

FLORIDA DEPARTMENT OF FINANCIAL SERVICES
PUBLIC HURRICANE RISK AND LOSS MODEL

PPHHRRLLMM

PPRRIIMMAARRYY DDOOCCUUMMEENNTT BBIINNDDEERR

The DocumentThe DocumentThe DocumentThe Document
This binder contains a complete set of documents specifying the model structure,

detailed software description, and functionality.

Project SupervisorsProject SupervisorsProject SupervisorsProject Supervisors

Dr. Shu-Ching Chen

Associate Professor,

School of Computer Science

Florida International University

Dr. Mei-Ling Shyu
Associate Professor,

Electrical and Computer Engineering

University of Miami

Development Team MembersDevelopment Team MembersDevelopment Team MembersDevelopment Team Members

Min Chen
(Team Leader)

Ph. D. Candidate,
School of Computer Science

Florida International University

Na Zhao
Ph. D. Candidate,

School of Computer Science
Florida International University

Kasun Wickramaratna
MS. Candidate,

School of Computer Science
Florida International University

Xiaosi Zhou
Ph. D. Candidate,

School of Computer Science
Florida International University

Testing Team MembersTesting Team MembersTesting Team MembersTesting Team Members
Indika Priyantha

MS. Candidate,
Electrical and Computer Engineering

University of Miami

Khalid Saleem
Ph. D. Candidate,

School of Computer Science
Florida International University

Shaminda Subasingha
MS. Candidate,

Electrical and Computer Engineering
University of Miami

Kasturi Chatterjee

Ph. D. Candidate,
School of Computer Science

Florida International University

Table of Contents

1. The Public Hurricane Risk and Loss Model ……………………………… 1-A-1

1.1. General Description of PHRLM Model………………………………….. 1-A-2
1.2. Computer Model and Implementation……………………………………. 1-A-3
1.3. System Architecture Design….………………………………………….. 1-A-5

2. Storm Forecast Module

2.1. Use Case I: Annual Hurricane Occurrence………………………………. 2-A-1
2.1.1. General Description Of AHO …………………………………………… 2-A-2
2.1.2. AHO Design Requirement………………………………………………. 2-A-4
2.1.3. AHO Interface Design Requirements …………………………………... 2-A-10
2.1.4. Computer Model Design ………………………………………………… 2-A-12
2.1.5. Implementation of AHO…………………………………………………. 2-A-21

2.2. Use Case II: Storm Genesis Time……………………………………....... 2-B-1
2.2.1. General Description Of SGT…..…………………………………………. 2-B-2
2.2.2. SGT General Requirements…………………………………………….. 2-B-3
2.2.3. Computer Model Design ………………………………………………… 2-B-11
2.2.4. Implementation of SGT…..………………………………………………. 2-B-19

3. Wind Field Module

3.1. Use Case III: Storm Track Model…………………………………………. 3-A-1
3.1.1. General Description of Storm Track Model …………………................... 3-A-2
3.1.2. Technical Description of Storm Track Model……………………………. 3-A-3
3.1.3. Computer Model Design & Implementation…………………………….. 3-A-7

3.2. Use Case IV: Wind Field Model………………………………………...... 3-B-1

3.2.1. General Description of Wind Field Model……………………………….. 3-B-2
3.2.2. General Requirements of Wind Field Model…………………………….. 3-B-3
3.2.3. Technical Description of Wind Field Model…………………………….. 3-B-5
3.2.4. Computer Model Design…………………………………………………. 3-B-13
3.2.5. Implementation of Wind Field Model …………………………………... 3-B-14

3.3. Use Case V: Wind Speed Correction …………………………………… 3-C-1

3.3.1. General Description Of WSC …………………………………………… 3-C-2
3.3.2. WSC General Requirements …………………………………………… 3-C-3
3.3.3. WSC Interface Design Requirement………………………………………3-C-8
3.3.4. Computer Model Design ………………………………………………… 3-C-10
3.3.5. Implementation of WSC ………………………………………………… 3-C-17

3.4. Use Case VI: Wind Speed Probability …………………………………… 3-D-1

3.4.1. General Description Of WSP …………………………………………… 3-D-2
3.4.2. WSP General Requirements …………………………………………… 3-D-3
3.4.3. Computer Model Design ………………………………………………… 3-D-6

3.4.4. Implementation of WSP ………………………………………………… 3-D-12

4. Insurance Loss Model (ILM)

4.1. General Description of ILM…………………………………………….… 4-A-1
4.1.1. Design Requirements…….……………………………………………….. 4 -A-2

4.2. Detailed Design and Implementation of Insurance Loss Model....……...... 4-A-5
4.2.1. ILM Implementation Steps……………………………………………….. 4 -A-7

4.3. Computer Model Design………………………………….……………… 4-A-15
4.3.1. Use Case View of Insurance Loss Model (ILM) ……………………….. 4 -A-16
4.3.2. System Design ……………………………………………..…………….. 4 -A-16
4.3.3. Class Diagram and Description………………………………………….. 4 -A-30
4.3.4. Sequence Diagram for ILM……………………………………………… 4 -A-34
4.3.5. Sequence Diagram for Scenario ILM……………………………………. 4 -A-34

5. Database Document

5.1. Specification for the Project .. 5-A-1
5.2. Data Modeling……………………………………………………………. 5-A-1
5.3. Description of the Objects and Tables……………………………………. 5-A-4
5.4. Data Processing….……………………………………………………..…. 5-A-7

5.4.1. Original Data Processing ………………………………………………… 5-A-7
5.4.2. New Data Processing……………………………………………………... 5-A-11

5.5. Data Loading ……………………………………………………………... 5-A-12
5.5.1. Original Data Loading……………………………………………............. 5-A-12
5.5.2. New Data Loading…………...…………………………………………… 5-A-13

5.6. Export and Import the Data………………………………………………. 5-A-14
5.7. Data Checking……………………………………………………………. 5-A-16
5.8. Queries…..……………………………………………………………….. 5-A-16

5.8.1. Change the Query Based on the New Schema………………….……….. 5-A-16
5.9. Data Tuning………….. ………………………………………………….. 5-A-17

5.9.1. Tuning SQL Statements…………………………………..……………… 5-A-17

6. PHRLM Quality Assurance

6.1 Coding Guide Lines… …………………………………………………… 6-A-1
6.1.1 About the Coding Guidelines…………………………………………….. 6-A-2
6.1.2 File Organization…………………………………………………...…….. 6-A-2
6.1.3 Code Indentation………………………………………………………….. 6-A-3
6.1.4 Comments………………………………………………………….…….. 6-A-4
6.1.5 Variable Declarations…………………………………………………….. 6-A-5
6.1.6 Statements…………………………………………………………..…….. 6-A-5
6.1.7 White Space………………………………………………………………. 6-A-7
6.1.8 Naming Conventions……………………………………………….…….. 6-A-8
6.1.9 Reference………………………………………………………… ……… 6-A-9

6.2 Data Validation and Verification ………………………………………… 6-B-1
6.2.1 About the Document……………………………………………….……... 6-B-2
6.2.2 Introduction……………………………………………………………….. 6-B-2

6.2.3 Procedures…………………………………………………………..…….. 6-B-2
6.2.4 Data Security and Integrity………………………………………....…….. 6-B-3
6.2.5 References………………………………………………………….…….. 6-B-3

6.3 Model Maintenance and Revision and …………………………………… 6-C-1
6.3.1 Model Maintenance and Revision………………………..………………. 6-C-2

6.4 PHRLM Testing Procedures………………………………………………. 6-D-1
6.4.1 Software Testing Procedures……………………………………….…….. 6-D-2

6.5 Code Count Tables………………………………………………………… 6-E-1

7. Security

7.1. Security Procedures …………..…….…………………………………….. 7-A-2
7.2. FIU SCS Computer and Networking Security Procedures Manual ……… 7-A-4
7.3. FIU SCS Hurricane Preparation Procedures ……………………………… 7-A-7
7.4. Non-Disclosure Agreement………….……………………………………. 7-A-8

8. System Hardware and Software Configurations

8.1. System Architecture………………………….. …………………………. 8-A-1
8.2. Software List………….………………….. ……………………………… 8-A-2
8.3. Hardware Configuration…………………………………………………. 8-A-3
8.4. Safety and Backups ……………………………………………………… 8-A-5

9. Training Plan… ……………………………………………………………… 9-A-1

9.1. Introduction…………………………………………...…………………… 9-A-2
9.2. Technical Training Plan…………………………………………………… 9-A-2
9.3. End User Training Plan…………………………………………………… 9-A-3

10. PHRLM Related Publications……………………………………………….. 10-A-1

 1-A-1

Section 1

The Public Hurricane Risk and Loss Model
(PHRLM)

 1-A-2

1.1. General Description of PHRLM Model

The PHRLM model is a probabilistic model designed to estimate the damage and insured
losses due to the occurrence of hurricanes in Atlantic Basin. The PHRLM estimates the
full probabilistic distribution of damage and loss for any significant storm event. The
modeling methodology of it can be partitioned into four major components:

• Storm Forecast Module
• Wind field Module
• Damage Estimation Module
• Loss Estimation Module

The high-level flow chart is shown in Figure 1.1

Storm Properties:
(Central Pressure, Storm Track, Rmax)

Storm Forecast Module

Determines the storm
properties to be used in
the analysis.

Historical Storm
Database:
HURDAT

Stochastic Storm
Database:
Simulated Storms

User Input:

Wind Field Module

Generates the wind field
based on geo-coded
location.

Information obtained
from geo-database:
Ground Elevation

Exposure Classification

Damage Estimation
Module

Calculates Damage Ratios
.

Vulnerability
Statistics

Wind Speed

Loss Estimation Module

Calculates financial loss
by multiplying the
damage ratios by values.

Portfolio Data

Figure 1.1: Model Flowchart

 1-A-3

1.2. Computer Model and Implementation

1.2.1. Use Case View of the System

Use case diagram is one diagram in UML for modeling the dynamic aspects of a system.
Use case diagrams are central to modeling the behavior of a system, a subsystem, or a
class. Figure 1.2 presents the use case diagram of our computer model for the PHRLM,
and it shows a set of use cases and actors and their relationships.

A. Actors:

There are two actors in this system, the scientists and the statisticians. The scientists can
access all use cases related to the Storm Forecast Module and Wind field Module, while
the statisticians can interact with the Damage and Loss Estimation Modules.

B. Use Cases:

♦ Use Case I: Annual Hurricane Occurrence
Use Case I is used to estimate the probability distribution for annual hurricane
occurrence and to generate a series of simulated years along with their associated
number of storms according to the selected the probability distribution.

♦ Use Case II: Storm Genesis Time

Use Case II is used to generate the probability distribution of the origin dates for
the historical storms and simulated storms (produced by Use Case I).

♦ Use Case III: Storm Track Generation
Use Case III is used to generate the storm tracks for simulated storms based on
data obtained from Use Case II and stochastic algorithms.

♦ Use Case IV: Wind Field Generation

Use Case IV is used to generate wind fields for storms based on the data
generated in Use Case IV for the year range specified by the user.

♦ Use Case V: Wind Speed Correction

Use Case V is used to refine open terrain wind speed produced by the hurricane
wind model with respect to the actual terrain (based on land use – land cover).

♦ Use Case VI: Wind Speed Probability

Use Case VI is used to calculate the probabilities of the 3s gust wind speeds
affecting each of the zip codes.

♦ Use Case VII: Insurance Loss Module

Use Case VII is used to calculate the expected loss values.

 1-A-4

C. Use Case Diagram:

Scientist

Statistician

AnnualHurricaneOccurence

StormGenesisTime

StormTrack

WindFieldModel

W indSpeedCorrect ion

WindSpeedProbabili ty DamageProcess

LossProcess

Statistician

Scientist

<<include>>

<<include>> <<include>>

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

Figure 1.2: Use Case Diagram of the System

 1-A-5

1.3. System Architecture Design

Figure 1.3 gives a high-level system architecture abstraction which follows the popular
three-layer architecture.

Figure 1.3: The Three-layer System Architecture

A. User Interface:

User Interface is the first layer of the system, and also the only layer visible to the
user. Due to the popularity and convenience of the Internet, a web interface is
preferred so that the users are able to access the system online.

B. Application Logic:

The second layer is used to glue the user interface and the underlying database.
OC4J is chosen to serve as the second layer.

C. Database:

The database layer adopts Oracle9i database due to its advanced features for
extensibility, availability, high performance and management.

1.3.1. Detailed System Architecture Design

Figure 1.4 is the general system organization. There are five major components: client,
OC4J container, Java application, Oracle database, and math model.

♦ Client Side

The users can gain access to the system through any commonly used commercial browser
such as Internet Explorer, Netscape and etc. The user interface should be friendly and can
offer the user-required functionalities as best as possible. JSP (Java Server Page)
technique is used to dynamically generate the content in the web page. The basic idea of
JSP is to allow Java Code to be mixed together with static HTML or XML templates.
The Java logic handles the dynamic content generating while the markup language
controls structuring and presentation of data.

User Interface Database Application Logic

 1-A-6

♦ OC4J

D a ta b a se S e r v e r C lie n t S id e

W e b
B ro w s e r

O C 4 J
C o n ta in e r

Ja v a B e a n s

O R A C L E
D B

IM S L

L ib ra r y

J N I
In te r fa c e

M a th
M o d e l
in C + +

W e b
S e rv e r

A p p lic a t io n L o g ic

H T T P /S S L

J D B C

M a th M o d e l

Figure 1.4. Detailed system architecture

OC4J is short for Oracle9iAS Containers for J2EE. It is a complete J2EE 1.2 container
that includes a JSP Translator, a Java servlet engine, and an Enterprise JavaBeans (EJB)
container. OC4J also supports the Java Messaging Service and several other Java
specifications.

Advanced techniques such as JavaBeans and JNI are employed in the second layer.
JavaBean is a Java class that defines properties and that communicates with other Beans
via events. Properties can be defined within the JavaBean class definition, or they can be
inherited from other classes. JNI stands for Java Native Interface; it is part of the Java
Developer Kit. The actual mathematical and statistical computations are implemented in
C/C++ language for the sake of speed; JNI then serves as a bridge between java side and
native side of an application.

♦ JDBC

JDBC is a Java program that provides a way for the user to invoke SQL statements to
access the database. JDBC API is used to build the communication between the Java
program and the database server. Multiple database drivers for connecting to different
databases are supported by JDBC.

Actually, JDBC technology allows users to access virtually any tabular data source from
the Java programming language. It provides cross-DBMS connectivity to a wide range of
SQL databases.

 1-A-7

Through JDBC API, developers can take advantage of the Java platform's “Write Once,
Run Anywhere” capabilities for industrial strength, cross-platform applications that
require access to enterprise data. With a JDBC technology-enabled driver, a developer
can easily connect all corporate data even in a heterogeneous environment.

♦ JNI

Java is one of the most popular languages with strong support for web application,
however the math model is implemented using C++ for the sake of speed and the stronger
functionalities supported in the IMSL library C++ version. To bridge the gap between the
Java application and the math model, the JNI is employed.

JNI stands for Java Native Interface. JNI is a standard programming interface for writing
Java native methods and embedding the Java virtual machine into native applications.
The primary goal is binary compatibility of native method libraries across all Java virtual
machine implementations on a given platform. Native programs writing in languages
other than java, such as C/C++ can be integrated into Java applications and it is ensure
these programs are completely portable across all platforms. By programming through
the JNI, you can use native methods to create, inspect, and update Java objects (including
arrays and strings), to all Java methods, to perform runtime type checking.

 1-A-8

Section 2

Storm Forecast Module
Module I

 2-A-1

Section 2.1

Annual Hurricane Occurrence (AHO)
Use Case I

 2-A-2

2.1.1. General Description Of AHO

AHO, short for Annual Hurricane Occurrence, is the first use case in the FIU/IHRC
Public Hurricane Risk and Loss model. It aims at estimating the probability distribution
for annual hurricane occurrence and generating a series of simulated years along with
their associated number of hurricanes according to the probability distribution that has the
best goodness of fit.

 2-A-3

Threat Area

In our latest PHRLM model, only the hurricanes fall in the threat area are considered.
Here, the threat area is defined as a radius of 900 km centered at 29.0 North (Latitude)
and 83.0 East (Longitude), which is actually the region of the interest. The threat area
surrounding Florida is shown in s1. In other words, a hurricane will be considered if it
ever passed the threat area and it ever had the wind speed of larger than 74mph (at least
Category 1 hurricane) when it was in the threat area. The wind speed ranges for category
1-5 hurricanes is shown in Table 2.1.1. For instance, hurricane Andrew 1992 [12] as
shown in Figure 2.1.1 is one of the qualified hurricanes, which are considered in our
model.

Table 2.1.1: The wind speed ranges for category 1-5 hurricanes

Category Wind Speed (mph)
1 74 <= WD < 95
2 95 <= WD < 110
3 110 <= WD < 130
4 130 <= WD < 155
5 155 <= WD

In our database (1851-2003), there are totally 1274 historical tropical cyclones, which
include all hurricanes and tropical storms that were not hurricanes. After the filtering
process using the threat area definition, only 309 of them are considered as the valid
historical hurricane records.

(29.0 North, 83.0 East)

Threat Area

Track of Andrew (1992)

Figure 2.1.1. Threat area and the storm track of hurricane Andrew 1992

 2-A-4

2.1.2. AHO Design Requirements

Name: Annual Hurricane Occurrence (Threat Area Only)
Description: The user enters a choice of year range and the system generates

the following:
(1) A probability distribution for the number of hurric anes per

year.
(2) A simulated number of years with their associated numbers

of hurricane occurrences.

1. The user enters a year range from the following selections:

1851-2003
1900-2003
1944-2003
Multi-Decadal
ENSO

NOTE:
Neutral Years: All non-ElNino and non-LaNina years are considered Neutral or

average.
Multi-Decadal: Warm (and active), Cold (quiet). See Table 2.1.2 for a listing of

Multi-Decadal year ranges.
ENSO: EL Nino, La Nina; see Table 2.1.3 for a listing of El Nino and La

Nina years.

Table 2.1.2: Listing of Multi-Decadal year ranges and temperature

Temperature (Warm) Temperature (Cold)
1870-1902 1903-1925
1926-1970 1971-1994
1995-2003

Table 2.1.3: Listing of El Nino and La Nina years

El Nino - Year La Nina - Year
1925 1933
1929 1938
1930 1942
1940 1944
1941 1945
1951 1948
1953 1949
1957 1950
1963 1954

 2-A-5

1965 1955
1969 1956
1972 1961
1976 1964
1977 1967
1982 1970
1986 1971
1987 1973
1990 1974
1991 1975
1993 1978
1994 1988
1997 1995

 1998
 1999
 2000
 2002

2. Based on the selection of year range inputted by the user from Step 1, the system

queries the database and returns data of the years within the desired year range and
their associated numbers of tropical cyclones occurrences. Table 2.1.4 illustrates the
content of the returned data.

Table 2.1.4: Matrix of Number of Hurricanes Per Year

Year (Y0 - Yn) # Hurricanes (H0 - Hn)

1900 1
1901 3
Y i Hi
Yn Hn

NOTE:
In the initial development, the model considered all the tropical cyclones which include
all hurricanes and tropical storms that were not hurricanes. In the latest version of model,
only the hurricanes in the threat area are considered.

3. The system uses the data retrieved in Step 2: the years and their associated numbers

of hurricanes, and the Statistician's equation to generate the parameters of
probability distribution.

 2-A-6

Detailed steps are as follows:

3.1. The system fits the distribution for the historical data from Table 2.1.4.
To do so, system uses historical data from Table 2.1.4 to calculate the
mean and the standard deviation.

3.2. The system stores the output (mean & standard deviation) from 3.1 in

the database.

3.3. The system determines the distribution fits for each range using the

Poisson model:

3.3.1. For Poisson model, the system calculates the Mean "u".

3.3.2. The system determines the goodness of fit for the Poisson

model.

3.3.2.1. The system calculates “k”, the maximum number of
hurricanes in the data set.

3.3.2.2. The system calculates the number of hurricanes (X0

– Xk) and the observed frequencies (O0 – Ok), where
“O i” represents the number of years in which there
were “i” hurricane occurring.

3.3.2.3. The system calculates “n”, the sum of the observed

frequencies generated in 3.3.2.2.

3.3.2.4. The system uses the Mean “u”, and IMSL library
functions to calculate the expected frequencies for
the number of hurricanes (E0 – Ek) where “Ej”
represents the expected number of years in which ‘j’
hurricanes will occur.

3.3.2.5. The system generates a frequency table for the

number of hurricanes. The frequency table is a
matrix consisting of 3 columns: The number of
hurricanes (X0 – Xk), the observed frequencies (O0
– Ok), and the expected frequencies (E0 – Ek). See
Table 2.1.5.

3.3.2.6. The system stores the frequency tables (Table 2.1.5)

generated back to the database.

 2-A-7

3.3.2.7. The system reconstruct the frequency table to make
sure that no expected value is less than 1 and no
more than 20% are less than 5. If either of the two
conditions is violated, then some categories are
combined so that the conditions are always
satisfied.

3.3.2.8. The system calculates chi-squared statistics, i.e., the

goodness of fit statistics.

3.3.2.9. The system calculates the p-value by calling the
IMSL CHIDF routine.

3.3.2.10. The system stores the resulted chi-squared statistic

and p value (Table 2.1.7) back to the database.

3.4. The system determines the distribution fits for each range using the
Negative Binomial model.

3.4.1. For Negative Binomial model, the system calculates "m" and
"k" estimates.

3.4.2. The system determines the goodness of fit for the Negative
Binomial modal:

3.4.2.1. Repeat Steps 3.3.2.1. Through 3.3.2.3.

3.4.2.2. The system uses X0 – Xk, O0 – Ok, “k”, and “n” to

calculate the expected frequencies for the
number of hurricanes (E0 – Ek) where “Ej”
represents the expected number of years in
which ‘j’ hurricanes will occur. The system calls
the IMSL gamma function to calculate the
expected values.

3.4.2.3. The system repeats Steps 3.3.2.5. — 3.3.2.6. for the

Negative Binomial model.

3.4.2.4. The system generates a frequency table for the
number of hurricanes. The frequency table is a
matrix consisting of 3 columns: The number of
hurricanes (X0 – Xk), the observed frequencies
(O0 – Ok), and the expected frequencies (E0 –
Ek). See Table 2.1.6.

 2-A-8

3.4.2.5. The system stores the generated frequency tables
(Table 2.1.6) back to the database.

3.4.2.6. The system stores the chi-squared statistics (Table

2.1.7) back to the database.

3.5. The system selects the distribution that gives the highest p value to be
the final selected distribution for the number of hurricanes per year.

3.6. The system plots the observed frequencies versus the fitted frequencies

in a histogram.

Table 2.1.5: Frequency table of number of hurricanes, yearly frequencies,
and expected frequencies for the Poisson Model

Hurricanes (X0 – Xk) Observed Frequency
(O0 – Ok)

Expected Frequency
(E0 – Ek)

0 O0 E0
1 O1 E1
2 O2 E2

Xk Ok Ek

Table 2.1.6: Frequency table of number of hurricanes, yearly frequencies,

and expected frequencies for the Negative Binomial Model

Hurricanes (X0 – Xk) Observed Frequency
(O0 – Ok)

Expected Frequency
(E0 – Ek)

0 O0 E0
1 O1 E1
2 O2 E2

Xk Ok Ek

Output from Step 3:

Table 2.1.7: Probability distribution

Year Range: 1851-2003
Type of fit Mean Variance p-value Goodness of fit
Poisson
Negative Bin.

 2-A-9

4. The system presents the following question to the user:

4.1 How many years would you like for your simulation?
4.1.1. The user input the number of years for simulation. For

example, 100,000 years.

5. The system uses IMSL routines to generate a random sample from the chosen
distribution obtained in Step 3 and generates a number of simulated years (SY0 - SYn)
and their associated numbers of hurricanes (SH0 - SHn).

Output from Step 5:

Table 2.1.8: Simulated years and their associated numbers of hurricanes

Year (SY0 - SYn) # Hurricanes (SH0 - SHn)

SY0 SH0
SY1 SH1
SYi SHi
SYn SHn

6. The system stores simulated years and number of hurricanes (see Table 2.1.8).

Note:

Steps-2 – 4 are repeated for each year range that the user requests.

 2-A-10

2.1.3. AHO Interface Design Requirements

This part designs the GUI (Graphic User Interface) for the Annual Hurricane Occurrence
(AHO). The user interface design aims at providing a friendly and easy-to-use
environment for the users to log in to the PHRLM system and access the AHO use case.

A. The first step: the user logs in the system

Figure 2.1.2 depicts the Login Interface. The user enters a User ID and a corresponding
password, and then submits the login request to the system. The system verifies the user
ID and password. If the User ID and Password are correct, the access right is granted to
the user; otherwise, the system gives the "invalid user/password" error message and asks
the user to reenter the User ID and password.

U ser ID : FD O IU SER

Passw ord : ********

L ogin

Figure 2.1.2: Login interface

B. The second step: the user selects a year range

Figure 2.1.3 illustrates the Year Range Selection Interface. The system presents a list of
year ranges to the user. The valid year ranges are shown at Table 2.1.9. The user selects a
year range and submits to the system.

1851-2003
1900-2003
1944-2003
ENSO
Multi-Decadal

SUBM IT

Year Range Selection

QUIT

Figure 2.1.3: Year range selection interface

 2-A-11

Table 2.1.9: list of the valid year ranges

Valid Year Range
1851-2003
1900-2003
1944-2003
ENSO
Multi-Decadal

C. The third step: the user specifies the number of years for simulation

Figure 2.1.4 shows the Simulation Selection Interface. The system displays the year
range selected at step 2. The user then specifies the number of years and submits to the
system.

1851-2003 Year Range Selected

10000 Number of Years for
Simulation

SUBM IT QUIT

Figure 2.1.4: Simulation selection interface

D. The fourth step: simulation results display

Figure 2.1.5 portrays the Simulation Results Display Interface. The system displays the
year range selected at step 2, the probability model used, the number of simulated years
user designated at step 3 and the simulation results.

Probability Model

1851-2003 Year Range

Negative Binomial

Number of
Simulated Year 10000

QUIT NEW SIMULATION

Simulated Years

N
um

be
r

o
f s

to
rm

s

Figure 2.1.5: Simulation results display interface

 2-A-12

2.1.4. Computer Model Design

2.1.4.1. Use Case View of AHO

A. Actors:

There is one actor (scientists) in AHO. Scientists use this use case to find a statistic
modal with satisfying goodness of fit, conduct the simulation and observe the simulation
results.

B. Use Case:

Use case AnnualHurricaneOccurrence is used to estimate the probability distribution for
annual hurricane occurrence and to generate a series of simulated years along with their
associated numbers of hurricanes occurrences with respect to the probability distribution
that has the best goodness of fit.

C. Use CaseDiagram:

Figure 2.1.6 shows the use case diagram for AHO.

AnnualHurricaneOccurrenceScientist

Figure 2.1.6: Use Case Diagram for AHO

2.1.4.2. System Design

This part describes the system design. Appropriate diagrams are provided to describe the
system classes, activities and the overall flow chart of AHO.

 2-A-13

2.1.4.2.1. Program Flow Chart of AHO

The overall flow chart of AHO is illustrated as follows.

User
selects
the
dataset

System gives
out selection

form

System gets
data from
database

Oracle DB

 Begin

Fit
distribution

IMSL
library

Simulation
with

poisson

Simulation
with

binomial

Yes Poisson
is better

No

Display
result graph

to user

System
calculates the

mean,
standard

deviation, etc

Figure 2.1.7: Flow chart of AHO

 2-A-14

2.1.4.3. Class Diagram and Description

A. Class Diagram

Client

loginCheckBean
ID
PassWD

SetID()
SetPassWD()
getID()
getStatus()
login()

Da tabase
strQuery

registerDriver()
getConnection()
CreateStatement()
executeQuery()

DSSe lecti
on

submit()

submit

SimuSele
ction

submit()

submit

getDBean
DSName
StrQuery
ResultSe t
DataTab le

setDSName()
setQuery()
getDSName()
getSize()
getDataTab le()
getData()

dataEntry
Year
StormNo

setEntry()
setYear()
setStormNo()
getYear()
getStormNo()

CalMVSBean
mean
standDevia
variance

getMean()
getVariance()
getStandDeviation()
process()

plotSimula
tion

submit()

myPlot

init()
graphIt()
setCoord()
forward()
backward()
switch()

NumericSet
set
length
maxlength

getlength()
getmax()
setfromstring()
value()

plotApplet

App le t

Applet()
destroy()
getAppletContext()
getAppletInfo()
getAudioClip()
getAudioClip()
getCodeBase()
getDocumentBase()
getImage()
getImage()
getLocale()
getParameter()
getParameterInfo()
init()
isActive()
newAudioClip()
play()
play()
resize()
resize()
setStub()
showStatus()
start()
stop()

(from applet)

myButton
buttonName

action()

Button

Button()
Button()
addActionListener()
addNotify()
getActionCommand()
getLabel()
paramString()
processActionE vent()
processEvent()
removeActionListener()
setActionCommand()
setLabel()

(from awt)

fitDistriBean

se tParam()
fitDistribution()
doS imulation()
Compare()

MathModel

poisson()
binomial()
simulation()

IMSL Library

IMSL_Poisson()
IMSL_Binomia l()
random poisson()
random binomial()

Figure 2.1.8: Class Diagram for AHO

 2-A-15

B. Classes Descriptions

This section addresses the major classes used and their functionalities.

� Client:
This class is a virtual class. It refers to the user who uses this system. No need to
implement it.

� LoginCheckBean:
This class is for the user login authorization purpose. It gets the username (ID)
and the associated password, verifies the information with data stored in Oracle
Database.

� DSSelection/SimuSelection:
This class is used to get the user’s selection of year range. It then passes control to
the classes that can get data from database and do the simulation.

� GetDBean:
This class is used to get hurricane data from Oracle database.

� DataEntry :
This class is used to hold data records.

� CalMVSBean:
This class is used to calculate statistic characteristics of a data set such as mean
value and standard deviation.

� Database:
This class is an abstract concept. It includes all the systems that can provide
database operations.

� FitDistriBean :
The class is used to interface with the actual math model.

� MathModel :
This C++ class using IMSL library functions to fit distribution and generate the
simulation result. It communicates with the Java main application using JNI
interface.

� IMSL Library :
This is a statistical and mathematic functions library provided by IMSL.

� PlotSimulation:
This class is used to visualize the simulation result.

 2-A-16

� MyPlot :
This class gets the simulation result, and draws the simulation result figure. It also
provides buttons to allow the end user to change the graph type, move
back/forward in the figure.

� NumericSet:
This class is used to store the simulation result data; it is used by the class
myPlot.

� MyButton :
This class is for new button customization, which is used by the class myPlot to
let the end user to change the graph type, move back/forward in the result figure.

� PlotApplet:

This class provides some basic functions in plotting and is the base class for class
myPlot. (Note: This class is implemented by MIT CS department.)

� Applet/Button:
A base class provided by Java API.

 2-A-17

2.1.4.4. Sequence Diagram

Sequence diagrams are helpful in understanding the relations among the classes. This
section shows sequence diagrams that describe four major activities in use case AHO,
which are login, fit distribution , simulation and plot respectively.

A. Login Process

client : Client checkerBean :
loginCheckBean

database :
Database

login()
registerDriver()

getConnection()

executeQuery()

getStatus()

Figure 2.1.9: Sequence diagram for login process

• Step 1: The user enters the user ID and password in the web browser and click
“login” button

• Step 2: The login information is passed to the loginCheckBean class, which

communicates with the database. If the password or username is not matched with
the information stored in the database, the user gets an error message and is asked
to login again. If the username and password are matched, the user can continue
to access the system.

 2-A-18

B. Simulation Process

client : Client dataSelect :
DSSelection

simulation :
SimuSelection

calculateParam :
CalMVSBean

getData :
getDBean

database :
Database

submit()
submit() getData() registerDriver()

getConnection()

executeQuery()

process()

Figure 2.1.10: Sequence diagram for simulation process

• Step 1: The user selects a data set (e.g. a year range), and then clicks the

“Submit” button.

• Step 2: The dataSelect object captures the data set selected by the user, and then
calls the simulation object to get the data from database and processes the
retrieved data.

• Step 3: The simulation object connects with the database, creates the query, and

then gets the desired data from database.

• Step 4: The simulation object calls the calculateParam object to calculate some

statistic values of the data set such as mean, variance and standard deviation
values.

• Step 5: The simulation object returns the mean, variance and standard deviation

values back to the user (displayed in the web browser).

 2-A-19

C. Fit Distribution Process

s i m u la ti o n :
S i m u S e le c t i o n

fi tD i s tr i b u t i i o n :
f i tD i s tr iB e a n

m a th M o d e l :
M a th M o d e l

IM S L : IM S L
L i b r a ry

s e tP a ra m ()

f i tD i s tr i b u t i o n ()
p o i s s o n ()

IM S L _ P o i s s o n ()

b in o m ia l () IM S L _ B i n o m i a l()

d o S i m u la t i o n () s im u la t i o n ()

r a n d o m p o i s s o n ()

Figure 2.1.11: Sequence diagram for fit distribution process

• Step1: The simulation object passes the calculated mean, variance, standard
deviation values and other parameters to the fitDistribution object.

• Step 2: The simulation object then calls the fitDistribution object to fit the

distribution using Poisson and negative binomial model and then identifies the
better one.

• Step 3: The fitDistribution object achieves the distribution-fitting task by calling

the math models written in C++.

• Step 4: The math model calls the IMSL libraries to get the results.

• Step 5: After identifying the better model, the simulation object calls the

fitDistribution object to do the actual simulation.

• Step 6: The math model does the actual simulation work and return the result set

back to the original caller.

 2-A-20

• D. Plot Process

client : Client p lo tObject :
p lo tSimula tion

plot : myPlot plotset :
NumericSet

buttonobject :
myB utton

submit() init() se tfromstring()

action()

graphIt()

Figure 2.1.12: Sequence diagram for plot process

• Step 1: The user submits request for result visualization.

• Step 2: The plotObject object initializes an instance of myPlot class to do the
plot task.

• Step 3: The initialized plot object creates a plotset object to store the result

obtained from the simulation. Also, it creates several buttons (instance of
myButton class) to give user the choices to move forward/backward, or change
the figure type.

• Step 4: The plotObject object then calls the plot object to plot the resulted

simulation data set, and displays it to the user (In user’s web browser).

 2-A-21

2.1.5. Implementation of AHO

The implementation for use case AHO has already been finished. The demo is online at
http://www.cs.fiu.edu/PHRLM.

2.1.5.1. Login page:

The users need a username and a password to access the FIU/IHRC Public Hurricane
Risk and Loss Model. Following is the snapshot of the web page for login.

Figure 2.1.13. Snapshot of the Login page

If the username/password is wrong, error message is given and the user is required to
input the username and password again.

 2-A-22

Figure 2.1.14. Snapshot of the Login Error Message

2.1.5.2. AHO page:

If the login is successful, the user can go to access Use Case One: Annual Hurricane
Occurrence via selecting the option “Online Demo of Use Case 1” in the Service
Selection Page as illustrated below.

Figure 2.1.15. Snapshot of the service selection page

 2-A-23

AHO is used to estimate the probability distribution for number of hurricanes per year
and to generate a number of simulated years with its associated number of hurricanes
based on the estimated probability distribution. Several steps are conducted to achieve
that task.

Step 1:

To accomplish the above task, first the users need to select a year range. The Dataset
Selection Page is designed for that purpose, which is the first page for AHO. Figure
2.1.16 illustrates the snapshot of the Dataset Selection Page.

Figure 2.1.16. Snapshot of the first web page for AHO

A dropdown list containing all valid year ranges is provided to make the selection simpler
to the users and to avoid any illegal year range specified by the user. There are five
possible year ranges: 1851-2003, 1900-2003, 1944-2003, ENSO, and Multi-Decadal. (For
detailed explanation of these terms, see to AHO design requirement part.) The user
selects a year range from the dropdown list and submits his/her selection to the system.

 2-A-24

Step 2:

Upon the user’s year-range selection, the system constructs a query and questions the
underlying Oracle database to get the data set pertaining to the user’s year-range
selection.

A statistical computation is carried out upon the retrieved data set to analyze its
numerical characteristics; several statistical values of that data set such as mean value,
variance and standard deviation are derived through this process and are displayed in the
dynamically generated web page. Based on these retrieved historical data, the system also
utilizes several stochastic probability distributions to fit the occurrence frequency.

Figure 2.1.17: Snapshot of the second web page for AHO

The snapshot of the second web page is given in Figure 2.1.17. The upper part of the
Simulation Selection Page has a table, which contains some statistical features about the
selected data set. The lower part of the Simulation Selection Page offers the user a
platform to compose and submit the simulation request. The user can specify his desired
number of years for simulation. The simulation request is submitted to the system.

 2-A-25

Step 3:

The system conducts the simulation with respect to the probability distribution that has
the best goodness of fit and the number of simulated years that is determined by the user
in the previous step. A series of years and their associated number of hurricane
occurrences in that year are generated.

There is a new page for the simulation purpose; in that page the simulation result is
plotted to offer better visual effect. The result is visualized 100 pairs of data per screen;
the user can use the forward button to browse more and use the backward button to go
back. Two different types of plots are supported: bar chart and line chart. Figure 2.1.18 –
2.1.19 illustrate respectively the snapshots of the bar plot example and line plot example.

Figure 2.1.18: Example of bar plot of the simulation result

 2-A-26

Figure 2.1.19: Example of line plot of the simulation result

 2-B-1

Section 2.2

Storm Genesis Time (SGT)
Use Case II

 2-B-2

2.2.1 General Description Of SGT

SGT, short for Storm Genesis Time, is the second use case of the FIU/IHRC Public
Hurricane Risk and Loss model. It aims at estimating the probability distribution for
storm genesis time and generating the genesis time of a series of simulated hurricanes
generated in Use Case One.

In this use case, only the historical hurricanes falling in threat area are considered. For the
detailed documentation on threat area, please check use case 1 (AHO) documentation.

 2-B-3

2.2.2 SGT General Requirements

Name: Storm Genesis Time (Threat Area Only)
Description: The end user enters a range of years and the system generates

the following:
(1) A probability distribution for SGT (Storm Genesis Time).
(2) Genesis time of simulated hurricanes generated in Use Case

One.

1. The end user enters a year range from the following selections:
1851-2003
1900-2003
1944-2003
Multi-Decadal
ENSO

NOTE:
Neutral Years: All non-ElNino and non-LaNina years are considered Neutral or

average.
Multi-Decadal: Warm (and active), Cold (quiet). See Table 2.1.1 for a listing of

Multi-Decadal year ranges.
ENSO: EL Nino, La Nina; see Table 2.2.2 for a listing of El Nino and La

Nina years.

Table 2.2.1: Matrix of Multi-Decadal year ranges and temperature

Temperature (Warm) Temperature (Cold)
1870-1902 1903-1925
1926-1970 1971-1994
1995-2003

Table 2.2.2: Matrix of El Nino and La Nina years

El Nino - Year La Nina - Year
1925 1933
1929 1938
1930 1942
1940 1944
1941 1945
1951 1948
1953 1949
1957 1950
1963 1954

 2-B-4

1965 1955
1969 1956
1972 1961
1976 1964
1977 1967
1982 1970
1986 1971
1987 1973
1990 1974
1991 1975
1993 1978
1994 1988
1997 1995

 1998
 1999
 2000
 2002

2. Based on the user input from step 1, the system queries the database and the query

results contain fix data for all the hurricanes. The query results consist of 9 columns.
The names of these columns are as following: Storm ID, Storm Name, Genesis Date,
Julian Date, Genesis Fix Time, Lat, Lon, Max Wind Speed, and Pressure. For
example, in year 1851 there was one hurricane in the threat area. Table 2.2.3
illustrates the content of the returned data.

Table 2.2.3: Record of First Fix Data

Storm
Id

Storm
Name

Genesis
Date*

Julian
Date

Genes
is

Time

Lat Lon Max
W/S

Pre

4 Not Named 20-Aug-1851 2397355 180000 21.9 80.4 70 0

3. The system uses data from the output of step 2 to calculate the hours between the

genesis of each hurricane (in 6 hour resolution) and 0:00 hours May 01. The system
generates a new matrix consisting of data from the output of step 2 and the calculated
hours of each hurricane. The matrix also contains 9 columns. The column names are
the same as those in step 2 (See Table 2.2.4).

Each day storm data is collected in the one of the following intervals: I1=[0:00,
6AM), I2=[6AM, 12 Noon), I3=[12Noon, 6PM), I4=[6PM, midnight). For the sake of
simplicity, each interval is associated with its starting point. So, for example, since
the hurricane with Storm ID 4 happened in the interval I3 on August 20, 1851, the

 2-B-5

number of hours recorded for this hurricane will be 24*(2397355 (Julian date of 20-
Aug-1851) - 2397243 (Julian date of 1-May-1851)) + 18 = 2706.

Table 2.2.4: New Record of First Fix Data

Storm
ID

Storm
Name

Genesis
Date*

SGT Genesis
Time

Lat Lon Max
W/S

Pre

4 Not Named 20-Aug-1851 2706 180000 21.9 80.4 70 0

4. The system stores in the database the calculated hours between the genesis of

hurricanes and 0:00 hours May 01.

5. The system uses the data from the output generated in step 3 to estimate the

probability distribution of SGT. In the following, we denote the random variable of
SGT by T .

5.1. The system calculates the number of years of the year range the user

entered at step 1. Let it denoted by M.
5.2. The system calculates the number of hurricanes in each year in the

year range. Let in denote the number of hurricanes in yeari .

5.3. The total number of hurricanes we have is ∑=
i

inN

5.4. The system sorts all the hurricanes in ascent order according to their
SGT. Assume now that these hurricanes occurred at
times WTTTT ≤≤≤≤ L3210 , where NW ≤ . The system also

calculates the number of hurricanes that occurred at time iT . Let it

denoted by if .

5.5. The system calculates the empirical CDF (Cumulative Distribution
Function) for T , an estimate of the true CDF () ()tTPtF ≤= using the
following equation:

() 1,,2,1, if

 if ,1

 if ,0

1
21

1

−=<≤

>

+++
<

= + WiTtT

Tt
N

fff
Tt

tF ii

W

i
N L

L

5.6. The system calculates the smooth estimator of ()tF . For a suitable

kernel function K and a positive bandwidth sequence()thN , (Note that

Nh is a function of the point t and the sample sizeN).

 2-B-6

5.7. This estimator, denoted by NF̂ is defined as:

() () () ()() ()

()∑

∫

=

∞

 −
=

−=

W

j N

j
j

NN
N

N

th

Tt
KS

dxxFthxtK
th

tF

1

*

0

1ˆ

Where jS is the jump of NF at jT , that is,

() () WjTFTFS jNjNj ,,3,2,1 L=−= − and ()11 TFS N= . Also ()uk *

is the integral of ()xK , that is, () ()∫
∞−

=
u

dxxKuk *

5.8. In the above function, one has a wide variety of choices available for

the kernel function and the corresponding bandwidth. We will try the
following kernel function and bandwidth:

a) The kernel function is the Epanechnikov kernel K , that
is,

() () 55,51543 2 <<−−= uxxK

b) The LOCAL bandwidth ()
31

1
*

2

=
N

S
thN , where S is

the standard deviation of the calculated SGTs of all the
hurricanes.

6. The system presents a list of simulated events sets.
7. The user selects a set of simulated events and submits it to system.

8. The system checks the selected simulated events. If they already exist in database, the

system query the database to get the data of selected simulated years; or, the system
triggers Use Case One (AHO) to generate a set of simulated events.

9. The system uses IMSL routines to generate the SGT for each hurricane of the

selected simulated events. The selected simulated events give the number of
hurricanes in a given year. Assume there are iM hurricanes in yeari . The system will

sample iM hurricanes from CDF ()tFN
ˆ to get the genesis time for those iM

hurricanes in yeari .

10. The system stores the generated SGT into database.

11. The system displays the generated SGT and the corresponding simulated events on

screen.

 2-B-7

Note:

Steps-2 – 11 are repeated for each year range that the user requests.
Steps-7– 11 are repeated each set of simulated events the user selects at
step 6.

 2-B-8

2.2.2.1 SGT Interface Design Requirements

This part designs the GUI (Graphic User Interface) for the Storm Genesis Time (SGT). It
describes the process by which scientists or statisticians log in to the PHLRM system to
view the genesis time of events generated in Use Case One (AHO) if they exist or to
trigger the events if they do not exist.

A. The First step: the user logs in the system

Figure 2.2.1 is the Login Interface. The user enters the User ID, enters a password and
submits to the system. The system checks the user name and password and let the user
log into the system if the User ID and Password are correct. Or, the system gives the
"invalid user/password" error to the user and asks the user to reenter the User ID and
password.

U ser ID : FD O IU SER

Passw ord : ********

L ogin

Figure 2.2.1: Login Interface

B. The second Step: the user selects a year range

Figure 2.2.2 is the Year Selection Interface. The system presents a list of year ranges to
the user. The correct year ranges are shown at Table 2.2.5. The user selects a year range
and submits to the system. The system also should provide the user the option to go back
to the first step or to quit the system.

1851-2003
1900-2003
1944-2003
ENSO
Multi-Decadal

SUBM IT

Year Range Selection

GO BACK QUIT

Figure 2.2.2: Dataset Selection Interface

 2-B-9

Table 2.2.5: Valid year ranges

Valid Year Range
1851-2003
1900-2003
1944-2003
ENSO
Multi-Decadal

C. The third step: storm genesis time results display

After the user submits the selected year range, the system generates the storm genesis
time for each simulated hurricane, store the results into database and display the success
message to the user if succeeded or display error message when failed. The system also
should provide the user the option to go back to the third step, to start a new operation or
to quit the system. Figure 2.2.3 is the Simulation Results Display Interface in the case of
success. Figure 2.2.4 is the Simulation Results Display Interface in the case of success.

1851-2003 Year Range

GO BACK QUIT NEW OPERATION

System has successfully generated 10,000 simulated
storms and stored the results into database.

Figure 2.2.3: Storm Genesis Time Results Display Interface (in case of success)

 2-B-10

1851-2003 Year Range

GO BACK QUIT NEW OPERATION

System failed to generate 10,000 simulated storms and
no results were stored in database.

Figure 2.2.4: Storm Genesis Time Results Display Interface (in case of failure)

 2-B-11

2.2.3 Computer Model Design

2.2.3.1 Use Case View of SGT

A. Actors:

There is one actor (scientists) in SGT. They will use this use case to estimate the
probability distribution model and to generate the storm genesis time of the simulated
hurricanes generated in Use Case One (AHO).

B. Use Case:

SGT is used to estimate the probability distribution model for HBG (Hours between
Genesis) and generate the genesis time of a series of simulated hurricanes generated in
Use Case One.

C. Use Case Diagram:

StormGenesisTimeScientist

Figure 2.2.5: Use Case Diagram for SGT

2.2.3.2 System Design

This part includes the appropriate diagrams to describe the system classes, components,
activities and the overall flow chart of SGT.

 2-B-12

2.2.3.3 Program Flow Chart of SGT

Here we give out the flow chart of SGT. we could see clearly from the chart the relations
of different parts.

User
selects the
dataset

System gives out
selection form of

dataset

System gets data
from database

 Begin

IM SL
library

Save the SGT
into database

System estimates
the CDF of HBG

System
generates the

SGT

Oracle DB

Display result
graph to user

Figure 2.2.6: Flow chart of SGT

 2-B-13

2.2.3.4 Class Diagram and Description

A. Class Diagram

Client

loginCheckBea
n

ID
Passwd

setID()
setPasswd()
getID()
getStatus()
login()

Database

strQuery

registerDrive()
getConnection()
createStatement()
executeQuery()

SGTIndex

submit()

SGTSimul
ation

submit()

submit

submit

getSGTDataBean

DatasetName
strQuery

setDatasetName()
setQuery()
getDatasetName()
getQuery()
getSize()
getDataTable()
getData()

SGTDataEntry

julianDate
genesisTime

setEntry()
setJulianDate()
setGenesisTime()
getJulianDate()
getGenesisTime()

SGTBean

sgtDataArray

generateSGT()
getSGTArray()

MathModel

KNFunc()
IKNFunc()
XXKNFunc()
SMCDF()
XXIKNFunc()
BDWFunc()
SGTSimulation()
genSGTValues()

IMSL Library

IMSL_Table_Setup()
IMSL_Seed()
IMSL_Random_General()

Figure 2.2.7: Class Diagram for SGT

 2-B-14

B. Classes Descriptions

Here we would like to give a brief introduction of the functions of the classes we use.
Generally, our design follows the flow chart we developed.

� Client:
A virtual class. It means the user who uses this system. Or, we could say, it is the
web browser of user machine. No need to implement it.

� LoginCheckBean:

This class is in charge of user login. It gets the username (ID) and password the
user enters, and then checks with the information stored in Oracle Database. We
will explain the login process later with a sequence diagram.

� SGTIndex
This class is used to get user selections (e.g. year range). It will then pass control
to classes that will get data from database.

� SGTSimulation:
This class will call other classes to get the needed data from database, and then
call the related classes to generate the SGT, and then display the results using a
table on end user’s web browser.

� getSGTDataBean:
The true class to get related hurricane information from database.

� SGTDataEntry:
It is a class served for get the Julian Date and Genesis Time.

� Database:
It is an abstract concept. It includes all the system provided database operations.

� SGTBean:
The class is used to interface with the true math model.

� MathModel :
The C++ class using IMSL library functions to fit distribution and generating the
simulation. It will communicate with the Java main application using JNI
interface.

� IMSL Library :
Library functions provided by IMSL.

 2-B-15

2.2.3.5 Activity Diagram

Figure 2.2.8 depicts the activity diagrams consisting of the major activities in Use Case
Two. This activity diagram offers a clear and direct understanding of the business logic
of Use Case Two.

 System gives out a list

of dataset
s

User selects a
dataset

System queries database
to get

data

The selected
simulation events
exist?

Yes No

System gives out a list
of simulated events

sets

User selects a
simulated events

set

system queries database to get
the selected simulation

events
system triggers (AHO)
to generate a set of simulated

events

system generates the SGT
of the selected simulated
events

System estimates the
probability distribution model of

HBG

system displays
the generted SGT to
user

system saves
the generated SGT

in...

Figure 2.2.8: Activity Diagram for SGT

 2-B-16

2.2.3.6 Sequence Diagram

Similar to use case one, we will give out the sequence diagrams for the three major
activities in use case two, which are login, simulation and generate genesis time.
Because the login process is the same for all use cases, the login process is the same as in
use case one.

A. Login Process

client : Client checkerBean :
loginCheckBean

database :
Database

login()
registerDriver()

getConnection()

executeQuery()

getStatus()

Figure 2.2.9: Sequence diagram for login process

• Step1: The user enters its username and password in the web browser and click
“login” button

• Step 2: This information is passed to the loginCheckBean class, which really

communicates with the database. If the password or username is not matched with
the information stored in the database, the user will get an error message and be
asked to login again. If the username and password are matched, user can
continue to access all use cases of the system.

 2-B-17

B. Simulation Process

client : Client dataSelection :
SGTIndex

simulation :
SGTSimulation

genSGTData :
SGTBean

getSGTData :
getSGTDataBean

database :
Database

submit() submit() getData()

registerDrive()

getConnection()

executeQuery()

generateSGT()

Figure 2.2.10: Sequence diagram for simulation process

• Step1: The user selects the data set (e.g. 1851-2001), and then clicks the “Submit”

button.

• Step 2: The dataSelection object verifies the data set the user selected, and then
calls the simulation object to get the related data from database.

• Step 3: The simulation object will call the getSGTData object, which will

connect with the database, create the query, and then get the desired data from
database.

• Step 4: The simulation object will call genSGTData object to generate the

SGTs.

 2-B-18

C. Generate Genesis Time

genSGTData :
SGTBean

mathmodel :
MathModel

IMSL : IMSL
Library

genSGTValues()
IMSL_Table_Setup()

IMSL_Seed()

IMSL_Random_General()

Figure 2.2.11: Sequence diagram for simulation process

• Step1: The genSGTData object calls the mathmodel object to generate the
SGTs.

• Step2: The mathmodel object will do all the pre-process work and then pass the

related parameters to the IMSL library functions.

• Step3: The IMSL library functions will create the related data and then pass the
data back to the mathmodel object. Then an array will be returned to the
genSGTData object that contains the generated SGTs.

 2-B-19

2.2.4 Implementation of SGT
Currently the implementation for Use Case two (SGT) has been finished. The demo is
online at http://www.cs.fiu.edu/PHRLM.

2.2.4.1 Login page:

The users need a username and a password to access the FIU/IHRC Public Hurricane
Risk and Loss Model. Following is the snapshot of the web page for login purpose.

Figure 2.2.12. Snapshot of Login page for SGT

If the username/password is wrong, error message will show and the user is required to
input the username and password again.

 2-B-20

Figure 2.2.13. Snapshot of the Login error page for SGT

2.2.4.2 SGT page:

If the login is successful, the user can go to access Use Case One: Annual Hurricane
Occurrence via selecting the option “Online Demo of Use Case 2” in the Service
Selection Page as illustrated below.
Use Case Two is used to estimate the storm genesis time and generate corresponding time
for simulated hurricanes which are obtained from Use Case One: Annual Hurricane
Occurrence. Several steps are conducted to achieve that task.

 2-B-21

Figure 2.2.14. Snapshot of the Service Selection Page

Step 1:

To accomplish the above task, first the users need to select a year range. The Dataset
Selection Page is designed for that purpose, which is the first page for Use Case Two.
Figure 2.2.15 illustrates the snapshot of the Dataset Selection Page.

 2-B-22

Figure 2.2.15. Snapshot of the first web page for SGT

A dropdown list that is consisted of some possible year ranges is offered to make the
selection simpler to the users and, on the other side, to avoid the user type in any wrong
year range. There are five possible choices: 1851-2003, 1900-2003, 1944-2003, ENSO,
and Multi-Decadal. (Please see to user requirement documentation for detailed
explanation of these terms.) The user then selects a year range from the dropdown list and
submits his/her selection to the system.

Step 2:

Upon the user’s year-range selection, the system constructs a query and questions the
underlying Oracle database to get the data set pertaining to the user’s year-range selection
which contains the hurricanes and their related Julian date, the first fixed time and so on.

The system uses the specific stochastic approaches to fit the storm genesis time based on
the historical data retrieved from the Oracle database according to the user’s year-range
selection. Then the system generates a sequence of genesis time for the simulated
hurricanes produced in Use Case One: Annual Hurricane Occurrence. Figure 2.2.16 and
2.2.17 depict the snapshot of some final result after running SGT. The first 100 storm
genesis time obtained was displayed in a table for both debugging and demonstrating
purpose.

 2-B-23

Figure 2.2.16: Snapshot of the result page for Use Case Two

Figure 2.2.17: Snapshot of the result table in the result page for Use Case Two

Section 3

Wind Field Module
Module II

 3-A-1

Section 3.1

Storm Track Model
Use Case III

 3-A-2

3.1.1 General Description of Storm Track Model

Strom track model is aimed at generating the storm tracks for simulated storms based on
data obtained from Use Case II and stochastic algorithms.

The storm track model consists of two main components: the empirical probability
distribution generator (GENPDF), and the storm track generator (STORMGEN).
Descriptions of these components are given below.

 3-A-3

3.1.2 Technical Description of the Storm Track Model

3.1.2.1 The empirical probability distribution generator (G ENPDF)

This component derives the probability distribution functions (PDFs) from the historical
record (HURDAT) that are subsequently used by the STORMGEN track generator. The
PDFs are conditional probabilities, as they depend on location, time of season and other
parameters. The PDFs are empirical in that they are obtained by discrete binning. The
following PDFs are derived:

• Initial storm speed
• Initial storm direction
• Initial storm intensity (pressure)
• Change in storm speed
• Change in storm angle
• Change in storm intensity (pressure and relative intensity)

The bin size and location of these PDFs are defined in a header file“genpdf.h” which is
used by both GENPDF and STORMGEN. The bins may be linearly on nonlinearly
spaced. A mapping function is available which allows nonlinear mapping so that higher
resolution (of a particular parameter) may be obtained.

Storm genesis is defined to occur when a storm first enters or appears within the threat
area and has a minimum wind speed of 64 kt. The threat area is described in Section 2.1.
The HURDAT database contains a variety of storm report types:

• “E” - extratropical
• “L” - low
• “D” - depression
• “S” - subtropical
• “W” - wave
• tropical – pressure reports
• tropical – wind reports

All non-tropical storm reports (“E”,”L”,”D”,”W”,”S”) are excluded in the intensity
PDFs. Pressure reports are used whenever available. If a pressure report is not available,
then an attempt is made to interpolate from reports that are within a 24 hour period
including the target report. Otherwise, pressure is obtained using an empirical wind-
pressure relation (see Appendix A). Intensity changes are only computed for similar
report types – observed pressure or wind-derived pressures. Mixing observed and wind-
derived pressures was found to create spurious pressure changes. Pressures over land
were excluded.

 3-A-4

Due to sparsity of data in some regions or parameter space, the PDFs may be coarsened
(bins widened) so that a sufficient number of observations are available to create a robust
PDF. This is done in the RESIZE function in GENPDF.

Pressure changes are converted to relative intensity changes. The relative intensity
calculation is described in Appendix B. PDFs for pressure and relative intensity are
created, though only one is used in STORMGEN. By default, the relative intensity PDF
is used by STORMGEN.

♦ Input Data
GENPDF requires the following input files:

• The HURDAT database
• A control file which contains the dates of the historical record to use
• Land Mask file – the land mask is based on USGS land use data.
• Outflow temperature for the relative intensity calculation (see Appendix B)
• Sea surface temperatures for the relative intensity calculation (see Appendix B)

♦ Output Data

• Initial storm location, motion and intensity of all selected storms
• Initial storm location, motion and intensity PDFs
• Storm motion and intensity change PDFs
• Diagnostic output file

3.1.2.2 The storm track generator (STORMGEN)

STORMGEN generates the stochastic tracks based on the PDFs derived by GENPDF.
The initial conditions may either be sampled from the initial storm location, motion and
intensity PDFs or taken from observed initial conditions. Both these input data are
created by GENPDF.

The model uses a 1-hour time step, which requires interpolation of the 6-hour report
changes used in the storm motion change and intensity PDFs. Currently, storm motion is
persisted during 6-hour intervals, and the pressure is linearly interpolated.

The basic flow of the model is as follows:

1 If using specified initial conditions, read in initial storm location, date, motion and

intensity. If using random initial conditions, read in storm genesis time (see Use Case
for Hurricane Genesis, SGT) and sample initial storm location, motion and intensity
PDFs. Add a uniform random term equal to the width of the location PDF bin size, so
that the storm may form anywhere within the bin.

2 Sample storm parameters Rmax and Beta.
3 Update storm position using current motion

 3-A-5

4 If at 6-hour interval, sample new motion and intensity change. Pressure tendency is
interpolated to one-hour tendency.

5 Determine if landfall or currently over land. If yes, decay the storm using the decay
model described Section 5. Otherwise, update pressure.

6 Check if maximum relative intensity is exceeded, cap if necessary. If pressure is
greater than 1011 mb, dissipate storm.

7 Calculate new Rmax, Beta.
8 If storm outside threat area, terminate. Otherwise go to step 3.
9 After storm track is generated, it is trimmed based on the distance criteria described

in the Use Case for Zip Code Criterion.

♦ Input Data

• Initial storm location, motion and intensity (if using specified initial conditions)
• Initial storm location, motion and intensity PDFs from GENPDF
• Storm motion and intensity change PDFs from GENPDF
• Hurricane genesis time (output from Use Case for Hurricane Genesis, SGT)
• Zip code locations (used for distance criteria described in Use Case for Zip Code

Criterion)
• Land Mask file
• Outflow temperature file (see Appendix B)
• Sea surface temperature file (see Appendix B)

♦ Output Data

• Track positions of stochastic storms in original HURDAT format (Note: small
changes are needed as the original format is not capable of handling large number
of storms)

• Track positions in special format for use in wind model.
• Landfall data for diagnostic purposes
• Diagnostic output file

3.1.2.3 Appendix A – Wind-Pressure Relation
An empirical wind-pressure relation is used to convert HURDAT wind reports to
pressure. The relation is dependent on region.

The relation is
If longitude is > 81.5W and latitude > 20N,

()1.773010.627/1013 W=P −
Else if latitude < 25 N,

()1.873712.016/1013 W=P −
Else if latitude < 35N,

()2.092914.172/1013 W=P −

 3-A-6

Else,

()2.307916.086/1013 W=P −

Where P is central pressure in mb and W is wind speed in kt.

3.1.2.4 Appendix B – Relative Intensity Calculation
The relative intensity calculation is based on Darling (1991). The calculation is as
follows:

()
() ()()

()
()

()()
() ()()aPdarhes+rh=b

PdatsrveesLve=a

ts=Lv

esrh=Pda

tsts=es

tsts=e

=rh

=rv

∗∗∗
∗∗∗−∗∗

−−∗

∗−
−−∗

−

/log1

1/

2732320.102.5

1013

29.5/273.17.67exp6.112

/to

0.80

461

6

Then solve for x in

()()bxa=x −− /1exp
 and then finally the relative intensity is given by

()() () ()()()esrhxesrh+Pmsl=RI ∗−−∗−− 10131/11013

3.1.2.5 Data Sources

This calculation requires as input the mean sea level pressure (Pmsl), which in our case is
the storm central pressure, the outflow (to) and sea surface temperatures (ts). The outflow
temperature is taken to be the monthly mean 100 millibar temperature derived by the
Climate Diagnostics Center (CDC) using National Center for Environmental Prediction
Center (NCEP) Reanalysis II data. This data is available online at
http://www.cdc.noaa.gov/ncep_reanalysis. The sea surface temperature data is monthly
mean Reynolds Optimal Interpolation Version 2 (OIv2) data (Reynolds et al., 2002).

 3-A-7

3.1.3 Computer Model Design & Implementation

3.1.3.1 Use Case View of Storm Track Model

A. Actors:
There is one actor, scientist.

B. Use Case:

Strom track model is aimed at generating the storm tracks for simulated storms based on
data obtained from Use Case II and stochastic algorithms.

C. Use Case Diagram:

Scientist W indSpeedCalUseCase

Figure 3.1.1: Use Case Diagram

StormTrackUseCase

 3-A-8

3.1.3.2 Storm Track Model Implementation

This model is implemented using FORTRAN language in Unix console-based
environment. This section includes the overall flow chart of Storm Track Model
Implementation.

3.1.3.3 Program Flow Chart of Storm Track

Initilize bins
Read

control file

Read
HURDAT

Desired year?

Interpolate pressures if possible, or
use wind-pressure relation

Pressure Report

Yes

No

In threat area and
hurricane?

Yes

HURDAT

Compute motion
change and bin

Bin initial motion and
intensity

Compute translation
speed and heading

angle

Yes

Pressure report
compatible?

Compute change in
intensity

Yes
Compute relative
intensity and bin

Output for
Stormgen

Compute PDFs
Resize bins if

needed

 3-A-9

3.1.3.4 Storm Track Output

12
storm00004 8/24/ 1992 01:00

4 1992 0824 05 00 25.4 79.3 937 19 1.4772400 0
4 1992 0824 06 00 25.4 79.3 937 19 1.4772400 0
4 1992 0824 07 00 25.4 79.6 939 18 1.4727061 0
4 1992 0824 08 00 25.4 80.0 942 18 1.4681721 0
4 1992 0824 09 00 25.5 80.4 945 18 1.4636379 0
4 1992 0824 09 05 25.5 80.3 922 19 1.5048399 1
4 1992 0824 10 00 25.5 80.8 948 18 1.4591039 3
4 1992 0824 11 00 25.6 81.2 951 17 1.4545699 3
4 1992 0824 12 00 25.6 81.2 951 17 1.4545699 2
4 1992 0824 13 00 25.6 81.5 950 18 1.4541880 0
4 1992 0824 14 00 25.6 81.9 949 19 1.4538059 0
4 1992 0824 15 00 25.7 82.3 948 20 1.4534241 0

3.1.4 References

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An
Improved In Situ and Satellite SST Analysis for Climate. J. Climate, 15, 1609-1625.

 3-A-10

 3-B-1

Section 3.2

Wind Field Model
Use Case IV

3.2 sds

 3-B-2

3.2.1 General Description Of Wind Field Model

Wind Field model aims at estimating the terrain wind speed with respect to the actual
terrain (based on land use – land cover). To be precise it calculates wind speed time
series for each of the zip code affected by the storm. The time series includes the date,
landfall time of the storm. It also includes the zonal wind speed (m/s), surface wind speed
(m/s), and the wind direction in degrees at regular time intervals.

 3-B-3

3.2.2 General Requirements of Wind Field Model

Name: Wind Speed Model
Description: The user enters Category, Year, Date, Time, Latitude, Longitude, Centre
pressure, Rmax, Holland B and lsflg for each of hourly fixes of the storm. The system
generates the following:

1. Landfall or bypassing location (i.e. longitude/latitude) of storm
2. Maximum open terrain (OT) wind speed/time/direction anywhere in the storm
3. Maximum Marine (MA) Exposure at landfall or bypassing position
4. Maximum wind speed/time/direction at each zip code affected by the storm

1. The end user enters the input file as the following format:

<number of fixes>
<storm Number><m/d/ yyyy > <hh: mm>
<storm category><year><mmdd><hh><minute><latitude><longitude><center pressure><Rmax><Holand> <lsflg>

Example:
13
storm00001 8/24/ 1992 05:00
4 1992 0824 05 00 25.4 79.3 937 19 1.4772400 0
4 1992 0824 06 00 25.4 79.3 937 19 1.4772400 0

2. Based on the input data from step 1, the model generates the output as the following:

 Given below a partial output file showing the wind field for some of the zip codes
affected by the storm Andrew while the original file contains wind fields for all of the zip
codes in the threat area, which were affected by this storm.

A. Land falling storms

ANDREW 8/24/92 5:00 UTC
landfall: longitude: -80.3000 deg latitude: 25.5000 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 MA 1 9 5 -52.1610 -16.75 74 54.7866 72
 OT 1 9 5 -41.1068 -26.50 20 48.9094 57

zipcode: 31 longitude: -80.1000 deg latitude: 25.5900 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 9 0 -42.9686 13.84 72 45.1448 107

zipcode: 32 longitude: -80.2700 deg latitude: 25.3400 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 9 0 30.4650 21.16 83 37.0973 235

 3-B-4

B. Bypassing Storms
3. For a storm that does NOT make landfall but passes close enough to a zip code to do

damage:

a. For each affected zip code, find the peak OT wind and the date/time of this peak
wind speed

b. Find the track positions closest to the time of the peak zip code wind speed and

choose the fix with the lowest central pressure. Use the fix information to
compute the maximum marine (MA) exposure wind speed in the storm.

c. Label this storm as "By-Passing" in the header and include the MA wind speed

and date/time.

d. Include the zip code information identical to that done with the storms that make
landfall.

This method will not include storms that bypass and then make landfall further along the
track, or landfall and then bypass further along the track.

DAVID 9/03/79 06:00 UTC
bypass: longitude: -80.5000 deg latitude: 28.8000 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 MA 2 4 0 -23.6102 34.65 58 41.9340 145
 OT 2 4 0 -26.7334 23.02 22 35.2802 130

zipcode: 31 longitude: -80.1000 deg latitude: 25.5900 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 8 0 8.13654 -10.21 91 13.0626 321

zipcode: 32 longitude: -80.2700 deg latitude: 25.3400 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 8 0 8.26174 -4.411 57 9.36580 298

zipcode: 33 longitude: -80.1310 deg latitude: 25.7100 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 8 15 7.02892 -10.48 25 12.6210 326

zipcode: 34 longitude: -80.3200 deg latitude: 25.6100 deg
ter day hour min zonal meridio nal total m/s dir(deg)
 OT 1 8 15 6.55432 -6.865 60 9.49187 316

 3-B-5

3.2.3 Technical Description of Wind Field Model

Figure 3.2.1 Input Output of Wind Field Model

Once a simulated hurricane moves to within a distance threshold of Florida
communities, the wind field model is turned on. Gradient balance represents a circular
flow caused by the balance of forces on the flow whereby the inward directed pressure
gradient force is balanced by outward Coriolis and centripetal accelerations. The
coordinate system translates with the hurricane vortex moving at velocity c. The vortex
translation is assumed to equal the geostrophic flow associated with the large-scale
pressure gradient. In cylindrical coordinates that translate with the moving vortex,
equations for a slab hurricane boundary layer under a prescribed pressure gradient are:

u∂u

∂r
− v 2

r
− fv + v

r

∂u

∂φ
+ ∂p

∂r
− K ∇2u − u

r2 − 2
r2

∂u

∂φ

 + F

r
c ,u()= 0 = ∂u

∂t (1)

u
∂v

∂r
+ v

r

 + fu + v

r

∂v

∂φ
− K ∇2v − v

r2 + 2
r2

∂u

∂φ

 + F

r
c ,v()= 0 = ∂v

∂t (2)

where u and v are the respective radial and tangential wind components relative to the
moving storm, p is the sea-level pressure which varies with radius (r), f is the Coriolis
parameter which varies with latitude, φ is the azimuthal coordinate, K is the eddy
diffusion coefficient, and F(c,u), F(c,v) are frictional drag terms. All terms are assumed to
be representative of means through the boundary layer. The motion of the vortex is
determined by the modeled storm track.

The hurricane windfield model is based on a fully two dimensional, time-
independent, scaled version of the tangential and radial momentum equations (1 and 2)
for the mean boundary layer wind components. The model makes use of a polar
coordinate representation grid (Fig. 1) centered on the moving cyclone. The nested

Input: storm track
Centre pressure, R max, Longitude, Latitude, lsflg,

Holland B, date & time for each of hourly fixes of the
storm

Wind field Model

Output:
• Land fall or by passing location (longitude/latitude) of storm
• Maximum OT wind speed/time/direction any where in the storm
• Maximum Marine Exposure any where in the storm
• Maximum wind speed/time/direction at each zip code affected by

the storm

 3-B-6

circles are separated from their inscribed and circumscribed neighbors by a radial
separation of 0.1 in units of Rmax (Radius of maximum winds); the azimuthal interval is
10 degrees.

Figure 3.2.2: Polar coordinate system for solving equations of motion.

 Implementation proceeds according to the following steps: First, based on the
input parameters, namely the radius of maximum winds, the central pressure and the
Holland B parameter, radial profiles of the radial and tangential winds are calculated
based on a stationary cyclone over open water to provide an “envelope” with which to set
the size of the cyclone vortex. The wind field produced by these profiles is radially
symmetric.

 Azimuthal variation is introduced thru the use of two form factors. The form
factors multiply the radial and tangential profiles described above and provide a
“factorized” ansatz for both the radial and tangential storm–relative wind components.
Each form factor contains three constant coefficients which are variationally determined
in such a way that the ansatz constructed satisfies (as far as its numerical degrees of
freedom permit) the scaled momentum equations for the storm-relative polar wind
components. The azimuthal variable (φ) has its usual mathematical meaning such that φ
increases from left to right with the rectangular X axis aligned (φ =180, 0) and the Y axis
aligned (φ =270, 90) with Y increasing in the direction of storm translation.

 The translational motion of the storm is vectorially added to the storm-relative
wind components in order to obtain the earth-relative wind field. The translational motion
of the storm is incorporated in the surface friction terms in the momentum equations
which depend on the φ and are specific for the direction of storm translation which is
aligned with the Y axis. The wind field grid is then rotated so that the computational y
axis coincides with the actual direction of motion of the cyclone center. The wind field

 3-B-7

thus far constructed (Fig. 2) usually shows the location of peak winds to be to the right or
forward edge of the right-rear quadrant of the cyclone.

Figure 3.2.3. Horizontal distribution of mean boundary layer wind speed (m s-1) relative

to the earth for a Hurricane moving northward (top of page) at 5 m s-1. Horizontal
coordinates are scaled by the radius of maximum wind.

3.2.3.1 Wind Model Parameters
 Following are the input parameters to the wind field model

3.2.3.1.1 Delta P: Intensity parameter

This is the difference between the central minimum sea level pressure and an outer
peripheral pressure. (assumed to be 1012 hPa). Intensity change is modeled by using the
observed geographic probability distribution of six-hour changes of central pressure as
related to the relative intensity. Potential intensity takes into account the concept of the
hurricane as a heat engine constrained by the input (sea surface) and outflow (upper
troposphere) temperatures. Intensity change is limited so as to not exceed the maximum
observed change for a particular geographic region. When a storm center crosses the
coastline (landfall) the intensity change follows a pressure decay model (discussed
below). If the storm moves back over the sea, the former intensity change model is
reinstated.

 3-B-8

3.2.3.1.2 R max : Radius of Maximum Wind

The radius of maximum wind is determined from a distribution of values as a function of
po and latitude, where po is the central minimum sea level pressure. A log normal
distribution is assumed for R with a mean value determined as a function of ∆p and
Latitude. The relationship between R and ∆p and latitude shows much scatter but a
generalized linear model for the natural log of R (r2 = 0.212) provides a useful
estimation:
 ∆p = 1012 - po

 lnR max = 2.0633+ 0.0182∆p − 0.00019008∆p2 + 0.0007336Lat2 + ε (3)

Where ε is a normal random variable with a mean of zero and a variance of 0.169.
Equation (3) describes the mean of the log normal distribution of R in nautical miles.
When a simulated storm is close enough to land to become a threat, an R-value is
randomly chosen given the ∆p and Latitude. R is computed at each time step but the
random error term is computed only once for each landfall.

Rmax in nautical miles is calculated as follows:

)ln(
max

maxReR =

3.2.3.1.3 Pressure Profile & Holland B
The symmetric pressure field p(r) is specified as:

 p r()= po + ∆pe

Rmax

r

B

 (4)

where po is the central minimum sea level pressure, B is the Holland pressure profile
shape parameter, R is the radius of maximum wind speed (in nautical miles), and ∆p is
the pressure deficit defined earlier. The central pressure is modeled according to the
intensity modeling in concert with the storm track.
The resulting expression for B is:

 B =1.38+ 0.00184∆p − 0.00309R max+ ε (5)
Where ε is a random term from a zero mean normal distribution with a standard
deviation of 0.05.

3.2.3.1.4 Land See Flag: lsfg
Gives the position of the wind at the storm fix.
 0 – Over Ocean
 1 – Land Fall
 2 – Sea Fall
 3 – Over Land
 4 – Closest Approach of bypassing Storm

 3-B-9

3.2.3.2 Definitions and Equations of the wind model

R = Radius of maximum surface wind speed, specified

ct = storm translation speed, specified

cdir = storm translation direction compass heading , specified

∆p = Central pressure deficit, specified

p r()= po + ∆pe

Rmax

r

B

= sea level pressure

B =1.38+ 0.00184∆p − 0.00309R= Holland profile parameter

φ = Azimuthal coordinate, measured counterclockwise from east

s = r

R
=

 normalized radial coordinate

)(sv g = Gradient wind:
s

p
Rfv

s

v
g

g

∂
∂=+

ρ
1

2

f = 2Ωsinϑ =Coriolis parameter

ϑ = latitude of storm center

)(0 sv = normalized gradient wind (symmetric) =
max

)(

g

g

V

sv
 where Vg max is the maximum

gradient wind in the radial profile

maxgV

Rf
f = = Normalized Coriolis parameter

v(s,φ) = v

vg
=

 Normalized storm-relative tangential wind component

==
gv

u
su),(φ Normalized storm – relative radial wind component

h

RCd== tcoefficienFriction α

h= mean boundary layer height

 3-B-10

Cd = Drag Coefficient

maxg

t

V

c
c = = normalized translation speed

g(s) = 2vo(s)s−1 + f (A1)

fsvvsd ++= −1
00)(& (A2)

where a “dot” represents a derivative with respect to s, g(s) and d(s) depend only on V0

and f

σ(s,φ) = v(s,φ) − vo(s) = Normalized departure from gradient balance

♦ Scaling of the governing equations prior to implementation.

Substituting the terms from the above definitions and changing the radial coordinate from
r to s, the steady-state form of the governing equations (1) and (2) become:

 0))(sin()()(11 =−+++−++ −− cwcusguvsuu os φασσ∂σ∂ φ (A3)

 u∂ sσ + s−1(vo +σ)∂φσ + u(d + s−1σ) +α(vo +σ +ccosφ)(w−c) = 0 (A4)

 w = (u +csinφ)2 + (vo +σ +ccosφ)2 (A5)

where w is the total normalized earth-relative wind.

In the event that c vanishes, so that the cyclone is stationary, these equations reduce to
the ordinary differential equations:

 0)(1 =++− − uwsguu ασσ& (A6)

 0)()(0
1 =++++ − wvdsu σασσ& (A7)

 σ+= 0vv

 228.0 vuw +=∗

)1(∗∗ += www β 132653.0=β (A8)

for the radial profiles)(su and)(sσ , Here, “.” indicates differentiation with respect to
s.

Equations A3 and A4 supplemented by A5, constitute two, coupled, time independent
partial differential equations for the storm relative radial velocity u and the storm relative
departure from gradient balance σ . The storm relative tangential wind is then given by

σ+= gvv
.

 3-B-11

Unfortunately, the direct numerical solution of A3 and A4 is time consuming even
though the equations are time-independent because the non-linear coupling of the terms
necessitates an iterative numerical approach.

However, equations A6 and A7, can readily be numerically integrated to furnish a
completely symmetric windfield fully described by the radial profiles u(s) and

)()()(ssvsv g σ+=
.

The functions u(s) and)(sσ so obtained can serve as radial profiles for the construction
of basis functions for a more realistic attack on A3 and A4.

Namely, we put forth the ansatz:

 u(s,φ) = ffu(φ)u(s) (A9)
 σ (s,φ) = ffσ (φ)σ (s) (A10)

 where the azimuthal dependence is introduced through the form factors:

 ffu(φ) = a0 + a1cosφ + a2 sinφ (A11)
 ffσ(φ) = b0 + b1cosφ + b2 sinφ (A12)

Now the six coefficients a0, a1, a2 and b0, b1, b2 can be variationally determined by
substituting A9 and A10 into the left hand sides of A3 and A4, supplemented by A5 to
form the "residuals" RA3 and RA4. We then form the functional:

∑∑ −+++−++== −− |))(sin()()(||)3(||3| 11 cwcusguvsuuARA os φασσ∂σ∂ φ

∑= |)4(||4| ARA

NGRID

RARA
baJ

43
),(

+
= ∑ (A13)

Where the sum is taken over every spatial point for which the profiles and trigonometric
functions are known (polar grid) and NGRID is the total number of such grid points.

J then depends solely on the unknown coefficients a0,a1,a2 and b0,b1,b2. These
coefficients are chosen to minimize J and so furnish us with an approximate solution for
 u(s,φ) and σ (s,φ), from which we form the storm relative radial and tangential wind
components ur and vt, namely:

ur(s,φ)= u(s,φ) and vt(s,φ)= vg(s)+ σ (s,φ) (A14)

 3-B-12

By adding the translational velocity c (in polar coordinates) to ur and vt we obtain the
earth-relative components of the windfield uer and ver :

 uer(s,φ)=ur(s,φ)+csinφ (A15)
 ver(s,φ)=vt(s,φ)+ccosφ (A16)

where c is the normalized translation speed c= ct /Vgmax.

Finally, since A3, A4 and A5 refer to a cyclone moving along the y-axis, the entire
generated windfield grid must be rotated so that the y-axis of the calculation coincides
with the actual compass direction of motion of the translating cyclone.

 3-B-13

3.2.4 Computer Model Design

3.2.4.1 Use Case View of Wind Speed Model

A. Actors:

There is one actor, scientist.

C. Use Case:

Wind Speed model is used to estimate terrain wind speed.

C. Use Case Diagram:

Scientist W indSpeedCalUseCase

Figure 3.2.4: Use Case Diagram

 3-B-14

3.2.5 Implementation of Wind Field Model

This model is implemented using Interactive Data Language (IDL) language in Unix
console-based environment. This section includes appropriate diagrams and the overall
flow chart of Wind Speed Model Implementation.

3.2.5.1 Program Flow Chart of Wind Speed Model

Wind field model has been implemented using Interactive Data Language (IDL). To be
precise it calculates wind speed time series for each of the zip code affected by the storm.
The time series includes the date, landfall time of the storm. It also includes the zonal
wind speed (m/s), surface wind speed (m/s), and the wind direction in degrees at regular
time intervals.

General structure of the main IDL modules is given below.

� GEMFPLEX is analogous to a main or the entrant procedure in C/C++. It reads

g_trackfile and separates it into individual track files for processing.
� GEMF processes each single track.
� Each of the procedures TRACK, SUV, FIXSHOTS15 and PKWINDS call other

procedures.
� TRACK reads the necessary input parameters from the storm track and thins out

the fixes based on the storm category and saves track related quantities for future
use.

� SUV generates radial profiles from stationary cyclone equations.
� FIXSHOTS15 generate field snapshots with azimuthal variation for each fix.
� PKWINDS is responsible for picking the maximum wind for each zip code. If the

storm happens to encompass or run through the entire state of the FL then this
step would end up consuming a lot of resources.

Note: All the equations referenced in the following are from Wind field Model Technical
description. Please see the document for the detailed information.

GEMFPLEX

GEMF

Time series
output

TRACK

SUV

FIXSHOTS15

PKWINDS

Figure 3.2.5. General structure or flow of the IDL

 3-B-15

TRACK

SUV

FIXSHOTS15

PKWINDS

THINNER

LLTOXY

USG

VGHGEN

ZUV2ZOT

obc.m

onefix.m

shift.m

genstrex.m

suv.idl

fixshots.idl

track.idl

Coded by: Dr George A. Soukup Frozen Model

Wind model code (IDL code) flowchart

Note
The files names without any extension
 in them are idl procedure files (.pro files)

output.dat

DUS

REACH

nrmrayse10_15.idl

zipcodes.idl

i. TRACK.PRO
1. Reads in the trackfile to arrays

ctg = storm category, zhour = fix hour, zmin=fix min, nlat=latitude,
elon=longitude, cpr=centre pressure, rmx=Rmax, hdb=Holland B,
lsflg=land sea flag.

2. Mark the fix of lowest central pressure unless it coincides with landfall.
(lsflg is set to 4)

3. Thins out the storm fixes based on the adjusted fix frequency.
THINNER.PRO is used to accomplish this task.

4. Calculate the time in minutes for each fix from the start of the storm rack.
(ktime)

 3-B-16

5. Samples the data at regular (1 hrs) intervals prior to the smoothing using
cubic spline interpolation.

6. Calculate fbarx=Rmax . f where f= 0.14544* sin(nlat)
7. Sub-samples the smoothed input data to recover the original resolution

(unequal intervals based on the storm category).
8. For the landfall fix get the landfall location and time.
9. Calculates the storm translation speed in m/s (spdmsx) and bearing (bearx)

based on the fix data.
10. Smoothens translation speed and bearing (clock wise angle from north) on

hourly grid.
11. Evaluates smoothed translation speed (spdms) and bearing (bear) at fix

times using Cubic spline interpolation.
12. Evaluates smoothed track positions (elonk,nlatk) and Rmax (rmwk)

minute by minute.
13. Finally, saves track related quantities for use by other procedures as

trackc.idl.
bear=Bearing at each fix, cpr=center pressure at each fix,
day=day of each fix, elon=longitude of each fix,
elonk=longitude of storm at each minute, fbr=f bar at each fix,
hdb=Holland B at each fix, ktime=array from 0 to last minute of storm

track (step=1),
lsflg=land sea flag of each fix, minz=min of each fix,
nlat=latitude of each fix, nlatk=latitude of storm at each minute,
pdf=delta p of each fix, rmwk=R max at each minute,
rmx=Rmax of each fix, spdms=translation speed of the storm at

each fix

ii. THINNER.PRO
This module reduces the number of fixes depending upon the storm intensity.
1. Locate landfalls, sea falls and minimum pressure point.
2. Classify fixes by category
3. Thin out the fixes as below;

i. Category 0:Select fixes in 8 hour separations
ii. Category 1:Select fixes in 6 hour separations
iii. Category 2:Select fixes in 4 hour separations
iv. Category 3:Select fixes in 3 hour separations
v. Category 4:Select fixes in 2 hour separations

vi. Category 5:Select fixes in 1 hour separations
4. Merge retained fixes and additional landfall and seafall fixes.

iii. SUV.PRO
This module computes the radial and tangential wind profiles u and v, as well as
the gradient wind profile and the functions g and d and their second derivatives.

1. Restores variables saved in track.idl
2. If Holland b is zero calculate it using RpB 00309.000184.038.1 −∆+=

(this step is rarely done)
3. Calculates radial(ur) and tangential(vt) wind profiles for each storm fix.

Wind profiles are calculated at 201 points starting from 0(the storm
center) to 20 in steps of 0.1 (in units of RMW)

 3-B-17

4. Calculates the gradient wind profile for each fix using VGHGEN.PRO
5. Calculate g and d using equation (A1) and (A2).
6. Calculate initial estimate for alpha (alfi) neglecting first derivatives of u

andσ .
7. Alpha is iteratively estimated until correct alpha is obtained (USG.PRO is

used). To check the correctness of the estimate the boundary condition
following boundary condition is used.

 Peak wind should be at s=1. (i.e. if iw is 10 answer of alpha is correct)
8. Momentum equations are used to furnish tangential and radial profiles.

USG.PRO
9. Collects radial and tangential profiles into a structure.
10. Saves the variables for use by the other procedures as suv.idl.

uvstr= holds the wind profiles calculated for each fix.

iv. VGHGEN.PRO
This module calculates the gradient wind profile and its second derivative.

v. USG.PRO
This module computes the radial and tangential wind profiles for a stationary
storm with surface friction for exactly one fix. Wind profiles are calculated from
two directions, inward and outward from center. Then the results are combined to
get the complete profile.

1. Form the inward boundary value at s=20 using obc.m
2. Numerically integrate momentum equations for stationary storm profiles

LSODE.
3. Match solutions across the shock and obtain uz and sgz.

For 0≤ s≤1; uz = uout
 sgz = sgout
for 1<s≤20; uz = uinw
 sgz = sginw

4. Sub-grid smoothing process simulates turbulent diffusion.
5. Sub sample to recover original resolution.

vi. USNOADV.M

Ignore radial advection and algebraically solve for u and sigma (equation (A6)
(A7)) starting the numerical integration outwards from the origin.

vii. USADV.M
This module iteratively improves the results of USNOADV.M by including
radial advection terms (first derivatives) evaluated from the previous iteration.

viii. OBC.M
This module computes the outer boundary values for u and sg to start the inward
numerical integration of u and sg using LSODE. (Refer to IDL manual for
LSODE). Procedure DUS is used to calculate the derivatives of u andσ from (A6,
A7, A8).

 3-B-18

ix. DUS.PRO
Calculates radial derivatives from momentum equations. (A6)(A7)(A8)
 vz = v0+sg dz=d+sg/s gz=g+sg/s
 du =first derivative of u
 dsg=first derivative of sigma

x. FIXSHOTS15.PRO

This module calculates the field snapshots and their second time derivatives at
each retained fix time on a polar grid extending outward from the storm center to
15 RMW in steps of 0.1RMW and 100 angle. (This would give a matrix of 151 x
36 points. But three extra lines are added for the convenience of future
calculations making the matrix dimension 151 x 39)

10

15
RM

W

10
.1

 R
M

W

10
 R

M
W

Figure 3.2.6: Polar grid

1. Restore suv.idl
2. Restore nrmrayse10_15.idl, which contain some trigonometric values

corresponding to each of the grid point.
3. For each retained fix, construct the polar grid of earth relative marine

surface winds. (onefix.m)
4. onefix.m gives the polar grid of earth relative marine surface winds for

exactly one fix.
5. ‘reform’ converts this 151x39 matrix in to a raw matrix of 1x 5889.
6. zsnapi is a complex matrix which contains the snap shots of the retained

fixes. [#retained fixes X 5889]
7. usnap contains the earth relative zonal winds and vsnap contains the earth

relative meridional winds.
8. Compute second time derivative of fields for time interpolation. Time

interpolation is done in order to find the details of the storm every minute.

 3-B-19

xi. ONEFIX.M
This module constructs zonal and meridional windfield components for exactly
one fix.

1. Load single fix profiles and corresponding data.
2. Calculate purely radial (no azimuthal dependence) functions on a polar

grid. (GENSTREX.M)
3. Then introduce azimuthal dependencies and calculate storm relative-wind

field. Equation (A11) through (A13)
4. Calculate the form factors (a0, a1, a2, b0, b1, b2 of equation A11 & A12)

cfu=coefficients of u (a0, a1, a2) cfsg=Coefficients of Sigma (b0, b1,
b2)
initial estimate=1,0,0 initial estimate=1,0,0

5. Keep changing the estimate to minimize J (equation A13) using
AMOEBA, MNRDU and MNRDSG. (AMOEBA is a built in function in
IDL)
MNRDU= Calculate a’s keeping b’s fixed.
MNRDSG=Calculate b’s keeping a’s fixed.

6. Form the earth relative wind field assuming that the storm moves
northwards.

7. Calculate u, σ , uer and ver using equations (A14) through (A16)
8. Storm rotates counter clockwise. Once the northward storm translation

speed is induced storm center tend to move towards west. Shift.m takes
this into account and shifts the polar origin to the storm center.

9. Advance phase
10. Orient the wind field to track direction. - Initially we assumed that the

storm is moving northwards. In this step some interpolation is required
since the actual direction of the storm unlikely to lie exactly on a radial of
the grid.

11. Convert the radial and tangential wind fields to zonal and meridional
components. vystre=holds the meridional component of the wind at each
grid point.
uxstre=holds the zonal component of the wind at each grid point.
zxystre=Complex array containing the zonal and meridional wind
components at each grid point.

xiii. GENSTREX.M
This module places the profile functions and the auxiliary functions g and d (which
we calculated earlier) on the polar grid yielding fields with no azimuthal dependence
for exactly one fix. sstre=array containing radial distance to each of the grid point
from the centre.

xiv. SHIFT.M
This module simply shifts the polar coordinate system, so that the origin of the
coordinate system lies on the center of the storm. (Center of the storm is the point
where wind speed is zero.)

 3-B-20

xv. PKWINDS.PRO
This module produces an output file, which lists the peak marine and open terrain
wind components experienced at each zip code for the current storm. If the storm
makes landfall, then the peak marine and open terrain winds are listed at the tie and
the site of the landfall. If the storm only bypasses the state then the peak marine and
open terrain winds are listed for the fix exhibiting the lowest central pressure.
1. restore zipcodes.idl. This contains the longitude and latitude of all zip codes.
2. restore fixshots.idl. (We generated this in previous step)
3. Initialization of other variables.

elonk=east longitude of the track every minute
nlatk=north latitude of the track every minute
kmax=maximum time(life time) of the storm in Minutes. Since the storm is

moving it will affect one zip code for a variable time. But we initialize zuvzip
for the worst case.

nzip=Number of zip codes
werzipx=holds the maximum wind per each zip

4. Calculate all time series. (time k is incremented in steps of ‘kinc’ from zero to
kmax)
elc=longitude of the storm center at each time step.
nlc=latitude of the storm center at each time step.
rmw=radius of maximum wind at each time step.

5. Determine which zip codes will be affected by the storm.
At time k the storm can affect several zip codes in its vicinity and the affected
area depends on Rmax. MAP_2POINTS is used calculate the distance from the
center of the storm to each of the zip codes. (This is done at each time step). Then
REACH is used to calculate the reach of the storm at that particular time step.
Storm ‘reach’ is calculated in terms of RMW. If the calculated ‘reach’ is less than
12.5 that calculated value is taken as the reach. Other wise 12.5 is considered as
the storm reach.

6. If at least one of the zip codes is affected by the storm; generate relevant portion
of gridded field for current time k.

unow=value of u at this time at each grid point.
vnow=value of v at this time at each grid point.

7. Evaluate marine windfield components at admissible zip code centroids. First use
LLTOXY, latitude & longitude information of the storm center and zip code
centroid to calculate the (x,y) distance between storm center and the zip code
centroid. Then using interpolation calculates the marine wind speed at the zip
code centroid.

8. Use ZMAR2ZOT to convert above calculated marine windspeeds into Open
Terrain windspeeds.

9. After the construction of the time series record maximum total OT windspeed at
each zip code.

10. Obtain marine and OT peak winds at landfall or lowest pressure for bypassing
storms. At the same time record the time and location of landfall or lowest
pressure fix.

11. Write the output file if at least one zip code is affected by the storm.

 3-B-21

xvi. REACH.M

This function determines the influence radius.
Influence radius = 12.3246 – 0.162*rmw
If the calculated value is less than 4, then set it to 4

xvii. LLTOXY. PRO
This module converts east longitude and north latitude into zonal distance (xmerc)
and meridional distance (ymerc) in meters from the cyclone center (elo,gglo)

ymerc= mercator y coordinates from latitudes
xmerc= mercator x coordinates from longitudes

xviii. ZMAR2ZOT.PRO
This module converts marine wind speeds (m/s) into Open Terrain windspeeds (m/s).

xix. GEMF.M
This module is used to set the time step and call the executable.
1. set the time step for storm series calculations and load gemplex.exe
 kinc=15 : time step is set to 15 minutes
 flcnt= 0: start the output file numbering from 1. (output1.dat, output2.dat…)

References

1. Vickery, P. J., and L. A. Twisdale, 1995: Wind field and filling models for hurricane
wind speed predictions, Journal of Structural Engineering, 121, 1700-1709.

2. Ho, F. P., J. C. Su, K. L. Hanevich, R. J. Smith, and F. P. Richards, 1987: Hurricane
climatology for the Atlantic and Gulf coasts of the United States. NOAA Tech Memo
NWS 38, NWS Silver Spring, MD.

3. Kaplan, J. and M. DeMaria, 1995: A simple empirical model for predicting the decay
of tropical cyclone winds after landfall. J. App. Meteor., 34,

4. Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J.
Atmos. Sci., 26, 3-40.

5. Shapiro, L. 1983: The asymmetric boundary layer flow under a translating hurricane.
J. Atmos. Sci., 40, 1984-1998.

6. Thompson, E. F., and V. J. Cardone, 1996: Practical modeling of hurricane surface
wind fields, Journal of Waterways, Port, Coastal, and Ocean Engineering Division,
ASCE, 122, 195-205.

7. Vickery, P. J., P. F. Skerjl, A. C. Steckley, and L. A. Twisdale, 2000a: A hurricane
wind field model for use in simulations. Journal of Structural Engineering, 126, 1203-
1222.

 3-B-22

8. Vickery, P. J., P. F. Skerjl, , and L. A. Twisdale, 2000b: Simulation of hurricane risk
in the United States using an empirical storm track modeling technique, Journal of
Structural Engineering., 126, 1222-1237.

9. Kurihara, Y. M., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in
the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.

10. Holland, G. J., 1980: An analytic model of the wind and pressure profiles in
hurricanes, Mon. Wea. Rev., 108, 1212-1218.

11. Dunion, J. P. , C. W. Landsea, and S. H. Houston, 2003: A re-analysis of the surface
winds for Hurricane Donna of 1960. Mon. Wea. Rev., 131, 1992-2011.

12. Willoughby, H. E. and E. Rahn, 2002: A new parametric model of hurricane wind
profiles. 25th AMS Conference on Hurricanes and Tropical Meteorology, San Diego, 29
April - 3 May 2002.

13. Powell, M. D., P. J. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for
high wind speeds in tropical cyclones. Nature, 422, 279-283.

14. Large, W. G. and S. Pond, 1981: Open ocean momentum flux measurements in
moderate to strong winds. J. Phys. Oceanography, 11, 324-336.

15. Moss, M. S. and S. L. Rosenthal, 1975: On the estimation of planetary boundary
layer variables in mature hurricanes. Mon. Wea. Rev., 106, 841-849.

16. Powell, M.D., 1980: Evaluations of diagnostic marine boundary layer models applied
to hurricanes. Mon.Wea. Rev., 108, 757-766.

17. ASTM 1996: Standard practice for characterizing surface wind using a wind vane
and rotating anemometer. D 5741-96, Annual Book of ASTM Standards, Vol. 11.03.

18. Anctil, F. and M. Donelan, 1996: Air-water momentum flux observations over
shoaling waves. J. Phys. Oceanogr., 26, 1344-1353.

19. Reinhold, T. and K. Gurley, 2003: Florida Coastal Monitoring Program.
http://www.ce.ufl.edu/~fcmp.

 3-C-1

Section 3.3

Wind Speed Correction (WSC)
Use Case V

3.3 sds

 3-C-2

3.3.1 General Description Of WSC

WSC, short for Wind Speed Correction, is the fifth use case of the FIU/IHRC Public
Hurricane Risk and Loss model. It aims at refining open terrain wind speed produced by
the hurricane wind model with respect to the actual terrain (based on land use – land
cover).

 3-C-3

3.3.2 WSC General Requirements

Name: Wind Speed Correction
Description: The inputs are zip code, surface wind speed for open terrain

produced by the wind model, surface wind direction, and
roughness length for open terrain. The system generates the
following:

(1) Surface wind speed for actual terrain (m/s).
(2) One-hour sustained wind speed for actual terrain (mph).
(3) 3-Second gust wind speed for actual terrain (mph).

1. Following are the input data:

Zip: Zip Code
Vo: Surface Wind Speed for open terrain produced by the wind model (m/s)
WD: Surface Wind Direction (Deg from North)
Zoo: Roughness Length (m) for open terrain = 0.03m
Zoa: Roughness length based on upstream terrain
Lat: Latitude

2. Based on the input data from step 1, the system queries the database and returns Zoa

parameter, which corresponds to the actual roughness length based on FEMA
HAZUS conversion table relating land use-land cover (LULC) to aerodynamic
roughness (m). Roughness represents a weighted average of all roughness pixels
within a 45-degree sector with origin at the population-weighted centroid of the zip
code and extending outward to 20 km from the centroid. The weighting function for
averaging the roughness values is a Gaussian filter with a half power point at 3 km.
The format of the lookup table is as following:

Zip Lon Lat Zo1 Zo2 Zo3 Zo4 Zo5 Zo6 Zo7 Zo8

Where:

Zo1 = Actual Roughness for wind directions inclusive of 46-90
Zo2 = Actual Roughness for wind directions inclusive of 1-45
Zo3 = Actual Roughness for wind directions inclusive of 316-0, 360
Z04 = Actual Roughness for wind directions inclusive of 271-315
Z05 = Actual Roughness for wind directions inclusive of 226-270
Zo6 = Actual Roughness for wind directions inclusive of 181-225
Zo7 = Actual Roughness for wind directions inclusive of 136-180
Zo8 = Actual Roughness for wind directions inclusive of 91-135

 3-C-4

Table 3.3.1 shows a sample record from the lookup table.

Zip 33172
Lon 80.24401855
Lat 25.73268509
Zo1 0.2399817854
Zo2 0.3124250770
Zo3 0.3429141343
Zo4 0.3098731637
Zo5 0.3196663558
Zo6 0.2674820721
Zo7 0.5406716093E-01
Zo8 0.7273393869E-01

Table 3.3.1: A sample record for the lookup table

3. Given the wind direction for each zip code centroid, the appropriate value for actual

terrain roughness is extracted from the lookup table. The system then computes the
output values as below:

3.1.Compute open terrain friction velocity U*o (Unit: m/s):

 Uo = Vo * 0.4 / [Ln (10.0 / 0.03)]

3.2.Compute actual terrain friction velocity U*a (Unit: m/s, using equation 3 of

Powell et al., 1996)
 Ua = Uo / ([Zoo / Zoa] ^ 0.0706)

3.3.Compute actual terrain wind speed at 10 m Va:
 Va = (Ua / 0.4) (Ln (10 / Zoa))

3.4. Convert wind speed to the unit of MPH:
 Vamph = Va * 2.24

Compute gust factors for peak 1 min wind over the h our G1h,60 and peak
3s wind over the hour G1h,3 based on the actual rou ghness. [See gust
factor calculations below]

3.5. Compute max 1 min wind (m/s) occurring within 1-hour period

 V1 = Va * G1h,60

3.6.Compute max 1 min sustained wind speed in mph
 V1mph = V1 * 2.24

3.7.Compute peak 3s gust in mph
 V3 = Va * G1h,3 * 2.24

 3-C-5

4. Gust factor calculations
4.1. Compute friction velocity (u)

=

Zoa
Ln

Va
u

10
4.0

4.2. Compute Height scaling parameter based on a height of 10 m

−=
u

f
10

61η

 where f = 2 7.292*10−5 sin Lat()() is the Coriolis parameter

4.3. Compute the standard deviation of the wind speed

+

+

=

Zoaf

u
Ln

Zoa
Lnu

zu

.
156.01

538.0
10

09.05.7

)(

16η

η
σ

4.4. Compute the standard deviation of the low-pass filtered wind speed

considering a filter with a cut-off frequency of 1 cycle per 3 seconds (for the
peak 3s gust) and 1 cycle per 60 seconds (for the maximum 1 min sustained
wind speed calculation:

)(386762.0)60,(

1.0
60

193.01)()60,(
68.0

zz

I
zz

uu

t
uu

σσ

σσ

=

 +−=
−

Where 60 represents 1 min or 60 seconds and the integral scale time
parameter tI is,

96.4

13.3 2.0

=
=

t

t

I

ZI

In which Z = 10 meters is used.

)(868256421.0)3,(

1.0
3

193.01)()3,(
68.0

zz

I
zz

uu

t
uu

σσ

σσ

=

 +−=
−

Where 3 represents 3 seconds

 3-C-6

4.5. Compute the wind fluctuation cycling rates:

Cr(60)=
0.007+ 0.213

It

60

0.654

It

Cr(60) = 0.00982

Cr(3) =
0.007+ 0.213

It

3

0.654

It

Cr(3) = 0.061

4.6. Compute the Peak factors for the max 1 min (60 sec) and max 3 second

winds

()
()

()
())(

)60,(

6002

557.0
6002)60(

)(

)3,(

6002

557.0
6002)3(

z

z

CLn
CLnP

z

z

CLn
CLnP

u

u

r

rf

u

u

r

rf

σ
σ

σ
σ

+=

+=

4.7. Compute the longitudinal turbulent intensity

Til = σu(z)
Uh

4.8. Compute the gust factors:

)3(1

)60(1

3min,10

60min,10

fil

fil

PTG

PTG

+=
+=

 3-C-7

A sample calculation is as follows:

Input Lookup value Output
Zip = 33133
Vo = 50 m/s
WD = 60
Zoo = 0.03
Lat = 25.73

Zoa = 0.219 m

U*o = 3.44 m/s U*a =
3.96 m/s Va = 37.845
m/s V1 = 101.504
mph V3 = 134.605 mph

 3-C-8

3.3.3 WSC Interface Design Requirements

This section presents the Graphic User Interface design for the Wind Speed Correction
(WSC).

1. The first step: the user logs in the system

Figure 3.3.1 shows the Login Interface. User needs to enter the user id and password to
enter the system. The system verifies the user’s information with the login data extracted
from the database. If there is a match, the user logs into the system successfully.
Otherwise, system displays the "wrong user name/password" error and requests the user
to login again.

U serID : FD O IU SE R

PassW D : ********

L O G IN

Figure 3.3.1: Login Interface

2. The second step: select the use case from the service selection page

Figure 3.3.2 is the service selection page interface. System presents a list of available use
cases to the user. User selects “Roughness Model” use case and clicks “Go” to submit.

Please choose an online service:

 Go

Figure 3.3.2: Service Selection Interface

3. The third step: The user provides the input from the wind model

In this step, system provides the interface for the user to input data generated by the wind
model. The following inputs are required and are illustrated by Figure 3.3.3:

• Zip code:

 3-C-9

• Wind Speed: Surface wind speed (m/s) for open terrain produced by the wind
model.

• Wind Direction: Surface wind direction (Degree(s) from the North).
• Roughness Length: Roughness length (m) for open terrain = 0.03 m.

Num Zip Code
Wind Speed

(m/s)

Wind

Direction

Roughness length

(m)

1

Figure 3.3.3: Input from Wind Model Interface

4. The forth step: The system displays the result in the interface

In this step, system calculates the result and displays both the input and the output to the
user as shown in Figure 3.3.4. The output includes:

• Zoa: Actual roughness length based on FEMA HAZUS conversion table relating
land use land cover (LULC) to aerodynamic roughness (m).

• U*o: Open terrain friction velocity (m/s).
• U*a: Actual terrain friction velocity (m/s).
• Va: Surface wind speed for actual terrain (m/s).
• Vamph: Above with English units of statute miles per hour.

Input Output

Zip Vo
(m/s) Wd Zoo Zoa (m) U*o

(m/s)
U*a
(m/s)

Va
(m/s)

Vamph
(mph)

V1mph
(mph)

V3mph
(mph)

33133 50.0 60 0.03 0.219 0.219 3.44 3.96 37.84 84.77 101.50

Figure 3.3.4: Wind Field Roughness Calculation Result Interface

 3-C-10

3.3.4 Computer Model Design

3.3.4.1 Use Case View of WSC

A. Actors:

There is one actor, scientist in WSC.

D. Use Case:

WSC is used to determine a more accurate model of terrain winds produced by the
hurricane wind model.

C. Use Case Diagram:

Scientist W indSpeedCalUseCase

Figure 3.3.5: Use Case Diagram for WSC

 3-C-11

3.3.4.2 System Design

This section includes the appropriate diagrams to describe the system classes,
components, activities and the overall flow chart of WSC.

3.3.4.2.1 Program Flow Chart of WSC

The flow chart of WSC is depicted in Figure 3.3.6.

Figure 3.3.6: Flow chart of WSC

Begin

System displays form
to the user for data

User Enters
Data Values
(Vo, WD, Zoo,
and zip)

System connects and
gets data from the

database (Zoa)

System performs
calculations (Vamph,

V1mph, V3mph)

Oracle
Database

System displays
results to the user
and/or produces

output file

 3-C-12

3.3.4.3 Class Diagram and Description

A. Class Diagram

JSP interface
Database

W SCCalVamphBean.java

zip []
lat i []
Vo []
W D []
Zo o []
Zo a []
Uo []
Ua []
Va []
V1 []
V3 []
Vamph []
V1mph []
gs t60 []
Gust _Fact or()

co nnect ()
discon nect()
ca lcGust ()
ca lVam ph()
ge tRoughn es_def()
fi ndCol()
ge tZo()
qu eryZoa()
ge tZoa()
ge tVam ph()
ge tV1m ph()
ge tV3m ph()
ge tUa()
ge tUo()
ge tVa()
ge tV1()
ge tgst 60()
se tLat ()
se tZip()
se tVo()
se tZoa()
se tW D()
se tZoo()

Figure 3.3.7: Class Diagram for WSC

B. Classes Descriptions

Here is a brief introduction of the functions in the class we used.

� WCSCalVamphBean
This class performance all the functionalities needed for the wind speed
correction calculation. It includes the following main methods:

• connect()
Method is used to establish a connection to the database

 3-C-13

• setLat (double [] l)
Method takes an array of doubles and sets the latitude array to the passed
array
• setZip(int [] z)
Method takes an array of integers and sets the zip array to the passed array
• setVo(double [] z)
Method takes an array of doubles and sets the Vo array to the passed array
• setWD(int [] w)
Method takes an array of integers and sets the WD array to the passed array
• setZoo(double [] z)
Method takes an array of doubles and sets the Zoo array to the passed array
• queryZoa()
Uses the connection to the database to send a query and retrieve the value for
Zoa based on the zip and the returned string value from a call to the findCol
method.
• calVamph()
Method is used to calculate the Vamph, Va, Uo and Ua using the following
input values from the user Vo, Zoo and Zoa
• calcGust()
Method is used to calculate the gust factors G1h,60 and G1h,3 using the
following input values Lat, WD, Zoa and Va
• GetRoughness_def()
Method uses the established connection to the database to find and return the
column names and starting and ending degrees corresponding to each column
of the roughness_def table.
• findCol(int wd)
Method takes a wind direction (WD) as a parameter. It uses the established
connection to the database to find and return the correct string, using the WD,
which represents the column in the lookup table for Zoa.
• get Zoa()
Return the value of Zoa
• getVamph()
Return the value of Vamph
• getV1mph()
Return the value of V1mph
• getV3mph()
Return the value of V3mph
• getUa()
Return the value of Ua
• getUo()
Return the value of Uo
• getVa()
Return the value of Va
• disconnect()
Method is used to disconnect from the database

 3-C-14

3.3.4.4 State Chart Diagram

Figure 3.3.8 depicts the state chart diagram for Use Case Five. This diagram illustrates
states that the use case goes through from beginning to end.

Idle

Processing

Page requested

mouseClicked / User data sent

Results Displayed

Figure 3.3.8: State Chart for WSC

 3-C-15

3.3.4.5 Sequence Diagram

A. Sequence Diagram for the Vamph Calculation Process

 : Scientist
WindSpeedCal.jsp

WSCCalVamph
Bean.java

Database

Page Requested

setParameter(string)

setZip(int [])

setVo(double [])

setWD(double [])

setZoo(double [])

connect()

getConnection(string)

queryZoa()

executeQuery(String)

Result Set

findCol(int)

calVamph()

getZoa()

double []

getUo()

double []

getUa()

double []

getVa()

double []

getVamph()

double []

disconnect()

close()

executeQuery(string)

Result Set

Figure 3.3.9: Sequence diagram for Vamph calculation process

 3-C-16

B. Sequence Diagram Steps for the Vamph Calculation Process

• Step 1: The user requests the html page

• Step 2: The user enters the number of data sets to be calculated

• Step 3: The user’s input data for zip code, Vo, WD and Zoo are passed to

WSCCalVamphBean object

• Step 4: WindSpeedCalc.jsp requests WSCCalVamphBean object to establish
a connection to the database

• Step 5: WSCCalVamphBean establishes a connection with the database

• Step 6: WindSpeedCalc.jsp requests WSCCalVamphBean to query the

database based on data passed from JSP

• Step 7: WSCCalVamphBean queries the database which returns a ResultSet
to the BEAN

• Step 8: WSCCalVamphBean calls its findCol method.

• Step 9: WSCCalVamphBean queries the database which returns a ResultSet

to the BEAN

• Step 10: WindSpeedCalc.jsp requests to perform Vamph calculations.

• Step 11: WindSpeedCalc.jsp requests the results for Zoo, Uo, Ua, Va and
Vamph and WSCCalVamphBean returns the required data.

• Step 12: WindSpeedCalc.jsp notifies that it is okay to close the database

connection

• Step 13: WSCCalVamphBean closes the database connection

 3-C-17

3.3.5 Implementation of WSC

Currently, the implementation for Use Case five (WSC) has been finished. The demo is
online at http://www.cs.fiu.edu/PHRLM.

3.3.5.1 Login page:

Users need a username and a password to access the FIU/IHRC Public Hurricane Risk
and Loss Model. Following is a snapshot of the login web page.

Figure 3.3.10. Login webpage for FIU/IHRC PHRLM

If the username/password is wrong, an error message will be displayed. User will be
required to input the username and password again to enter.

Figure 3.3.11. Login webpage shows the inputted user ID or password is wrong

 3-C-18

3.3.5.2 WSC Page:

If the login is successful, the user can see the web page named “Service Selection Page”
(as shown in Figure 3.3.12). To view the WSC use case page, from the drop-down list,
select “Wind Speed Correction” and click “Go” button.

Figure 3.3.12. Service selection page for WSC

Several steps need to be followed to accomplish the task of Wind Speed Correction,
User can select two input methods.

a. Input from file (this is the use case four output)
b. Manual Input

If user want to take the input from file
1. Click on ‘From File’ radio button
2. Select the input data set from an available data set
3. Click on ‘submit’

If the user wants to enter the input manually, first click on ‘Manual Input’ radio button.
Step 1:
Then, the users need to input the wind field data fields. Input data sets from wind model
include the following fields:

• Zip: Zip code
• Vo: Surface wind speed for open terrain produced by the wind model (m/s)
• Wd: Surface wind direction (Deg from North). The data range for this field is

from 0 to 360.
• Zoo: Roughness length (m) for open terrain = 0.03 m
• Latitude: Latitude of the corresponding zip code. (a value between 20 and 40)

 3-C-19

A data input page is provided to facilitate the users to input the corresponding data easily.
Users are allowed to input a variety of collections of input data and submit this data for
wind speed correction calculation.

By default, the number of input data sets is one. So initially, there is only one set of
blanks for the user to input his/her data. Figure 3.3.13 illustrates the snapshot of the
dataset input page for wind speed calculation.

Figure 3.3.13. Snapshot of the first web page for WSC

To input more than one set of input data, the user can change the number of input data
sets by using the “number of sets change“ option provided at the top of the dataset input
page. The user inputs the desired number of data sets in the blank after “How many
sets?”, and then clicks “Set” button. Figure 3.3.14 shows an example dataset input web
page after the user requests three sets of input data.

 3-C-20

Figure 3.3.14. Snapshot of the web page after user specify the sets number to 3

Step 2:

Secondly, the system constructs a query using the user’s data to obtain desired data from
the underlying Oracle database. This desired data along with the user data is used to carry
out the correction computation.

Once the correction computation is done, the system displays the whole data set: the
input data set, retrieved data, and the computation results, back to the user. Figure 3.3.15
shows a result page as an example.

 3-C-21

Figure 3.3.15: Snapshot of the result web page for WSC
3.3.5.3 Exception Handling:
Users may make some error inputs. The JSP webpage can catch the exceptions and show
the error messages. Here we show some examples:

After user fills in the set number blank and clicks the “Set” button, the system will check
if the inputted value is an integer. If no, the corresponding error message will be
generated and shown under this blank (as shown in Figure 3.3.16).

Figure 3.3.16. The input webpage shows the exception that the inputted set number

is not an integer.

 3-C-22

User need to follow the instructions, fill in all the blanks and input the data sets in the
correct format. Figure 3.3.17 shows some error inputs. For example: some blanks are not
filled; the zip code field is filled by words; the wind direction is not in the interval [0,
360]; etc. Figure 3.3.18 displays the webpage which caught these exceptions and displays
several error messages.

Figure 3.3.17: The input webpage contains a set of error inputs

Figure 3.3.18: The result webpage catches all the available exceptions

 3-C-23

Another possible exception is caused by the invalid zip code. Sometimes the user inputs
the zip code within the correct format, but this zip code cannot be found in the specific
lookup table. As shown in the Figure 3.3.19, user inputted a zip code as “12345”, which
is not in the lookup table. In Figure 3.3.20, the webpage shows this message so that the
user can identify this error.

Figure 3.3.19: The input webpage contains a Zip code value which is not included in
the lookup table

Figure 3.3.20: The result webpage which caught the exception when the Zoa value
can not be fetched for some specific Zip code

 3-C-24

 3-D-1

Section 3.4

3.4 Wind Speed Probability (WSP)
Use Case VI

 3-D-2

3.4.1 General Description Of WSP

WSP, short for Wind Speed Probability, is the sixth use case of the FIU/IHRC Public
Hurricane Risk and Loss model. It aims at calculating the probabilities of the 3s gust
wind speeds affecting each of the zip codes in the threat area.

 3-D-3

3.4.2 WSP General Requirements

Name: Wind Speed Probability
Description: The user provides the system with the surface corrected wind

speed time series for each of the storm. The wind speeds are
in units of miles per hour (mph).

 The system computes the following:
(1) For each zip code the annual probability of the maximum

wind speeds being within the 5 mph interval for all storms
starting at 22.5 mph and ending at 302.5 mph.

(2) For each zip code the annual probability of the wind speeds
exceeding the mid-point m for each of the 5 mph interval for
all storms starting at 22.5 mph and ending at 302.5 mph.

1. The end user enters the following input data:
 Y: Number of years in simulation
 T: Wind speed time series for each of the storms (one file for each storm)
 Z: All the zip code in threat area

 Each of the T consists of following pertinent information

Storm_name: Storm name
Storm_date_time: Storm landfall date and time
Zip: Zip Code
V3: Surface corrected 3Sec gust wind speed in mph obtained from the WSC use
case

A sample input is as follows:

storm0000002 8/19/ 1 15:00
Num Zip Vo Wd Zoo Zoa U*o U*a Va V1mph V3mph
1 32008 21.6816 150 0.03 0.664 1.492 1.857 12.596 38.203 55.113
2 32009 14.6592 163 0.03 0.818 1.009 1.274 7.978 24.786 36.494
3 32011 14.2175 162 0.03 0.699 0.978 1.222 8.132 24.949 36.345
… … … … … … … … … … … …

2. For each of the zip code:

a. From each storm wind speed time series we select the maximum 3S gust
wind speed (V3).

b. Wind speeds (V3) affecting each of the zip code for N number of storms in
the simulation (affecting each zip code) are then sorted in an ascending
order.

c. The sorted vector of wind speeds is then distributed into bands of 5 mph
starting at 22.5 mph and ending at 302.5 mph. Wind speeds over the
midpoint of each band are assigned to the corresponding bin.

 3-D-4

d. Count the number of instances of maximum wind speeds within each of the
wind speed bands and below the midpoint of each band.

e. Compute the annual probability of the maximum wind speed being within
each band defined by wind speed x (on low side) and z (on high side) as:

PVxz =
N

 z) and x V3 of Instances of(Number <>=

f. Compute the probability of the wind speed exceeding the mid point v of the

band as:

 Pv<v =
N

v) V3 of Instances of(Number <

 N= number of storms affecting that zip code
g. Estimate
 λ = (total #of storms affecting that zip code)/ (# simulation Years)

h. Estimate the probabilities:

 P(V>v) = 1 - e-λ eλPv

 Also P(V < v) = 1- e-λ eλ(1-Pv)

 P(z < V < x) =
!n

e)(
)P1(P

)!jn(!j

!n n

1n

n

1j

jn
xz

j
xz

λ−∞

= =

− λ

−

−∑ ∑

3. Plot histogram and cumulative frequency diagram of maximum wind speeds for each

zip code, use x axis with wind speeds at 5 mph resolution starting at 22.5 mph and
ending at 302.5 mph.

A sample calculation result is as follows:

PVxz = annual probability of a wind(Gust) speed wit hin the band
indicated at left, greater than the first number an d less than or equal
to the second number
PV>y = annual probability of the wind(Gust) speed e xceeding the mid
point of the band

ZipCode = 41
Gust Band(mph) Mid-Point PVxz Pv
> - =<
22.5- 27.5 25.0 0.017 0.262
27.5- 32.5 30.0 0.022 0.247
32.5- 37.5 35.0 0.022 0.229
37.5- 42.5 40.0 0.023 0.211
42.5- 47.5 45.0 0.022 0.192
47.5- 52.5 50.0 0.019 0.176
52.5- 57.5 55.0 0.017 0.160
57.5- 62.5 60.0 0.017 0.146
62.5- 67.5 65.0 0.017 0.131

 3-D-5

67.5- 72.5 70.0 0.017 0.116
72.5- 77.5 75.0 0.017 0.102
77.5- 82.5 80.0 0.014 0.088
82.5- 87.5 85.0 0.014 0.075
87.5- 92.5 90.0 0.011 0.064
92.5- 97.5 95.0 0.010 0.054
97.5- 102.5 100.0 0.008 0.045
102.5- 107.5 105.0 0.008 0.037
107.5- 112.5 110.0 0.006 0.031
112.5- 117.5 115.0 0.005 0.025
117.5- 122.5 120.0 0.004 0.020
122.5- 127.5 125.0 0.004 0.016
127.5- 132.5 130.0 0.003 0.013
132.5- 137.5 135.0 0.002 0.010
137.5- 142.5 140.0 0.002 0.008
142.5- 147.5 145.0 0.002 0.006
147.5- 152.5 150.0 0.001 0.005
152.5- 157.5 155.0 0.001 0.003
157.5- 162.5 160.0 0.001 0.002
162.5- 167.5 165.0 0.000 0.002
167.5- 172.5 170.0 0.000 0.001
172.5- 177.5 175.0 0.000 0.001
177.5- 182.5 180.0 0.000 0.001
182.5- 187.5 185.0 0.000 0.000
187.5- 192.5 190.0 0.000 0.000
192.5- 197.5 195.0 0.000 0.000
197.5- 202.5 200.0 0.000 0.000
202.5- 207.5 205.0 0.000 0.000
207.5- 212.5 210.0 0.000 0.000
212.5- 217.5 215.0 0.000 0.000
217.5- 222.5 220.0 0.000 0.000
222.5- 227.5 225.0 0.000 0.000
227.5- 232.5 230.0 0.000 0.000
232.5- 237.5 235.0 0.000 0.000
237.5- 242.5 240.0 0.000 0.000
242.5- 247.5 245.0 0.000 0.000
247.5- 252.5 250.0 0.000 0.000
252.5- 257.5 255.0 0.000 0.000
257.5- 262.5 260.0 0.000 0.000
262.5- 267.5 265.0 0.000 0.000
267.5- 272.5 270.0 0.000 0.000
272.5- 277.5 275.0 0.000 0.000
277.5- 282.5 280.0 0.000 0.000
282.5- 287.5 285.0 0.000 0.000
287.5- 292.5 290.0 0.000 0.000
292.5- 297.5 295.0 0.000 0.000
297.5- 302.5 300.0 0.000 0.000

 3-D-6

3.4.3 Computer Model Design

3.4.3.1 Use Case View of WSP

A. Actors:

There is one actor, scientist in WSP.

B. Use Case:

WSP is used to calculate the annual probabilities of the wind speeds lying in a wind
speed interval and lying over the mid point the interval.

C. Use Case Diagram:

Scientist WindSpeedProbabilityUsecase

Figure 3.4.1: Use Case Diagram for WSP

 3-D-7

3.4.3.2 System Design

This section includes the appropriate diagrams to describe the system classes,
components, activities and the overall flow chart of WSP.

General Flow Chart of WSP

The flow chart of WSP is depicted in Figure 3.4.2.

Begin

User Specifies the Input
Dataset (T,Y, Z)

For each zip code
system calculates the

wind speed probabilities lying
in the 5 mph intervals

For each zip code the system
calculates the wind

speed probabilities above the
mid point of each 5 mph

interval

System writes them
to a file

End

Figure 3.4.2: Flow chart of WSC

 3-D-8

3.4.3.3 Calculation of WSP

The implementation for Use Case six (WSP) has been completed and meets the
requirements specification. The back end for the implementation of WSP use case has
been coded in C++.
Input:

1. Zip codes in threat area
2. For each storm passing within 3 Rmax of the threat area:

• Peak max sustained wind speed and associated peak gust wind speed already
corrected for the upstream terrain of the zip code

• Storm name, date, and time for each peak wind
Implementation:

(1) For each zip code:
(2) For each storm, select the maximum 3s Gust wind speed (V3)

Note: These wind speeds are in units of miles per hour and should already have
been corrected for roughness.

(3) Order according to the peak maximum sustained wind speeds of all storms
affecting the zip code from low to high

(4) Count the number of instances of maximum wind speeds within each wind speed
band and above the mid point of each band.

(5) Estimate Pv, probability of the maximum wind speed being less than mid point v
as:

 Pv =(Count V< v) /N
 Where N = Number of Storms affecting that Zip code

 Estimate:
 P(z < V < x) = Pxz = Count (z < V < x)/N

(6) Estimate:
 λ = (total #of storms affecting that zip code)/(total # of years in simulation)
 λ = N/ (total # of years in simulation)

(7) Compute the probabilities:
 P(V>v) = 1 - e-λ eλPv
 Also:

 P(V<v) = 1- e-λ eλ(1-Pv)

(8) P(z < V < x) =
!n

e)(
)P1(P

)!jn(!j

!n n

1n

n

1j

jn
xz

j
xz

λ−∞

= =

− λ

−

−∑ ∑

This above equation is going to require a program – however, as n gets large, the Poisson
probabilities should start to go to 0 and therefore, the sum might not be too formidable.
So the maximum limit of n is taken as 13.

 3-D-9

3.4.3.4 Class Diagram

Data

WP

nStart_storm
nEnd_storm
nYears
WSArr

count_zip()
build_zip_array()
wp_max_windspeeds()
Order_Max_WindSpeeds()
Sort_Max_WindSpeeds()
bin_decider()
CalcPVxz()
Distr_Bands()

JSP interface

Figure 3.4.3: Class Diagram for WSP

3.4.3.5 Class Description
WP class performs all the calculations needed for WSP use case. It includes following
methods.

• count_zip()
Read the zipcodes.txt file to count and return the number of lines in the file.
• build_zip_array()
Read the zipcodes.txt file and store the zip codes in to an array
• wp_max_windspeeds()
Search through one storm to find the maximum 3s Gust wind speeds at each zip
code and record it as intermediate output. Iterate this process through all storms.
• Order_Max_WindSpeeds()
Search through all the storms and record (in an array) the maximum wind speed
for specified zip for each storm.
• Sort_Max_WindSpeeds()
Sort the wind speed array in descending order
• bin_decider()
maps the specified wind speed to a bin
• Distr_Bands()
Estimates the wind speed probabilities of the wind speeds lying in the band
(PVxz) and above the midpoint of the band (Pv>y)
• CalcPVxz()
Calculate the wind probabilities Pv and PVxz and produces the CalcP__.txt output
file.

 3-D-10

 : S c ientis t : S c ientis t
W s pCalc . js pW s pCalc . js p W PW P DataData

page_reques t()

c alc _probability ()

c ount_z ip()

build_z ip_array ()

wp_max _ wi nds pe eds ()

O rder_M ax _W indS peeds ()

S ort_M ax _W IndS peeds ()

bin_dec ider()

D is tr_B ands ()

Calc P V x z ()

3.4.3.6 State Chart Diagram

Figure 3.4.4 depicts the state chart diagram for WSP use case. This diagram illustrates
states that the use case goes through from beginning to end.

Idle

Processing

Page requested

mouseClicked / User data sent

Results Displayed

Figure 3.4.4: State Chart for WSP

3.4.3.7 Sequence Diagram

Figure 3.4.5: State Chart for Wind Probability Calculation Process

 3-D-11

3.4.3.8 Program Flow Chart

Count_zip build_zip_array

Input
zipcodes.txt

Contains all the zipcodes in
the threat area

Output
number of zip codes

Output
integer array of zip

codes

Output
Op__.txt

One output file for each
corresponding input file.

Each line shows the zip code and
maximum wind speed at that zip

code.

Input
WSCoutput__.txt

Set of files with zip codes
and wind speeds. One file
corresponds to one storm.

wp_max_windspeeds()

Loop 1
for each of the zip

code zip[i]

Order_Max_WindSpeeds
Search through all the Op.txt
files record the wind speed

for zip[i]

Output
WSArr

Windspeeds for zip[i]

Sort_Max_WindSpeeds
Sort the windspeeds in WSArr

Output
WSArr

Sorted Windspeeds for zip[i]

Distr_Bands
calculates the wind speed probabilities of the wind

speeds lying in the band (PVxz) and above the midpoint
of the band (Pv>y)

Output
Opf__.txt

One file for each zip[i]

bin_decider
maps the wind speed to a bin /

wind band

i++

CalcPVxz
re-calculates the wind speed probabilities of the wind

speeds lying in the band (PVxz) and above the midpoint
of the band (Pv>y), using set of equations.

Output
CalcP__.txt

One file for each zipcode.

Figure 3.4.6: Unit flow diagram

 3-D-12

3.4.4 Implementation of WSP
WSP is online at http://www.cs.fiu.edu/PHRLM.

3.4.4.1 Login page:

Users need a username and a password to access the FIU/IHRC Public Hurricane Risk
and Loss Model. Following is a snapshot of the login web page.

Figure 3.4.7. Login webpage for FIU/IHRC PHRLM

If the username/password is wrong, an error message will be displayed. User will be
required to input the username and password again to enter.

Figure 3.4.8. Login webpage shows the inputted user ID or password is wrong

 3-D-13

3.4.4.2 WSP page:
If the login is successful, the user can see the web page named “Service Selection Page”
(as shown in Figure 3.4.9). To view the WSP use case page, from the drop-down list,
select “WSP” and click “Go” button.

Figure 3.4.9: Service Selection Page

3.4.4.3 WSP input selection

Figure 3.4.10: Input Selection page

 3-D-14

User should select the input from the available list of simulations. Then the user has the
option of entering a zip code in order to view a summery of results for that zip code. In
order to do this, user has to click on the “Enter zip code that you want to process” radio
button and then type the required zip code in the input box provided below. If the user
doesn’t want to enter any specific zip code just press “Submit” button.
 If the user selects the “Simu_other” option from the ‘select base data set’ drop
down list then he/she has to enter the “start file” number, “end File” number and the
number of years in the simulation. This option is provided for advanced users who may
require to do test runs on arbitrary data sets.

3.4.4.4 WSP results page

Note: The results listed below are just placeholders. Actual values will be different.

Figure 3.4.11: WSP results page

 3-D-15

3.4.4.5 Results of WSP

Results for zip code: 41

ZipCode = 41
Gust Band(mph) Mid-Point PVxz Pv
> - =<
22.5- 27.5 25.0 0.017 0.262
27.5- 32.5 30.0 0.022 0.247
32.5- 37.5 35.0 0.022 0.229
37.5- 42.5 40.0 0.023 0.211
42.5- 47.5 45.0 0.022 0.192
47.5- 52.5 50.0 0.019 0.176
52.5- 57.5 55.0 0.017 0.160
57.5- 62.5 60.0 0.017 0.146
62.5- 67.5 65.0 0.017 0.131
67.5- 72.5 70.0 0.017 0.116
72.5- 77.5 75.0 0.017 0.102
77.5- 82.5 80.0 0.014 0.088
82.5- 87.5 85.0 0.014 0.075
87.5- 92.5 90.0 0.011 0.064
92.5- 97.5 95.0 0.010 0.054
97.5- 102.5 100.0 0.008 0.045
102.5- 107.5 105.0 0.008 0.037
107.5- 112.5 110.0 0.006 0.031
112.5- 117.5 115.0 0.005 0.025
117.5- 122.5 120.0 0.004 0.020
122.5- 127.5 125.0 0.004 0.016
127.5- 132.5 130.0 0.003 0.013
132.5- 137.5 135.0 0.002 0.010
137.5- 142.5 140.0 0.002 0.008
142.5- 147.5 145.0 0.002 0.006
147.5- 152.5 150.0 0.001 0.005
152.5- 157.5 155.0 0.001 0.003
157.5- 162.5 160.0 0.001 0.002
162.5- 167.5 165.0 0.000 0.002
167.5- 172.5 170.0 0.000 0.001
172.5- 177.5 175.0 0.000 0.001
177.5- 182.5 180.0 0.000 0.001
182.5- 187.5 185.0 0.000 0.000
187.5- 192.5 190.0 0.000 0.000
192.5- 197.5 195.0 0.000 0.000
197.5- 202.5 200.0 0.000 0.000
202.5- 207.5 205.0 0.000 0.000
207.5- 212.5 210.0 0.000 0.000
212.5- 217.5 215.0 0.000 0.000
217.5- 222.5 220.0 0.000 0.000
222.5- 227.5 225.0 0.000 0.000
227.5- 232.5 230.0 0.000 0.000
232.5- 237.5 235.0 0.000 0.000
237.5- 242.5 240.0 0.000 0.000
242.5- 247.5 245.0 0.000 0.000
247.5- 252.5 250.0 0.000 0.000
252.5- 257.5 255.0 0.000 0.000
257.5- 262.5 260.0 0.000 0.000
262.5- 267.5 265.0 0.000 0.000

 3-D-16

267.5- 272.5 270.0 0.000 0.000
272.5- 277.5 275.0 0.000 0.000
277.5- 282.5 280.0 0.000 0.000
282.5- 287.5 285.0 0.000 0.000
287.5- 292.5 290.0 0.000 0.000
292.5- 297.5 295.0 0.000 0.000
297.5- 302.5 300.0 0.000 0.000

Figure 3.4.12: Histogram for PVxz

Max Wind Speed Probabilities for 33156

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

22
.5-

 2
7.

5

37
.5-

 4
2.

5

52
.5-

 5
7.

5

67
.5-

 7
2.

5

82
.5-

 8
7.

5

97
.5-

 1
02

.5

11
2.5

- 1
17.

5

12
7.5

- 1
32.

5

14
2.5

- 1
47.

5

15
7.5

- 1
62.

5

17
2.5

- 1
77.

5

18
7.5

- 1
92.

5

20
2.5

- 2
07.

5

21
7.5

- 2
22.

5

23
2.5

- 2
37.

5

24
7.5

- 2
52.

5

26
2.5

- 2
67.

5

27
7.5

- 2
82.

5

29
2.5

- 2
97.

5

Wind Speed Bands (mph)

W
in

d
 S

p
ee

d
 P

ro
b

ab
ili

ty
 (P

vx
z)

 3-D-17

Figure 3.4.13: Histogram for PV>y

Max Wind Speeds for Zip 33156

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

25 40 55 70 85 10
0

11
5

13
0

14
5

16
0

17
5

19
0

20
5

22
0

23
5

25
0

26
5

28
0

29
5

Wind Speed (mph)

W
in

d
 S

p
ee

d
 P

ro
b

ab
ili

ty
 g

re
at

er
 t

h
an

 m
id

p

o
in

t
o

f
th

e
b

an
d

 (
P

v>
y)

 3-D-18

Figure 3.4.14: Cumulative frequency diagram for maximum wind speed
probabilities for zip code 33156.

Cumulative Frequency of Max wind speeds for Zip 33156

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

22
.5-

 2
7.5

37
.5-

 4
2.5

52
.5-

 5
7.5

67
.5-

 7
2.5

82
.5-

 8
7.5

97
.5-

 1
02

.5

11
2.5

- 1
17

.5

12
7.5

- 1
32

.5

14
2.5

- 1
47

.5

15
7.5

- 1
62

.5

17
2.5

- 1
77

.5

18
7.5

- 1
92

.5

20
2.5

- 2
07

.5

21
7.5

- 2
22

.5

23
2.5

- 2
37

.5

24
7.5

- 2
52

.5

26
2.5

- 2
67

.5

27
7.5

- 2
82

.5

29
2.5

- 2
97

.5

Wind Speed (mph)

C
u

m
u

la
ti

ve
 W

in
d

 S
p

ee
d

 P
ro

b
ab

ili
ty

Section 4

Insurance Loss Model (ILM)
Use Case VII

 4-A-1

Section 4.1

General Description of ILM

 4-A-2

Insurance Loss Model (ILM) calculates the expected losses during storms.
There are two variations of ILM; Scenario ILM and Probabilistic ILM.

Scenario ILM takes actual (observed) wind speed or modeled wind speed per each zip
code and calculates the expected losses, using Vulnerability Matrices provided by the
engineering team, per loss type given the input exposure/insurance policy data.

Probabilistic ILM on the other hand uses all possible wind speeds (from 50 to 250 mph)
together with their associated wind probabilities per each zip code, using Vulnerability
Matrices to calculate the expected losses.

4.1.1 Design Requirements
Name: Insurance Loss Model Use Case

Description: The traditional actuarial method in loss estimation is typically parametric
and involves fitting some distribution to the number of claims (typically Poisson) and the
amount of the losses. A variety of distributions are available for fitting losses (e.g.
Lognormal, Weibull, Pareto, gamma, Burr, mixture of distributions), most with the
preferred two parameters but a few with three parameters to be estimated. There are
several techniques to estimate the parameters (percentile matching, method of moments,
minimum distance, minimum chi-square, and maximum likelihood). The models are
validated or accepted using both statistical and non-statistical criteria. If more than one
model are acceptable then a ranking of the models is in order. Models can be ranked and
selected by using, e.g., large maximum likelihood function value; small chi-square
goodness of fit test statistics; small Kolmogorov-Smirnov test statistics; large p-value
from chi-square goodness of fit test; minimum cdf, MSE or LAS etc1. Though not
necessary, ranking is often done by using the same method employed for estimating
parameters.

Once the loss distribution has been selected and its parameters estimated and validated it
is rather easy to use and a variety of hypotheses can be tested. For example, for purposes
of prediction, hundreds or thousands of sample outcomes of losses can be generated for a
given representative insured property. Next, policy modifications such as deductibles and
limits can be applied to each outcome to generate a set of net of deductible losses which
are then averaged to generate expected loss. The losses can be aggregated. Exceedance
probabilities curves can be generated to estimate the likelihood the portfolio of policies
will suffer losses in excess of a given level. Alternatively, the Value at Risk (PML) can
be estimated at a given exceedance probability.

In the above traditional practice, only the insurance policy files and claims data are used.
Typically, the losses are modeled directly and are not derivative of other variables. In
our project, however, the catastrophe modeling process requires that in addition to the

1 [See (Hogg and Klugman, Loss Distribution, 1984, particularly Ch. 4 and 5 and the

appendix) and (Klugman, Panjer and Willmot, Loss Models, 1998)] .

 4-A-3

insurance data, output data from the meteorology and engineering components must be
utilized. The distributions of losses are driven by both the distribution for damage ratios
generated by the engineering component and by the distribution of wind speeds
generated by the meteorology component. The wind speeds and damage ratios are
estimated through extensive simulations. The engineering group has produced non-
parametric damage matrices rather than the traditional continuous vulnerability
functions. Damage ratios are grouped and intervals (or classes) of various length are
used. No statistical distributions are fitted or tested.

The engineering component produces non-parametric estimates of damage probabilities
for various intervals or classes of damage ratios for structures and contents. They do not
fit any statistical distributions to the damage ratios. Thus, for the insured loss model a
choice must be made to either fit a parametric statistical distribution for the damage
intervals using some of the same standard techniques mentioned above but applied to
grouped data, or to use a non-parametric technique presented as a broad algorithm.

The advantages and disadvantages of using parametric vs non-parametric techniques are
well known. For our purpose the main advantage of the parametric technique would be
computational efficiency. Once a statistical distribution has been fitted and its parameters
estimated, it is relatively easy to estimate expected losses and formulas are available for
estimating the mean and dispersion etc for many distributions in the presence of
deductibles or limits (truncated data). Predictions can be made relatively easily if the
distributions are stable. Computationally there are fewer steps involved. It is also easier
to test hypothesis or to investigate the effect of, e.g., changes in deductibles and limits on
expected losses. The major disadvantage is that with limited data, we may never be sure
if the right distribution has been fitted and the errors in the estimated parameters can be
significant.

In non-parametric estimation empirical functions are fitted to the data. There is no worry
whether a correct distribution has been fitted and uncertainties are likely to be lower. The
disadvantage is that a complex algorithm may be required that involves many steps and
long computational time. Hypothesis testing is also more complicated and stability may
be a concern.

For various reasons we have decided to pursue the non-parametric option initially. Given
the large computing power available, computational time is not a major concern. Thus, it
may be prudent to develop a logical non-parametric and deterministic algorithm that
should produce low uncertainties. The broad algorithm utilized to estimate insured losses
is discussed below.

 4-A-4

 4-A-5

Section 4.2

Detailed design and Implementation of
Insurance Loss Model

 4-A-6

Input:

Both the meteorology and engineering components provide outputs that constitute critical
inputs into the insured loss model. The meteorology component provides, for each zip
code, the associated probabilities for a common set of wind speeds. Thus, zip codes are
essentially differentiated by their probability distribution of wind speeds.

The Engineering component produces damage matrices that are used as input in the
insured loss model. Damage matrices are provided for building structure, contents,
appurtenant structures and additional living expenses. A separate damage matrix is
provided for each construction type. But within a certain range of building ages, a
particular construction type will have the same damage matrix across all the zip codes in
the same region. The cells of the matrix provide probabilities of damage outcomes for a
given wind speed. The damages are specified in intervals or classes of ratios. The row
represents a given interval of damage ratios and the column represent a given wind speed.
In practice, the damage probabilities are assigned to the mid point of the interval of
damage ratios. The probabilities of all possible damage outcomes must add up to 1.
Therefore, the sum of the cells in any given vector column (for a wind speed) add up to
100%.

It should be noted that both the damages and wind speeds are initially specified as a set of
discrete points. If needed one can interpolate to get a rough continuous function by using
either some standard smoothing techniques (e.g. by defining the jump of the distribution
function and using it with a kernel function and optimal bandwidth to estimate a smooth
PDF) or by specifying an empirical set of ranges or intervals where each interval has an
associated probability. The latter method is used by the engineering component and its
output is specified as a set of damage ratio intervals with associated probabilities.

The third major set data utilized are the insurance policy and claim data provided by
several property and casualty insurance companies operating in Florida.

 4-A-7

4.2.1 ILM Implementation Steps

���� The Non-Parametric Algorithm for Generating Expected Loss Costs for a

Given Exposure

Here, the exposure data by zip code is the only given observed data. The wind
probabilities, and damage matrices are all modeled. In practice to generate expected
loss costs the method we adopt involves an algorithm with the following steps.

(1) Start with a particular insurance company m.

(2) Next pick a residential policy exposure unit k from the insurance policy database.

(3) Determine the zip code j of the policy.

(4) Extract the distribution of wind speeds for the zip code j from the wind database.

(5) Next determine the building type i and the building construction date d (if available)

for the selected policy.

(6) Select the damage matrix for structure of type i based on its construction date d. If the

construction date d is not available, another set of vulnerability matrix is used. The
matrix is provided by the Engineering team and consists of the simulated probabilities
for various damage ratio intervals and wind speeds. The row represents a given
interval n of damage ratios and the column represent a given wind speed w. Each cell
represents the probability Pnw. Let Xij be the vector of the mid points of the interval of
damage ratios for structure type i in zip code j. It has N elements. Now rather than use
the MDR (Mean Damage Ratio) of the whole matrix, the mid point of the damage
ratio interval n, Xn, is used to represent an outcome, and the probability of this
outcome for a given wind speed is Pnw. In general, for structure i in zip code k, the
mid point of damage intervals is Xijn and its probability of outcome for a given wind
speed is Pijnw.

(7) Select the damage matrix for contents for structure of type i on its construction date d.

If the construction date d is not available, another set of vulnerability matrix is used.
The matrix is provided by the Engineering team and consists of the simulated
probabilities for various content damage ratio intervals and wind speeds. The row
represents a given interval n of content damage ratios and the column represent a
given wind speed w. The interpretation of the cells values etc is similar to the
description given above for structure damage matrix. Although the content damage
depend indirectly on structural damage, there is no stipulated functional relationship
between the two matrices and their damage intervals.

(8) Select the AP and ALE damage matrices accordingly. The Engineering team has

generated independent matrices for AP and ALE based on indirect relationships
between structural damage and both ALE and AP.

 4-A-8

(9) From the insurance policy file, get the property value Vijk, its policy limits LMijk, and

its deductible Dijk. The limit LM is the default value of the property k (default is V =
LM) if value is not available. Value is contingent on the type of policy specified and
is either replacement cost or actual cash value (replacement cost minus depreciation).

(10) Select a wind speed from the distribution. Apply the damage ratio vector Xij to the

property k (of type i in zip code j). For each damage interval n, calculate the $
damage: ijnwijkijknw XVDM ×= . Thus, a Nx1 $ damage vector DMijk is generated for
property k. This vector is associated with the chosen wind speed.

(11) For the above selected wind speed, estimate the row vector of wind conditional

mean $ content damages, where each element is the mean content damage for the
given wind speed: ijnwcijkw meanCLMmeanC ×= ratio.

(12) For the selected wind speed, estimate the row vector of wind conditional mean $ AP

damages, where each element is the mean AP damage for the given wind speed:
ijnwAPijkw meanAPLMmeanAP ×= ratio.

(13) For the selected wind speed, estimate the row vector of wind conditional mean $

ALE damages, where each element is the mean ALE damage for the given wind
speed: ijnwALEijkw meanALELMmeanALE ×= ratio.

(14) Using the wind conditional mean $ structural damage DMijk, and combining it with

the wind conditional mean C, mean APijkw and mean ALEijkw: calculate the
deductibles DS, DC, DAP on a pro-rata basis to the respective damages as follows:

()[] DAPCDMDMD SSs ×++=

()[] DAPCDMCD sc ×++=

()[] DAPCDMAPD sAP ×++=

0=ALED

(15) Apply the pro-rata structure deductible Dsijk and limits LMijk to each of the cells of
the $ damage Matrix DMijk. Calculate the structure loss Lsijkn net of deductible, and
truncate it on the upside by LMijk and on the downside by Dsijk. Thus, a vector Lsijk
of insured losses is generated for property k. Its elements are Lsijkn. If L sijkn is ≥
Lmijk, then Lsijkn = Lmijk. If Lsijkn is ≤ 0, then let Lsijkn = 0 .

(16) Repeat step (15) for C, AP, and ALE. Here, these variables are means conditional

on the wind speed. Generate Lc, LAP, and LALE.

(17) Next, to get the expected insured loss for a given wind speed w, multiply each

element Lijkn of the vector Lijk by its corresponding probability Pijkwn to compute
L ijknw, and then sum over the N intervals. Steps 15 - 17 can be represented by:

 4-A-9

() ∑∑ +−==
+

SSssi PLMPDDM
DsL

Ds

)(L E Loss Structure Expected s

() ∑∑ +−== cccc PLMPDC)(L E LossContent Expected c

() ∑∑ +−== APAPAPAP PLMPDAP)(L E Losst Appurtenan Expected AP

() ∑∑ +−== ALEALEALEALE PLMPDALE)(L E Loss ALE Expected ALE

where Lijkwn = LMijk if (DMijn - Dsijk) ≥ Lmijk, and if (DMijn - DSijk) ≤ 0, then
let DMijn - Dsijk = 0 , i.e replace negative values of net of deductible loss with
zero. The same applies to C, AP, and ALE.

(18) Expected Loss () () () () ()ALEAPCS LELELELELE +++=

(19) Repeat step (10) through (18) for all the wind speeds to generate a row of expected

insured loss for all wind speeds.

(20) Multiply the Expected Loss E(Lijkw) for a given wind speed by the probability of the

wind speed, pw. Next sum over all wind speeds to get the property k Expected Loss:

Property k Expected Loss () ()[]∑ ×=
W

w

wijkwijk PLELE

(21) Steps (7) through (20) are repeated for all dwellings of type i in zip code j to

generate E (Lijk) for all properties k =1,...,K.

(22) The expected losses are then summed to get the Expected Aggregate Loss for

property type i in zip code j:

() ()∑==
K

ijkLELijEsgregateLosExpectedAg

(23) Variance will now need to be computed empirically, since all the terms in the
calculations for the expected losses are correlated. We compute the variance as
follows:
The variance for all dwellings of type i in zip code j will be:

(){ } () () ()

−−= ∑∑
==

2

11

22 111
K

k
ijk

K

k
ijkij LkLKσ

(24) To get the Expected Loss (mean loss) for structure type i in zip code j, the E(AL) is
calculated as the weighted average of the Expected Loss of all properties of type i.
The weight is the relative value of the structure ∑ ijkijk VV (or relative exposure of

the structure ∑ ijkijk LMLM):

 4-A-10

Expected Loss for property type i in zip code j () ijk
1

L∑ ∑
=

=
k

ijkijk vv

(25) To estimate the expected loss as a percentage of exposure for structure type i in zip

code j, use:

 ()

= ∑∑

== 11

%
k

ijk
k

ijkij LMLLE

(26) Repeat steps (5) through (23) for all property types i = 1,, I to get the Expected

Aggregate Loss and Expected loss for all property types in zip code j.

(27) Sum the E(ALij) across all property types i to get the Expected Aggregate Loss for

all exposure in zip code j:

() ()∑
=

=
I

i
ijj ALEALE

1

(28) Sum 2
ijσ to get 2

jσ , the variance for all exposure in zip code j.

(29) Pick another zip code and repeat steps (4) through (28) to generate E (ALj) for all

zip codes. Sum across the zip codes j=1,....,J to get the Expected Aggregate Loss for
insurance company m.

E (ALm) for company ()∑= jALEm Jj ,....1=

(30) Sum 2

jσ to get 2
mσ , the variance for insurance company m.

(31) Pick another insurance company m and repeat steps (1) through (30). Sum across

the insurance companies to get the Overall Expected Loss.

���� The Non-Parametric Algorithm for Generating Scenario Based Expected

Loss Costs

In this section we develop the algorithm for estimating expected loss costs for a given
scenario. Typically the scenario refers to a particular hurricane with a given set of
characteristics. Hence, both the exposure data and the wind speeds by zip code are given
observed data. The damage matrices, as before, are modeled. Most of the steps in this
algorithm are the same as in the prior section.

(1) Start with a particular insurance company m.

(2) Next pick a residential policy exposure unit k from the insurance policy database.

(3) Determine the zip code j of the policy.

(4) Extract the distribution of wind speeds for the zip code j from the wind database.

 4-A-11

(5) Next determine the building type i and the building construction date d (if available)
for the selected policy.

(6) Select the damage matrix for structure of type i based on its construction date d. If

the construction date d is not available, another set of vulnerability matrix is used.
The matrix is provided by the Engineering team and consists of the simulated
probabilities for various damage ratio intervals and wind speeds. The row
represents a given interval n of damage ratios and the column represent a given
wind speed w. Note that in the scenario analysis the observed wind speeds are
used. Thus, only the column corresponding to the observed wind speed for the zip
code is used. Let Xij be the vector of the mid points of the interval of damage ratios
for structure type i in zip code j. It has N elements. Now rather than use the MDR
(Mean Damage Ratio) of the whole matrix, the mid point of the damage ratio
interval n, Xn, is used to represent an outcome, and the probability of this outcome
for a given observed wind speed is Pnw. In general, for structure i in zip code k, the
mid point of damage intervals is Xijn and its probability of outcome for a given
observed wind speed is Pijnw.

(7) Select the damage matrix for contents for structure of type i based on its

construction date d. If the construction date d is not available, another set of
vulnerability matrix is used. The matrix is provided by the Engineering team and
consists of the simulated probabilities for various content damage ratio intervals and
wind speeds. The row represents a given interval n of content damage ratios and the
column represent a given wind speed w. The interpretation of the cells values etc is
similar to the description given above for structure damage matrix. Although the
content damage depends indirectly on structural damage, there is no stipulated
functional relationship between the two matrices and their damage intervals.

(8) Select the AP and ALE damage matrices accordingly. The Engineering team has

generated independent matrices for AP and ALE based on indirect relationships
between structural damage and both ALE and AP.

(9) From the insurance policy file, get the property value Vijk, its policy limits LMijk,

and its deductible Dijk.. The limit LM is the default value of the property k (default
is V = LM) if value is not available. Value is contingent on the type of policy
specified and is either replacement cost or actual cash value (replacement cost
minus depreciation).

(10) Select the damage vector for the observed wind speed. Apply the damage ratio

vector Xij to the property k (of type i in zip code j). For each damage interval n,
calculate the $ damage: ijnwijkijknw XV DM ×= . Thus, a Nx1 $ damage vector DMijk

is generated for property k. This vector is associated with the observed wind speed.

(11) For the observed wind speed, estimate the row vector of wind conditional mean $

content damages, where each element is the mean content damage for the given
wind speed: ijnwCijkw Cmean LM Cmean ×= ratio.

 4-A-12

(12) For the observed wind speed, estimate the row vector of wind conditional mean $

AP damages, where each element is the mean AP damage for the given wind speed:
 APmean LM APmean ijnwAPijkw ×= ratio.

(13) For the observed wind speed, estimate the row vector of wind conditional mean $

ALE damages, where each element is the mean ALE damage for the given wind
speed: ALEmean LM ALEmean ijnwALEijkw ×= ratio.

(14) Using the wind conditional mean $ structural damage DMijk, and combining it with

the wind conditional mean C, mean APijkw and mean ALEijkw: calculate the
deductibles DS, DC, DAP, DALE on a pro-rata basis to the respective damages as
follows:

()[] DAPCDMDMD SSs ×++=

()[] DAPCDMCD sc ×++=

()[] DAPCDMAPD sAP ×++=

0=ALED

(15) Apply the pro-rata structure deductible Dsijk and limits LMijk to each of the cells of

the $ damage Matrix DMijk . Calculate the structure loss Lsijkn net of deductible, and
truncate it on the upside by LMijk and on the downside by Dsijk. Thus, a vector Lsijk
of insured losses is generated for property k. Its elements are Lsijkn. If Lsijkn is ≥
Lmijk, then Lsijkn = Lmijk. If Lsijkn is ≤ 0, then let Lsijkn = 0 .

(16) Repeat step (15) for C, AP, and ALE. Here, these variables are means conditional

on the wind speed. Generate Lc, LAP, and LALE .

(17) Next, to get the expected insured loss for the observed wind speed w, multiply each

element Lijkn of the vector Lijk by its corresponding probability Pijkwn to compute
L ijknw, and then sum over the N intervals. Steps 15 - 17 can be represented by:

() ∑∑ +−==
+

SSssi PLMPDDM
DsL

Ds

)(L E Loss Structure Expected s

() ∑∑ +−== cccc PLMPDC)(L E LossContent Expected c

() ∑∑ +−== APAPAPAP PLMPDAP)(L E Losst Appurtenan Expected AP

() ∑∑ +−== ALEALEALEALE PLMPDALE)(L E Loss ALE Expected ALE

where Lijkwn = LMijk if (DMijn - Dsijk) ≥ Lmijk, and if (DMijn - DSijk) ≤ 0,
then let DMijn - Dsijk = 0 , i.e replace negative values of net of deductible loss
with zero. The same applies to C, AP, and ALE.

 4-A-13

(18) () () () () ()ALEAPCSijk LELELELELEssExpectedLo +++== for property k

(19) Steps (7) through (18) are repeated for all dwellings of type i in zip code j to

generate E (Lijk) for all properties k =1,...,K.

(20) The expected losses are then summed to get the Expected Aggregate Loss for

property type i in zip code j:

() ()∑==
K

ijkij LE LE Loss Aggregate Expected

(21) Variance will now need to be computed empirically, since all the terms in the

calculations for the expected losses are correlated. We compute the variance as
follows:
The variance for all dwellings of type i in zip code j will be:

(){ } () () ()

−−= ∑∑
==

2

11

22 111
K

k
ijk

K

k
ijkij LkLKσ

(22) To get the Expected Loss (mean loss) for structure type i in zip code j, the E(AL) is
calculated as the weighted average of the Expected Loss of all properties of type i.
The weight is the relative value of the structure ∑ ijkijk VV (or relative exposure

of the structure ∑ ijkijk LL MM

Expected Loss for property type i in zip code () ijk
1

L∑ ∑
=

=
k

ijkijk vvj

(23) To estimate the expected loss as a percentage of exposure for structure type i in zip
code j, use:

 ()

= ∑∑

== 11

%
k

ijk
k

ijkij LMLLE

(24) Repeat steps (5) through (21) for all property types i = 1,....,I to get the Expected

Aggregate Loss and Expected loss for all property types in zip code j.

(25) Sum the E(ALij) across all property types i to get the Expected Aggregate Loss for

all exposure in zip code j:

() ()∑
=

=
I

i
ijj ALEALE

1

(26) Sum 2
ijσ to get 2

jσ , the variance for all exposure in zip code j.

(27) Pick another zip code and repeat steps (4) through (26) to generate E (ALj) for all

zip codes. Sum across the zip codes j=1,....,J to get the Expected Aggregate Loss for
insurance company m.

 4-A-14

E (ALm) for company m ()∑= jAL Jj ,....1=

(28) Sum 2
jσ to get 2

mσ , the variance for insurance company m.

(29) Pick another insurance company m and repeat steps (1) through (28). Sum across

the insurance companies to get the Overall Expected Loss.

 4-A-15

Section 4.3

Computer Model Design

 4-A-16

4.3.1 Use case View of Insurance Loss Model (ILM)

A. Actors:

There is one actor (engineers) in ILM. Engineers use this use case to find the
expected losses for particular companies for all wind speeds.

B. Use Case:

It represents the expected losses for particular companies for given
(scenario or non scenario) wind speeds. The total expected loss is actually
the summation of expected loss of the property for a given wind speed,
which is calculated by aggregating the losses at different intervals with
respect to the corresponding damage probabilities.

C. Use Case Diagram:

Figure 4.1.1 shows the use case diagram for ILM.

Figure 4.1.1: Use Case Diagram For ILM

4.3.2 System Design
This portion describes the system design. The overall Flowchart, Classes and
activities for ILM is provided.

InsuranceLossModel Engineer

 4-A-17

A. Program Flowchart of ILM

���� The Non-Parametric Approach for Generating Expected Loss Costs for a

Given Exposure
Portfolio File

Determine Construction Type

Manufactured Wood, Masonry, Others

Central South Keys North

Year <=
94

Y

N
Zone Type

Zone2 Zone3

Select Applicable Weighted
Vulnerability Matrices

Sub-Region
(Determine based on zip code & eliminate all

matrices which do not apply)

Neither
(least stringent replacement

requirements apply)

Windborne Debris Region
(more stringent replacement

requirements apply to windows)

High Velocity Hurricane Zone
(more stringent replacement requirements

apply to windows and roof)

Structure Type
(Determine from portfolio file info, eliminate

matrices which do not apply, if unknown use other
matrix)

Select Applicable Weighted
Vulnerability Matrices

a

 b

Zip Code
(Determine region & eliminate all

matrices which do not apply)

 4-A-18

 b

Region Type

South & Keys Central North

Built Year

Prior
1969

1970 -
1983

1984 -
1993

1994 -
Present

½ Weak
½
Medium

Medi
um

Medi
um

Stand
ard

Built Year

1970 -
1983

1984 -
1993

1994 -
Present

Weak Medium Standard

Prior
1969

Weak

Select Applicable Weighted
Vulnerability Matrices

a Built Year

1970 -
1983

1984 -
1993

1994 -
prese
nt

Weak Medium Standard

Prior
1969

Weak

 4-A-19

III

I

Start

Select a company Ci

Select a portfolio Pi,j
[get information of Construction type, Zip code, County, Region,
Property value (V i), Wind deductible (D) , limits for
structure(LM S), content(LM C), App(LM AP), ALE (LM ALE)
If Hurri_Deductible = 0, Use “Other” Deductible
Else Hurri_Deductible = Hurri_Deductible

Loop 2
Pi,j = Pi, j+1

Loop 3
Ci = Ci+1

Loop 1
W i = Wi+1

a

Portfolio is
replacement

cost?

N V i = 1.25*LM S

ISO classification
available?

Y

Is it
concrete?

Y

Use weighted
concrete matrices

Is it
timber?

Y

Use weighted
timber matrices

 N

Use weighted
Misc. matrices

Use weighted
matrices

N

Mobile
home?

N

Y

Use weighted
mobile home
matrices

SumDM = SDM + CDM + APDM

DS = SDM *D/SumDM

DC = CDM *D/SumDM

DAP = APDM *D/SumDM

 d

Y

LC = LMc
 LAP = LMap

N

Y

LC = 1.25 * 0.5* LMs
 LAP = 1.25*0.1 * LMs

N

e

II

f

h

 i

**
SDM = Σ(PDS

* XS)

CDM = Σ(PDC
* XC)

APDM = Σ(PDAP
* XAP)

*

LC = 0.5 * LMs
 LAP = 0.1 * LMs

LMc, LMap,
provided ?

V i = LMS

INPUT
Vulnerability Matrices for Structure (S),
Content (C), Appurtenant (AP) and ALE
(for a given construction type, region based on
a given mix of construction features). Assume
the number of damage ratio intervals is N

* Get damage ratio vectors (i.e., the
middle point values for N intervals) XS,
XC, XAP, XALE

** For a wind speed Wi, get the vectors
of the probability of damage PDS

, PDC
,

PDAP
, PDALE

LC = 1.25 * LMc
 LAP = 1.25 * LMap

LMc, LMap,
LMale
provided ?

 4-A-20

II
 h

i

LMs = 0
&&
LMc != 0

 e

N

LMale
provided? LALE = 0.2 * LMs

LMs = 0
&&
LMc != 0

N N

Y

LALE = 0.4 * LMc

e

LALE = LMale

LALE =1.25 * 0.2 * LMs

Y

Y
LALE = 1.25 * LMale

LMale
provided?

Y

N
LALE = 1.25 * 0.4 * LMc

 4-A-21

e II

d

N

f

g

DMS = Vi * XS

C = VC * XC

AP = VAP * XAP

ALE = LMALE * XALE

DMS <= DS

C <= DC
AP <= DAP

 4-A-22

VI

Finish wind speed? Loop 1
N

Output SumEL

Y

SumAEL = SumAEL + SumEL

Finish portfolio? Loop 2
N

Output SumAEL

Y

Finish company? Loop 3
N

Stop

Y

§

SumLS = SumLS + LS * PDS

SumLC = SumLC + LC * PDC

SumLAPP = SumLAPP + LAP * PDAP

SumLALE = SumLALE + LALE * PDALE

Output SumLS,
SumLC, SumLAPP,

SumLALE

SumEL = SumEL + (SumLs + SumLC + SumLAPP + SumLALE) * PWi

INPUT
Probability of wind
speed PWi for given wind
speed in the given zip
code

LS > LM S

LC > LM C
LAP > LM AP

N

g
LS = DMS - DS

LC = C - DC
LAP = AP - DAP
LALE = ALE

Y
LS = LM S

LC = LM C
LAP = LM AP

LS = LM S

V

Y

N
LS > 0.5*LM S

Y

LS > 0.5*LM S

Mobile home
Y N

VII

VIII

N

IV

 4-A-23

N

REMARKS:
I
Map the portfolio construction type to the ISO classification and select the corresponding vulnerability matrix

II
The structure limit LM S is applied based on the portfolio type (replacement cost or actual cash value) to obtain V i, VC, and
VAP

III
The deductibles applied to structure, content and appurtenant (DS, DC, and DAP) are calculated based on the mean damages
obtained from the vulnerability matrices

IV
The damages of structure, content, appurtenant and ALE (DMS, C, AP and ALE) are calculated at different damage ratio
intervals. Here, DMS, C and AP are calculated based on V i, VC, and VAP, respectively. Then the losses of structure, content
and appurtenant (LS, LC and LAP) are computed by applying the deductibles. Two exceptions are handled as follows:

1. If LS (LC or LAP) < 0, set it to 0
2. If LS (LC or LAP) > LM S (LM C or LM AP), set it to LM S (LM C or LM AP)

The loss of ALE (LALE) is set to ALE, which is calculated based on the ALE limit (LM ALE)

V
The structure loss LS is compared to the structure limit LM S. Two situations are handled:

1. For mobile home, if LS > 0.5*LM S, LS is set to LM S
2. For other construction type, if LS > 0.5*LM S, LS is set to LM S

NOTE: It will be implemented. However, at this stage, it will be commented out for later use.

VI
SumL (SumLS, SumLC, SumLAPP or SumLALE) is expected loss of the property for a given wind speed, which is calculated
by aggregating the losses at different damage intervals with respect to the corresponding damage probabilities.

VII
SumEL is across all wind speeds, which is obtained by aggregating all the expected losses at different wind speed with
respect to the corresponding probability for the wind speed.

VIII
SumAEL aggregates all expected losses for one company.

NOTE: Save information (zip code, county, region, construction type, 4 types of coverages, property value, company) for
SumLS, SumLC, SumLAPP, SumLALE and SumEL. For SumLS, SumLC, SumLAPP and SumLALE , save wind speed too and
for SumEL, save (V i/sum of V i) where sum of Vi is for each construction type (Masonry, Timber, Mobile home) and is
calculated offline.

§ Variance of SumAEL can be calculated for a company, for a Zipcode or for a construction type.

 4-A-24

���� The non-parametric approach for generating Scenario Based Expected
Loss Costs

Portfolio File

Determine Construction Type

Manufactured Wood, Masonry, Others

Zip Code
(Determine region & eliminate all

matrices which do not apply)

Central South Keys North

Year <=
94

Y

N
Zone Type

Zone2 Zone3

Select Applicable Weighted
Vulnerability Matrices

Sub-Region
(Determine based on zip code & eliminate all

matrices which do not apply)

Neither
(least stringent replacement

requirements apply)

Windborne Debris Region
(more stringent replacement

requirements apply to windows)

High Velocity Hurricane Zone
(more stringent replacement requirements

apply to windows and roof)

Structure Type
(Determine from portfolio file info, eliminate

matrices which do not apply, if unknown use other
matrix)

Select Applicable Weighted
Vulnerability Matrices

a

 b

 4-A-25

b

Region Type

South & Keys Central North

Built Year

Prior
1969

1970 -
1983

1984 -
1993

1994 -
Present

½ Weak
½
Medium

Medi
um

Medi
um

Stand
ard

Built Year

1970 -
1983

1984 -
1993

1994 -
Present

Weak Medium Standard

Prior
1969

Weak

Select Applicable Weighted
Vulnerability Matrices

a Built Year

1970 -
1983

1984 -
1993

1994 -
prese
nt

Prior
1969

Weak Weak Medium Standard

 4-A-26

Start

Select a company Ci

Select a portfolio Pi,j
[get information of Construction type, Zip code, County, Region,
Property value (V i), Wind deductible (D) , limits for
structure(LM S), content(LM C), App(LM AP), ALE (LM ALE)
If Hurri_Deductible = 0, Use “Other” Deductible
Else Hurri_Deductible = Hurri_Deductible

Loop 1
Pi,j = Pi, j+1

Loop 2
Ci = Ci+1

INPUT
Vulnerability Matrices for Structure (S), Content (C),
Appurtenant (AP) and ALE
(for a given construction type, region based on a given mix
of construction features). Assume the number of
damage ratio intervals is N

* Get damage ratio vectors (i.e., the middle point
values for N intervals) XS, XC, XAP, XALE

** Based on WO, get the vectors of the probability
of damage PDS

, PDC
, PDAP

, PDALE, whose
corresponding wind speed interval (Wi +/- 2.5 mph)
includes
Wo (in case of a tie, break the tie by picking the
larger one)

a

Portfolio is
replacement

cost?

N

V i = LMS

V i = 1.25*LM S

**

ISO classification
available?

Y

Is it
concrete?

Y

Use weighted
concrete matrices

Is it
timber?

Y

Use weighted
timber matrices

 N

Use weighted
Misc. matrices

Use weighted
matrices

N

Mobile
home?

N

Y

Use weighted
mobile home
matrices

SDM = Σ(PDS
* XS)

CDM = Σ(PDC
* XC)

APDM = Σ(PDAP
* XAP)

SumDM = SDM + CDM + APDM

DS = SDM *D/SumDM

DC = CDM *D/SumDM

DAP = APDM *D/SumDM

 d

*
Y

LC = LMc
 LAP = LMap

N

Y N

e

Get Observe
wind speed

f

i

h

LC = 0.5 * LMs
 LAP = 0.1 * LMs

LC = 1.25 * LMc
 LAP = 1.25 * LMap

LMc, LMap,
LMale
provided ?

LC = 1.25 * 0.5* LMs
 LAP = 1.25*0.1 * LMs

LMc, LMap,
provided ?

 4-A-27

h

LMale
provided?

N

Y

LALE = 0.2 * LMs
LMs = 0
&&
LMc != 0

N

LALE = 0.4 * LMc

Y

LALE = LMale

 e

i

N

LALE = 1.25 * LMale

LMale
provided?

LMs = 0
&&
LMc != 0

LALE = 1.25 * 0.4 * LMc

LALE =1.25 * 0.2 * LMs

 e

 4-A-28

e

d

N

f

g

DMS = Vi * XS

C = VC * XC

AP = VAP * XAP

ALE = LMALE * XALE

DMS <= DS

C <= DC
AP <= DAP

 4-A-29

REMARKS:
The steps in scenario-based ILM are similar to the general ILM except that the wind speed for a certain portfolio is given.
SumL is expected loss of the property for a given wind speed, SumAEL aggregates all expected losses for one company.
Save information (zip code, county, region, construction type, 4 types of coverages, property value, company) for SumLS,
SumLAPP, SumLALE .

§ Variance of SumAEL can be calculated for a company, for a Zipcode or for a construction type.

SumLS = SumLS + LS * PDS

SumLC = SumLC + LC * PDC

SumLAPP = SumLAPP + LAP * PDAP

SumLALE = SumLALE + LALE * PDALE

Output SumLS, SumLC,

SumLAPP, SumLALE

Finish portfolio? Loop 1
N

Output SumAEL

Y

Finish company? Loop 2
N

Stop

Y

§

LS > LM S

LC > LM C
LAP > LM AP

N

g
LS = DMS - DS

LC = C - DC
LAP = AP - DAP
LALE = ALE

Y
LS = LM S

LC = LM C
LAP = LM AP

LS = LM S

Y

N LS > 0.5*LM S

Y

LS > 0.5*LM S

Mobile home

Y N

SumAEL = SumAEL + (SumLs + SumLC + SumLAPP + SumLALE)

 4-A-30

4.3.3 Class Diagram and Description
A. Class Diagram for ILM

Figure 4.1.2: Class Diagram for ILM-1

 4-A-31

♦ Class Description

This section addresses the major classes used and their functionalities.

• ILM:
This is the main class of the application which instantiates all the other classes
and performs all the operations specified by the flowchart.

• Matrices:
This class forms the vulnerability matrices for Content, Appurtenant, Ale and
Structure.

• Damage_Ratio:

This class reads and stores the Damage Ratio required in calculating the
expected losses.

• Wind_Probability:
 This class reads and stores the wind probability.

• Policy:

This class reads the input file and categorizes data.

• Company:

This class gets the input data and formulates it for each company in the proper
format.

 4-A-32

B. Class Diagram for Generating Expected Loss Costs for a Scenario ILM

Figure 4.1.3 Class Diagram for ILM-Scenario Based

 4-A-33

♦ Class Description

This section addresses the major classes used and their functionalities.

• ILM:
This is the main class of the application which instantiates all of the other
classes.

• Matrices:
This class forms the vulnerability matrices for Content, Appurtenant, Ale and
Structure in the required format.

• Damage_Ratio:
This class reads and stores the Damage Ratio required in calculating the
expected loss of properties.

• Windspeed:
This class stores the wind speed corresponding to each zip code.

• Policy:

This class reads the input file and categorizes data.

• Company:

This class gets the input data and formulates it for each company in the proper
format.

• Windborne:
This class holds the windborne derby region information

 4-A-34

4.3.4 Sequence Diagram for ILM

4.3.5 Sequence Diagram for Scenario ILM

References

[1] 2004 National Renovation & Insurance Repair Estimator, J. Russell, Craftsman
Book Company, Carlsbad, CA

[2] CEIA Cost 2002, R. Langedyk, V. Ticola, Construction Estimating Institute,
Sarasota, FL

Section 5

Database Document

 5-A-1

5.1 Specification for the Project

The North Atlantic ‘best track’ is maintained by the forecasters and researchers at the
National Hurricane Center in Miami, Florid and the National Climatic Data Center in
Asheville, North Carolina. Currently, the Database extends from 1851 to 2001. Based
on the provided data, we are going to develop a Database system using Oracle software
so that the user of the application can query the Database and get the statistic reports from
the Database.
In this project, an interface is provided for the users to select any data series from five
data sets. The application then retrieves data from Oracle Database, uses two probability
distributions to fit the selected data set, and returns the fit result to users. The simulation
results are plotted as graphs.

5.2 Data Modeling

Since the data modeling is the most important part of the system’s development process,
the characteristics of data captured during data modeling are crucial in the design of
database, programs, and other system components. The facts and rules captured during
the process of data modeling are essential to assuring data integrity in an information
system.
Data rather than processes are the most complex aspects of many modern information
systems, and hence play a central role in structuring system requirements. An Object
Relational Model is based on the traditional Oracle Relational Database and is extended
to include Object Oriented concepts and structures, such as abstract data types, nested
tables and varying arrays.
In this project we use the Object Oriented concept due to the following reasons:

1. Object Reuse: Creating Object Oriented Database objects will facilitate the reuse

of the Database objects.

2. Standard Adherence: If multiple applications or tables use the same set of

Database objects, a standard must be created for those Database objects. For

example, you can create a standard data type used for all address data.

3. Defined Access Paths: For each object you can define the procedures and

functions that act upon it, which means you can unite the data object and the

methods that access it. Having the access paths defined in this manner allows you

to standardize the data access methods and enhances the reusability of the objects.

 5-A-2

 1

 1

 1

of

0..m 1 0..1

m 1

of

of of

REF

REF

NEWFIX

latitude_deg
longitude_deg
max_windspeed_mps
min_pressure_mb
height_m
stage
rmax
crossing

Stormfix

when_t
fix_id
fixobj
at_time
for_event
event_id
produced_id
produced_by

Atmosevent

key_id
stm_nbr
when_t
name
type
basin
ATCF_name

Platform_type

key_id
type
description

Platform_type_list

PK key_id

 type
 description

Stormfix_list

PK when_t
PK at_time
PK, FK2 event_id
Un fix_id
 for_event
FK1 produced_id
 produced_by
 fixobj

Atmosevent_list

PK key_id

Un stm_nbr
 when_t
 name
FK type
 basin
Un ATCF_name

Landfall_type

category_no
state_code

Landfall_type_arr

category_no
state_code

Storm_category

PK description

 Un category_no

Landfall_state

PK name

 Un state_code

Landfall

FK storm_id

 landfall_obj

Type

Table

PK: Primary Key

Un: Unique Constraint

FK: Foreign Key

Relationship
between Tables

Relationship between
Tables and Types

Relationship
between Types

 5-A-3

5.3 Description of the Objects and Tables

There are 6 object types in HURDAT Schema:

1.

NEWFIX

latitude_deg
longitude_deg
max_windspeed_mps
min_pressure_mb
height_m
stage
rmax
crossing

TYPE: NEWFIX

latitude_deg NUMBER(10,4)
longitude_deg NUMBER(10,4)
max_windspeed_mps NUMBER(10,4)
min_pressure_mb NUMBER(6)
height_m NUMBER(8,3)
stage NUMBER(2)
rmax NUMBER(4)
crossing VARCHAR2(10)

2.

Stormfix

when_t
fix_id
fixobj
at_time
for_event
event_id
produced_id
produced_by

TYPE: STORMFIX

fix_id NUMBER
when_t DATE
at_time CHAR(6)
event_id NUMBER(6)
for_event REF ATMOSEVENT
produced_id NUMBER(4)
produced_by REF PLATFORM_TYPE
fixobj NEWFIX

 5-A-4

3.

Atmosevent

key_id
stm_nbr
when_t
name
type
basin
ATCF_name

TYPE: ATMOSEVENT

key_id NUMBER(6)
stm_nbr NUMBER(6)
when_t DATE
name VARCHAR2(30)
type NUMBER(2)
basin NUMBER(2)
ATCF_name VARCHAR2(20)

4.

Platform_type

key_id
type
description

TYPE: PLATFORM_TYPE

key_id NUMBER(4)
type VARCHAR2(50)
description VARCHAR2(50)

5.

Landfall_type

category_no
state_code

TYPE: LANDFALL_TYPE

category_no NUMBER(2)
state_code RCHAR2(4)

6.

Landfall_type_arr

category_no
state_code

TYPE: LANDFALL_TYPE_ARR

 5-A-5

category_no NUMBER(2)
state_code RCHAR2(4)

This object is an array of the LANDFALL_TYPE object

There are 5 tables in HURDAT Schema:

Table 1:

Platform_type_list

PK key_id

 type
 description

TABLE 1: PLATFORM_TYPE_LIST
Key_id PRIMARY KEY CONSTRAINT

This table is based on Object Platform_type

Table 2:

Stormfix_list

PK when_t
PK at_time

PK, FK2 event_id
Un fix_id
 for_event
FK1 produced_id
 produced_by
 fixobj

TABLE 2: STORMFIX_LIST

when_t NOT NULL
constraint FIX_ID_UN UNIQUE (FIX_ID)
constraint EVENT_ID_FK FOREIGN KEY (EVENT_ID)
constraint PRODUCED_ID_FK FOREIGN KEY
 (PRODUCED_ID)
constraint FIX_ID_PK PRIMARY KEY
 (EVENT_ID,WHEN_T,AT_TIME)

 5-A-6

Table 3:

Atmosevent_list

PK key_id

Un stm_nbr
 when_t
 name
FK type
 basin
Un ATCF_name

TABLE 3: ATMOSEVENT _LIST

constraint AL_KEY_ID_PK PRIMARY KEY(KEY_ID)
constraint AL_stm_nbr_UN UNIQUE (STM_NBR)
constraint AL_ATCF_name_UN UNIQUE (ATCF_NAME)

Table 4:

Storm_category

PK description

Un category_no

TABLE 4: STORM_CATEGORY

category_no NUMBER(2)
constraint S_CATEGORY_NO_UN UNIQUE
description VARCHAR2(30)
constraint S_DESCRIPTION_PK PRIMARY KEY)

Table 5:

Landfall

FK storm_id

 landfall_obj

TABLE 5: LANDFALL

storm_id NUMBER(6)
landfall_obj LANDFALL_TYPE_ARR

 5-A-7

constraint LD_EVENT_ID_FK FOREIGN KEY(STORM_ID)
 REFERENCES ATMOSEVENT_LIST(KEY_ID)
 ON DELETE CASCADE

NESTED TABLE landfall_obj STORE AS landfall_obj_list

Table 6:

Landfall_state

PK name

Un state_code

TABLE 6: LANDFALL_STATE

state_code VARCHAR2(4)
constraint STATE_CODE_UN UNIQUE
name VARCHAR2(30)
constraint LD_NAME_PK PRIMARY KEY)

5.4 Data Processing

5.4.1 Original Data Processing

Following is the data format of the original text file recording the storm tracks of
Atlantic basin. In order to populate the data into the database schema, we have to process
the data and convert them into some suitable format according to database schema.

00005 06/25/1851 M= 1 1 SNBR= 1 NOT NAMED XING =1 SSS=1
00010 06/25* 0 0 0 0* 0 0 0 0*285 9 65 70 0* 0 0
0 0
00015 HRBTX1
00020 07/05/1851 M= 1 2 SNBR= 2 NOT NAMED XING =0 SSS=0
00025 07/05* 0 0 0 0* 0 0 0 0*222 9 76 80 0* 0 0
0 0
00030 HR
00035 07/10/1851 M= 1 3 SNBR= 3 NOT NAMED XING =0 SSS=0
00040 07/10* 0 0 0 0* 0 0 0 0*120 6 00 50 0* 0 0
0 0
00045 TS
00050 08/16/1851 M=12 4 SNBR= 4 NOT NAMED XING =1 SSS=3
00055 08/16*134 480 40 0*137 495 40 0*140 5 10 50 0*144 528
50 0
00060 08/17*149 546 60 0*154 565 60 0*159 5 85 70 0*161 604
70 0
00065 08/18*166 625 80 0*169 641 80 0*172 6 60 90 0*176 676
90 0
00070 08/19*180 693 90 0*184 711 70 0*189 7 26 60 0*194 743
60 0

 5-A-8

00075 08/20*199 759 70 0*205 776 70 0*212 7 90 70 0*219 804
70 0
00080 08/21*226 814 60 0*232 825 60 0*239 8 36 70 0*244 843
70 0
00085 08/22*250 849 80 0*256 855 80 0*262 8 60 90 0*268 863
90 0
00090 08/23*274 865 100 0*280 866 100 0*285 8 66 100 0*296 861
100 0
00095 08/24*307 851 90 0*316 841 70 0*325 8 30 60 0*334 814
50 0
00100 08/25*340 800 40 0*348 786 40 0*358 7 70 40 0*368 751
40 0
00105 08/26*378 736 40 0*389 718 40 0*400 7 00 40 0*413 668
40 0
00110 08/27*428 633 40 0*445 602 40 0*464 5 72 40 0*485 542
40 0
00115 HRAFL3 GA1

There are three basic types of data lines in the original storm track file.

TYPE A:
92620 08/16/1992 M=13 2 SNBR= 899 ANDREW XING=1 SSS=4

1. 92620 Card#
2. 08/16/1992 MM/DD/Year Days
3. M=13 S#
4. 2 Total#
5. ANDREW Name
6. XING=1 US Hit
7. SSS=4 Hi US category

Card#: Sequential card number starting at 00010 in 1851

MM/DD/Year: Month, Day, and Year of storm

Days: Number of days in which positions are available (note that this also

means number of lines to follow of type B and then one line of type

C)

S#: Storm number for that particular year (including subtropical storms)

Total#: Storm number since the beginning of the record (since 1886)

Name: Storms only given official names since 1950

 5-A-9

US Hit: '1' Made landfall over the United States as tropical storm or

hurricane. '0' did not make U.S. landfall

Hi US category: '9' Used before 1899 to indicate U.S. landfall as a hurricane of

unspecified Saffir-Simpson category. '0' Used to indicate U.S.

landfall as tropical storm, but this has not been utilized in recent

years '1' to '5' = Highest category on the Saffir-Simpson scale that

the storm made landfall along the U.S. '1' is a minimal hurricane,

'5' is a catastrophic hurricane

TYPE B:
92580 04/22S2450610 30 1003S2490615 45 1002S2520620 45 1002S2550624 45 1003*

1. 92580 Card#
2. 04/22 MM/DD
3. S Storm category
4. 2450610 30 1003 LatLongWindPress
5. 2490615 45 1002 LatLongWindPress
6. 2520620 45 1002 LatLongWindPress
7. 2550624 45 1003 LatLongWindPress

Card#: Sequential card number starting at 00010 in 1851

MM/DD Month, Day, and Year of storm

Storm category 'S' (Subtropical stage), '*' (tropical cyclone stage), 'E' (extra tropical

stage), 'W' (wave stage - rarely used)

LatLong Position of storm: 24.5N, 61.0W

Wind Maximum sustained (1 minute) surface (10m) windspeed in knots (in

general, these are to the nearest 5 knots).

Press Central surface pressure of storm in mb (if available). Since 1979,

central pressures are given every time even if a satellite estimation is

 5-A-10

needed.

Position and

intensity

Positions and intensities are at 00Z, 06Z, 12Z, 18Z

TYPE C:

92760 HRCFL4BFL3 LA3

1. 92760 Card#
2. HR Tp
3. CFL, BFL, LA Hit
4. 4, 3 Storm Category

Card#: Sequential card number starting at 00010 in 1851

Tp Maximum intensity of storm ('HR' = hurricane, 'TS' = tropical storm,

'SS' = subtropical storm)

Hit U.S. landfallings as hurricane ('LA' = Louisiana, etc.) and Saffir-

Simpson category at landfall ('1' = minimal hurricane '5' = super

hurricane). (Note that Florida and Texas are split into smaller regions:

'AFL' = Northwest Florida, 'BFL' = Southwest Florida, 'CFL' =

Southeast Florida, 'DFL' = Northeast Florida, 'ATX' = South Texas,

'BTX' = Central Texas, 'CTX' = North Texas.)

The first step is to extract the useful data and to remove the unwanted data or format
symbols. For Table ‘atmosevent_list’ which records the high-level information for all
storms, we need to extract the following corresponding data fields from the original data
file:

1. Storm number
2. Begin date of that storm or hurricane
3. Type of the storm or hurricane (The type of the hurricane or storm is based on

a category criterion.), which is calculated by converting the maximum wind
speed of each storm to its corresponding storm category according to some
criteria.

 5-A-11

We use a C++ program to retrieve the data and then categorize the storm type based
on its maximum wind speed.

Table ‘stormfix_list’ stores the detailed information about each storm or hurricane.
For example, it records how many days a storm lasts, the exact latitude and longitude, the
wind speed and the central pressure at different fix point of each day. We therefore need
to obtain this information from the original data file. A java program is developed to
achieve this goal.

In order to make sure the extracted data consistent with the original data file, we have
done a lot of checking, either manually or by programs.

5.4.2 New Data Processing

On 04/24/03, we received a new data file “rmax.dat” which contains Rmax value for
each fix and the crossing point for specific points. In addition, some intermediate fixes
which are not in the HURDAT database have been included. Therefore, the data file
needs to be processed and two attributes have to be added into the FIX object in the
database as follows:

Name Length

rmax NUMBER(4)

Crossing VARCHAR2(10)

Following is the data format of the new text file:

Storm Name # Year Mo Dy Time Lat Lon Wsp Pm n RMW Cat Crossg
NOT NAMED 3 1903/ 9/ 9 0600 21.4 72.4 50 0 0 TSt
NOT NAMED 3 1903/ 9/ 9 1200 21.8 73.4 50 0 0 TSt
NOT NAMED 3 1903/ 9/ 9 1800 22.2 74.0 50 0 0 TSt
NOT NAMED 3 1903/ 9/10 0000 22.6 74.7 55 0 0 TSt
NOT NAMED 3 1903/ 9/10 0300 22.9 75.0 60 0 0 TSt ISLAND new
NOT NAMED 3 1903/ 9/10 0600 23.2 75.3 60 0 0 TSt
NOT NAMED 3 1903/ 9/10 1200 23.8 76.0 65 0 0 Hu1
NOT NAMED 3 1903/ 9/10 1800 24.0 76.5 70 0 0 Hu1
NOT NAMED 3 1903/ 9/11 0000 24.4 76.9 80 0 0 Hu1
NOT NAMED 3 1903/ 9/11 0600 24.9 77.5 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 1000 25.3 78.1 85 0 0 Hu2 ISLAND new
NOT NAMED 3 1903/ 9/11 1200 25.4 78.4 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 1800 25.8 79.1 85 0 0 Hu2
NOT NAMED 3 1903/ 9/11 2200 26.1 80.0 85 0 0 Hu2 LAND new
NOT NAMED 3 1903/ 9/12 0000 26.4 80.3 75 0 0 Hu1
NOT NAMED 3 1903/ 9/12 0600 26.9 81.2 65 0 0 Hu1

Where the “RMW” column represents the rmax value and the “Crossg” column
represents the crossing value. And the word “new” next to the “Crossg” column indicates
the new fixes.

The data processing steps are similar to the ones mentioned in the previous subsection.

 5-A-12

5.5 Data Loading

5.5.1 Original Data Loading

The output of data pre-processing is the desired data format we need for populating the
data into the new schema. For testing purpose, we first loaded the data into the FDOI at
georges.cs.fiu.edu using SQL Loader. All the constraints in the database schema have
been disabled in order to facilitate the loading process. The loading codes for the three
major database tables (atmosevent_list, stormfix_list, landfall) are listed as follows:

1. Loading data into Table ‘atmosevent_list’:

load data
infile 'atmosevent.dat'
append
into table atmosevent_list
fields terminated by ","
trailing nullcols
(stm_nbr,when_t date "mm/dd/yyyy",name,type,basin, key_id
"atm_key_seq.nextval")

2. Loading data into Table ‘landfall’:

LOAD DATA
INFILE 'landfall.dat'
TRUNCATE INTO TABLE landfall
trailing nullcols
 (
 storm_id TERMINATED BY ',',
 landfall_obj nested table TERMINATED BY ','
 (
 dummy_name COLUMN OBJECT
 (
 state_code TERMINATED BY ':',
 category_no TERMINATED BY ':'
)
)
)

3. Loading data into Table ‘stormfix_list’:

load data
infile 'stormfix_list_test.dat'
append
into table STORMFIX_LIST_TEST
fields terminated by ","
trailing nullcols
(event_id, when_t date "mm/dd/yyyy",at_time,
fixobj column object
(
LATITUDE_DEG,
LONGITUDE_DEG,
MAX_WINDSPEED_MPS,

 5-A-13

MIN_PRESSURE_MB,
stage),
fix_id "obsid_seq.nextval")

 After finishing the data loading, all the constraints and data references will be
enabled.

5.5.2 New Data Loading

 Since “rmax.dat” contains only the updated or supplemented information for the
hurricanes stored in the database, the new data loading process is different from the
original data loading process. Basically, two tables in database need to be altered:
atmosevent_list and stormfix_list. The updating steps are discussed as follows:

II. Create a temporary table oldstormfix_list by copying all the data from table
stormfix_list:

 Create table oldstormfix_list as select * from sto rmfix_list

III. Create a new data type NEWFIX, which has two more attributes (rmax,
crossing) than FIX.

IV. Replace table stormfix_list by using new data type NEWFIX instead of the

original data type FIX.

V. Copy all the data in table oldstormfix_list to table stormfix_list. The values are

set as NULL for rmax and crossing:

insert into stormfix_list

(fix_id,when_t,at_time,event_id,fixobj)

 select fix_id,when_t,at_time,event_id,

newfix(c.fixobj.latitude_deg,c.fixobj.longitude_deg ,c.fixobj.max

_windspeed_mps,

c.fixobj.min_pressure_mb,null,c.fixobj.stage,null,n ull)

from oldstormfix_list c

VI. Get the according fix_id in table stormfix_list for each record in “rmax.dat”
except the records marked as new. Update table stormfix_list.

VII. Append the records marked as new into table stormfix_list.

VIII. Update table atmosevent_list based on the updated table stormfix_list.

 5-A-14

5.6 Export and Import the Data

The next step is to migrate the whole database from fdoi.georges.cs.fiu.edu to
hldp.andrew.cs.fiu.edu. We make use of the Oracle export and import utility to complete
the task.

Before we begin using the Export utility, the following steps are necessary:

Export the Schema:

Step 1: Run catexp.sql

This job is done by Lin Luo, the DBA of HLDP database. The script performs the
following tasks to prepare the database for export:

• Creates the necessary export views in the data dictionary

• Creates the EXP_FULL_DATEBASE role

• Assigns all necessary privileges to the EXP_FULL_DATEBASE

• Assigns EXP_FULL_DATEBASE to the DBA roll

• Records the version of catexp.sql that has been installed

Step 2: Ensure that there is enough disk space to write the export file

Since our database is not very big in size, there is no problem about the storage.

Step 3: Verify that we have the required access privileges

To use Export, you must have the CREATE SESSION privilege on an Oracle

database. To export tables owned by another user, the EXP_FULL_DATEBASE role has

to be granted to the user who will perform the export.

Step 4: Prepare the parameter file

We specify all needed parameters and their values in a parameter file. Storing the

parameters in a file allows the parameters to be easily modified or reused, which is the

recommend method for invoking Export.

We create the parameter file using the DOS text editor as follows:

FILE=dba.dmp // the name of the Exported dump file

OWNER=czhang02 // we export the schema from czhang02’s account

GRANTS=y // exports objects grants

ROWS=y // rows of table data are exported

COMPRESS=y // compress the exported file

log=dbaemp // save export reports and error information to file dbaemp

 5-A-15

Step 5: Invoking the Export Utility
In our case, we use the User mode to export the entire schema from Chengcui’s account

on the FDOI to HLDP. As described above, the parameter file method was used to
invoke the export utility.

Execute the following command in DOS:

> exp username/password PARFILE = params.dat

Import the Schema:

Through the above 5 steps, we successfully export the entire schema from Chengcui’s

account. The next step is to use the Import utility to read dba.dmp file into the HLDP
account.

Step 1: Verify that we have the required access privileges

To use Import, you must have the CREATE SESSION privilege on an Oracle database.

To Import tables owned by another user, the IMP_FULL_DATEBASE role has to be

granted to the user who will perform the export.

Step 2: Prepare the parameter file
We specify all needed parameters and their values in a parameter file. Storing the

parameters in a file allows us to be easily modified or reused, and is the recommend

method for invoking Import.

We create the parameter file using the DOS text editor as follow:

FILE=dba.dmp // the name of the export dump file

OWNER=czhang02 // we import the schema from czhang02’s account

IGNORE=n // display object creation errors

SHOW=y // list the contents of the export file which are not imported

GRANTS=y // imports objects grants

ROWS=y // rows of table data are imported

LOG=dbaemp // save the import report and error information to file dbaemp

Step 3: Invoking the Import Utility
In our case, we use the User mode to import the exported dump file dba.dmp to HLDP.

Execute the following command in DOS:

> imp username/password PARFILE = paramsi.dat

 5-A-16

5.7 Data Checking

Since the import was terminated with warnings, we have to check that the entire
schema in the old account is moved to the new account. After importing, Chengcui (a
team member) made a first pass check to make sure that the schema in the new account is
the same as the one in the old account. Although there are warnings with the import, but
actually all the data and tables as well as database objects are all successfully imported.

It is very important to ensure that the imported data is consistent with the original data
file. We randomly retrieved some records from the table in the imported schema, and
compared then with the original data file. Three main tables have been checked by this
way, and two of them were found correctly imported. But for the third one
(‘stormfix_list’), there is a problem with one of the attributes. Some values of that
attribute are not consistent with the original data. So we double checked the database and
realized that the problem is due to the format of the original file. After changing the
program, the needed data can be extracted correctly.

5.8 Queries

5.8.1 Change the Query Based on the New Schema

Once the new schema has been successfully migrated onto the new database server, the
next step is to provide the database queries based on new schema. Since the original
queries are based on the old schema, we need to revise the original queries according to
the new schema.

The following is the query for the old schema.

Select Year, count(1)
From
 select to_char(s.when_t, 'yyyy') Year
 from fdoifiu.stormfix_list s
 where s.for_event.basin=1 and when_t between '01-JAN-1851'
 and '31-DEC-2000' and
 (s.fixobj.stage like 'H%' or s.fixobj.stage='Tropical Storm')
 group by to_char(s.when_t, 'yyyy'), event_id)
 group by Year
 order by Year

 In the old schema, the storm category is represented by string instead of category
id. For example, the string “Hurricane” or “Tropical Storm” was used to record the type
of tropical cyclones. But in the new schema, the numbered id is used to categorize the
type of the tropical cyclones. Instead of using string, we can use number ‘4’ to represent
a “tropical storm”, and number 5~11 to represent hurricane level 1~5.

 5-A-17

According to the new schema, we change all s.fixobj.stage like 'H%' or
s.fixobj.stage='Tropical Storm' statements in the old schema to s.fixobj.stage >=4. In
the new schema, s.fixobj.stage >=4 functions the same way as the old one using string
matching. Shown below is the revised query, which works correctly in the new schema
and is more effective compared with the original queries.

select Year, count(*)"Cyclones"
from (select to_char(when_t,'yyyy') Year
 from atmosevent_list s
 where s.basin=1 and s.when_t between '01-JAN-1851'
 and '31-DEC-2001' and s.type >=4)
group by Year

We made the same changes for all the queries of Use Case One and Use Case Two.
The execution speed of queries is nearly three times faster than before.

5.9 Database Tuning

5.9.1 Tuning SQL Statements

Although the execution speeds of the SQL statements have been greatly improved by
revising the schema, additional SQL tuning efforts are necessary to improve the
performance of the statements.

The Goals of SQL Tuning

Oracle SQL tuning is a phenomenally complex subject, and we will begin with a high-
level description of the goals of SQL tuning and get into details later on. There are some
general guidelines that all Oracle SQL developers must follow in order to improve the
performance of their systems. The goals of SQL tuning are as follows:

• Remove Unnecessary Large-table Full-table Scans

Unnecessary full-table scans cause a huge amount of I/O and can drag down an entire
database. We first evaluate the SQL query statements in terms of the number of rows
returned by the query. If the query returns less that 40 percent of the table rows on an
ordered table, or 7 percent of the rows in an un-ordered table, the query can be tuned to
use an index in lieu of the full-table scan. The most common tuning remedy for
unnecessary full-table scan is adding indexes. Standard B-tree indexes, bitmapped
indexes and function-based indexes can all be added into the tables in order to eliminate
full-table scans. In some cases, an unnecessary full-table scan can be converted to an
index scan by adding an indexes hint to the SQL statement.

• Share SQL Statements

 5-A-18

ORACLE holds SQL statements in memory after it has parsed them, so the parsing and
analysis do not have to be repeated if the same statement is issued again. The single
shared context area in the shared buffer pool of the System Global Area (SGA) is shared
by all the users. We have to set the appropriate INIT.ORA parameters for the context
areas. The larger the area, the more statements can be retained there and the more likely
statements are to be shared.

• Use Hints

 In general, hints serve a dual purpose. They can be used to alter the execution
plan for a SQL statement. They can be used as an alternative to stored outlines to
permanently change the execution plan for a SQL statement. When a hint is added to a
SQL statement during tuning, the tuning changes will take effect.

• Verify Optimal Join Techniques

Some queries will perform faster with nested loop joins, while others may work better
with Hash joins or merge/star joins. In general, it is better to use simple join whenever it
is possible.

• Review Sub queries

Every correlated and non-correlated sub query should be examined to determine if the
SQL query could be rewritten as a simple table joins.

Having shown the goals of SQL tuning, the followed section is to tune the SQL
statements for the database queries. Oracle Corporation has developed a lot of utilities to
facilitate the SQL tuning process. In this project, we mainly use the SQL Trace,
TKPROF, and the Timing Environments Parameter for SQL tuning.

 5-A-19

Using the Timing Environments Parameter

SQL timing environments parameter is used to record total time elapsed for a SQL
statement. For the purpose of testing, we turn on this timing parameter, and run the
desired SQL statement. Based on the total time used, we change the structure of the SQL
statement, and run it again. Then the two results are compared to decide which statement
has a better performance.

Example:
Structure 1:

SQL> select /*+ first_rows */ Year, count(*)"Cyclon es" from --to

response with the first row quickly

 2 (select to_char(s.when_t, 'yyyy') Year

 3 from oscillation_constant_list o, atmoseve nt_list s

 4 where to_number(to_char(when_t,'yyyy'))=os_year and

s.basin=1 and s.type >=4

 5)

 6 group by Year

 7 /

Elapsed: 00:00:00.02

Structure 2:

SQL> select /*+ first_rows */ Year, count(*)"Cyclon es" from

 2 (select to_char(s.when_t, 'yyyy') Year

 3 from atmosevent_list s

 4 where exists

 5 (select os_year from oscillation_co nstant_list

 6 where os_year=to_number(to_char(w hen_t,'yyyy'))

 7) and s.basin=1 and s.type >=4

 8)

 9 group by Year

 10 /

Elapsed: 00:00:00.05

From the example above, it is obvious which statement has a better performance.
However, this environment parameter cannot show us how much time the CPU uses for
the issued statement, and how much time used on the I/O, and those detailed information
is very important. We solve this problem by using SQL Trace and TKPROF facilities.

 5-A-20

Using SQL Trace and TKPROF

The SQL trace and TKPROF facilities enable us to accurately assess the efficiency of
the SQL statements.

SQL Trace Facility

The SQL trace facility provides performance information for individual SQL
statements. It generates the following statistics for each SQL statement:

• Parse, execute, and fetch counts

• CPU elapsed time

• Physical reads and logical reads

• Number of rows processed

• Misses on the library cache

• Username under which each parse occurred

• Each commit and rollback

We can enable the SQL trace facility for a session or for an instance. When the SQL
trace facility is enabled, performance statistics for all SQL statements executed in a user
session or in an instance are placed into a trace file.

The additional overhead of running the SQL trace facility against an application with

performance problems is normally insignificant, compared with the inherent overhead
caused by the application's inefficiency.

TKPROF Facility

After executing the SQL trace, we need to run the TKPROF facility to format the
contents of the trace file and to place the output into a readable output file. Optionally,
TKPROF can also:

• Determine the execution plans for SQL statements

• Create a SQL script that stores the statistics in the database

TKPROF reports each statement executed with the resources it has consumed, the
number of times it was called, and the number of rows it processed. This information lets
us easily locate those statements that are using the most resource.

 5-A-21

The steps to use the SQL trace and TKPROF facilities:

1. Set initialization parameters for trace file management.

2. Enable the SQL trace facility for the desired session and run your application.

This step produces a trace file containing statistics for the SQL statements issued

by the application.

3. Run TKPROF to translate the trace file created in Step 2 into a readable output

file. This step can optionally create a SQL script that stores the statistics in the

database.

4. Interpret the output file created in Step 3.

Step 1: Set Initialization Parameters for Trace File Management

Before enabling the SQL trace facility, one should check the settings of the
TIMED_STATISTICS, USER_DUMP_DEST, and MAX_DUMP_FILE_SIZE
parameters.

� TIMED_STATISTICS

This parameter enables and disables the collection of timed statistics, such as
CPU elapsed time by the SQL trace facility, and the collection of various statistics
in the dynamic performance tables. The default value of FALSE disables timing.
The value of TRUE enables timing. Enabling timing causes extra timing calls for
low-level operations. This is a session parameter.

� MAX_DUMP_FILE_SIZE

When the SQL trace facility is enabled at the instance level, every call to the
server produces a text line in a file in your operating system's file format. The
maximum size of these files (in operating system blocks) is limited by the
initialization parameter MAX_DUMP_FILE_SIZE. The default is 500. If you
find that your trace output is truncated, increase the value of this parameter before
generating another trace file. This is a session parameter.

� USER_DUMP_DEST

This parameter specifies fully the destination for the trace file according to the
conventions of your operating system. The default value for this parameter is the
default destination for system dumps on your operating system. This value can be
modified with ALTER SYSTEM SET USER_DUMP_DEST=newdir. This is a
system parameter.

 5-A-22

Step 2: Enable the SQL Trace Facility

Enabling the SQL Trace Facility for Current Session
To enable the SQL trace facility for our current session, we use the following

command:

 ALTER SESSION SET SQL_TRACE = TRUE;

Alternatively, one can enable the SQL trace facility for a session by using the

DBMS_SESSION.SET_SQL_TRACE procedure.

To disable the SQL trace facility, we use the following command:

 ALTER SESSION SET SQL_TRACE = FALSE;

The SQL trace facility is automatically disabled for the tuning session when the

application disconnects from Oracle.

Step 3: Format Trace Files with TKPROF

TKPROF accepts as input a trace file produced by the SQL trace facility and produces
a formatted output file. Once the SQL trace facility has generated a number of trace files,
we can:

• Run TKPROF on each individual trace file, producing a number of formatted

output files, one for each session.

• Concatenate the trace files and then run TKPROF on the result to produce a

formatted output file for the entire instance.

TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace
file. The syntax for TRPROF is as follows:

TRPROF <input_tracefile> <output_filename> Explain =user/password

Step 4: Interpret TKPROF OutputTabular Statistics

TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in
rows and columns. Each row corresponds to one of the three steps of SQL statement
processing. The step for which each row contains statistics is identified by the value of
the CALL column:

 5-A-23

� PARSE

This step translates the SQL statement into an execution plan. This step
includes checks for proper security authorization and checks for the existence of
tables, columns, and other referenced objects.

� EXECUTE

This step is the actual execution of the statement by Oracle. For INSERT,
UPDATE, and DELETE statements, this step modifies the data. For SELECT
statements, the step identifies the selected rows.

� FETCH

This step retrieves rows returned by a query. Fetches are only performed for
SELECT statements.

The other columns of the SQL trace facility output are combined statistics for all

parses, all executes, and all fetches of a statement. These values are zero (0) if
TIMED_STATISTICS is not turned on. The sum of query and current is the total number
of buffers accessed.

� COUNT

Number of times a statement was parsed, executed, or fetched.
� CPU

Total CPU time in seconds for all parses, executes, or fetch calls for the
statement.

� ELAPSED

Total elapsed time in seconds for all parses, executes, or fetch calls for the
statement.

� DISK

Total number of data blocks physically read from the data files on disk for all
parses, executes, or fetch calls.

� QUERY

Total number of buffers retrieved in consistent mode for all parses, executes,
or fetch calls. Buffers are usually retrieved in consistent mode for queries.

� CURRENT

Total number of buffers retrieved in current mode. Buffers are retrieved in
current mode for statements such as INSERT, UPDATE, and DELETE.

 5-A-24

Example:

select /*+ first_rows */ Year, count(*)"Cyclones" f rom --to

response with the first row quickly

 (select to_char(s.when_t, 'yyyy') Year

 from atmosevent_list s, oscillation_constant_l ist o

 where os_year=to_number(to_char(when_t,'yyyy')) and s.basin=1

 and s.type >=4

)

 group by Year

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
Parse 1 0.00 0.18 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 5 0.03 0.04 0 17 0 47
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
total 7 0.03 0.24 0 17 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS
Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- -- ---------
 47 SORT GROUP BY
 466 NESTED LOOPS
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 466 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- -- ---------
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 NESTED LOOPS
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST '
 466 INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)

*** ********************
Rows

Statistics about the processed rows appearing in the ROWS column.

� ROWS

Total number of rows processed by the SQL statement. This total does not
include the number of rows processed by subqueries of the SQL statement.

For SELECT statements, the number of rows returned appears for the fetch step.
For UPDATE, DELETE, and INSERT statements, the number of rows processed appears
for the execute step.

 5-A-25

Resolution of Statistics

Timing statistics have a resolution of one hundredth of a second; therefore, any

operation on a cursor that takes a hundredth of a second or less may not be timed

accurately. Keep this in mind when interpreting statistics. In particular, one should be

careful when interpreting the results from simple queries that execute very quickly.

Recursive Calls
Sometimes in order to execute a SQL statement issued by a user, Oracle must issue

additional statements. Such statements are called recursive calls or recursive SQL

statements. For example, if you insert a row into a table that does not have enough space

to hold that row, Oracle makes recursive calls to allocate the space dynamically.

Recursive calls are also generated when data dictionary information is not available in the

data dictionary cache and must be retrieved from disk.

If recursive calls occur while the SQL trace facility is enabled, TKPROF produces

statistics for the recursive SQL statements and marks them clearly as recursive SQL

statements in the output file. You can suppress the listing of recursive calls in the output

file by setting the SYS statement-line parameter to NO. The statistics for a recursive SQL

statement are included in the listing for that statement, not in the listing for the SQL

statement that caused the recursive call. So when you are calculating the total resources

required to process a SQL statement, you should consider the statistics for that statement

as well as those for recursive calls caused by that statement.

 The following examples are two formatted SQL statements with TRPROF:

Example:

Structure 1

select /*+ first_rows */ Year, count(*)"Cyclones" f rom --to

response with the first row quickly

 (select to_char(s.when_t, 'yyyy') Year

 from atmosevent_list s, oscillation_constant_l ist o

 where os_year=to_number(to_char(when_t,'yyyy')) and s.basin=1

 and s.type >=4

)

 group by Year

 5-A-26

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
Parse 1 0.00 0.18 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 5 0.03 0.04 0 17 0 47
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
total 7 0.03 0.24 0 17 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS
Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- -- ---------
 47 SORT GROUP BY
 466 NESTED LOOPS
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 466 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- -- ---------
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 NESTED LOOPS
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST '
 466 INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)

*** ********************

Structure 2

select /*+ first_rows */ Year, count(*)"Cyclones" f rom

 (select to_char(s.when_t, 'yyyy') Year

 from atmosevent_list s

 where exists

 (select os_year from oscillation_constant_l ist

 where os_year=to_number(to_char(when_t,'y yyy'))

 and s.basin=1 and s.type >=4

)

)

group by Year

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
Parse 1 0.00 0.05 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 5 0.06 0.07 0 1286 0 47
------- ------ -------- ---------- ---------- ---- ------ ---------- ----------
total 7 0.06 0.12 0 1286 0 47

Misses in library cache during parse: 1
Optimizer goal: FIRST_ROWS

 5-A-27

Parsing user id: 29 (CZHANG02)

Rows Row Source Operation
------- -- ---------
 47 SORT GROUP BY
 466 FILTER
 1274 TABLE ACCESS FULL ATMOSEVENT_LIST
 464 FILTER
 464 INDEX RANGE SCAN (object id 28035)

Rows Execution Plan
------- -- ---------
 0 SELECT STATEMENT GOAL: HINT: FIRST_ROWS
 47 SORT (GROUP BY)
 466 FILTER
 1274 TABLE ACCESS (FULL) OF 'ATMOSEVENT_LIST '
 464 FILTER

464 INDEX (RANGE SCAN) OF 'ENSO_STORM_IDX' (NON-UNIQUE)

We examined the trace file carefully, and chose the statement that consumes less

resource and has the better overall performance.

Section 6

PHRLM Quality Assurance

 6-A-1

Section 6.1

Coding Guide Lines

 6-A-2

6.1.1 About the Coding Guidelines
This document is prepared as a part of the PHRLM project. All the developers

involved in the system development are asked to read and follow the instructions given in
here. In general this document may be read as a guide to writing robust and readable
codes. Examples given in here are mainly focused on programs written in C flavors, but
the content is generally applicable for programs written in any other programming
language.

6.1.2 File Organization
6.1.2.1 Source files

• Keep your classes/files short, don't exceed 2000 lines of code
• Divide your code up, make structures clearer
• Put every class in a separate file and name the file like the class name. This

convention makes things much easier.

6.1.2.2 Directory Layout
Developer’s own structure

• Create a directory for every use case and keep all the related codes in that.
• For each major revision create a subfolder with the revision number.
• Do the CVS before any change and keep your own backup always.

System Directory Structure

• All the codes C and JAVA codes: Create a subdirectory under the use case
name inside /home/irene1b/oracle/j2ee/home/default-web-app/WEB-
INF/classes/FDOIclasses/

• Save the latest copy of the codes there
• All the JSP files has to be saved in

/home/irene1b/oracle/j2ee/home/default-web-app/FDOI/useCaseName
• Do CVS

Example:

 6-A-3

6.1.3 Code Indentation
6.1.3.1 Wrapping Lines
When an expression will not fit on a single line, break it up according to these general

principles:
• Break after a comma
• Break after an operator
• Prefer higher-level breaks to lower-level breaks
• Align the new line with the beginning of the expression at the same level on the

previous line
Example: Breaking up method calls:
longMethodCall(expr1, expr2,
 expr3, expr4, expr5);

Example: Breaking an arithmetic expression:
PREFER:
var = a * b / (c - g + f) +
 4 * z;

BAD STYLE – AVOID:
var = a * b / (c - g +
 f) + 4 * z;

The first is preferred, since the break occurs outside the parenthesized expression
(higher level rule). Note that you indent with tabs to the indentation level and then with
spaces to the breaking position in our example this would be:
> var = a * b / (c - g + f) +
>….4 * z;

Where '>' are tab chars and '.' are spaces.

6.1.3.2 White Spaces: Don't use spaces for indentation - use tabs!
An indentation standard using spaces never was achieved. Always use tabs. Tab

characters have some advantages:
• Everyone can set his or her own preferred indentation level
• It is only 1 character and not 2, 4, 8 … therefore it will reduce typing (even with

smart indenting you have to set the indentation manually sometimes, or take it back
or whatever)

• If you want to increase the indentation (or decrease), mark one block and increase the
indent level with Tab with Shift-Tab you decrease the indentation. This is true for
almost any text editor.

Here, we define the Tab as the standard indentation character.

 6-A-4

6.1.4 Comments
6.1.4.1 Block Comments

• When you wish to use block comments you should use the following style:
/* Line 1
* Line 2
* Line 3
*/
As this will set off the block visually from code for the (human) reader.

• Alternatively you might use this old fashioned C style for single line comments,
even though it is not recommended. In case you use this style, a line break should
follow the comment, as it is hard to see code preceded by comments in the same
line:
/* blah blah blah */

• In case, this kind of block comment is not applicable, it is recommended to follow
a similar standard.

6.1.4.2 Single Line Comments

• You should use the // comment style to "comment out" code. It may be used for
commenting sections of code too.

• Single line comments must be indented to the indent level when they are used for
code documentation.

• A rule of thumb says that generally, the length of a comment should not exceed
the length of the code explained, as this is an indication of too complicated,
potentially buggy, code.

6.1.4.3 In line File Documentation
• At the beginning of the each file the purpose of the file should be documented

using the following template.
• For each code revision, <Revision History> has to be updated

//=== ====================
// <Filename> <Cr eation Date>
// WProbability.cc 05/13/2004

// <description>
// Calculates wind speed probabilities.
// Input : Surface corrected wind speeds (3S gust) from the WSC module
// Output: Probabilities of wind speeds from 20-300 mph, interval is 4
mph

// <Revision History>
// <date> <developer> <Description>
// 05/19/2004 kwick001 initial code
//=== ====================

 6-A-5

6.1.4.4 In line Function Documentation
• At the beginning of the each file the purpose of the file should be documented

using the following template.
• For each revision <Revision History> has to be updated

//=== ====================
// <Function> <Creation Date>
// count_zip 0 2/04/2005
//
// <Parameters>
// none
//
// <Return>
// Number of lines in the "zipcodes.txt" file
//
// <Description>
// read the zipcodes.txt file count the number of lines in the file
//
// <Revision History>
// 02/04/2005 kwick001 generate initial code
//=== ====================

6.1.5 Variable Declarations

6.1.5.1 Number of Declarations per Line
• One declaration per line is recommended since it encourages commenting. In

other words,
int level; // indentation level
int size; // size of table

• Do not put more than one variable or variables of different types on the same line
when declaring them.
Example:

 int a, b; //What is 'a'? What does 'b' stand for?
• The above example also demonstrates the drawbacks of non-obvious variable

names. Be clear when naming variables.

6.1.5.2 Initialization
• Try to initialize local variables as soon as they are declared. For example:

 int val = 10;

6.1.6 Statements

6.1.6.1 Simple Statements
Each line should contain only one statement.

6.1.6.2 Return Statements

A return statement should not use outer most parentheses.

Don't use:
 return (n * (n + 1) / 2);
Use:

 6-A-6

 return n * (n + 1) / 2;

6.1.6.3 If, if-else, if else-if else Statements
if and if-else statements should look like this:

if (condition)
{
 DoSomething();
 ...
}
if (condition)
{
 DoSomething();
 ...
}
else
{
 DoSomethingOther();
 ...
}

6.1.6.4 For Statements
A for statement shoud have following form :
for (int i = 0; i < 5; ++i)
 {
 DoSomething();
 ...
}

Note: Generally use brackets even if there is only one statement in the loop.

 6-A-7

6.1.6.5 While Statements
A while statement should be written as follows:

while (condition)
{
 DoSomething();
 ...
}

6.1.6.6 Try-catch Statements
A try-catch statement should follow this form:

try {
...
} catch (Exception e) {
...
}
-OR -
try {
...
} catch (Exception e) {
...
} finally {
...
}

6.1.7 White Space

6.1.7.1 Blank Lines
Blank lines improve readability. They set off blocks of code which are in themselves
logically related. Two blank lines should always be used between:

• Logical sections of a source file
• Class and interface definitions (try one class/interface per file to prevent this case)

One blank line should always be used between:
• Functions/ methods
• Logical sections inside a method to improve readability. Note that blank lines

must be indented, as they would contain a statement. This makes insertion in
these lines much easier.

 6-A-8

6.1.7.2 Inter-term spacing
• There should be a single space after a comma or a semicolon.
Example:

Use: TestMethod(a, b, c); or TestMethod(a, b, c);
 Don't use: TestMethod(a,b,c)

• Single spaces surround operators (except unary operators like increment or logical
not)

 Example:
 Use: a = b;
 Don't use: a=b;
 Use: for (int i = 0; i < 10; ++i)
 Don't use: for (int i=0; i<10; ++i) //or for(int i=0;i<10;++i)

6.1.8 Naming Conventions

6.1.8.1 Naming Guidelines
• Use Camel Casing: This convention capitalizes the first character of each word

except the first one.
E.g. testCounter.

• Do use descriptive names, which should be enough to determine the variable
meaning and it’s type. But prefer a name that’s based on the parameter’s meaning.

• Remember: a good variable name describes the semantic not the type.
• An exception to this rule is GUI code. All fields and variable names that contain

GUI elements like button should be post-fixed with their type name without
abbreviations.

Example:
System.Windows.Forms.Button cancelButton;
System.Windows.Forms.TextBox nameTextBox;

6.1.8.2 Variable Names
• Counting variables are preferably called i, j, k, l, m, n when used in 'trivial'

counting loops.

Note: Indexer variables generally should be called i, j, k etc. But in some cases, it
may make sense to reconsider this rule. In general, when the same counters or
indexers are reused, give them meaningful names.

6.1.8.3 Method Names
• Name methods with verbs or verb phrases.

 6-A-9

6.1.9 Reference

The “C# Coding Style Guide” by: Salman Ahmed is used as a template for this guideline
development.

 6-A-10

 6-B-1

Section 6.2

Data Validation and Verification

 6-B-2

6.2.1 About the Document

This document is prepared as a part of the PHRLM project. The primary audience for
this guidance is practitioners directly involved in implementing or managing data
verification or data validation efforts. This guidance should provide this audience with a
conceptual overview on “how-to” verify and validate the data. All the personals involved
in the implementing or managing data are asked to read and follow the instructions given
in here.
6.2.2 Introduction

If the information being used is not credible, there is no point in using it. Decisions
based on inaccurate or unreliable data can adversely affect the decision making process.
Data verification and validation is used to evaluate whether data has been generated
according to specifications, satisfy acceptance criteria, and are appropriate and consistent
with their intended use.

6.2.2.1 Data Verification
Data verification is a systematic process for evaluating performance and compliance

of a set of data when compared to a set of standards to ascertain its completeness,
correctness, and consistency using the methods and criteria defined in the project
documentation [1].

6.2.2.2 Data Validation
Data validation follows the data verification process and uses information from the

project documentation to ascertain the usability of the data in light of its measurement
quality objectives and to ensure that results obtained are scientifically defensible [1].

6.2.3 Procedures

In the context of PHRLM project data validation and verification is mostly a one-time
process. Under mentioned procedures may not applicable in all the instances. But in
general most of these procedures are applicable and should be followed by the
developers. In case all these procedures are not applicable, it is advised to develop your
own methods and properly document the procedure followed.

• Format check
Check if the data is in the right format. This can be done manually or using any

commercially available data manipulating tools such as Excel or Access. Mainly data
is received in text file format. If the input data set is too large do the format test on
randomly selected files.

• Length check

 6-B-3

Check the data isn't too short or too long. For this check the whole file and then
check the expected length of the each field. This is applicable to text fields only.

• Range check
Checks a number isn't too big or too small. For an example, a zip code has to be

greater than 0 and less than 40000.

• Presence check
Checks that a field has been entered.

Once the above checks are completed and successful it is ready to be imported to the

system. It is recommended to use data manipulating software or a simple program written
by the developer for the data importing process rather than manual entry. If it is
unavoidable you may use manual entry. In either case it is recommended to double check
the imported data. The above mentioned steps can be repeated and in addition following
tests are recommended.

• Double entry
Type the data in twice and compare the two copies. This can take much more time

and means higher costs.
• Proofreading data
This method involves somebody checking what is in the system is the same as the

original input. Always make sure to make a copy of the data in the data after
importing them to the system and give this copy and the original copy of the data to a
person who is not involved in the data manipulating process to compare and certify
the correctness.

6.2.4 Data Security and Integrity

This section describes precautionary measures that must be taken in the event that
computer malfunctions, natural disasters, or human error or actions occur that could
affect collected data.

• Duplicate copies or back-up system for data
 Florida International University, School of Computer Science takes regular
backups generally every Friday. All the databases and data files are included in the
backup. Developer must make sure that they store all the data in those places that are
backed up.

• Data security protocols are in place and effective
 Firewalls/password protection, access levels, etc. are established.
 Accountability for data integrity clearly rests with the person entering the data,
and the responsible program specialist and manager. Only those who are skilled and
trained in proper data handling procedures are allowed the direct access to the
database.

 6-B-4

6.2.5 References

[1] EPA Quality System, Quality Management Tools - Data Verification and
Validation (http://www.epa.gov/quality/vandv.html)

 6-C-1

Section 6.3

Model Maintenance and Revision

 6-C-2

6.3.1 Model Maintenance and Revision

PHRLM has developed a clearly documented policy for model revision with respect to
methodology and data. Any enhancement to the model that results in a change in any
Florida residential hurricane loss costs also results in a new model version number.
PHRLM uses version control and tracking software to identify all errors, as well as
modifications to code, data, and documentation.

1. PHRLM employs consistent methods for data and documentation control for
all software development, including both server and client programs (written in
C++ and Java). The installation date, program specification, personnel involved,
current version number and date of most recent changes are documented for the
individual components in the system.

2. The data and model is maintained and updated each year. At each year, the
ZIP Code information is updated to reflect the most recent changes within the past
12 months. In particular, the ZIP Code boundaries and the centroids are updated,
and using this updated information, the ZIP Code related features are updated,
including distance from the coastline, population centroid, elevation, and surface
roughness, etc. The historical hurricane data (for Atlantic Basin) is periodically
updated to take into account new hurricane events.

3. Updates to ZIP codes, historical meteorological events, and the related
characteristics will also trigger the updates to the model results. Whenever the
new data or new modeling methodologies become available which results in a
non-trivial improvement in the modeling results, a new model version number is
assigned. The PHRLM project development team will maintain, archive, and
document the features of each model version.

4. The first version is released with version number 1 (PHRLM Version 1).

Version number will be incremented by one at each yearly update to the system.
Each time a new version is released mid of the year the version number is
incremented by one decimal fraction.

5. When a new model version is released, a release document, with detailed

documentation for users, and the programs and data that are used in this release
will be packaged and tested by crosschecking. Standard test cases are also
packaged with the release, to allow later verification. This assures the correctness
and consistency of each release.

6. PHRLM’s software development team employs source revision and control

software for all software development. In particular, PHRLM employs Concurrent
Versioning System (CVS), an accepted and effective system for managing
simultaneous development of files. It is in common use in large programming
projects to track modifications of all source code. CVS maintains a record of the
changes to each file, allowing the user to revert to a previous version, merge

 6-C-3

versions, and track changes. This software is able to record the information for
each file, the date of each change, author of the change, file version, and the
comparison of the file before and after the change.

7. The software development process is carefully monitored by designated

personnel using CVS tracking tools and procedures. For example, ‘cvs annotate’
provides a quick of finding who made what changes and when by displaying the
last change information for each line of a file in the repository. Such information
includes the revision number for the last change of each line, the user, the date,
and the contents of the line. The CVS history file records commits, merges,
conflicts, tagging, updates (to the working directory), additions, deletions, and
modifications of files in the repository. The loginfo file controls where log
information for ‘cvs commit’ is sent. This allows the project manager to keep track
of the changes made by the development team, and to maintain a central log of the
project progress.

8. PHRLM employs an access control mechanism that allows only authorized

user accounts to modify parts of the hierarchy in the repository. Authorization
control is for commits only; everyone can check out any part of the repository.
That is to say, for user accounts other than the designated ones, they do not have
write access to the restricted area. An access list is maintained to record all the
access rights and responsibilities of each CVS user. Therefore, in PHRLM,
general users can submit patches to a/the maintainer (authorized user), and the
maintainer will commit changes directly to the repository. In the future, we plan
to implement an easy-to-use CVS commit log search interface for scanning CVS
commit logs form any part of the repository over any time period, for all users or
for a particular user.

It is required that all CVS users need to use ssh to access a repository on a remote
machine. This is set in CVS’s configuration file. In addition, the development team
members are required to add meaningful change-notes for the appropriate files. By doing
that, it is much easier to locate the correct version in roll back operations when needed.

 6-C-4

 6-D-1

Section 6.4

PHRLM Testing Procedures

 6-D-2

6.4.1 Software Testing Procedures

PHRLM software testing and verification is done in three stages.
(i) Code inspection and the verification by the code developer

Code developer should carry out sufficient amount of testing on the code and
should not deliver the code until and unless he/she is convinced of proper
functionality and robustness of the code.

In this level of testing should code-level debugging, walk through the code to
ensure proper flow, inspection of internal variables through intermediate output
printing and error logging, use of exception handling mechanisms, calculation
cross checks and verification of the output against sample calculations provided
by the system modeler. It is the developer’s responsibility to collect at least one
sample calculation from the system modeler and to compare the results against the
results generated through the code.

(ii) Verification of results by the person who developed the system model.

Once the first level of testing is done the developer should send the sample
inputs and the generated results back to the modeler. Then the system modeler
should double-check the results against his/her model. Code is not put in to the
production environment with out the ‘OK’ from the modeler.

(iii) Review and extensive testing of the code by external group of software

engineers.
System is rigorously checked for correctness, precision of the output and

robustness & stability of the whole system. Calculations are performed outside
the system and compared against the system generated results to ensure the
system correctness. Extreme and unexpected inputs are given to the system to
check the robustness. Wide series of test cases are developed to check the stability
and the consistency of system.

Unit testing, Regression testing, and Aggregation testing (both white-box and
black-box) should be performed and documented.

Any flaws in the code are reported to the developer and the bug corrected code
is again sent to the tester. The tester should perform unit testing again on the
modified units and also Regression testing should be carried to check if the
modification affects any other parts of the code.

Note: Please refer to the testing document for more details.

 6-E-1

Section 6.5

Code Count Tables

 6-E-2

Use Case I - Annual Hurricane Occurrence (AHO)

Filename: Source: Comment: Both: Blank: Total:
fitDistriBean.h 18 22 0 5 45
AHOmath.c 417 149 22 95 683
calcMVSBean.java 39 84 6 24 153
dataEntry.java 22 97 0 20 139
fitDistriBean.java 81 150 1 56 288
getDBean.java 239 193 7 66 505
myplot.java 87 72 4 32 195
OutputFormatBean.java 11 29 0 12 52
plotBean.java 7 11 0 2 20
simulationBean.java 40 122 11 32 205
storeAHOBean.java 72 115 7 38 232
banner.jsp 8 0 0 0 8
DSSelection.jsp 41 0 0 4 45
plotSimulation.jsp 109 18 0 19 146
simuSelection.jsp 85 12 0 12 109

Use Case II - Storm Genesis Time (SGT)

Filename: Source: Comment: Both: Blank: Total:
SGTBean.h 14 13 0 3 30
sgtmath.c 302 106 2 222 632
getSGTDataBean.java 39 35 2 28 104
SGTBean.java 23 97 0 15 135
SGTDataEntry.java 140 63 10 44 257
SGTbanner.jsp 8 0 0 0 8
SGTindex.jsp 45 0 0 3 48
SGTsimulation.jsp 91 0 1 10 102

Use Case V - Wind Speed Correction (WSC)

Filename: Source: Comment: Both: Blank: Total:
WSCCalVamphBean.java 269 202 3 80 554
WSCSpeedCheckBean.java 78 99 5 29 211
WindSpeed.jsp 75 580 1 10 666
WSCindex.jsp 210 0 0 31 241

Use Case VI - Wind Speed Probability (WSP)

Filename: Source: Comment: Both: Blank: Total:
WPHeader.h 7 10 0 3 20
WPStruct.h 103 14 6 31 154
WProbability.cpp 520 198 59 351 1128
WPStruct.cpp 7 10 0 10 27
WPUtils.cpp 6 11 0 2 19
WSPCalc.jsp 123 98 2 11 234
WSPtask.jsp 154 0 0 24 178

 6-E-3

General Insurance Loss Module (ILM)
Filename: Source: Comment: Both: Blank: Total:

ILMInputs.h 437 196 28 65 726
InsuranceLossModel.cpp 5 4 0 1 10
InsuranceLossModel.h 1082 258 42 138 1520

Scenario Insurance Loss Module (ILM)
Filename: Source: Comment: Both: Blank: Total:

ILMInputs.h 431 176 26 53 686
InsuranceLossModel.cpp 11 18 0 6 35
InsuranceLossModel.h 1133 212 45 148 1538

Use Case IV - Wind Field Model
Filename: Source: Comment: Both: Blank: Total:

dus.pro 12 3 1 3 19
fixshots15.pro 27 4 1 9 41
gemf.m 5 2 0 0 7
gemf.pro 10 5 1 5 21
gemfplex.pro 17 4 1 4 26
genstrex.m 11 7 0 3 21
lltoxy.pro 14 5 1 1 21
mnrdsg.pro 6 2 1 2 11
mnrdu.pro 6 2 1 2 11
obc.m 7 3 0 0 10
onefix.m 27 12 0 7 46
pkwinds.pro 75 28 1 20 124
reach.pro 7 0 1 0 8
rsdsg.pro 22 5 1 6 34
rsdu.pro 21 5 1 6 33
selset.m 3 3 0 0 6
sgdvs.pro 14 6 1 6 27
shift.m 6 2 0 0 8
suv.pro 31 10 1 9 51
tek.m 7 2 0 0 9
thinner.pro 51 12 1 12 76
track.pro 69 15 1 16 101
udvs.pro 14 6 1 6 27
usadv.m 7 5 0 4 16
usg.pro 28 9 2 8 47
usnoadv.m 6 6 0 4 16
vghgen.pro 19 5 1 5 30
zmar2zot.pro 12 6 1 5 24

 6-E-4

Engineering Module
Filename: Source: Comment: Both: Blank: Total:

Site-Built\ContUtilities_Validation_Prog_112704.m 405 96 15 176 692
Site-Built\Final_VM_Plot_Prog_101704.m 140 21 5 58 224
Site-Built\Matrix_Weight_Prog_1212005_final.m 923 76 101 296 1396
Site-Built\Vulnerability_Fragility_Plot_Prog_111904_type1.m 386 22 6 85 499
Site-Built\Vulnerability_Prog_020405.m 1108 373 14 382 1877

Montecarlo Codes
Filename: Source: Comment: Both: Blank: Total:

capacity_manuf_house.m 54 28 7 19 108
capacity_opening.m 103 8 6 16 133
capacity_r2w.m 61 17 6 7 91
capacity_roofcover.m 17 4 2 7 30
capacity_sheathing.m 17 4 2 8 31
capacity_wall.m 118 20 8 21 167
capacity_wall_sheathing.m 15 6 3 6 30
debris_model_input.m 29 91 2 5 127
missile_impact.m 40 21 1 8 70
pressures.m 6 3 0 7 16
r2w_conn_uplift.m 76 4 5 5 90
r2w_conn_uplift_hip5638.m 127 15 2 22 166
r2w_conn_uplift_hip5644.m 127 17 2 20 166
r2w_conn_uplift_hip6038.m 125 15 2 23 165
r2w_conn_uplift_hip6044.m 129 18 2 20 169
redist_gable.m 12 2 0 3 17
rooflayout6044.m 106 37 13 28 184
wall_loading.m 100 45 13 16 174
window_pressure_check.m 174 20 101 11 306

Use Case III - Storm Track Module
Filename: Source: Comment: Both: Blank: Total:

stormgen.f 823 274 275 203 1575
genpdf.f 1142 403 244 280 2069
genpdf.h 13 34 5 1 53

 7-A-1

Section 7

Security

7 ads

 7-A-2

7.1 Security Procedures

PHRLM has implemented security procedures for access to code, data, and
documentation that are in accordance with standard industry practices. PHRLM employs
a number of physical and electronic security measures to protect all code, data and
documentation against both internal and external potential sources of damage.

Summary:

1. The application server (IRENE) and the database server (ANDREW), as shown in
Table 7.1, are considered “mission critical servers” (see its definition in the
Security Procedures Manual, Section II) and are kept and maintained in a secure
server room which limits non-authorized access. Access to the server room is
granted by electronic key card and is limited to essential personnel only. All
servers and desktops are protected with Norton Antivirus software.

Table 7.1. PHRLM servers

HOSTNAME Operating System Purpose

andrew.cs.fiu.edu Solaris 8 DB Server and File Storage

irene.cs.fiu.edu Red Hat Linux Application Server and File Storage

2. As outlined in the “Security Procedures Manual”, section IV part 6, backups are

performed on a daily basis and are kept for six weeks. Nightly backups of all
UNIX data disks and selected Windows data disks (at user request) are performed
over the network onto Exabyte Mammoth M2 tapes. Full dumps are taken
periodically (it works out to every 2-3 weeks) and incrementals are taken daily
between them. Off-site backups are performed at the end of every semester and
stored off-site in the PC building at the University Park Campus, which is the
Monroe County hurricane shelter and has emergency power and climate control.

3. The tape drives have built in diagnostics and verification to ensure that the data is

written correctly to tape. This ensures that if the tape is written successfully, it
will be readable, provided no physical damage occurs to the tape. The off-site
backup procedure performs a level 0 (full) dump of every disk in the department.
This means that each disk in the department will be backed up to tape in its
entirety. The dumps can be restored from tape, preserving the original file
structure and all permissions. All read errors during the backup process are
reported, so if a file system fails to dump correctly, the dump can be re-done. In
the past, we have successfully restored data from both our offsite and daily
backups for many times, and no problems have been occurred.

4. In case of disasters, we have implemented a set of preparation procedures and
recovery plans as outlined in “FIU SCS Hurricane Preparation Procedures”. The
computing equipment associated with PHRLM will be secured and safeguarded
by designated personnel such as the Lab Manager when the hurricane warning is
issued. When hurricane warning is lifted the lab manager will return to FIU and
take in charge of system recovery.

 7-A-3

5. Security policies are documented and all PHRLM personnel are trained in

security requirements and procedures. When personnel (Graduate Research
Assistants supported by PHRLM, Professional Programmers, etc.) leave the
PHRLM project, they are required to sign non-disclosure agreements to not keep
nor disclose any confidential information/documents at the proprietary level and
above. For details, please check the attached documents.

6. Any sensitive or confidential data (insurance data, for example) are kept on a

local, unshared disk on a system which has user access control and requires a
login. Screen locks are used whenever the machine is not attended. Backups are
done for that disk at daily basis. In addition, sensitive data should never be sent
via unencrypted email.

7. Access to all PHRLM computers/workstations is controlled by passwords. A

screen/keyboard lock or login screen should be active on all machines when they
are not in use. A designated project manager is responsible for providing initial
approval for a PHRLM computer account and for notifying the computing center
of a change in status of users.

8. In addition, for system security and reliability purpose, we also deploy a

development environment besides the production environment. Modifications to
the code and data are done in the development environment and tested by in-
house developers. The final production code and data can only be checked into
the production environment by authorized personnel. Baseline tests are always
run to ensure the model is functioning properly and reproducing known results.

9. The models resulted from PHRLM project can only be used by authorized users.

Authorized user accounts are created by the project manager. The models are
accessible to authorized users via web applications using JSP. The source code is
stored in server side and cannot be tampered with by unauthorized users. The
output of the models is always coupled with the analysis parameters and other
information needed to reproduce the analysis results, which are documented in
each technical report to maintain the information integrity.

10. Passwords will be kept private in a not shared disk. Passwords will consist of a

minimum of 6 alphanumeric characters (no common names or phrases).
Passwords will be changed every 120 days; this will be enforced by an automatic
expiration procedure to prevent repeated or reused passwords. User accounts will
be frozen after 3 failed logon attempts. All erroneous password entries will be
recorded in an audit log for later inspection and action, as necessary. Sessions will
be suspended after 30 minutes (or other specified period) of inactivity and require
the password to be reentered. Successful logons should display the date and time
of the last logon and logoff. All user logons will be recorded for future audit.

For detailed information please check the following documents:

 7-A-4

7.2 FIU SCS Computer and Networking Security Procedures

Manual

Draft Revised: 08/23/2002

I. Responsibilities and Scope of Work

The role of our system administrators is to provide technical support for our diverse
network and computing systems, technical consulting services for faculty and
researchers, and education for users on the use of our systems. System administrators are
responsible for the day-to-day operation and maintenance of our systems and networking
environment which include, but not limited to: Operating system installation,
configuration, updates, security, monitoring and automation of services. The systems
administers goal is to provide a reliable, state-of-the-art computing environment for
instructional and research use. The following positions are assigned the computer and
networking security responsibilities for the School of Computer Sciences computer and
networking facilities.

1. Associate Director for Computing:

Responsible for the policy and procedures established by the School of Computer
Science to assure the security of employee and student information and intellectual
property, to minimize loss of staff and student productivity due to computer and
networking security violations and educate staff and students on “best practices” to
secure their critical data. Consults with the School Director and SCS faculty on computer
and networking security requirements and directs the development of the policy and
procedure needs with the Systems and Networking Group Manager. Reports to the SCS
director and other University Management security violations and liaisons with law
enforcement should the violation require such interaction.

2. Systems and Networking Group Manager:

Responsible for the engineering of computer and networking security services for
the School of Computer Science. The Group Manager establishes day-to-day procedures
necessary to maintain computer and networking security for the School. Makes
recommendations to the Assoc. Director on policy and procedures and deploys
commercial, open-source or in-house developed technology to implement computer and
networking security policies. The Group Manager will liaison with other technology
groups on campus to coordinate security efforts.

3. Systems/Networking Administrator:

Responsible for day-to-day monitoring of security reports and logs and responds
to security alerts as indicated in the SCS Computer and Networking Security Procedures
Manual. The administrator reports security anomalies to Group Manager and conducts

 7-A-5

security investigation, collecting additional log information, correlating security data, and
providing recommendations as directed by Group Manager.

II. Definitions:

“Computer Account”: A username and password credential used to identify an authorized
user of FIU/SCS computer and networking resources.

“Unauthorized Use”: term used to describe when an unauthorized person utilizes
computer and/or networking resources restricted by FIU/SCS.

“Authentication”: The process of providing correct computer account credentials to
obtain access to FIU/SCS computer or networking resources.

“Security incident”: Any unauthorized utilization of FIU/SCS computer and networking
resources.

“Mission Critical Server”: Any computer server which provides the majority of SCS
users computer services which if down would result in 8 hours of lost user productivity.

III. Policies:

1. All computer and networking resource usage on the FIU/SCS network must be
authenticated.

2. Each computer user must be assigned one unique computer account. Exceptions may
be made in order to manage software/hardware services but account ownership is
documented.

3. Critical computer systems and networking devices are to be monitored regularly to
insure security is maintained.

4. Root access to the primary trusted system “goedel.cs.fiu.edu” is by permission of the
Assoc. Director for Computing only. All work on the primary trusted system must be
conducted via the “sudo” utility. No root console logins on goedel are authorized except
for scheduled installations and emergency work (which is disclosed to the A.D).

5. All security incidents will be log in the FIU SCS Computer and Security Activities
Log. Depending on severity security incidents will be reported to the SCS Director and/or
other FIU management.

6. Computer or networking devices whose security has been compromised may be
disconnected from the FIU SCS network until the system security is restored.

7. Computer accounts whose security has been compromised may be disabled until the
appropriate credentials are properly reassigned.

 7-A-6

8. All computer system operating systems will be maintained with critical security
patches as indicated by OS provider and/or security community.

9. Mission critical servers will be maintained in a physical location, which limits non-
authorized access. Access to the server room is granted by electronic key card and is
limited to essential personnel only.

10. If a mission critical server goes down the server room security system will
immediately page the system administrators to report the incident.

11. The School maintains anti-virus software on all networked computers and regularly
updates the anti-virus software.

12. The School’s security policies shall be consistent with those security policies which
govern the State of Florida and Florida International University Academic Affairs.

13. Student must adhere to the FIU Code of Computing Practice, a policy produced by
University Technology Services.

14. If a computer security violation is suspected, the Systems and Networking Group
Manager and/or the Associate Director for Computing have the authority to investigate
the suspected violation by reviewing and modifying system and user files in an effort to
ascertain the extent of the violation and restore system security.

If a violation of the computer security policy has occurred, the Assoc. Dir. for Computing
notifies the SCS Director, Assoc. Director(s), and UTS Security Officer of the security
violation. Once the appropriate steps are taken to restore security, the SCS Director is
notified and a public statement is made to the SCS user community of the incident as
deemed appropriate by the SCS Director.

15. SCS systems which require presentation of credentials should use the appropriate
encrypted channels (SSL, SSH, etc). SCS will be discontinuing application/service
support of unencrypted logins as we are able to migrate legacy applications/services.

 7-A-7

7.3 FIU SCS Hurricane Preparation Procedures

During Hurricane season (June-November) the Director (Associate Director or designee)
may issue an alert to the staff to prepare for an impending storm. The Lab Manager may
use his master key (or one will be made available to him/her) to enter Faculty offices to
begin preparations to safeguard computing equipment. The Director/designee will contact
the Lab Manager with final instructions to begin securing the School’s equipment.
In the case where the Director/designee is unable to contact the Lab Manager, the Lab
Manager shall report to campus when the National Weather Service issues a Hurricane
Watch (<36 hours before land-fall). If necessary, the Lab Manager will call in additional
personnel to assist securing equipment. (If the Lab Manager is out-of-town, an alternate
staff member will be designated to respond.)
If the hurricane passes without major incident to our area and the hurricane warning is
lifted the lab manager will return to FIU. Additional personnel may be requested to assist
in restarting systems. Damage assessment will occur during this period.
If, however, the area suffers severe damage the ability of lab personnel to return to FIU
may be hampered. Communication with the above mentioned will be attempted. If that
fails an attempt to reach the campus within 72 hours after the lifting of the Hurricane
Warning will be made. If it is safe to enter the building damage assessment will occur
and the systems restarted.

 7-A-8

7.4 Non-Disclosure Agreement

NON-DISCLOSURE AGREEMENT

The undersigned hereby agrees and acknowledges:

1. That during the course of my employment at Public Hurricane Risk and Loss Model
(PHRLM) there may be disclosed to me certain confidential information consisting but
not necessarily limited to:

(a) Technical information: Methods, processes, formulae, compositions, systems,
techniques, inventions, machines, computer programs and research projects.

(b) Business information: Insurance data, customer lists, pricing data, and financial data.

2. I agree that I shall not during, or at any time after the termination of my employment
with the PHRLM, use for others, or myself or disclose or divulge to others including
future employees, any confidential information, or any other proprietary data of PHRLM
in violation of this agreement.

3. That upon the termination of my employment from PHRLM:

(a) I shall return to the project manager all documents and property of PHRLM, including
but not necessarily limited to: drawings, blueprints, reports, manuals, correspondence,
computer programs, business data, and all other materials and all copies thereof relating
in any way to PHRLM, or in any way obtained by me during the course of employment. I
further agree that I shall not retain copies, notes or abstracts of the foregoing.

(b) This agreement shall be binding upon me and my personal representatives and
successors in interest, and shall inure to the benefit of PHRLM, its successors and
assigns.

Signed this on ________/ 20____(MM/DD/YYYY)

______________________________ _______________________________
Project Manager or Professor Employee Name (Print) / Signature

 8-A-1

Section 8

System Hardware and Software
Configurations

8 ads

 8-A-2

8.1 System Architecture

 System is implemented in three-tier architecture. Following diagram gives a big picture
of the system software arrangement.

Figure 8.1: System Architecture

8.2 Software List

Java 1.5
JDK 1.3.1
IMSL library CNL 5.0
OC4J v1.0.2.2.1
Oracle 9i AS 9.2
JNI 1.3.1
IDL Version 6.0
MapInfo Data – 2004 Dynamic Census Block Group & Zip code Boundaries
Math works Real-Time Workshop 6.2
Geronesoft’s Code Counter Pro Software 1.23
Matlab 7.0

 8-A-3

8.3 Hardware Configuration

PHRLM is a large-scale system, which is supposed to store, retrieve, and
process huge amount of hurricane historical data and the simulated data. And also
intensive computations are required for hurricane analysis and projection.
Correspondingly, high-speed CPU and large RAM are necessary.

The hurricane data may be regularly updated and the related mathematical
models for the hurricane data model and the projection results are also potentially
changeable.

The system aims to support both professional and general users in a very
convenient way. Therefore, a distributed environment and high bandwidth
network are needed to handle the simultaneous requests.
 Considering all these facts following hardware configurations are
employed in the system.

• Oracle application server runs on a Linux Server:

IRENE:
Dual CPU P4 Xeon 3.06GHz
2GB RAM
146GB * 6 SCSI Disks
100Mbps connection to network
Runs Linux Fedora Core 2

• Oracle database runs on a Sun Workstation

ANDREW:

SunFire V250
Dual CPU UltraSparc III Processors
73GB * 2 SCSI disks
100Mbps connection to network
2GB RAM

Detailed information about the disk partition for the database server is showed in Table
8.1.

DISK SIZE CONTROLLER MOUNTED ON TABLE SPACE
ORACLE01 04G
ORACLE03 16G

c0t4d0s6 36GB controller 0 /home/andrew1

ORACLE05 16G
ORACLE02 2G
ORACLE04 12G
ORACLE06 12G

c0t5d0s6 36GB controller 0 /home/andrew2

ORACLE07 10G
c1t1d0s7 36GB controller 1 /home/andrew

Table 8.1. Detailed disk partition for the Oracle database server

 8-A-4

• Other machines:
CHARLEY: (Backup Sun Server)

Sun UltraSparc Blade 1000
Dual CPU UltraSPARC III @ 750MHz
1GB RAM
35GB * 2 7200RPM Ultra160 SCSI disks
35GB * 1 7200RPM FC-AL internal disk
100Mbps connection to network
Runs Sun Solaris 2.8 Generic_108528-29

ISABEL: (Backup Application Server)

Dual CPU Intel Pentium III 1.2GHz
1GB RAM
35GB * 4 10K RPM Ultra160 SCSI disks
100Mbps connection to network
Runs Redhat Linux SCS 7.3 kernel 2.4.26

IBM Cluster: (Property of School of Computer Science)

IBM RS/6000SP running AIX 5.1/PSSP 3.5 with 35 nodes.
8 wide nodes with dual 375MHz Power3-II Winterhawk-II processors
27 thin nodes with single 375MHz Power3-II Winterhawk-II processors

• Personal Computers (10 machines)

2 Machines with following Configuration
Dell Dimension 4550 / 21 inches Monitor
Windows XP operating System
Pentium 4, 3.06GHz Processor, 1GB RAM
230GB Disk Space
16X DVD-ROM, 3.5”, 1.44 MB floppy drive

3 Machines with following Configuration
Dell 1400 GX 400/Minitower/21 inches Monitor
Windows 2000 Operating System
Pentium 4, 1.4 GHz Processor, 1 GB RAM, 256K Cache
Two 40 GB EIDE 7200 rpm ATA/100 Hard Drive
16X DVD-ROM
Harman-Kardon 19.5 Speakers

10 Machines with following Configuration

Dimension 4100 Series/ 19 inches Monitor
Windows 2000 Operating System
Pentium III 1GHz Processor, 256MB SDRAM
40GB Ultra ATA 7200 rpm hard drive
CD-ROM, 3.5” floppy drive

 8-A-5

• Laptops (4 machines)
Two Laptops with following Configuration

Latitude C600
Windows 2000 Operating System
Pentium III, 850 MHz, 256MB RAM
14.1” TFT
20GB Hard Drive
8X DVD with software
Nylon Carrying Case

Two Laptops with following Configuration
Dell Latitude D800
Pentium 256 M Processor 755 (2.0GHz) w/ 15.4 WSXGA+ Display
1024MB,DDR SDRAM 2 DIMMS
NVIDIA\256 128MB DDR Video Memory 128MB
60GB,Hard Drive, 9.5MM, 5400RPM
DELL LOGITECH USB OPTICAL MOUSE
Internal 56K Modem
8-24-24-24X SWDVD/CDRW Combo Drive
Intel\256 PRO/Wireless 2200 WLAN (802.11b/g, 54Mbps) miniPCI Card
NYLON DELUXE CASE
3 Year Limited Warranty plus 3 Year NBD On-Site Service

• Printers

Two Printers With following Configuration
LaserJet Printer 4100N
2 Extra Memory for two printers

• Other Accessories
2 DVD RW Drives

8.4 Safety and Backups

Nightly backups of all UNIX data disks and selected Windows data disks (at user
request) are performed over the network onto Exabyte Mammoth M2 tapes. Full
dumps are taken periodically (it works out to every 2-3 weeks) and incrementals are
taken daily between them.

A separate full dump of all department UNIX data disks and selected Windows
data disks (at user request) is taken once per semester, including IRENE and
ANDREW, and kept at an off-site location, usually a different building on campus.

 9-A-1

Section 9

Training Plan

9 ads

 9-A-2

9.1 Introduction

Training of PHRLM must be made available to the development team members
(computer group) who will implement the system and to those who will use it to
successfully complete their tasks. This document describes the plan that will be used to
train the technical staff on PHRLM system. It also describes the plan being used to train
the other professional group members (engineering group, meteorology group, statistics
group, and finance group).

9.2 Technical Training Plan

The Technical training plan is intended for the development team members who will
assist with the system development, installation, configuration, and maintenance of
PHRLM. These staff will include the personnel assigned to tasks such as loss model
implementation, client-side user interface implementation, web design, report
development and maintenance, database development and maintenance, and mainframe
system integration. They may also include the personnel with duties relating to the
administration and maintenance for PHRLM and its components. The objective of the
training is for the student to gain enough knowledge and hands-on experience to get
started on his/her tasks relating to system development.

The training will include several seminars and demos. A lecture will be presented in each
seminar. Following the lecture, each student will have an overall idea about the system
structure and its individual components. Then one-to-one computer based instruction will
be entailed to reveal the appropriate technical details that the student needs to know. The
following is an overview of the topics that will be presented in each of the training
seminars.

• Introduction to PHRLM: system architecture, system configuration, software
components, web application interface, etc.

• Database Component: HURDAT data, engineering data, wind-field data, and
insurance data, Oracle 9i basics, Oracle DBA basics (for DBA only).

• AHO (Annual Hurricane Occurrence) Module: Statistical models, model
implementation, IMSL C++ library, JNI, web interface design using JSP.

• SGT (Storm Genesis Time) Module: Statistical models, model implementation,
query design, query optimization, web user interface design, web graphical demo
applet design.

• Engineering Module, Wind-field Module, and Insurance Module: model
implementation, performance optimization, data characteristics, system
integration.

• The policies for using CVS and documenting program/data files.
• The security policies.

Each student will receive a copy of all the seminar presentations and a copy of the most
recent technical report maintained by the designated administrator/coordinator. The

 9-A-3

training will be conducted in ECS building at Florida International University. A training
feedback form will be given to each student upon the completion of the training session.
The form will be designed to gather feedback on the seminar content and the instructors.
The feedback will be used to update and/or improve future training sessions.

9.3 End User Training Plan

The end user training plan is intended for PHRLM end users and managers. The intended
audience will consist of the professional group members (engineering group,
meteorology group, statistics group, and finance group). They may also expand to
Federal customers as needed. The objective of this training plan is to train the end user
with PHRLM so they can use it for their tasks immediately.

The training will entail one-to-one instruction between attendees and technical instructors
using computer based training. Before the actual training session, a computer usage
survey will be passed to each attendee to collect the information such as their computer
skills. This is very useful for the instructor to assess the student’s needs and to better
meet his/her training expectations.

A user’s manual is under development and will be used in the training. The following
topics will be covered in detail:

• Logging into the system
• Performing simulation and specifying the model parameters
• Displaying the simulation results through web interface
• Viewing the documentations and PHRLM related publications
• Using the on-line “Question and Answer” facility to submit questions/answers

and browse other people’s questions/answers
• The security policies

Each student will receive a user’s manual at the training session. The materials used in
technical training program will be tailored and used as the auxiliary guide in the end user
training sessions. All the training materials can be accessed via PHRLM’s web
documentation system. We also implemented an on-line Q&A facility for end users to
submit their questions and get answers by using the same interface. In addition, an end
user request-response policy is set up for user questions submitted by email. The
designated technical staff will be responsible for answering users’ PHRLM related
question during regular working hours and try to response to end users as soon as
possible. Similar to technical training program, there is also a training feedback given to
each student upon the completion of the training session.

Section 10

PHRLM Related Publications

 10-A-1

10. PHRLM Related Publications

[1]. Shu-Ching Chen, Sneh Gulati, Shahid Hamid, Xin Huang, Lin Luo, Nirva
Morisseau-Leroy, Mark D. Powell, Chengjun Zhan, Chengcui Zhang, "A Web-based
Distributed System for Hurricane Occurrence Projection," Software: Practice and
Experience, Volume 34, Issue 6, pp. 549-571, May 2004.

[2]. Shu-Ching Chen, Shahid Hamid, Sneh Gulati, Na Zhao, Min Chen, Chengcui Zhang,
and Paresh Gupta, "A Reliable Web-based System for Hurricane Analysis and
Simulation," IEEE International Conference on Systems, Man and Cybernetics 2004, pp.
5215-5220, October 10-13, 2004, Hague, The Netherlands.

[3]. Mei-Ling Shyu, Shu-Ching Chen, Min Chen, Chengcui Zhang, and Chi-Min Shu,
"MMM: A Stochastic Mechanism for Image Database Queries," Proceedings of the IEEE
Fifth International Symposium on Multimedia Software Engineering (MSE2003), pp.
188-195, December 10-12, 2003, Taichung, Taiwan, ROC.

[4]. Shu-Ching Chen, Sneh Gulati, Shahid Hamid, Xin Huang, Lin Luo, Nirva
Morisseau-Leroy, Mark Powell, Chengjun Zhan, and Chengcui Zhang, "A Three-Tier
System Architecture Design and Development for Hurricane Occurrence Simulation,"
Proceedings of the IEEE International Conference on Information Technology: Research
and Education (ITRE 2003), pp. 113-117, August 10-13, 2003, Newark, New Jersey,
USA.

