AFLP® Plant Mapping

Protocol

© Copyright 2007, 2010 Applied Biosystems Printed in the U.S.A.

For Research Use Only. Not for use in diagnostic procedures.

Notice to Purchaser: Limited License

Use of this product is covered by US patent claims and corresponding patent claims outside the US. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim (such as the patented 5' Nuclease Process claims), no right to perform any patented method, and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

The AFLP process is covered by patents or patent applications owned by Keygene N.V. This product is sold under license from Keygene N.V. This kit may be used only for research purposes. The use of this kit for any activity other than research activities for the user's own benefit, such other activities including, but not limited to production activities, commercial activities and any activities for the commercial benefit of third parties, for or in connection with, but not limited to, plant breeding, seed quality control, animal genetic testing or breeding, microbial typing, human diagnostics, human genetic testing, human identity testing or human disease testing, requires a license from Keygene, N.V. P.O. Box 216, 6700 AE Wageningen, The Netherlands.

ABI PRISM, Applied Biosystems, GeneScan, Genotyper, and MicroAmp are registered trademarks and AB (Design) and Applera are trademarks of Applied Biosystems or its subsidiaries in the U.S. and/or certain other countries.

AmpliTaq and GeneAmp are registered trademarks of Roche Molecular Systems, Inc.

AFLP is a registered trademark of Keygene N.V.

All other trademarks are the sole property of their respective owners.

P/N 4303146F

Contents

Introduction	1
What is AFLP?	1
Advantages of AFLP.	1
Applications of AFLP	1
The AFLP Technique	4
Template Preparation and Adaptor Ligation	4
Preselective Amplification	5
Selective Amplification	6
Choosing Specific Primers for Amplification Screening	7
Testing New Genomes	8
Fluorescent Dye-labeling and Marker Detection	8
Technical Support	9
To Reach Us on the Web	9
Hours for Telephone Technical Support	9
To Reach Us by Telephone or Fax in North America	9
Documents on Demand	11
To Reach Us by E-Mail	12 13
What You Will Need to Perform AFLP.	16
Overview	16
AFLP Kit Modules	16
AFLP Ligation and Preselective Amplification Module	17
AFLP Amplification Core Mix Module	18
AFLP Selective Amplification Start-Up Module	18
Storage and Stability of Kit Components	18
Materials Required But Not Supplied	19
AFLP Plant Mapping Protocol	20

Before Starting an AFLP Experiment
Preparing Samples for PCR Amplification
Annealing Adaptor Pairs 21
Preparing Enzyme Master Mix
Preparing Restriction-Ligation Reactions
Diluting Restriction-Ligation Reactions
Amplification of Target Sequences
Overview
Preselective Amplification
Verifying Successful Amplification
Preparing Template
Selective Amplification
Evaluating Results
Overview
Run Modules
Preparing the Loading Buffer for the ABI 373 and ABI PRISM 377 27
Loading and Electrophoresis on the ABI 373 and ABI PRISM 377 28
Preparing the Loading Buffer for the ABI PRISM 310
Loading and Electrophoresis on the ABI PRISM 310
Using GeneScan to Analyze Results
Evaluating ABI 373 DNA Sequencer Results
Evaluating ABI PRISM 377 DNA Sequencer Results
Evaluating ABI PRISM 310 Genetic Analyzer Results
Appendix A. Primer Combination Tables
Genomes Analyzed Using AFLP
Appendix B. Troubleshooting
Appendix C. Preparing Plant Genomic DNA
Appendix D. References
Appendix E. Related Consumables and Accessories

Introduction

What is AFLP?	The AFLP [™] amplified fragment polymorphism technique is used to visualize hundreds of amplified DNA restriction fragments simultaneously. The AFLP band patterns, or fingerprints, can be used for many purposes, such as monitoring the identity of an isolate or the degree of similarity among isolates. Polymorphisms in band patterns map to specific loci, allowing the individuals to be genotyped or differentiated based on the alleles they carry.
	AFLP technology combines the power of restriction fragment length polymorphism (RFLP) with the flexibility of PCR-based technology by ligating primer-recognition sequences (adaptors) to the restricted DNA.
Advantages	Some of the advantages of the AFLP technique are the following:
of AFLP	 Only small amounts of DNA are needed.
	• Unlike randomly amplified polymorphic DNAs (RAPDs) that use multiple, arbitrary primers and lead to unreliable results, the AFLP technique uses only two primers and gives reproducible results.
	 Many restriction fragment subsets can be amplified by changing the nucleotide extensions on the adaptor sequences. Hundreds of markers can be generated reliably.
	 High resolution is obtained because of the stringent PCR conditions.
	• The AFLP technique works on a variety of genomic DNA samples.
	• No prior knowledge of the genomic sequence is required.
Applications	Applications for AFLP in plant mapping include:
of AFLP	 establishing linkage groups in crosses
	 saturating regions of introgression with markers for gene landing efforts
	• assessing the degree of relatedness or variability among cultivars
	Examples of AFLP fingerprints are shown in Figure 1 on page 2 and Figure 2 on page 3. Literature references for the AFLP technique are found in Appendix D on page 48.

1

You can build a genetic map of markers showing Mendelian inheritance from AFLP data such as that shown in Figure 1. The four electropherogram panels in Figure 1 contain data from tomato DNA samples prepared using the AFLP technique. Samples were run on an ABI[™] 373 DNA Sequencer and the resulting data analyzed using GeneScan[®] Analysis software.

Figure 1 Tomato AFLP samples showing Mendelian segregation

The overlapping electropherograms in the top panel are AFLP results of sample DNA from three individuals: parent one (P1), parent two (P2), and F1 from a cross. A and B are the two significant peaks on this panel and appear only in P2 and F1.

The lower three electropherogram panels are AFLP results of sample DNA from three F2 generations. Peak A appears in F2 (3), but does not appear in either F2 (1), or F2 (2). Peak B is inherited in all three F2 individuals. The remaining non-polymorphic peaks appear in all three F2 electropherograms and show that the overall AFLP patterns are reproducible.

Figure 2 Rice AFLP samples showing near-isogenic regions

The two electropherogram panels shown in Figure 2 contain data from rice DNA samples prepared using the AFLP technique. Samples were run on an ABI 373 DNA Sequencer and the resulting data analyzed using GeneScan Analysis software.

The rice DNA was isolated from near-isogenic lines (almost identical genetic material). It was selected for an introgressed region carrying a disease-resistance gene. By comparing peak patterns in the two electropherograms, you will find that the rice lines differ by only 1-2%. One of the peaks distinguishing the two lines has been highlighted in both the electropherogram display and the related tabular data beneath the electropherogram panels.

The AFLP Technique

TemplateThe first step of the AFLP technique is to generate restriction fragmentsPreparation andby using two restriction endonucleases (EcoRI and Msel). Double-
stranded adaptors supplied with each kit are ligated to the ends of the
DNA fragments, generating template DNA for subsequent polymerase
chain reaction (PCR) amplification.

Restriction and ligation take place in a single reaction. Ligation of the adaptor oligonucleotide to the restricted DNA does not regenerate the recognition site, so restriction does not recur after ligation (Figure 3).

Figure 3 Template preparation and ligation of AFLP adaptors

PreselectiveThe sequences of the adaptors and the restriction site serve as primerAmplificationbinding sites for a subsequent low-level selection or "preselective"
amplification of the restriction fragments.

Prepared Template: Genomic DNA

The Msel complementary primer contains a 3[°] C. The EcoRI complementary primer contains a 3[°] A (Regular Plant Genome Kit modules) or no base addition (Small Plant Genome Kit modules).

Only those genomic fragments that have an adaptor on each end amplify exponentially during PCR amplification (Figure 4). This step effectively "purifies" the target away from sequences that amplify only linearly, *i.e.*, those with one modified end.

Figure 4 Preselective amplification of the prepared template

Selective Additional PCR amplifications are run to further reduce the complexity of the mixture so that it can be resolved on a polyacrylamide gel. These amplifications use primers chosen from the 24 available AFLP Selective Primers (eight Msel and sixteen EcoRI primers). After PCR amplification with these primers, a portion of each sample is analyzed on a Applied Biosystems DNA Sequencer.

Selective amplification with an EcoRI and an Msel primer amplifies primarily EcoRI-Msel-ended fragments. The EcoRI-EcoRI fragments do not amplify well. The Msel-Msel fragments are not visualized because they do not contain fluorescent dye labels. Only the EcoRI-containing strands are detected (Figure 5).

A. Choose Selective AFLP Primers: ★ ▲ Axx ▲ Cxx ★ Fluorescent dye
★ ▲ Axx - one of sixteen different fluorescent dye-labeled AFLP EcoRI Selective Amplification primers.
Cxx - one of eight different AFLP Msel Selective Amplification primers.
B. Run Selective Amplification:
C T G A

Individual genomes yield distinctive restriction fragment profiles with each primer pair amplification. Those crop species genomes that have been analyzed successfully using Msel and EcoRI and the primers in this kit are shown in Table 7 on page 38.

Choosing Specific Primers for Amplification Screening

If you want to use a specific primer combination for the AFLP Selective Amplification reactions, you can order primer pairs in any combination of one EcoRI primer and one Msel primer. This gives you 128 possible primer pair combinations from which you can choose, for either regular or small plant genomes.

Order the AFLP Amplification Core Mix Module (P/N 402005) and the desired AFLP Selective Amplification Primers from Table 1.

EcoRI Primers, Regular Plant Genomes		
Primer	Part Number (250 reactions)	Part Number (500 reactions)
EcoRI-ACT FAM	402045	402037
EcoRI-ACA FAM	402038	402030
EcoRI-AAC NED	4303053	4303054
EcoRI-ACC NED	4303055	4303056
EcoRI-AGC NED	4303057	4303058
EcoRI-AAG JOE	402042	402034
EcoRI-AGG JOE	402043	402035
EcoRI-ACG JOE	402044	402036

Table 1. AFLP Selective Amplification Primers

EcoRI Primers, Small Plant Genomes

Delen en	Part Number
Primer	(250 reactions)
EcoRI-TG FAM	402264
EcoRI-TC FAM	402265
EcoRI-AC FAM	402269
EcoRI-TT NED	4304352
EcoRI-AT NED	402955 (500 reactions)
EcoRI-TA JOE	402267
EcoRI-AG JOE	402268
EcoRI-AA JOE	402271

	Msel Primers, Regular and Small Plant Genomes		
	Primer	Part Number (250 reactions)	Part Number (500 reactions)
	Msel-CAA	402021	402029
	Msel-CAC	402020	402028
	Msel-CAG	402019	402027
	Msel-CAT	402018	402026
	Msel-CTA	402017	402025
	Msel-CTC	402016	402024
	Msel-CTG	402015	402023
	Msel-CTT	402014	402022
Genomes	appropriately with these enzymes. In general, the Regular Plant Genome Kit should produce quality genetic fingerprints with genomes of 5×10^8 to 6×10^9 base pairs, and the Small Plant Genome Kit with genomes of 5×10^7 to 5×10^8 base pairs. Empirical guidelines suggest that if the G-C content of the genome is >65%, Msel will not give a significant number of fragments. Optimal results are obtained with Msel when the G-C content is <50%. EcoRI also tends to produce more fragments in G-C-poor genomes. In cases where an organism's G-C content is unknown, the effectiveness of the restriction enzymes must be determined empirically.		
Fluorescent Dye-labeling and Marker Detection	Applied Biosystems has ABI PRISM [™] fluorescent products are dye-labele primer. For high through reactions labeled with d 373 or ABI PRISM [®] 377 ABI PRISM [®] 310 Geneti in a fourth color in every fragments accurately. You can automate the s typically generated by a and Genotyper [®] softwa	adapted the AFLP tech t dye-labeling and detect d during amplification us oput, you can co-load up ifferent colored dyes in a DNA Sequencer or in a c Analyzer. Load an inte (lane or injection to size coring of the large numb nalyzing your results wit re.	inique for use with our tion technology. PCR sing a 5' dye-labeled to three different a single lane on the ABI single injection on the rnal lane size standard a all amplification bers of markers that are th GeneScan Analysis

Table 1.	AFLP Selective Amp	lification Primers	(continued)
----------	--------------------	--------------------	-------------

Technical Support

To Reach Us on the	Applied Biosystems web site address is:			
Web	http://www.appliedbiosystems.com/techsupport			
	We strongly encourage you to frequently asked questions, a can also order technical doc documents and have them far (see the "Documents on Der	to visit (and to l uments axed or nand" s	our web site for earn more abo and/or an inde e-mailed to yo section below).	r answers to out our products. You ex of available u through our site
Hours for Telephone	In the United States and Car following times.	nada, te	echnical suppo	rt is available at the
Technical Support	Product		Hours	
	Chemiluminescence		9:00 a.m. to 5:	00 p.m. Eastern Time
	LC/MS		9:00 a.m. to 5:	00 p.m. Pacific Time
	All Other Products		5:30 a.m. to 5:	00 p.m. Pacific Time
To Decel He ha	See the "Regional Offices Sa to contact local service repre Canada.	ales and sentativ	d Service" sect ves outside of t	tion below for how he United States and
To Reach Us by Telephone or Fax in North America Call Technical Support at 1-800-831-6844, and select the appropriate (below) for support on the product of your choice at any time during th open a service call for other support needs, or in case of an emergence after dialing 1-800-831-6844.)		time during the call. (To an emergency, press 1		
	For Support On This Product	Dial 1	-800-831-6844,	and
	ABI PRISM® 3700 DNA	Pres	S	FAX
	Analyzer	8		650-638-5981
	ABI PRISM [®] 3100 Genetic Analyzer	Pres 26	S	FAX 650-638-5891
	DNA Synthesis	Pres	S	FAX
		21		650-638-5981

For Support On This Product	Dial 1-800-831-6844, and	
Fluorescent DNA	Press	FAX
Dequencing	22	650-638-5891
Fluorescent Fragment	Press	FAX
GeneScan [®] applications)	23	650-638-5891
Integrated Thermal Cyclers	Press	FAX
	24	650-638-5891
BioInformatics (includes	Press	FAX
SQL GT [™] applications)	25	505-982-7690
PCR and Sequence	Press	FAX
Detection	5, or call	240-453-4613
	1-800-762-4001, and press 1 for	
	PCR, or 2 for	
	Sequence Detection	
FMAT	Telephone	FAX
	1-800-899-5858,	508-383-7855
	press 6	
Peptide and Organic	Press	FAX
Synthesis	31	650-638-5981
Protein Sequencing	Press	FAX
	32	650-638-5981
Chemiluminescence	Telephone	FAX
	1-800-542-2369	781-275-8581 (Tropix)
	1.781.271.00/5	(10 pix) 9:00 a m to
	(Tropix)	5:00 p.m. ET

For Support On This Product	Dial 1-800-831-6844, and	
LC/MS	Telephone	FAX
	1-800-952-4716	650-638-6223
		9:00 a.m. to 5:00 p.m. PT

Documents on
DemandFree 24-hour access to Applied Biosystems technical documents,
including MSDSs, is available by fax or e-mail.

If you want to order	Then
through the	Use http://www.appliedbiosystems.com/techsupport
internet	You can search for documents to order using keywords.
	Up to five documents can be faxed or e-mailed to you by title.
by phone from the United States or	a. Call 1-800-487-6809 from a touch-tone phone. Have your fax number ready.
Canada	 b. Press 1 to order an index of available documents and have it faxed to you. Each document in the index has an ID number. (Use this as your order number in step "d" below.)
	c. Call 1-800-487-6809 from a touch-tone phone a second time.
	 Press 2 to order up to five documents and have them faxed to you.
by phone from outside the	a. Dial your international access code, then 1-858-712-0317, from a touch-tone phone.
United States or Canada	Have your complete fax number and country code ready (011 precedes the country code).
	 b. Press 1 to order an index of available documents and have it faxed to you. Each document in the index has an ID number. (Use this as your order number in step "d" below.)
	 Call 1-858-712-0317 from a touch-tone phone a second time.
	 Press 2 to order up to five documents and have them faxed to you.

You can access Documents on Demand through the internet or by telephone:

To Reach Us by Contact technical support by e-mail for help in the following product E-Mail areas.

For this product area	Use this e-mail address
Chemiluminescence	info@appliedbiosystems.com
Genetic Analysis	galab@appliedbiosystems.com
LC/MS	apisupport@sciex.com
PCR and Sequence Detection	pcrlab@appliedbiosystems.com
Protein Sequencing, Peptide and DNA Synthesis	corelab@appliedbiosystems.com

Regional Offices If you are outside the United States and Canada, you should contact Sales and Service your local Applied Biosystems service representative.

The Americas	
United States Applied Biosystems	Latin America (Del.A. Obregon, Mexico)
850 Lincoln Centre Drive Foster City, California 94404	Tel:(305) 670-4350 Fax: (305) 670-4349
Tel: (650) 570-6667 (800) 345-5224	
Fax: (650) 572-2743	

Europe			
Austria	(Wien)	Hungary (Budapest)	
Tel:	43 (0)1 867 35 75 0	Tel:	36 (0)1 270 8398
Fax:	43 (0)1 867 35 75 11	Fax:	36 (0)1 270 8288
Belgium		Italy (N	1ilano)
Tel:	32 (0)2 712 5555	Tel:	39 (0)39 83891
Fax:	32 (0)2 712 5516	Fax:	39 (0)39 838 9492
Czech Republic and Slovakia (Praha)		The Netherlands (Nieuwerkerk a/d IJssel)	
Tel:	420 2 61 222 164	Tel:	31 (0)180 331400
Fax:	420 2 61 222 168	Fax:	31 (0)180 331409
Denmark (Naerum)		Norway (Oslo)	
Tel:	45 45 58 60 00	Tel:	47 23 12 06 05
Fax:	45 45 58 60 01	Fax:	47 23 12 05 75

Europe	Europe		
Finland (Espoo)		Poland, Lithuania, Latvia, and Estonia (Warszawa)	
Fax:	358 (0)9 251 24 250 358 (0)9 251 24 243	Tel: Fax:	48 (22) 866 40 10 48 (22) 866 40 20
France	(Paris)	Portuga	al (Lisboa)
Tel: Fax:	33 (0)1 69 59 85 85 33 (0)1 69 59 85 00	Tel: Fax:	351 (0)22 605 33 14 351 (0)22 605 33 15
Germa	ny (Weiterstadt)	Russia	(Moskva)
Tel: Fax:	49 (0) 6150 101 0 49 (0) 6150 101 101	Tel: Fax:	7 095 935 8888 7 095 564 8787
Spain (Tres Cantos)	South A	Africa (Johannesburg)
Tel: Fax:	34 (0)91 806 1210 34 (0)91 806 1206	Tel: Fax:	27 11 478 0411 27 11 478 0349
Sweder	n (Stockholm)	United Kingdom (Warrington,	
Tel:	46 (0)8 619 4400	Cheshi	re)
Fax:	46 (0)8 619 4401	Tel: Fax:	44 (0)1925 825650 44 (0)1925 282502
Switzer	land (Rotkreuz)	South East Europe (Zagreb, Croatia)	
Tel: Fax:	41 (0)41 799 7777 41 (0)41 790 0676	Tel: Fax:	385 1 34 91 927 385 1 34 91 840
Middle Eastern Countries and North Africa (Monza, Italia)		Africa (English Speaking) and West Asia (Fairlands, South Africa)	
Tel: Fax:	39 (0)39 8389 481 39 (0)39 8389 493	Tel: Fax:	27 11 478 0411 27 11 478 0349
All Othe (Warrin	er Countries Not Listed gton, UK)		
Tel: Fax:	44 (0)1925 282481 44 (0)1925 282509		

Japan	
Japan (Hatchobori, Chuo-Ku, Tokyo)	
Tel:	81 3 5566 6100
Fax:	81 3 5566 6501

Eastern Asia, China, Oceania			
Australia (Scoresby, Victoria)		Malaysia (Petaling Jaya)	
Tel: Fax:	61 3 9730 8600 61 3 9730 8799	Tel: Fax:	60 3 758 8268 60 3 754 9043
China (Beijing)		Singapore	
Tel: Fax:	86 10 6238 1156 86 10 6238 1162	Tel: Fax:	65 896 2168 65 896 2147
Hong Kong		Taiwan (Taipei Hsien)	
Tel: Fax:	852 2756 6928 852 2756 6968	Tel: Fax:	886 2 2698 3505 886 2 2698 3405
Korea (Seoul)		Thailand (Bangkok)	
Tel: Fax:	82 2 593 6470/6471 82 2 593 6472	Tel: Fax:	66 2 719 6405 66 2 319 9788

What You Will Need to Perform AFLP

Overview You will need the following:

- DNA—from 0.05–0.5 µg of good quality DNA, depending on the genome size. The plant mapping kits are optimized for small genomes of 50–500 Mb and medium (regular) genomes of 500–6000 Mb.
- AFLP Kit Modules and materials as specified on pages 7–8, 16–19, and in Appendix E, "Related Consumables and Accessories," on page 50.

AFLP Kit Modules The organization of the AFLP Plant Mapping Kit into individual modules allows for maximum flexibility. You can purchase individual modules separately depending on your research goals, as shown in Table 2.

Module	Regular Plant Genomes (500–6000 Mb)	Small Plant Genomes (50–500 Mb)
Ligation and Preselective Amplification	P/N 402004	P/N 402273
Amplification Core Mix	P/N 402005	P/N 402005
Selective Amplification	P/N 4303050	P/N 4303051
Start-Up	or	or
	Individual primer pairs (one Msel and one EcoRI) that you select.	Individual primer pairs (one Msel and one EcoRI) that you select.
	See Table 1 on pages 7–8.	See Table 1 on pages 7–8.

Table 2.What to Order

The AFLP Ligation and Preselective Amplification Module contains sufficient reagents to prepare an initial mapping population of up to 100 individuals. For the testing of each additional 100 individuals in a population, you must use a new AFLP Ligation and Preselective Amplification Module.

The AFLP Amplification Core Mix Module supplies sufficient PCR mix to perform 500 individual AFLP reactions.

	The AFLP Selective Amplification Start-Up Module supplies sufficient quantities of primers to test all 64 possible primer combinations on 30 individuals chosen from the 100 individuals prepared with the AFLP Ligation and Preselective Amplification Module.		
	For each primer combination you can compare:		
	 the total number of peaks amplified in the parents 		
	 the number of polymorphic peaks between the parents 		
	• the segregation ratios of polymorphic peaks in progeny of the cross		
	Once you establish the most useful primer combinations for your samples, you can purchase 250 or 500 reactions of primer along with the AFLP Amplification Core Mix Module. The Core Mix Module contains the necessary reagents for performing PCR.		
	The primer combination tables in Appendix A on page 38 show primer combinations best suited for analysis of ten different major crop species. You can order these primers separately (see pages 7–8).		
AFLP Ligation and Preselective	Template preparation and preselective amplification require use of the AFLP Ligation and Preselective Amplification Module:		
Amplification	Regular Plant Genomes (500–6000 Mb), P/N 402004		
Module	 Small Plant Genomes (50–500 Mb), P/N 402273 		
	This module contains the following five tubes:		
	 Adaptor pairs that allow you to perform the ligation reactions during preparation of your genomic DNA template: 		
	 one tube of EcoRI adaptor pairs 		
	 one tube of Msel adaptor pairs 		
	 Preselective primers, one tube 		
	 Preselective Amplification mix (buffer, dNTPs, MgCl₂, and enzyme) necessary to perform the Preselective PCR amplification reactions, one tube 		
	◆ AFLP Reference DNA you can use for a control, one tube		
	Sufficient reagents are supplied to perform up to 100 of each of these		

reactions. See "Preparing Enzyme Master Mix" on page 21 for the reagents needed for ligation and preselective amplification.

AFLP Amplification Core Mix Module	The AFLP Amplification Core Mix Module contains all of the components necessary to amplify modified target sequences. This module contains five tubes of Core Mix containing buffer, nucleotides, and AmpliTaq® DNA polymerase.	
	The Core Mix Module contains sufficient reagents for 500 amplification reactions of target genomic sequences. You determine how the selection occurs by choosing primer pairs from the AFLP Selective Amplification Start-Up Module or pairs of individually sold primers.	
AFLP Selective Amplification Start-Up Module	To screen primer combinations, use the AFLP Selective Amplification Start-Up Module (Regular Plant Genomes, P/N 4303050; Small Plant Genomes, P/N 4303051) with the Core Mix Module.	
	Each AFLP Selective Amplification Start-Up Module contains 16 oligonucleotide primers (Table 1 on page 7). This provides you with 64 possible combinations of primer pairs that you can use in 30 reactions each for a maximum of 2000 Selective Amplification reactions.	
	 Eight of the primers are complementary to the Msel adaptor sequence and have three additional bases at the 3' end. 	
	◆ Eight of the primers are complementary to the EcoRI adaptor sequence. They have two (P/N 4303051) or three (P/N 4303050) additional bases at the 3 [′] end and have 5 [′] fluorescent dyes. The primers are labeled with FAM (blue), JOE (green), or NED (yellow).	
	Note Use a fourth color, red (ROX), for an internal size standard such as the GeneScan-500 ROX Size Standard, available from Applied Biosystems (P/N 401734).	
	Once you determine optimal primer combinations, you can purchase larger quantities (250 or 500 reaction equivalents) of specific primer combinations for testing of additional DNA samples.	
Storage and Stability of Kit Components	Store all kit components at -15 to -25 °C in a non-frost-free freezer. If stored properly, the kit components will last 1 year from the time of receipt.	

Materials Reagents (see Appendix E on page 50 for more information)

Required But Not Supplied

- Nuclease-free distilled deionized water
- EcoRI restriction endonuclease, 500 Units ("high concentration" grade)
 - Msel restriction endonuclease, 100 Units ("high concentration" grade)
 - T4 DNA Ligase, 100 Units ("high concentration" grade)
 - 10X T4 DNA ligase buffer containing ATP
 - NaCl, 0.5 M, nuclease-free (molecular biology grade)
 - Bovine serum albumin (BSA), 1.0 mg/mL, nuclease-free
 - 1X TE _{0.1} buffer (20 mM Tris-HCl, 0.1 mM EDTA, pH 8.0), nuclease-free
 - 6% denaturing polyacrylamide gel (for the ABI 373 DNA Sequencer)
 - 5% Long Ranger gel (for the ABI PRISM 377 DNA Sequencer)
 - Performance Optimized Polymer 4 (POP-4, for the ABI PRISM 310 Genetic Analyzer)
 - Deionized formamide
 - GeneScan-500 ROX Size Standard
 - DNA size markers (*e.g.*, Boehringer Mannheim Set VI)
 - Dye Primer Matrix Standard Kit
 - NED Matrix Standard (substitutes for TAMRA)

Equipment

- Microcentrifuge
- Pipettors, 2-μL, 20-μL and 200-μL, with sterile pipette tips
- Gel-loading pipette tips, 0.17-mm flat (for the ABI PRISM 377)
- Applied Biosystems thermal cycler
- Sterile 0.5-mL microcentrifuge tubes
- Sterile 0.2-mL MicroAmp[®] Thin-Walled Reaction Tubes and caps (for the GeneAmp[®] PCR Instrument Systems 2400 and 9600)
- Sterile Thin-Walled MicroAmp 0.5-mL Reaction Tubes (for the DNA Thermal Cycler 480)

AFLP Plant Mapping Protocol

Before Starting an AFLP Experiment

Before setting up an AFLP experiment, you must first determine
 whether or not your genomic DNA restricts properly with EcoRI and Msel.

Action
Digest 1–3 μ g of genomic DNA with the enzymes MseI and EcoRI separately, then with both together, according to the manufacturer's instructions.
Load the digestion products in one lane on a 1.5% mini-agarose gel with size markers.
Stain with ethidium bromide.
View on a UV transilluminator. For an example of what a successful digest looks like, see Figure 6 on page 24 (left half).

Preparing Samples for PCR Amplification **IMPORTANT** Before you prepare your samples, we strongly recommend that you run a control DNA reaction to verify that restriction, ligation, and amplification yield the expected products. A control DNA is supplied in the AFLP Ligation and Preselective Amplification Module (P/N 402004 for Regular Plant Genomes and 402273 for Small Plant Genomes) for this purpose.

To prepare samples for the AFLP Preselective Amplification and AFLP Selective Amplification reactions, you must:

- anneal the adaptor pairs
- prepare a restriction-ligation enzyme master mix
- prepare the restriction-ligation reactions
- dilute the restriction-ligation reactions

Annealing **Adaptor Pairs**

You must anneal the adaptor pairs supplied with the AFLP Ligation and Preselective Amplification module before you can use them for the restriction-ligation reactions.

Step	Action
1	From the AFLP Ligation and Preselective Amplification Module, remove the tubes labeled Msel Adaptor Pair and EcoRI Adaptor Pair.
2	Heat tubes in a water bath at 95 °C for 5 minutes.
3	Allow tubes to cool to room temperature over a 10-minute period.
4	Spin in a microcentrifuge for 10 seconds at $1400 \times g$ (maximum).

Master Mix

Preparing Enzyme Prepare an Enzyme Master Mix to perform the restriction-ligation reactions for all 100 DNA samples, or a proportionate amount for fewer reactions.

Step	Action		
1	Combine the following in a sterile 0.5 mL microcentrifuge tube:		
	 10 μL 10X T4 DNA ligase buffer with ATP^a 		
	◆ 10 μL 0.5 M NaCl		
	 5 μL 1 mg/mL BSA (diluted from 10 mg/mL stock) 		
	♦ 100 Units Msel		
	♦ 500 Units EcoRI		
	 100 Weiss Units T4 DNA Ligase (or 6700 cohesive end ligation units) 		
	IMPORTANT Use high concentration preparations of the enzymes to avoid exceeding 5% glycerol in the reactions.		
2	Add sterile distilled water to bring the total volume to 100 μ L.		
3	Mix gently.		
4	Spin down in a microcentrifuge for 10 seconds.		
5	Store on ice until ready to aliquot into individual reaction tubes.		
	IMPORTANT For best results, use the Enzyme Master Mix within 1–2 hours. Do not store the Enzyme Master Mix beyond the day on which it is to be used!		

a. 1X T4 DNA Ligase Buffer with ATP: 50mM Tris-HCl (pH 7.8), 10 mM MgCl₂, 10 mM dithiothreitol, 1 mM ATP, 25 µg/ml bovine serum albumin.

Preparing Restriction-Ligation Reactions

The restriction-ligation reactions prepare the template for adaptors and then ligate adaptor pairs to the prepared template DNA.

Step	Action		
1	Combine the following in a sterile 0.5-mL microcentrifuge tube:		
	 1.0 μL 10X T4 DNA ligase buffer that includes ATP 		
	 1.0 μL 0.5M NaCl 		
	 0.5 μL 1.0 mg/mL BS. 	A (dilute from 10 mg/mL if necessary)	
	♦ 1.0 µL Msel adaptor		
	♦ 1.0 µL EcoRI adaptor		
	 1.0 μL Enzyme Master Mix 		
2	Add DNA as follows:		
	Regular Plant Genomes	Add 0.5 μ g genomic DNA in 5.5 μ L sterile distilled water.	
	Small Plant Genomes	Add 0.05 µg genomic DNA in 5.5 µL sterile distilled water.	
	Control Reactions	Add 5.5 μ L of control DNA (0.1 μ g/ μ L) from the AFLP Ligation and Preselective Amplification Module.	
3	Mix thoroughly, then place in a microcentrifuge for 10 seconds.		
4	Incubate at room temperature overnight, or for 2 hours at 37 °C.		
	For incubation at 37 °C, use a thermal cycler with a heated cover, so that the evaporation does not lead to EcoRI* (star) activity.		
	Be careful that the volume of enzyme added does not cause the amount of glycerol to be $>5\%$, which also leads to EcoRI* activity.		

Diluting Restriction-Ligation Reactions

Diluting Dilute the restriction-ligation samples to give the appropriate concentration for subsequent PCR.

Step	Action
1	Add 189 μ L of TE _{0.1} buffer to each restriction-ligation reaction.
2	Mix thoroughly.
	Note Store the mixture at $2-6$ °C for up to 1 month, or at -15 to -25 °C for longer than 1 month.

Amplification of Target Sequences

Overview This protocol has been optimized for the GeneAmp® PCR Systems 9600 and 2400 and the DNA Thermal Cycler 480. If you use a different thermal cycler, you may need to optimize the conditions.

The ramp times included in this protocol ensure identical products from any Applied Biosystems thermal cycler. Ramp time is crucial. See Appendix B on page 44 for troubleshooting tips.

PreselectiveSequences with adaptors ligated to both ends amplify exponentially and
predominate in the final product.

Note	Keep all reagents	and tubes	on ice until	loaded into	the thermal	cycler.
------	-------------------	-----------	--------------	-------------	-------------	---------

Step	Action				
1	Combine the following in a PCR reaction tube (0.2-mL for the GeneAmp PCR System 9600 or 2400, 0.5-mL for the DNA Thermal Cycler 480):				
	 4.0 μL diluted DNA prepared by restriction-ligation 				
	 1.0 µL AFLP preselective primer pairs 				
	♦ 15.0 µL AFLP Core Mix				
	Note If using the DNA Thermal Cycler 480, overlay your samples with 20 μL of light mineral oil.				
2	Place the samples in a thermal cycler at ambient temperature.				
3	Run the following PCR method, entering all ramp times as 0.01 (1 second) on the GeneAmp PCR System 9600 and DNA Thermal Cycler 480, or 90% on the GeneAmp PCR System 2400.				
4	Store at 2–6 °C after amplification.				

Table 3.	Thermal c	ycler	parameters ⁻	for	preselective	amplification
		-				

	CYCLE					
HOLD	Ea	ch of 20 Cyc	les			
72 °C 2 min.	94 °C 20 sec.	56 °C 30 sec.	72 °C 2 min.	60 °C 30 min.	4 °C (forever)	

Run an agarose gel to see that amplification has occurred.

Verifying Successful Amplification

PreparingPrepare the preselective amplification products for selective
amplification.

Step	Action
1	Combine the following in a sterile 0.5-mL microcentrifuge tube:
	 10.0 µL preselective amplification reaction product
	 ◆ 190.0 µL TE_{0.1} buffer
2	Mix thoroughly, then spin down in a microcentrifuge for 10 seconds.
3	Store the diluted preselective amplification product at 2–6 $^\circ\mathrm{C}$ if not used immediately.

Selective Amplify the EcoRI- and Msel-modified fragments.

Amplification

-

Step	Action				
1	Combine the following in a PCR reaction tube (0.2-mL for the GeneAmp PCR System 9600 or 2400, 0.5-mL for the DNA Thermal Cycler 480):				
	 3.0 µL diluted preselective amplification reaction product 				
	 1.0 μL Msel[Primer–Cxx] at 5 μM 				
	 1.0 μL EcoRI[Dye–primer–Axx] at 1 μM 				
	♦ 15.0 µL AFLP Core Mix				
	Note If using the DNA Thermal Cycler 480, add 20 μ L of light mineral oil to the tube.				
2	Run PCR using the thermal cycler parameters shown in Table 4 on page 26.				
	Note For the GeneAmp PCR System 9600 and DNA Thermal Cycler 480, enter all ramp times as 0.01 (1 second). For the GeneAmp PCR System 2400, enter all ramp times as 90%.				
3	Store at 2–6 °C after amplification.				

HOLD		CYCLE		Number of Cvcles
04.00	04 °C	66.00	70 °C	• • • • • •
94 C 2 min.	20 sec.	30 sec.	2 min.	1
-	94 °C 20 sec.	65 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	64 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	63 °C 30 sec.	72 °C 2 min.	1
-	94 °C 20 sec.	62 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	61 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	60 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	59 °C 30 sec.	72 °C 2 min.	1
-	94 °C 20 sec.	58 °C 30 sec.	72 °C 2 min.	1
-	94 °C 20 sec.	57 °C 30 sec.	72 °C 2 min.	1
_	94 °C 20 sec.	56 °C 30 sec.	72 °C 2 min.	20
60 °C 30 min.		-		1
4 °C forever		-		1

 Table 4.
 Thermal cycler parameters for selective amplification

Evaluating Results

Overview	You can evaluate the results of the AFLP reactions by using GeneScan software to analyze data from samples loaded and run on the ABI 373 or ABI PRISM 377 DNA Sequencer or on the ABI PRISM 310 Genetic Analyzer.
	The following instructions describe step-by-step procedures for loading samples and performing electrophoresis on these instruments.
Run Modules	The ABI 373 DNA Sequencer uses Filter Set A. The ABI PRISM 377 DNA Sequencer and ABI PRISM 310 Genetic Analyzer use Virtual Filter Set F.
	For the ABI PRISM 377, Filter Set F module files can be obtained from the Applied Biosystems World Wide Web site as part of the ABI PRISM 377 Collection software version 2.1:
	 www.appliedbiosystems.com/techsupport ABI_PRISM_377_v2.1.image.hqx
	For the ABI PRISM 310, Filter Set F module files will be part of the next release of the ABI PRISM 310 Collection software (version 1.0.4).
Preparing the Loading Buffer for	Prepare a loading buffer mix of the following reagents in the proportions shown in sufficient quantity for each sample:
the ABI 373 and	 1.25 µL deionized formamide
ABI PRISM 5/7	 0.25 µL blue dextran/25 mM EDTA loading solution (supplied with the size standard)
	 0.5 μL of GeneScan-500 [ROX] size standard
	! WARNING ! Chemical hazard: formamide is a teratogen and is harmful by inhalation, skin contact, and ingestion. Use in a well-ventilated area. Use chemical-resistant gloves and safety glasses when handling.

Note You can store any remaining loading buffer at 2–6 °C for 1 week.

Loading and Electrophoresis on the ABI 373 and ABI PRISM 377 For specific instructions about loading and running samples, refer to the ABI 373 DNA Sequencing System User's Manual or the ABI PRISM 377 DNA Sequencer User's Manual.

Step	Action		
1	On the ABI 373 DNA Sequencer:	On the ABI PRISM 377 DNA Sequencer:	
	Add 2.5 μ L of the loading buffer mix to a MicroAmp PCR tube for each sample.	Add 1.2 μ L of the loading buffer mix to a MicroAmp PCR tube for each sample.	
2	Add 0.8 μ L of selective amplification product to the tube.	Add 0.4 μ L of selective amplification product to the tube.	
	Note To run multiple reactions in one lane, add 0.8 μL of each reaction.	Note To run multiple reactions in one lane, add 0.4 μL of each reaction.	
3	Heat tubes to 95 °C for 3 minutes.	Heat tubes to 95 °C for 3 minutes.	
4	Quick-chill on ice.	Quick-chill on ice.	
5	Load 2.5–4 µL of the sample onto a 6% denaturing polyacrylamide gel using 1X TBE running buffer.	Load the entire sample onto a 5% denaturing Long Ranger gel using 1X TBE running buffer.	

IMPORTANT Use Filter Set A with the ABI 373 and Filter Set F with the ABI PRISM 377 DNA Sequencer when analyzing samples prepared with the AFLP Plant Mapping Kit modules (see "Run Modules" on page 27). Make the matrix with the Dye Primer Matrix Standards (P/N 401114), substituting the NED Matrix Standard (P/N 402996) for TAMRA.

Instrument	Well-to-read distance	Limiting parameter	Time	
ABI 373	24 cm	1680 volts	11.0 hours	
ABI PRISM 377	36 cm	2500 volts	4.0 hours	

 Table 5.
 ABI 373 and ABI PRISM 377 Electrophoresis Parameters

Preparing the Loading Buffer for the ABI PRISM 310

Prepare a loading buffer mix of the following reagents in the proportions shown in sufficient quantity for each sample:

- 24.0 μL deionized formamide
- ♦ 1.0 µL of GeneScan-500 [ROX] size standard

! WARNING ! Chemical hazard: formamide is a teratogen and is harmful by inhalation, skin contact, and ingestion. Use in a well-ventilated area. Use chemical-resistant gloves and safety glasses when handling.

Note You can store any remaining loading buffer at 2–6 °C for 1 week.

Loading and Electrophoresis on the ABI PRISM 310

For specific instructions about loading and running samples, refer to the ABI PRISM 310 Genetic Analyzer User's Manual.

Step	Action
1	Add 25.0 μL of the loading buffer mix to a sample tube. ^a Use one tube for each sample.
2	Add 0.5 μL of the selective amplification product to the tubes.
3	Heat tubes to 95 °C for 3–5 minutes.
4	Quick-chill on ice.
5	Place the Genetic Analyzer sample tubes in the 48-well or 96-well sample tray.

a. Use 0.5-mL Genetic Analyzer sample tubes for the 48-well sample tray and 0.2-mL MicroAmp Reaction Tubes for the 96-well sample tray.

IMPORTANT Use the GS STR POP4 F run module and ABI PRISM 310 Genetic Analyzer Collection Software, version 1.0.2 or higher, with the AFLP Plant Mapping Kit modules (see "Run Modules" on page 27). Make the matrix with the Dye Primer Matrix Standards (P/N 401114), substituting the NED Matrix Standard (P/N 402996) for TAMRA.

Table 6.	ABI PRISM 310	Electrophoresis Parameters
----------	---------------	-----------------------------------

Pattern Complexity	Injection Injection Time (sec.) Voltage (kV)		Run Time (min.)	Run Voltage (kV)	
Dense patterns ^a	12	15	30	13	
Simple patterns	5	13	26 ^b	15	

a. Use these conditions when running any sample for the first time.

b. Note the decrease in run time.

Using GeneScan to Analyze Results After your sample data is collected, you can use GeneScan Analysis software to analyze and display sizing results for all samples in any combination of tabular data and electropherograms (with or without legends). When you display electropherograms and tabular data together, the Results Display window is divided into upper and lower panes. The upper pane contains electropherogram panels and the corresponding legends; the lower pane contains the tabular data.

The following procedure describes how to set the GeneScan Analysis software parameters. For more complete information, refer to the ABI PRISM GeneScan Analysis Software User's Manual.

Setting GeneScan Analysis Software Parameters

Step	Action											
1	Under the Settings menu, select Analysis Parameters. Set the parameters for the ABI 373 and ABI PRISM 377 as shown below. Of the ABI PRISM 310, use an analysis range of 2600–10000 data points and peak amplitude thresholds of 100.											
	Analysis Range Full Range Full Range This Range (Data Points) Start: 1350 Stop: 8000 Data Processing MultiComponent MultiComponent MultiComponent None Light Heavy Peak Detection Peak Amplitude Thresholds B: 50 Y: 50 G: 50 R: 50 Correction Limit: 30 Data Pts											

Setting GeneScan Analysis Software Parameters (continued)

Step	Action						
2	Click OK.						
3	In the Analysis Control Window, define a size standard as follows:						
	a. Indicate the dye color of the Size Standard.						
	 Choose Define New from the pop-up window, and select a Sample File (data for one lane). 						
	The size standard peaks within the defined Analysis Range appear.						
	c. Assign a size value to each peak.						
	d. Close the window and enter a standard name when a prompt appears.						
4	Highlight the sample(s) to be analyzed and click on the Analyze button.						
5	After a successful analysis, view your results in the Results Display window, and then save the project.						
6	Select Save As from the File menu to save the data to a file.						

GeneScan-500 Size Standard

The GeneScan-500 standard is made of double-stranded DNA fragments, but only one of the strands is labeled with an ABI PRISM dye. Consequently, under denaturing conditions, even if the two strands migrate at different rates, only the one labeled strand is detected. Because of this, you can avoid split peaks, which result when two strands move through a denaturing gel at different rates. Under denaturing conditions, you can achieve a linear range of separation for fragment sizes of up to 500 bases (Figure 7 on page 32).

Figure 7 Electropherogram of GeneScan-500 run under denaturing conditions

Using the Standard Sizing Curve

The Standard Sizing Curve is a measure of how well the standard definition matches the GeneScan size standard, and whether or not it is linear.

To align the data by size, GeneScan calculates a best-fit least squares curve for all samples. This is a third-order curve when you use the Third Order Least Squares size calling method. For all other size calling methods it is a second-order curve.

Displaying the Standard Sizing Curve

Step	Action								
1	Select a sample or multiple samples in the Analysis Control window.								
	To select several consecutive samples, shift-click the first and last sample in the group you wish to select.								
2	Choose Size Curve from the Sample menu. The Standard Sizing Curve window appears.								
	Sample File 07 - Size Curve 480 A0 = -2.923352E+01 A1 = +9.240988E-02 A2 = -1.290388E-07 R*2 = 1.000 Align=By-Size Curve Best Fit 2nd Order Curve 0 120 60 0 700 1400 2100 2800 3800								
	The R^2 value and the coefficients of the curve are provided. The R^2 value is a measure of the accuracy of fit of the best-fit second order curve.								
	Note You can only display the sizing curve for a sample if a valid sizing curve exists for that sample.								
3	Examine how the data points fit on the curve and look at the R^2 value to evaluate the size calling.								
	The data points should fit close to the curve and the R^2 value should be between 0.99 and 1.00.								
4	When you are finished, click the close box.								

Defining Polymorphic Peaks for Genotyper Analysis

In addition to sizing AFLP fragments, GeneScan software enables you to prepare AFLP results data for downstream analysis by the Genotyper software application. Before starting Genotyper, define the polymorphic peaks to be scored.

Step	Action
1	In GeneScan, overlap the analyses of reactions from different samples to identify the polymorphic peaks.
2	Under the View menu, use the Custom Colors option to change the display color of one or more of the samples so that the electropherograms are in different colors.
3	Record the sizes of the polymorphic peaks and the samples that produced them.

Figure 8 shows the polymorphic peak patterns from a GeneScan analysis of two AFLP samples. Polymorphic peaks are labeled with size and origin.

Figure 8 Overlapping electropherograms for two AFLP samples

You can import GeneScan results data into a Genotyper software template. Used together, GeneScan and Genotyper can automate segregation scoring of AFLP results.

For more information on how you can analyze polymorphic peaks using Genotyper, see the *Genotyper DNA Fragment Analysis Software User's Manual.*

Evaluating ABI 373 DNA Sequencer Results

If you run samples under the recommended electrophoresis conditions, and analyze them with GeneScan, resulting electropherogram data from the ABI 373 DNA Sequencer should look similar to data from samples run on the ABI PRISM 377 DNA Sequencer.

Figure 9 shows a representative electropherogram of fluorescent dye-labeled AFLP products run on an ABI 373 DNA Sequencer and analyzed using GeneScan analysis software. The analyzed products are DNA fragments modified with Msel and JOE dye-labeled EcoRI selective amplification primers. The JOE-labeled EcoRI fragments are displayed as peaks in the electropherogram.

Figure 9 Electropherogram of AFLP sample run on an ABI 373 DNA Sequencer

Evaluating ABI PRISM 377 DNA Sequencer Results

A representative electropherogram of fluorescent dye-labeled AFLP products run on an ABI PRISM 377 DNA Sequencer and analyzed using GeneScan analysis software is shown in Figure 10. The analyzed products are DNA fragments amplified with Msel and FAM dye-labeled EcoRI selective amplification primers. The FAM-labeled EcoRI fragments are displayed as peaks in the electropherogram.

Figure 10 Electropherogram of AFLP sample run on an ABI PRISM 377 DNA Sequencer

Figure 11 on page 37 shows an expanded electropherogram of select peaks from the same AFLP samples shown in Figure 10. Tabular data in Figure 11 shows the sizes of sample fragments in mobility units. All sample fragments were sized using the GeneScan-500 [ROX] size standard. Electropherogram data and tabular data were generated using GeneScan Analysis software version 2.0.

ABI PRISM 310 **Genetic Analyzer** Results

Evaluating An electropherogram of E. coli W3110 Reference DNA run on an ABI PRISM 310 Genetic Analyzer is shown in Figure 12. The Msel-CA and FAM-labeled EcoRI-A selective primers from the AFLP Microbial Fingerprinting Kit (P/N 402948) were used.

> Note There are slight differences in fragment sizes on the ABI PRISM 310 compared to the ABI 373 and ABI PRISM 377.

Appendix A. Primer Combination Tables

Genomes Analyzed Using AFLP Ten different crop species genomes were analyzed using the AFLP technique. For each crop species, primer combinations that produce the best DNA fingerprints were determined.

The names of each crop species tested and corresponding primer combination tables are given in Table 7. Those combinations of EcoRI and Msel Selective Amplification primers that are best suited for amplification screening of the designated crop genomes are shown in Table 8 through Table 17.

Crop Species	Primer Combination Table				
Regular Plant Genomes					
Sunflower	Table 8 on page 39				
Pepper	Table 9 on page 39				
Barley	Table 10 on page 40				
Maize	Table 11 on page 40				
Sugar beet	Table 12 on page 41				
Tomato	Table 13 on page 41				
Lettuce	Table 14 on page 42				
Small Plant Genomes					
Arabidopsis	Table 15 on page 42				
Cucumber	Table 16 on page 43				
Rice	Table 17 on page 43				

Table 7. Primer combination tables for crop species

The following symbol indicates **unacceptable** primer

combinations for amplification screening of designated species:

				Ms	el Prim	ers			
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AAC		\mathbf{O}						
	-AAG	\mathbf{O}				\mathbf{O}			
mers	-ACA	\mathbf{O}			\mathbf{O}	\mathbf{O}			
RI Pri	-ACC								
Есс	-ACG		\mathbf{O}			\mathbf{O}			
	-ACT								
	-AGC						\mathbf{O}		
	-AGG						\mathbf{O}		

 Table 8.
 Primer combinations for Sunflower species

 Table 9.
 Primer combinations for Pepper species

	Msel Primers									
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT	
	-AAC			\Diamond	\Diamond		\mathbf{O}		\mathbf{O}	
	-AAG				\mathbf{O}					
mers	-ACA				\mathbf{O}					
RI Pri	-ACC								\mathbf{O}	
Eco	-ACG									
	-ACT	\mathbf{O}								
	-AGC									
	-AGG							\mathbf{O}		

	Msel Primers										
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT		
	-AAC										
	-AAG			\mathbf{O}	\mathbf{O}						
mers	-ACA										
BRI Pri	-ACC										
ШС	-ACG										
	-ACT			\mathbf{O}							
	-AGC						\mathbf{O}				
	-AGG										

Table 10. Primer combinations for Barley species

 Table 11. Primer combinations for Maize species

				Ms	el Prim	ers			
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AAC	\mathbf{O}							
	-AAG					\mathbf{O}			
mers	-ACA	\mathbf{O}							
RI Pri	-ACC								
Eco	-ACG						\mathbf{O}		\mathbf{O}
	-ACT		\mathbf{O}		\mathbf{O}			\mathbf{O}	\mathbf{O}
	-AGC								\mathbf{O}
	-AGG								

	Msel Primers										
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT		
	-AAC										
	-AAG								0		
mers	-ACA										
RI Pri	-ACC										
ЕС	-ACG										
	-ACT	\mathbf{O}	\mathbf{O}								
	-AGC										
	-AGG										

 Table 12.
 Primer combinations for Sugar beet species

 Table 13.
 Primer combinations for Tomato species

	Msel Primers								
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AAC								
	-AAG				\mathbf{O}			\mathbf{O}	
mers	-ACA								
EcoRI Pri	-ACC								
	-ACG								
	-ACT								
	-AGC								
	-AGG								

	Msel Primers								
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AAC								
	-AAG				\mathbf{O}			\mathbf{O}	
mers	-ACA								
oRI Pri	-ACC								
ECC	-ACG				\mathbf{O}				\mathbf{O}
	-ACT								
	-AGC								
	-AGG				\mathbf{O}				

 Table 14.
 Primer combinations for Lettuce species

Table 15.	Primer combinations	for Arabidopsis	species (sn	nall genome)

	Msel Primers								
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AA								
	-AC								
mers	-AG								
RI Pri	-AT	\mathbf{O}							
ЕСС	-TA		\mathbf{O}						
	-TC								\mathbf{O}
	-TG								
	-TT								

 Table 16. Primer combinations for Cucumber species (small genome)

Table 17. Primer combinations for Rice species (small genome)

				Ms	sel Prim	ers			
		-CAA	-CAC	-CAG	-CAT	-CTA	-CTC	-CTG	-CTT
	-AA								
	-AC								
mers	-AG								
EcoRI Pri	-AT								
	-TA								
	-TC								
	-TG								
	-TT								

Appendix B. Troubleshooting

Observation	Possible Causes	Potential Solution
Unsuccessful amplification (faint or no peaks)	Incomplete restriction-ligation	Repeat restriction-ligation with fresh enzymes and buffer. Use an agarose gel to check.
	PCR inhibitors may exist in the DNA sample	Try different extraction procedures. Use an agarose gel to check.
	Insufficient or excess template DNA	Use recommended amount of template DNA. Use an agarose gel to check. If DNA is stored in water, check water purity.
	Insufficient enzyme activity	Use the recommended amount of restriction digestion enzyme, ligase, and AmpliTaq DNA Polymerase.
	TE _{0.1} buffer not properly made, or contains too much EDTA	Add appropriate amount of MgCl_2 solution to amplification reaction. Remake the $\text{TE}_{0.1}$.
	Incorrect thermal cycling parameters	Check protocol for correct thermal cycling parameters.
	High salt concentrations of K ⁺ , Na ⁺ , or Mg ²⁺	Use correct amount of DNA and buffer. High salt and glycerol can inactivate restriction-ligation enzymes.
	Incorrect pH	Use correct amount of DNA and buffer.
	Tubes loose in the thermal cycler	Push reaction tubes firmly into contact with block before first cycle.
	Wrong style tube	Use Applied Biosystems GeneAmp Thin-Walled Reaction Tubes and DNA Thermal Cycler 480, or MicroAmp Reaction Tubes with Cap for the GeneAmp PCR System 9600 or System 2400.
	Primer concentration too low	Use recommended primer concentration.
	Ligase inactive	Check activity with control DNA.

 Table 18.
 Troubleshooting AFLP procedures

E

Observation	Possible Causes	Potential Solution
Inconsistent results with	Restriction incomplete	Repeat the restriction-ligation.
control DNA	Incorrect PCR thermal profile program	Choose correct temperature control parameters (refer to the <i>GeneAmp PCR System 9600 User's Manual</i>).
	GeneAmp PCR System 9600 misaligned lid	Align 9600 lid white stripes after twisting the top portion clockwise.
	For DNA Thermal Cycler 480, improper tube placement in block	Refer to the DNA Thermal Cycler 480 User's Manual.
	Pipetting errors	Calibrate pipettes, attach tips firmly, and check technique.
	Combined reagents not spun to bottom of tube	Place all reagents in apex of tube. Spin briefly after combining.
	Combined reagents left at room temperature or on ice for extended periods of time	Put tubes in block immediately after reagents are combined.
Extra peaks visible when sample is known to contain DNA from a	Contamination with exogenous DNA	Use appropriate techniques to avoid introducing foreign DNA during laboratory handling.
single source	Incomplete restriction or ligation	Extract the DNA again and repeat the restriction-ligation.
	Samples not denatured before loading in the autosampler	Make sure the samples are heated at 95 °C for 3 minutes prior to loading.
	Renaturation of denatured samples	Load sample immediately following denaturation, or store on ice until ready.
	Too much DNA in reaction, so that insufficient adaptor present	Use recommended amount of template DNA.
	Too much DNA amplified and/or loaded resulting in crossover between color channels	Re-run PCR using less DNA or load less sample during electrophoresis.

 Table 18. Troubleshooting AFLP procedures (continued)

Observation	Possible Causes	Potential Solution
Signal continually gets weaker	Outdated or mishandled reagents	Check expiration dates on reagents. Store and use according to manufacturers instructions. Compare with fresh reagents.
	Degraded primers	Store unused primers at -15 to -25 °C. Do not expose fluorescent dye-labeled primers to light for long periods of time.
Inconsistent sizing of known DNA sample	Inadvertent change in analysis parameters	Check settings for GeneScan analysis parameters.
	Change in size-calling method	Use same size-calling method.
	Incorrect internal standard	Use correct GeneScan size standard.
	Change in electrophoresis temperature	Check the Log for the record of the electrophoresis temperature.
Data was not automatically analyzed	Sample Sheet not completed	Complete Sample Sheet correctly.
Samples run faster than usual with decreased	Incorrect buffer concentration	Check if buffer concentration matches protocol requirements.
resolution	Incorrect run temperature	Check the Log for the record of the electrophoresis temperature.

Table 18. Troubleshooting AFLP procedures (continued)

Appendix C. Preparing Plant Genomic DNA

While the AFLP technique does not require as much genomic DNA as the RFLP technique, the quality of the DNA is very important. In particular, the DNA must first be restricted to completion with enzymes and then ligated to adaptors before the AFLP reactions are performed. This appendix supplies references for extraction and quantification methods for preparing genomic plant DNA.

DNA Extraction Techniques

Any particular plant species presents unique extraction problems, so it is up to researchers to optimize a DNA extraction technique for their system. Our scientists and those in many other labs have had excellent results using the various CTAB purification schemes (Doyle and Doyle, 1990).

For individual systems, journals such as *Biotechniques* contain numerous reports detailing modifications that improve the quality and or quantity of purified DNA in various species including cotton and pine (*e.g.*, Baker *et al.*, 1990).

Quantitating DNA

Refer to molecular biology manuals such as *Current Protocols in Molecular Biology for information* on:

- Quantitating the DNA, restriction digestion procedures
- Pouring and loading gels
- Running and interpretation of agarose gels

Another good source of general information is *Molecular Cloning: A Laboratory Manual.* See Appendix D on page 48 for specific references.

Appendix D. References

Ausubel, F.M., Brent, R., Kingstin, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., eds. 1987. *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley-Interscience, John Wiley and Sons, New York.

Baker, S.B., Rugh, C.L., and Kamalay, J.C. 1990. RNA and DNA isolation from recalcitrant plant tissue. *Biotechniques* 9: 268–272.

Bates, S.R.E., Knorr, D.A., Weller, J.N., and Ziegle, J.S. 1996. Instrumentation for automated molecular marker acquisition and data analysis. In Sobral, B.W.S., ed. *The Impact of Plant Molecular Genetics*, Birkhaüser, Boston, MA, pp. 239–255.

Becker, J., Vos, P., Kuiper, M., Salamini, F., and Heun, M. 1995. Combined mapping of RFLP and AFLP markers in barley. *Mol. Gen. Genet.* 249: 65-73.

Doyle, J., and Doyle, J. 1990. Isolation of plant DNA from fresh tissue. *Focus* 12: 13–15.

Meksem, K., Leister, D., Peleman, J., Zabeau, M., Salamini, F., and Gebhardt, C. 1995. A high-resolution map of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. *Mol. Gen. Genet.* 249: 74-81.

Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Press, NY.

Thomas, C.M., Vos, P., Zabeau, M., Jones, D.A., Norcott, K.A., Chadwick, B., and Jones, J.D.G. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to *Cladosporum fulvum*. *Plant J.* 8: 785-794.

Van Eck, H.J., Rouppe van der Voort, J., Draaistra, J., van Zandwoort, P., van Enckevort, E., Segers, B., Peleman, J., Jacobsen, E., Helder, J., and Bakker, J. 1995. The inheritance and chromosomal location of AFLP markers in a non-inbred potato offspring. *Molecular Breeding* 1: 397-410.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Fritjers, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new concept for DNA fingerprinting. *Nucl. Acids Res.* 23: 4407–4414.

Zabeau, M., and Vos, P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application, EP 0534858.

Appendix E. Related Consumables and Accessories

This appendix contains ordering information and descriptions of different kits and consumables, which you can use to perform procedures described in this protocol.

Name	Description	Vendor
AFLP	Protocol Reagents and Equi	pment
T4 DNA ligase		New England Biolabs
T4 DNA ligase buffer		New England Biolabs
EcoRI restriction enzymes	Use higher concentration formulations of vendor- supplied enzymes	New England Biolabs
Msel restriction enzymes	Use higher concentration formulations of vendor- supplied enzymes	New England Biolabs
Bovine serum albumin (BSA)	Nuclease-free. Dilute 10 mg/mL solution supplied by vendor to 1.0 mg/mL	New England Biolabs
6% Pre-mixed polyacrylamide with 7.5 M urea in TBE buffer	Gel matrices for the ABI 373 DNA Sequencer	Amresco
LongRanger gel solutions	AT Biochem formulations. Used for the ABI PRISM 377 DNA Sequencer at 5% or 6% in TBE buffer	JT Baker P/N 4730-02 for 250 mL
Performance Optimized Polymer 4 (POP-4)	Polymer solution used with the ABI PRISM 310	Applied Biosystems P/N 402838
ABI PRISM 310 10X Genetic Analyzer Buffer with EDTA		Applied Biosystems P/N 402824
ABI PRISM 310 Genetic Analyzer Capillary	$L_t = 47$ cm, $L_d = 36$ cm, i.d. = 50 µm, labeled with a green mark	Applied Biosystems P/N 402839
10X TBE buffer stock		Gibco

Table 19. Related consumables and accessories

Name	Description	Vendor
Deionized formamide		Applied Biosystems P/N 400596
Gel-loading pipette tips, 0.17 mm flat, for the ABI PRISM 377		Rainin P/N GT-1514
	Standards	
GeneScan-500 ROX size standard	Internal lane size standard labeled on a single strand with ROX NHS-ester dye. Shipped in two tubes containing 200 μ L of material each. Sizes fragments between 35 and 500 bases	Applied Biosystems P/N 401734
Dye Primer Matrix Standard Kit	Although FAM, JOE, and ROX fluoresce at different wavelengths, there is some overlap in the emission spectra. To correct for this overlap (filter cross-talk), a mathematical matrix needs to be created and stored as a matrix file. When data is analyzed, the appropriate matrix is applied to the data to subtract out any emission overlap	Applied Biosystems P/N 401114
NED Matrix Standard	See above. NED substitutes for TAMRA as the yellow dye in the AFLP Plant Mapping Kit	Applied Biosystems P/N 402996

 Table 19. Related consumables and accessories (continued)

Worldwide Sales Offices

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches into 150 countries on six continents. For international office locations, please call our local office or refer to our web site at www.appliedbiosystems.com.

Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free: +1 800.345.5224 Fax: +1 650.638.5884

Technical Support

For technical support: Toll Free: +1 800.831.6844 ext 23 Fax: +1 650.638.5891

www.appliedbiosystems.com

Applied Biosystems is committed to providing the world's leading technology and information for life scientists.

Printed in the USA, 06/2010 Part Number 4303146F