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1 Overview

The Eclipse Modeling Framework (EMF) provides a modeling and code generation framework for
Eclipse applications based on structured data models. Although EMF provides basic operations for
modifying EMF based models, it is still very difficult to define more complex operations on these
models in a convenient way. The goal of the EMF Model Transformation framework (EMT) is to
solve this issue by providing the means to graphically define rule-based transformations on EMF
models. Our framework currently consists of three components:

e A graphical editor for visually defining EMF model transformation rules.
e A compiler, generating Java code from these rules that can be included into existing projects.

e An interpreter, allowing formal analysis of the rules using AGG, a graph transformation engine
allowing formal analysis like termination and confluence of a graph transformation system.

All these components use a common model to describe transformation rules which are typed over
EMF models.

1.1 Requirements

Before you can use these components you first have to fulfill the following software requirements:

e Java 5.0 Runtime Environment
e Eclipse 3.2

e EMF 2.2

e GEF 3.2

1.2 Installation

You can download and install EMT from the EMT project homepage http://tfs.cs.tu-berlin.de/emt
or by using the update site tfs.cs.tu-berlin.de/emt/update. To include this update site in your
Eclipse workspace follow these steps:

e Select Help—Software Updates—Find and Install

e Select Search for new features to install

e Choose New remote site

e Enter a name and as the URL enter tfs.cs.tu-berlin.de/emt/update

Now make sure your new entry is selected in the list of update sites and press Finish.



2 Editor

2.1 Definition of EMF Model Transformations

Transformations for EMF models are defined using transformation rules. These rules consist of a
left-hand side (LHS), a right-hand side (RHS), possible negative application conditions (NACs) and
mappings between these so-called object structures. An object structure consists of a number of
possibly linked objects typed over the EMF models for which the transformation is defined. Each of
these structures is visualized in the graphical editor by a diagram that contains a number of object
nodes, that can be connected and/or attributed.

The left-hand side of a rule stands for the structural preconditions that must be fulfilled to apply
the rule. Accordingly a right-hand side describes the result (or postconditions) of a rule. Negative
application conditions are defined in the same way and describe structural conditions that must
not be fulfilled to apply the rule. Furthermore it is possible to define a layer for each rule. Rules
on lower layers are applied prior to those on a higher layer.

Objects in the LHS of a rule can be mapped to objects in the RHS and also to objects in the
NACs. The editor visualizes mappings by coloring the mapped objects in the same way or optionally
displays corresponding numbers next to those objects. Those objects in the LHS, which are mapped
to the RHS, will be preserved during rule application. Objects in the LHS, which have no mapping
to the RHS are being removed. Accordingly, objects in the RHS without a mapping will be created
during rule application.

An important property of EMF classes is the possibility of defining primitive-valued attributes.
EMF Model Transformations usually involve calculations on these attributes, which can be defined
directly in the graphical editor. Attributes of an object can be calculated using Java expressions,
that must have the same type as the attribute defined in the EMF model. For these calculations,
the expressions can contain variables which must be defined before they can be used.

2.2 Editor perspective

For the definition of EMF model transformations you can use the EMF Model Transformation
perspective that is accessible once you install the EMT framework. You can change the current
perspective via Window—Open perspective—Other. In Figure [I] you can see a small screenshot of
this perspective showing a model transformation from activity diagrams to petrinets.

The perspective consists of five parts:

1. A tree-based view on the transformation in the upper left part
2. An editor to define properties of rules in the lower left part

3. A read-only view on the loaded ecore models (lower center)

4. A three-pane editor for defining rules (upper center)

5. A palette for selecting model objects and placing them in the rule (right part)

2.3 Working with the editor

Defining a new model transformation for EMF usually starts with the creation of an *.emt file.
Creating a new *.emt file can be done via selecting EMF model transformation—EMF model
transformation in the New wizard of Eclipse. In the upcoming wizard you must enter the project
which should contain the *.emt file and its name. Now you can import a number of EMF models
(*.ecore, *.xsd) using the "Import Packages”-Button in the Toolbar of Eclipse, see figure You
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Figure 1: EMF model transformation perspective
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Figure 2: Eclipse integration

will see a wizard similar to Figure[3] You must provide either the path to the ecore file you want to
use as a model or specify the model URI, for example http://www.eclipse.org/emf/2002/Ecore.

For each package, a diagram in the lower part of the editor is opened and entries in the palette are
added on the right side and in the bottom part. In Figure[[]we have imported three models: activity,
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Figure 3: Import package wizard

petrinet and activityToPetri all from their corresponding ecore file. After you have imported at
least one EMF model, you can start to define rules conforming to these models. To create a rule,
click on the Add Rule button also shown in Figure 2] Now you can add objects to the diagrams
using the palette entries. The objects can be connected or mapped to other diagrams using the
”Link”-Tool or the "Map”-Tool in the palette, respectivly. Mappings are visualized through an
equal coloring of the objects or by a preceding number which can be enabled from the context
menu via View—Show mapping index. Attributes can be defined via the context menu of an
object. Assigning Java expressions to the attributes can be either done in the properties view, or
directly in the diagram by clicking on an already selected attribute. Variables used in expressions
must be first declared using the ”Edit variables” entry in the context menu of a diagram. When
defining variables like seen in Figure [4 you can also choose whether the variable should be an input
parameter or not. When you choose that a variable is an input parameter, you must explicitly

Edit Variables

Here you can define variables for the rule "AddPlace".
Variables should usually start with a small letter.
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o [E=ing ._-.1-r"i =
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Figure 4: Variables dialog

pass a value for that parameter when applying a rule. Input parameter can be used for example to
initialize attributes of a new class.



Advanced features, like consistency checks and customized views can all be configured using con-
text menu entries. Testing the defined transformation rules is currently only possible by generating
Java code or using the AGG based interpreter. A visual debugger is planned for the future.



3 Interpreter

The EMT interpreter performs EMF model transformations using the AGG engine. AGG provides
an environment for creating and executing attributed graph transformations.

The interpreter converts an EMT grammar and an EMF model instance to AGG, executes the
requested transformation steps using the AGG transformation engine and translates the result
back to EMF.

3.1 Initialization

At first, the interpreter needs to be initialized with an EMT grammar which we defined by using
the visual editor. To initialize it, we call the constructor of the interpreter:

Interpreter interpreter = new Interpreter (URI.createFileURI(file));

file is an absolute or relative path to the EMT grammar file where the transformation rules are
stored. If, at some later point, you want to switch to an alternative EMT grammar, you can use
the load Transformation(URI) method:

interpreter.loadTransformation(URI.createFileURI(file));

After any of these steps, the interpreter is ready to be used.

3.2 Usage

For the actual transformation of a given EMF model instance, you can use one of the following two
methods:

interpreter.transform(EObject root);
and
interpreter.applyRule(EObject root, String rulename, Vector mappings, Parameter parameter);

The parameter, EObject root, both methods have in common, is the topmost EObject in the
containment hierarchy of the model instance that should be considered for matching purposes.

The method transform will apply all rules specified in the EMT file in a random order and as
long as possible, starting with the EMF model instance specified by the root object. If you specified
a layered grammar, it will honor the layer structure by not applying rules of a layer as long as a
rule from the previous layer is applicable.

It is possible that the transform method may not terminate if certain rules are always applicable.

The applyRule method can be used to apply a certain rule with a specific match to a model.
The parameter rulename specifies the name of the rule. Make sure you match the name used in the
EMT file exactly or the rule won’t be applied. The third parameter mappings contains EObjects
from the model. While creating a rule using the EMT Editor, you choose a specific order for all
EObjects in the LHS. The same order is used by the mappings vector. You can choose to pass null
for certain EObjects to force AGG to complete the match on its own. Consider for example the
rule AddTransition in Figure | which converts a Next relation from an activity diagram into a
transition of the corresponding petrinet. The NAC ensures that this rule is only applied in the case
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Figure 5: The rule AddTransition

that the Next relation has not yet been converted. The LHS of this rule consists of four different
objects. If you want to match the diagram and let the rest of the match be completed automatically
you would enter the following code:

Vector mappings = new Vector();
mappings.add(null) ;
mappings.add(null);
mappings.add(fixedDiagramEObject) ;
mappings.add(null);

In this case AGG will try to find a match for the Next, ActivityDiagram and PetriNet objects
while keeping the Diagram fixed. You can also pass null for the whole vector so a random match
will be chosen. The last applyRule parameter Parameter is used to set the input parameters for
the rule as defined in the EMT file. Input parameter can be defined in the following way:

Parameter parameter = new Parameter();
parameter.addParameter (String name, EObject value, String type);

In case of primitive types, for example:
parameter.addIntParameter(String name, int value);

A valid code block for defining the input parameter for the rule AddTransition would look like
this:

Parameter parameter = new Parameter();
parameter.add("newName", "transitionl", "String");

After defining the match and the input parameters, the rule can be applied by:

interpreter.applyRule(root, "AddTransition", mapping, parameter);



4 Compiler

The Compiler uses the EMT grammar file to create java classes for all rules defined within the file.
So using the compiler usually consists of two parts:

1. Compiling the EMT grammar file to Java code

2. Using the Java classes to perform model transformations.

4.1 Compiling

To start the compiler you can use the context menu in Eclipse of either an EMT grammar file or
anywhere in the graphical editor. Choose the entry Generate rule classes. You will see a dialog
similar to Fig. [f] where you can choose the name of the rule project. After clicking on finish, the

EMF Transformation Project

This wizard creates a new rule project from the selected * . emt file,

Project name: | PetriRules

Use default location

@ [ Finish H Cancel ]

Figure 6: dialog for the Compiler

code generation will start and a new project will be created which contains all classes needed to
perform model transformations as defined in the EMT grammar file.

4.2 Usage

To describe how to use the generated code consider the rule AddTransition shown in Fig. [5| we
already used with the interpreter.

In the project generated by the compiler you can find a class for this rule which starts with the
rule name and finishes with ”"Rule”, in this case the class will be called AddTransitionRule. This
class can be integrated into existing code to transform model instances in the way described by the
rule. To execute that rule an instance of this class must be created first:

AddTransitionRule atr = new AddTransitionRule(root);

The constructor requires an EObject from a model instance, which is used as a root node - the rule
is only applied to this node and all its child nodes. In this case we assume root is an arbitrary class
that contains at least ActivityDiagram, PetriNet and Diagram. Before a rule is executed input
parameters and mappings can be set:

//set parameters
cpr.setParNewName ("transitionl");



//set match for LHS

Vector match = new Vector();
match.add (null);
match.add(null);

match.add (fixedDiagram) ;
match.add(null);

cpr.setLHS (match) ;

Each rule class has a method execute () to apply the corresponding rule to a model instance. The
return value of this method indicates if an application of this rule (with the given parameters and
match) was successful or not. A successful application can be undone by undo() and after this
redone by redo(). Th rule atr for example is executed by:

atr.execute();

The class Transformation offers an interface to all rule classes. Rules can be executed similar to
the Interpreter by applyRule (name, match, parameters). This isequivalent to calling execute ()
of that rule. Additionally the method transform() allows to apply rules in an arbitrary order to
the instance, until no rule is applicable anymore. To establish some kind of control-flow on the
rules, they can be grouped into layers in the editor which are applied sequentially like separate rule
sets by this method.

Rule application changes the model instance in-place such that all references to unchanged parts
are kept, since EObjects are preserved. Deleted FObjects are saved and can be restored if a rule
application is undone. If you execute more than one rule, you can completely undo the transforma-
tion sequence by calling the undo method of all created rule instances in a reverse order. A redo
function is also avaible.
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5 Example: Refactoring the PetriNet Model

The goal of our example is to refactor the petrinet model in figure [7| such that the attribute name
of the classes Transition, Place and PetriNet is moved to a new superclass called NamedElement
as seen in figure Please note that in this case we are not transforming a simple instance of a
model but a model conforming to a metamodel. This is possible because the Ecore metamodel can
be defined in its own language, so in our example we view the Ecore metamodel as the model and
the Petrinet model as an instance of this model.
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Figure 7: Old petrinet model
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Figure 8: New petrinet model

5.1 EMT Grammar

In the de.tuberlin.emt.examples project you can find the file src/Ecore/emt/refactoring.emt. This
file contains all rules needed to perform the refactoring operations. The rules we need to perform the
necessary refactoring steps can be seen in Fig. [9]- CreateSuperclass for example creates a new
superclass with name s and abstract state a for the class with the name c. a, ¢ and s are input pa-
rameter in this rule. ConnectSuperclass can be used to set a subclass-superclass relation between
two existing classes. It doesn’t have any input parameter so you have to specify the two classes
in the mapping. Finally the four rules CheckAttribute, PullUpAttribute, DeleteAttribute and
DeleteAnnotation are used to perform the actual refactoring step:
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e CheckAttribute checks if the passed attribute exists in all subclasses, see Fig.
e PullUpAttribute adds the attribute to the superclass and deletes it from one subclass, see
Fig. [12
o DeleteAttribute deletes the attribute from all other subclasses, see Fig.
e DeleteAnnotation deletes a possible marker which would have been placed if the attribute
couldn’t be pulled up, see Fig.
LHS: RHS:
:EPackage EPackage :EClass
* [y Package——eClassifi = name = s
- erackage ePackage R eclassliers = instanceClassName = null
Classifiers linsifiary ol o instanceClass = null
‘EClass E/eSunerTypes = :gz:;t:fi‘z —anal
e :EClass A
= name = ¢ = interface = false

Figure 9: CreateSuperclassRule
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Figure 10: ConnectSuperclassRule
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Figure 11: CheckAttributeRule

5.2 Import/Export of model instances

A common way to store EMF model instances is in the form of XMI files featuring an XML style
syntax. Before you can load a model instance from such a file it might be necessary to register the
specific file extension first. In this example we want to be able to import *.ecore files since those
are the instances of the ecore model. To register the ecore extension you have to call:

12
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Resource.Factory.Registry.INSTANCE. getExtensionToFactoryMap () .put(
"ecore", new XMIResourceFactoryImpl());

Make sure the org.eclipse.emf.ecore.xmi project is in the list of required plugins.

Now that the ecore files are known to the registry we can import them by calling:

ResourceSet resourceSet = new ResourceSetImpl();

Resource resource = resourceSet.getResource(
URI.createFileURI("src/Ecore/model/petrimodel.ecore"), true);
EPackage model = (EPackage) resource.getContents().get(0);

This code block will load the petrimodel.ecore from the specific location and allow access to the
first object in this file via the variable model.

If at any point you want to store a certain model to a file, you can do this by calling:

Resource res = new XMLResourceImpl(
URI.createFileURI("src/model/petrimodel_refactored.ecore"));
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res.getContents () .add (model) ;
try {

res.save (null);

} catch (IOException e) {

}

5.3 Interpreter usage

First you have to create a new class either in an existing plugin project or a new one. Note that you
can use the class InsertSuperclassinterpreter in the de.tuberlin.emt.examples project as a reference
for using the interpreter.

Make sure that your project includes the packages:

1. de.tuberlin.emt.interpreter
2. de.tuberlin.emt.common

3. org.eclipse.emf.ecore.xmi (needed to load an EMF model from an XMI file)

in the list of required plugins.

Now that the project itself is prepared, load the petrinet model from src/Ecore/model/petrimodel.ecore
as shown in Section 5.2

Next you have to initialize an interpreter instance which you can use later to modify the model.
Interpreter interpreter = new Interpreter (URI.createFileURI("src/Ecore/emt/refactoring.emt"));

At this point you can start to apply rules to the model. For our example you might want to
create a new superclass called NamedElement:

// create the new superclass

Parameter parameter = new Parameter();
parameter.addBooleanParameter("a", true);
parameter.addParameter("c", "PetriNet", "String");
parameter.addParameter("s", "NamedElement", "String");
interpreter.applyRule(model, "CreateSuperclass", null, parameter);

The specified parameter a specifies whether the created class will be abstract, ¢ is the name of the
class which will get a new parent and s is the name of the new superclass. Now you can connect
Transition and Place to the new superclass:

// connect transition to new superclass

Vector<EObject> mapping = new Vector<EObject>();
mapping.add(null);
mapping.add((EClass)model.getEClassifier("Transition"));
interpreter.applyRule(model, "ConnectSuperclass", mapping, null);

// connect place to new superclass

mapping = new Vector<EObject>();

mapping.add(null);

mapping.add((EClass)model.getEClassifier ("Place"));
interpreter.applyRule(model, "ConnectSuperclass", mapping, null);

14



At this point Place, Transition and PetriNet have a common superclass NamedElement without
attributes. All three classes have the common attribute name we would like to move to the superclass.
For this purpose we need the four rules: CheckAttribute, PullUpAttribute, DeleteAttribute
and DeleteAnnotation seen in Fig.

Since all four rules are needed for a refactoring step, we combine them in a method called
refactoring. The input parameter a and ¢ denote the name of the attribute and the name of the
class the attribute should be pulled to.

public void refactoring(EPackage model, String attributeName, String targetClass) {
Parameter parameter = new Parameter();

parameter.addParameter("a", attributeName, "String");

parameter.addParameter("c", targetClass, "String");

interpreter.applyRule(model, "CheckAttribute", null, parameter);

do{}
while (interpreter.applyRule(model, "PullUpAttribute", null, parameter));

do{}
while (interpreter.applyRule(model, "DeleteAttribute", null, parameter));

do{}
while (interpreter.applyRule(model, "DeleteAnnotation", null, parameter));

}
Now all we have to do is call
refactoring(model, "name", "NamedElement");

and the attribute will be moved to NamedElement. Now you can store the refactored petrinet
model as shown in section [5.2

5.4 Compiler usage

Before you can use code for EMF model transformations, you must first generate the code from an
EMT grammar. You evoke the compiler by right-clicking the refactoring.emt file and choose EMF
Transformation—Generate rule classes. As the name for the new project enter RefactoringRules.

After the new project has been generated create a new plugin project. In the new project add
the following projects to the list of required plugins:

1. RefactoringRules

2. org.eclipse.emf.ecore.xmi (needed to load an EMF model from an XMI file)

Copy the petrimodel.ecore file from the example project to src/model/petrimodel.ecore in your
new project. Now create a new class with a main method. Register and import the petrimodel.ecore
file into your class. At this point you can start to apply rules to the petrinet model. In the beginning
you start by creating the new superclass NamedElement:

// create the new superclass

CreateSuperclassRule createSC = new CreateSuperclassRule(model) ;
createSC.setParA(true);

createSC.setParC("PetriNet");

createSC.setParS("NamedElement") ;

createSC.execute();

15



Parameter a means whether the new class is abstract or not, c is the name of the class which should
get a new parent and s is the name of the superclass itself.
Next we need to connect Transition and Place to the new class using the class ConnectSuperclassRule

// connect transition to new superclass

ConnectSuperclassRule connectSCl = new ConnectSuperclassRule(model);
connectSC1.setEclassO((EClass)model.getEClassifier("Transition"));
connectSC1.execute();

// connect place to new superclass

ConnectSuperclassRule connectSC2 = new ConnectSuperclassRule(model);
connectSC2.setEclassO((EClass)model.getEClassifier("Place"));
connectSC2.execute();

In this case we didn’t use a parameter to narrow down the matching process, but did specify the
object itself. Now the classes Place, Transition and PetriNet have a new common superclass. Since
all three classes have an attribute name we can move it to NamedElement. To do this we write a
refactoring method that calls different rules to refactor a specific attribute:

public static void refactoring(EPackage model, String name, String targetClass) {
CheckAttributeRule checkAttribute = new CheckAttributeRule(model);
checkAttribute.setParA(name) ;

checkAttribute.setParC(targetClass);

checkAttribute.execute();

PullUpAttributeRule pullUp = null;

do {

pullUp = new PullUpAttributeRule(model);
pullUp.setParA(name) ;
pullUp.setParC(targetClass);
pullUp.setParT(type);

}

while(pullUp.execute());

DeleteAttributeRule deleteAttribute = null;

do {

deleteAttribute = new DeleteAttributeRule(model);
deleteAttribute.setParA(name);
deleteAttribute.setParC(targetClass) ;
deleteAttribute.setParT(type);

}

while(deleteAttribute.execute());

DeleteAnnotationRule deleteAnnotation = null;

do {

deleteAnnotation = new DeleteAnnotationRule(model);
deleteAnnotation.setParC(targetClass);

}

while(deleteAnnotation.execute());

}
In the main method enter the following line:

// pulls up the attribute "name"
refactoring(model, "name", "NamedElement");
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Finally we want to save the newly refactored model to a file:

// save the new model to a file

Resource res = new XMLResourcelImpl(URI.createFileURI("src/model/petrimodel_refactored.ecore"));
res.getContents () .add(model) ;

try {

res.save(null);

} catch (IOException e) {

}

Now you have a new *.ecore file in your filesystem which contains the refactored petrinet model.
You can view this file with the tree based EMF editor, the Omondo plugin (www.omondo.com/) or
the example Ecore editor generated by GMF (http://www.eclipse.org/gmf/)
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6 Example: From Class Diagrams To Relational Data Base
Models

The example in this section is an exogenous model transformation from class models to relational
data base models (CD2RDBMS for short). This quasi-standard model transformation has been
originally defined in the specification for QVT by the Object Management
Group. Here, we present a restricted variant with attributes of primitive data types only. The
model for the source language (shown in Fig. (a)) consists of simple class diagrams. Please note
that we spell Klass with a “K” since the compiler forbids the use of Java keywords like class in
the models. The target language model (see Fig. [15| (b)) consists of schemes for database tables.
A reference structure model is needed for exogenous model transformations establishing a helper
structure for the model transformation. The model for the CD2RDBMS reference structure (Fig.
(c)) relates classes with tables and attributes with columns. Associations are related to foreign keys.
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Figure 15: Source, Target and Reference Models for the CD2RDBMS Model Transformation

In the following, we explain the CD2RDBMS transformation rules. Note that we need to include
the root container Classes2RDBMS in the LHS of a transformation rule if new objects are added
to this container in the RHS of the rule. Fig. [16] shows two rules to convert classes to tables.
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Figure 16: Rules Class2Table and SubClass2Table
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Rule Class2Table creates a Table for each class which is not a subclass of another class. Rule
SubClass2Table is applicable only to classes which have a superclass. The rule creates a relation
between the class and the already existing table corresponding to its superclass.

Fig.[17]shows two rules to convert a class attribute to a columns of the table corresponding to the
class. Rule Attribute2Column generates a column in the table of the class and sets the column name
and type to the same values as the attribute’s name and type. Rule SetKey sets a pkey relation
between the table and the column if the corresponding class attribute was a primary attribute
(primary=true).
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Figure 17: Rules Attribute2Column and SetKey

At last, associations are converted to foreign keys by rule Association2FKey shown in Fig. In
the table corresponding to the source class of the association, a foreign key is inserted which links
a newly generated column to the table corresponding to the target class of the association. The
new column gets a name composed of the association name and the name of the primary attribute
of the target class.
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Figure 18: Rule Association2FKey

For this example, the compiler and interpreter usage works as described for the Petri net refac-
toring example in Section [5} We here give the code of a sample test class (Test.java) which is uses
the compiled code to build up a model instance and calls the transform method to evoke the model
transformation.

First, three factories for the source, target and reference model are defined. Using the factories,
three models cModel, rModel and c2r are created. The three models are combined by setting the
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ClassModel of the reference model c2r to cModel, and the RdbmsModel to rModel.

// define factories

Classes2rdbmsFactory c2rFactory = new Classes2rdbmsFactoryImpl();
ClassesFactory cFactory = new ClassesFactoryImpl();

RdbmsFactory rFactory = new RdbmsFactoryImpl();

// create models

Classes2RDBMS c2r c2rFactory.createClasses2RDBMS() ;
ClassModel cModel = cFactory.createClassModel();
RDBMSModel rModel = rFactory.createRDBMSModel() ;

// combine models via reference model
c2r.setClassModel (cModel) ;
c2r.setRdbmsModel (rModel) ;

Now, the objects and links of a model instance can be defined. Fig. [I9]shows the code of a model
instance, and its graphical visualization.

Klass klass1 = cFactory.createKlass();
Klass klass2 = cFactory.createKlass();
Attribute attribute2 = cFactory.createAttribute();

PrimitiveDataType ass1: Association
dataTypelnt = cFactory.createPrimitiveDataType(); name="test"

Association ass1 = cFactory.createAssociation(); | ‘
ass1.setName("test"); S;C diSt
assl1.setSrc(klassl);
ass1.setDest(klass2); Klass 1 Klass“ KIassZ“: Klass“
klass1.setName("Klass1"); name= Kla_ss1 name= Kkissz

. persistent=true persistent=true
klass1.setPersistent(truc);
klass2.setName("Klass2"); attrib‘u tos
klass2.setPersistent(true); v
attribute2.setName("Attribute2"); attribute2: Attribute
attribute2.setPrimary(true); name="Attribute2"
attribute2.setType(dataTypelnt); primary=true
dataTypelnt.setName("int"); ‘

type

cModel.getClassifier().add(klass1); Y
cModel.getClassifier().add(klass2); dataTypelnt:PrimitiveDataType
cModel.getAssociations().add(ass1); name="int"

klass2.getAttributes().add(attribute2);
cModel.getClassifier().add(dataTypelnt);

Figure 19: A model instance of the combined CD2RDMS model

After the model has been defined, the model transformation may be tested by defining a Trans-
formation instance, and calling the transform() method on this instance.

Transformation test = new Transformation(c2r);
test.transform();

The result of the complete model transformation transforming the model instance in Fig. is
shown in Fig. Note that we did not yet define rules to delete the class diagram objects and
the reference objects, hence the result graph contains objects from all three (source, target and
reference) models.
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Figure 20: Model Transformation Result for the Class Diagram in Fig.

Single rule applications may also be tested, e.g. by the following code:

Class2TableRule c2t = new Class2TableRule(c2r);
c2t.execute();

The result of a transformation may be saved and viewed by the tree view editor which can be

generated by EMF. Alternatively, the Eclipse debugger view allows to explore the resulting bindings
for the transformed model instance.
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7 Restrictions

e Up to now, the compiler generates code in a project named by the user. If the defined project
name already exists (i.e. a project of the same name has been generated previously), the
existing code will not be overwritten, i.e. nothing will be generated, and the user is prompted
for a new project name. We envisage to implement a Merger like in Eclipse EMF, such that
parts of the generated code can be overwritten (those parts marked by a generated-tag), and
other parts (without generated-tag) remain unchanged by a new generation process. This
enables the user to change parts of the generated code by hand, such that these parts will not
be overwritten by each new generation process.

e In principle, references may be defined to objects that cannot be transitively reached from the
root object via the containment hierarchy. Such objects are not considered by the match-finder
for transformation purposes and should not be used in rules.
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