

RiState

State logic programming for the RTU3200

Release 07/02/2010 Misc corrections
Release 02/16/2010 Add reference to “task execution rate”
Release 06/11/2009 IO Attribute “StateOn” was sometimes referenced as “On”
Release 06/10/2009 Major release

Reliatronics Inc.
1858 Ranch Road 3232
Johnson City, TX 78636
(830)868-9400 / 868-9900 fax
sales@reliatronics.com
www.reliatronics.com

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

2

Table of Contents
Introduction __ 4

What are the steps to developing a program? _______________________________________ 4
What is state logic? ___ 4

Definition __ 4
Simple example of state logic __ 5
A more useful example of state logic ___ 5
Adding a little to our example __ 6

Structure of a program __ 8
Basic structure ___ 8
Task and state definitions __ 8
Task Execution Rate __ 9
If, then, else __ 10
Changing states ___ 10

Operators and expressions __ 13
The assignment operator (equal sign) ___ 13
Arithmetic operators ___ 13
Relational operators ___ 13
Bitwise operators __ 14
The () operator ___ 14
Compound assignments __ 14
Operator precedence ___ 15

Variables __ 16
Predefined local variables ___ 16
User defined local variables ___ 17

The “v_” prefix __ 18
Expanding the scope of local variables __ 18
I/O variables ___ 18

IO General Types __ 18
IO Reference __ 19
IO Attributes __ 19
Common IO variable definitions ___ 20

The pre-processor ___ 21
#option option_name __ 21
#define identifier character_sequence ___ 21

Programming Tools ___ 23

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

3

General __ 23
Editor ___ 23
Compiler __ 23

What is a program signature? __ 24
Debugger __ 25
RTU Firmware Files ___ 26

Example program ___ 28

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

4

Introduction

What are the steps to developing a program?

To develop a program, you need the “RTU3200 Configuration Program”, version 6.0 or later, an
RTU3200, a means to power the RTU3200, and a communications cable to connect your Windows
PC, to the RTU.

There are four basic steps to developing a RiState program.

1. Create and edit a source file. The source file includes all of your programming instructions, in a
plain text format. You include programming statements like “if/then/else”, operators like “+” and
“-“, general purpose variables, and variables that give access to the RTU’s real time database.

2. Build, or compile the source file, into a binary file that the RTU can execute. This is called an
output file, and contains a list of instructions for the RTU. This file is also very compact, since
text names for variables and the like are replaced with numerical pointers, and anything the
RTU doesn’t need for execution, like comments, spaces, tabs, etc. is not included.

The build process also sets up tables of task and state names, variable names, etc. in the
configuration program, to allow several debugging features (see item 4).

3. Upload the output file to a connected RTU. While developing a program, you will most likely
upload your recently compiled output file from the debugger tool. However, you can also
upload output files using the “RTU Firmware Files” menu item, on the configuration program’s
main menu.

4. Debug the program with the debugger built into the configuration program. The debugger
shows real time program information in English, using the tables and lists, built by the build
process (step 2).

See the Programming Tools section for details.

What is state logic?

State logic describes the operation of a state machine, which, in the context of a state logic program, is
a model of behavior defined by some number of states, transitions between those states, and actions
executed within those states.

Definition

A state machine is generally defined by the following set of attributes:

• States – A state machine is said to be in one, and only one state, at a given time. The current
active state of the state machine, embodies information about the current situation, of a
system.

http://www.reliatronics.com/files/rtu3200_configuration.zip�

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

5

• Events - An event is an input message to the state machine, in the form of a logical or
mathematical expression that is evaluated within the current, active state.

• Transitions - A transition is a change from one state to another, usually triggered by an event.

• Actions - An action is an activity performed by the state machine. The action can be performed
as a result of a logical or mathematical expression while in a state, or upon the transition from
one state to another.

Only one state, of a state machine, is active at a time. Input events, calculation results, timer timeouts
and other input stimuli and combinations of other stimuli, cause transitions from one state, to another.
Conditions programmed into each state, may activate outputs, trigger additional computations, and
cause other outputs conditions to become true.

State machines are easier to visualize, than describe, and the best way to visualize a state machine is
with a state diagram.

Simple example of state logic

Our first example is very simple: we illustrate the logic required to fill a glass with water.

The status of two input conditions (“GLASS EMPTY” and “GLASS FULL”) control the transition from
one state to another (“START” and “FILLING”). For now, we will ignore any complexities that involve the
input conditions (such as the human brain recognizing a visual image of an empty glass), and
concentrate on the sequence that must be executed, to accomplish our goal.

Two actions execute (“TURN ON FAUCET” and “TURN OFF FAUCET”), as the state transitions occur.

The arrow with the input condition “(START)” comes from nowhere, and goes to the state names
“START”. This indicates that the “START” state is the active state, when the program first runs. In a
RiState program, the initial active state is the first state defined in a task.

A more useful example of state logic

We can program a simple form of auto-sectionalizing, by opening a switch, when the feeder goes dead.
In our example, the state machine returns to the normal state, if the switch is closed (by some means
other than this program).

http://en.wikipedia.org/wiki/State_diagram�

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

6

If the feeder voltage goes low, we go to the “DELAY” state. If, while in the delay state, the voltage
returns to an “OK” condition, then we return to “NORMAL”, however, if “30 SECONDS” go by while in
the “DELAY” state, we “PULSE OPEN CONTROL”, and go to the “OPENING” state. Once the switch is
fully open, we go to the “OPEN” state, and remain there until the switch is closed (by some action taken
outside of this program).

Again, we concentrate on the basic logic, and ignore the complexities of the input conditions. We might
conclude that the voltage is low, by sampling a status input connected to a relay contact whose coil is
energized by the power line, or by comparing one of more of the phase voltages to a fixed threshold
voltage. We will deal with those details, as we explain statements, expressions, and operators in the
following sections.

Adding a little to our example

The example above certainly seems reasonable; however, experience tells us that the real world is
often unreasonable. What if the switch doesn’t open? The program pulses the open command once, as
it enters the “OPENING” state, but if the switch is frozen shut, or broken, or something, the state
machine will remain in the “OPENING” state forever.

We could go back to the start state, if the state machine stayed in the “OPENING” state too long.

Now, if the switch doesn’t open within 5 seconds we go back to “NORMAL”. If the voltage is still low, we
go to “DELAY”, then pulse the open control and go to “OPENING” once again, after 30 seconds. The
state machine will sequence through those three states, every 35 seconds, until either the switch opens,
or the voltage is no longer low.

We might add an additional state, to indicate a failed condition:

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

7

The fail alarm could be anything from a flashing light at the switch operator, to a status point
annunciated on a remote computer host. The “REPAIRED” input could be from a local pushbutton
switch, or even a signal sent from a remote source.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

8

Structure of a program

Basic structure

A program is set of instructions, stored in a file, created by a program editor and compiler, that can be
uploaded to an RTU3200, and executed. The program is stored in the RTU’s non-volatile memory, and
executes automatically anytime the RTU is powered up.

The program is stored as a single unit in the RTU, as well as a single file on the PC running the
Windows application that compiles the program. Programs are identified by their file name.

The RTU executes one and only one program at a given time, but that program may be composed of
numerous tasks.

A task is a collection of instructions that compose a single state machine. Multiple tasks of a program
all run concurrently, and can operate completely independently of one another. In a practical program,
one task might perform a periodic load test on a battery system, another task might operate a security
system, and a third task might perform an auto-sectionalizing algorithm similar to that described above.

Tasks may be interrelated. For example, one task might perform a test, which determines a piece of
equipment needs attention, another task might execute a special algorithm, as a result of that need.

Each task is further divided into multiple states. At any time, each task has one, and only one active
state.

Each state is composed of a series of statements, expressions, and operators that execute when, and
only when, that state is active.

Each task, runs over and over, in a continuous loop, at a rate determined by the task execution rate
argument.

Task and state definitions

You write a program, by adding text, to a simple text file. There’s a simple text editor included with the
RTU3200 Configuration Program, described in the “Programming Tools” section.

All of the tasks in a program, are given a name, by prefixing the name with “Task:”. The name must
start with a alpha character (a-z or A-Z). It is composed of alpha characters, numerals, and the
underscore character (“_”).

Note that the second line in the
example is a comment. The double
slashes (“//”) define the start of a
comment, so anything that follows (until
the end of the line) is ignored by the

compiler.

Task:MyTask_1
// Instructions for MyTask_1 task go here

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

9

Everything that follows the task definition, is part of the task. The task ends, whenever another task is
defined, or at the end of the program file.

This example shows two tasks defined.

Next, lets add some state definitions to a program.

Note the indentions we used in the example. It’s
not necessary to indent like that, but it makes
your program much easier to read. The
indentions make it obvious that that the five
defined states all belong to the AutoOpen task.

Also note that there is a state named “Start”, in
both tasks of our example. State names are local
to a task, and tasks are independent from one
another so this is allowed.

Each state name within a task must be unique,
but state names can be duplicated in different
tasks.

Task Execution Rate

By default, each task repeats execution on 100 millisecond intervals. However, intervals of 10
milliseconds, 100 milliseconds, 1 second, or 1 minute can be specified, for each individual task.

Simply add a comma, and the number 0
through 3, following the task name, to
specify a task execution rate.

Task:BatteryTest
// Instructions for BatteryTest task go here

Task:AutoOpen
// Instructions for AutoOpen task go here

Task:AutoOpen
State:Normal
 // Statements for Start state go here
State:Delay
 // Statements for Delay state go here
State:Opening

// Statements for Opening state go here
State:Open
 // Statements for Open state go here
State:Fail
 // Statements for Fail state go here

Task:SomeOtherTask
State:FirstStateOfSomeOtherTask
 // Statements for Start state go here

Task:MyTask1, 0 // run this task every 10 milliseconds
 // Task program statements go here

Task:MyTask2, 1 // run this task every 100 milliseconds
 // Task program statements go here

Task:MyTask3, 2 // run this task every 1 second
 // Task program statements go here

Task:MyTask4, 3 // run this task every 1 minute
 // Task program statements go here

Task:MyTask5 // no rate specified, so run at the default

// rate of 100 milliseconds
 // Task program statements go here

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

10

If, then, else

Just about all programming languages share the conditional programming feature of “if, then, and else”.
Our programming language adds the additional keywords “elseif” and “endif”. The programming
structure is straight forward, as described below:

Conditions are a list of statements, that equate to a logical, or
true/false result. This is described in more detail in the next
section.

We used several lines, in the example above, however, you can put multiple statements on a single
line, as shown below:

Here are the rules:
• “if” must be first
• There must be an “endif” to terminate the whole “if/then/else” set of statements.
• Every “if” and “elseif” has a matching “then”
• “elseif” is optional, and you can use as many as you please
• “else” is optional, but you can only use one

If, then, else statements can be nested, i.e:

The “statements” execute if both expressions are true.

Changing states

We know that a task has one and only active state, and that only the statements of an active state are
executed. We know how to set up conditional statements using if,then,else, so we’re getting pretty close
to having a working program structure.

The active state is selected as follows:

• The first state defined within a task, is the active state when the program first runs.

• The active state is changed, to the state name equated to the variable “State”.

if (if_condition) then
 (if_statements)
elseif (elseif_condition) then
 (elseif_statements)
else

(else_statements)
endif

If (expression) then
 if (expression) then
 statements
 endif
endif

if (if_condition) then (if_statements) else (else_statements) endif

http://en.wikipedia.org/wiki/Conditional_%28programming%29�

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

11

The variable “State” is a predefined local variable, described in the next section. It can be set to a new
state with the simple expression “State = NewStateName”.

In our “AutoOpen” task example, “Start” is the first state defined, so “Start” will be the active state when
the task first runs.

An example of a useless program is illustrated below.

“Ping” runs on startup, transfers control to “Pong”, which transfers control
back to “Ping”, then the process repeats over and over.

For a program to be useful, the state change should be performed, as a result of some condition.

Note that the execution of the expressions within a state, stops, when a new state is selected.
For example:

 State = my_new_state // my_new_state becomes the new active state
 expression_following_state_change // before this expression executes

Task:PingPong
 State:Ping
 state = Pong
 State:Pong

state = Ping

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

12

A useful example:

The expressions shown with the bolded font, are
symbols, that we use to represent a group of
programming instructions.

There is no instruction “voltage_low” for example,
but later on, we will show you how to use the
preprocessor, to substitute programming
instructions for symbols.

The next section describes how we build “real”
expressions, using the RTU’s database and other
resources.

We also introduced an additional predefined local
variable “StateSeconds”, and the “greater then or
equal” relational operator “>=”, which will be
described later, as well.

Task:AutoOpen
 State:Start
 If (voltage_low) then State = Delay endif

 State:Delay
 if (voltage_OK) then state = Start
 elseif (StateSeconds >= 30) then
 open_switch
 State = Opening
 endif

 State:Opening
 if (switch_open) then State = Open
 elseif (StateSeconds >= 5) then
 turn_alarm_on
 State = Fail
 endif

 State:Open
 if (switch closed) then State = Start endif

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

13

Operators and expressions

An expression is some sequence of instructions, that equate to a numerical value. Operators are used
in conjunction with variables, to construct expressions.

The assignment operator (equal sign)

This is just the good old equal sign, and uses the format: “variable_name = expression”

v_A = 2, makes the variable v_ A equal to the number 2.

v_temp_calculation = v_A + 1, makes the variable “v_temp_calculation” equal to the variable v_A, + 1

v_A = v_B = v_C = 25, puts 25 into the variable v_C, then puts the value of v_C (25), into v_B, then puts
v_B into v_A.

Note that the general purpose variables defined in the examples above, all have the “v_” prefix. Details
about the use of this prefix are described below in the “User defined variables” section.

Arithmetic operators

Operator Action
- Subtraction, also unary minus*
+ Addition
* Multiplication
/ Division

*The unary minus multiplies the expression that follows by -1. For example, the expression v_A = -5,
multiplies the number 5 by -1, and puts the result into the variable “v_A”.

Relational operators

Relational operators compare two expressions, and produce a true (1) or false (0) result. They are used
only in the conditional portion of and “if” or “elseif” statement.

These operators compare two
numeric values, and produce a
true/false result.

Examples:

(25 > 2) returns true, or 1

(25 <> 25) returns false, or 0

Operator Action
> Greater than

 >= Greater than or equal
< Less than
<= Less than or equal
= Compare Equal
== Compare Equal (alternate)
<> Not equal

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

14

Notice that the equal sign can be used both as an assignment operator (see above) and to compare
two expressions for equality.

For example:

If v_a = 1 then v_b = 2 endif

The variable “v_a” is compared to the number “1”, and if equal, the variable “v_b” is set to the value
of the number “2”.

The double equal sign (‘==”) may be used to compare two expressions as well.

Logical relational operators compare two Boolean (i.e. true/false) expressions, and produce a true/false
result.

Examples:

(25 > 2) && (2 < 99) returns true, or 1

Any expression evaluated by an ‘if’ or ‘elseif’ statement must contain a relational operator.

For example: “if (Io.BinIn.A0.StateOn) then ……” will cause a compile error. Use the format “if
(Io.BinIn.A0.StateOn > 0) then ……”, etc.

Bitwise operators

Bitwise operators are used to test, set, or shift the actual bits in a storage element (variable or
expression result).

Operator Action
& AND
| OR
^ Exclusive OR *XOR)
~ Complement (NOT)
>> Shift right
<< Shift Left

The () operator

Parentheses increase the precedence of the operations inside them. Operator precedence is described
below.

Compound assignments

We can combine the equate (equal sign) with the arithmetic or bit wise operators, therefore, instead of
writing:

Operator Action
&& AND
|| OR
! NOT

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

15

(v_A =v_ A + 2) is the same as (v_A += 2)

The supported compound assignments are: -=, +=, *=, /=, &=, |=, ^=, ~=, >>=, and <<=.

Operator precedence

Operators of the same precedence are evaluated from left to right, but some operators have a higher
precedence then others. Operators of high precedence are evaluated first. From highest to lowest, the
following list shows the order of evaluation:

()
! , ~
* , /
+, -
<<, >>
< , <=, >, >=
==, <>
&
^
|
&&
||

Examples:

2 + 3 * 4 = 14 since “*” has a higher precedence then “+”, multiply 3 by 4, then add 2 to get 14

(2 + 3) * 4 = 20 evaluate (2+3) first, since parenthesis have the highest precedence, then multiply by 4

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

16

Variables

Variables are portions of memory, used to store a numeric value.

Predefined local variables

Predefined local variables are defined by the RiState firmware, and are used to store and/or change
parameters having to do with the execution of a program.

Variable Description
State Name of the current state
StateSeconds Number of seconds current state has been active
StateMinutes Number of minutes current state has been active
StateHours Number of hours current state has been active
TaskSeconds Number of seconds task has been active
TaskMinutes Number of minutes task has been active
TaskHours Number of hours task has been active
InternalIndications The 16 DNP internal indications flags
SecondsSinceMidnight The number of seconds since 12:00 AM

SecondsSinceComm The number of seconds since this RTU has received a
communications.

Equate “State” to the name of the next state to be activated. (i.e.” State = NextState”, causes
“NextState” to become the active state.)

Note that the time related variables are dependant on one another. For example:

Executing this
expression

Affects the following variables

StateSeconds = 0 StateSeconds, StateMinutes, and StateHours are all set to zero
TaskSeconds = 0 TaskSeconds, TaskMinutes, and TaskHours are all set to zero
StateSeconds = 3600 StateSeconds set to 3600, StateMinutes set to 60, StateHours set

to 1

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

17

 Internal Indications are returned by the RTU in any
DNP message, and provide information about the
communications status of the RTU. An indication is
active, when it’s bit within the variable
“InternalIndications” is set. You can logically and the
variable with a mask, to check that bit.

 For example :

“if ((InternalIndications & 128) > 0) then
……

// The RTU has been restarted

SecondsSinceMidnight is a special timer that is cleared to zero at mid-night, then increments once each
second. This variable is cleared to zero, on power-up, and remains zeroed until the RTU is time
synchronized by an external host. Once synchronized, the firmware calculates the correct seconds
since midnight from the DNP time supplied by the host, then increments that value once each second.

SecondsSinceComm is cleared each time the RTU receives a valid communications from a host, and
increments once each second thereafter.

User defined local variables

User defined variables allow the programmer to store numeric values in the course of program
execution, and are defined automatically, anytime the variable name is referenced.

For example, in the simple expression below:

Space in the RTU’s memory is allocated for a variable, with the name “v_A”.
Then the number one (1) is stored in that memory location.

Variable names must start with an alpha character (a-z or A-Z), and be composed only of alpha
characters (a-z, A-Z), numerals (0-9), and the underscore character (“_”). A keyword (see appendix)
cannot be used as a variable name.

Some sample variable names are listed below:

v_CalculationTotal = v_temp_1 + v_R2D2 + v_x

Local values are local only to the task for which they are assigned, so setting the value of a variable in
one task, had no effect on a variable with the same name, in another task.

User defined variables are stored in a 32 bit signed format, in the range of -232 to 232 -1.

Internal Indication
Description Mask

IIN1_BROADCAST 1
IIN1_CLASS1 2
IIN1_CLASS2 4
IIN1_CLASS3 8
IIN1_TIME 16
IIN1_LOCAL 32
IIN1_TROUBLE 64
IIN1_RESTART 128
IIN2_FUNCTION_UNKNOWN 256
IIN2_OBJECT_UNKNOWN 512
IIN2_PARAMETER_ERROR 1024
IIN2_BUFFER_FULL 2048
IIN2_BUSY 4096
IIN2_CORRUPT 8192

v_A = 1

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

18

The “v_” prefix

Note that the user defined local variable examples, all have a “v_” prefix. The use of this prefix makes it
clear, that the text used to name a variable, is indeed intended to describe a user defined variable.
Since we follow the same rules naming tasks, states, and pre-processor symbols (see below), the “v_”
(or “V_”) prefix makes the programmer’s intent clear. If the compiler recognizes a user defined variable,
without the prefix, it will issue a warning (but continue to compile). These warnings can be turned off
with the option “#option variable_prefix_off:.

Expanding the scope of local variables

Local variables are normally only referenced within the task for which they are assigned. However, it’s
oftentimes useful to reference a variable outside of it’s task. To do this, just prefix the variable name
with the task name of the defining task, with a period inserted “.”.

The variable v_var1 is first used, and therefore defined in
task “my_task_1”. However, a different task is able to
reference that variable by prefixing the variable name
with “my_task_1.”.

Note that predefined local variables can be referenced
globally as well. The second task of our example could
have referenced “my_task_1.State” or
“my_task_1.StateSeconds”.

I/O variables

IO variables allow access to the RTU’s database. They are global in nature, since the database is
common (global) to all tasks.

IO variables follow the naming convention “Io.general_type.reference.attribute”. Note that there are
three text items, separated by a period “.”.

The variable name always starts with “Io.”, however, case is not important, so “io.”, “IO.” Or even “iO.”
are acceptable. (Just don’t use the number zero “0” in place of the letter oh “O”).

IO General Types

General types are not case sensitive, so the acceptable names can have any combination of upper
and lower case letters.

General Type Recommend
name

Acceptable names (shown in lower case)

Binary Inputs BinIn binaryin, binin, binaryinput, bininput, obj01, obj1
Binary Outputs BinOut binaryout binout, binoutput, obj10
Counters Counter counter, obj20
Analog Inputs AnaIn analogin, anain, analoginput, anainput, obj30

Task:my_task_1
State:start

v_var1 = 1
// additional statements follow
// .
// .

Task:my_task_2
 State:Init
 If my_task_1.v_var1 > 0 then

// additional statements follow

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

19

Analog Outputs AnaOut analogout, anaout, anaoutput, obj40

There is nothing magical about the recommend name, but those are the names we use in our
examples.

IO Reference

To reference a particular data point, of data type, include either the absolute address of the point, or
the communications index. (See the RTU3200 User’s Manual for a comprehensive description of
each).

To specify an address, prefix the point number with “A” or “a”. To specify an index, prefix the point
number with “I” or “i”. Numbers without a prefix, are assumed to be a address reference.

Examples:

Reference Description
A0., a0., 0. Address 0
I25., i25. Index 25

IO Attributes

Attributes allow us to differentiate between different details, of a general type. For example, in one
instance, you might want to see if a binary input is turned on. In another instance, you might want to
see if the same binary input is on-line. Attributes allow us to make that distinction.

Attribute Value range Details Applies to:
Value -215 to 215 -1

-231 to 231 -1
 AnaIn, AnaOut

Counter
Pulse 0 to 232-1 BinaryOut only
Flag 0 to 255 All, status flag as reported via DNP
OnLine 0 or 1 Bit 0 of flag All
Restart 0 or 1 Bit 1 of flag All
CommLost 0 or 1 Bit 2 of flag All
RemoteForced 0 or 1 Bit 3 of flag All
LocalForced 0 or 1 Bit 4 of flag All
Chatter 0 or 1 Bit 5 of flag BinaryIn only
OverRange 0 or 1 Bit 5 of flag AnaIn, Counter
RefError 0 or 1 Bit 6 of flag AnaIn only
On, StateOn 0 or 1 Bit 7 of flag BinaryIn, BinaryOut

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

20

Common IO variable definitions

Example Instruction Description

Io.BinIn.A5.StateOn = 1 if binary input at address 5 is on
= 0 if binary input at address 5 is off

Io.BinIn.I0.Online = 1 if binary input at index 0 is on line
= 0 if binary input at index 0 is off line

Io.AnaIn.A0.Value Value of the first analog input (Battery voltage)
Io.BinOut.A1.StateOn = 1 Turn the binary output at address 1 on
Io.BinOut.A0.StateOn = 0 Turn the binary output at address 0 off
Io.BinOut.A10.Pulse = 200 Pulse the binary output at address 10 on, for 200 mSec
Io.AnaOut.I0.Value = 1234 Set the analog output at index 0 to the value 1234

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

21

The pre-processor

The pre-processor is the first thing that runs, when you build a program. The input to the pre-processor
takes the text file you have edited, and performs certain modifications and checks.

One function of the pre-processor is to remove blank lines, comments, and other text, that the compiler
does not need.

You can include special instructions in your program, that the pre-processor will use to control the
compile process. These are called pre-processor directives.

Pre-processor directives start with ‘#”, and are listed below:

#option option_name

Some options are:

#option ignorecase

The pre-processor will convert all variable names to lowercase, so the compiler will treat the variable
“v_myvariable” the same as “v_MyVariable”.

#option comparecase

The pre-processor will not change any variable names, so the compiler will treat the variable
“v_myvariable” and the variable “v_MyVariable” as two unique variables. This is the default, if no option
is specified.

#option variable_prefix_on

The compiler will issue a warning, when a user defined variable is not prefixed with “v_” or “V_”. This is
the default, if no option is specified. Basically, the compiler assumes that any text string that does not
match a keyword, preprocessor symbol, or io variable format, must be a user defined variable. If you
intended to reference a preprocessor symbol in your code, but accidently misspelled a letter, then the
compiler would not match the symbol, but assign a new variable instead. Although this is not an error,
it’s not what you intended either, so the compiler will issue a warning, unless it see the “v_” prefix.

#option variable_prefix_off

No variable prefix warning will be issues.

#define identifier character_sequence

You can make a program more readable, and easier to maintain, by defining certain
character_sequences in a easy to find part of your program (like the top). For example, lets say you
have a fixed number that appears over and over again in your program. You can define that number at
the top of your program, and use it multiple times in your program.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

22

A common example:

#define TRUE 1

#define FALSE 0

Then, in the body of your program, use the expression:

 If Io.BinIn.A0.StateOn == TRUE then ………….

Another example:

#define LOW_VOLTAGE_THRESHOLD 1234

Later on in your program you may have something like:

If Io.AnaIn.A1.Value < LOW_VOLTAGE_THRESHOLD then ………
If Io.AnaIn.A2.Value < LOW_VOLTAGE_THRESHOLD then ………
If Io.AnaIn.A3.Value < LOW_VOLTAGE_THRESHOLD then ………

If you decide to change this threshold to 4321, then you only have to make one change, at the top
of your program (and hopefully, next to a comment that reminds you what this all means).

The #define directive works with any character sequence, and isn’t limited to numbers. For example
you could write:

#define LOW_VOLTAGE_THRESHOLD 1234
#define VoltagePhaseA Io.AnaIn.A1.Value
#define VoltagePhaseB Io.AnaIn.A2.Value
#define VoltagePhaseC Io.AnaIn.A3.Value

Then your program could read:

If VoltagePhaseA < LOW_VOLTAGE_THRESHOLD then ………
If VoltagePhaseA < LOW_VOLTAGE_THRESHOLD then ………
If VoltagePhaseA < LOW_VOLTAGE_THRESHOLD then ………

Upon evaluating a #define directive, the pre-processor performs a text substitution for the remainder of
the file. This means that you can apply multiple #define directives to the same text.

For example:

#define NBR_OF_APPLES 25
#define NBR_OF_ORANGES 10
#define NBR_FRUITS (NBR_OF_APPLES + NBR_OF_ORANGES)

fruit_basket += NBR_FRUITS // add apples and oranges to basket

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

23

Programming Tools

General

All of the tools required to create and install a RiState program, are contained in the RTU3200
configuration program. Download this program, free of charge, from our website.

The link is at: http://www.reliatronics.com/files/rtu3200_configuration.zip.

This is a standard Windows application installation. Unzip the files, the run “setup.exe” to install.

Editor

The first step in writing a program, is to create and edit a text file, with your programming instructions.
RiState programs use the file extension “.sl” (state logic). This file is called a “source file”.

To start the editor, simply click on the menu item “RiState” at the top of the RTU3200 Configuration
Program main screen, then select “Edit”.

This file is just a plain text file. In fact, you can edit the file with a text editor like Notepad or Wordpad if
you wish. However, the text would have to be pasted into the RiState editor window (or the file opened
by the RiState editor) to actually build the application.

Compiler

The RTU executes a binary version of the program, that compiled by the RiState Windows application.
This binary file is given the file extension “.s32” when it’s created by the compiler. This binary file is
called an “output file”.

To compile a program, click on the menu item “Build” of the “State Logic Edit” window.

If you have changed any text with the “Program Edit Window”, and not saved you changes to your
source file, then you will be prompted to save those changes.

Look at the “Message Window” of the editor screen. It will clear when you click “Build”, then will log the
success or failure of the compiler, along with messages that will help you identify errors in you program.
“Fatal Errors” are errors that prevent the compiler from completing, and indicate problems that must be
fixed in your program. “Warnings” are not fatal, but indicate situations that might indicate a problem with
your program.

If the program compiles without errors, the message “N Task(s) compiled, no errors.” Will be visible in
the message window (N is the number of tasks compiled).

Next, you will be prompted to save the output file. If you are developing a new program, then you will
want to save the output file to the PC’s disk drive, so that it can be uploaded to a connected RTU for
testing.

http://www.reliatronics.com/files/rtu3200_configuration.zip�

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

24

If you answer “Yes” to save the output file, you will be prompted to append the program signature to the
output file name.

What is a program signature?

The program signature is a unique four character identifier, that is calculated based on the final
binary image of this file. (It’s actually a cyclic redundancy check, or CRC). The slightest change to
the output file, will cause the signature to change.

Changes to the source file may not change the signature. For example, simply adding a comment
to a source file, would not change an output file, and wouldn’t change the signature. If you change
anything that the RTU executes though, the program signature will change.

You would most likely append the program signature to the name of an output file that you will
archive. That way, you can just read the RiState file name from an RTU at some later date,
compare it’s file name to the filename in your archive, and if they match, you have an almost
absolute guarantee that you have the correct file in that particular RTU.

During development of a program, you may save and upload the output program many times.
You’re only concerned about the latest version of the output file, and have no need to append the
program signature to it’s name.

You may not want, or need to save the output file, if you are simply debugging a program already
uploaded to an RTU. For example, a connected RTU might have a RiState program that had been
previously uploaded, and you want to use the debugger to see the current states, and variable values.
Things like the task and state names, variable names, etc. are not contained in the output file that the
RTU executes, but if you compile the source file, then those names will be understood by the debugger,
and the debugger can display those names as they are written in your source file. When you click on
the debugger’s “Refresh” button, the items identified on the debugger screen will be updated with live
data. If the program signature of the file in the RTU, does not match the program signature of the
compiled file, you will receive a warning.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

25

Debugger

Click on the “Debug” menu item, on the
program edit screen, to see the debugger
window.

Note the “Edit Signature” in the top, right
hand corner. This is the program signature
calculated for the program, that was just
built, who’s source file is in shown on the
editor screen.

The program signature of the RiState file in
the connected RTU is not know at this time,
so the “RTU Signature” is indicated by
“????”.

If you click the “Upload to RTU” button, and a
RTU is connected and powered up, the
debugger will upload the output file just built,
to the RTU.

After the output file is uploaded to the RTU,
the debugger reads the RTU signature, and
displays it. It should match the “Edit
Signature”.

You may not want to upload a program to
the RTU, but instead, debug a program
uploaded the day, or week, or year before. In
that case, build the source file, but don’t save
the output file. Instead of uploading the file,
click on “Refresh Logic”. If the signature
matches, then you know that the file in the
RTU, and your source file match. You can
debug, with data from the RTU, but names
and descriptions from your source file.

If they don’t match, a pop-up message will
warn you.

Click on the “Refresh Logic” button, to
update the current state, previous state,
state seconds, and variable list fields.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

26

You can also “Refresh Logic + Class 0”, to update the debug window, and the live data tree of the main
configuration screen.

Notice the “Program Execution” frame of the debugger below. When you upload a output file, the RTU
automatically begins execution the file. The active buttons are:

• Stop – Halts execution of the RiState program.

• Reset/Run – This starts the program execution form the beginning of the RiState program.
Note that the RTU is NOT reset, just the RiState program.

• Reset/Halt – Resets the RiState program, but does not start execution. The program will be
halted at the very beginning.

If you stop execution of the program (by clicking on either “Stop” or “Reset/Halt”, the active buttons will
change as shown below.

Two new active buttons are described below:

• Resume – Causes the program to continue running, from the point that it was stopped.

• Step – Causes the program to execute the instructions within the active state of each task, one
and only one time. The task and state timers will all increment by one second as well.

Any RiState program, saved in an RTU will run automatically, from the start, whenever the RTU is
power up and/or reset, even if the program were stopped by the debugger.

RTU Firmware Files

You can upload RiState files to a connected RTU, by selecting the “RTU Firmware Files” menu item, on
the configuration program’s main screen.

The files stored on the connected RTU will be retrieved, then displayed on the file screen.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

27

If no RiState program is stored on the connected RTU, the file description will read “null.s32”, and the
file length = 0 bytes.

To upload a file form your PC’s disk, click on “Update”, then select the file from the Window’s file
selection dialog. After the file is uploaded, the files screen changes, to show the name of the uploaded
file, the file time, and length.

Note from the example above, that a RiState output file, with the signature appended to the file name
(“e0e5”) was uploaded. This makes it easy to read the file data at a later date (perhaps years from
now), and be assured that the file in the RTU, matches the file data archived.

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

28

Example program

Back in the first two sections of this document, we outlined a program structure, but didn’t include the
actual argument details. We will add those details now:

#option variable_prefix_on // this is the default option, so this statement is not required
#define TRUE 1
#define FALSE 0

// Assume the switch controller open contact is wired to status input address 0, close to address 1
#define switch_open ((Io.BinIn.A0.StateOn == TRUE) && (Io.BinIn.A1.StateOn == FALSE))
#define switch_closed ((Io.BinIn.A0.StateOn == FALSE) && (Io.BinIn.A1.StateOn == TRUE))

// Assume the switch controller open control is wired to relay address 0,
// and the close control (not used in this example) to address 1,
// and an alarm or some sort, to output address 2
#define open_switch (Io.BinOut.A0.Pulse = 200) // open the switch by pulsing output A0
#define close_switch (Io.BinOut.A1.Pulse = 200) // not used in this example
#define turn_alarm_on (Io.BinaryOut.A2.StateOn = TRUE)
#define turn_alarm_off (Io.BinaryOut.A2.StateOn = FALSE)

// Assume a push button switch is wired to the status input at address 3.
// This swtch will be pressed, to tell the program that a failed switch operator, has been repaired
#define repaired (Io.BinaryIn.A2.StateOn == TRUE)

// Connect the contact of a line-powered relay coil to the status input at address 3.
// This contact tells the program that power has been lost.
// Note - We give several other examples for voltage_low and voltage_OK, at the end of this program
#define voltage_low (Io.BinaryIn.A3.StateOn == FALSE)
#define voltage_OK (Io.BinaryIn.A3.StateOn == TRUE)

Task:AutoOpen
 State:Start
 If (voltage_low) then State = Delay endif

 State:Delay
 if (voltage_OK) then state = Start
 elseif (StateSeconds >= 30) then
 open_switch
 State = Opening
 endif

 State:Opening
 if (switch_open) then State = Open
 elseif (StateSeconds >= 5) then
 turn_alarm_on
 State = Fail
 endif

 State:Open
 if (switch_closed) then State = Start endif

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

29

 State:Fail
 If (repaired) then
 turn_alarm_off
 State = Start
 endif

// Other examples for voltage_low and voltage_OK

// Using the binary point Low Line, V1 set by a ACVx module (any phase < normal threshold)
//#define voltage_low (Io.BinIn.A32.StateOn == TRUE)
//#define voltage_OK (Io.BinIn.A32.StateOn == FALSE)

// Using the binary point Dead Line, V1 set by a ACVx module (all phases < dead threshold)
//#define voltage_low (Io.BinIn.A33.StateOn == TRUE)
//#define voltage_OK (Io.BinIn.A33.StateOn == FALSE)

// Compare RMS voltage at V1a to 95/105 volts
//#define voltage_low (Io.AnaIn.A1.Value < 19456) // 204.8 cnt/volt * 95
//#define voltage_OK (Io.AnaIn.A1.Value < 21504) // 204.8 cnt/volt * 105

We need to replace the following expressions
with “real” code:

(voltage_low), (voltage_OK),
(switch_open),
(switch_closed), (repaired)

In addition, we need to replace some actions as
well:

(pulse_output), (turn_alarm_on),
(turn_alarm_off)

Task:AutoOpen
State:Start
 If (voltage_low) then state = Delay
State:Delay
 if (voltage_OK) then state = Start
 elseif (StateSeconds >= 30) then
 (pulse_output)

state = Opening
 endif
State:Opening

if (switch_open) then State = Open
elseif (StateSeconds >= 5) then

 (turn_alarm_on)
 State = Fail
endif

State:Open
if (switch_closed) then State = Start

State:Fail
 If (repaired) then

(turn_alarm_off)
State = Start

 endif

PAGE OF 30
STATE LOGIC PROGRAMMING

06/09/2009

30

//The next section will show the user how to define identifiers, based on IO, for use in the program, i.e.:

// assuming open contact wired to status input address 0, close to address 1`
#define switch_open (Io.BinIn.A0.StateOn && ! Io.BinIn.A1.StateOn)
#define switch_closed (Io.BinIn.A1.StateOn && ! Io.BinIn.A0.StateOn)
// assuming open control wired to relay address 0, close to address 1, alarm to address 2
#define pulse_output (Io.BinOut.A0.Pulse = 200)
#define turn_alarm_on (Io.BinOut.A2.StateOn = 1)
#define turn_alarm_off (Io.BinOut.A2.StateOn = 0)

//Then use those identifiers in the program, i.e.:

State:Opening
if (switch_open) then
 State = Open
elseif (StateSeconds >= 5) then

 (turn_alarm_on)
 State = Fail
endif

	Introduction
	What are the steps to developing a program?
	What is state logic?
	Definition
	Simple example of state logic
	A more useful example of state logic
	Adding a little to our example

	Structure of a program
	Basic structure
	Task and state definitions
	Task Execution Rate
	If, then, else
	Changing states

	Operators and expressions
	The assignment operator (equal sign)
	Arithmetic operators
	Relational operators
	Bitwise operators
	The () operator
	Compound assignments
	Operator precedence

	Variables
	Predefined local variables
	User defined local variables
	The “v_” prefix

	Expanding the scope of local variables
	I/O variables
	IO General Types
	IO Reference
	IO Attributes
	Common IO variable definitions

	The pre-processor
	#option option_name
	#define identifier character_sequence

	Programming Tools
	General
	Editor
	Compiler
	What is a program signature?

	Debugger
	RTU Firmware Files

	Example program

