
VMS (VAX/AXP)

Modbus Plus

Interface Library

Programmer's Manual

Release: 1.9

8/19/99

Copyright © 1994, 1996, 1997 Integrated Process Automation and Control Technologies Incorporated

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form without written permission by IPACT Inc.

Technical Writer:
Earl D. Lakia
Senior Staff Engineer
IPACT Inc.

The following are trademarks of Digital Equipment: AXP, VMS, DEC, VAX. The following are trademarks
of Modicon: Modbus Plus, SA85, and SQ85. The IPACT is a trademark of Integrated Process Automation
and Control Technologies Incorporated.

file: k:ipcmv3::\ipccommon\mbplus\user_doc\library.doc

Table of Contents

CHAPTER 1 MODBUS PLUS VMS INTERFACE LIBRARY 1

1.1 Introduction 2

1.2 Interface Library 2

1.3 Shareable Image Entry Points 2
1.3.1 Installation 4
1.3.2 Compile Requirements 4
1.3.3 Linking Requirements 5
1.3.4 Example Programs 5

1.3.4.1 Process Privileges 5
1.3.4.2 Process Quotas 6

1.4 Modbus Network 6

1.5 PLC Registers and Coil Numbering 6

1.6 PLC MSTR Blocks 7
1.6.1 PLC MSTR Example 7

1.7 Paths 8

1.8 Master Paths 8

1.9 Slave Paths 9

1.10 Non PLC Modbus Nodes 11

1.11 VAX and PLC Data Byte Order 11

1.12 Application Status Returns 12

1.13 Contention and Synchronization Issues 12

1.14 Process Expanded Region 12

CHAPTER 2 MBP APPLICATION LIBRARY CALLS 13

2.1 MBP_CLOSE_NET 14

2.2 MBP_FORCE_SINGLE_COIL 15

2.3 MBP_GET_DRIVER_STATISTICS 18

2.4 MBP_GET_NETWORK_STATISTICS 19

2.5 MBP_GET_SLAVE_ID 21

2.6 MBP_HOST_WRITEABLE_REGION_V 24

2.7 MBP_OPEN_NET 26

Table of Contents

2.8 MBP_OPEN_PROGMASTER 29

2.9 MBP_PRESET_SINGLE_REGISTER 31

2.10 MBP_READ_EXTENDED 34

2.11 MBP_READ_GLOBAL_DATA 37

2.12 MBP_READ_REGISTERS 39

2.13 MBP_READ_UNSOLICITED 42

2.14 MBP_REGISTER_UNSOLICITED 45

2.15 MBP_REGISTER_UNSOLICITED_V 49

2.16 MBP_RESUME_UNSOLICITED 52

2.17 MBP_SUSPEND_UNSOLICITED 54

2.18 MBP_WRITE_EXTENDED 56

2.19 MBP_WRITE_GLOBAL_DATA 59

2.20 MBP_WRITE_REGISTERS 61

CHAPTER 3 UTILITIES 64

3.1 Introduction 65

3.2 Network Diagnostic Utility 65

3.3 Monitor Modbus Plus Process 65

APPENDIX A HEADER FILES 67

A.1 MBPPEX Structure 68

APPENDIX B MBP ERROR CODES 69

B.1 MBP Error Codes 70

B.2 Routing Errors 74

APPENDIX C SAMPLE PLC MSTR 75

C.1 MSTR Example 76

APPENDIX D EXAMPLE VMSINSTALL 81

D.1 VMSINSTALL Example 82

Chapter 1
MODBUS Plus VMS Interface Library

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

2

1.1 Introduction

This document describes the Modbus Plus interface library, and its distribution with the Modbus Plus
Device Driver for VAXVMS for the SQ85 (licensed by Modicon) or the Modbus Plus Device Drdiver for
AXPVMS for the SA85 (licensed by IPACT). This document also provides some integration help in using
this software along with some actual PLC rungs that provide examples of communication logic. The third
chapter documents some utilities that were gathered from the driver distribution and written as tools for this
software. These tools will help you diagnose system faults and verify system operations.

1.2 Interface Library

The Modbus Plus VMS interface library provides a set of callable routines that reduces the effort required to
communicate with devices on the Modbus Plus network. This software is implemented as a shared vectored
library that is linked into each application that desires to communicate with the devices on the network.
Because it is vectored, upgrades to the interface library will not require the relinking or recompiling of
application programs.

This software assumes the presence of the Modbus Plus device driver and the SQ85 or SA85 Modbus Plus
gateway hardware. The user should also reference the Modicon document: "Modicon DEC Host Based
Devices User's Guide", publication number: "GM-HBDS-002 Rev. B" as an additional source of information.

1.3 Shareable Image Entry Points

The MBP interface calls and error status messages are all prefixed with "MBP_". The MBP_SHARE
sharable image contains the following entry points:

MBP_CLOSE_NET- Close all channels and deallocate all paths to the Modbus Plus Network.

MBP_FORCE_SINGLE_COIL- Force a single coil within a PLC on the Modbus Plus Network.

MBP_GET_DRIVER_STATISTICS- Return current driver statistics.

MBP_GET_NETWORK_STATISTICS- Return current statistics from a network controller on the
Modbus Plus Network.

MBP_HOST_WRITEABLE_REGION_V- Provides writeable region for each path on a Host SQ85
adapter writeable by a remote master.

MBP_OPEN_NET- Open channels and create paths for the process to access Modbus Plus Network.

MBP_PRESET_SINGLE_REGISTER- Set a single holding register within a PLC on the Modbus
Plus Network.

MBP_READ_GLOBAL_DATA- Read the global data from the Host's Modbus Plus controller.

MBP_READ_REGISTERS- Read registers or coils from a PLC on the Modbus Plus Network.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

3

MBP_READ_UNSOLICITED- Dequeue a message from the unsolicited mailbox.

MBP_REGISTER_UNSOLICITED- Register for unsolicited slave messages from PLCs or other
VAXs on the Modbus Plus Network. Allocate a mailbox and initiate the actual posting and
functioning of the slave data path reads and responses.

MBP_REGISTER_UNSOLICITED_V- Register for unsolicited slave messages from PLCs or other
VAXs on the Modbus Plus Network. Allocate a mailbox for each path of the SQ85 and initiate the
actual posting and functioning of the slave data path reads and responses.

MBP_WRITE_GLOBAL_DATA- Write to the host controller's global data.

MBP_WRITE_REGISTERS- Write a group of registers or coils in a PLC on the Modbus Plus
Network.

MBP_READ_EXTENDED- Read registers from extended memory files in PLC.

MBP_SUSPEND_UNSOLICITED- Suspend a process from receiving any further modbus slave
messages for a particular path on a SQ85 host adapter.

MBP_RESUME_UNSOLICITED- Resume a process to receive further modbus slave messages for
a particular path on a SQ85 host adapter.

MBP_WRITE_EXTENDED- Write registers to extended memory files in PLC.

Each of the above mentioned calls are documented in Chapter Two. Certain calls may be called to wait for
the communication to complete by specifying a valid event flag and using the “W” call (e.g.
MBP_WRITE_REGISTERSW). Most calls allow only a single function on a path to be active at a time.
This is due to the design of the Modbus Plus network protocol.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

4

1.3.1 Installation

This software is implemented as a shared executable library (a linkable object library is also supplied but
usage should be discouraged). This method provides the ability to install new releases of the software
without requiring the applications that use them to be recompiled or relinked. This software and the VMS
device driver for the SQ85 or SA85 network controller is installed via VMSINSTAL. A sample
VMSINSTAL session is included in the appendix. After installation, the logical "MBPLUS_" points to the
directory of the installed software. The command file "MBP_STARTUP.COM" should be chained to by the
system or application startup command procedures. MBP_STARTUP will define the logical names and
install the shared library. The VMSINSTAL kit uses the current version and revision numbers to create a
unique software distribution directory (e.g. SYS$COMMON:[MBP017]). The software is placed in the root
of SYS$COMMON or SYS$SYSDEVICE.

1.3.2 Compile Requirements

The following text libraries are available in the kit directory. These libraries contain the Modbus Plus I/O
codes, and structures required for accessing the Modbus Plus application library. These libraries are:

MBPLUS_:MBP_C.TLB- C header definitions
MBPLUS_:MBP_FOR.TLB- FORTRAN structure definitions

The following are contained in these libraries:

• MBPPEX- The process expanded region created by the MBP_OPEN_NET service.

• MBPSHARE_MSG- Definition of all error codes returned by the Interface Communications library.

• MP_FUNCS- Definition of the VMS I/O function codes for the Modbus Device Driver

• MBP_DEF- DEC C Function prototypes for all of the MBP_ functions (available only on OPEN
VMS/AXP)

• MPDRIVER_MSG- Definition of all error codes returned by the MPDRIVER for OPEN VMS/AXP for
theSA85 device.

For “C” programmers, the user should compile and link with the following command (assuming source
module is: “test.c”):

$CC test+mbplus_:mbp_c.tlb/library

For FORTRAN programmers the user may specify the location of the text library in the include statement
within the source module.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

5

1.3.3 Linking Requirements

 The user has a choice of linking to either a shared library or an object library. To link to the object library
the linker commands are:

$LINK/EXE=test.exe SYS$INPUT/OPTIONS
test
mbplus_:mbp.olb/include=(mbpshare_msg,mpdriver_msg)
mbplus_:mbp.olb/lib
sys$library:vaxcrtl/lib

To link to the shared library, the following linker commmands should be used:

$LINK/EXE=test.exe SYS$INPUT/OPTIONS
test
mbplus_:mbp_share/share
mbplus_:mbp.olb/include=(mbpshare_msg,mpdriver_msg)
mbplus_:mbp.olb/lib
sys$library:vaxcrtl/lib

The logical "MBPLUS_" is initialized by the command file created by VMSINSTAL kit
(MBP_STARTUP.COM).

The object library method is provided to allow the programmer to link to an object library or a debug object
library. The debug library allows the programmer to isolate faults that might be occurring within the shared
library, and assist in reporting bugs to the developers. These two libraries are: MBP.OLB and
MBP_DBG.OLB.

1.3.4 Example Programs

The subdirectory "MBPLUS_:[.Examples]" contains example programs that may be used to test the network
or as a basis to code user applications. A command file, “MENU.COM” provides easy test of these routines.
The user is cautioned that these example programs will write to the target Modbus Plus node causing
undesirable results if the target node is controlling a process.

1.3.4.1 Process Privileges

Users of the Modbus Plus device driver must have the following privileges:

SYSNAME- To allocate a permanent mailbox for data messages from the PLCs.
PHY_IO- Physical I/O privilege to access the Modbus Plus device driver.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

6

1.3.4.2 Process Quotas

This software does not require any abnormal quotas to function. However, the following are provided for
fault analysis, and determining if normal quotas are not present.

AST Quota- For each possible I/O an AST entry is required. An I/O is present for each slave and
master path that the caller allocates.

PGFLQUOTA- Page file quota. The process expanded region is allocated from the system page file.
This is typically three pages plus one page for each path that is allocated.

WSQUOTA- See PGFLQUOTA

1.4 Modbus Network

This software differs in the handling of the Modbus Plus Network addressing as compared to the MODCOM
III software library (this MODCOM III library is a predecessor of this software, and the calls available in
the MODCOM III library have been replaced by these services).

This software assumes that the user maintains his own mechanism of cross referencing a particular PLC and
the route path to a particular PLC. The route array is a five byte array that specifies the navigation to the
target PLC. The last non zero byte in the array must be the Modbus Plus node address. For further
explanation of the route array, consult the Modicon DEC Host Based Devices User's Guide.

Possible methods of maintaining the routing database are program data statements, include definition files,
macro source code, or RMS keyed files.

1.5 PLC Registers and Coil Numbering

All of the calls provided by the Modbus Application Library use the same numbering system as the actual
PLC itself. The user need not bias or normalize any of the registers or coil number before passing the register
address to the subroutine. This allows the PLC programmer and the VAX programmer the ability to converse
using identical register and coil numbers. The software examines the address, such as 40001, and knows that
this is the first holding register, or 00001 is the first coil status.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

7

1.6 PLC MSTR Blocks

The PLC MSTR requires a routing path, and a Modbus Plus function code (along with other parameters).
The routing path specifies the target slave node that can be another PLC or the VAX. If the target is a VAX,
then the PLC must also specify in the next route register the host data slave path the message is to be sent to.

The preferred method for mapping the slave data paths and VAX Host node addresses is to have the VAX
hosts specify these parameters to the PLC in its holding registers or global data area. By using this
methodology, the PLC does not need to maintain this part of the link management. This has the following
benefits:

o The programmers of the PLC need not worry about communicating changes to the programmers of
the VAX unless agreed upon locations of the link management registers are changed.

o The ability to develop redundant VAX hosts without changing logic in the PLC.

o The ability for the VAX programmer to partition and even distribute functionality to multiple
programs running on either the same or different VAXs.

1.6.1 PLC MSTR Example

Assuming that there are eight PLCs (Modbus Plus addresses 1 to 8) and two VAXs (Modbus Plus addresses
20 and 21). Each of the PLCs has two MSTR blocks. The first MSTR block is responsible for sending a
transaction containing completed counts and statistics about a product just made to the "Production
Management" VAX. The second MSTR block is responsible for uploading significant event and current
process history to a process "Process History" VAX. In the event that either of the VAX are unavailable, the
other VAX assumes the functions of the failed VAX. In each PLC, the following holding registers are
defined:

1. MSTR block one route byte 1 (node)

2. MSTR block one route byte 2 (data path)

3. MSTR block two route byte 1 (node)

4. MSTR block two route byte 2 (data path)

In normal operation the Production Management VAX writes its Modbus Plus address in the 40001 holding
register for all of the PLCs. The Production Management VAX allocates five paths and writes the returned
path numbers from the MBP_OPEN_NET call (See: MBPPEX structure) in the 40002 holding registers of
the eight PLCs (assigning two PLCs per data path).

In a similar fashion, the Process History VAX would write its node address into the 40003 of the PLCs and
the allocated data paths into the 40004 holding registers. In the event of a failure of one of the VAXs, the
failed application would begin execution on the other VAX (we assume a clustered or shared type of VAX

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

8

environment). In this case, the appropriate holding registers would be loaded to direct all of the MSTR
blocks to the correct VAX.

During the time between when a VAX failed and the application was restarted on the BACKUP VAX, the
MSTR blocks would terminate unsuccessfully. User written logic might choose to zero the VAX node and
data path bytes and not execute the MSTR block until both are non-zero again. The zeroing of the node and
data path in the MSTR route holding registers may be triggered by five or ten consecutive errors from the
MSTR block. The MSTR would be reenabled when the backup VAX wrote the new node and path to the
holding registers.

A sample PLC program is shown in the appendix.

1.7 Paths

Communication that actually requires datagrams over the Modbus Plus network require a path. Depending on
the type of node, the number of paths differ. A path can be considered like an end to end socket that two
Modbus Plus nodes may communicate through. For most Modbus Plus nodes, the paths are simply a
managed resource and the first path available on a node is used when needed. For the VMS environment,
slave data paths are addressed uniquely, and their path number must be specified by the master Modbus Node
as the last route parameter. Master paths in the VMS environment are allocated and managed by the device
driver.

The paths allocated by the MBP_OPEN_NET are allocated from a free pool (of which there are eight)
maintained by the driver (see IO$_ALLOC function in the Modicon “DEC Host Based Devices User's
Guide”). The actual allocated master and slave paths are stored in the process expanded region and returned
to the caller by the MBP_OPEN_NET call. Because the driver allocates the paths, the paths may not be
allocated sequentially!

All the routines documented in this manual that specify a path reference the path index. Typically, the path
index will be equal to the actual path in a single program access system, but not always. This has little effect
except for slave paths since the route array specifies the target PLC and there is no advantage to selecting a
particular master path over another.

1.8 Master Paths

Each SQ85 or SA85 supports up to eight master paths. The MBP_OPEN_NET allocates available master
paths in sequential order. A master path is used when the VAX is the master and the PLC or other remote
Modbus Plus node is the slave. Most functioning by the VAX uses the Master paths.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

9

1.9 Slave Paths

Each SQ85 or SA85 supports up to eight slave paths. The MBP_OPEN_NET allocates available slave paths
in sequential order. A slave path is used when the VAX is the slave and the PLC or another Modbus Plus
node is the master. The PLC uses the MSTR instruction to read or write to or from the VAX. The PLC
writes are directed to one of the following (only one of the following methods is supported at the same time
by the same VMS process):

1. A single VAX mailbox for all paths with optional readonly slave region
(MBP_REGISTER_UNSOLICITED)

2. A VAX mailbox by path (MBP_REGISTER_UNSOLICITED_V)

3. An array or region by path for read or write access
(MBP_MBP_HOST_WRITEABLE_REGION_V)

Each of these three options are shown in the following diagrams.

VMS
PROCESS

MP Driver

Readable
Host
Holding
Registers

MBX_NAME

MBP_REGISTER__UNSOLICITED

Modbus Plus
Master Node

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

10

VMS
PROCESSMP Driver

Path 1

MBP_REGISTER__UNSOLICITED_V

Path 2

Path n

Number slave paths
connected for

Modbus Plus
Master Node

VMS
PROCESS

MP Driver

Path 1
Host
Holding
Registers

Paths 2 & 3
Host
Holding
Register

MBP_HOST_WRITEABLE_REGION_V

Modbus Plus
Master Node

The PLC specifies which slave path is to be used in the second route parameter of the MSTR instruction. If
the mailbox option is used and the mailbox becomes full, then the PLC is returned an error.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

11

If the PLC wishes, it may read from any of the paths from a single region if it is defined. In this case the
VAX emulates holding registers similar to a PLC with the first location addressed as register is 40001. This
option is only supported with the MBP_REGISTER_UNSOLICITED routine call.

Since the PLC (Programmable Logic Controller) MSTR instruction specifies the actual path as part of its
routing information, the VMS host must either tell the PLC which path is to receive the message (using
technique described earlier) or the VMS host must allocate known slave paths such that the PLC can be
programmed to write to known slave data paths in the VMS host. Defined slave paths are done by specifying
an optional slave path vector array, CTRL_PATHS, in the MBP_OPEN_NET call.

1.10 Non PLC Modbus Nodes

It is possible to have Modbus Nodes which are not programmable Controllers. Typical non-Modbus nodes
are either other VMS hosts, or operator displays. A typical application is where the VMS host provides
supervisory information such as order information, customer names, product descriptions, and other data not
needed for the actual operation or control of the operations. IPACT has used this feature with both
UNICEL© marketed by Modicon, Factory Link© by USData, and InTouch© by Wonderware. Operator
screens can be made that display information seamlessly without regard to the source of the information.

1.11 VAX and PLC Data Byte Order

The Modicon PLCs and the VAX store data bytes in different order. For data read or written to registers in
the PLC, this software will automatically swap the data for the register data. For example, if a holding
register in the PLC contained a simple counter and it currently read "2011" (hex), the same sixteen bit data
word read by the VAX would have been "1120" (hex) if this software did not swap the data. This byte
swapping is only performed on register data (MBP_READ_REGISTERS, MBP_WRITE_REGISTERS,
MBP_WRITE_EXTENDED, MBP_READ_EXTENDED).

The unsolicited data from the PLC is placed into the mailbox as it is received from the PLC on the Modbus
Plus Network. This software is unable to determine if the data should be byte swapped when it is received
from the PLC. Therefore, the responsibility for this determination must be resolved by the programmer of the
PLC and the VAX programmer.

MODBUS Plus VMS INTERFACE LIBRARY
OVERVIEW

12

1.12 Application Status Returns

All of the calls to the Application Library return status to the caller as the value of the function call similar to
normal VMS standards. If the a status block is returned, it's format is as follows:

3 1
1 5 0
+ -------------------------------+
| MBP_ Error Code | 0
+ -------------------------------+
| Error Specific | Transfer size | 4
| | in bytes |
+ -------------------------------+

The following definition is contained in the MBP_C and MBP_FOR text libraries as: MBP_STATUS.

1.13 Contention and Synchronization Issues

This software assumes that the caller maintains all control and access to the PLC registers. If there are
multiple writers, then these writers must develop locking techniques that will prevent one writer from
overwriting another's output. This should be considered if the MBP_WRITE_REGISTERS calls are used by
more than one process on one or more nodes.

If host holding register are to be used, the synchronization of the reads and writes to the host holding registers
are the responsibility of the user. VMS locking and synchronization techniques can be used for this purpose.
The process that allocates the slave paths provides all access for remote Modbus Plus master nodes via AST
routines within the Modbus Plus Interface Library. Controlling the AST recognition of this process will
control access to the host holding registers by the Modbus Plus master nodes.

Note: See VMS documentation on process AST states, lock manager, event flags, and other methods of
process synchronization. To disable AST recognition, see the SYS$SETAST VMS system service.
Additionally, a process can have only one AST active which in itself can be used for synchronization (If
changes to the region only occur at AST level, a consistent view of the region can be provided for remote
Modbus Plus nodes).

1.14 Process Expanded Region

Each process that uses the Modbus Plus Application Interface library has a group global section created when
the MBP_OPEN_NET is called. This region is used by the Modbus Plus Process Monitor utility (see utilities
chapter). It also provides the ability for another process to enable or disable the reception of slave messages
from a PLC master (see: MBP_RESUME_UNSOLICITED and MBP_SUSPEND_UNSOLICITED).

Chapter 2
MBP Application Library Calls

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

14

2.1 MBP_CLOSE_NET

Disconnect Modbus Plus Network.

FORMAT MBP_CLOSE_NET (MBPPEX)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: read/write
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

DESCRIPTION This subroutine will deassign the channels and deallocate the paths that were used for
communicating with the Modbus Plus Network by the calling process. The process
expanded P0 space that was allocated is deleted along with the group global section.
This routine does not need to be called if the process is exiting, as the normal VMS
I/O rundown will release all paths and channels that were allocated by the process.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED

SYSTEM SERVICE

MBPPEX structure is invalid

Errors from (SYS$DEASSIGN, SYS$QIO,
SYS$DELTVA)

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

15

2.2 MBP_FORCE_SINGLE_COIL

Force a single output coil.

FORMAT MBP_FORCE_SINGLE_COIL (MBPPEX,PATH,ROUTE,COIL_NUMBER,
STATE,STATUS,EFN[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below). The final status on a normal successful call is
the status returned from the SYS$QIO call to the Modbus Device driver.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. Must be between one and the number allocated
by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses.

COIL_NUMBER
type: word
access: readonly
mechanism: by value

The coil number to force in the addressed PLC.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

16

STATE
type: word
access: readonly
mechanism: by value

New state of the coil (0 or 1).

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference
Final completion status as returned by the Modbus Plus device driver. See QIO
condition codes in Modicon DEC Host Based Devices User’s Manual.

EFN
type: long word
access: read
mechanism: by value

Event flag to set when I/O is complete.

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds.
Must be greater than two. The

DESCRIPTION This subroutine sets a single output register using the specified path. The event flag
is used for I/O synchronization and if none is specified, event flag zero is used. The
event flag will be set when all of the registers requested to be read have been read.
To satisfy the request, this routine may do more than a single Modbus transfer. This
routine uses ASTs to process all I/O completions, and therefore must have adequate
AST quota.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

17

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED

MBP_IONOTCOMP

MBPPEX structure not initialized

I/O not complete on channel

MBP_NOCHANNEL No channel open on path

MBP_PATHINUSE Path in use

MBP_INVALIDEFN Invalid event flag specified

MBP_BADSTARTADDR Invalid starting address

MBP_BADPATH Path specified not allocated or out of range

SYSTEM SERVICE From SYS$QIO call.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

18

2.3 MBP_GET_DRIVER_STATISTICS

Return the driver statistics.

FORMAT MBP_GET_DRIVER_STATISTICS(MBPPEX,BUFFER)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MEPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

BUFFER
type: 316 Byte Array
access: Write
mechanism: By reference

Buffer to receive the driver status and statistics. See DEC Host Based Devices User's
Guide for a description of the returned record.

DESCRIPTION This subroutine requests the local device driver to return the driver statistics to the
user supplied buffer. The layout of the 316 byte buffer is described in the Modicon
DEC Host Based Devices User's Guide (see IO$_GET_SS Get Driver Status and
Statistics). This routine completes synchronously. This call is done to the first
channel that was allocated by the MBP_OPEN_NET service. This function does not
require a path. It always uses the first master path allocated.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid.

MBP_NOCHANNEL No channel open on path

SYSTEM SERVICE VMS System Service Errors

Modbus Errors See Modicon DEC Host Based Devices User’s Guide
and the appendix

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

19

2.4 MBP_GET_NETWORK_STATISTICS

Get Modbus Plus counters and statistics.

FORMAT MBP_GET_NETWORK_STATISTICS
(MBPPEX,PATH,ROUTE,BUFFER,CLEAR,STATUS,EFN)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. Must be between one and the number allocated
by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses. This subroutine does not validate the route
array.

BUFFER
type: 110 byte array
access: write
mechanism: by reference

Buffer to receive the Modbus Plus status and statistics from the SQ85.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

20

CLEAR
type: word
access: readonly
mechanism: by value

If true (1) read and clear the statistics, else only read.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status.

EFN
type: long word
mechanism: by value

Event flag for I/O synchronization.

DESCRIPTION This routine asks the SQ85 to return its Modbus Plus counters and statistics. By
setting the "Clear" flag to true, the counters are optionally cleared. This entry
executes synchronously.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED

MBP_BADPATH

MBPPEX structure not initialized

Path specified not allocated or out of range

MBP_PATHINUSE Path is in use

MBP_NOCHANNEL No channel open on path

MBP_ INVALIDEFN No channel open on path Invalid event flag specified

MPB_IONOTCOMP I/O not complete on channel

SYSTEM SERVICE VMS System Service Errors from QIO call.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

21

2.5 MBP_GET_SLAVE_ID

Modbus Plus node to return its id.

FORMAT MBP_GET_SLAVE_ID (MBPPEX,PATH,ROUTE,BUFFER,EFN)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. Must be between one and the number allocated
by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
slave PLC. The content of this array requires knowledge of the connected Modbus
Plus network devices and their addresses. This subroutine does not validate the route
array.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

22

BUFFER
type: 9 byte array
access: write
mechanism: by reference

Buffer to receive the Modbus Plus nodes slave id and status. The format of the nine
byte buffer is:

BYTE SLAVE_ID
BYTE LED
BYTE PAGE0
BYTE PAGEF
BYTE SEGMENTS
WORD CONTROLLER STATUS
WORD STOP CODE

DESCRIPTION This routine asks a particular Modbus Plus node to return its id. The user buffer
should 9 bytes long. For more information, see the Modbus Plus Device Drivers
Manual under function code 11. This call is synchronous.

The format of the controller status word is:

1 111 110 000 000 000
5 432 109 876 543 210
+ +++ +|| ||| ||+ ++|

| || ||| || | +- Memory downsized (0=no, 1= yes)
| || ||| || +--- Unassigned
| || ||| |+------ Battery Status (0=ok, 1= not ok)
| || ||| +------- Memory Protect (0= on, 1= off)
| || ||+--------- Run indicator (0= on, 1= off)
| || |+---------- Power on (1= on, 0= off)
| || +----------- Processor size (1= 16 bit node, 0= 24 bit node)
| |+------------- Single sweep status (0= off, 1=on)
| +-------------- Constant sweep status (0= off, 1= on)
+------------------ Unassigned

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

23

The format of the stop code word is:

1 111 110 000 000 000
5 432 109 876 543 210
| ||| ||| ||| ||| ||+-- Illegal configuration
| ||| ||| ||| ||| |+--- Coil disabled while in RUN mode
| ||| ||| ||| ||| +---- Logic checksum error
| ||| ||| ||| ||+------ Invalid node type
| ||| ||| ||| |+------- S908 remote I/O head failure
| ||| ||| ||| +-------- CPU diagnostic failed
| ||| ||| ||+---------- Real Time Clock error
| ||| ||| |+----------- Watch Dog Timer expired
| ||| ||| +------------ No end of logic detected,
| ||| || or bad quantity of segments
| ||| ||+-------------- Stare ram test failed
| ||| |+--------------- Start of Node did not start segment
| ||| +---------------- Bad segment scheduler table
| ||+------------------ Illegal peripheral intervention
| |+------------------- Dim Awareness
| +-------------------- Extended memory parity failure or
| Bad I/O Traffic Cop
+---------------------- Peripheral Port Stop

EFN
type: long word
mechanism:by value

Event flag for I/O synchronization.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid.

MBP_BADPATH The specified path is less than or greater than the number of
master paths allocated by the MBP_OPEN_NET call.

MBP_PATHINUSE A request to do a second read or write to the master path,
but the path is already active with a previous I/O request.

MBP_NOCHANNEL There is not channel or path for the passed path argument.
The MBP_OPEN_NET most likely failed to allocate all of
the desired paths. Check status of the MBP_OPEN_NET
call.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

24

2.6 MBP_HOST_WRITEABLE_REGION_V

Define VMS regions for Master writes by Programmable Controllers by path (VMS slave
paths)

FORMAT MBP_HOST_WRITEABLE_REGION_V (MBPPEX,REGION_ARRAY)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: write
mechanism: by reference

The structure to receive starting and ending address of the process specific data area
used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

REGION ARRAY
type: array of Quad word descriptors
access: readonly
mechanism: by reference

This structure should be dimensioned by eight (number of modbus slave paths). An
entry should be filled in for each slave path allocated in the MBP_OPEN_NET call.
Each quad word entry contains a standard VAX/VMS descriptor (only length and
address are used).

DESCRIPTION This subroutine allows the caller to set up a region to receive slave messages from
devices on the Modbus Plus network. Each path can be assigned to a unique region.
The caller must have already allocated slave paths via the MPB_OPEN_NET call.
The user passes a descriptor (see VMS documenatation for this datatype) for each
slave path the caller wants to be mapped to a region.

The regions may be identical. The service probes to ensure that the reason is
accessible for write in the access mode of the caller. The passed addresses for the
regions may the either process private, group global, or system global regions.
Additionally, they may all map the same address space if desired. No locking is
provided to protect the region from master writes or reads by the remote Modbus
Plus nodes.

The service determines the length of the region from the descriptor and uses this to
determine if a master read or write request from the remote Modbus Plus node is
valid. A Modbus Plus execption is sent to the remote Modbus Plus Master node if
the requested holding register is out of range. All regions are mapped as if the first
register was 40001. Only the read and write of holding registers is supported.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

25

The caller must determine if the slave paths allocated by the current process are to be
written to a global region or it the data should be sent to a mailbox. A process can
only support one method for responding to the Master Writes. If both functionality is
desired, a second process must be present to service the other method. See the
MBP_REGISTER_UNSOLICITED call as well.

The byte order and synchronization of data within the Host Holding Register regions
are the responsibility of the user. The VMS process that calls
MBP_HOST_WRITEABLE_REGION supports the actual data transfer between the
Modbus Plus device driver at AST level. Therefore, disabling the AST recognition
of this VMS process while the region is being modified will guarantee atomic and
consistent data for Modbus Plus Master nodes reading data from the Host’s holding
registers. The method used must ensure that the process will be able to respond to
the Master Modbus Plus node prior to the Master node timing out because no slave
data response from the VMS host was received.

CONDITION
VALUES
RETURNED

MBP_NOSLAVE

MBP_MBXFAIL

No slave paths were allocated

Unable to create mailbox (see secondary status, will contain
the VMS system service code)

MBP_SLVASSIGNED Slave path already assigned for unsolicited messages

MBP_INVALIDARG Invalid argument

MBP_SLVBUSY Attempt to allocate second read on same slave path

MBP_SLVREADFAIL Slave read failure

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

26

2.7 MBP_OPEN_NET

Enable Modbus Communications.

FORMAT MBP_OPEN_NET(MBPPEX,DEVICE,MASTER_PATHS,
SLAVE_PATHS[,CTRL_PATHS])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: write
mechanism: by reference

The structure to receive the starting and ending address of the process specific data
area used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

DEVICE
type: character
access: read only
mechanism: by descriptor

This specifies the name of the Modbus Plus interface (MPA1:, MPB1:, MPC1:, or
MPD1:).

MASTER_PATHS
type: word
access: read only
mechanism: by value

This specifies the number of master paths the caller desires to allocate for its use.
Depending on the controller, there are a certain number of paths available to be used.
See Modbus Plus documentation for a description of "PATH". If the entire number
of paths specified cannot be allocated, then none are allocated.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

27

SLAVE_PATHS
type: word
access: read only
mechanism: by value

This specifies the number of slave paths to allocate for the caller for the purpose of
receiving unsolicited messages. See "MBP_REGISTER_UNSOLICITED"
subroutine entry.

CTRL_PATHS
type: word array
access: read only
mechanism: by reference

Optional controller slave path numbers for each slave path allocated. If not
specified, the driver will be asked to allocate the next free controller slave path
number. If the slave path is not available (e.g. in use by another application) the
driver will return a path in use error code.

DESCRIPTION This subroutine open channels and allocate paths to be used for communicating with
the Modbus Plus network. This subroutine expands the callers P0 space to allocate
working storage for future calls to the Modbus Plus network. The structure
MBPPEX that is returned to the user must be passed on all subsequent calls to the
other Modbus Plus software interface routines. This is normally the first call by the
user application software.

The structure MBPPEX is defined in the MBP_C.TLB text library. The MBPPEX is
filled with the actual slave paths and master paths that were allocated. The process
expanded region is created as a group global temporary section. This allows other
programs to map the region for analysis purposes while a user program is executing.
The name of the region is the process name prefixed with the device name (e.g.
MPA1_SCANNER Where SCANNER is the process name, and MPA1: is the device
name). A process may connect to more than a single controller if desired using a
unique MBPPEX structure for each controller.

All master paths are allocated by the driver. The slave paths are allocated starting
with one unless the optional parameter: "ctrl_paths" is present indicating the
associated actual SQ85 controler slave paths to allocate for each path.

The master and slave paths allocated may or may not start with master path one. It is
possible that some but not all of the master or slave paths could not be allocated.
Therefore, if this routine fails, the caller should do its normal error recovery and then
exit.

The actual master and slave paths allocated are stored in the process expanded
region, returned in the MBPPEX structure, and may be viewed with Modbus Plus
process monitor utility.

CONDITION
VALUES
RETURNED

MBP_WRNGNMBRPATHS

MBP_MAPFAIL

Wrong number of paths

Unable to create process region

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

28

MBP_ASSIGNFAIL Unable to assign device

MBP_PATHFAIL Unable to allocate a path

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

29

2.8 MBP_OPEN_PROGMASTER

Enable Modbus Communications using Program Master Paths

FORMAT MBP_OPEN_PROGMASTER(MBPPEX,DEVICE,MASTER_PATHS)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: write
mechanism: by reference

The structure to receive the starting and ending address of the process specific data
area used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

DEVICE
type: character
access: read only
mechanism: by descriptor

This specifies the name of the Modbus Plus interface (MPA1:, MPB1:, MPC1:, or
MPD1:).

MASTER_PATHS
type: word
access: read only
mechanism: by value

This specifies the number of progam master paths the caller desires to allocate for its
use. Depending on the controller, there are a certain number of paths available to be
used. See Modbus Plus documentation for a description of "PATH". If the entire
number of paths specified cannot be allocated, then none are allocated.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

30

DESCRIPTION This subroutine open channels and allocates Modbus Plus Program Master paths to
be used for communicating with the Modbus Plus network. This subroutine expands
the callers P0 space to allocate working storage for future calls to the Modbus Plus
network. The structure MBPPEX that is returned to the user must be passed on all
subsequent calls to the other Modbus Plus software interface routines. This is
normally the first call by the user application software. This routine provides
Program Master versus Data Master paths. This routine is used normally for
diagnostic programs where the data paths are all being used by user applications.

The structure MBPPEX is defined in the MBP_C.TLB text library. The MBPPEX is
filled with the actual Program master paths that were allocated. The process
expanded region is created as a group global temporary section. This allows other
programs to map the region for analysis purposes while a user program is executing.
The name of the region is the process name prefixed with the device name (e.g.
MPA1_SCANNER Where SCANNER is the process name, and MPA1: is the device
name). A process may connect to more than a single controller if desired using a
unique MBPPEX structure for each controller. All Program Master paths are
allocated by the driver.

The program master paths allocated may or may not start with program master path
one. It is possible that some but not all of the master could not be allocated.
Therefore, if this routine fails, the caller should do its normal error recovery and then
exit. When a path is required for other library calls, the path numbers are relative to
those allocated by the driver.

The actual program master paths allocated are stored in the process expanded region
returned in the MBPPEX structure. Master Program paths have the form of “80”
hex plus the path controller allocated path. The path information may be viewed with
Modbus Plus process monitor utility.

CONDITION
VALUES
RETURNED

MBP_WRNGNMBRPATHS

MBP_MAPFAIL

Wrong number of paths

Unable to create process region

MBP_ASSIGNFAIL Unable to assign device

MBP_PATHFAIL Unable to allocate a path

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

31

2.9 MBP_PRESET_SINGLE_REGISTER

Set a single Programmable Controller register.

FORMAT MBP_PRESET_SINGLE_REGISTER[W](MBPPEX,PATH,ROUTE,
REGISTER_NUMBER,VALUE,STATUS,EFN[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. Must be between one and the number master
paths allocated by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses. This subroutine does not validate the route
array.

REGISTER_NUMBER
type: longword
access: readonly
mechanism: by value

The register number to force in the addressed PLC (40001 to 49999)

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

32

VALUE
type: word
access: readonly
mechanism: by value

New value for the register in normal VMS VAX 16 bit word format. The data will
be byte swapped before written to the PLC holding register.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status.

EFN
type: long word
access: read
mechanism: by value

Event flag to set when I/O is complete.

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds. Must be greater than two.

DESCRIPTION This subroutine sets a single output register using the specified path. The event flag
is used for I/O synchronization and if none is specified, event flag zero is used. The
event flag will be set when the register requested to be set has been set. This routine
uses ASTs to process all I/O completions, and therefore must have adequate AST
quota. This routine will byte swap the user register before sending it to the holding
register within the PLC addressed by the route array.
Both the synchronous and asynchronous versions are available.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

33

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid

MBP_BADPATH The specified path is less than or greater than the number
of master paths allocated by the MBP_OPEN_NET call.

MBP_PATHINUSE A request to do a second read or write to the master path,
but the path is already active with a previous I/O request.

MBP_NOCHANNEL There is no channel or path assigned to the specified path.
The MBP_OPEN_NET - most likely failed to allocate all
of the desired paths. Check status of the
MBP_OPEN_NET call.

MBP_IONOTCOMP Previous I/O still outstanding on path.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

34

2.10 MBP_READ_EXTENDED

Read Extended Memory of a Slave Modbus Node.

FORMAT MBP_READ_EXTENDED[W](MBPPEX,PATH,ROUTE,START,
COUNT,FILE,BUFFER,STATUS,EFN,FLAG[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. The path must be between one and the number
allocated by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses.

START
type: long
access: readonly
mechanism: by value

Starting register in addressed PLC to beginning reading registers from. Valid range
for each file is 60000 to 69999.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

35

COUNT
type: word
access: readonly
mechanism: by value

The number of packed registers to read from the addressed PLC. If the number of
registers exceeds what is able to read from a single Modbus Plus transfer, multiple
Modbus Plus transfers will be done.

FILE
type: word
access: readonly
mechanism: by value

The extended memory of the PLC is broken up into 10000 registers each (and the
remaining amount for the last segment), allowing registers in the range of 60000 to
69999 per file. The file number ranges from one (1) to the available memory
assigned in the PLC for extended memory in ten thousand register increments.

BUFFER
type: array
access: write
mechanism: by reference

Caller array to receive the registers from the PLC.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status.

EFN
type: long word
access: readonly
mechanism: by value

Event flag to set when I/O is complete.

FLAG
type: long word
access: readonly
mechanism: by value

If non-zero, then the data is not byte swapped when it is placed into the caller’

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

36

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds. Must be greater than two.

DESCRIPTION This subroutine reads the registers from the extended memory files in the slave PLC
on the Modbus Plus network. The data is byte swapped unless the FLAG byte is set
to one. This routine make use of the Modbus function code 20. This routine is
available in both the asynchronous and synchronous versions. By default, the bytes
are byte swapped when they are recieved from the PLC unless the FLAG argument is
specified. The user call may translate into multiple I/Os to the selected Modbus Plus
device. The event flag will be set when all of the I/O is complete or an error is
encountered.

The starting register number for an extended memory file registers is one less than for
the other registers (the first register in an extended memory file is 60000, while the
first holding register is 40001). Each extended memory file is partitioned to hold
10000 registers except for the last file which occupies whatever is left in the extended
memory. Only a single extended memory file may be written per call.

CONDITION
VALUES
RETURNED

MBP_MBPPEXINVLD

MBP_INVALIDARG

MBPPEX structure is invalid

One of the call arguments is invalid, not readable,
or not writable.

MBP_IONOTCOMP I/O not complete on channel

MBP_NOCHANNEL No channel open on path

MBP_BADSTARTADDR Invalid starting address

MBP_PATHINUSE The specified path already has an I/O active.

MBP_INVALIDEFN Invalid event flag specified

MBP_NOTINITIALIZED MBPPEX structure not initialized

MBP_BADPATH Path specified not allocated or out of range

MPB_INVLPATH Specified path is not between one and the number
allocated by MBP_OPEN_NET

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

37

2.11 MBP_READ_GLOBAL_DATA

Read the 64 bytes of global data.

FORMAT BP_READ_GLOBAL_DATA
(MBPPEX,PATH,NODE,BUFFER,EFN,STATUS)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. This path number must be between one and the
number allocated by the MBP_OPEN_NET call.

NODE
type: word
access: readonly
mechanism: by value

The Modbus Plus node the global data is requested of.

BUFFER
type: array
access: write
mechanism: by reference

Contains the buffer to recieve this controller's global data area.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

38

EFN
type: long word
access: readonly
mechanism: by value

I/O event flag for synchronization.

STATUS
type: structure MBP_STATUS
access: write
mechanims: by reference

I/O completion status

DESCRIPTION This subroutine will read the 64 bytes of global data.This routine operates
synchronously as the data is local in the computer's controller. No byte swapping is
to the data that is written to the controller. The Modbus Plus global data is
maintained by all members of the Modbus Plus network.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid.

MBP_BADPATH The specified path is less than or greater than the
number of master paths allocated by the
MBP_OPEN_NET call.

MBP_INVALIDEFN Invalid event flag specified

MBP_PATHINUSE A request to do a second read or write to the master
path, but the path is already active with a previous I/O
request.

MBP_BADPATH Path specified not allocated or out of range

MBP_NOCHANNEL No channel open on path

MBP_IONOTCOMP I/O not complete on channel

MBP_NOCHANNEL There is no channel or path assigned to the specified
path. The MBP_OPEN_NET most likely failed to
allocate all of the desired paths. Check status of the
MBP_OPEN_NET call.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

39

2.12 MBP_READ_REGISTERS

Read registers from a Modbus Plus slave node.

FORMAT MBP_READ_REGISTERS[W](MBPPEX,PATH,ROUTE,START,
COUNT,BUFFER,STATUS,EFN,FLAG[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. The path must be between one and the number
allocated by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses.

START
type: long
access: readonly
mechanism: by value

Starting register in addressed PLC to beginning writing user registers to. The ten
thousand position of "START" is used to determine if coil status (0xxxx), input
status (1xxxx), holding registers (4xxxx), or input registers (3xxxx) are to be read.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

40

COUNT
type: word
access: readonly
mechanism: by value

The number of packed registers to read from the addressed PLC. If the number of
registers exceeds what is able to read from a single Modbus Plus transfer, multiple
Modbus Plus transfers will be done.

BUFFER
type: array
access: write
mechanism: by reference

Caller array to receive the registers from the PLC.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status.

EFN
type: long word
access: readonly
mechanism: by value

Event flag to set when I/O is complete.

FLAG
type: long word
access: readonly
mechanism: by value

If FLAG is set to 1, then the data is not byte swapped when it is placed into the
caller's buffer.

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds. Must be greater than two.

DESCRIPTION This subroutine reads the registers from the specified path. The event flag is used for
I/O synchronization and if none is specified, event flag zero is used. The event flag
will be set when all of the registers requested to be read have been read. To satisfy
the request, this routine may do more than a single Modbus transfer. This routine

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

41

uses ASTs to process all I/O completions, and therefore must have adequate AST
quota. The size of the buffer should be sized for either 8 bits per byte for discretes
(0xxxx, 1xxxx), or two bytes per register (3xxxxx, 4xxxxx). All reads of registers
are byte swapped to confrom to standard VMS sixteen bit word formats unless the
FLAG argument is set to one.

This subroutine is available in the synchronous and asynchronous versions.

CONDITION
VALUES
RETURNED

MBP_MBPPEXINVLD

MBP_INVALIDARG

MBPPEX structure is invalid

One of the call arguments is invalid, not
readable, or not writable.

MBP_PATHINUSE The specified path already has an I/O active.

MBP_INVALIDEFN Invalid event flag specified

MBP_NOTINITIALIZED MBPPEX structure not initialized

MBP_BADPATH Path specified not allocated or out of range

MBP_BADSTARTADDR Invalid starting address

MBP_IONOTCOMP I/O not complete on channel

MBP_NOCHANNEL No channel open on path

MPB_INVLPATH Specified path is not between one and the
number allocated by MBP_OPEN_NET

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

42

2.13 MBP_READ_UNSOLICITED

Read unsolicited mail from a Master Modbus Plus Node

FORMAT MBP_READ_UNSOLICITED(BUFFER,CHANNEL,EFN,SIZE

[,MBX_SIZE])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

BUFFER
type: array
access: write
mechanism: by reference

Caller array to receive the buffer from the PLC. The message will contain at a
minimum the the Modbus Plus header. The remainder of the message is dependent
on the MSTR block in the particular PLC that sent the message. This buffer should
be sized to MP$K_UNSOLICITED_MSGSIZE unless the user used a different size
in the MBP_REGISTER_UNSOLICITED_V call.

CHANNEL
type: longword
access: readonly
mechanism: by value

Channel assigned to the unsolicited data mailbox.

EFN
type: longword
access: read
mechanism: by value

Event flag to be used for I/O synchronization.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

43

SIZE
type: longword
access: write
mechanism: by reference

Return size of the message that was read in bytes. Includes complete header and
data.

MBX_SIZE
type: longword
access: write
mechanism: by value

Optional parameter that specifies the size of the unsolicited mailbox.

DESCRIPTION This routine allows the caller to read messages from the unsolicited mailbox set up
by either the caller or some other caller.

This routine will read the message as placed by the process that has registered for the
Modbus slave messages on a particular path (see
MBP_REGISTER_UNSOLICITED).

This routine is passed the channel that is assigned to the unsolicited mailbox. If the
process reading the mailbox is the same process that registered for the unsolicited
messages, then it is the channel returned by MBP_REGISTER_UNSOLICITED,
otherwise, it is the channel number assigned to a permanent mailbox created by the
process that called MBP_REGISTER_UNSOLICITED and assigned by calling
process using the VMS system service: "SYS$ASSIGN". If there is no message
available, this service waits. This routine basically does the QIOW service to read
the mailbox. If the user desires an asynchronous version, the user may do a normal
QIO (consult the VMS mailbox driver for further details).

The message contains the Modbus header (the “C” header file: mbp_bufdef.h
contains the definition of the Modbus Plus header) and the actual data message from
the PLC master. No byte swapping is done on the data. If the data is true sixteen bit
registers, the bytes may need to be swapped to convert them to the VAX sixteen bit
word format. If the data contains ASCII data, or is a group of discretes packed 8 to a
byte, then do not swap the bytes.

If the optional parameter MBX_SIZE is not specified then the default size
MP$K_UNSOLICITED_MSGSIZE is used. Since this service uses the mailbox
driver, a mailbox created by the MBP_REGISTER_UNSOLICITED_V with a
mailbox smaller than MP$K_UNSOLICITED_MSGSIZE will result in a mailbox too
small error. If the mailbox is larger than MP$K_UNSOLICIED_MSGSIZE a data
overun error will occur. The MBP_REGISTER_UNSOLICITED call creates a
single mailbox of the default size.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

44

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid.

MBP_BADPATH The specified path is less than or greater than the
number of master paths allocated by the
MBP_OPEN_NET call.

MBP_PATHINUSE A request to do a second read or write to the master
path, but the path is already active with a previous I/O
request.

MBP_NOCHANNEL There is no channel or path assigned to the specified
path. The MBP_OPEN_NET most likely failed to
allocate all of the desired paths. Check status of the
MBP_OPEN_NET call.

SYSTEM Result of VMS SYS$QIO call

SS$_MBTOOSML The user has requested a buffer larger than the size of
mailbox. The user buffer should not be larger than:
MP$K_UNSOLICITED_MSGSIZE unless the caller
has set up this in the
MBP_REGISTER_UNSOLICITED_V call.

SS$_BUFFEROVF User buffer was not large enough to contain the
complete message.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

45

2.14 MBP_REGISTER_UNSOLICITED

Establish mailbox for a Master Modbus Plus nodes to write to.

FORMAT MBP_REGISTER_UNSOLICITED (MBPPEX,MBX_NAME,
MSG_CNT,PERM,MBX_CHANNEL,HOLDING_REGISTERS,
NUMBER_HOLDING_REGISTERS)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below)

ARGUMENTS MBPPEX
type: structure
access: write
mechanism: by reference

The structure to receive starting and ending address of the process specific data area
used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

MBX_NAME
type: character
access: read only
mechanism: by descriptor

Specifies the name of the mailbox to be created or a channel assigned to.

MSG_CNT
type: word
access: read only
mechanism: by value

This specifies the number of messages that should be allowed to be queued in the
mailbox. This affects the buffer I/O quota for the process.

PERM
type: word
access: read only
mechanism: by value

This specifies if the mailbox should be established as a permanent mailbox. A
permanent mailbox will allow messages to be retained over process activation, but
not over system bootstraps.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

46

MBX_CHANNEL
type: long word
access: write
mechanism: by reference

The actual channel number assigned to the mailbox is returned to the caller. This
channel should be used for the user's or other user's to dequeue messages from using
the standard VMS QIO system service calls.

HOLDING_REGISTERS
type: word array
access: read only
mechanism: by reference

Address of holding registers array. Used to service read holding registers from
another Master on the Modbus Plus network.

NUMBER_HOLDING_REGISTERS
type: longword
access: read only
mechanism: by value

Number holding registers in holding register array. Each holding register is two
bytes long.

DESCRIPTION This subroutine allows the caller to set up a mailbox to receive slave messages from
devices on the Modbus Plus network. The caller passes the name of a mailbox and if
the mailbox should be permanent or not. If the mailbox is permanent, the MSG_CNT
will not be used if the mailbox already exists on a subsequent activation of the
process. The caller must have already allocated slave paths via the
MPB_OPEN_NET call.

This subroutine will post another read on each of the slave paths and write the
messages to the mailbox when the messages are received. In the event the mailbox
becomes full, the software will respond to the remote device with the Modbus Plus
slave response indicating a routing error response. The routing failure code will be
set to indicate: "10= Slave rejected command".

If the mailbox is to be created as a permanent mailbox, the caller must have
"SYSNAM" privilege. The reading process can be either the current process or any
other process in the system. The MBP_READ_UNSOLICITED entry may be
called to actually read the message from the mailbox.

The actual content of the letter contained in the mailbox is documented in the
Modicon “DEC Host Based Devices User's Guide” under the "IO$_READ_SC"
command. The complete message including the Modbus Plus header is placed into
the mailbox. The actual format of the data portion of the message has to be defined
with the programmer of the PLC sending Master.

PLCs or other Modbus Plus Master nodes on the Modbus Plus network can only read
and write the host holding registers (40001 to 49999). This entry also supports the
ability of the calling process to allow master reads from Master PLCs or other
Modbus Plus Masters to request "HOST" holding registers. If the calling process

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

47

desires to support this functionality, then the address of a word array representing the
host’s holding registers must be passed. Only the slave paths allocated by this
process will be able to respond with host register values. The host holding registers
can be a global section that is mapped by the calling process. This routine probes the
holding register array for read access.

The byte order and synchronization of data within the Host Holding Register region
are the responsibility of the user. The VMS process that calls
MBP_REGISTER_UNSOLICITED supports the actual data transfer between the
Modbus Plus device driver at AST level. Therefore, disabling the AST recognition
of this VMS process while the region is being modified will guarantee atomic and
consistent data for Modbus Plus Master nodes reading data from the Host’s holding
registers. The method used must ensure that the process will be able to respond to
the Master Modbus Plus node prior to the Master node timing out because no slave
data response from the VMS host was received.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

48

CONDITION
VALUES
RETURNED

MBP_NOSLAVE

MBP_NOTINITIALIZED

No slave paths were allocated

MBPPEX structure not initialized

MBP_SLVREADFAIL Slave read failure

MBP_SLVBUSY Attempt to allocate second read on same slave path

MBP_MBXCREFAIL VMS SYS$CREMBX failed. Examine
MBP$L_STATUS in the MBPPEX structure for the
System Service status.

MBP_MBXFAIL Unable to create mailbox (see secondary status, will
contain the VMS system service code)

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

49

2.15 MBP_REGISTER_UNSOLICITED_V

Establish mailboxes for Master Modbus Plus nodes to write to by slave path. Similar to
MBP_REGISTER_UNSOLICITED but unique mailbox per path.

FORMAT MBP_REGISTER_UNSOLICITED_V (MBPPEX,MBX_ARRAY)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: write
mechanism: by reference

The structure to receive starting and ending address of the process specific data area
used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB)

MBX_ARRAY
type: structure array
access: read/write
mechanism: by reference

This structure should be dimensioned by eight (number of modbus slave paths). An
entry should be filled in for slave path allocated in the MBP_OPEN_NET call. The
content of each array element is:

Mailbox name
type: character
access: readonly

This is a 1 to 32 character zero terminated name of the mailbox. If the caller
does not have system name privilege, the name is ignored by the create
mailbox system service.

Permanent_flag
type: byte
access: readonly

If non-zero then the mailbox should be set as a permanent mailbox.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

50

Letter count
type: word
access: readonly

The number of messages that the mailbox should be created to contain.

Letter size
type: word
access: readonly

This contains the size of each message in the mailbox (default is:
MP$K_UNSOLICITED_MSGSIZE). The minimum size must be larger than
size of the modbus message header.

Mbx channel
type: long word
access: write

This is the returned channel number of the created or assigned mailbox.

DESCRIPTION Each path is assigned to a unique mailbox. The caller passes the name of each
mailbox and if the mailbox should be permanent or not. If the mailbox is permanent,
the letter count and letter size will not be used if the mailbox already exists on a
subsequent activation of the process. The caller must have already allocated slave
paths via the MPB_OPEN_NET call.

This subroutine will post reads on each of the slave paths and write the messages to
the mailbox when the messages are received. In the event the mailbox becomes full,
the software will respond to the remote device with the Modbus Plus slave response
indicating a routing error response. The routing failure code will be set to indicate:
"10= Slave rejected command".

If the mailbox is to be created as a permanent mailbox, the caller must have
"SYSNAM" privilege. The reading process can be either the current process or any
other process in the system.

The actual content of the letter contained in the mailbox is documented in the
Modicon “DEC Host Based Devices User's Guide” under the "IO$_READ_SC"
command. The complete message including the Modbus Plus header is placed into
the mailbox. The actual format of the data portion of the message has to be defined
with the programmer of the PLC sending Master.

This subroutine does not support the ability of the remote PLCs to read from the
VAX holding registers.

CONDITION
VALUES
RETURNED

MBP_NOSLAVE

MBP_NOTINITIALIZED

No slave paths were allocated

MBPPEX structure not initialized

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

51

MBP_MBXFAIL Unable to create mailbox (see secondary status,
will contain the VMS system service code)

MBP_NOSLAVE Caller did not allocate any slave paths

MBP_SLVREADFAIL Slave read failure

MBP_SLVBUSY Attempt to allocate second read on same slave path

MBP_MBXCREFAIL VMS SYS$CREMBX failed. Examine
MBP$L_STATUS in the MBPPEX structure for
the System Service status.

MBP_MBXSIZE Size of the mailbox is too small. Must be larger
than modbus plus message header.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

52

2.16 MBP_RESUME_UNSOLICITED

Restore the recognition of Modbus Plus slave messages of a Modbus Plus connected
VMS process.

FORMAT MBP_RESUME_UNSOLICITED (MBPPEX,PROCESS_NAME,DEVICE,
CTRL_SLAVE_PATH)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: read
mechanism: by reference

The structure to receive starting and ending address of the process specific data area
used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

PROCESS_NAME
type: character (zero terminated)
access: readonly
mechanism: by reference

Process name of the target process.

DEVICE
type: character (zero terminated)
access: readonly
mechanism: by reference

Device name that slave path is allocated on (MPA1, MPB1). Note: The Modbus
Plus devices are created as two device pairs. Specify the first device (for a single
SQ85, devices MPA0: and MPA1: are created, specify MPA1).

CTRL_SLAVE_PATH
type: longword
access: readonly
mechanism: by value

SQ85 controller slave path number assigned to device by the target process to enable
recognition of slave messages from.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

53

DESCRIPTION This subroutine allows the caller to restore the recognition of Modbus Plus slave
messages of another process.

To use this entry, the calling process must be in the same group as the target process
such that it may map the process expanded region of the target VMS process. The
target VMS process is the process that has registered for unsolicited slave reads by
calling one of:

MBP_REGISTER_UNSOLICITED
MPB_REGISTER_UNSOLICIED_V MBP_HOST_WRITEABLE_REGION_V

This entry maps with write access the group global region named by concatenating
the device (less colon) and the process name with an underscore separating them.
For example for a single SQ85 and a process named "SCAN" the region would be:
"MPA1_SCAN". This routine simply clears the disable bit in the region for the slave
path requested. The slave paths are the controller slave path numberes as allocated by
the driver and referenced by the SQ85. This is the second parameter in a PLC MSTR
route information in the programmable controller.

CONDITION
VALUES
RETURNED

MBP_NOSLAVE

MBP_MBXFAIL

No slave paths were allocated

Unable to create mailbox (see secondary status, will
contain the VMS system service code)

MBP_NOSUCHPATH The desired slave path was not allocated to the target
process.

MBP_NOSLAVEMATCH Controller slave path was assigned by process

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

54

2.17 MBP_SUSPEND_UNSOLICITED

Stop the recognition of Modbus Plus slave messages of a Modbus Plus connected VMS
process.

FORMAT MBP_SUSPEND_UNSOLICITED
(MBPPEX,PROCESS_NAME,DEVICE,CTRL_SLAVE_PATH)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: read
mechanism: by reference

The structure to receive starting and ending address of the process specific data area
used by the Modbus Plus interface subroutines (see MBPPEX in MBPlus.TLB).

PROCESS_NAME
type: character (zero terminated)
access: readonly
mechanism: by reference

Process name of the target process.

DEVICE
type: character (zero terminated)
access: readonly
mechanism: by reference

Device name that slave path is allocated on (MPA1, MPA3). Note: The Modbus
Plus devices are created as two device pairs. Specify the first device (for a single
SQ85, devices MPA0: and MPA1: are created, specify MPA1).

CTRL_SLAVE_PATH
type: longword
access: readonly
mechanism: by value

SQ85 controller slave path number assigned to device by the target process to disable
recognition of slave messages from.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

55

DESCRIPTION This subroutine allows the caller to stop the recognition of Modbus Plus slave
messages of another process. If mailboxes are being used, the content of the
mailboxes are not effected.

To use this entry, the calling process must be in the same group as the target process
such that the calling process may map the process expanded region of the target
process. The target VMS process is the process that has registered for unsolicited
slave reads by calling one of:

MBP_REGISTER_UNSOLICITED
MPB_REGISTER_UNSOLICIED_V
MBP_HOST_WRITEABLE_REGION_V

This entry maps with write access the group global region named by concatenating
the device (less colon) and the process name with an underscore separating them.
For example for a single SQ85 and a process named "SCAN" the region would be:
"MPA1_SCAN". This routine simply sets the disable bit in the region for the slave
path requested.

The slave paths are the controller slave path numberes as allocated by the driver and
referenced by the SQ85. This is the second parameter in a PLC MSTR route
information.

CONDITION
VALUES
RETURNED

MBP_NOSLAVE

MBP_MBXFAIL

No slave paths were allocated

Unable to create mailbox (see secondary status, will
contain the VMS system service code)

MBP_NOSUCHPATH The desired slave path was not allocated to the target
process.

MBP_NOSLAVEMATCH Controller slave path was assigned by process

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

56

2.18 MBP_WRITE_EXTENDED

Write extended memory files in a Modbus Plus slave node.

FORMAT MBP_WRITE_EXTENDED[W](MBPPEX,PATH,ROUTE,
START,COUNT,FILE,BUFFER,STATUS,EFN,FLAG[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is to be directed to. The path must be between one and the number
allocated by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

This is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses.

START
type: long
access: readonly
mechanism: by value

Starting register in addressed PLC to beginning reading registers from. Valid range
for each file is 60000 to 69999.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

57

COUNT
type: word
access: readonly
mechanism: by value

The number of packed registers to read from the addressed PLC. If the number of
registers exceeds what is able to read from a single Modbus Plus transfer, multiple
Modbus Plus transfers will be done.

FILE
type: word
access: readonly
mechanism: by value

The extended memory of the PLC is broken up into 10000 registers each (and the
remaining amount for the last segment), allowing registers in the range of 60000 to
69999 per file. The file number ranges from one (1) to the available memory
assigned in the PLC for extended memory in ten thousand register increments.

BUFFER
type: array
access: readonly
mechanism: by reference

Caller array of registers to be written in the PLC.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status.

EFN
type: long word
access: readonly
mechanism: by value

Event flag to set when I/O is complete.

FLAG
type: long word
access: readonly
mechanism: by value

If this FLAG is set to 1, then the data is not byte swapped before it is sent to the PLC.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

58

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds. Must be greater than two.

DESCRIPTION This subroutine writes registers in extended memory files in slave PLCs on the
Modbus Plus network. The data is byte swapped unless the FLAG argument is set to
one. This routine makes use of the Modbus function code 21. This routine is
available in both the asynchronous and synchronous versions. By default, the bytes
are byte swapped when before they are written to the PLC unless the FLAG argument
is specified. The user call may translate into multiple I/Os to the selected Modbus
Plus device. The event flag will be set when the all of I/O is complete or an error is
encountered.

The starting register number for an extended memory file registers is one less than
that for the other registers (the first register in an extended memory file is 60000,
while the first holding register is 40001). Each extended memory file is partitioned
to hold 10000 registers except for the last file which occupies whatever is left in the
extended memory. Only a single extended memory file may be written per call.

CONDITION
VALUES
RETURNED

MBP_MBPPEXINVLD

MBP_INVALIDARG

MBPPEX structure is invalid

One of the call arguments is invalid, not
readable, or not writable.

MBP_PATHINUSE The specified path already has an I/O active.

MBP_BADPATH Path specified not allocated or out of range

MBP_NOCHANNEL No channel open on path

MBP_BADSTARTADDR Invalid starting address

MBP_IONOTCOMP I/O not complete on channel

MBP_NOTINITIALIZED MBPPEX structure not initialized

MBP_INVALIDEFN Invalid event flag specified

MPB_INVLPATH Specified path is not between one and the
number allocated by MBP_OPEN_NET

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

59

2.19 MBP_WRITE_GLOBAL_DATA

Write Modbus Plus 64 bytes of global data.

FORMAT MBP_WRITE_GLOBAL_DATA (MBPPEX,PATH,BUFFER,EFN,STATUS)

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MBP_ error status
codes.

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

Structure returned by MBP_OPEN_NET.

PATH
type: word
access: readonly
mechanism: by value

Path to use for the I/O.

BUFFER
type: array
access: read
mechanism: by reference

Contains the 64 byte buffer to be written to this controller's global data area.

EFN
type: long word
access: readonly
mechanism: by value

I/O event flag for synchronization.

STATUS
type: structure MBP_STATUS
access: write
mechanims: by reference

I/O completion status.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

60

DESCRIPTION This subroutine will write the 64 bytes of global data. This routine operates
synchronously as the data is local in the computer's controller. Only the local SQ85's
global data can be written to. No byte swapping of data is performed.

CONDITION
VALUES
RETURNED

MBP_NOTINITIALIZED MBPPEX returned by MBP_OPEN_NET is corrupt or
invalid.

MBP_BADPATH The specified path is less than or greater than the number
of master paths allocated by the MBP_OPEN_NET call.

MBP_PATHINUSE A request to do a second read or write to the master path,
but the path is already active with a previous I/O request.

MBP_NOCHANNEL No channel open on path

MBP_IONOTCOMP I/O not complete on channel

MBP_INVALIDEFN Invalid event flag specified

MBP_NOCHANNEL There is no channel or path assigned to the specified path.
The MBP_OPEN_NET most likely failed to allocate all
of the desired paths. Check status of the
MBP_OPEN_NET call.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

61

2.20 MBP_WRITE_REGISTERS

Write registers to a slave Modbus Plus node.

FORMAT MBP_WRITE_REGISTERS[W](MBPPEX,PATH,ROUTE,
START,COUNT,BUFFER,STATUS,EFN,FLAG[,MTMO])

RETURNS VMS usage: COND_VALUE
type: longword
mechanism: by value

Longword status as defined by either a system service call or the MPB_xxxx status
codes (see error codes listed below).

ARGUMENTS MBPPEX
type: structure
access: readonly
mechanism: by reference

The structure that was returned by the MBP_OPEN_NET call.

PATH
type: word
access: readonly
mechanism: by value

Path that this I/O is directed to. The path must be between one and the number
allocated by the MBP_OPEN_NET call.

ROUTE
type: five byte array
access: readonly
mechanism: by reference

The is an array filled in by the caller that specifies the route path to the particular
PLC. The content of this array requires knowledge of the connected Modbus Plus
network devices and their addresses.

START
type: long
access: readonly
mechanism: by value

Starting register in addressed PLC to beginning writing user registers to. The
START register is used to determine if a FORCE of the coils, or a PRESET of the
registers will be done. Only coils (00001 to 09999) and holding registers (40001 to
49999) may be written to.

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

62

COUNT
type: word
access: readonly
mechanism: by value

The number of packed registers to write to the addressed PLC. If the number of
registers exceeds what is able to written in a single Modbus Plus transfer, multiple
Modbus Plus transfers will be done.

BUFFER
type: array
access: read
mechanism: by reference

Caller array to acquire the registers for the PLC.

STATUS
type: structure MBP_STATUS
access: write
mechanism: by reference

Final status

EFN
type: long word
access: readonly
mechanism: by value

Event flag to set when I/O is complete.

FLAG
type: long word
access: readonly
mechanism: by value

If FLAG is set to 1, then the data is not byte swapped before it is written to the PLC.

MTMO
type: long word
access: read
mechanism: by value

Modbus Read Master Response timeout value in seconds. Must be greater than two.

DESCRIPTION This subroutine writes the user buffer to the registers within the PLC addressed by
the specified route array.

The event flag is used for I/O synchronization and if none is specified, event flag
zero is used. The event flag will be set when all of the registers specified have been
written. To satisfy the request, this routine may do more than a single Modbus

MODBUS Plus VMS INTERFACE LIBRARY
APPLICATION LIBRARY CALLS

63

transfer may. This routine uses ASTs to process all I/O completions, and therefore
must have adequate AST quota.

The START register number is used to determine which type of output is being
performed. The source buffer should be sized for two bytes per holding register, or
eight registers per byte for coils.

For register transfers, the VAX sixteen bit word is byte swapped to match the format
of the PLC sixteen bit registers unless the "FLAG" argument is set to one.

Both the synchronous and asynchronous version is available.

CONDITION
VALUES
RETURNED

MBP_MBPPEXINVLD

MBP_INVALIDEFN

MBPPEX structure is invalid

Invalid event flag specified

MBP_NOCHANNEL No channel open on path

MBP_IONOTCOMP I/O not complete on channel

MBP_BADPATH Path specified not allocated or out of range

MBP_NOTINITIALIZED MBPPEX structure not initialized

MBP_INVALIDARG One of the call arguments is invalid, not readable, or
not writable.

MBP_PATHINUSE The specified path already has an I/O active.

MBP_BADSTARTADDR Invalid starting address

MPB_INVLPATH Specified path is not between one and the number
allocated by MBP_OPEN_NET

Chapter 3
Utilities

MODBUS Plus VMS INTERFACE LIBRARY
UTILITIES

65

3.1 Introduction

The following utilities will help the VAX programmer and system manager tune, debug, and provide help in
fault analysis. Some of the utilties are provided by with the device driver software, and some are provided
with this software.

3.2 Network Diagnostic Utility

The "NDU" utility provides a general purpose program that allows the VAX programmer and system
manager to diagnose Modbus Plus health, and operation. It is further documented in the Modicon “DEC
Host Based Devices User's Guide”.

3.3 Monitor Modbus Plus Process

Any program that is using the Modbus Plus application library also exposes a part of its process as a group
global section. The group global section contains statistics and status relative to the execution of the
communication routines and the master and slave paths. This process displays information from this region
for any process that is currently running to the users terminal. The process to be examined must be in the
same group as the user as the section is a Group global section and not a System global section.

DSPMBP is invoked with the following DCL command. The global section name must be specified with
the /NAME switch. This must be defined as a foreign DCL command ($DSPMBP ==
"$MBPLUS_:DSPMBP.EXE").

$DSPMBP /NAME=global_section_name [/FULL] [/CLEAR]

NAME- The user must specify the name of the global section that is to be displayed. The global
section name consists of the device name being used to communicate with the Modbus Plus
network (ie: MPA1, MPB1...) plus the process name. The global region is created when the
indicated process called MBP_OPEN_NET. If the desired process was “SCANNER” and it
specified the SQ85 or SA85 device: “MPA1” then the global section name would be:
“MPA1_SCANNER”.

FULL- Forces the entire contents of the global section to be displayed. The default is to display
only selected fields.

CLEAR- Forces specific counters and timers to be reset.

MODBUS Plus VMS INTERFACE LIBRARY
UTILITIES

66

The following are example displays captured from an operational system:

$DSPMBP/NAME=MPA1_MONITOR_SCANNER

Paths MBX Last Last R/W
Start - End Address MST SLV EFN Chan Read Write Status Process Name...
001CD200-001CD9FF 01 01 000 4 11:29:19 4 11:29:19 00000000 MONITOR_SCANNER

* * * * MASTER PATH * * * * 1 * * * * SLAVE PATH * * * * 1
Modbus+ I/O status: Modbus+ I/O status:

Condition code : 1 Condition code : 1
Transfer : 20 Transfer : 0
Crash code : 0 Crash code : 0
Path number : 2 Path number : 66

Last read / write : 0.020000 / 0.040000 Last read : 0.000000
Read / Write counter : 10390 / 10374 Last write : 0.000000
Start of read : 4-MAY-1994 11:29:19.28 Write / Read counter: 0 / 0
Start of write : 4-MAY-1994 11:29:19.30 Start of read :
Avg time master read : 0.027727 Start of write :
Avg time master writes : 0.037956 Avg time slave reads :

Avg time slave writes :

From the display, the following can be determined:
• The process has allocated master path number two.
• The last condition code was successful.
• The size of the last transfer was twenty bytes.
• The time of the Modbus Plus read or writes
• The average time for a master read or write to complete (total time for the master write plus the

response from the addressed slave)
• The time for the last master read or write
• How many master writes and reads have been done by the process.

Appendix A
Header Files

MODBUS Plus VMS INTERFACE LIBRARY
Header Files

68

A.1 MBPPEX Structure

The following structures are provided in the include library:

1) slave.h- Definition of the message placed in the unsolicited message mailbox.

2) mbp_errors.h- Definition of all MBP error codes (this does not include those from the Modbus
Plus communication device driver).

3) mbp_status.h- Standard status block returned from most calls that require I/O to the Modbus
Plus network.

Appendix B
MBP Error Codes

MODBUS Plus VMS INTERFACE LIBRARY
ERROR CODES

70

The MBP software has the errors listed below along with the recovery procedures. The user should also
consult the Modbus Plus Device Drivers Manual for any Modbus errors. Additional errors can be returned
by the VAX/VMS system service calls. The MBPPEX structure has a secondary error status word that
should also be consulted.

Any errors that cannot be returned to the caller, such as the errors that occur during the response to a PLC
master are logged to the system operator console via the SYS$SNDOPR service.

B.1 MBP Error Codes

MBP_ASSIGNFAIL-Unable to assign device

The MBP_OPEN_NET was unable to assign the Modbus Plus communication device. Most probable
causes are that the driver is not loaded, or the user is attaching to the wrong device. Examine the
mbp$l_status in the MBPPEX structure.

MBP_BADPATH-Path specified not allocated or out of range

A call to one of the subroutines showed in path number that was not within range. The path number
must be between one and the number that was allocated by the MBP_OPEN_NET call.

MBP_BADSTARTADDR-Invalid starting address

User has passed an invalid starting register or coil number, or has passed the value incorrectly.

MODBUS Plus VMS INTERFACE LIBRARY
ERROR CODES

71

MBP_EXCEPTION-Modbus exception response, see byte count

The Modbus Slave has responded with an exception. The byte count returned to the caller contains the
execption. Consult the Modicon “DEC Host Based Devices User's Guide” for exception codes. At the
time of this writing, the following were documented:

Exception
Code

Error Condition

01 Illegal function for the addressed slave

02 Illegal data address within the information
field ofr the addressed slave

03 Illegal data value in the information field for
the addressed slave. Also, if the master
requests a QIO call with too large a buffer.

06 Busy- the function just requested cannot be
performed at this time because a long
duration program command is beind
processed.

MBP_INVALIDARG-Invalid argument

One of the user passed arguments is invalid.

MBP_INVALIDEFN-Invalid event flag specified

An event flag has been specified that is not valid. Consult the VMS system service manual for valid
event flag useage.

MBP_INVALIDEFN-Invalid event flag specified

The event passed is an invalid VMS event flag. Consult the VMS system service manual for the
correct usage of event flags.

MBP_IONOTCOMP-I/O not complete on channel

User has attempted to requested another function on a path that has not completed the prior request.

MBP_MAPFAIL-Unable to create process region

The MBP_OPEN_NET failed to create the group global section. The most probable error is
insufficient privilege. Examine the mbp$l_status in the MBPPEX structure.

MBP_MBXCREFAIL-Unable to create slave data mailbox

The register unsolicited was unable to create the mailbox. Examine the mbp$l_status in the MBPPEX
structure for the reason. Most probable are insufficient privilege, or insufficient buffer quota.

MBP_MBXSIZE-Specified mailbox is too small

MODBUS Plus VMS INTERFACE LIBRARY
ERROR CODES

72

The specified mailbox size for slave reads (PLC master writes) is too small. It must be at least as large
as the Modbus Plus header size.

MBP_MBXWRITFAIL<MBX failed, ios: !XL, syssts: !XL, size: !XL

Failed to write Modbus slave message to the unsolicited mailbox. Examine the status and determine
recovery.

MBP_NOCHANNEL-No channel open on path

The user has passed a path that has no channel assigned to the MPA1 device. The most probable cause
is that not all of the user's requested paths were allocated by the MBP_OPEN_NET call.

MBP_NOSLAVE-Caller did not allocate any slave paths

The user has requested to provide slave service, but no slave paths were allocated by the
MBP_OPEN_NET call. Either none were available, or the MBP_OPEN_NET call is in error.

MBP_NOSLAVEMATCH-Controller slave path was not assigned

The current process has not set up the VAX for unsolicited reads for the indicated path. The path
number may be in error, or the call has not correctly registered for slave messags.

MBP_NOTINITIALIZED-MBPPEX structure not initialized

The user has not called MBP_OPEN_NET, the MBPPEX structure is corrupt, or the MBPPEX was
passed incorrectly.

MBP_PATHFAIL-Unable to allocate a path

The MBP_OPEN_NET was unable to open the number of paths as requested by the caller. Examine
the mbp$l_status in the MBPPEX structure.

MBP_PATHINUSE-Path is in use

User has attempted to requested another function on a path that has not completed the prior request.

MODBUS Plus VMS INTERFACE LIBRARY
ERROR CODES

73

MBP_SLAVEFAIL-Slave read I/O failure: !/!XL, !XL, master: !XB>

This error is logged on the system console. It is generated by the AST services for the unsolicited
messages. Examine the I/O status displayed and consult the Modicon DEC host Based Devices User's
Guide.

MBP_SLVASSIGNED- Slave path already assigned for unsolicited messages

The caller has tried to register for unsolcited reads (master writes from a PLC) a second time.

MBP_SLVBUSY-Attempt to allocate second read on same slave path

A second MBP_REGISTER_UNSOLICITED was attempted to the same controller.

MBP_SLVREADFAIL-Slave read failure

The register unsolicited attempted to post a read on the slave paths but failed. Examine mbp$l_status
for system service or Modbus Plus device error codes.

MBP_SLVREADQIO-Error posting IO$READ_SR status:!/ !XL

This error is logged on the system console. It is generated when the HOST is attempting to post a read
on one of the slave data paths. Examine the I/O status displayed and consult the Modicon DEC Host
Based Devices User's Guide.

MBP_SLVRSPFAIL-Slave response I/O failure:!/ !XL, !XL

This error is logged on the system console. It is generated when the VAX host attempts to
acknowledge the write of the holding registers to the VAX. Examine the I/O status displayed and
consult the Modicon DEC Host Based Devices User's Guide.

MBP_SLVRSPQIO-Error posting IO$WRITE_SR status:!/ !XL, !SL bytes to: !XB

This error is logged on the system console. It is generated when the VAX host attempts to a Slave
Write to the PLC master. Examine the I/O status displayed and consult the Modicon DEC host Based
Devices User's Guide.

MBP_WRNGNMBRPATHS-Wrong number of paths

The caller specified an incorrect number of paths.

MODBUS Plus VMS INTERFACE LIBRARY
ERROR CODES

74

B.2 Routing Errors

The following errors are a result of a Modbus Plus routing error. The routing failure code was translated
from the code listed in Modicon “DEC Host Based Device User's Guide” to one of the following symbolic
codes. Additional information in the buffer (at time of this writing) is:

Byte
Number

Contents

4 Contains MAC function code (Hex 13)

8 Routing Failure index

15 Device type of the failed node (see
Documentation)

16 Failure code translated to one of the following
MBP error codes.

MBP_BADDESTADDR-Bad destination address
MBP_BRIDGEBUSY-Bridge Plus Paths busy
MBP_EXCEPTIONRESPONSE-Exception response received
MBP_FORGOTTEN-Forgotten transaction
MBP_INVALIDPATH-Invalid path
MBP_INVALIDROUTE-Invalid route
MBP_NODEOFFLINE-Node is off-line
MBP_NORRESPONSE-No Response received from Modbus node
MBP_PROGACCESSDENIED-Program access denied
MBP_SLAVEDOWN-Slave device is down
MBP_SLAVEREJECT-Slave rejected message
MBP_UNKRTRERR-Unknown routing error
MBP_UNSUPPORTED-Unsupported MAC function

Appendix C
Sample PLC MSTR

MODBUS Plus VMS INTERFACE LIBRARY
EXAMPLES

76

C.1 MSTR Example

The following ladder diagram shows the use of the MSTR block within a PLC.

NETWORK 0005 Segment: 01

This logic determines whether the NODE and PATH ultimately provided by the Level 2 system is valid.
This logic will enable or disable any MSTR instruction that generated the unsolicited messages to the Level
2 system, based on the availability of the Level 2 system to provide the NODE and PATH. Currently, the
NODE and PATH are merely hard-coded into these registers for test purposes. The Level 1 system would
probably clear these registers once per scan and recopy the values from the Level 2 write area. If the
registers remain cleared, the Level 2 system is no longer available.

I
I MBP NODE
I NUMBER
I FROM LVL2
I

1+*-------- *--------- +
I|40110 | !
I| | !
I| | ! MBP PATH
I| | ! NUMBER
I| | ! FROM LVL2
I| | !

2++-------- +- +*---------*---------- +
I|00000 | !|40111 | !
I| | !| | !
I| JUNK | !| | ! NODE/PATH
I| JUNK | !| | ! VALID
I| JUNK| !| | ! TRIGGER
I| | !| | !

3++SUB +--------- ++ +- +----()-
I|40012 | |00000 | ! 00999
I*---------* | | !
I | JUNK | !
I | JUNK | !
I | JUNK| !
I | | !

4+ +SUB + --------- +
I |40012 |
I *---------*

MODBUS Plus VMS INTERFACE LIBRARY
EXAMPLES

77

NETWORK 0006 Segment: 01 These are the triggers for the MSTR instruction execution. The
instruction can be triggered by a valid NODE and PATH initialization (see comment for network 5),
manually with a contact from a forced coil, or repetitively with a timer providing delay between triggers.
Additionally, the repeat function may be deactivated if a preset number of successive failures occur.

I NODE/PATH
I VALID MSTR
I TRIGGER START
I

1+--]P[--- + ----------------- +-------()-
I 00999 ! ! 01001
I ! !
I ! !
I MANUAL ! !
I TRIGGER ! !
I ! !

2+-F] [--+ +
I 01000 !
I !
I MSTR STOP !
I MAX FAIL MSTR !
I EXCEEDED ACTIVE !
I !

3+--]\[------]\[--- +* ------- *+
I 01012 01004 !|00015 |
I !| |
I !|MSTR |
I !|REPEAT |
I !|DLY ACCUM
I !| |

4+ ++T1.0 +-
I |40531 |
I * ------- *

MODBUS Plus VMS INTERFACE LIBRARY
EXAMPLES

78

NETWORK 0007 Segment: 01

Whenever the MSTR instruction is to be executed (trigger occurs), the success or failure result of the last
execution must be cleared (reset). After the result of the last MSTR instruction execution is cleared, the
MSTR instruction execution is enabled by (DO MSTR) until it is completed (DONE). When an MSTR
instruction execution terminates unsuccessfully, a counter is incremented, when termination is successful,
the counter is reset. If the counter accumulator value reaches the preset value (999), the MSTR instruction
is disabled via STOP MAX FAIL EXCEEDED.

I
I MSTR MSTR MSTR
I START DONE GOOD RESET
I

1+--]P[------ +--] [-----+----------------()-
I 01001 ! 01008 ! 01002
I ! !
I ! !
I ! MSTR !
I ! DONE BAD !
I ! !

2+ +--] [-----+
I 01009
I
I
I MSTR MSTR MSTR MSTR
I DONE GOOD DONE BAD DONE DO MSTR
I

3+--]\[---------]\[-----+--]\[------------()-
I 01008 01009 ! 01007 01003
I !
I !
I MSTR !
I DO MSTR !
I !

4+--] [---------------- +
I 01003
I
I MSTR STOP
I MSTR MAX FAIL
I DONE BAD EXCEEDED
I

5+--]P[------- *------- *------------------()-
I 01009 |00999 | 01012
I | |
I |MSTR |
I MSTR |FAILURE |
I DONE GOOD |CNT ACCUM
I | |

6+--]\[--------+UCTR +-
I 01008 |40511 |
I *--------*

MODBUS Plus VMS INTERFACE LIBRARY
EXAMPLES

79

NETWORK 0008 Segment: 01

When an MSTR instruction execution terminates successfully, DONE GOOD is set (and sealed-in). When
an MSTR instruction execution terminated unsuccessfully, DONE BAD is set (and sealed-in). When the
MSTR instruction terminates, DONE is set.

I
I MSTR MSTR MSTR
I SUCCESS RESET DONE GOOD
I

1+--]P[----- +-]\[-------------------------()-
I 01006 ! 01002 01008
I !
I !
I MSTR !
I DONE GOOD !
I !

2+--] [---- +
I 01008
I
I
I MSTR MSTR MSTR
I FAILURE RESET DONEBAD
I

3+--]P[-----+--]\[------------------------()-
I 01005 ! 01002 01009
I !
I !
I MSTR !
I DONE BAD !
I !

4+--] [---- +
I 01009
I
I
I MSTR MSTR
I DONE GOOD DONE
I

5+--------- +--] [---- +-------------------()-
I ! 01008 ! 01007
I ! !
I ! !
I ! MSTR !
I ! DONE BAD !
I ! !

6+ +--] [---- +
I 01009
I

MODBUS Plus VMS INTERFACE LIBRARY
EXAMPLES

80

NETWORK 0009 Segment: 01 The MSTR instruction is allowed to execute when DO MSTR is set, until
DONE is set. DONE is set when the MSTR instruction terminates (see the comment for network 8). When
the MSTR instruction is executing, ACTIVE is set. The MSTR control block registers start at 40500
CONTROL 0, and the data registers begin at 40600 DATA 0. The data area is 54 registers in length. The
MSTR instruction execution may be aborted by TIMEOUT ABORT, which occurs when an MSTR
instruction execution does not complete within 20 seconds. (TIMEOUT ABORT is reset 0.5 seconds after it
occurs.)

I
I MSTR
I MSTR MSTR CONTROL MSTR
I DO MSTR DONE 0 ACTIVE
I

1+--] [---------]\[------ * ------- *--------------------()-
I 01003 01007 |40500 | 01004
I | |
I MSTR |MSTR |
I TIMEOUT |DATA | MSTR
I ABORT |0 | FAILURE
I | |

2+--] [------------------ + ------- +--------------------()-
I 01010 |40600 | 01005
I | |
I | |
I | | MSTR
I | | SUCCESS
I | |

3+ +MSTR +--------------------()-
I |00054 | 01006
I * ------- *
I MSTR
I MSTR TIMEOUT
I ACTIVE ABORT
I

4+--] [*----------------- *--------*-----+--------------()-
I 01004 |00020 | ! 01010
I | | !
I MSTR |MSTR | ! MSTR
I ABORT MSTR |ABORT | ! ABORT
I RESET DONE |ACCUM | ! RESET
I | | !

5+--]\[------]\[--------- +T1.0 +- +*--------*----()-
I 01011 01007 |40509 | !|00005 | 01011
I *--------* !| |
I !|MSTR |
I !|ABO DELAY
I !|ACCUM |
I !| |

6+ ++T0.1 +-
I |40510 |
I *--------*

Appendix D
Example VMSINSTALL

MODBUS Plus VMS INTERFACE LIBRARY
INSTALLATION

82

D.1 VMSINSTALL Example

The following assumes all defaults when prompted. The SQ85 should be installed in the microvax with the
CSR address and VECTOR as entered below. Users unfamilar with VMSINSTAL should consult the VMS
System Manager documentation set. A directory listing of the product directory is shown after the
VMSINSTAL had completed.

IPACT:: MicroVAX II running VMS V5.4-2

Username: SYSTEM
Password:

Welcome to VAX/VMS V5.4-2

$ set def sys$update $ @vmsinstal VAX/VMS Software Product Installation Procedure V5.4-2 It is
15-OCT-1992 at 08:06. Enter a question mark (?) at any time for help. %VMSINSTAL-W-ACTIVE, The
following processes are still active:

LAKIA
* Do you want to continue anyway [NO]? y
* Are you satisfied with the backup of your system disk [YES]? y
* Where will the distribution volumes be mounted: MUA0:

Enter the products to be processed from the first distribution volume set.
* Products: mbp012
* Enter installation options you wish to use (none):
The following products will be processed:

MBP V1.2
Beginning installation of MBP V1.2 at 08:07

%VMSINSTAL-I-RESTORE, Restoring product save set A...

Modbus Application Interface Library and
Software Installation By: IPACT Inc.

Modbus Communications Device Driver By: Modicon

The distribution files have been restored from the saveset. The installation procedure is continuing.

Your system or common device/directory: IPACT$DUA0:[SYS0.SYSCOMMON.] This product creates the
directory:

IPACT$DUA0:[SYS0.SYSCOMMON.][MBP012]

MODBUS Plus VMS INTERFACE LIBRARY
INSTALLATION

83

There appears to be an old version of the software installed in your system.
There is an old version currently installed in your the system. This will prevent us from doing the
Installation Verification Procedure. You may choose abort this installation and remove the old version and
unload the driver if it is loaded.

* Continue with installation [Y]? y
* How many SQ85 devices [1]:
* Enter CSR for controller (in OCTAL): 0 [766770]: 766000
* Enter VECTOR for controller (in OCTAL): 0 [310]: 320

SQ85 0 CSR: 766000 VECTOR: 320
* Are these correct [Y]? y

MBP_I_COFFEEBREAK answer section complete

MBP_I_LINKING linking shared image MBP_SHARE
MBP_I_LINKING linking SQ85 device driver MPDRIVER
MBP_I_COMMAND Building startup command file MBP_STARTUP.COM MBP_I_DIRECTORY
Creating IPACT$DUA0:[SYS0.SYSCOMMON.][MBP012] %VMSINSTAL-I-SYSDIR, This product
creates system disk directory IPACT$DUA0:[SYS0.SYSCOMMON.][MBP012].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
IPACT$DUA0:[SYS0.SYSCOMMON.][MBP012.EXAMPLES].
MBP_I_MOVING Marking files to move
MBP_I_COMPLETE KITINSTAL.COM complete

This kit is supplied with an IVP that is part of the VMSINSTAL kit. If you choose to execute the IVP,
then the driver and shared image will be installed. If you have an old version on your system, you should
not run the IVP.

Additonally if you suspect that the SQ85 may not be installed correctly, or you have never tried it
before you should not execute the IVP as a system crash may result.

You may at a convient time (when you can tolerate a system crash), execute the
MBP_STARTUP.COM command file that was created, and then run the utilties CK_PROG, and then NDU
(see documentation).

The product directory also contains the files MBPLUS.COM and MBPLUS.RNO which will allow you
to create additional copies of the documentation.

* Execute IVP [Y]? n

Your installation is now complete. After the files are moved, we will test your installation if you requested
it.

MODBUS Plus VMS INTERFACE LIBRARY
INSTALLATION

84

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...
Installation of MBP V1.2 completed at 08:18 Enter the products to be processed from the next distribution volume set.
* Products:

VMSINSTAL procedure done at 08:18

Directory SYS$COMMON:[MBP012]

CK_PROG.EXE;1
DSPMBP.EXE;1
EXAMPLES.DIR;1
MBP.OLB;1
MBPLUS.COM;1
MBPLUS.RNO;1
MBP_C.TLB;1
MBP_DBG.OLB;1
MBP_FOR.TLB;1
MBP_SHARE.EXE;1
MBP_STARTUP.COM;1
MPDRIVER.EXE;1
NDU.EXE;1

Total of 13 files.

MODBUS Plus VMS INTERFACE LIBRARY
INSTALLATION

85

Directory SYS$COMMON:[MBP012.EXAMPLES]

BITSTR.FOR;1
BUILD_ALL.COM;1
DSPMBP.COM;1
DSPMBP.FOR;1
EXAMPLE.C;1
FORCE_SINGLE_COIL_EX.COM;1
FORCE_SINGLE_COIL_EX.EXE;1
FORCE_SINGLE_COIL_EX.FOR;1
GET_DRIVER_STATISTICS_EX.COM;1
GET_DRIVER_STATISTICS_EX.EXE;1
GET_DRIVER_STATISTICS_EX.FOR;1
GET_NETWORK_STATISTICS_EX.COM;1
GET_NETWORK_STATISTICS_EX.EXE;1
GET_NETWORK_STATISTICS_EX.FOR;1
MENU.COM;1
PRESET_SINGLE_REGISTER_EX.COM;1
PRESET_SINGLE_REGISTER_EX.EXE;1
PRESET_SINGLE_REGISTER_EX.FOR;1
READ_WRITE_GLOBAL_DATA_EX.COM;1
READ_WRITE_GLOBAL_DATA_EX.EXE;1
READ_WRITE_GLOBAL_DATA_EX.FOR;1
READ_WRITE_REGISTERS_EX.COM;1
READ_WRITE_REGISTERS_EX.EXE;1
READ_WRITE_REGISTERS_EX.FOR;1
REGISTER_UNSOLICITED_EX.COM;1
REGISTER_UNSOLICITED_EX.EXE;1
REGISTER_UNSOLICITED_EX.FOR;1
RW_EXTENDED_EX.COM;1
RW_EXTENDED_EX.EXE;1
RW_EXTENDED_EX.FOR;1
SCAN.COM;1
SCAN.FOR;1
SMG_DISPLAY.FOR;1
SYS_ERROR.FOR;1

Total of 34 files.

Index

INDEX

Byte Order, 11
Byte Swapping, 11, 66
Console Messages, 73
Data Representation, 11
Debug Library, 5
Dedicated Slave Paths, 11
DSPMBP, 68
Host, 12
Host Holding Registers, 46
Linker, 5
Linking Requirements, 5
Master Paths, 8
MBP_ASSIGNFAIL, 74
MBP_BADDESTADDR, 77
MBP_BADPATH, 23, 32, 39, 45, 63, 75
MBP_BADSTARTADDR, 75
MBP_BRIDGEBUSY, 77
mbp_bufdef.h, 44
MBP_C, 12
MBP_CLOSE_NET

Defined, 14
MBP_EXCEPTION, 75
MBP_EXCEPTIONRESPONSE, 77
MBP_FOR, 12
MBP_FORCE_SINGLE_COIL

Defined, 15
MBP_FORGOTTEN, 77
MBP_GET_NETWORK_STATISTICS

Defined, 19
MBP_GET_SLAVE_ID

Defined, 21
MBP_INVALIDARG, 66, 76
MBP_INVALIDROUTE, 77
MBP_INVLPATH, 37, 42, 61, 66
MBP_IONOTCOMP, 33, 74
MBP_MAPFAIL, 77
MBP_MBPEXINVLD, 36, 42, 60, 66
MBP_MBXCREFAIL, 75
MBP_MBXFAIL, 49, 52
MBP_MBXSIZE, 52
MBP_MBXWRITFAIL, 75
MBP_NOCHANNEL, 23, 33, 39, 45, 63, 74
MBP_NODEOFFLINE, 77
MBP_NORRESPONSE, 77
MBP_NOSLAVE, 25, 48, 52, 54, 56, 74
MBP_NOSLAVEMATCH, 54, 57
MBP_NOSUCHPATH, 54, 56
MBP_NOTINITIALIZED, 23, 32, 39, 45, 63, 74
MBP_NVALIDPATH, 77
MBP_OPEN_NET

Defined, 26, 29

MBP_PATHFAIL, 73
MBP_PATHINUSE, 23, 33, 36, 39, 42, 45, 60,
63, 66, 75
MBP_PROGACCESSDENIED, 77
MBP_READ_EXTENDED

Defined, 34
MBP_READ_EXTENDEDW

Defined, 34
MBP_READ_GLOBAL_DATA

Defined, 38
MBP_READ_REGISTERS

Defined, 40
MBP_READ_REGISTERSW

Defined, 40
MBP_READ_UNSOLICITED, 48
MBP_REGISTER_UNSOLICITED, 25, 27, 44
MBP_RESUME_UNSOLICITED

Defined, 53
MBP_SLAVEDOWN, 77
MBP_SLAVEFAIL, 76
MBP_SLAVEREJECT, 77
MBP_SLVBUSY, 73
MBP_SLVREADFAIL, 75
MBP_SLVREADQIO, 76
MBP_SLVRSPFAIL, 76
MBP_SLVRSPQIO, 76
MBP_STATUS, 12, 71
MBP_SUSPEND_UNSOLICITED

Defined, 55
MBP_UNKRTRERR, 77
MBP_UNSUPPORTED, 77
MBP_WRITE_EXTENDED

Defined, 58
MBP_WRITE_EXTENDEDW

Defined, 58
MBP_WRITE_GLOBAL_DATA

Defined, 62
MBP_WRNGNMBRPATHS, 75
MBPLUS_Logical, 5
Modbus Routing, 6
Object Library, 5
Path, 8
Path Allocation, 8
PLC Register Addressing, 6
Process Expanded Region, 12
Process Global Section, 68
Process Quotas, 6
Process Region, 27, 30
Required Privileges, 5
Routing, 6
Slave Paths, 9, 11
Status Block, 11
SYS$SNDOPR, 73
VAX Slave Paths, 11

Index

VMSINSTAL, 85

	Chapter 1 �MODBUS Plus VMS Interface Library
	1.1	Introduction
	1.2	Interface Library
	1.3	Shareable Image Entry Points
	1.3.1	Installation
	1.3.2	Compile Requirements
	1.3.3	Linking Requirements
	1.3.4	Example Programs
	1.3.4.1	Process Privileges
	1.3.4.2	Process Quotas

	1.4	Modbus Network
	1.5	PLC Registers and Coil Numbering
	1.6	PLC MSTR Blocks
	1.6.1	PLC MSTR Example

	1.7	Paths
	1.8	Master Paths
	1.9	Slave Paths
	1.10	Non PLC Modbus Nodes
	1.11	VAX and PLC Data Byte Order
	1.12	Application Status Returns
	1.13	Contention and Synchronization Issues
	1.14	Process Expanded Region

	Chapter 2 �MBP Application Library Calls
	2.1	MBP_CLOSE_NET
	2.2	MBP_FORCE_SINGLE_COIL
	2.3	MBP_GET_DRIVER_STATISTICS
	2.4	MBP_GET_NETWORK_STATISTICS
	2.5	MBP_GET_SLAVE_ID
	2.6	MBP_HOST_WRITEABLE_REGION_V
	2.7	MBP_OPEN_NET
	2.8	MBP_OPEN_PROGMASTER
	2.9	MBP_PRESET_SINGLE_REGISTER
	2.10	MBP_READ_EXTENDED
	2.11	MBP_READ_GLOBAL_DATA
	2.12	MBP_READ_REGISTERS
	2.13	MBP_READ_UNSOLICITED
	2.14	MBP_REGISTER_UNSOLICITED
	2.15	MBP_REGISTER_UNSOLICITED_V
	2.16	MBP_RESUME_UNSOLICITED
	2.17	MBP_SUSPEND_UNSOLICITED
	2.18	MBP_WRITE_EXTENDED
	2.19	MBP_WRITE_GLOBAL_DATA
	2.20	MBP_WRITE_REGISTERS

	Chapter 3 �Utilities
	3.1	Introduction
	3.2	Network Diagnostic Utility
	3.3	Monitor Modbus Plus Process

	Appendix A�Header Files
	A.1	MBPPEX Structure

	Appendix B�MBP Error Codes
	B.1	MBP Error Codes
	B.2	Routing Errors

	Appendix C�Sample PLC MSTR
	C.1	MSTR Example

	Appendix D�Example VMSINSTALL
	D.1	VMSINSTALL Example

