1U – 1N	2V – 2U			
57	C 1N	a\/c	1W-1U	В	1V – 1N	2W – 2V	2 • U1 3 • U2	ZNd6	
	1WO B 01V	8 2U	1U-1V	С	1W – 1N	2U – 2W			

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
33	A B B	a 0 2U	_	A B	1U – 1N 1V – 1N	2W – 2U 2U – 2V	<u>U1</u>	ZNy5	NO ACCESSIBLE NEUTRAL ON
	0 1W	b 2V		С	1W – 1N	2V – 2W	U2 •V3	Lityo	WYE WINDING
	1V Q B	a / 2U	1W-1V	Α	1U – 1W	2W – 2U	111 1/5		NO
34	^_	2W O C	1U-1W	В	1V – 1U	2U – 2V	U1 V3 2	Zy5	ACCESSIBLE NEUTRAL
	0 C 0 1W	⁰ 6 2V	1V-1U	С	1W – 1V	2V – 2W			
	1V Q _B	2V Q		Α	1U – 1N	2U – 2W			NO
35	A(1N	a c o 2W	—	В	1V – 1N	2V – 2U	U1 U2 • V3	ZNy11	ACCESSIBLE NEUTRAL ON
	0 C 0 1W	2U o		С	1W – 1N	2W – 2V			WYE WINDING
	1∨ Q _B	2V Q	1W-1V	Α	1U – 1W	2U – 2W	_		NO
36	^ —	a c O 2W	1U-1W	В	1V – 1U	2V – 2U	U1 V3 U2 2	Zy11	ACCESSIBLE NEUTRAL
	δ	ර 2U	1V-1U	С	1W – 1V	2W – 2V			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
) 1V	<i>9</i> 2V		Α	1U – 1V	2U – 2V		T-T	
58	AB	a b					U1 U2	0	
	0 1W	O 2W	1U-1V 2U-2V	В	1U – 1W	2U – 2W			
	170	a 0 2V	1V-1W	Α	1U – 1W	2U – 2V	U1 • V3 U2 • 2	T-T	
59	AB	b						30	
	0 1U 1W	2U 2W	2U-2V	В	1V – 1W	2U – 2W	$\frac{\text{U1}}{\text{U2}} \cdot \frac{2}{\sqrt{3}}$	Lag	
	17 0	Q 2V b 2W	1V-1W	Α	1U – 1W	2U – 2W	U1 • V3 U2 • 2	T-T	
60	AB							30	
	δ 1U 1W	2U o a	2U-2W	В	1V – 1W	2V – 2U	U1 • 2 U2 V3	Lead	

APPENDIX D – Australian Std.2374 Transformer Descriptions

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Β Ω	c		Α	A – C	c – a			
1	B/C	b\/c		В	B – A	a – b	HV LV	Dd6	
	$A \stackrel{\frown}{\longrightarrow} C$	b		C	C – B	b – c			
	Ов	b O		Α	A – C	a – c	LIV		
37	B C	b C	_	В	B – A	b – a	HV LV	Dd0	
	A O C	a o c		C	C – B	c – b			
	A C	c Q b a		Α	A – B	c – b	HV		
38	C/A	a\\c	_	В	B-C	a – c	LV	Dd2	
	С О В В	b		С	C – A	b – a			
	٩٥	υQ		Α	A – B	c – a			
39	C/\A	c/\a		В	B-C	a – b	LV	Dd4	
	с о <u>В</u> в	b o b a		С	C – A	b – c			
	Α Q	ьα		Α	A – B	b – c	HV		
40	C/A	c/\a	_	В	B – C	c – a	LV	Dd8	
	с В В	a		С	C – A	a – b			
	A R	$\mathbf{a} \overset{b}{\longleftrightarrow} \mathbf{b}$		Α	A – B	a – c	LIV		
41	C/\A	a\/c	_	В	B-C	b – a	LV	Dd10	
	со В В	° c		С	C – A	c – b			
	A Q	p ^a		Α	A – C	a – η			
42	A B	$c \circ c \circ$	_	В	B – A	b-η	HV •V3	Dyn1	
	со С В	ρ _p		С	C – B	c – η			
	B A	, b/P b	C-B	Α	A – C	a – c			NO
2	B C	ao ⊸	A-C	В	B – A	b – a	HV •√3 LV	Dy1	ACCESSIBLE NEUTRAL ON
Ш	A O A C	o _c	B-A	С	C – B	c – b			WYE WINDING
	в 2	a Q _c	C – B	Α	A – C	a – b	V . V		NO 1005001DLF
61	В	<i>b a</i> o b	A – C	В	B – A	b – c	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Dy3	ACCESSIBLE NEUTRAL ON
	A 0 ← A C	င္ဇဝ	B – A	С	C – B	c – a			WYE WINDING
	Вα	^a Q _c		Α	A – C	$\eta-b$			
62	В	$b \stackrel{a}{ \eta} \circ \mathbf{b}$	—	В	B – A	η – c	HV •√3 LV	Dyn3	
	$A \circ A \circ C$	^b /η ο υ		С	C – B	η – a			

NO. WINDING (H) WINDING (X) JUMPER THAT WINDING WINDING RATIO B O B O A A A C C	vector group Dyn5	NOTES
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dyn5	
$\begin{bmatrix} 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	Dyn5	
$A \leftarrow bc \mid bb \mid c \mid C-B \mid b-n \mid c \mid C$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy5	ACCESSIBLE NEUTRAL ON
$A \circ A \circ C \circ B \circ B - A \circ C \circ C - B \circ B - A \circ C \circ C - B \circ C - B \circ C \circ C - B \circ $		WYE WINDING
B c Q c A A -C η-a		
	Dyn7	
$A \stackrel{\frown}{\longrightarrow} C \stackrel{\bullet}{\longrightarrow} C $		
B c Q c C-B A A-C C-a		NO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy7	ACCESSIBLE NEUTRAL ON
$A \circ A \circ C \circ B \circ A \circ C \circ C \circ B \circ C \circ C \circ C \circ C \circ C \circ C \circ C$		WYE WINDING
B pc C-B A B-C b-a		NO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy9	ACCESSIBLE NEUTRAL ON
$A \circ A \circ C \circ A \circ C \circ A \circ C \circ C \circ A \circ C \circ C$		WYE WINDING
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
64 $B \sim C$ $B \sim B $	Dyn9	
$A \circ A \circ C \circ $		
B bQc A A-C η-C		
7 $B \nearrow C$ $B \rightarrow B \rightarrow B \rightarrow A$ $B \rightarrow A$ $A \rightarrow A$ A $A \rightarrow A$ A A A A A A A A A	Dyn11	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NO
$\begin{bmatrix} B \\ B \end{bmatrix}$ $\begin{bmatrix} A \\ C \end{bmatrix}$ $\begin{bmatrix} A \\ B \end{bmatrix}$ $\begin{bmatrix} A \\ C \end{bmatrix}$ $\begin{bmatrix} A \\ C \end{bmatrix}$ $\begin{bmatrix} A \\ C \end{bmatrix}$	Dy11	ACCESSIBLE NEUTRAL ON
$A \circ A \circ C \circ A \circ C \circ A \circ C \circ C \circ A \circ C \circ C$		WYE WINDING
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
45 $c \wedge A$ $c \wedge A$ $C - A$ $B \wedge B - C$ $b - \eta$ $\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn0	
$c \circ B \circ B \circ A \circ A \circ B \circ C \circ C \circ A \circ C \circ A \circ C \circ A \circ C \circ A \circ C \circ C$		
$A \cap C \cap C \cap A \cap B \cap C \cap A \cap B \cap C \cap A \cap B \cap C \cap C$		
I I A I L/ I I I I I I I I I I I I I I I I I	Dzn2	
$A-B$ B $C-A$ $\eta-a$		

	TRANSF CONFIGL				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
47	$C \xrightarrow{A} A B$	с образ	_	А В С	A – B B – C C – A	c – b a – c b – a	HV LV	Dz2	NO ACCESSIBLE NEUTRAL
48	$C \xrightarrow{A} A B$	b O c a	B – C C – A A – B	A B C	A – B B – C C – A	$c-\eta$ $a-\eta$ $b-\eta$	3 HV LV	Dzn4	
49	C	b O c a	_	A B C	A – B B – C C – A	c – a a – b b – c	HV LV	Dz4	NO ACCESSIBLE NEUTRAL
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 0 c 0 c	_	A B C	A – C B – A C – B	a - c b - a c - b	HV LV	Dz0	NO ACCESSIBLE NEUTRAL
10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c O a	1	A B C	A – C B – A C – B	c – a a – b b – c	HV LV	Dz6	NO ACCESSIBLE NEUTRAL
50	C A B B	b O o a	B – C C – A A – B	A B C	A – B B – C C – A	η – a η – b η – c	3 • HV LV	Dzn6	
51	C A B B	b O o o	B – C C – A A – B	A B C	A – B B – C C – A	b-η c-η a-η	$\frac{3}{2} \bullet \frac{HV}{LV}$	Dzn8	
52	c A B	b o c o c		A B C	A – B B – C C – A	b-c c-a a-b	HV	Dz8	NO ACCESSIBLE NEUTRAL
53	C A B	a c n a	B – C C – A A – B	A B C	A – B B – C C – A	η – c η – a η – b	3 • HV LV	Dzn10	
54	C B B	a o c o b	—	А В С	A – B B – C C – A	a – c b – a c – b	HV LV	Dz10	NO ACCESSIBLE NEUTRAL

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
11	B B N A O C O C	c a a		A B C	A – N B – N C – N	b – a c – b a – c	HV LV • √3	YNd7	
44	B B N A O C C	a db b	_	А В С	A – N B – N C – N	a - b b - c c - a	HV LV •V3	YNd1	
12	B B C C C	a C C C	C – B A – C B – A	A B C	A – C B – A C – B	a – b b – c c – a	HV \(\frac{\sqrt{3}}{2}\)	Yd1	NO ACCESSIBLE NEUTRAL ON WYE WINDING
13	B B N C C C	c c b		А В С	A – N B – N C – N	c – a a – b b – c	HV LV • √3	YNd5	
14	B B C C C	c c b	C – B A – C B – A	A B C	A – C B – A C – B	c – a a – b b – c	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yd5	NO ACCESSIBLE NEUTRAL ON WYE WINDING
15	B O C C	c b a	C – B A – C B – A	А В С	A – C B – A C – B	b – a c – b a – c	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yd7	NO ACCESSIBLE NEUTRAL ON WYE WINDING
16	B O N C C	b c c	_	A B C	A- N B - N C - N	a-c b-a c-b	HV LV •V3	YNd11	
17	B C C	b c c	C – B A – C B – A	A B C	A – C B – A C – B	a-c b-a c-b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yd11	NO ACCESSIBLE NEUTRAL ON WYE WINDING
18	B O C C	c O a a b	_	A B C	A – N B – N C – N	η – a η – b η – c	HV LV	YNyn6	
19	B O C C C	a o c o c	B – N C – N A – N	А В С	A – N B – N C – N	a – b b – c c – a	HV LV	YNy0	NO ACCESSIBLE NEUTRAL ON LOW VOLTAGE WINDING

	TRANSF CONFIGU				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
20	B C C	b n a o c o c	c - h a - h b - h	A B C	A – C B – C C – B	$a-\eta$ $b-\eta$ $c-\eta$	HV LV	Yyn0	NO ACCESSIBLE NEUTRAL ON HIGH VOLTAGE WINDING
43	B N N C C	b n		A B C	A – N B – N C – N	a-η b-η c-η	HV LV	YNyn0	
21	B B B C C	b b a a c c c	_	A B C	A – C B – A C – B	a - c b - a c - b	HV LV	Yy0	NO ACCESSIBLE NEUTRAL
22	B N C C	c O a a b	B – N C – N A – N	A B C	A – N B – N C – N	b – a c – b a – c	HV LV	YNy6	NO ACCESSIBLE NEUTRAL ON LOW VOLTAGE WINDING
23	B O C C	a a a b	c-h $a-h$ $b-h$	A B C	A – C B – A C – B	η – a η – b η – c	HV LV	Yyn6	NO ACCESSIBLE NEUTRAL ON HIGH VOLTAGE WINDING
24	B B C C C	c o a b b	_	A B C	A – C B – A C – B	c – a a – b b – c	HV LV	Yy6	NO ACCESSIBLE NEUTRAL
65	B O C C	a o o o		A B C	A – C B – A C – B	a-η b-η c-η	V _{H •} V ₃ V _X	YNzn1	
25	B O C C	a o b b		A B C	A – C B – A C – B	a-η b-η c-η	V _{H ◆} V ₃ LV	Yzn1	NO ACCESSIBLE NEUTRAL ON WYE WINDING
26	B B C C	a o o b b	C – B A – C B – A	A B C	A – C B – A C – B	a – b b – c c – a	HV • \frac{\sqrt{3}}{2}	Yz1	NO ACCESSIBLE NEUTRAL
27	B B B C C C	o a b b b b b	_	A B C	A – C B – A C – B	c – η a – η b – η	HV •√3 LV	Yzn5	NO ACCESSIBLE NEUTRAL ON WYE WINDING

	TRANSF CONFIGU	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	Q a	C – B	Α	A – C	c – a			NO
28	$A \longrightarrow B$	6 O P	A-C	В	B – A	a – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yz5	ACCESSIBLE NEUTRAL
	A 0 C 0 C	٩٥٠	B – A	С	C – B	b – c			1120111112
	B Q	ه مي د		Α	A – C	η – a			
66	$A \stackrel{B}{\longrightarrow} N$	$b \bigcap_{a} \bigcap_{a} \bigcap_{a} a$	_	В	B – A	η-b	$\frac{V_H}{V_x} \cdot \frac{V_3}{V_3}$	YNzn7	
	AO COC	ьЬ		С	C – B	η – c	,		
	B Q	ه کې		Α	A – C	η – a	1114 - Va		NO ACCESSIBLE
29	A B		—	В	B – A	η – b	HV • √3 LV	Yzn7	NEUTRAL ON WYE WINDING
	A 0 C 0 C	ьО		С	C – B	η– c			WIL WINDING
	B Q	° م_ ٔ	C – B	Α	A– C	b – a			NO
30	A B	<i>b</i>	A-C	В	B – A	c – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yz7	ACCESSIBLE NEUTRAL
	A 0 C 0 C	ь О	B – A	С	C – B	a – c			
	в Q	°°		Α	A – C	η – c	V _{H •} V ₃		
67	$A \longrightarrow N$		—	В	B – A	η – a	V _H •V ₃ V _X	Yzn11	
	AO COC	bО		С	C – B	η– b			
	В	ь О _С		Α	A – C	η – c			NO
31	B A	ه مرسم	—	В	B – A	η – a	$\frac{\text{HV} \cdot \sqrt{3}}{\text{LV}}$	Yz11	ACCESSIBLE NEUTRAL ON
	A O C O C	a o "		С	C – B	η– b			WYE WINDING
	B Q	ь О _С	C-B	Α	A – C	a – c	HV Va		NO
32	$A \stackrel{B}{\longrightarrow} N$	b a c c	A-C	В	B – A	b – a	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\text{V}_3}{2}$	Yz11	ACCESSIBLE NEUTRAL
	AO COC	a o "	B – A	С	C – B	c – b			
	\hat{Q}_A	å	b – c	Α	A – N	a – b	2 HV		
55	C N	c/a	c – a	В	B – N	b – c	3 · LV	ZNd0	
	со в ⊸ов	с б б в	a – b	С	C – N	c – a			
	Q _A	a A		Α	A – B	a – b	LINA		NO ACCEPCIBLE
56	ζ <u>.</u>	c/\a	_	В	B – C	b – c	LV	Zd0	ACCESSIBLE NEUTRAL ON
	со в ⊸ов	с С В В В		С	C – A	c – a			HIGH VOLTAGE
	Q _A	b 0 c	b – c	Α	A – N	b – a	107		
57	C N	a\/c	c – a	В	B – N	c – b	HV LV	ZNd6	
	со вов	O a	a – b	С	C – N	a – c			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	ВС	g a	C – B	Α	A – C	c – a			NO
28	$A = \begin{bmatrix} B \\ A \end{bmatrix}$	6 O O O	A-C	В	B – A	a – b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yz5	ACCESSIBLE NEUTRAL
	A O C O C	۵ م	B – A	С	C – B	b – c			NEUTHAL
	ВО	ه مر د		Α	A – C	η – a			
66	$A \stackrel{B}{\bigwedge}_{N}$	$b \wedge \eta \circ a$	_	В	B – A	η – b	$\frac{V_H}{V_X} \bullet \frac{V_3}{}$	YNzn7	
	A 0 C 0 C	ьо		С	C – B	η – c	· x		
	В	ه مي د		Α	A – C	η – a	, , ,		NO 1 00500IDLE
29	$A = \begin{bmatrix} B \\ A \end{bmatrix}$		—	В	B – A	η-b	HV • $\sqrt{3}$	Yzn7	ACCESSIBLE NEUTRAL ON
	A 0 C 0 C	ьЬ		С	C – B	η– c			WYE WINDING
	вС	ه مي د	C – B	Α	A– C	b – a			NO
30	$A = \begin{bmatrix} B \\ A \end{bmatrix}$	b a a	A – C	В	B – A	c-b	$\frac{\text{HV}}{\text{LV}} \cdot \frac{\sqrt{3}}{2}$	Yz7	ACCESSIBLE NEUTRAL
	A 0 C 0 C	ьЬ	B – A	С	C – B	a – c			NEOTHIL
	ВО	ه کړ د		Α	A – C	η-с	VV5		
67	$A = \prod_{i=1}^{B} N_i$		—	В	B – A	η – a	$\frac{V_{H} \cdot V_{3}}{V_{X}}$	Yzn11	
	A 0 C 0 C	ьО		С	C – B	η– b			
	вС	ь О _С		Α	A – C	η – c			NO
31	B A	$b d \eta o \epsilon$	—	В	B – A	η – a	HV • √3 LV	Yz11	ACCESSIBLE NEUTRAL ON
	A 0 C 0 C	a O ^u		С	C – B	η– b	LV		WYE WINDING
	вО	b O_c	C – B	Α	A – C	a – c	HV V3		NO
32	$A \stackrel{B}{\longrightarrow} N$	b 000	A-C	В	B – A	b – a	LV • 2	Yz11	ACCESSIBLE NEUTRAL
	AO COC	a O "	B – A	С	C – B	c – b			
	Å Q	a O	b – c	Α	A – N	a – b	0 1114		
55	$\stackrel{\sim}{\sim}$	c/\a	c – a	В	B – N	b – c	$\frac{2}{3} \bullet \frac{HV}{LV}$	ZNd0	
	со в	с б	a – b	С	C – N	c – a			
	40	a Q		Α	A – B	a – b			NO
56	5	c/\a	_	В	B – C	b – c	HV LV	Zd0	ACCESSIBLE NEUTRAL ON
	со в	c 0 b		С	C – A	c – a			HIGH VOLTAGE
	Q A	b	b – c	Α	A – N	b – a			
57	C N	a /c	c – a	В	B – N	c – b	LV	ZNd6	
	со вов	∑ a	a – b	С	C – N	a – c			

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave • Ontario, CA 91761 • USA

Phone: 909-923-9390 • Fax: 909-923-9391

www.vanguard-instruments.com