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Abstract: The Transformers project aims at creating a generic framework for C++ source to
source transformation. “Source to source” transformation consists in refactoring the code and
producing a modified source. The resulting code may be reread, reused, re-modified. . . by pro-
grammers and thus must be human-readable. Moreover it should respect the original coding
style. This process of preserving the original layout is called “high fidelity program transfor-
mation”.

Transformers targets the C/C++ language. Unlike many other languages, C++ source code is
preprocessed to obtain the actual source code. In our program transformation context we need
to un-preprocess the code to give back a human-readable code to the programmer.

This document presents the work and research carried out to implement a reversible C++
preprocessor and a postprocessor, i.e. a tool to obtain the original code from the preprocessed
one.

Abstract: Le but de du projet Transformers est de créer un framework générique pour de
la transformation source à source de code C++. Une transformation “source à source” consiste
à retravailler le code et produire un fichier de code source modifié. Ce code peut être relu, ré-
utilisé, modifié . . . par des programmeurs et doit donc être lisible. De plus, il doit respecter le
coding style d’origine. Ce processus de préservation du layout est appelé “High fidelity program
transformation”.

Transformers cible les langages C et C++. Contrairement à de nombreux langages, le C++ est
un langage préprocessé pour obtenir le code source effectif. Dans le contexte de la transformation
de programmes, il faut dé-préprocesser le code pour le rendre lisible au programmeur.

Ce document présente le travail de recherche que nous avons mené pour implémenter un
préprocesseur de C++ reversible et un postprocesseur, c’est-à-dire un outil permettant d’obtenir
le code d’origine à partir du code préprocessé.

Keywords
revCPP, unCPP, CPP, C++, Transformers, program transformation, C preprocessor, C++ prepro-
cessor



Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
transformers@lrde.epita.fr – http://www.lrde.epita.fr/

transformers@lrde.epita.fr
http://www.lrde.epita.fr/


3
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Chapter 1

Introduction

RevCPP is a reversible C++ preprocessor released under the GNU GPL1. This project
will be used as part of Transformers to deal with source-to-source transformations.

Although revCPP will strive to be as close to the standard as possible, our first goal is
usability: we’ll first cover most common use cases and we might leave some FIXMEs as
an exercise for the readers interested to get a fully ISO-14882-compliant preprocessor.

This document is presented as follows: Chapter 2 presents how to install revCPP.
Chapter 3 explains how to preprocess code with revCPP. Chapter 4 explains how to
postprocess (“un-preprocess”) the code preprocessed by revCPP. These two chapters
have been written for revCPP users and can be used as reference manuals. Chapter 5
then explains the internals of revCPP and how it was implemented. It has been written
for future maintainers of revCPP or anyone who would like to patch, contribute, fork
or simply understand how revCPP works. Chapter 6 concludes this report.

1.1 Mission statement

Our goal is to provide a reasonably complete and standard implementation of CPP2 as
described in the chapter 16 of the C++ standard. We might provide compatibility with
the C preprocessor but this is not our main goal.

This implementation of CPP adds extra-comments, called metatags, in its output in
order to be able to reverse the preprocessing. We are not aiming at an efficient imple-
mentation, nor strict standard conformance. We want the code to be easy to understand
and maintain. Our project will be successful if we can preprocess Boost and most of the
test suite of GCC3’s CPP.

1GNU General Public License.
2C PreProcessor.
3GNU Compiler Collection.
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1.2 Motivations

One of the numerous reasons that hinder projects trying to perform source-to-source
transformations on C++ code (besides the ambiguous grammar) is CPP. CPP is a macro
processor that is used automatically by C++ compilers before compilation. It is used to
include a file in another one or replace a word (or more) with others.

It is thus impossible to parse a C++ source file unless it has been processed by CPP.
Most of the C++ files need to include their “dependencies” including files coming from
dependent libraries. For high fidelity source-to-source transformation, the user wants
their compilation unit to be parsed and transformed and pretty printed back to some-
thing as close as possible to the original code. This implies that they want their layout
and comments to be preserved as much as possible.

In order to do this, a reversible preprocessor is needed. As of today there are several
implementations of CPP but none offers this feature while being free, i.e. released under
the GPL.
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Installation

2.1 Requirements

• OCaml 3.09 or newer (3.10 recommended).

• menhir, version 200702151 or newer.

• ExtLib 1.4 or newer.

• Ruby 1.8.5 or newer.

2.2 Getting the dependencies

You can get these dependencies using Godi, the OCaml source distribution system:

• Download and install Godi.

• Launch godi_console ($godi_prefix/sbin/godi_console).

• Type “1” then return to update your package list.

• Type “x” to go to the main menu, then “2” and return to select packages.

• Look for godi-extlib and godi-menhir in the list.

• For each of them, type their number, then “b” and “x” to schedule them for in-
stallation.

• Back in the package list, type “s” and “o” to start installation.

• When done, type “x” then “3” to exit.

1revCPP might work with earlier versions but only the version 20070215 has been tested.

http://godi.ocaml-programming.de/
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2.3 Installation from source

You can easily retrieve the sources of revCPP with subversion.

svn checkout https://svn.lrde.epita.fr/svn/revcpp/trunk/ revcpp
cd revcpp
./bootstrap
./configure
make
make check
sudo make install
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revCPP user’s manual

revCPP is an implementation of the Chapter 16 of the ISO/IEC 14882 standard which
has the ability to reverse its preprocessing. This is done by adding tags in the form
of comments (named metatags) in the output file in order to preserve the information
otherwise lost by the preprocessing.

Our reference implementation is GCC’s preprocessor and revCPP exhibits a compat-
ible interface so that one can use it as a replacement to g++.

Our preprocessor is not yet fully compatible with ISO C99 (at least it has only been
tested for C++).

3.1 General usage

RevCPP works mostly like the GNU CPP implementation. It will read the text to pre-
process on the standard input, or from a file specified on the command line. Unlike a
classical CPP implementation, revCPP will output several files, one per possible evalua-
tion of all the conditional inclusions1 in the file. revcpp foo.cc will create foo.1.i,
foo.2.i, . . . in the current directory. You might specify specific constraints for these
condition evaluations, as explained in Section 3.2.

Note that some behaviors will differ from the standard implementation. No error
will be generated on #error for example, because we want to be able to preprocess
this directive and postprocess it back later.

# ifndef HAVE_BOOST_H
# e r r o r You need boost to compile t h i s program
# endif

This #error would be lost if the code path where HAVE_BOOST_H-is-not-defined was
not covered. Thus it is important that the entire code be covered.

1#if
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3.2 Usage

revCPP accepts most of the arguments of gcc and g++. It is usable as a replacement in
a build system, for instance:

make CXX=’revcpp <revcpp-options>’

revCPP accepts the following additional arguments:
--show-tree Show conditional inclusions tree.
--show-variables Show all macros implied in conditional inclusions.
--show-sets Show all possible macro sets that generate different files.
--count-sets Count this number of sets.
-n | --constraint Add a constraint.
--show-constraints Show all constraint, including built-in ones.

The irrelevant GCC options will be ignored. The unsupported options will raise an
error. The following options are currently implemented:
-I dir Add the directory dir to the list of directories to be

searched for header files. Directories named by -I are
searched before the standard system include directories.

-D name Predefine name as a macro, with definition 1.
-D name=definition The contents of definition are tokenized and pro-

cessed as if they appeared during translation phase three
in a #define directive. In particular, the definition will
be truncated by embedded newline characters.

-U name Cancel any previous definition of name, either built in or
provided with a -D option.

-v Enable verbose mode.
-nostdinc Do not search the standard system directories for header

files. Only the directories you have specified with -I op-
tions (and the directory of the current file, if appropriate)
are searched.

-nostdinc++ Same behavior as -nostdinc. This differs slightly from
GCC, which continues to search in the other non-C++-
specific standard directories.

-version Print version information and exit successfully.
-help Display this information.

3.3 Specifying constraints

You can add constraints to predefined ones using the -n <constraint> option, where
a constraint can be:

• A literal (true or false)
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• A macro name (FOO)

• A logical negation (!<constraint>)

• A logical and (<constraint> && <constraint>)

• A logical or (<constraint> || <constraint>)

• A logical exclusive or (<constraint> ˆ <constraint>)

• An implication
(<constraint> => <constraint> or <constraint> <= <constraint>)

• An equivalence (<constraint> <=> <constraint>)

• A parenthesized expression.

This feature has two main usages:

• Specifying mutual exclusion or other dependencies for user-defined macros.
For example, a user might develop a library that can use either the STL, Boost or
Qt, defined by the USE_STL, USE_BOOST and USE_QT macros. By adding the
USE_STL ˆ USE_BOOST ˆ USE_QT constraint, all generated macro sets will
contain one and only one of these macros, thus avoiding generating useless files
that wouldn’t even compile. As another example, the user may define a macro
USE_QSTRING to replace std::string’s with QString’s. He might then want
to add the !USE_QT => !USE_QSTRING constraint. Thus sets that use Qt with
std::string will be generated, but not inconsistent ones that does not use Qt
but use QStrings.

• Refining the transformation.
If the user wants to perform his transformation on Linux-specific code, or without
debugging support. This can be obtained by adding the LINUX or NDEBUG.

There are some default built-in constraints, such as LINUX ˆ WIN32.

3.4 Known bugs and limitations

• Stringification (#FOO) and concatenation (FOO##BAR) operators are not yet han-
dled.

• Preprocessing might be slow when using many complex logic expressions with
disjunctions.
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unCPP user’s manual

4.1 Usage

UnCPP transforms a set of transformed files, resulting from the different conditional
inclusions, in several postprocessed files corresponding to the original file and its in-
clusions. All the files will be serialized on the standard output, separated by headers
indicating file names. You can also directly overwrite files instead of printing to the
standard output with --in-place.

Consider the following example:

/∗ f i l e f o o . hh ∗ /
# i f A
/∗ comment ∗ /
# endif

/∗ f i l e b a r . hh ∗ /
# include " foo . hh "

Invoking revcpp on bar.hh will generate bar.1.i and bar.2.i (for the A and !A
sets). Invoking uncpp on these two files will generate on the standard output:

>>> FILE /path/to/files/foo.hh
/* file foo.hh */
#if A
/* comment */
#endif
>>> FILE /path/to/files/bar.hh
/* file bar.hh */
#include "foo.hh"

This system will allow the modification of the included files. This can be disabled
with the --preserve-includes option.
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UnCPP accepts the following command line arguments:
-i | --in-place Directly overwrite files, do not print on the standard output.
-p | --preserve-includes Do not overwrite includes, and fail if they are modified.

4.2 Known limitations

• The merge algorithm might simplify #if. For example, #if A && A will be
simplified in #if A, or two contiguous blocks with the same condition will be
merged. This is due to the fact that conditionnal blocks (guarded by “if”-sections)
are not simply preserved with a metatag. All combinations of if sections are ex-
plored (see Section 5.3.6) and the result is merged back again (see Section 5.4.4).
Since we recreate the if-sections, they might be different, although semantically
equivalent.
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Behind the scene: revCPP internals

This chapter documents the internals of revCPP (for both the preprocessor and the post-
processor) and presents the tricky issues and workarounds used throughout the code.
The first source of documentation should remain the comments in the code (which is
fairly well commented) and it is possible that future evolutions of revCPP will make this
document deprecated. Future maintainers are encouraged to maintain the comments
in the code rather than this document, should they chose between one alternative or
the other.

Thus this section is only here to help the reader to understand and maintain the
project, but reading the code alone should be enough to be able to work on it.

This section assumes that you already know OCaml, how to use ocamllex and
menhir and that you have already read and understood (ISO/IEC, 2003, chap. 16).

5.1 Modules

5.1.1 Foreword

During the development of revCPP we felt the need to implement several helping mod-
ules. Some of them were made quite generic and are probably re-usable under other
circumstances. Some other are re-used throughout the project and did not fit in any
particular section. That is why they are documented here.

5.1.2 Getopt

We use a modified version of Getopt to handle GCC-style arguments. This implemen-
tation of GNU getopt is almost seen as a standard in the OCaml community and is
distributed in Godi.

The problem with this implementation is that it can only handle short options of the
form “-X” where X is a single character or “--foo” where foo is any string, just like
GNU getopt. GCC, however, uses most of its long options of the form “-foo”. Since
the code of Getopt mainly consisted in a single ML file, we decided to fork it. The code

http://alain.frisch.fr/soft.html#Getopt
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was cleaned up a bit (mainly factored so that it is more readable). The change in itself
is rather simple: when an argument starts with a dash, it is first checked against known
long options. If none matches, it is then checked against short options.

5.1.3 ScanUtils

We use ocamllex for all our scanners, which is part of the standard OCaml library.
During the development we were hindered by the limitations of ocamllex. We had
difficulties handling locations properly (although menhir seems to provide facilities to
deal with them). We also needed to associate a context with the scanner in order to store
various things such as a stack of states (that we use to choose the start condition of the
scanner), the layout seen since the latest token and whether the latest token was an end
of line or not. We also wanted to share scanning rules among different sub-scanners in
order to minimize the redundancy of the rules valid in many states.

This section explains how we tackled each of these problems. Note that all our scan-
ners are re-entrant.

5.1.3.1 Handling locations

The only feature automatically handled by ocamllex is the count of the number of char-
acters since the beginning of the file. The module ScanUtils provides the following
functions:

The function init initializes the lexbuf of ocamllex with a file name.
The function next_line is used to increment the current line number.
The function scan_error is useful to raise a Fatal error with an error message that

contains the current location of the scanner.
The functor Context holds the current context of the scanner. It must be instantiated

with a module that defines a type t and a value string_of_state that converts
values of type t to strings. The type t is used to represent the current state of the
scanner. The module provides a type context that holds:

• state_stack: the name says it all.

• layout: a string that holds the layout seen since the latest token.

• last_token_is_eol: a Boolean (here again the name says it all). This value
is used only in the scanner of revCPP in order to detect preprocessing directives
(that is, when a “#” is the first token on a line).

The implementations of scanners should not rely on the internal representation of the
context type.

The module returned by the Context functor contains the following functions:

• init_context: instantiate an empty context with a first state given in argument.

• push: push a state on the state stack.
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• peek: return the current state.

• pop: pop a state off the state stack.

• nol: specify that a token has been seen and that we are thus not right after an
end of line (mnemonic: “Not end-Of-Line”). This function is useless out of the
preprocessor scanner.

• eol: specify that the token about to be returned to the parser is an end of line.
This function is useless out of the preprocessor scanner.

• append_layout: store some layout in the context. This way the layout is saved
between the calls of the scanner.

• layout: return the layout stored so far and sets the current layout to the empty
string.

5.1.3.2 Associating a context with an ocamllex scanner

As usual, the parser calls the scanner. The rules labelled %start are OCaml functions
that must be invoked with two arguments: the scanning function and the input stream
of the scanner. In order to be re-entrant, our scanner needs to be invoked with the
context argument by the parser. This is straightforward in OCaml thanks to partial
applications:

MyParser . entryPoint ( MyScanner . l e x contex t ) lexbuf

5.1.3.3 Sharing rules between sub-scanners

Although ocamllex supports sub-scanners (they are called “entry points”) it provides
no way to share rules between them. This is very unfortunate because the scanner
of the preprocessor has numerous sub-scanners that must handle the layout almost
identically in each sub-scanner. Even worse, a couple of sub-scanners are identical to
the main one excepted for a couple of rules.

The idea to share rules between the sub-scanners is to use a wildcard to match a single
character and to push this character back in the scanner’s internal buffer (hereafter
named the lexbuf) and to invoke another sub-scanner. This way, a sub-scanner can
first override or extend a set of rules and then, if nothing matches, it can “delegate” the
scanning to another sub-scanner.

rule l e x _ i n i t i a l contex t = parse
| (∗ r u l e s ∗ )

and l ex_ foo contex t = parse
| (∗ o t h e r r u l e s ∗ )
| _ as c { push_back lexbuf c ; l e x _ i n i t i a l contex t lexbuf ; }
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After a quick analysis of the interface exposed by the Lexing library (the official
interface of ocamllex) we found that we could access the scanner’s internal data struc-
ture. The module ScanUtils thus provides a function push_back that accesses the
internal structure of ocamllex to push a character back in the lexbuf.

This function was implemented by observing the way ocamllex used its internal data
structure and by quickly going through the code of ocamllex and the Lexing library.
It is by no means bullet-proof and must be used with great care. As explained in the
comment above the definition of this function, only characters matched by the current
semantic action must be pushed back in the lexbuf, no more.

An additional function push_back_string is provided for convenience in order to
push back all the characters of a string in the lexbuf.

There is a pitfall due to the way the layout is handled. Most of the time, it is dis-
carded (but saved) and the current sub-scanner invokes itself recursively. Consider the
following example:

rule l e x _ i n i t i a l contex t = parse
| layout { append_layout contex t lexbuf ;

l e x _ i n i t i a l contex t lexbuf ; }
| ’ # ’ { do_something ; }
| (∗ Other r u l e s ∗ )

and l ex_ foo contex t = parse
| ’ # ’ { do_something_else ; }
| _ as c { push_back lexbuf c ;

l e x _ i n i t i a l contex t lexbuf ; }

Here lex_foo is basically trying to override the action taken for “#” but this is flawed.
If the input starts with layout, the wildcard will match and lex_initial will be in-
voked. It will do something with this layout and invoke itself recursively. If the next
token is a “#”, then do_something will be executed instead of do_something_else.
In order to avoid this problem, we had no other choice than to duplicate all the rules
that call themselves recursively (basically the rules that handle the layout).

5.1.4 Env

This module maintains an environment during the preprocessing. It mainly defines a
parameterized type env and some functions to manipulate it.

The type env holds a list of macros and (macro-)functions as well as an “ID” counter.
This ID is needed because is expansion is tagged with a unique ID. Reading the inter-
face of this module will suffice for the reader to understand it.

5.1.5 MetaStd

The Caml List library provides extremely useful generic functions on list, such as map,
fold_left, filter. . . During the project, we felt the need to use these algorithms on
other structures than lists. For example, to collect #if nodes from the AST, we’d like to
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be able to write: “filter (function If _ -> true | _ -> false) my_ast”.
The MetaStd module describes the ITERATOR signature and the Meta functor . By im-
plementing an Iterator on their own data structure, and applying the Meta functor
to it, a user can use standard list algorithms on their data types.

MetaStd is used to manipulate the AST of CPP, C++ and logic expressions elegantly.

5.1.5.1 The ITERATOR interface

module type ITERATOR = s ig
type input
type i n t e r n a l
type output
val i n i t : input −> i n t e r n a l
val next : i n t e r n a l −> ( output ∗ i n t e r n a l ) option

end

• input is the iterated type (e.g. an AST).

• output is the type pointed to by an iterator (e.g. an AST node).

• internal is an internal type the ITERATOR can use to carry information from
an iteration to the next.

• init transforms the input data into an iterable data.

• next takes an iterable data, and returns either the next element and the remaining
elements or None if there is no more elements.

5.1.5.2 Example

This example redefines the standard List module’s algorithms over int lists using
MetaStd:

module L i s t I t e r a t o r = s t r u c t
type i = i n t l i s t
(∗ Our i n t e r n a l s t o r i n g t y p e i s s t i l l an i n t l i s t ∗ )
type i n t e r n a l = i n t l i s t
type o = i n t

l e t i n i t l = l
l e t next = function

| h : : t −> Some ( h , t )
| [ ] −> None

end

module L i s t = MetaStd . Meta ( L i s t I t e r a t o r )
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l e t _ =
L i s t . map ( fun x −> x + 1) [ 4 1 ; 5 0 ; 68]

Et voilà. It would be possible to define a generic List module by making ListIterator
a functor instead of hard-coding int.

5.1.6 The syntax extension

We use a syntax extension for the OCaml language. Originally written with CamlP4,
we had to drop it because we wanted to be compatible with both OCaml 3.09 and
OCaml 3.10. It is a good thing that CamlP4 was completely redesigned and improved,
but the fact that the OCaml team made no effort providing a backward compatible
interface is very disappointing. Since the new interface of CamlP4 is still unstable and
undocumented, we had to drop the CamlP4 extension completely. We needed to port
the code to 3.10 because 3.09 does not work properly on new Intel-based MacBooks.

The -pp parameter of ocamlc makes it possible to preprocess OCaml sources with
any external preprocessor. We designed a small Ruby script that does the same thing
as the extension we originally wrote in CamlP4.

The following syntax extensions are thus used throughout the project:

• "$s" where s is a string.

• "$#i" where i is a int.

• "${e}" where e is a string expression.

• $__LINE__ expands to the current line number.

• $__FILE__ expands to the current filename.

• $__LOC__ is equivalent to $__FILE__: $__LINE__.

As a side effect, when the compilation fails, temporary files are left in $TMPDIR (usu-
ally /tmp) by ocamlc.

5.1.7 The logic module

The logic modules defines a ternary logic library. Indeed, any macro in CPP can be
either true, false, or undefined. The logic library includes:

• A logic expressions type.

• A logic scanner/parser, to handle constraints passed on the command line.

• Desugaring system, that converts any logic expression in an expression composed
exclusively of And, Not, True, False and Undefined.
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• An evaluator.

• A canonizer, that transforms an expression in a normal form.

• A constraint propagator, that simplifies an expression knowing that another ex-
pression is true.

5.2 General method

One of the main challenges of revCPP is to be able to preserve the layout at all stages
of the transformation. The only difficulty is that we must be very careful in our code to
avoid losing it when transforming our internal AST.

The project is organized this way:

• src/utils holds the various modules that are re-used throughout the project
and that were described in Section 5.1.

• src/extension contains the syntax extension described in Section 5.1.6.

• src/cpp-parser contains the main scanner and parser of the preprocessor (revCPP).
This is where the AST is defined, in cppAst.ml.

• src/cpp-pp contains a pretty printer for the CppAst.

• src/cxx-parser contains the scanner and parser of the postprocessor (unCPP).
Here also, a small AST is defined, in cxxAst.ml.

• src/cxx-pp contains a pretty printer for the CxxAst.

• src/logic contains a logic evaluator and constraint propagator.

• src/revcpp is where the main code of the preprocessor lays.

• src/uncpp same thing but for the postprocessor.

The file is processed almost normally, as specified in the Chapter 16 of the ISO/IEC
14882 standard. All preprocessor directives are replaced with metatags, special com-
ments of the form /∗# TagName <tag data> #∗/. All forms of expansions are also tagged
with metatags. The postprocessor uses only these metatags to recover the original files.

If the input file of revCPP already contains comments that would inadvertently look
like a metatag, they are escaped. Also since <tag data> can be anything, comments
are also escaped (because we often store C++ code in this data) because C++ comments
do not nest.

5.3 RevCPP

The overall goal of revCPP is to transform a CppAst into a CxxAst. In this section we
will go through the whole pipeline and explain each part.
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5.3.1 The CppAst

The module CppAst defines two major enumerated types: entity and code. Entities
are preprocessing directives and lines of code. An entity can also be a Meta entity,
which is a convenient way to nest entities into each other.

The preprocessing does not accept any kind of CppAst as input, it must first be sim-
plified with CppAst.simplify.

The second major type, code, holds all the constructs we are dealing with, that is,
the preprocessing tokens, an AST for constant expressions, and result of the various
expansions.

These two major types are wrapped in a record type prefixed with a l (that is: lentity
and lcode) that holds additional layout associated with the node.

The module CppAst provides some functions to easily create nodes (namely, mkent
and mkcode), dump AST nodes in a simple format and iterate over the AST.

5.3.2 The scanner

The scanner uses many regular expressions to implement the various lexical rules given
in the form of grammar rules in the standard. These regular expressions comply with
the strict minimum required by the standard, however they probably do not handle
universal character sets. Since they are implementation defined, this is not of an issue.

The scanner uses 6 sub-scanners and has 7 possible states. We will now describe each
of them, when and why they are used.

One of the limitations of the scanner that makes it non standard compliant is that it
does not handle backslashed end of lines. Normally they can appear really anywhere
but we only handle them when they don’t split a token in two.

5.3.2.1 Initial

As its name implies, it is the initial state. It scans everything at the top-level of the input
file and enters the sub-scanners. It returns preprocessing tokens to the parser.

There is nothing special to report here, besides that when a sharp token (“#”) is seen,
if it is the first token of the line, it is not returned but instead added in the current layout
and the scanner enters the state CPPDirective.

5.3.2.2 CPPDirective

This state is used whenever we just encountered a sharp at the beginning of the line.
Its role is to handle the different preprocessing directives (“if”, “ifdef”, “include”, “de-
fine”, etc).

For most of the directives, the scanner will simply return the corresponding token
the parser and go back in the state Initial. There are several exceptions:
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• if and elif are followed by a constant expression. Several tokens need to be
handled specially in this context so the scanner will enter the state Constant-
Expression.

• include is followed by a sort of double-quoted string or a string delimited by
curly brackets (“<” and “>”) but they have to be scanned with different rules then
standard strings. That is why in this case the scanner will enter the state Include.

• define is followed by something very similar to what we can find in the state
Initial besides that the token “#” is always a Sharp token (the stringification
operator) and “##” is always a SharpSharp token (the concatenation operator).
So in this case, the scanner will enter the state DefineBegin.

If nothing matches, the scanner will assume that this line is called what is called a “#-
line” and enter the Line state.

5.3.2.3 DefineBegin

This sub-scanner is used to handle a unique special case in the world of the preproces-
sor. After a “#define” there should be either an identifier or an identifier followed
by “the left-parenthesis character without preceding white-space”. This sub-scanner is
also used to check that the user is not trying to define a macro named with the name
of an “alternative token” (such as “and”, “or”, “not”, “defined”, etc. . . ). Once the scan-
ner knows whether a macro or a macro-function is being defined, it will enter the state
Define.

5.3.2.4 Define

This sub-scanner is identical to that of the Initial state excepted that it always returns
“#” as a Sharp token and “##” as a SharpSharp token. This sub-scanner will go back
in the state Initial after an end of line.

5.3.2.5 Include

This sub-scanner handles the header names (delimited by double quotes or curly brack-
ets “<” and “>”) and then goes back in state the Initial.

5.3.2.6 ConstantExpression

This sub-scanner handles specially all the tokens that can be possibly found in a C++
constant-expression, in the context of the preprocessor. This includes tokens such as
true, false and defined but also operators (which are normally all returned with
the same constructor because they are all seen as preprocessing operators in the Initial
state).
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Some operators and tokens are also disabled here (such as the various assignment
operators, braces and brackets) because they just do not make sense in this context.
Floating point literals are also matched and refused.

The scanner will go back in state Initial after an end of line.

5.3.2.7 Line

This sub-scanner is exactly like the Initial scanner excepted that it will pop the cur-
rent state after an end of line.

5.3.2.8 Other constructs

The CppLexer provides two functions that are placed here solely because it was the
only place where the dependency system of OCaml would allow it.

The function code_of_string is used to transform a string in a list of code. The
function code_of_macro_def is used to transform the string that holds the definition
of a macro (or macro function) in a list of code.

5.3.3 The parser

Unlike Transformers, we did not try to strictly abide by the grammar rules of the stan-
dard. Instead we started off with the standard grammar and then we simplified and
cleaned it up.

Most tokens hold at least one string, the layout preceding them.

5.3.3.1 Entry points

The parser has 4 entry points:

• preProcessingFile: the main entry point.

• code: used by code_of_string and code_of_macro_def in CppLexer.

• constantExpression_of_string: used to transform a string in a constant-
expression.

• parseDefine: used to parse the “-D” arguments.

5.3.3.2 AST simplifications

Most entry points will return a simplified AST in which Meta notes were removed
(flattened in the top-level AST) and consecutive Code nodes merged in a single Code
node (the same thing is done for Eol nodes).

The Meta nodes are removed because they would make it rather inconvenient to
work on the AST during the preprocessing.
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The sequences of Code are merged in order to reduce the size of the AST. During this
merge, Eol nodes are merged together. This makes it possible to have some optimiza-
tions such as the detection of traditional CPP guards (although this optimization is not
implemented at the time of writing this report).

5.3.3.3 Constant expressions

When the code is first parsed, constant-expressions are parsed with a simplified parser
which simply returns a list of tokens. Then in a later step, the preprocessing will try to
macro-expand the constant-expression which will then be re-parsed in order to eventu-
ally return the final AST of the constant-expression.

This mechanism is necessary in order to be able to handle this kind of construct:

# define FOO 3∗
# i f FOO 1+2

5.3.3.4 Layout in constant expression operators

Most operators have a unique representation (e.g., “+” or “*”) but some have more.
They may be written with an alternative token (e.g., “and”, “not”) or with digraphs
or trigraphs. For these operators, in order to preserve the original syntax, the entire
operator is saved in the layout. That is, instead of having something like:

CppAst . OpOrPunc("+") < < >>

which represents a plus operator preceded by a single space, we will have something
like:

CppAst . OpOrPunc("" ) < < and>>

for the logical binary “and” operator preceded by a single space of layout.

5.3.3.5 if-sections

The CppAst has only one node (“If”) to hold if sections. At parse time, the parser
will desugar the various possibilities (“ifdef”, “ifndef” and “elif”) so that they are all
represented with a single If node.

The pretty-printer can always match these patterns to re-create these nodes. This is
the only place where the front-end of revCPP does not exactly preserve the original
input. This is not a problem since the whole process cannot always preserve the if-
sections anyway.

5.3.4 File inclusion

At parse time, “#include” directives are stored in the AST. The actual file inclusion
will occur later, during the preprocessing.
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Like standard preprocessors, revCPP needs to know where to look for standard head-
ers. The user could be asked to invoke revCPP with “-I” arguments pointing to the
standard include directories but this would be tedious and inconvenient for users.

RevCPP uses g++ at configure time to guess these standard include directories. The
problem is that g++ never prints C++ standard include directories, only C standard di-
rectories are printed. It turns out that all installs we used so far have their C++ headers
under the C standard directories. So configure uses these directories as a search list for
C++ headers.

If the user does not use g++ or if configure cannot find all standard include directo-
ries, the user can use --with-std-include.

These directories are then transformed in a Caml list of strings and used to generate
the file sysInclude.ml.

5.3.5 Macro expansions

One of the main role of the preprocessor is to macro-expand the code. The function
Preprocess.expand_macros performs this task by traversing the AST (which is
represented as a list of lentity).

Unless otherwise specified, all the functions described in the section belong to the
Preprocess module.

5.3.5.1 Macro definitions

#defines are simply recorded in the environment and transformed in metatags.
The #undef directive is also simply transformed in a metatag and the corresponding

macro is removed from the environment if it existed.

5.3.5.2 Macro expansion algorithm

The algorithm behind expand_macros is rather simple. First off, if the unary operator
defined is used (and is thus followed by either an identifier or a left parenthesis, then
an identifier, then a right parenthesis) the identifier is obviously not macro expanded.

If an identifier is followed by a left parenthesis and is known to be the name of
a macro function defined earlier, expand_macro_function is used to expand this
macro-function invocation (see next section).

Finally, if an identifier (not followed by a left parenthesis) is known to be a macro de-
fined earlier, its definition is looked up in the environment, then macro expanded, then
finally replaced in the AST (with metatags added just before and after the expansion).

5.3.5.3 Macro-function expansions

The first thing to do when expanding a macro-function is to collect its arguments.
This task is carried out by the function find_args which basically looks for the right
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parenthesis that matches the left parenthesis located right after the name of the macro-
function in the invocation. Arguments are delimited with commas but there is a small
pitfall: the intervening matched pairs of parenthesis must be skipped while gathering
the arguments.

# define FOO(X) <X>
FOO( ( , ) )

In this example, the macro FOO is passed only one argument: (,).
Once the arguments are collected, the function expand_macro_function first checks

whether there is the right number of them. Then the arguments are expanded in the
definition of the macro function. When an argument is expanded, it is tagged and the
result of the expansion is macro-expanded again, as required by the standard (16.3.1).
In order to avoid messing up the locations of the compiler error messages, we transform
all end of lines that could appear in the macro argument in a single space.

Now that the arguments have been expanded, the final result is macro expanded
again and the final result is tagged in the AST.

5.3.5.4 Macro expansions in constant-expressions

They are not allowed. At this stage of the preprocessing, constant-expressions are not
yet fully parsed (see Section 5.3.3.3) so this should never happen.

5.3.6 Conditional inclusions handling

All forms of if-sections are desugared by the parser in a single form of if statement
(see Section 5.3.3.5). The function eval_if is responsible of the macro-expansion in
constant-expressions and will use the module ConstantExp to evaluate the resulting
expression.

To be able to postprocess the code, we can’t simply evaluate conditional inclusions
and remove parts of the code: we have to generate the multiple possible files, let the
user apply his transformation over every file and merge them all back. This is done by
collecting all macros implied in conditional inclusions, compute all possible affectations
sets, and generate a preprocessed file for each of these sets.

Some sets are inconsistent, for instance consider a set where LINUX and WIN32 are
true. The resulting file wouldn’t make sense, and would even probably not compile. To
avoid generating it, the user can define constraints, as explained in Section 3.3.

5.3.7 Other CPP directives

5.3.7.1 #-line and no-op

These two directives are simply transformed in the metatags. Note that this implies that
the locations reported by the compiler will be wrong because revCPP does not produce
nor preserves the #-lines in the code.
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5.3.7.2 #error and #warning

Although #warning is a GCC extension, it is supported by revCPP. Both #error and
#warning will emit a non-fatal warning on stderr and will then be transformed in
metatags.

This behavior does not exactly comply with the C++ standard because 16.5 requires
that #errormakes the program ill-formed. Since the standard does not seem to require
that no output file be produced for ill-programs, this is not a big infringement. This,
however, requires that the transformation toolchain ignores the file produced (which is
most likely to be invalid) while still postprocessing it like other transformed files.

5.3.8 Reducing the number of output files

The first naive implementation of the conditional inclusions collected all conditional
macros, computed all the combinations, and discarded those that did not verify the
constraints. It worked for testing purpose, but the algorithm was exponential in the
number of conditional variables in the file. Since some standard include files (like
stdio.h) contain more than 30 variables, this system would not scale.

The actual system only computes sets that verify all constraints. Moreover, it merges
equivalent sets. Actually, it does not compute sets of assignments for each variable, but
sets of constraints to verify.

5.3.8.1 Example

For example, consider this file:

# ifndef FILE_HH
# i f FOO
# else
# i f BAR || BAZ
# endif
# endif
# endif

The resulting sets would be:

• !FILE_HH

• FILE_HH && FOO

• FILE_HH && !FOO && (BAR || BAZ)

• FILE_HH && !FOO && !(BAR || BAZ)

Note that only the strictly necessary sets were generated, and that every set is suf-
ficient to evaluate every condition. This set computation also takes constraints in ac-
count. If we add the !FOO => BAR constraint, the resulting sets are:
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• !FILE_HH

• FILE_HH && FOO

• FILE_HH && !FOO

These sets are not obtained by computing the previous sets and then discarding those
not verifying the constraints, but by not exploring some branches.

5.3.8.2 Algorithm

The set computation system works as follow:

• A condition tree is built. A tree is a list of nodes. Each node contains a condition,
and the “then” and “else” branches, which are trees.

• The tree is traversed: constraints are applied to the condition.

– If the condition evaluates to true or false, the corresponding branch is visited.

– Either, the “then” branch is evaluated with the condition added to the con-
straints, the “else” branch is evaluated with the negation of the condition
added to the constraint, and the two results are concatenated.

• The algorithm is repeated with the new constraints set on the next node.

5.3.8.3 Results

This system computes the minimum number of files. However, the constraint propaga-
tion algorithm is in “exponential of the number of and in the expression” complexity.
This might be of a problem with very complex conditions, and work is currently being
carried out on possible optimizations. Unfortunately, after asking persons skilled on
this topic, exponential may be the least complexity to solve this problem. More work
on this part of the project is needed anyway.

5.4 UnCPP

The overall goal of UnCPP is to transform a CxxAst in a gross CppAst and pretty print
this AST. In this part (called the “postprocessing”) we only look at the metatags of the
input file in order to reverse the preprocessing. The scanner and parser are thus quite
simple.
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5.4.1 Inclusions handling

Reverting inclusions (#include) is straightforward: Inclusion start and end metatags
are detected, and files body are extracted. By default, all the files are postprocessed and
printed on the standard output.

If --in-place is present, the original files are overwritten (their absolute paths are
contained in the inclusion start metatag).

If --preserve-include is present, the postprocessed files are compared with the
files on disk, and an error is raised if differences are found.

5.4.2 Conditional inclusions handling

The first step of the postprocessing pipeline is to collect each file present in the prepro-
cessed (with collect_includes) source and postprocess them separately. This work
is carried out by allcpp_of_cxx.

5.4.3 Macro handling

To revert macros and macro function definitions, the corresponding metatags are sim-
ply inlined. For instance, /* MacroDef FOO BAR */ is postprocessed in #define
FOO BAR.

Reverting macro expansion is quite simple:

• Expansion site is detected thanks to the metatags.

• The expanded body is compared with the macro definition (modulo the expan-
sion of the arguments).

– If they match, the expansion is replaced with the macro call.
– If they differ, the expanded body is left (and metatags are, of course, re-

moved).

• If none of the expanded body matched the definition, but they are all identical,
the macro definition is altered.

Reverting macro-function expansions is more challenging. Consider the following
example:

# define C ,
# define FOO(X) BAR(X)
# define BAR(A, B ) <B − A>
FOO( a C b )

The (simplified) preprocessed result is:

# define C ,
# define FOO(X) BAR(X)
# define BAR(A, B ) <B − A>
< /∗ MacroEnd C ∗ / b − a /∗ MacroStar t C ∗ / >
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Note that the comma resulting from the expansion of C disappeared, because it be-
came an argument separator for the macro-function BAR, and that its enclosing tags are
inverted.

To handle such a case, postprocessing operations must be performed in this order:

• Postprocess the expanded body without touching the arguments.

• Revert the macro function itself.

• Postprocess the arguments list.

To be able to do this, inlined arguments are also surrounded by metatags. A closer
version (yet quite unreadable) of the preprocessed result would be:

/∗FunStart FOO∗//∗FunStart BAR∗/</∗ArgStart BAR B∗//∗MacroEnd C∗/b)/∗ArgEnd FOO
X∗//∗ArgEnd BAR B∗/− /∗ArgStart BAR A∗//∗ArgStart FOO X∗/(a /∗MacroStart C∗//∗ArgEnd
BAR A∗/>/∗FunEnd BAR∗//∗FunEnd FOO∗/

5.4.4 Conditional inclusions handling

The merge step consists in merging all the files generated by the different constraint
sets in one single file, sliced according to #if directives. Two files are merged using
a diff-like algorithm. Any line present in one file but not the other is included in the
resulting file, guarded by a #if on the constraint for the file. The result is then merged
with the next file, and so on.

A simplification step then occurs:

• Condition of #if is propagated in the “then” branch, and its negation is propa-
gated in the “else” branch.

• Logical expressions are canonized, to simplify expressions such as A && A or
!!A.

• Compatible contiguous blocks are merged:

– Two contiguous #if blocks with the same condition are merged.

– Two contiguous #if blocks with opposite condition are merged with #else;

The first implementation was a naive, four-line exponential algorithm, well suited for
simple tests. This algorithm not being able to handle 15 line long files, it was quickly
replaced with a dynamic algorithm, linear in time but quadratic in space. To handle
very large files such as standard includes, it was finally replaced by an algorithm linear
in space and time, based on D. Hirschberg’s work on the longest common subsequence
problem Hirschberg (1975).
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Conclusion

In this paper we explained how to use revCPP and how we successfully implemented a
reasonably complete C++ preprocessor and its postprocessor. We achieved high fidelity
postprocessing by preserving the layout at all stages of the preprocessing system. This
is of utmost importance for anyone willing to work on the transformed source code.

This implementation of a reversible preprocessing is close to that used by Proteus
(Waddington and Yao (2005)) but is the first to be free1. Now that we have a free re-
versible preprocessor, we will be able to integrate it as the first and last components of
the transformation pipeline of Transformers.

RevCPP does not yet support C because it was only written for C++ but the im-
plementation is not bound to C++ and can easily be ported to have a C89 and C99-
compatible mode

By exhibiting an interface compatible with that of GCC, we hope to make of revCPP
a practical tool that is easy to use with existing build systems.

1free as in the GNU Public License
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