
Bright Cluster Manager 6.1

User Manual
Revision: 4899

Date: Tue, 28 Jan 2014

Table of Contents

Table of Contents . i

1 Introduction 1
1.1 What Is A Beowulf Cluster? 1

1.1.1 Background And History 1
1.1.2 Brief Hardware And Software Description 1

1.2 Brief Network Description 2

2 Cluster Usage 5
2.1 Login To The Cluster Environment 5
2.2 Setting Up The User Environment 6
2.3 Environment Modules . 6

2.3.1 Available commands 7
2.3.2 Changing The Current Environment 7
2.3.3 Changing The Default Environment 8

2.4 Compiling Applications . 9
2.4.1 Open MPI And Mixing Compilers 10

3 Using MPI 11
3.1 Interconnects . 12

3.1.1 Gigabit Ethernet . 12
3.1.2 InfiniBand . 12

3.2 Selecting An MPI implementation 12
3.3 Example MPI Run . 12

3.3.1 Compiling And Preparing The Application 13
3.3.2 Creating A Machine File 13
3.3.3 Running The Application 13
3.3.4 Hybridization . 16
3.3.5 Support Thread Levels 18
3.3.6 Further Recommendations 18

4 Workload Management 21
4.1 What Is A Workload Manager? 21
4.2 Why Use A Workload Manager? 21
4.3 How Does A Workload Manager Function? 21
4.4 Job Submission Process . 22
4.5 What Do Job Scripts Look Like? 22
4.6 Running Jobs On A Workload Manager 23
4.7 Running Jobs In Cluster Extension Cloud Nodes Using

cmsub . 23

ii Table of Contents

5 Slurm 25
5.1 Loading Slurm Modules And Compiling The Executable . 25
5.2 Running The Executable With salloc 26

5.2.1 Node Allocation Examples 26
5.3 Running The Executable As A Slurm Job Script 28

5.3.1 Slurm Job Script Structure 28
5.3.2 Slurm Job Script Options 29
5.3.3 Slurm Environment Variables 30
5.3.4 Submitting The Slurm Job Script 31
5.3.5 Checking And Changing Queued Job Status 31

6 SGE 33
6.1 Writing A Job Script . 33

6.1.1 Directives . 33
6.1.2 SGE Environment Variables 34
6.1.3 Job Script Options 34
6.1.4 The Executable Line 35
6.1.5 Job Script Examples 36

6.2 Submitting A Job . 37
6.2.1 Submitting To A Specific Queue 37

6.3 Monitoring A Job . 38
6.4 Deleting A Job . 39

7 PBS Variants: Torque And PBS Pro 41
7.1 Components Of A Job Script 42

7.1.1 Sample Script Structure 42
7.1.2 Directives . 42
7.1.3 The Executable Line 45
7.1.4 Example Batch Submission Scripts 46
7.1.5 Links To Other Resources About Job Scripts In

Torque And PBS Pro 48
7.2 Submitting A Job . 48

7.2.1 Preliminaries: Loading The Modules Environment 48
7.2.2 Using qsub . 48
7.2.3 Job Output . 49
7.2.4 Monitoring A Job . 49
7.2.5 Deleting A Job . 52
7.2.6 Monitoring Nodes In Torque And PBS Pro 52

8 Using GPUs 55
8.1 Packages . 56
8.2 Using CUDA . 56
8.3 Using OpenCL . 56
8.4 Compiling Code . 56
8.5 Available Tools . 57

8.5.1 CUDA gdb . 57
8.5.2 nvidia-smi . 58

Table of Contents iii

8.5.3 CUDA Utility Library 59
8.5.4 CUDA “Hello world” Example 59
8.5.5 OpenACC . 61

9 Using MICs 63
9.1 Compiling Code In Native Mode 63

9.1.1 Using The GNU Compiler 63
9.1.2 Using Intel Compilers 64

9.2 Compiling Code In Offload Mode 65
9.3 Using MIC With Workload Managers 66

9.3.1 Using MIC Cards With Slurm 66
9.3.2 Using MIC Cards With PBS Pro 67
9.3.3 Using MIC Cards With TORQUE 67
9.3.4 Using MIC Cards With SGE 68
9.3.5 Using MIC Cards With openlava 68

10 User Portal 69
10.1 Home Page . 69
10.2 The WORKLOAD Tab . 70
10.3 The NODES Tab . 70
10.4 The GRAPHS Tab . 71

A MPI Examples 75
A.1 “Hello world” . 75
A.2 MPI Skeleton . 76
A.3 MPI Initialization And Finalization 78
A.4 What Is The Current Process? How Many Processes Are

There? . 78
A.5 Sending Messages . 78
A.6 Receiving Messages . 79
A.7 Blocking, Non-Blocking, And Persistent Messages 79

A.7.1 Blocking Messages 79
A.7.2 Non-Blocking Messages 80
A.7.3 Persistent, Non-Blocking Messages 80

B Compiler Flag Equivalence 81

Preface

Welcome to the User Manual for the Bright Cluster Manager 6.1 clus-
ter environment. This manual is intended for users of a cluster running
Bright Cluster Manager.

This manual covers the basics of using the Bright Cluster Manager
user environment to run compute jobs on the cluster. Although it does
cover some aspects of general Linux usage, it is by no means comprehen-
sive in this area. Readers are advised to make themselves familiar with
the basics of a Linux environment.

Our manuals constantly evolve to match the development of the Bright
Cluster Manager environment, the addition of new hardware and/or ap-
plications and the incorporation of customer feedback. Your input as a
user and/or administrator is of great value to us and we would be very
grateful if you could report any comments, suggestions or corrections to
us at manuals@brightcomputing.com.

1
Introduction

This manual is intended for cluster users who need a quick introduction
to the Bright Beowulf Cluster Environment. It explains how to use the
MPI and batch environments, how to submit jobs to the queueing system,
and how to check job progress. The specific combination of hardware and
software installed may differ depending on the specification of the cluster,
which means that parts of this manual may not be relevant to the user’s
particular cluster.

1.1 What Is A Beowulf Cluster?
1.1.1 Background And History
In the history of the English language, Beowulf is the earliest surviving
epic poem written in English. It is a story about a hero with the strength
of many men who defeated a fearsome monster called Grendel.

In computing, a Beowulf class cluster computer is a multiprocessor ar-
chitecture used for parallel computations, i.e., it uses many processors to-
gether so that it has the brute force to defeat certain “fearsome” number-
crunching problems.

The architecture was first popularized in the Linux community when
the source code used for the original Beowulf cluster built at NASA was
made widely available. The Beowulf class cluster computer design usu-
ally consists of one head node and one or more regular nodes connected
together via Ethernet or some other type of network. While the origi-
nal Beowulf software and hardware has long been superseded, the name
given to this basic design remains “Beowulf class cluster computer”, or
less formally “Beowulf cluster”.

1.1.2 Brief Hardware And Software Description
On the hardware side, commodity hardware is generally used in Be-
owulf clusters to keep costs down. These components are usually x86-
compatible processors produced at the Intel and AMD chip foundries,
standard Ethernet adapters, InfiniBand interconnects, and switches.

On the software side, free and open-source software is generally used
in Beowulf clusters to keep costs down. For example: the Linux operating
system, the GNU C compiler collection and open-source implementations
of the Message Passing Interface (MPI) standard.

The head node controls the whole cluster and serves files and infor-
mation to the nodes. It is also the cluster’s console and gateway to the

© Bright Computing, Inc.

2 Introduction

outside world. Large Beowulf clusters might have more than one head
node, and possibly other nodes dedicated to particular tasks, for exam-
ple consoles or monitoring stations. In most cases compute nodes in a
Beowulf system are dumb—in general, the dumber the better—with the
focus on the processing capability of the node within the cluster, rather
than other abilities a computer might generally have. A node may there-
fore have

• one or more processing elements. The processors may be standard
CPUs, as well as GPUs, FPGAs, MICs, and so on.

• enough local memory—memory contained in a single node—to deal
with the processes passed on to the node

• a connection to the rest of the cluster

Nodes are configured and controlled by the head node, and do only
what they are told to do. One of the main differences between Beowulf
and a Cluster of Workstations (COW) is the fact that Beowulf behaves
more like a single machine rather than many workstations. In most cases,
the nodes do not have keyboards or monitors, and are accessed only via
remote login or possibly serial terminal. Beowulf nodes can be thought
of as a CPU + memory package which can be plugged into the cluster,
just like a CPU or memory module can be plugged into a motherboard to
form a larger and more powerful machine. A significant difference is that
the nodes of a cluster have a relatively slower interconnect.

1.2 Brief Network Description
A Beowulf Cluster consists of a login, compile and job submission node,
called the head, and one or more compute nodes, often referred to as
worker nodes. A second (fail-over) head node may be present in order to
take control of the cluster in case the main head node fails. Furthermore,
a second fast network may also have been installed for high-performance
low-latency communication between the (head and the) nodes (see fig-
ure 1.1).

© Bright Computing, Inc.

1.2 Brief Network Description 3

Figure 1.1: Cluster layout

The login node is used to compile software, to submit a parallel or
batch program to a job queueing system and to gather/analyze results.
Therefore, it should rarely be necessary for a user to log on to one of
the nodes and in some cases node logins are disabled altogether. The
head, login and compute nodes usually communicate with each other
through a gigabit Ethernet network, capable of transmitting information
at a maximum rate of 1000 Mbps. In some clusters 10 gigabit Ethernet
(10GE, 10GBE, or 10GigE) is used, capable of up to 10 Gbps rates.

Sometimes an additional network is used by the cluster for even faster
communication between the compute nodes. This particular network is
mainly used for programs dedicated to solving large scale computational
problems, which may require multiple machines and could involve the
exchange of vast amounts of information. One such network topology
is InfiniBand, commonly capable of transmitting information at a max-
imum effective data rate of about 124Gbps and about 1.2µs end-to-end
latency on small packets, for clusters in 2013. The commonly available
maximum transmission rates will increase over the years as the technol-
ogy advances.

Applications relying on message passing benefit greatly from lower
latency. The fast network is usually complementary to a slower Ethernet-
based network.

© Bright Computing, Inc.

2
Cluster Usage

2.1 Login To The Cluster Environment
The login node is the node where the user logs in and works from. Simple
clusters have a single login node, but large clusters sometimes have mul-
tiple login nodes to improve the reliability of the cluster. In most clusters,
the login node is also the head node from where the cluster is monitored
and installed. On the login node:

• applications can be developed

• code can be compiled and debugged

• applications can be submitted to the cluster for execution

• running applications can be monitored

To carry out an ssh login to the cluster, a terminal session can be
started from Unix-like operating systems:

Example

$ ssh myname@cluster.hostname

On a Windows operating system, an SSH client such as for PuTTY (http:
//www.putty.org) can be downloaded. Another standard possibility is
to run a Unix-like environment such as Cygwin (http://www.cywin.
com) within the Windows operating system, and then run the SSH client
from within it.

A Mac OS X user can use the Terminal application from the Finder,
or under Application/Utilities/Terminal.app. X11 must be in-
stalled from the Mac OS X medium, or alternatively, XQuartz can be used
instead. XQuartz is an alternative to the official X11 package, and is usu-
ally more up-to-date and less buggy.

When using the SSH connection, the cluster’s address must be added.
When the connection is made, a username and password must be entered
at the prompt.

If the administrator has changed the default SSH port from 22 to some-
thing else, the port can be specified with the -p <port> option:

$ ssh -X -p <port> <user>@<cluster>

© Bright Computing, Inc.

http://www.putty.org
http://www.putty.org
http://www.cywin.com
http://www.cywin.com

6 Cluster Usage

The -X option can be dropped if no X11-forwarding is required. X11-
forwarding allows a GUI application from the cluster to be displayed lo-
cally.

Optionally, after logging in, the password used can be changed using
the passwd command:

$ passwd

2.2 Setting Up The User Environment
By default, each user uses the bash shell interpreter. In that case, each
time a user login takes place, a file named .bashrc is executed to set up
the shell environment for the user. The shell and its environment can be
customized to suit user preferences. For example,

• the prompt can be changed to indicate the current username, host,
and directory, for example: by setting the prompt string variable:

PS1="[\u@\h:\w] $"

• the size of the command history file can be increased, for example:
export HISTSIZE=100

• aliases can be added for frequently used command sequences, for
example: alias lart=’ls -alrt’

• environment variables can be created or modified, for example:
EXPORT $MYVAR = "MY STRING"

• the location of software packages and versions that are to be used
by a user (the path to a package) can be set.

Because there is a huge choice of software packages and versions, it
can be hard to set up the right environment variables and paths for soft-
ware that is to be used. Collisions between different versions of the same
package and non-matching dependencies on other packages must also
be avoided. To make setting up the environment easier, Bright Cluster
Manager provides preconfigured environment modules (section 2.3).

2.3 Environment Modules
It can be quite hard to set up the correct environment to use a particular
software package and version.

For instance, managing several MPI software packages on the same
system or even different versions of the same MPI software package is
quite difficult for most users on a standard SUSE or Red Hat system be-
cause many software packages use the same names for executables and
libraries.

A user could end up with the problem of never being quite sure which
libraries have been used for the compilation of a program as multiple li-
braries with the same name may be installed. Very often a user would like
to test new versions of a software package before permanently installing
the package. Within a Red Hat or SuSE setup without special utilities, this
would be quite a complex task to achieve. Environment modules, using
the module command, are a special utility to make this task much easier.

© Bright Computing, Inc.

2.3 Environment Modules 7

2.3.1 Available commands
$ module --help

Modules Release 3.2.10 2012-12-21 (Copyright GNU GPL v2 1991):

Usage: module [switches] [subcommand] [subcommand-args]

Switches:

-H|--help this usage info

-V|--version modules version & configuration options

-f|--force force active dependency resolution

-t|--terse terse format avail and list format

-l|--long long format avail and list format

-h|--human readable format avail and list format

-v|--verbose enable verbose messages

-s|--silent disable verbose messages

-c|--create create caches for avail and apropos

-i|--icase case insensitive

-u|--userlvl <lvl> set user level to (nov[ice],exp[ert],adv[anced])

Available SubCommands and Args:

+ add|load modulefile [modulefile ...]

+ rm|unload modulefile [modulefile ...]

+ switch|swap [modulefile1] modulefile2

+ display|show modulefile [modulefile ...]

+ avail [modulefile [modulefile ...]]

+ use [-a|--append] dir [dir ...]

+ unuse dir [dir ...]

+ update

+ refresh

+ purge

+ list

+ clear

+ help [modulefile [modulefile ...]]

+ whatis [modulefile [modulefile ...]]

+ apropos|keyword string

+ initadd modulefile [modulefile ...]

+ initprepend modulefile [modulefile ...]

+ initrm modulefile [modulefile ...]

+ initswitch modulefile1 modulefile2

+ initlist

+ initclear

2.3.2 Changing The Current Environment
The modules loaded into the user’s environment can be seen with:

$ module list

Modules can be loaded using the add or load options. A list of mod-
ules can be added by spacing them:

$ module add shared open64 openmpi/open64

The shared module is special. If it is to be loaded, it is usually placed
first in a list before the other modules, because the other modules often
depend on it. The shared module is described further shortly.

The “module avail” command lists all modules that are available
for loading (some output elided):

© Bright Computing, Inc.

8 Cluster Usage

Example

[fred@bright61 ~]$ module avail

-------------------------- /cm/local/modulefiles ---------------------

cluster-tools/6.1dot module-info use.own

cmd freeipmi/1.2.6 null version

cmsh ipmitool/1.8.12 openldap

cmsub/6.1 module-git shared

-------------------------- /cm/shared/modulefiles --------------------

acml/gcc/64/5.3.1 hwloc/1.7

acml/gcc/fma4/5.3.1 intel-cluster-checker/2.0

acml/gcc/mp/64/5.3.1 intel-cluster-runtime/ia32/3.5

acml/gcc/mp/fma4/5.3.1 intel-cluster-runtime/intel64/3.5

acml/gcc-int64/64/5.3.1 intel-cluster-runtime/mic/3.5

acml/gcc-int64/fma4/5.3.1 intel-tbb-oss/ia32/41_20130314oss

...

In the list there are two kinds of modules:

• local modules, which are specific to the node, or head node only

• shared modules, which are made available from a shared storage,
and which only become available for loading after the sharedmod-
ule is loaded.

The shared module is obviously a useful local module, and is there-
fore loaded for the user by default on a default cluster.

Although version numbers are shown in the “module avail” out-
put, it is not necessary to specify version numbers, unless multiple ver-
sions are available for a module1.

To remove one or more modules, the “module unload” or “module
rm” command is used.

To remove all modules from the user’s environment, the “module
purge” command is used.

The user should be aware that some loaded modules can conflict with
others loaded at the same time. For example, loading openmpi/gcc/64/
without removing an already loaded openmpi/gcc/64/ can result in
confusion about what compiler opencc is meant to use.

2.3.3 Changing The Default Environment
The initial state of modules in the user environment can be set as a de-
fault using the “module init*” subcommands. The more useful ones
of these are:

• module initadd: add a module to the initial state

• module initrm: remove a module from the initial state

• module initlist: list all modules loaded initially

1For multiple versions, when no version is specified, the alphabetically-last version is
chosen. This usually is the latest, but can be an issue when versions move from, say, 9, to
10. For example, the following is sorted in alphabetical order: v1 v10 v11 v12 v13 v2 v3 v4
v5 v6 v7 v8 v9.

© Bright Computing, Inc.

2.4 Compiling Applications 9

• module initclear: clear all modules from the list of modules
loaded initially

Example

$ module initclear

$ module initlist

bash initialization file $HOME/.bashrc loads modules:

null

$ module initadd shared gcc/4.8.1 openmpi/gcc sge

$ module initlist

bash initialization file $HOME/.bashrc loads modules:

null shared gcc/4.8.1 openmpi/gcc/64/1.6.5 sge/2011.11p1

In the preceding example, the newly defined initial state module en-
vironment for the user is loaded from the next login onwards.

If the user is unsure about what the module does, it can be checked
using “module whatis”:

$ module whatis sge

sge : Adds sge to your environment

The man pages for module gives further details on usage.

2.4 Compiling Applications
Compiling an application is usually done on the head node or login node.
Typically, there are several compilers available on the head node, which
provide different levels of optimization, standards conformance, and sup-
port for accelerators. For example: GNU compiler collection, Open64
compiler, Intel compilers, Portland Group compilers. The following table
summarizes the available compiler commands on the cluster:

Language GNU Open64 Portland Intel

C gcc opencc pgcc icc

C++ g++ openCC pgCC icc

Fortran77 gfortran openf90 -ff77 pgf77 ifort

Fortran90 gfortran openf90 pgf90 ifort

Fortran95 gfortran openf95 pgf95 ifort

GNU compilers are the de facto standard on Linux and are installed by
default. They are provided under the terms of the GNU General Public
License. AMD’s Open64 is also installed by default on Bright Cluster
Manager. Commercial compilers by Portland and Intel are available as
packages via the Bright Cluster Manager YUM repository, and require
the purchase of a license to use them. To make a compiler available to be
used in a user’s shell commands, the appropriate environment module
(section 2.3) must be loaded first. On most clusters two versions of GCC
are available:

1. The version of GCC that comes along with the Linux distribution.
For example, for CentOS 6.x:

Example

© Bright Computing, Inc.

10 Cluster Usage

[fred@bright61 ~]$ which gcc; gcc --version | head -1

/usr/bin/gcc

gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-3)

2. The latest version suitable for general use that is packaged as a mod-
ule by Bright Computing:

Example

[fred@bright61 ~]$ module load gcc

[fred@bright61 ~]$ which gcc; gcc --version | head -1

/cm/shared/apps/gcc/4.8.1/bin/gcc

gcc (GCC) 4.8.1

To use the latest version of GCC, the gcc module must be loaded. To
revert to the version of GCC that comes natively with the Linux distribu-
tion, the gcc module must be unloaded.

The compilers in the preceding table are ordinarily used for applica-
tions that run on a single node. However, the applications used may fork,
thread, and run across as many nodes and processors as they can access
if the application is designed that way.

The standard, structured way of running applications in parallel is to
use the MPI-based libraries, which link to the underlying compilers in the
preceding table. The underlying compilers are automatically made avail-
able after choosing the parallel environment (MPICH, MVAPICH, Open
MPI, etc.) via the following compiler commands:

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpif95

2.4.1 Open MPI And Mixing Compilers
Bright Cluster Manager comes with multiple Open MPI packages corre-
sponding to the different available compilers. However, sometimes mix-
ing compilers is desirable. For example, C-compilation may be preferred
using icc from Intel, while Fortran90-compilation may be preferred us-
ing openf90 from Open64. In such cases it is possible to override the
default compiler path environment variable, for example:

[fred@bright61 ~]$ module list

Currently Loaded Modulefiles:

1) null 3) gcc/4.4.7 5) sge/2011.11

2) shared 4) openmpi/gcc/64/1.4.5

[fred@bright61 ~]$ mpicc --version --showme; mpif90 --version --showme

gcc --version

gfortran --version

[fred@bright61 ~]$ export OMPI_CC=icc; export OMPI_FC=openf90

[fred@bright61 ~]$ mpicc --version --showme; mpif90 --version --showme

icc --version

openf90 --version

Variables that may be set are OMPI_CC, OMPI_FC, OMPI_F77, and
OMPI_CXX. More on overriding the Open MPI wrapper settings is doc-
umented in the man pages of mpicc in the environment section.

© Bright Computing, Inc.

3
Using MPI

The Message Passing Interface (MPI) is a standardized and portable mes-
sage passing system designed by a group of researchers from academia
and industry to function on a wide variety of parallel computers. The
standard defines the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message-passing pro-
grams in Fortran or the C programming language. MPI libraries allow
the compilation of code so that it can be used over a variety of multi-
processor systems from SMP nodes to NUMA (non-Uniform Memory Ac-
cess) systems and interconnected cluster nodes .

The available MPI implementation for the variant MPI-3 is MPICH
(version 3). Open MPI supports both variants. These MPI libaries can be
compiled with GCC, Open64, Intel, or PGI.

Depending on the cluster hardware, the interconnect available may
be: Ethernet (GE), InfiniBand (IB), or Myrinet (MX).

Depending on the cluster configuration, MPI implementations for dif-
ferent compilers can be loaded. By default MPI implementations that are
installed are compiled and made available using both GCC and Open64.

The interconnect and compiler implementation can be worked out
from looking at the module and package name. The modules available
can be searched through for the compiler variant, and then the package
providing it can be found:

Example

[fred@bright61 ~]$ # search for modules starting with the name openmpi

[fred@bright61 ~]$ module -l avail 2>&1 | grep ^openmpi

openmpi/gcc/64/1.6.5 2013/09/05 22:01:44

openmpi/intel/64/1.6.5 2013/09/05 21:23:57

openmpi/open64/64/1.6.5 2013/09/05 22:28:37

[fred@bright61 ~]$ rpm -qa | grep ^openmpi

openmpi-geib-open64-64-1.6.5-165_cm6.1.x86_64

openmpi-geib-gcc-64-1.6.5-165_cm6.1.x86_64

openmpi-ge-intel-64-1.6.5-165_cm6.1.x86_64

Here, for example,

openmpi-geib-open64-64-1.6.5-165_cm6.1.x86_64

implies: Open MPI version 1.6.5 compiled for both Gigabit Ethernet
(ge) and InfiniBand (ib), with the Open64 (open64) compiler for a 64-bit

© Bright Computing, Inc.

12 Using MPI

architecture, packaged as a cluster manager (cm) package for version 6.1
of Bright Cluster Manager, for the x86_64 architecture.

3.1 Interconnects
Jobs can use particular networks for intra-node communication.

3.1.1 Gigabit Ethernet
Gigabit Ethernet is the interconnect that is most commonly available. For
Gigabit Ethernet, no additional modules or libraries are needed. The
Open MPI, MPICH implementations will work over Gigabit Ethernet.

3.1.2 InfiniBand
InfiniBand is a high-performance switched fabric which is characterized
by its high throughput and low latency. Open MPI, MVAPICH and MVA-
PICH2 are suitable MPI implementations for InfiniBand.

3.2 Selecting An MPI implementation
Once the appropriate compiler module has been loaded, the MPI imple-
mentation is selected along with the appropriate library modules. The
following list, <compiler> indicates a choice of gcc, intel, open64,
or pgi:

• mpich/ge/<compiler>

• mvapich/<compiler>

• mvapich2/<compiler>

• openmpi/<compiler>

After the appropriate MPI module has been added to the user environ-
ment, the user can start compiling applications. The mpich and openmpi
implementations may be used on Ethernet. On InfiniBand, mvapich,
mvapich2 and openmpi may be used. Open MPI’s openmpi implemen-
tation will first attempt to use InfiniBand, but will revert to Ethernet if
InfiniBand is not available.

3.3 Example MPI Run
This example covers an MPI run, which can be run inside and outside of
a queuing system.

To use mpirun, the relevant environment modules must be loaded.
For example, to use the mpich over Gigabit Ethernet (ge) GCC imple-
mentation:

$ module add mpich/ge/gcc

or to use the openmpi Open MPI GCC implementation:

$ module add openmpi/gcc

Similarly, to use the mvapich InfiniBand Open64 implementation:

$ module add mvapich/open64

© Bright Computing, Inc.

3.3 Example MPI Run 13

Depending on the libraries and compilers installed on the system, the
availability of these packages might differ. To see a full list on the system
the command “module avail” can be typed.

3.3.1 Compiling And Preparing The Application
The code must be compiled with MPI libraries and an underlying com-
piler. The correct library command can be found in the following table:

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpif95

An MPI application myapp.c, built in C, could then be compiled as:

$ mpicc myapp.c

The a.out binary that is created can then be executed using the
mpirun command (section 3.3.3).

3.3.2 Creating A Machine File
A machine file contains a list of nodes which can be used by MPI pro-
grams.

The workload management system creates a machine file based on
the nodes allocated for a job when the job is submitted with the workload
manager job submission tool. So if the user chooses to have the workload
management system allocate nodes for the job then creating a machine
file is not needed.

However, if an MPI application is being run “by hand” outside the
workload manager, then the user is responsible for creating a machine
file manually. Depending on the MPI implementation, the layout of this
file may differ.

Machine files can generally be created in two ways:

• Listing the same node several times to indicate that more than one
process should be started on each node:

node001

node001

node002

node002

• Listing nodes once, but with a suffix for the number of CPU cores
to use on each node:

node001:2

node002:2

3.3.3 Running The Application
A Simple Parallel Processing Executable
A simple “hello world” program designed for parallel processing can be
built with MPI. After compiling it, it can be used to send a message about
how and where it is running:

© Bright Computing, Inc.

14 Using MPI

[fred@bright61 ~]$ cat hello.c

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

int id, np, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

int processor_name_len;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Get_processor_name(processor_name, &processor_name_len);

for(i=1;i<2;i++)

{printf(

"Hello world from process %03d out of %03d, processor name %s\n",
id, np, processor_name

);}

MPI_Finalize();

return 0;

}

[fred@bright61 ~]$ module add openmpi/gcc #or as appropriate

[fred@bright61 ~]$ mpicc hello.c -o hello

[fred@bright61 ~]$./hello

Hello world from process 000 out of 001, processor name bright61.cm.cluster

However, it still runs on a single processor unless it is submitted to
the system in a special way.

Running An MPI Executable In Parallel Without A Workload Manager
Compute node environment provided by user’s .bashrc: After the
relevant module files are chosen (section 3.3) for MPI, an executable com-
piled with MPI libraries runs on nodes in parallel when submitted with
mpirun. The executable running on other nodes loads environmental
modules on those other nodes by sourcing the .bashrc file of the user
(section 2.3.3). It is therefore important to ensure that the environmental
module stack used on the compute node is clean and consistent.

Example

Supposing the .bashrc loads two MPI stacks—the mpich stack, fol-
lowed by the Open MPI stack—then that can cause errors because the
compute node may use parts of the wrong MPI implementation.

The environment of the user from the interactive shell prompt is not
normally carried over automatically to the compute nodes during an
mpirun submission. That is, compiling and running the executable will
normally work only on the local node without a special treatment. To
have the executable run on the compute nodes, the right environment
modules for the job must be made available on the compute nodes too, as
part of the user login process to the compute nodes for that job. Usually

© Bright Computing, Inc.

3.3 Example MPI Run 15

the system administrator takes care of such matters in the default user
configuration by setting up the default user environment (section 2.3.3),
with reasonable initrm and initadd options. Users are then typically
allowed to set up their personal default overrides to the default adminis-
trator settings, by placing their own initrm and initadd options to the
module command according to their needs.

Running mpirun outside a workload manager: When using mpirun
manually, outside a workload manager environment, the number of pro-
cesses (-np) as well as the number of hosts (-machinefile) should be
specified. For example, on a cluster with 2 compute-nodes and a machine
file as specified in section 3.3.2:

Example

[fred@bright61 ~]$ module initclear; module initadd openmpi/gcc

[fred@bright61 ~]$ module add openmpi/gcc #or as appropriate

[fred@bright61 ~]$ mpirun -np 4 -machinefile mpirun.hosts hello

Hello world from process 002 out of 004, processor name node002.cm.cluster

Hello world from process 003 out of 004, processor name node001.cm.cluster

Hello world from process 000 out of 004, processor name node002.cm.cluster

Hello world from process 001 out of 004, processor name node001.cm.cluster

The output of the preceding program is actually printed in random
order. This can be modified as follows, so that only process 0 prints to
the standard output, and other processes communicate their output to
process 0:

#include "mpi.h"

#include "string.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int numprocs, myrank, namelen, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

char greeting[MPI_MAX_PROCESSOR_NAME + 80];

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Get_processor_name(processor_name, &namelen);

sprintf(greeting, "Hello world, from process %d of %d on %s",

myrank, numprocs, processor_name);

if (myrank == 0) {

printf("%s\n", greeting);

for (i = 1; i < numprocs; i++) {

MPI_Recv(greeting, sizeof(greeting), MPI_CHAR,

i, 1, MPI_COMM_WORLD, &status);

printf("%s\n", greeting);

}

}

© Bright Computing, Inc.

16 Using MPI

else {

MPI_Send(greeting, strlen(greeting) + 1, MPI_CHAR,

0, 1, MPI_COMM_WORLD);

}

MPI_Finalize();

return 0;

}

fred@bright61 ~]$ module add mvapich/gcc #or as appropriate

fred@bright61 ~]$ mpirun -np 4 -machinefile mpirun.hosts hello

Hello world from process 0 of 4 on node001.cm.cluster

Hello world from process 1 of 4 on node002.cm.cluster

Hello world from process 2 of 4 on node001.cm.cluster

Hello world from process 3 of 4 on node002.cm.cluster

Running the executable with mpirun outside the workload manager
as shown does not take the resources of the cluster into account. To han-
dle running jobs with cluster resources is of course what workload man-
agers such as Slurm are designed to do. Workload managers also typ-
ically take care of what environment modules should be loaded on the
compute nodes for a job, via additions that the user makes to a job script.

Running an application through a workload manager via a job script
is introduced in Chapter 4.

Appendix A contains a number of simple MPI programs.

3.3.4 Hybridization
OpenMP is an implementation of multi-threading. This is a method of
parallelizing whereby a parent thread—a series of instructions executed
consecutively—forks a specified number of child threads, and a task is di-
vided among them. The threads then run concurrently, with the runtime
environment allocating threads to different processors and accessing the
shared memory of an SMP system.

MPI can be mixed with OpenMP to achieve high performance on a
cluster/supercomputer of multi-core nodes or servers. MPI creates pro-
cesses that reside on the level of node, while OpenMP forks threads on
the level of a core within an SMP node. Each process executes a portion
of the overall computation, while inside each process, a team of threads is
created through OpenMP directives to further divide the problem. This
kind of execution makes sense due to:

• the ease of programming that OpenMP provides

• OpenMP might not require copies of data structure, which allows
for designs that overlap computation and communication

• overcoming the limits of parallelism within the SMP node is of course
still possible by using the power of other nodes via MPI.

Example

#include<mpi.h>

#include <omp.h>

#include <stdio.h>

#include<stdlib.h>

© Bright Computing, Inc.

3.3 Example MPI Run 17

int main(int argc , char** argv) {

int size, myrank,namelength;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Get_processor_name(processor_name,&namelength);

printf("Hello I am Processor %d on %s of %d\n",myrank,processor_name,\

size);

int tid = 0; int n_of_threads = 1;

#pragma omp parallel default(shared) private(tid, n_of_threads)

{

#if defined (_OPENMP)

n_of_threads= omp_get_num_threads();

tid = omp_get_thread_num();

#endif

printf("Hybrid Hello World: I am thread # %d out of %d\n", tid, n_o\

f_threads);

}

MPI_Finalize();

return 0;

}

To compile the program:

fred@bright61 ~]$ mpicc -o hybridhello omphello.c -fopenmp

To specify the number of OpenMP threads per MPI task the environment
variable OMP_NUM_THREADS must be set.

Example

fred@bright61 ~]$ export OMP_NUM_THREADS=3

The number of threads specified by the variable can then be run over
the hosts specified by the mpirun.hosts file:

fred@bright61 ~]$ mpirun -np 2 -hostfile mpirun.hosts ./hybridhello

Hello I am Processor 0 on node001 of 2

Hello I am Processor 1 on node002 of 2

Hybrid Hello World: I am thread # 0 out of 3

Hybrid Hello World: I am thread # 2 out of 3

Hybrid Hello World: I am thread # 1 out of 3

Hybrid Hello World: I am thread # 0 out of 3

Hybrid Hello World: I am thread # 2 out of 3

Hybrid Hello World: I am thread # 1 out of 3

Benefits And Drawbacks Of Using OpenMP
The main benefit to using OpenMP is that it can decrease memory re-
quirements, with usually no reduction in performance. Other benefits
include:

• Potential additional parallelization opportunities besides those ex-
ploited by MPI.

• Less domain decomposition, which can help with load balancing as
well as allowing for larger messages and fewer tasks participating
in MPI collective operations.

© Bright Computing, Inc.

18 Using MPI

• OpenMP is a standard, so any modifications introduced into an ap-
plication are portable and appear as comments on systems not using
OpenMP.

• By adding annotations to existing code and using a compiler op-
tion, it is possible to add OpenMP to a code somewhat incremen-
tally, almost on a loop-by-loop basis. The vector loops in a code that
vectorize well are good candidates for OpenMP.

There are also some potential drawbacks:

• OpenMP can be hard to program and/or debug in some cases.

• Effective usage can be complicated on NUMA systems due to local-
ity considerations

• If an application is network- or memory- bandwidth-bound, then
threading it is not going to help. In this case it will be OK to leave
some cores idle.

• In some cases a serial portion may be essential, which can inhibit
performance.

• In most MPI codes, synchronization is implicit and happens when
messages are sent and received. However, with OpenMP, much
synchronization must be added to the code explicitly. The program-
mer must also explicitly determine which variables can be shared
among threads and which ones cannot (parallel scoping). OpenMP
codes that have errors introduced by incomplete or misplaced syn-
chronization or improper scoping can be difficult to debug because
the error can introduce race conditions which cause the error to hap-
pen only intermittently.

3.3.5 Support Thread Levels
MPI defines four “levels” of thread safety. The maximum thread support
level is returned by the MPI_Init_thread call in the “provided” argu-
ment.

An environment variable MPICH_MAX_THREAD_SAFETY can be set to
different values to increase the thread safety:

MPICH_MAX_THREAD_SAFETY Supported Thread Level

not set MPI_THREAD_SINGLE

single MPI_THREAD_SINGLE

funneled MPI_THREAD_FUNNELED

serialized MPI_THREAD_SERIALIZED

multiple MPI_THREAD_MULTIPLE

3.3.6 Further Recommendations
Users face various challenges with running and scaling large scale jobs on
peta-scale production systems. For example: certain applications may not
have enough memory per core, the default environment variables may
need to be adjusted, or I/O may dominate run time.

Possible ways to deal with these are:

© Bright Computing, Inc.

3.3 Example MPI Run 19

• Trying out various compilers and compiler flags, and finding out
which options are best for particular applications.

• Changing the default MPI rank ordering. This is a simple, yet some-
times effective, runtime tuning option that requires no source code
modification, recompilation or re-linking. The default MPI rank
placement on the compute nodes is SMP style. However, other
choices are round-robin, folded rank, and custom ranking.

• Using fewer cores per node is helpful when more memory per pro-
cess than the default is needed. Having fewer processes to share
the memory and interconnect bandwidth is also helpful in this case.
For NUMA nodes, extra care must be taken.

• Hybrid MPI/OpenMP reduces the memory footprint. Overlapping
communication with computation in hybrid MPI/OpenMP can be
considered.

• Some applications may perform better when large memory pages
are used.

© Bright Computing, Inc.

4
Workload Management

4.1 What Is A Workload Manager?
A workload management system (also known as a queueing system, job
scheduler or batch submission system) manages the available resources
such as CPUs, GPUs, and memory for jobs submitted to the system by
users.

Jobs are submitted by the users using job scripts. Job scripts are con-
structed by users and include requests for resources. How resources are
allocated depends upon policies that the system administrator sets up for
the workload manager.

4.2 Why Use A Workload Manager?
Workload managers are used so that users do not manually have to keep
track of node usage in a cluster in order to plan efficient and fair use of
cluster resources.

Users may still perhaps run jobs on the compute nodes outside of
the workload manager, if that is administratively permitted. However,
running jobs outside a workload manager tends to eventually lead to an
abuse of the cluster resources as more people use the cluster, and thus
inefficient use of available resources. It is therefore usually forbidden as
a policy by the system administrator on production clusters.

4.3 How Does A Workload Manager Function?
A workload manager uses policies to ensure that the resources of a cluster
are used efficiently, and must therefore track cluster resources and jobs.
A workload manager is therefore generally able to:

• Monitor:

– the node status (up, down, load average)

– all available resources (available cores, memory on the nodes)

– the jobs state (queued, on hold, deleted, done)

• Modify:

– the status of jobs (freeze/hold the job, resume the job, delete
the job)

© Bright Computing, Inc.

22 Workload Management

– the priority and execution order for jobs

– the run status of a job. For example, by adding checkpoints to
freeze a job.

– (optional) how related tasks in a job are handled according to
their resource requirements. For example, a job with two tasks
may have a greater need for disk I/O resources for the first
task, and a greater need for CPU resources during the second
task.

Some workload managers can adapt to external triggers such as hard-
ware failure, and send alerts or attempt automatic recovery.

4.4 Job Submission Process
Whenever a job is submitted, the workload management system checks
on the resources requested by the job script. It assigns cores, accelerators,
local disk space, and memory to the job, and sends the job to the nodes
for computation. If the required number of cores or memory are not yet
available, it queues the job until these resources become available. If the
job requests resources that are always going to exceed those that can be-
come available, then the job accordingly remains queued indefinitely.

The workload management system keeps track of the status of the job
and returns the resources to the available pool when a job has finished
(that is, been deleted, has crashed or successfully completed).

4.5 What Do Job Scripts Look Like?
A job script looks very much like an ordinary shell script, and certain
commands and variables can be put in there that are needed for the job.
The exact composition of a job script depends on the workload manager
used, but normally includes:

• commands to load relevant modules or set environment variables

• directives for the workload manager to request resources, control
the output, set email addresses for messages to go to

• an execution (job submission) line

When running a job script, the workload manager is normally respon-
sible for generating a machine file based on the requested number of pro-
cessor cores (np), as well as being responsible for the allocation any other
requested resources.

The executable submission line in a job script is the line where the job
is submitted to the workload manager. This can take various forms.

Example

For the Slurm workload manager, the line might look like:

srun --mpi=mpich1_p4 ./a.out

Example

For Torque or PBS Pro it may simply be:

© Bright Computing, Inc.

4.6 Running Jobs On A Workload Manager 23

mpirun ./a.out

Example

For SGE it may look like:

mpirun -np 4 -machinefile $TMP/machines ./a.out

4.6 Running Jobs On A Workload Manager
The details of running jobs through the following workload managers is
discussed later on, for:

• Slurm (Chapter 5)

• SGE (Chapter 6)

• Torque (with Maui or Moab) and PBS Pro (Chapter 7)

4.7 Running Jobs In Cluster Extension Cloud Nodes
Using cmsub

Extra computational power from cloud service providers such as the Ama-
zon Elastic Compute Cloud (EC2) can be used by an appropriately con-
figured cluster managed by Bright Cluster Manager.

If the head node is running outside a cloud services provider, and at
least some of the compute nodes are in the cloud, then this “hybrid” clus-
ter configuration is called a Cluster Extension cluster, with the compute
nodes in the cloud being the cloud extension of the cluster.

For a Cluster Extension cluster, job scripts to a workload manager
should be submitted using Bright Cluster Manager’s cmsub utility. This
allows the job to be considered for running on the extension (the cloud
nodes). Jobs that are to run on the local regular nodes (not in a cloud) are
not dealt with by cmsub.

The environment module (section 2.3) cmsub is typically configured
by the system administrator to load by default on the head node. It must
be loaded for the cmsub utility to work.

The basic usage for cmsub is:

cmsub [options] script

Options details are given in the man page for cmsub(1).
Users that are used to running jobs as root should note that the root

user cannot usefully run a job with cmsub.
The user can submit some cloud-related values as options to cmsub

on the command line, followed by the job script.

Example

$ cat myscript1

#!/bin/sh

hostname

$ cmsub --regions=eu-west-1 myscript1

Upload job id: 1

User job id: 2

Download job id: 3

© Bright Computing, Inc.

24 Workload Management

All cmsub command line options can also be specified in a job-directive
style format in the job script itself, using the “#CMSUB” tag to indicate an
option.

Example

$ cat myscript2

#!/bin/sh

#CMSUB --regions=us-west-2,eu-west-1

#CMSUB --input-list=/home/user/myjob.in

#CMSUB --output-list=/home/user/myjob.out

#CMSUB --remote-output-list=/home/user/file-which-will-be-created

#CMSUB --input=/home/user/onemoreinput.dat

#CMSUB --input=/home/user/myexec

myexec

$ cmsub myscript2

Upload job id: 4

User job id: 5

Download job id: 6

© Bright Computing, Inc.

5
Slurm

Slurm is a workload management system developed originally at the
Lawrence Livermore National Laboratory. Slurm used to stand for Sim-
ple Linux Utility for Resource Management. However Slurm has evolved
since then, and its advanced state nowadays means that the acronym is
obsolete.

Slurm has both a graphical interface and command line tools for sub-
mitting, monitoring, modifying and deleting jobs. It is normally used
with job scripts to submit and execute jobs. Various settings can be put in
the job script, such as number of processors, resource usage

and application specific variables.
The steps for running a job through Slurm are to:

• Create the script or executable that will be handled as a job

• Create a job script that sets the resources for the script/executable

• Submit the job script to the workload management system

The details of Slurm usage depends upon the MPI implementation
used. The description in this chapter will cover using Slurm’s Open
MPI implementation, which is quite standard. Slurm documentation can
be consulted (https://computing.llnl.gov/linux/slurm/mpi_
guide.html) if the implementation the user is using is very different.

5.1 Loading Slurm Modules And Compiling The
Executable

In section 3.3.3 an MPI “Hello, world!” executable that can run in parallel
is created and run in parallel outside a workload manager.

The executable can be run in parallel using the Slurm workload man-
ager. For this, the Slurm module should first be loaded by the user on top
of the chosen MPI implementation, in this case Open MPI:

Example

[fred@bright52 ~]$ module list

Currently Loaded Modulefiles:

1) gcc/4.4.6 3) shared

2) openmpi/gcc/64/1.4.2 4) cuda40/toolkit/4.0.17

[fred@bright52 ~]$ module add slurm; module list

© Bright Computing, Inc.

https://computing.llnl.gov/linux/slurm/mpi_guide.html
https://computing.llnl.gov/linux/slurm/mpi_guide.html

26 Slurm

Currently Loaded Modulefiles:

1) gcc/4.4.6 3) shared 5) slurm/2.2.4

2) openmpi/gcc/64/1.4.2 4) cuda40/toolkit/4.0.17

The “hello world” executable from section 3.3.3 can then be com-
piled and run for one task outside the workload manager, on the local
host, as:

mpicc hello.c -o hello

mpirun -np 1 hello

5.2 Running The Executable With salloc

Running it as a job managed by Slurm can be done interactively with the
Slurm allocation command, salloc, as follows

[fred@bright52 ~]$ salloc mpirun hello

Slurm is more typically run as a batch job (section 5.3). However exe-
cution via salloc uses the same options, and it is more convenient as an
introduction because of its interactive behavior.

In a default Bright Cluster Manager configuration, Slurm auto-detects
the cores available and by default spreads the tasks across the cores that
are part of the allocation request.

To change how Slurm spreads the executable across nodes is typically
determined by the options in the following table:

Short Long
Option Option Description

-N --nodes= Request this many nodes on the

cluster.

Use all cores on each node by default

-n --ntasks= Request this many tasks on the

cluster.

Defaults to 1 task per node.

-c --cpus-per-task= request this many CPUs per task,

(not implemented by Open MPI yet)

(none) --ntasks-per-node= request this number of tasks

per node .

The full options list and syntax for salloc can be viewed with “man
salloc”.

The requirement of specified options to salloc must be met before
the executable is allowed to run. So, for example, if --nodes=4 and the
cluster only has 3 nodes, then the executable does not run.

5.2.1 Node Allocation Examples
The following session illustrates and explains some node allocation op-
tions and issues for Slurm using a cluster with just 1 compute node and 4
CPU cores:

© Bright Computing, Inc.

5.2 Running The Executable With salloc 27

Default settings: The hello MPI executable with default settings of
Slurm runs successfully over the first (and in this case, the only) node
that it finds:

[fred@bright52 ~]$ salloc mpirun hello

salloc: Granted job allocation 572

Hello world from process 0 out of 4, host name node001

Hello world from process 1 out of 4, host name node001

Hello world from process 2 out of 4, host name node001

Hello world from process 3 out of 4, host name node001

salloc: Relinquishing job allocation 572

The preceding output also displays if -N1 (indicating 1 node) is specified,
or if -n4 (indicating 4 tasks) is specified.

The node and task allocation is almost certainly not going to be done
by relying on defaults. Instead, node specifications are supplied to Slurm
along with the executable.

To understand Slurm node specifications, the following cases consider
and explain where the node specification is valid and invalid.

Number of nodes requested: The value assigned to the -N|--nodes=
option is the number of nodes from the cluster that is requested for allo-
cation for the executable. In the current cluster example it can only be 1.
For a cluster with, for example, 1000 nodes, it could be a number up to
1000.

A resource allocation request for 2 nodes with the --nodes option
causes an error on the current 1-node cluster example:

[fred@bright52 ~]$ salloc -N2 mpirun hello

salloc: error: Failed to allocate resources: Node count specification in\

valid

salloc: Relinquishing job allocation 573

Number of tasks requested per cluster: The value assigned to the
-n|--ntasks option is the number of tasks that are requested for allo-
cation from the cluster for the executable. In the current cluster example,
it can be 1 to 4 tasks. The default resources available on a cluster are the
number of available processor cores.

A resource allocation request for 5 tasks with the --ntasks option
causes an error because it exceeds the default resources available on the
4-core cluster:

[fred@bright52 ~]$ salloc -n5 mpirun hello

salloc: error: Failed to allocate resources: More processors requested t\

han permitted

Adding and configuring just one more node to the current cluster
would allows the resource allocation to succeed, since an added node
would provide at least one more processor to the cluster.

Number of tasks requested per node: The value assigned to the
--ntasks-per-node option is the number of tasks that are requested
for allocation from each node on the cluster. In the current cluster exam-
ple, it can be 1 to 4 tasks. A resource allocation request for 5 tasks per

© Bright Computing, Inc.

28 Slurm

node with --ntasks-per-node fails on this 4-core cluster, giving an
output like:

[fred@bright52 ~]$ salloc --ntasks-per-node=5 mpirun hello

salloc: error: Failed to allocate resources: More processors requested t\

han permitted

Adding and configuring another 4-core node to the current cluster
would still not allow resource allocation to succeed, because the request
is for at least 5 cores per node, rather than per cluster.

Restricting the number of tasks that can run per node: A resource al-
location request for 2 tasks per node with the --ntasks-per-node op-
tion, and simultaneously an allocation request for 1 task to run on the
cluster using the --ntasks option, runs successfully, although it use-
lessly ties up resources for 1 task per node:

[fre@bright52 ~]$ salloc --ntasks-per-node=2 --ntasks=1 mpirun hello

salloc: Granted job allocation 574

Hello world from process 0 out of 1, host name node005

salloc: Relinquishing job allocation 574

The other way round, that is, a resource allocation request for 1 task
per node with the --ntasks-per-node option, and simultaneously an
allocation request for 2 tasks to run on the cluster using the --ntasks
option, fails because on the 1-cluster node, only 1 task can be allocated
resources on the single node, while resources for 2 tasks are being asked
for on the cluster:

[fred@bright52 ~]$ salloc --ntasks-per-node=1 --ntasks=3 mpirun hello

salloc: error: Failed to allocate resources: Requested node configuratio\

n is not available

salloc: Job allocation 575 has been revoked.

5.3 Running The Executable As A Slurm Job Script
Instead of using options appended to the salloc command line as in
section 5.2, it is usually more convenient to send jobs to Slurm with the
sbatch command acting on a job script.

A job script is also sometimes called a batch file. In a job script, the
user can add and adjust the Slurm options, which are the same as the
salloc options of section 5.2. The various settings and variables that go
with the application can also be adjusted.

5.3.1 Slurm Job Script Structure
A job script submission for the Slurm batch job script format is illustrated
by the following:

[fred@bright52 ~]$ cat slurmhello.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --time=30 #time limit to batch job

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=4

module add shared openmpi/gcc/64/1.4.2 slurm

mpirun hello

© Bright Computing, Inc.

5.3 Running The Executable As A Slurm Job Script 29

The structure is:

shebang line: shell definition line.

SBATCH lines: optional job script directives (section 5.3.2).

shell commands: optional shell commands, such as loading necessary
modules.

application execution line: execution of the MPI application using
sbatch, the Slurm submission wrapper.

In SBATCH lines, “#SBATCH” is used to submit options. The various
meanings of lines starting with “#” are:

Line Starts With Treated As

Comment in shell and Slurm

#SBATCH Comment in shell, option in Slurm

SBATCH Comment in shell and Slurm

After the Slurm job script is run with the sbatch command (Sec-
tion 5.3.4), the output goes into file my.stdout, as specified by the “-o”
command.

If the output file is not specified, then the file takes a name of the form
”slurm-<jobnumber>.out”, where <jobnumber> is a number starting
from 1.

The command “sbatch --usage” lists possible options that can be
used on the command line or in the job script. Command line values
override script-provided values.

5.3.2 Slurm Job Script Options
Options, sometimes called “directives”, can be set in the job script file
using this line format for each option:

#SBATCH {option} {parameter}

Directives are used to specify the resource allocation for a job so that
Slurm can manage the job optimally. Available options and their de-
scriptions can be seen with the output of sbatch --help. The more
overviewable usage output from sbatch --usage may also be helpful.

Some of the more useful ones are listed in the following table:

© Bright Computing, Inc.

30 Slurm

Directive Description Specified As

Name the job <jobname> #SBATCH -J <jobname>

Request at least <minnodes> nodes #SBATCH -N <minnodes>

Request <minnodes> to <maxn-
odes> nodes

#SBATCH -N
<minnodes>-<maxnodes>

Request at least <MB> amount of
temporary disk space

#SBATCH --tmp <MB>

Run the job for a time of <wall-
time>

#SBATCH -t <walltime>

Run the job at <time> #SBATCH --begin <time>

Set the working directory to <di-
rectorypath>

#SBATCH -D
<directorypath>

Set error log name to <job-
name.err>*

#SBATCH -e <jobname.err>

Set output log name to <job-
name.log>*

#SBATCH -o <jobname.log>

Mail <user@address> #SBATCH --mail-user
<user@address>

Mail on any event #SBATCH --mail-type=ALL

Mail on job end #SBATCH --mail-type=END

Run job in partition #SBATCH -p <destination>

Run job using GPU with ID <num-
ber>, as described in section 8.5.2

#SBATCH
--gres=gpu:<number>

*By default, both standard output and standard error go to a file
“slurm-<%j>.out”, where <%j> is the job number.

5.3.3 Slurm Environment Variables
Available environment variables include:

SLURM_CPUS_ON_NODE - processors available to the job on this node

SLURM_JOB_ID - job ID of executing job

SLURM_LAUNCH_NODE_IPADDR - IP address of node where job launched

SLURM_NNODES - total number of nodes

SLURM_NODEID - relative node ID of current node

SLURM_NODELIST - list of nodes allocated to job

SLURM_NTASKS - total number of processes in current job

SLURM_PROCID - MPI rank (or relative process ID) of the current process

SLURM_SUBMIT_DIR - directory from with job was launched

SLURM_TASK_PID - process ID of task started

SLURM_TASKS_PER_NODE - number of task to be run on each node.

CUDA_VISIBLE_DEVICES - which GPUs are available for use

Typically, end users use SLURM_PROCID in a program so that an in-
put of a parallel calculation depends on it. The calculation is thus spread
across processors according to the assigned SLURM_PROCID, so that each
processor handles the parallel part of the calculation with different val-
ues.

More information on environment variables is also to be found in the
man page for sbatch.

© Bright Computing, Inc.

5.3 Running The Executable As A Slurm Job Script 31

5.3.4 Submitting The Slurm Job Script
Submitting a Slurm job script created like in the previous section is done
by executing the job script with sbatch:

[fred@bright52 ~]$ sbatch slurmhello.sh

Submitted batch job 703

[fred@bright52 ~]$ cat slurm-703.out

Hello world from process 001 out of 004, processor name node001

...

Queues in Slurm terminology are called “partitions”. Slurm has a de-
fault queue called defq. The administrator may have removed this or
created others.

If a particular queue is to be used, this is typically set in the job script
using the -p or --partition option:

#SBATCH --partition=bitcoinsq

It can also be specified as an option to the sbatch command during sub-
mission to Slurm.

5.3.5 Checking And Changing Queued Job Status
After a job has gone into a queue, the queue status can be checked using
the squeue command. The job number can be specified with the -j op-
tion to avoid seeing other jobs. The man page for squeue covers other
options.

Jobs can be canceled with “scancel <job number>”.
The scontrol command allows users to see and change the job di-

rectives while the job is still queued. For example, a user may have spec-
ified a job, using the --begin directive, to start at 10am the next day by
mistake. To change the job to start at 10pm tonight, something like the
following session may take place:

[fred@bright52 ~]$ scontrol show jobid=254 | grep Time

RunTime=00:00:04 TimeLimit=UNLIMITED TimeMin=N/A

SubmitTime=2011-10-18T17:41:34 EligibleTime=2011-10-19T10:00:00

StartTime=2011-10-18T17:44:15 EndTime=Unknown

SuspendTime=None SecsPreSuspend=0

The parameter that should be changed is “EligibleTime”, which
can be done as follows:

[fred@bright52 ~]$ scontrol update jobid=254 EligibleTime=2011-10-18T22:00:00

An approximate GUI Slurm equivalent to scontrol is the sview
tool. This allows the job to be viewed under its jobs tab, and the job to
be edited with a right click menu item. It can also carry out many other
functions, including canceling a job.

Webbrowser-accessible job viewing is possible from the workload tab
of the User Portal (section 10.2).

© Bright Computing, Inc.

6
SGE

Sun Grid Engine (SGE) is a workload management and job scheduling
system first developed to manage computing resources by Sun Microsys-
tems. SGE has both a graphical interface and command line tools for
submitting, monitoring, modifying and deleting jobs.

SGE uses job scripts to submit and execute jobs. Various settings can
be put in the job script, such as number of processors, resource usage and
application specific variables.

The steps for running a job through SGE are to:

• Create a job script

• Select the directives to use

• Add the scripts and applications and runtime parameters

• Submit it to the workload management system

6.1 Writing A Job Script
A binary cannot be submitted directly to SGE—a job script is needed for
that. A job script can contain various settings and variables to go with the
application. A job script format looks like:

#!/bin/bash

#$ Script options # Optional script directives

shell commands # Optional shell commands

application # Application itself

6.1.1 Directives
It is possible to specify options (’directives’) to SGE by using “#$” in
the script. The difference in the meaning of lines that start with the “#”
character in the job script file should be noted:

Line Starts With Treated As

Comment in shell and SGE

#$ Comment in shell, directive in SGE

$ Comment in shell and SGE

© Bright Computing, Inc.

34 SGE

6.1.2 SGE Environment Variables
Available environment variables:

$HOME - Home directory on execution machine

$USER - User ID of job owner

$JOB_ID - Current job ID

$JOB_NAME - Current job name; (like the -N option in qsub, qsh, qrsh, q\

login and qalter)

$HOSTNAME - Name of the execution host

$TASK_ID - Array job task index number

6.1.3 Job Script Options
Options can be set in the job script file using this line format for each
option:

#$ {option} {parameter}

Available options and their descriptions can be seen with the output
of qsub -help:

Table 6.1.3: SGE Job Script Options

Option and parameter Description

-a date_time request a start time

-ac context_list add context variables

-ar ar_id bind job to advance reservation

-A account_string account string in accounting record

-b y[es]|n[o] handle command as binary

-binding [env|pe|set] exp|lin|str binds job to processor cores

-c ckpt_selector define type of checkpointing for job

-ckpt ckpt-name request checkpoint method

-clear skip previous definitions for job

-cwd use current working directory

-C directive_prefix define command prefix for job script

-dc simple_context_list delete context variable(s)

-dl date_time request a deadline initiation time

-e path_list specify standard error stream path(s)

-h place user hold on job

-hard consider following requests "hard"

-help print this help

-hold_jid job_identifier_list define jobnet interdependencies

-hold_jid_ad job_identifier_list define jobnet array interdependencies

-i file_list specify standard input stream file(s)

-j y[es]|n[o] merge stdout and stderr stream of job

-js job_share share tree or functional job share

...continued

© Bright Computing, Inc.

6.1 Writing A Job Script 35

Table 6.1.3: SGE Job Script Options...continued

Option and parameter Description

-jsv jsv_url job submission verification script to be
used

-l resource_list request the given resources

-m mail_options define mail notification events

-masterq wc_queue_list bind master task to queue(s)

-notify notify job before killing/suspending it

-now y[es]|n[o] start job immediately or not at all

-M mail_list notify these e-mail addresses

-N name specify job name

-o path_list specify standard output stream path(s)

-P project_name set job’s project

-p priority define job’s relative priority

-pe pe-name slot_range request slot range for parallel jobs

-q wc_queue_list bind job to queue(s)

-R y[es]|n[o] reservation desired

-r y[es]|n[o] define job as (not) restartable

-sc context_list set job context (replaces old context)

-shell y[es]|n[o] start command with or without wrapping
<loginshell> -c

-soft consider following requests as soft

-sync y[es]|n[o] wait for job to end and return exit code

-S path_list command interpreter to be used

-t task_id_range create a job-array with these tasks

-tc max_running_tasks throttle the number of concurrent tasks
(experimental)

-terse tersed output, print only the job-id

-v variable_list export these environment variables

-verify do not submit just verify

-V export all environment variables

-w e|w|n|v|p verify mode (error|warning|none|just
verify|poke) for jobs

-wd working_directory use working_directory

-@ file read commandline input from file

More detail on these options and their use is found in the man page
for qsub.

6.1.4 The Executable Line
In a job script, the executable line is launched with the job launcher com-
mand after the directives lines have been dealt with, and after any other
shell commands have been carried out to set up the execution environ-
ment.

© Bright Computing, Inc.

36 SGE

Using mpirun In The Executable Line
The mpirun job-launcher command is used for executables compiled with
MPI libraries. Executables that have not been compiled with MPI li-
braries, or which are launched without any specified number of nodes,
run on a single free node chosen by the workload manager.

The executable line to run a program myprog that has been compiled
with MPI libraries is run by placing the job-launcher command mpirun
before it as follows:

mpirun myprog

Using cm-launcher With mpirun In The Executable Line
For SGE, for some MPI implementations, jobs sometimes leave processes
behind after they have ended. A default Bright Cluster Manager installa-
tion provides a cleanup utility that removes such processes. To use it, the
user simply runs the executable line using the cm-launcher wrapper
before the mpirun job-launcher command:

cm-launcher mpirun myprog

The wrapper tracks processes that the workload manager launches.
When it sees processes that the workload manager is unable to clean up
after a job is over, it carries out the cleanup instead. Using cm-launcher
is recommended if jobs that do not get cleaned up correctly are an issue
for the user or administrator.

6.1.5 Job Script Examples
Some job script examples are given in this section. Each job script can use
a number of variables and directives.

Single Node Example Script
An example script for SGE.

#!/bin/sh

#$ -N sleep

#$ -S /bin/sh

Make sure that the .e and .o file arrive in the

working directory

#$ -cwd

#Merge the standard out and standard error to one file

#$ -j y

sleep 60

echo Now it is: ‘date‘

Parallel Example Script
For parallel jobs the pe environment must be assigned to the script. De-
pending on the interconnect, there may be a choice between a number
of parallel environments such as MPICH (Ethernet) or MVAPICH (Infini-
Band).

#!/bin/sh

#

Your job name

#$ -N My_Job

#

© Bright Computing, Inc.

6.2 Submitting A Job 37

Use current working directory

#$ -cwd

#

Join stdout and stderr

#$ -j y

#

pe (Parallel environment) request. Set your number of processors here.

#$ -pe mpich NUMBER_OF_CPUS

#

Run job through bash shell

#$ -S /bin/bash

If modules are needed, source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared

The following output will show in the output file. Used for debugging.

echo ‘‘Got $NSLOTS processors.’’

echo ‘‘Machines:’’

cat $TMPDIR/machines

Use MPIRUN to run the application

mpirun -np $NSLOTS -machinefile $TMPDIR/machines ./application

6.2 Submitting A Job
The SGE module must be loaded first so that SGE commands can be ac-
cessed:

$ module add shared sge

With SGE a job can be submitted with qsub. The qsub command has
the following syntax:

qsub [options] [jobscript | -- [jobscript args]]

After completion (either successful or not), output is put in the user’s
current directory, appended with the job number which is assigned by
SGE. By default, there is an error and an output file.

myapp.e#{JOBID}

myapp.o#{JOBID}

6.2.1 Submitting To A Specific Queue
Some clusters have specific queues for jobs which run are configured to
house a certain type of job: long and short duration jobs, high resource
jobs, or a queue for a specific type of node.

To see which queues are available on the cluster the qstat command
can be used:

qstat -g c

CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE

© Bright Computing, Inc.

38 SGE

long.q 0.01 0 0 144 288 0 144

default.q 0.01 0 0 144 288 0 144

The job is then submitted, for example to the long.q queue:

qsub -q long.q sleeper.sh

6.3 Monitoring A Job
The job status can be viewed with qstat. In this example the sleeper.sh
script has been submitted. Using qstat without options will only dis-
play a list of jobs, with no queue status options:

$ qstat

job-ID prior name user state submit/start at queue slots

249 0.00000 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.00000 Sleeper1 root qw 12/03/2008 07:29:01 1

251 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

252 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

253 0.00000 Sleeper1 root qw 12/03/2008 07:29:03 1

More details are visible when using the -f (for full) option:

• The Queuetype qtype can be Batch (B) or Interactive (I).

• The used/tot or used/free column is the count of used/free
slots in the queue.

• The states column is the state of the queue.

$ qstat -f

queuename qtype used/tot. load_avg arch states

all.q@node001.cm.cluster BI 0/16 -NA- lx26-amd64 au

all.q@node002.cm.cluster BI 0/16 -NA- lx26-amd64 au

##

PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS

##

249 0.55500 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.55500 Sleeper1 root qw 12/03/2008 07:29:01 1

Job state can be:

• d(eletion)

• E(rror)

• h(old)

• r(unning)

• R(estarted)

• s(uspended)

© Bright Computing, Inc.

6.4 Deleting A Job 39

• S(uspended)

• t(ransfering)

• T(hreshold)

• w(aiting)

The queue state can be:

• u(nknown) if the corresponding sge_execd cannot be contacted

• a(larm) - the load threshold is currently exceeded

• A(larm) - the suspend threshold is currently exceeded

• C(alendar suspended) - see calendar_conf

• s(uspended) - see qmod

• S(ubordinate)

• d(isabled) - see qmod

• D(isabled) - see calendar_conf

• E(rror) - sge_execd was unable to locate the sge_shepherd - use
qmod to fix it.

• o(rphaned) - for queue instances

By default the qstat command shows only jobs belonging to the cur-
rent user, i.e. the command is executed with the option -u $user. To
see jobs from other users too, the following format is used:

$ qstat -u ‘‘*’’

6.4 Deleting A Job
A job can be deleted in SGE with the following command

$ qdel <jobid>

The job-id is the number assigned by SGE when the job is submitted
using qsub. Only jobs belonging to the logged-in user can be deleted. Us-
ing qdel will delete a user’s job regardless of whether the job is running
or in the queue.

© Bright Computing, Inc.

7
PBS Variants: Torque And PBS

Pro
Bright Cluster Manager works with Torque and PBS Pro, which are two
forks of Portable Batch System (PBS). PBS was a workload management
and job scheduling system first developed to manage computing re-
sources at NASA in the 1990s.

Torque and PBS Pro can differ significantly in the output they present
when using their GUI visual tools. However because of their historical
legacy, their basic design structure and job submission methods from the
command line remain very similar for the user. Both Torque and PBS
Pro are therefore covered in this chapter. The possible Torque schedulers
(Torque’s built-in scheduler, Maui, or Moab) are also covered when dis-
cussing Torque.

Torque and PBS Pro both offer a graphical interface and command line
tools for submitting, monitoring, modifying and deleting jobs.

For submission and execution of jobs, both workload managers use
PBS “job scripts”. The user puts values into a job script for the resources
being requested, such as the number of processors, memory. Other values
are also set for the runtime parameters and application-specific variables.

The steps for running a job through a PBS job script are:

• Creating an application to be run via the job script

• Creating the job script, adding directives, applications, runtime pa-
rameters, and application-specific variables to the script

• Submitting the script to the workload management system

This chapter covers the using the workload managers and job scripts
with the PBS variants so that users can get a basic understanding of how
they are used, and can get started with typical cluster usage.

In this chapter:

• section 7.1 covers the components of a job script and job script ex-
amples

• section 7.2.1 covers submitting, monitoring, and deleting a job with
a job script

More depth on using these workload managers is to be found in the
PBS Professional User Guide and in the online Torque documentation at
http://www.adaptivecomputing.com/resources/docs/.

© Bright Computing, Inc.

http://www.adaptivecomputing.com/resources/docs/

42 PBS Variants: Torque And PBS Pro

7.1 Components Of A Job Script
To use Torque or PBS Pro, a batch job script is created by the user. The job
script is a shell script containing the set of commands that the user wants
to run. It also contains the resource requirement directives and other spec-
ifications for the job. After preparation, the job script is submitted to the
workload manager using the qsub command. The workload manager
then tries to make the job run according to the job script specifications.

A job script can be resubmitted with different parameters (e.g. differ-
ent sets of data or variables).

7.1.1 Sample Script Structure
A job script in PBS Pro or Torque has a structure illustrated by the follow-
ing basic example:

Example

#!/bin/bash

#

#PBS -l walltime=1:00:00

#PBS -l nodes=4

#PBS -l mem=500mb

#PBS -j oe

cd ${HOME}/myprogs

mpirun myprog a b c

The first line is the standard “shebang” line used for scripts.
The lines that start with #PBS are PBS directive lines, described shortly

in section 7.1.2.
The last two lines are an example of setting remaining options or con-

figuration settings up for the script to run. In this case, a change to the
directory myprogs is made, and then run the executable myprog with ar-
guments a b c. The line that runs the program is called the executable
line (section 7.1.3).

To run the executable file in the executable line in parallel, the job
launcher mpirun is placed immediately before the executable file. The
number of nodes the parallel job is to run on is assumed to have been
specified in the PBS directives.

7.1.2 Directives
Job Script Directives And qsub Options
A job script typically has several configurable values called job script di-
rectives, set with job script directive lines. These are lines that start with a
“#PBS”. Any directive lines beyond the first executable line are ignored.

The lines are comments as far as the shell is concerned because they
start with a “#”. However, at the same time the lines are special com-
mands when the job script is processed by the qsub command. The dif-
ference is illustrated by the following:

• The following shell comment is only a comment for a job script pro-
cessed by qsub:

PBS

© Bright Computing, Inc.

7.1 Components Of A Job Script 43

• The following shell comment is also a job script directive when pro-
cessed by qsub:

#PBS

Job script directive lines with the “#PBS ” part removed are the same
as options applied to the qsub command, so a look at the man pages of
qsub describes the possible directives and how they are used. If there is
both a job script directive and a qsub command option set for the same
item, the qsub option takes precedence.

Since the job script file is a shell script, the shell interpreter used can be
changed to another shell interpreter by modifying the first line (the “#!”
line) to the preferred shell. Any shell specified by the first line can also be
overridden by using the “#PBS -S” directive to set the shell path.

Walltime Directive
The workload manager typically has default walltime limits per queue
with a value limit set by the administrator. The user sets walltime limit
by setting the ”#PBS -l walltime” directive to a specific time. The
time specified is the maximum time that the user expects the job should
run for, and it allows the workload manager to work out an optimum
time to run the job. The job can then run sooner than it would by default.

If the walltime limit is exceeded by a job, then the job is stopped, and
an error message like the following is displayed:

=» PBS: job killed: walltime <runningtime> exceeded limit
<settime>

Here, <runningtime> indicates the time for which the job actually went
on to run, while <settime> indicates the time that the user set as the wall-
time resource limit.

Resource List Directives
Resource list directives specify arguments to the -l directive of the job
script, and allow users to specify values to use instead of the system de-
faults.

For example, in the sample script structure earlier, a job walltime of
one hour and a memory space of at least 500MB are requested (the script
requires the size of the space be spelled in lower case, so “500mb” is
used).

If a requested resource list value exceeds what is available, the job is
queued until resources become available.

For example, if nodes only have 2000MB to spare and 4000MB is re-
quested, then the job is queued indefinitely, and it is up to the user to fix
the problem.

Resource list directives also allow, for example, the number of nodes
(-l nodes) and the virtual processor cores per nodes (-l ppn) to be
specified. If no value is specified, the default is 1 core per node.

If 8 cores are wanted, and it does not matter how the cores are allo-
cated (e.g. 8 per node or 1 on 8 nodes) the directive used in Torque is:

#PBS -l nodes=8

For PBS Pro v11 this also works, but is deprecated, and the form
“#PBS -l select=8” is recommended instead.

© Bright Computing, Inc.

44 PBS Variants: Torque And PBS Pro

Further examples of node resource specification are given in a table
on page 45.

Job Directives: Job Name, Logs, And IDs
If the name of the job script file is jobname, then by default the
output and error streams are logged to jobname.o<number> and
jobname.e<number> respectively, where <number> indicates the asso-
ciated job number. The default paths for the logs can be changed by us-
ing the -o and -e directives respectively, while the base name (jobname
here) can be changed using the -N directive.

Often, a user may simply merge both logs together into one of the two
streams using the -j directive. Thus, in the preceding example, “-j oe”
merges the logs to the output log path, while “-j eo” would merge it to
error log path.

The job ID is an identifier based on the job number and the FQDN
of the login node. For a login node called bright52.cm.cluster, the
job ID for a job number with the associated value <number> from earlier,
would by default be <number>.bright52.cm.cluster, but it can also simply
be abbreviated to <number>.

Job Queues
Sending a job to a particular job queue is sometimes appropriate. An
administrator may have set queues up so that some queues are for very
long term jobs, or some queues are for users that require GPUs. Submit-
ting a job to a particular queue <destination> is done by using the directive
“#PBS -q <destination>”.

Directives Summary
A summary of the job directives covered, with a few extras, are shown in
the following table:

Directive Description Specified As

Name the job <jobname> #PBS -N <jobname>

Run the job for a time of <walltime> #PBS -l <walltime>

Run the job at <time> #PBS -a <time>

Set error log name to <jobname.err> #PBS -e <jobname.err>

Set output log name to <jobname.log> #PBS -o <jobname.log>

Join error messages to output log #PBS -j eo

Join output messages to error log #PBS -j oe

Mail to <user@address> #PBS -M <user@address>

Mail on <event> #PBS -m <event>

where <event> takes the (a)bort

value of the letter in (b)egin

the parentheses (e)nd

(n) do not send email

Queue is <destination> #PBS -q <destination>

Login shell path is <shellpath> #PBS -S <shellpath>

© Bright Computing, Inc.

7.1 Components Of A Job Script 45

Resource List Directives Examples
Examples of how requests for resource list directives work are shown in
the following table:

Resource Example Description “#PBS -l” Specification

Request 500MB memory mem=500mb

Set a maximum runtime of 3
hours 10 minutes and 30 seconds

walltime=03:10:30

8 nodes, anywhere on the cluster nodes=8*

8 nodes, anywhere on the cluster select=8**

2 nodes, 1 processor per node nodes=2:ppn=1

3 nodes, 8 processors per node nodes=3:ppn=8

5 nodes, 2 processors per node
and 1 GPU per node

nodes=5:ppn=2:gpus=1*

5 nodes, 2 processors per node,
and 1 GPU per node

select=5:ncpus=2:ngpus=1**

5 nodes, 2 processors per node, 3
virtual processors for MPI code

select=5:ncpus=2:mpiprocs=3**

5 nodes, 2 processors per node,
using any GPU on the nodes

select=5:ncpus=2:ngpus=1**

5 nodes, 2 processors per node,
using a GPU with ID 0 from
nodes

select=5:ncpus=2:gpu_id=0**

*For Torque 2.5.5
**For PBS Pro 11

Some of the examples illustrate requests for GPU resource usage. GPUs
and the CUDA utilities for Nvidia are introduced in Chapter 8. In the
Torque and PBS Pro workload managers, GPU usage is treated like the
attributes of a resource which the cluster administrator will have pre-
configured according to local requirements.

For further details on resource list directives, the Torque and PBS Pro
user documentation should be consulted.

7.1.3 The Executable Line
In the job script structure (section 7.1.1), the executable line is launched
with the job launcher command after the directives lines have been dealt
with, and after any other shell commands have been carried out to set up
the execution environment.

Using mpirun In The Executable Line
The mpirun command is used for executables compiled with MPI li-
braries. Executables that have not been compiled with MPI libraries, or
which are launched without any specified number of nodes, run on a sin-
gle free node chosen by the workload manager.

The executable line to run a program myprog that has been compiled
with MPI libraries is run by placing the job-launcher command mpirun
before it as follows:

mpirun myprog

© Bright Computing, Inc.

46 PBS Variants: Torque And PBS Pro

Using cm-launcher With mpirun In The Executable Line
For Torque, for some MPI implementations, jobs sometimes leave pro-
cesses behind after they have ended. A default Bright Cluster Manager
installation provides a cleanup utility that removes such processes. To
use it, the user simply runs the executable line using the cm-launcher
wrapper before the mpirun job-launcher command:

cm-launcher mpirun myprog

The wrapper tracks processes that the workload manager launches.
When it sees processes that the workload manager is unable to clean up
after the job is over, it carries out the cleanup instead. Using cm-launcher
is recommended if jobs that do not get cleaned up correctly are an issue
for the user or administrator.

7.1.4 Example Batch Submission Scripts
Node Availability
The following job script tests which out of 4 nodes requested with “-l
nodes” are made available to the job in the workload manager:

Example

#!/bin/bash

#PBS -l walltime=1:00

#PBS -l nodes=4

echo -n "I am on: "

hostname;

echo finding ssh-accessible nodes:

for node in $(cat ${PBS_NODEFILE}) ; do

echo -n "running on: "

/usr/bin/ssh $node hostname

done

The directive specifying walltime means the script runs at most for
1 minute. The ${PBS_NODEFILE} array used by the script is created and
appended with hosts by the queueing system. The script illustrates how
the workload manager generates a ${PBS_NODEFILE} array based on
the requested number of nodes, and which can be used in a job script to
spawn child processes. When the script is submitted, the output from the
log will look like:

I am on: node001

finding ssh-accessible nodes:

running on: node001

running on: node002

running on: node003

running on: node004

This illustrates that the job starts up on a node, and that no more than
the number of nodes that were asked for in the resource specification are
provided.

The list of all nodes for a cluster can be found using the pbsnodes
command (section 7.2.6).

© Bright Computing, Inc.

7.1 Components Of A Job Script 47

Using InfiniBand
A sample PBS script for InfiniBand is:

#!/bin/bash

#!

#! Sample PBS file

#!

#! Name of job

#PBS -N MPI

#! Number of nodes (in this case 8 nodes with 4 CPUs each)

#! The total number of nodes passed to mpirun will be nodes*ppn

#! Second entry: Total amount of wall-clock time (true time).

#! 02:00:00 indicates 02 hours

#PBS -l nodes=8:ppn=4,walltime=02:00:00

#! Mail to user when job terminates or aborts

#PBS -m ae

If modules are needed by the script, then source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared mvapich/gcc torque maui pbspro

#! Full path to application + application name

application="<application>"

#! Run options for the application

options="<options>"

#! Work directory

workdir="<work dir>"

###

You should not have to change anything below this line

###

#! change the working directory (default is home directory)

cd $workdir

echo Running on host $(hostname)

echo Time is $(date)

echo Directory is $(pwd)

echo PBS job ID is $PBS_JOBID

echo This job runs on the following machines:

echo $(cat $PBS_NODEFILE | uniq)

$mpirun_command="mpirun $application $options"

#! Run the parallel MPI executable (nodes*ppn)

echo Running $mpirun_command

eval $mpirun_command

© Bright Computing, Inc.

48 PBS Variants: Torque And PBS Pro

In the preceding script, no machine file is needed, since it is automat-
ically built by the workload manager and passed on to the mpirun par-
allel job launcher utility. The job is given a unique ID and run in parallel
on the nodes based on the resource specification.

7.1.5 Links To Other Resources About Job Scripts In Torque
And PBS Pro

A number of useful links are:

• Torque examples:
http://bmi.cchmc.org/resources/software/torque/examples

• PBS Pro script files:
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml

• Running PBS Pro jobs and directives:
http://wiki.hpc.ufl.edu/index.php/Job_Submission_Queues

7.2 Submitting A Job
7.2.1 Preliminaries: Loading The Modules Environment
To submit a job to the workload management system, the user must en-
sure that the following environment modules are loaded:

• If using Torque with no external scheduler:

$ module add shared torque

• If using Torque with Maui:

$ module add shared torque maui

• If using Torque with Moab:

$ module add shared torque moab

• If using PBS Pro:

$ module add shared pbspro

Users can pre-load particular environment modules as their default
using the “module init*” commands (section 2.3.3).

7.2.2 Using qsub
The command qsub is used to submit jobs to the workload manager sys-
tem. The command returns a unique job identifier, which is used to query
and control the job and to identify output. The usage format of qsub and
some useful options are listed here:

USAGE: qsub [<options>] <job script>

Option Hint Description

------ ---- -----------

© Bright Computing, Inc.

http://bmi.cchmc.org/resources/software/torque/examples
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml
http://wiki.hpc.ufl.edu/index.php/Job_Submission_Queues

7.2 Submitting A Job 49

-a at run the job at a certain time

-l list request certain resource(s)

-q queue job is run in this queue

-N name name of job

-S shell shell to run job under

-j join join output and error files

For example, a job script called mpirun.job with all the relevant di-
rectives set inside the script, may be submitted as follows:

Example

$ qsub mpirun.job

A job may be submitted to a specific queue testq as follows:

Example

$ qsub -q testq mpirun.job

The man page for qsub describes these and other options. The options
correspond to PBS directives in job scripts (section 7.1.1). If a particular
item is specified by a qsub option as well as by a PBS directive, then the
qsub option takes precedence.

7.2.3 Job Output
By default, the output from the job script <scriptname> goes into the home
directory of the user for Torque, or into the current working directory for
PBS Pro.

By default, error output is written to <scriptname>.e<jobid> and the
application output is written to <scriptname>.o<jobid>, where <jobid> is
a unique number that the workload manager allocates. Specific output
and error files can be set using the -o and -e options respectively. The
error and output files can usefully be concatenated into one file with the
-j oe or -j eo options. More details on this can be found in the qsub
man page.

7.2.4 Monitoring A Job
To use the commands in this section, the appropriate workload manager
module must be loaded. For example, for Torque, torque module needs
to be loaded:

$ module add torque

qstat Basics
The main component is qstat, which has several options. In this exam-
ple, the most frequently used options are discussed.

In PBS/Torque, the command “qstat -an” shows what jobs are cur-
rently submitted or running on the queuing system. An example output
is:

[fred@bright52 ~]$ qstat -an

bright52.cm.cluster:

© Bright Computing, Inc.

50 PBS Variants: Torque And PBS Pro

User Req’d Req’d Elap

Job ID name Queue Jobname SessID NDS TSK Memory Time S Time

----------- ---- ------ ------- ------ --- --- ------ ----- - -----

78.bright52 fred shortq tjob 10476 1 1 555mb 00:01 R 00:00

79.bright52 fred shortq tjob -- 1 1 555mb 00:01 Q --

The output shows the Job ID, the user who owns the job, the queue,
the job name, the session ID for a running job, the number of nodes re-
quested, the number of CPUs or tasks requested, the time requested (-l
walltime), the job state (S) and the elapsed time. In this example, one
job is seen to be running (R), and one is still queued (Q). The -n parame-
ter causes nodes that are in use by a running job to display at the end of
that line.

Possible job states are:

Job States Description

C Job is completed (regardless of success or failure)

E Job is exiting after having run

H Job is held

Q job is queued, eligible to run or routed

R job is running

S job is suspend

T job is being moved to new location

W job is waiting for its execution time

The command “qstat -q” shows what queues are available. In the fol-
lowing example, there is one job running in the testq queue and 4 are
queued.

$ qstat -q

server: master.cm.cluster

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

testq -- -- 23:59:59 -- 1 4 -- E R

default -- -- 23:59:59 -- 0 0 -- E R

----- -----

1 4

showq From Maui
If the Maui scheduler is running, and the Maui module loaded (module
add maui), then Maui’s showq command displays a similar output. In
this example, one dual-core node is available (1 node, 2 processors), one
job is running and 3 are queued (in the Idle state).

$ showq

ACTIVE JOBS-----------

JOBNAME USERNAME STATE PROC REMAINING STARTTIME

45 cvsupport Running 2 1:59:57 Tue Jul 14 12:46:20

1 Active Job 2 of 2 Processors Active (100.00%)

© Bright Computing, Inc.

7.2 Submitting A Job 51

1 of 1 Nodes Active (100.00%)

IDLE JOBS-------------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

46 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:20

47 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:21

48 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:22

3 Idle Jobs

BLOCKED JOBS----------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

Total Jobs: 4 Active Jobs: 1 Idle Jobs: 3 Blocked Jobs: 0

Viewing Job Details With qstat And checkjob

Job Details With qstat With qstat -f the full output of the job is
displayed. The output shows what the jobname is, where the error and
output files are stored, and various other settings and variables.

$ qstat -f

Job Id: 19.mascm4.cm.cluster

Job_Name = TestJobPBS

Job_Owner = cvsupport@mascm4.cm.cluster

job_state = Q

queue = testq

server = mascm4.cm.cluster

Checkpoint = u

ctime = Tue Jul 14 12:35:31 2009

Error_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPBS

.e19

Hold_Types = n

Join_Path = n

Keep_Files = n

Mail_Points = a

mtime = Tue Jul 14 12:35:31 2009

Output_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPB

S.o19

Priority = 0

qtime = Tue Jul 14 12:35:31 2009

Rerunable = True

Resource_List.nodect = 1

Resource_List.nodes = 1:ppn=2

Resource_List.walltime = 02:00:00

Variable_List = PBS_O_HOME=/home/cvsupport,PBS_O_LANG=en_US.UTF-8,

PBS_O_LOGNAME=cvsupport,

PBS_O_PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/sbin:/usr/

sbin:/home/cvsupport/bin:/cm/shared/apps/torque/2.3.5/bin:/cm/shar

ed/apps/torque/2.3.5/sbin,PBS_O_MAIL=/var/spool/mail/cvsupport,

PBS_O_SHELL=/bin/bash,PBS_SERVER=mascm4.cm.cluster,

PBS_O_HOST=mascm4.cm.cluster,

PBS_O_WORKDIR=/home/cvsupport/test-package,PBS_O_QUEUE=default

etime = Tue Jul 14 12:35:31 2009

submit_args = pbs.job -q default

© Bright Computing, Inc.

52 PBS Variants: Torque And PBS Pro

Job Details With checkjob The checkjob command (only for Maui)
is particularly useful for checking why a job has not yet executed. For
a job that has an excessive memory requirement, the output looks some-
thing like:

[fred@bright52 ~]$ checkjob 65

checking job 65

State: Idle

Creds: user:fred group:fred class:shortq qos:DEFAULT

WallTime: 00:00:00 of 00:01:00

SubmitTime: Tue Sep 13 15:22:44

(Time Queued Total: 2:53:41 Eligible: 2:53:41)

Total Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

Network: [NONE] Memory >= 0 Disk >= 0 Swap >= 0

Opsys: [NONE] Arch: [NONE] Features: [NONE]

Dedicated Resources Per Task: PROCS: 1 MEM: 495M

IWD: [NONE] Executable: [NONE]

Bypass: 0 StartCount: 0

PartitionMask: [ALL]

Flags: RESTARTABLE

PE: 1.01 StartPriority: 173

job cannot run in partition DEFAULT (idle procs do not meet requirement\

s : 0 of 1 procs found)

idle procs: 3 feasible procs: 0

Rejection Reasons: [CPU : 3]

The -v option gives slightly more detail.

7.2.5 Deleting A Job
An already submitted job can be deleted using the qdel command:

$ qdel <jobid>

The job ID is printed to the terminal when the job is submitted. To get
the job ID of a job if it has been forgotten, the following can be used:

$ qstat

or

$ showq

7.2.6 Monitoring Nodes In Torque And PBS Pro
The nodes that the workload manager knows about can be viewed using
the pbsnodes command.

The following output is from a cluster made up of 2-core nodes, as
indicated by the value of 2 for ncpu for Torque and PBS Pro. If the
node is available to run scripts, then its state is free or time-shared.

© Bright Computing, Inc.

7.2 Submitting A Job 53

When a node is used exclusively (section 8.5.2) by one script, the state is
job-exclusive.

For Torque the display resembles (some output elided):

[fred@bright52 ~]$ pbsnodes -a

node001.cm.cluster

state = free

np = 3

ntype = cluster

status = rectime=1317911358,varattr=,jobs=96...ncpus=2...

gpus = 1

node002.cm.cluster

state = free

np = 3

...

gpus = 1

...

For PBS Pro the display resembles (some output elided):

[fred@bright52 ~]$ pbsnodes -a

node001.cm.cluster

Mom = node001.cm.cluster

ntype = PBS

state = free

pcpus = 3

resources_available.arch = linux

resources_available.host = node001

...

sharing = default_shared

node002.cm.cluster

Mom = node002.cm.cluster

ntype = PBS

state = free

...

...

© Bright Computing, Inc.

8
Using GPUs

GPUs (Graphics Processing Units) are chips that provide specialized par-
allel processing power. Originally, GPUs were designed to handle graph-
ics processing as part of the video processor, but their ability to handle
non-graphics tasks in a similar manner has become important for gen-
eral computing. GPUs designed for general purpose computing task are
commonly called General Purpose GPUs, or GPGPUs.

A GPU is suited for processing an algorithm that naturally breaks
down into a process requiring many similar calculations running in paral-
lel. GPUs cores are able to rapidly apply the instruction on multiple data
points organized in a 2-D, and more recently, 3-D, image. The image is
placed in a framebuffer. In the original chips, the data points held in the
framebuffer were intended for output to a display, thereby accelerating
image generation.

The similarity between multicore CPU chips and modern GPUs makes
it at first sight attractive to use GPUs for general purpose computing.
However, the instruction set on GPGPUs is used in a component called
the shader pipeline. This is, as the name suggests, to do with a limited set
of graphics operations, and so is by its nature rather limited. Using the
instruction set for problems unrelated to shader pipeline manipulations
requires that the problems being processed map over to a similar manip-
ulation. This works best for algorithms that naturally break down into a
process requiring an operation to be applied in the same way on many
independent vertices and pixels. In practice, this means that 1-D vector
operations are an order of magnitude less efficient on GPUs than opera-
tions on triangular matrices.

Modern GPGPU implementations have matured so that they can now
sub-divide their resources between independent processes that work on
independent data, and they provide programmer-friendlier ways of data
transfer between the host and GPU memory.

Physically, one GPU is typically a built-in part of the motherboard of
a node or a board in a node, and consists of several hundred processing
cores. There are also dedicated standalone units, commonly called GPU
Units, consisting of several GPUs in one chassis. Several of these can be
assigned to particular nodes, typically via PCI-Express connections, to
increase the density of parallelism even further.

Bright Cluster Managerhas several tools that can be used to set up and
program GPUs for general purpose computations.

© Bright Computing, Inc.

56 Using GPUs

8.1 Packages
A number of different GPU-related packages are included in Bright Clus-
ter Manager. For CUDA these are:

• cuda50-driver: Provides the GPU driver

• cuda50-libs: Provides the libraries that come with the driver
(libcuda etc)

• cuda50-toolkit: Provides the compilers, cuda-gdb, and math
libraries

• cuda50-tools: Provides the CUDA tools SDK

• cuda50-profiler: Provides the CUDA visual profiler

• cuda50-sdk: Provides additional tools, development files and source
examples

CUDA versions 4.2, and 5.0 are also provided by Bright Cluster Man-
ager. The exact implementation depends on how the system administra-
tor has configured CUDA.

8.2 Using CUDA
After installation of the packages, for general usage and compilation it
is sufficient to load just the CUDA<version>/toolkit module, where <ver-
sion> is a number, 42 or 50, indicating the version.

module add cuda50/toolkit

Also available are several other modules related to CUDA:

• cuda50/blas: Provides paths and settings for the CUBLAS library.

• cuda50/fft: Provides paths and settings for the CUFFT library.

The toolkit comes with the necessary tools and the NVIDIA compiler
wrapper to compile CUDA C code.

Extensive documentation on how to get started, the various tools, and
how to use the CUDA suite is in the $CUDA_INSTALL_PATH/doc direc-
tory.

8.3 Using OpenCL
OpenCL functionality is provided with the cuda<version>/toolkit en-
vironment module, where <version> is a number, 42, or 50.

Examples of OpenCL code can be found in the $CUDA_SDK/OpenCL
directory.

8.4 Compiling Code
Both CUDA and OpenCL involve running code on different platforms:

• host: with one or more CPUs

• device: with one or more CUDA enabled GPUs

© Bright Computing, Inc.

8.5 Available Tools 57

Accordingly, both the host and device manage their own memory space,
and it is possible to copy data between them. The CUDA and OpenCL
Best Practices Guides in the doc directory, provided by the CUDA toolkit
package, have more information on how to handle both platforms and
their limitations.

The nvcc command by default compiles code and links the objects for
both the host system and the GPU. The nvcc command distinguishes be-
tween the two and it can hide the details from the developer. To compile
the host code, nvcc will use gcc automatically.

nvcc [options] <inputfile>

A simple example to compile CUDA code to an executable is:

nvcc testcode.cu -o testcode

The most used options are:

• -g or -debug <level>: This generates debug-able code for the
host

• -G or -device-debug <level>: This generates debug-able code
for the GPU

• -o or -output-file <file>: This creates an executable with the
name <file>

• -arch=sm_13: This can be enabled if the CUDA device supports
compute capability 1.3, which includes double-precision

If double-precision floating-point is not supported or the flag is not
set, warnings such as the following will come up:

warning : Double is not supported. Demoting to float

The nvcc documentation manual, “The CUDA Compiler Driver NVCC”
has more information on compiler options.

The CUDA SDK has more programming examples and information
accessible from the file $CUDA_SDK/C/Samples.html.

For OpenCL, code compilation can be done by linking against the
OpenCL library:

gcc test.c -lOpenCL

g++ test.cpp -lOpenCL

nvcc test.c -lOpenCL

8.5 Available Tools
8.5.1 CUDA gdb
The CUDA debugger can be started using: cuda-gdb. Details of how to
use it are available in the “CUDA-GDB (NVIDIA CUDA Debugger)” man-
ual, in the doc directory. It is based on GDB, the GNU Project debugger,
and requires the use of the “-g” or “-G” options compiling.

Example

nvcc -g -G testcode.cu -o testcode

© Bright Computing, Inc.

58 Using GPUs

8.5.2 nvidia-smi
The NVIDIA System Management Interface command, nvidia-smi, can
be used to allow exclusive access to the GPU. This means only one appli-
cation can run on a GPU. By default, a GPU will allow multiple running
applications.
Syntax:

nvidia-smi [OPTION1 [ARG1]] [OPTION2 [ARG2]] ...

The steps for making a GPU exclusive:

• List GPUs

• Select a GPU

• Lock GPU to a compute mode

• After use, release the GPU

After setting the compute rule on the GPU, the first application which
executes on the GPU will block out all others attempting to run. This
application does not necessarily have to be the one started by the user
that set the exclusivity lock on the the GPU!

To list the GPUs, the -L argument can be used:

$ nvidia-smi -L

GPU 0: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 706539258209)

GPU 1: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 2486719292433)

To set the ruleset on the GPU:

$ nvidia-smi -i 0 -c 1

The ruleset may be one of the following:

• 0 - Default mode (multiple applications allowed on the GPU)

• 1 - Exclusive thread mode (only one compute context is allowed to
run on the GPU, usable from one thread at a time)

• 2 - Prohibited mode (no compute contexts are allowed to run on the
GPU)

• 3 - Exclusive process mode (only one compute context is allowed to
run on the GPU, usable from multiple threads at a time)

To check the state of the GPU:

$ nvidia-smi -i 0 -q

COMPUTE mode rules for GPU 0: 1

In this example, GPU0 is locked, and there is a running application
using GPU0. A second application attempting to run on this GPU will
not be able to run on this GPU.

$ histogram --device=0

main.cpp(101) : cudaSafeCall() Runtime API error :

no CUDA-capable device is available.

After use, the GPU can be unlocked to allow multiple users:

nvidia-smi -i 0 -c 0

© Bright Computing, Inc.

8.5 Available Tools 59

8.5.3 CUDA Utility Library
CUTIL is a simple utility library designed for use in the CUDA SDK sam-
ples. There are 2 parts for CUDA and OpenCL. The locations are:

• $CUDA_SDK/C/lib

• $CUDA_SDK/OpenCL/common/lib

Other applications may also refer to them, and the toolkit libraries have
already been pre-configured accordingly. However, they need to be com-
piled prior to use. Depending on the cluster, this might have already have
been done.

[fred@demo ~] cd

[fred@demo ~] cp -r $CUDA_SDK

[fred@demo ~] cd $(basename $CUDA_SDK); cd C

[fred@demo C] make

[fred@demo C] cd $(basename $CUDA_SDK); cd OpenCL

[fred@demo OpenCL] make

CUTIL provides functions for:

• parsing command line arguments

• read and writing binary files and PPM format images

• comparing data arrays (typically used for comparing GPU results
with CPU results)

• timers

• macros for checking error codes

• checking for shared memory bank conflicts

8.5.4 CUDA “Hello world” Example
A hello world example code using CUDA is:

Example

/*
CUDA example

"Hello World" using shift13, a rot13-like function.

Encoded on CPU, decoded on GPU.

rot13 cycles between 26 normal alphabet characters.

shift13 shifts 13 steps along the normal alphabet characters

So it translates half the alphabet into non-alphabet characters

shift13 is used because it is simpler than rot13 in c

so we can focus on the point

(c) Bright Computing

Taras Shapovalov <taras.shapovalov@brightcomputing.com>

*/

© Bright Computing, Inc.

60 Using GPUs

#include <cuda.h>

#include <cutil_inline.h>

#include <stdio.h>

// CUDA kernel definition: undo shift13

__global__ void helloWorld(char* str) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

str[idx] -= 13;

}

int main(int argc, char** argv)

{

char s[] = "Hello World!";

printf("String for encode/decode: %s\n", s);

// CPU shift13

int len = sizeof(s);

for (int i = 0; i < len; i++) {

s[i] += 13;

}

printf("String encoded on CPU as: %s\n", s);

// Allocate memory on the CUDA device

char *cuda_s;

cudaMalloc((void**)&cuda_s, len);

// Copy the string to the CUDA device

cudaMemcpy(cuda_s, s, len, cudaMemcpyHostToDevice);

// Set the grid and block sizes (dim3 is a type)

// and "Hello World!" is 12 characters, say 3x4

dim3 dimGrid(3);

dim3 dimBlock(4);

// Invoke the kernel to undo shift13 in GPU

helloWorld<<< dimGrid, dimBlock >>>(cuda_s);

// Retrieve the results from the CUDA device

cudaMemcpy(s, cuda_s, len, cudaMemcpyDeviceToHost);

// Free up the allocated memory on the CUDA device

cudaFree(cuda_s);

printf("String decoded on GPU as: %s\n", s);

return 0;

}

The preceding code example may be compiled and run with:

[fred@bright52 ~]$ nvcc hello.cu -o hello

[fred@bright52 ~]$ module add shared openmpi/gcc/64/1.4.4 slurm

[fred@bright52 ~]$ salloc -n1 --gres=gpu:1 mpirun hello

salloc: Granted job allocation 2263

String for encode/decode: Hello World!

String encoded on CPU as: Uryy|-d|yq.

© Bright Computing, Inc.

8.5 Available Tools 61

String decoded on GPU as: Hello World!

alloc: Relinquishing job allocation 2263

salloc: Job allocation 2263 has been revoked.

The number of characters displayed in the encoded string appear less
than expected because there are unprintable characters in the encoding
due to the cipher used being not exactly rot13.

8.5.5 OpenACC
OpenACC (http://www.openacc-standard.org) is a new open
parallel programming standard aiming at simplifying the programma-
bility of heterogeneous CPU/GPU computing systems. OpenACC al-
lows parallel programmers to provide OpenACC directives to the compiler,
identifying which areas of code to accelerate. This frees the programmer
from carrying out time-consuming modifications to the original code it-
self. By pointing out parallelism to the compiler, directives get the com-
piler to carry out the details of mapping the computation onto the accel-
erator.

Using OpenACC directives requires a compiler that supports the Ope-
nACC standard.

In the following example, where π is calculated, adding the #pragma
directive is sufficient for the compiler to produce code for the loop that
can run on either the GPU or CPU:

Example

#include <stdio.h>

#define N 1000000

int main(void) {

double pi = 0.0f; long i;

#pragma acc parallel loop reduction(+:pi)

for (i=0; i<N; i++) {

double t= (double)((i+0.5)/N);

pi +=4.0/(1.0+t*t);

}

printf("pi=%16.15f\n",pi/N);

return 0;

}

© Bright Computing, Inc.

http://www.openacc-standard.org

9
Using MICs

The hardware concept of the Intel MIC (Many Integrated Cores) architec-
ture is to bundle many x86-like chips into a processor, currently imple-
mented in the Intel Xeon Phi release. The MIC implementation is placed
on a MIC card, which can be hosted inside a node using the PCIe bus.
In this chapter, the word MIC on its own implies the MIC architecture or
implementation.

Bright Cluster Manager deals with MIC cards as if they are regu-
lar nodes. If the Slurm workload manager is used, then the MIC cards
become compute nodes in Slurm, because the Slurm compute daemon
(slurmd) can be started inside a MIC card. MIC offloading is supported
by an appropriate generic resource in the workload managers supported
by Bright Cluster Manager. Both offloaded and native jobs are supported
by Slurm.

This guide does not give details on how to write code for MIC, or what
tools and libraries should be used to do so.

The next two sections give an overview of the native and offload modes
under which MIC can be used.

9.1 Compiling Code In Native Mode
The simplest way to run applications on the Intel Xeon Phi coprocessor
is in native mode. The native application can be compiled inside a co-
processor or on a host. In the second case the binary can then be copied
to the coprocessor and has to be started there. Although the MIC and
x86_64 architectures are very similar, the MIC native application cannot
be run on an x86_64 core. The MIC assembly instruction set is highly, but
not completely, x86-compatible, and also has some additional scalar and
vector instructions not found elsewhere. Therefore, to run a distributed
MPI application on MICs and on hosts at the same time, two versions of
the application binary have to be built.

9.1.1 Using The GNU Compiler
Bright Cluster Manager provides a patched gcc which can be used to
build a native MIC application. However, Intel recommends using the
Intel Compiler (section 9.1.2), which can create a more-optimized k1om
code for a better performance.

By default gcc with MIC support is in the following directory:

© Bright Computing, Inc.

64 Using MICs

/usr/linux-k1om-<version>

To build a native application on an x86_64 host, the compiler tools
prefixed by x86_64-k1om-linux- have to be used:

Example

[user@bright61 ~]$ module load intel/mic/cross

[user@bright61 ~]$ x86_64-k1om-linux-gcc ./test.c -o test

[user@bright61 ~]$

If the GNU autoconf tool is used, then the following shell commands
can be used to build the application:

MIC_ARCH=k1om

GCC_VERSION=4.7

GCC_ROOT=/usr/linux-${MIC_ARCH}-${GCC_VERSION}

./configure \

CXX="${GCC_ROOT}/bin/x86_64-${MIC_ARCH}-linux-g++" \

CXXFLAGS="-I${GCC_ROOT}/linux-${MIC_ARCH}/usr/include" \

CXXCPP="${GCC_ROOT}/bin/x86_64-${MIC_ARCH}-linux-cpp" \

CC="${GCC_ROOT}/bin/x86_64-${MIC_ARCH}-linux-gcc" \

CFLAGS="-I${GCC_ROOT}/linux-${MIC_ARCH}/usr/include" \

CPP="${GCC_ROOT}/bin/x86_64-${MIC_ARCH}-linux-cpp" \

LDFLAGS="-L${GCC_ROOT}/linux-${MIC_ARCH}/usr/lib64" \

LD="${GCC_ROOT}/bin/x86_64-${MIC_ARCH}-linux-ld" \

--build=x86_64-redhat-linux \

--host=x86_64-${MIC_ARCH}-linux \

--target=x86_64-${MIC_ARCH}-linux

make

9.1.2 Using Intel Compilers
Intel Composer XE, version 2013 and higher, can also be used to compile
a native application on Intel Xeon Phi coprocessors.

The compiler for this is at:

/opt/intel/composer_xe_<version>

The -mmic switch generates code for the MIC on the non-MIC host.
For example:

[user@bright61 ~]$ module load intel/compiler/64/13.0

[user@bright61 ~]$ icc -mmic ./test.c -o test

[user@bright61 ~]$

If the GNU autoconf application is used instead, then the environment
variables are like those defined earlier in section 9.1.1.

Detailed information on building a native application for
the Intel Xeon Phi coprocessor using the Intel compilers can be
found at http://software.intel.com/en-us/articles/
building-a-native-application-for-intel-xeon-phi-coprocessors.

© Bright Computing, Inc.

http://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors
http://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors

9.2 Compiling Code In Offload Mode 65

9.2 Compiling Code In Offload Mode
MICs can also build user applications in offload (heterogeneous) mode.
With this method, the application starts on a host platform. The Intel
Compiler should be used, since the current stable version of the GNU
Compiler does not support this mode. A special statement, #pragma,
should be added to the C/C++ or Fortran code to mark regions of code
that are to be offloaded to a MIC and run there. This directive approach
ressembles that used by the PGI compiler, CAPS HMPP, or OpenACC,
when these specify the offloading of code to GPUs.

In this case, all data transfer and synchronization are managed by the
compiler and runtime. When an offload code region is encountered and
a MIC is found on the host, the offload code and data are transferred and
run on the MIC coprocessor. If no available MIC devices are found, then
the offload code is run on the host CPU(s).

Offload statements can also be combined with OpenMP directives.
The following “hello_mic” example shows how a system call is of-
floaded to the MIC. The example is used in other sections of this chapter:

Example

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <unistd.h>

int main(void) {

char hostname[HOST_NAME_MAX];

#pragma offload target(mic)

{

gethostname(hostname, HOST_NAME_MAX);

printf("My hostname is \%s\n", hostname);

}

exit(0);

}

Standard command line arguments, with no MIC-related switch re-
quired, compile the code. This is because offloading is enabled by default
in Intel Compiler version 2013 and higher:

Example

[user@bright61 ~]$ module load intel/compiler/64/13.0

[user@bright61 ~]$ icc -O3 ./hello_mic.c -o hello_mic

[user@bright61 ~]$ module load intel/mic/runtime

[user@bright61 ~]$./hello_mic

My hostname is bright61-mic0

[user@bright61 ~]$

To get debug information when an offloaded region is executed, the
OFFLOAD_REPORT environment variable can be used. Possible values, in
order of increasing verbosity, are 1, 2, or 3. Setting the empty string dis-
ables debug messages:

Example

© Bright Computing, Inc.

66 Using MICs

[user@bright61 ~]$ module load intel/mic/runtime

[user@bright61 ~]$ export OFFLOAD_REPORT=2

[user@bright61 ~]$./hello_mic

[Offload] [MIC 0] [File] ./hello_mic.c

[Offload] [MIC 0] [Line] 7

[Offload] [MIC 0] [Tag] Tag0

[Offload] [MIC 0] [CPU Time] 0.000000 (seconds)

[Offload] [MIC 0] [CPU->MIC Data] 64 (bytes)

[Offload] [MIC 0] [MIC Time] 0.000134 (seconds)

[Offload] [MIC 0] [MIC->CPU Data] 64 (bytes)

My hostname is node001-mic0

[user@bright61 ~]$

More information on building applications in offload mode
can be found at http://software.intel.com/en-us/articles/
the-heterogeneous-programming-model.

9.3 Using MIC With Workload Managers
When a MIC is configured as a regular node, the user can start a native
application inside the MIC. This can be done by logging into it directly us-
ing ssh or using a workload manager. The workload manager schedules
jobs by determining the order in which the jobs will use the MIC cards.
This is the recommended way to use MIC cards on a multiuser cluster,
but currently only Slurm supports both the native and offload modes. All
other workload managers support only offload mode, by using a precon-
figured generic resource.

9.3.1 Using MIC Cards With Slurm
Offload mode: The user creates a job script and specifies a consumable
resource “mic”. For example, the following job script runs the dgemm test
from the MIC binaries on a host where at least one MIC is available and
free:

#!/bin/sh

#SBATCH --partition=defq

#SBATCH --gres=mic:1

module load intel-cluster-runtime/intel64

/opt/intel/mic/perf/bin/intel64/dgemm_cpu.x -i 2 -l 2048

The job is submitted as usual using the sbatch or salloc/srun
commands of Slurm (chapter 5).

Native mode—non-distributed job: The user creates a job script and
sets a constraint "miccard". For example, the following job script runs
the dgemm test directly inside the MIC:

#!/bin/sh

#SBATCH --partition=micq

#SBATCH --constraint="miccard"

module load intel-cluster-runtime/intel-mic

/opt/intel/mic/perf/bin/mic/dgemm_mic.x -i 2 -l 2048

© Bright Computing, Inc.

http://software.intel.com/en-us/articles/the-heterogeneous-programming-model
http://software.intel.com/en-us/articles/the-heterogeneous-programming-model

9.3 Using MIC With Workload Managers 67

Native mode—MPI job: The user creates a job script in the same way
as for non-distributed job, but the --nodes parameter is specified. For
example, the next job script executes the Intel IMB-MPI1 benchmark on
two MICs using RDMA calls:

#!/bin/sh

#SBATCH --partition=micq

#SBATCH --constraint="miccard"

#SBATCH --nodes=2

SLURM_BIN=/cm/shared/apps/slurm/current/k1om-arch/bin

MPI_DIR=/cm/shared/apps/intel/mpi/current/mic

MPI_RUN=$MPI_DIR/bin/mpirun

APP=$MPI_DIR/bin/IMB-MPI1

APP_ARGS="PingPong"

MPI_ARGS="-genv I_MPI_DAPL_PROVIDER ofa-v2-scif0 -genv I_MPI_FABRICS=shm\

:dapl -perhost 1"

export LD_LIBRARY_PATH=/lib64:$MPI_DIR/lib:$LD_LIBRARY_PATH

export PATH=$SLURM_BIN:$MPI_DIR/bin/:$PATH

$MPI_RUN $MPI_ARGS $APP $APP_ARGS

The value of DAPL provider (the argument I_MPI_DAPL_PROVIDER)
should be set to ofa-v2-scif0 when an application needs MIC-to-MIC
or MIC-to-HOST RDMA communication.

All Slurm job examples given here can be found on a cluster in the
following directory:

/cm/shared/examples/workload/slurm/jobscripts/

9.3.2 Using MIC Cards With PBS Pro
PBS Pro version 12.0 and higher allows a special virtual node to be cre-
ated, which represents a MIC coprocessor. This virtual node is a con-
sumable resource, which can be allocated and released like any other re-
sources, for example, like a GPU. A MIC coprocessor is represented as a
virtual node, altough users cannot actually start a native job via PBS Pro.
All nodes that show the property resources_available.mic_id as
an output to the command pbsnodes -av are MICs.

Users can request a number of MICs for offload jobs as follows:

[user@bright61 ~]$ qsub -l select=1:ncpus=2+mic_id=1:ncpus=0 ./mic-offload-job

At the time of writing, PBS Pro (version 12.1) is not pinning tasks to a
specific MIC device. That is, the OFFLOAD_DEVICES environment variable
is not set for a job.

9.3.3 Using MIC Cards With TORQUE
TORQUE version 4.2 and higher detects MIC cards automatically and sets
the OFFLOAD_DEVICES environment variable for a job. To find out how
many MIC cards are detected by TORQUE and to find out their detected
properties, the pbsnodes command can be run. For example:

[user@bright61 ~]$ pbsnodes node001 | grep mic

mics = 1

mic_status = mic[0]=mic_id=8796;num_cores=61;num_threads=244;phys\

© Bright Computing, Inc.

68 Using MICs

mem=8071106560;free_physmem=7796191232;swap=0;free_swap=0;max_frequenc\
y=1181;isa=COI_ISA_KNC;load=0.400000;normalized_load=0.006557

[user@bright61 ~]$

However, the mics consumable resource can be used only when TORQUE
is used together with MOAB, otherwise the job is never scheduled. This
behavior is subject to change, but has been verified on MAUI 3.3.1 and
pbs_sched 4.2.2. When MOAB is used, then user can submit a job, with
offload code regions, as shown in the following example:

Example

#!/bin/sh

#PBS -N TEST_MIC_OFFLOAD

#PBS -l nodes=1:mics=2

module load intel/mic/runtime

module load intel-cluster-runtime/intel-mic

module load intel-cluster-runtime/intel64

./hello_mic

These examples can be found in:

/cm/shared/examples/workload/torque/jobscripts/

9.3.4 Using MIC Cards With SGE
Bright Cluster Manager distributes a branch of SGE called Open Grid
Scheduler (OGE). OGE, for which the current version is 2011.11p1, does
not have native support of MIC devices, and the OFFLOAD_DEVICES envi-
ronment variable will not be set for a job by default. However, the support
can be emulated using consumable resources.

9.3.5 Using MIC Cards With openlava
openlava does not have a native support of MIC devices, and the
OFFLOAD_DEVICES environment variable is not set for a job by default.
However, the support can be emulated using a consumable resource.

© Bright Computing, Inc.

10
User Portal

The user portal allows users to login via a browser and view the state of
the cluster themselves. It is a read-only interface.

The first time a browser is used to login to the cluster portal, a warn-
ing about the site certificate being untrusted appears in a default Bright
Cluster configuration. This can safely be accepted.

10.1 Home Page
The default home page allows a quick glance to convey the most impor-
tant cluster-related information for users (figure 10.1):

Figure 10.1: User Portal: Default Home Page

The following items are displayed on a default home page:

© Bright Computing, Inc.

70 User Portal

• a Message Of The Day. The administrator may put up important
messages for users here

• links to the documentation for the cluster

• contact information. This typically shows how to contact technical
support

• an overview of the cluster state, displaying some cluster parameters

• a workload overview. This is a table displaying a summary of
queues and their associated jobs

10.2 The WORKLOAD Tab
The page opened by clicking on the WORKLOAD tab allows a user to see
workload-related information for the cluster (figure 10.2).

Figure 10.2: User Portal: Workload Page

The following two tables are displayed:

• A workload overview table (the same as the table in the home page).

• A table displaying the current jobs running on the cluster

10.3 The NODES Tab
The page opened by clicking on the NODES tab shows a list of nodes on
the cluster (figure 10.3).

© Bright Computing, Inc.

10.4 The GRAPHS Tab 71

Figure 10.3: User Portal: Nodes Page

The following information about the head or regular nodes is pre-
sented:

• Hostname: the node name

• State: For example, UP, DOWN, INSTALLING

• Memory: RAM on the node

• Cores: Number of cores on the node

• CPU: Type of CPU, for example, Dual-Core AMD Opteron™

• Speed: Processor speed

• GPU: Number of GPUs on the node, if any

• NICs: Number of network interface cards on the node, if any

• IB: Number of InfiniBand interconnects on the node, if any

• Category: The node category that the node has been allocated by
the administrator (by default it is default)

10.4 The GRAPHS Tab
By default the GRAPHS tab displays the cluster occupation rate for the
last hour (figure 10.4).

© Bright Computing, Inc.

72 User Portal

Figure 10.4: User Portal: Graphs Page

Selecting other values is possible for

• Workload Management Metrics. The following workload manager
metrics can be viewed:

– RunningJobs

– QueuedJobs

– FailedJobs

– CompletedJobs

– EstimatedDelay

– AvgJobDuration

– AvgExpFactor

• Cluster Management Metrics. The following metrics can be viewed

– OccupationRate

– NetworkBytesRecv

– NetworkBytesSent

– DevicesUp

– NodesUp

– TotalMemoryUsed

– TotalSwapUsed

– PhaseLoad

– CPUCoresAvailable

© Bright Computing, Inc.

10.4 The GRAPHS Tab 73

– GPUAvailable

– TotalCPUUser

– TotalCPUSystem

– TotalCPUIdle

• Datapoints: The number of points used for the graph can be speci-
fied. The points are interpolated if necessary

• Interval (Hours): The period over which the data points are dis-
played

The Update button must be clicked to display any changes made.

© Bright Computing, Inc.

A
MPI Examples

A.1 “Hello world”
A quick application to test the MPI libraries and the network.

/*
‘‘Hello World’’ Type MPI Test Program

*/

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZE 128

#define TAG 0

int main(int argc, char *argv[])

{

char idstr[32];

char buff[BUFSIZE];

int numprocs;

int myid;

int i;

MPI_Status stat;

/* all MPI programs start with MPI_Init; all ’N’ processes exist thereafter */

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD world is */

MPI_Comm_rank(MPI_COMM_WORLD,&myid); /* and this processes’ rank is */

/* At this point, all the programs are running equivalently, the rank is used to

distinguish the roles of the programs in the SPMD model, with rank 0 often used

specially... */

if(myid == 0)

{

printf("%d: We have %d processors\n", myid, numprocs);

for(i=1;i<numprocs;i++)

{

sprintf(buff, "Hello %d! ", i);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

for(i=1;i<numprocs;i++)

© Bright Computing, Inc.

76 MPI Examples

{

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);

printf("%d: %s\n", myid, buff);

}

}

else

{

/* receive from rank 0: */

MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);

sprintf(idstr, "Processor %d ", myid);

strcat(buff, idstr);

strcat(buff, "reporting for duty\n");

/* send to rank 0: */

MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

/* MPI Programs end with MPI Finalize; this is a weak

synchronization point */

MPI_Finalize();

return 0;

}

A.2 MPI Skeleton
The sample code below contains the complete communications skeleton
for a dynamically load balanced head/compute node application. Fol-
lowing the code is a description of some of the functions necessary for
writing typical parallel applications.

include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

main(argc, argv)

int argc;

char *argv[];

{

int myrank;

MPI_Init(&argc, &argv); /* initialize MPI */

MPI_Comm_rank(

MPI_COMM_WORLD, /* always use this */

&myrank); /* process rank, 0 thru N-1 */

if (myrank == 0) {

head();

} else {

computenode();

}

MPI_Finalize(); /* cleanup MPI */

}

head()

{

int ntasks, rank, work;

double result;

MPI_Status status;

MPI_Comm_size(

© Bright Computing, Inc.

A.2 MPI Skeleton 77

MPI_COMM_WORLD, /* always use this */

&ntasks); /* #processes in application */

/*

* Seed the compute nodes.

*/

for (rank = 1; rank < ntasks; ++rank) {

work = /* get_next_work_request */;

MPI_Send(&work, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */

rank, /* destination process rank */

WORKTAG, /* user chosen message tag */

MPI_COMM_WORLD);/* always use this */

}

/*

* Receive a result from any compute node and dispatch a new work

* request work requests have been exhausted.

*/

work = /* get_next_work_request */;

while (/* valid new work request */) {

MPI_Recv(&result, /* message buffer */

1, /* one data item */

MPI_DOUBLE, /* of type double real */

MPI_ANY_SOURCE, /* receive from any sender */

MPI_ANY_TAG, /* any type of message */

MPI_COMM_WORLD, /* always use this */

&status); /* received message info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,

WORKTAG, MPI_COMM_WORLD);

work = /* get_next_work_request */;

}

/*

* Receive results for outstanding work requests.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

}

/*

* Tell all the compute nodes to exit.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

}

}

computenode()

{

double result;

int work;

MPI_Status status;

for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

© Bright Computing, Inc.

78 MPI Examples

MPI_COMM_WORLD, &status);

/*

* Check the tag of the received message.

*/

if (status.MPI_TAG == DIETAG) {

return;

}

result = /* do the work */;

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

}

}

Processes are represented by a unique rank (integer) and ranks are
numbered 0, 1, 2, ..., N-1. MPI_COMM_WORLD means all the processes
in the MPI application. It is called a communicator and it provides all
information necessary to do message passing. Portable libraries do more
with communicators to provide synchronisation protection that most other
systems cannot handle.

A.3 MPI Initialization And Finalization
As with other systems, two functions are provided to initialize and clean
up an MPI process:

MPI_Init(&argc, &argv);

MPI_Finalize();

A.4 What Is The Current Process? How Many
Processes Are There?

Typically, a process in a parallel application needs to know who it is (its
rank) and how many other processes exist.

A process finds out its own rank by calling:

MPI_Comm_rank():

Int myrank;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

The total number of processes is returned by MPI_Comm_size():

int nprocs;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

A.5 Sending Messages
A message is an array of elements of a given data type. MPI supports all
the basic data types and allows a more elaborate application to construct
new data types at runtime. A message is sent to a specific process and is
marked by a tag (integer value) specified by the user. Tags are used to dis-
tinguish between different message types a process might send/receive.
In the sample code above, the tag is used to distinguish between work
and termination messages.

MPI_Send(buffer, count, datatype, destination, tag, MPI_COMM_WORLD);

© Bright Computing, Inc.

A.6 Receiving Messages 79

A.6 Receiving Messages
A receiving process specifies the tag and the rank of the sending process.
MPI_ANY_TAG and MPI_ANY_SOURCE may be used optionally to receive
a message of any tag and from any sending process.

MPI_Recv(buffer, maxcount, datatype, source, tag, MPI_COMM_WORLD, &status);

Information about the received message is returned in a status vari-
able. The received message tag is status.MPI_TAG and the rank of the
sending process is status.MPI_SOURCE. Another function, not used in
the sample code, returns the number of data type elements received. It
is used when the number of elements received might be smaller than
maxcount.

MPI_Get_count(&status, datatype, &nelements);

A.7 Blocking, Non-Blocking, And Persistent
Messages

MPI_Send and MPI_Receive cause the running program to wait for
non-local communication from a network. Most communication networks
function at least an order of magnitude slower than local computations.
When an MPI process has to wait for non-local communication CPU cy-
cles are lost because the operating system has to block the process, then
has to wait for communication, and then resume the process.

An optimal efficiency is usually best achieved by overlapping com-
munication and computation. Blocking messaging functions only allow
one communication to occur at a time. Non-blocking messaging func-
tions allow the application to initiate multiple communication operations,
enabling the MPI implementation to proceed simultaneously. Persistent
non-blocking messaging functions allow a communication state to per-
sist, so that the MPI implementation does not waste time on initializing
or terminating a communication.

A.7.1 Blocking Messages
In the following example, the communication implementation executes
in a sequential fashion causing each process, MPI_Recv, then MPI_Send,
to block while waiting for its neighbor:

Example

while (looping) {

if (i_have_a_left_neighbor)

MPI_Recv(inbuf, count, dtype, left, tag, comm, &status);

if (i_have_a_right_neighbor)

MPI_Send(outbuf, count, dtype, right, tag, comm);

do_other_work();

}

MPI also has the potential to allow both communications to occur si-
multaneously, as in the following communication implementation exam-
ple:

© Bright Computing, Inc.

80 MPI Examples

A.7.2 Non-Blocking Messages
Example

while (looping) {

count = 0;

if (i_have_a_left_neighbor)

MPI_Irecv(inbuf, count, dtype, left, tag, comm, &req[count++]);

if (i_have_a_right_neighbor)

MPI_Isend(outbuf, count, dtype, right, tag, comm, &req[count++]);

MPI_Waitall(count, req, &statuses);

do_other_work();

}

In the example, MPI_Waitall potentially allows both communica-
tions to occur simultaneously. However, the process as show is blocked
until both communications are complete.

A.7.3 Persistent, Non-Blocking Messages
A more efficient use of the waiting time means to carry out some other
work in the meantime that does not depend on that communication. If
the same buffers and communication parameters are to be used in each
iteration, then a further optimization is to use the MPI persistent mode.
The following code instructs MPI to set up the communications once, and
communicate similar messages every time:

Example

int count = 0;

if (i_have_a_left_neighbor)

MPI_Recv_init(inbuf, count, dtype, left, tag, comm, &req[count++]);

if (i_have_a_right_neighbor)

MPI_Send_init(outbuf, count, dtype, right, tag, comm, &req[count++]);

while (looping) {

MPI_Startall(count, req);

do_some_work();

MPI_Waitall(count, req, &statuses);

do_rest_of_work();

}

In the example, MPI_Send_init and MPI_Recv_init perform a
persistent communication initialization.

© Bright Computing, Inc.

B
Compiler Flag Equivalence

The following table is an overview of some of the compiler flags that are
equivalent or almost equivalent.

© Bright Computing, Inc.

82 Compiler Flag Equivalence

PG
I

Pathscale
C

ray
Intel

G
C

C
Explanation

-
f
a
s
t

-
O
3

default
default

-
O
3

-
f
f
a
s
t
-
m
a
t
h

Produce
high

levelofoptim
ization

-
m
p
=
n
o
n
u
m
a

-
m
p

-
O
o
m
p

(default)
-
o
p
e
n
m
p

-
f
o
p
e
n
m
p

A
ctivate

O
penM

P
directives

and
pragm

as
in

the
code

-
b
y
t
e
s
w
a
p
i
o
-
b
y
t
e
s
w
a
p
i
o

-
h

b
y
t
e
s
w
a
p
i
o

-
c
o
n
v
e
r
t

b
i
g
_
e
n
d
i
a
n

-
f
c
o
n
v
e
r
t
=
s
w
a
p

R
ead

and
w

rite
Fortran

unform
atted

data
files

as
big-endian

-
M
f
i
x
e
d

-
f
i
x
e
d
f
o
r
m

-
f

f
i
x
e
d

-
f
i
x
e
d

-
f
f
i
x
e
d
-
f
o
r
m

Process
Fortran

source
using

fixed
form

specifications.

-
M
f
r
e
e

-
f
r
e
e
f
o
r
m

-
f

f
r
e
e

-
f
r
e
e

-
f
f
r
e
e
-
f
o
r
m

Process
Fortran

source
using

free
form

specifications.

-
V

-
d
u
m
p
v
e
r
s
i
o
n
-
V

-
-
v
e
r
s
i
o
n

-
-
v
e
r
s
i
o
n

D
um

p
version.

N
/A

-
z
e
r
o
u
v

-
h

z
e
r
o

N
/A

-
f
i
n
i
t
-
l
o
c
a
l
-
z
e
r
o

Z
ero

fillalluninitialized
variables.

-
e

m
C

reates
.
m
o
d

files
to

hold
Fortran90

m
od-

ule
inform

ation
for

future
com

piles.

-
j

<dir_nam
e>

Specifies
the

directory
<dir_nam

e>
to

w
hich

.
m
o
d

files
are

w
ritten

w
hen

the
-
e

m
option

is
specified

© Bright Computing, Inc.

	Table of Contents
	1 Introduction
	1.1 What Is A Beowulf Cluster?
	1.1.1 Background And History
	1.1.2 Brief Hardware And Software Description

	1.2 Brief Network Description

	2 Cluster Usage
	2.1 Login To The Cluster Environment
	2.2 Setting Up The User Environment
	2.3 Environment Modules
	2.3.1 Available commands
	2.3.2 Changing The Current Environment
	2.3.3 Changing The Default Environment

	2.4 Compiling Applications
	2.4.1 Open MPI And Mixing Compilers

	3 Using MPI
	3.1 Interconnects
	3.1.1 Gigabit Ethernet
	3.1.2 InfiniBand

	3.2 Selecting An MPI implementation
	3.3 Example MPI Run
	3.3.1 Compiling And Preparing The Application
	3.3.2 Creating A Machine File
	3.3.3 Running The Application
	3.3.4 Hybridization
	3.3.5 Support Thread Levels
	3.3.6 Further Recommendations

	4 Workload Management
	4.1 What Is A Workload Manager?
	4.2 Why Use A Workload Manager?
	4.3 How Does A Workload Manager Function?
	4.4 Job Submission Process
	4.5 What Do Job Scripts Look Like?
	4.6 Running Jobs On A Workload Manager
	4.7 Running Jobs In Cluster Extension Cloud Nodes Using cmsub

	5 Slurm
	5.1 Loading Slurm Modules And Compiling The Executable
	5.2 Running The Executable With salloc
	5.2.1 Node Allocation Examples

	5.3 Running The Executable As A Slurm Job Script
	5.3.1 Slurm Job Script Structure
	5.3.2 Slurm Job Script Options
	5.3.3 Slurm Environment Variables
	5.3.4 Submitting The Slurm Job Script
	5.3.5 Checking And Changing Queued Job Status

	6 SGE
	6.1 Writing A Job Script
	6.1.1 Directives
	6.1.2 SGE Environment Variables
	6.1.3 Job Script Options
	6.1.4 The Executable Line
	6.1.5 Job Script Examples

	6.2 Submitting A Job
	6.2.1 Submitting To A Specific Queue

	6.3 Monitoring A Job
	6.4 Deleting A Job

	7 PBS Variants: Torque And PBS Pro
	7.1 Components Of A Job Script
	7.1.1 Sample Script Structure
	7.1.2 Directives
	7.1.3 The Executable Line
	7.1.4 Example Batch Submission Scripts
	7.1.5 Links To Other Resources About Job Scripts In Torque And PBS Pro

	7.2 Submitting A Job
	7.2.1 Preliminaries: Loading The Modules Environment
	7.2.2 Using qsub
	7.2.3 Job Output
	7.2.4 Monitoring A Job
	7.2.5 Deleting A Job
	7.2.6 Monitoring Nodes In Torque And PBS Pro

	8 Using GPUs
	8.1 Packages
	8.2 Using CUDA
	8.3 Using OpenCL
	8.4 Compiling Code
	8.5 Available Tools
	8.5.1 CUDA gdb
	8.5.2 nvidia-smi
	8.5.3 CUDA Utility Library
	8.5.4 CUDA ``Hello world'' Example
	8.5.5 OpenACC

	9 Using MICs
	9.1 Compiling Code In Native Mode
	9.1.1 Using The GNU Compiler
	9.1.2 Using Intel Compilers

	9.2 Compiling Code In Offload Mode
	9.3 Using MIC With Workload Managers
	9.3.1 Using MIC Cards With Slurm
	9.3.2 Using MIC Cards With PBS Pro
	9.3.3 Using MIC Cards With TORQUE
	9.3.4 Using MIC Cards With SGE
	9.3.5 Using MIC Cards With openlava

	10 User Portal
	10.1 Home Page
	10.2 The WORKLOAD Tab
	10.3 The NODES Tab
	10.4 The GRAPHS Tab

	A MPI Examples
	A.1 ``Hello world''
	A.2 MPI Skeleton
	A.3 MPI Initialization And Finalization
	A.4 What Is The Current Process? How Many Processes Are There?
	A.5 Sending Messages
	A.6 Receiving Messages
	A.7 Blocking, Non-Blocking, And Persistent Messages
	A.7.1 Blocking Messages
	A.7.2 Non-Blocking Messages
	A.7.3 Persistent, Non-Blocking Messages

	B Compiler Flag Equivalence

