
Version 2.0.7
November 1999

The ERC32 GNU Cross-Compiler System

Jiri Gaisler
European Space Research and Technology Centre (ESA/ESTEC)

2 ERC32 GNU Cross-Compiler system

European Space Agency
jgais@ws.estec.esa.nl

The ERC32 GNU cross-compiler system

Copyright 1999 European Space Agency.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions.

Introduction 3

1 Introduction

1.1 General
This document describes the ERC32 GNU cross-compiler system version 2.0.6. Discussions are pro-
vided for the following topics:

• contents and directory structure of ERC32CCS

• compiling and linking ERC32 applications

• usage of SIS and MKPROM

• debugging ERC32 application with GDB/SIS

The ERC32 GNU cross-compiler system is a multi-platform development system based on the GNU
family of freely available tools with additional ‘point’ tools developed by Cygnus, OAR and ESTEC.
The ERC32CCS consists of the following packages:

• EGCS/GCC C/C++ compiler

• GNAT Ada95 compiler

• GNU binary utilities

• RTEMS C/C++ real-time kernel

• Newlib standalone C-library

• SIS ERC32 simulator

• GDB debugger with ERC32 remote debugging monitor (rdbmon)

• DDD graphical front-end for GDB

• MKPROM boot-prom builder

1.2 News in version 2.0.7

This version of ERC32CCS contains the following changes with respect to 2.0.6:

• Fixed memory access bug rdbmon

• Added user defined init routines in mkprom

• Minor bug fix in mkprom

• Fixed interrupt handling bug in Ada96

4 ERC32 GNU Cross-Compiler system

2 Installation and directory structure

2.1 Obtaining ERC32CCS

bution

tent or

on can
ERC32CCS is only distributed via anonymous ftp. The primary home of ERC32CCS is ftp://ftp.es-
tec.esa.nl/pub/ws/wsd/erc32/erc32ccs. Two platforms are supported: SPARC Solaris-2.5.1 (or higher),
and x86 linux (libc5). Sources for rtems, rdbmon and mkprom are provided with ERC32CCS, the re-
maining sources can be found at the usual GNU sites or at the OAR home page.

2.2 Installation on a Linux host

The ERC32CCS directory tree is compiled to reside in/usr/local/erc32 on Linux platforms. After obtaining
the gzipped tarfile with the binary distribution, un-compress and un-tar it in a suitable location - if this is not/usr/
local/erc32 then a link have to be created to point to the location of the ERC32CCS directory. The distri
can be installed with the following command:

cd /usr/local
gunzip -c erc32ccs-2.0.5-linux-tar.gz | tar xf -

After the compiler is installed, add/usr/local/erc32/bin to your search path.

Note: ERC32CCS is compiled on slackware-3.9 linux using libc5 libraries. To avoid problems with non-exis
outdated libc5 libraries on other systems, all binaries are statically linked.

2.3 Installation on a Solaris host

The ERC32CCS directory tree is compiled to reside in/opt/gnu/erc32 on Solaris platforms. After obtaining the
gzipped tarfile with the binary distribution, un-compress and un-tar it in a suitable location - if this is not/usr/lo-
cal/erc32 then a link have to be created to point to the location of the ERC32CCS directory. The distributi
be installed with the following command:

cd /opt/gnu
gunzip -c erc32ccs-2.0.5-solaris-tar.gz | tar xf -

After the compiler is installed, add /opt/gnu/erc32/bin to your search path.

2.4 Contents of /usr/local/erc32 (/opt/gnu/erc32)

The createderc32 directory with the following sub-directories:

bin executables
doc documentation
include host includes
lib host libraries
man man pages
rtems rtems libraries
rtemsnp rtems libraries (no posix)
sparc-rtems target libraries (ERC32)
src various sources

2.5 ERC32CCS tools

The following tools are included in ERC32CCS:

Installation and directory structure 5

ddd graphic X11 front-end to GDB
mkprom boot-prom builder
protoize GNU protoize utility

sis ERC32 simulator
sis64 ERC32 simulator (with 64-bit time)
sparc-rtems-ar library archiver
sparc-rtems-as cross-assembler
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt utility to demangle C++ symbols
sparc-rtems-g++ same as sparc-rtems-c++
sparc-rtems-gasp assembler pre-processor
sparc-rtems-gcc C/C++ cross-compiler
sparc-rtems-gdb debugger with ERC32 simulator and remote target interface
sparc-rtems-gdb64 debugger with ERC32 simulator (64-bit time)
sparc-rtems-gnatcmd Utility to print all GNAT command switches
sparc-rtems-gnatmake Ada make utility
sparc-rtems-gnatbind Ada binder
sparc-rtems-gnatf Ada syntax checker and cross-reference generator
sparc-rtems-gnatprep Ada pre-processor
sparc-rtems-gnatbl Ada bind and link
sparc-rtems-gnatkr Ada file name kruncher
sparc-rtems-gnatpsta Utility to print the Standard package
sparc-rtems-gnatchop Ada source code splitter
sparc-rtems-gnatlink Ada linker
sparc-rtems-gnatpsys Utility to display the System package
sparc-rtems-gnatchp Ada source code splitter
sparc-rtems-gnatls Ada library lister
sparc-rtems-ld GNU linker
sparc-rtems-nm utility to print symbol table
sparc-rtems-objcopy utility to convert between binary formats
sparc-rtems-objdump utility to dump various parts of executables
sparc-rtems-ranlib library sorter
sparc-rtems-size utility to display segment sizes
sparc-rtems-strings utility to dump strings from executables
sparc-rtems-strip utility to remove symbol table
unprotoize GNU unprotoize utility

2.6 Documentation

An extensive set of documentation for all tools can be found in doc and man. The following documents
are provided:

aarm.pdf Annotated Ada 95 Reference Manual
as.bdf Using as - the GNU assembler
bfd.pdf Libbfd - the binary file description
binutils.pdf The GNU binary utilities
cpp.pdf The C Preprocessor
ddd.pdf DDD - The Data Display Debugger
gcc.pdf Using and porting GCC
gdb.pdf Debugging with GDB

6 ERC32 GNU Cross-Compiler system

gnat_rm.pdf GNAT reference manual
gnat_ug.pdf GNAT User’s guide
ld.pdf Using ld - the GNU linker

mkprom.pdf Mkprom manual page
rtems_dev.pdf RTEMS Development environment guide
rtems_relnotes.pdf RTEMS Release notes
rtems_sparc.pdf RTEMS SPARC Applications supplement
rtems_user.pdf RTEMS C User’s manual (this is the one you want!)
sis.pdf SIS - SPARC instruction set simulator manual
sparcv7.pdf SPARC V7 Instruction set manual

Data sheets for the ERC32 chip-set are also provided:

mecspec.pdf MEC rev.A Device specification
tsc961e.pdf TSC961 Integer Unit User’s manual
tsc962e.pdf TSC962 Floating-point Unit user’s manual
sysover.pdf ERC32 System overview

erc32cba.pdf ERC32 revision CBA bug list
erc32cca.pdf ERC32 revision CCA bug list

The documents are all provided in PDF format, with searchable indexes. The GNU documents have
embedded hyper-links and searchable document text. A free PDF viewer (‘acrobat’) can be down-
loaded from Adobe (http://www.adobe.com/).

2.7 Support

Additional information and commercial technical support for the various tools is available as follows:

rtems, gcc, newlib OAR http://www.oarcorp.com/

sis, rdbmon, mkprom J.Gaisler (ESTEC) jgais@ws.estec.esa.nl

ddd - http://www.cs.tu-bs.de/softech/ddd/

gnat ACT http://www.act-europe.fr/

gcc, gdb, newlib Cygnus Support http://www.cygnus.com/

Using ERC32CCS 7

3 Using ERC32CCS

3.1 General development flow
The compilation and debugging of ERC32-based applications is done in the following steps:

1. Compile and link program with gcc

2. Debug program in standalone simulator (SIS) or with gdb

3. Debug program on remote target with gdb

4. Create boot-prom for a standalone application

The ERC32CCS-2.0 supports three types of applications; ordinary sequential C/C++ programs, mul-
ti-tasking real-time C/C++ programs based on the RTEMS kernel, and Ada-95 programs. Compiling
and linking is done in much the same manner as with the host-based gcc and GNAT.

3.2 RTEMS applications

As of ERC32CCS-2.0, compiling and linking of RTEMS applications is done by adding the rtems com-
piler switch to gcc. This will instruct gcc compiler driver to add RTEMS specific include paths and
libraries. To compile and link a RTEMS application, use ‘sparc-rtems-gcc’:

sparc-rtems-gcc -g -rtems -O3 rtems-hello.c -o rtems-hello.exe

The various compilation switches are explained in the gcc manual (gcc.pdf). The default load address
is start of RAM, i.e. 0x2000000. Any load address can be specified through the -Ttext option (see gcc
manual).

RTEMS is provided in two versions; with and without POSIX threads interface. If applications are
written with the POSIX interface, add the -posix switch during compilation and linking:

sparc-rtems-gcc -posix -g -O3 posix-app.c -o posix-app.exe

Extensive documentation on RTEMS is providedin doc/rtems_user.pdf.

3.3 Sequential C-programs

Ordinary sequential C programs can be compiled without any particular switches to the compiler
driver:

sparc-rtems-gcc -g -O2 hello.c -o hello.exe

3.4 Ada95 programs

Compiling and linking an Ada95 program is easiest done through gnatmake:

sparc-rtems-gnatmake -g -O3 -gnatp dais.adb -largs -qgnat -rtems -bargs -r

Note that the binder and linker arguments have to be provided to enable the correct libraries.

Individual units can be compiled through gcc:

sparc-rtems-gcc -c -g -O3 -gnatp dais.adb

Binding and linking can also be done separately:

8 ERC32 GNU Cross-Compiler system

sparc-rtems-gnatbind -r dais.ali

sparc-rtems-gnatlink -qgnat -rtems -g -O3 dais.ali
For details on how to use gnat, see the GNAT User’s Manual (gnat_us.pdf) and GNAT Reference
Manual (gnat_rm.pdf). ERC32 interrupts can be attached using the Ada95 interrupt_attach prag-
ma. The ERC32 interrupts (numbered 1 - 15), are mapped on Ada interrupt 17 - 31. Avoid ERC32
interrupt 13 which is used for the real-time clock. See the irqtest program in the examples direc-
tory on how to attach interrupts. The compiler is configured for a maximum of 20 tasks and 30 mu-
texes. If you need a different configuration, copy src/libio/gnatinit.c to your local directory and modify
it according you system requirement. To use the local file, add it to the linker arguments as follows:

sparc-rtems-gcc -O3 -g -rtems -posix -c gnatinit.c

sparc-rtems-gnatmake -g -O3 -gnatp dais.adb -largs -qgnat -rtems gnatinit.o
-bargs -r

The stack size of each Ada task (including the main program) is by default 10 Kbytes. This can be
overridden by using the storage_size attribute on the task type used. The stack size for the main task
(program) can be set in gnatinit.c. See also “Memory allocation” on page 13 for details on global mem-
ory usage.

NOTE: the Ada compiler is only provided for testing purposes, and is not by any means validated or
guaranteed. A commercial, validated version is available from Ada Core Technology (http://www.act-
europe.fr/).

3.5 Making boot-proms

Both sequential C-programs and RTEMS applications are linked to run from beginning of ram at ad-
dress 0x2000000. To make a boot-prom that will run on a standalone target, use the mkprom utility.
This will create a compressed boot image that will load the application to the beginning of ram, ini-
tiate various MEC register, and finally start the application. mkprom will set all target dependent
parameters, such as memory sizes, number of memory banks, waitstates, baudrate, and system
clock. The applications do not set these parameters themselves, and thus do not need to relinked for
different board architectures. The example below creates a boot-prom for a system with 1 Mbyte
RAM, one waitstate during write, 3 waitstates for rom access, and 12 MHz system clock. For more
details see the mkprom manual

mkprom -ramsz 1024 -ramwws 1 -romws 3 hello.exe -freq 12 hello.srec

3.6 Simple examples

Following example compiles the famous ‘hello world’ program and creates a boot-prom in SRECORD
format:

> sparc-rtems-gcc -nortems -g -O2 hello.c -o hello
> mkprom hello -o hello.exe
> sparc-rtems-objcopy --adjust-vma=0x2000000 -O srec hello.exe hello.srec

An Ada application compiled through gnatmake:

> sparc-rtems-gnatmake -g -O3 -gnatp dais.adb -bargs -r -largs -qgnat -rtems
sparc-rtems-gcc -c -g -O3 -gnatp dais.adb
sparc-rtems-gnatbind -aO./ -I- -r -x dais.ali

Using ERC32CCS 9

sparc-rtems-gnatlink -g -rtems -qgnat dais.ali
> sparc-rtems-size dais
text data bss dec hex filename

204720 6392 32268 243380 3b6b4 dais

Several example C, C++ and Ada program can be found in src/examples . The RTEMS validation
tests can be found in src/examples/RTEMS .

3.7 FPU rev.B bugs

The FPU rev.B (and to some extent rev.C) have two types of bugs; certain lddf/stdf sequences fail and
asynchronous interrupts can in some cases cause FPU exceptions. If FPU rev.B or C is used, adding
the -revb switch to gcc will work-around the lddf/stdf bugs. Note that the -revb switch also have to
be used during linking, to select the correct libraries. The interrupt bug (a.k.a. bug 3.14) is handled
directly in the rtems kernel and does not need the -revb switch. Note: the -revb switch incurs approx-
imately 5% performance penalty. It is therefore wise to group all functions with floating-point oper-
ations into a separate file which is compiled with -revb, while all non-floating-point code can safely
be compiled without -revb.

For Ada programs running on FPU rev.B or C, -revb must be added to both -cargs and -largs of gnat-
make.

10 ERC32 GNU Cross-Compiler system

4 Execution and debugging

The applications built by ERC32CCS can be executed in four different ways; on the standalone sim-

ulator, on gdb with integrated simulator, on a remote target connected to gdb and on a standalone
target board from prom.

4.1 Standalone simulator

The standalone simulator can run both application produced by the compiler and srecord images pro-
duced by MkProm. The following example shows how the ‘hello world’ program is run:

tellus > sis hello

 SIS - SPARC instruction simulator 3.0.5, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello:
section .text at 0x02000000 (26032 bytes)
section .data at 0x020065b0 (1304 bytes)
section .bss at 0x02006ac8 (40 bytes)(not loaded)
serial port A on stdin/stdout
sis> go
Hello world
Program exited normally
sis>

Note that the program was started from address 0x2000000, the default start address. Programs al-
ways halt the IU after they have terminated, that is why the IU goes into error mode. The boot-prom
image can also be simulated:

tellus > sparc-rtems-sis hello.srec

SIS - SPARC instruction simulator 3.0.5, copyright Jiri Gaisler 1995-1998
 Bug-reports to jgais@ws.estec.esa.nl

loading hello.srec:
section .sec1 at 0x00000000 (16784 bytes)
serial port A on stdin/stdout
sis> run
ERC32 boot loader v1.0

 initialising RAM
 decompressing .text
 decompressing .data

 starting hello

Hello world!
Program exited normally
sis>

Execution and debugging 11

4.2 GDB with simulator

To do symbolic debugging of both C and Ada applications, use gdb. After gdb is started, the simulator
has to attached and the program loaded. It is important that the applications have been compiled

with the -g switch. Below is a sample session:

tellus > sparc-rtems-gdb hello
(gdb)tar sim

 SIS - SPARC instruction simulator 3.0.5
 Bug-reports to Jiri Gaisler ESA/ESTEC (jgais@ws.estec.esa.nl)
serial port A on stdin/stdout
Connected to the simulator.
(gdb)
(gdb) load
(gdb) break main
Breakpoint 1 at 0x20014e4: file hello.c, line 4.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello

Breakpoint 1, main () at hello.c:4
4 printf(“Hello world!\n”);
(gdb) cont
Continuing.
Hello world!

Program exited normally.
(gdb)

4.3 GDB with remote target

To attach gdb to a remote targets similar to attaching to the simulator. The baud rate for the serial
port has to be specified and the remote target monitor has to run on the target. Also, a tip window
should be connected to UART A to see the application output. Below is a sample session with a re-
mote target:

tellus> xterm -e tip -38400 /dev/ttya &
[234]
tellus > sparc-rtems-gdb hello
(gdb) set remotebaud 19200
(gdb) tar erc32 /dev/ttyb
Remote debugging using /dev/ttyb
0x2000000 in trap_table ()
(gdb) lo
Loading section .text, size 0x65e8 vma 0x2000000
Loading section .data, size 0x4d0 vma 0x20065e8
(gdb) bre main
Breakpoint 1 at 0x20014e4: file hello.c, line 3.
(gdb) run
Starting program: /home/jgais/erc32/src/examples/hello
main () at hello.c:4

12 ERC32 GNU Cross-Compiler system

3 printf(“Hello world!\n”);
(gdb) cont
Continuing.
Program exited normally.
(gdb)

Note that the program has to be loaded each time before it is started with ‘run’. This is to initialise
the data segment to the proper start values. It is possible to switch between several targets (real or
simulated) in the same GDB session. Use the GDB command detach to disconnect from the present
target before attaching a new one.

4.4 Using DDD

DDD is a graphical front-end to gdb, and can be used regardless of target. To start DDD with the
debugger use:

ddd --debugger sparc-rtems-gdb --attach-window

A small script, dddx , is provided to start DDD in this configuration. You might need the full path in
front of DDD if you already have a version of ddd installed. To get the source code displayed in the
ddd window, click on locate(). The required gdb commands to connect to a target can be entered in
the command window. See the GDB and DDD manuals for how to set the default settings. If you have
problems with getting DDD to run, run it with --check-configuration to probe for necessary libraries
etc. DDD has many advanced features, see the manual in erc32/doc (ddd.pdf) or the on-line manual
under the ‘Help’ menu.

4.5 Remote target monitor

The directory src/rdbmon contains the remote monitor which needs to be running on the target
board to allow remote target debugging with gdb. The monitor supports ‘break-in’ into a running pro-
gram by pressing Ctrl-C in GDB or interrupt in DDD. The two timers are stopped during monitor
operation to preserve the notion of time for the application. Note that the remote debugger monitor
only works with programs compiled with ERC32CCS, and thus NOT with programs compiled with
Aonix Ada, VxWorks or similar.

Type make to build the monitor. Depending on desired baudrate type either ‘make m38k4’, ‘make
m19k2’ or ‘make m9k6’. Program the resulting *.srec file to you boot-prom. The remote debugger will
be attached via UART B, console is on UART A. The maximum baudrate depends on the system clock
of the target, 38K4 has been successfully used with a zero-waitstate ERC32 system running at 10
MHz. The monitor installs it self into the top 32K of ram. It therefore needs to know how large the
ram is. The default ram size for the monitor is 4 Mbyte, adjust the Makefile if your system has dif-
ferent size.

NOTE: the monitor from earlier (pre-2.0) ERC32CCS releases is NOT compatible with gdb version
supplied with ERC32CCS-2.0 and later. Uses the monitor provided in this version to avoid problems.

Internals 13

5 Internals

5.1 Memory allocation
The resulting executables are in a.out format and has three segments; text, data and bss. The text
segment is by default at address 0x2000000, followed immediately by the data and bss segments. The
stack starts at top-of-ram and extends downwards. When the remote debugger is used, a part of the
stack is automatically reserved for the debugger monitor.

By default, programs are linked assuming that the target system has 2 Mbyte prom and 4 Mbyte
ram. These settings can be overridden at compile time using the linker’s --defsym option. On a sys-
tem with 1 Mbyte prom and 8 Mbyte ram, use:

sparc-rtems-gcc -Xlinker --defsym -Xlinker _PROM_SIZE=1M -Xlinker --defsym
-Xlinker _RAM_SIZE=8M

When using gnatmake, these options should be added after the -cargs switch. Note, these options are
only useful when running on the simulator (or gdb/sis) without using mkprom. When mkprom is
used or the application is run on a remote target under rdmon, the memory options given to mkprom
will be used.

5.2 Sequential C-programs

For sequential C-programs, a posix compatible C-library and math library is provided. However, no
file or other I/O related functions will work, with the exception of I/O to stdin/stdout. Stdin/stdout
are mapped on UART A, accessible via the usual stdio functions. UART B can be accessed via file
handle 3 (input) or 4 (output) using the read() and write() functions:

write(4,buf,size);

At startup of a program, the MEC real-time counter is programmed to increment one per microsec-

Figure 1: ERC32CCS applications memory map

Standalone app

Stack

Heap

Data

Text

0x2000000

Top-of-Ram
Remote debugger app

Stack

Heap

Data

Text

RDB interface

Internals 14

ond. The function clock() will return the value of the counter. The sources to the board-specific part
of the C-library is provided in erc32/src/libio . A user can modify the I/O functions according to
his needs and install them into the C-library location (erc32/sparc-rtems/lib).

	1 Introduction
	1.1 General
	1.2 News in version 2.0.7

	2 Installation and directory structure
	2.1 Obtaining ERC32CCS
	2.2 Installation on a Linux host
	2.3 Installation on a Solaris host
	2.4 Contents of /usr/local/erc32 (/opt/gnu/erc32)
	2.5 ERC32CCS tools
	2.6 Documentation
	2.7 Support

	3 Using ERC32CCS
	3.1 General development flow
	3.2 RTEMS applications
	3.3 Sequential C-programs
	3.4 Ada95 programs
	3.5 Making boot-proms
	3.6 Simple examples
	3.7 FPU rev.B bugs

	4 Execution and debugging
	4.1 Standalone simulator
	4.2 GDB with simulator
	4.3 GDB with remote target
	4.4 Using DDD
	4.5 Remote target monitor

	5 Internals
	5.1 Memory allocation
	5.2 Sequential C-programs

