A High-Level Generic Interface to External
Programming Languages for ECLiPSe

Kish Shen Joachim Schimpf Stefano Novello
Josh Singer
IC-Parc, Imperial College,
London SW7 2AZ
United Kingdom

Published irPractical Aspects of Declarative Languages, 4th International Symposium PADL 2002,
LNCS 2257,0© Springer-Verlag

Some typos in the code listings have been corrected in thssore

Abstract

This paper addresses an important but rarely discussetigalaspect of program-
ming in a declarative language: its interface to other @ogning languages. We
present the high-level, generic interface of ERE, and discuss the reasons for our
design choices. The main feature of the interface is thdeénly separates the code
for ECL!PS from that of the external language, allowing the interfacée used for
different languages. We believe that many of the conceptsldeed for this interface
can be applied to other declarative languages, espectalhtifier Prolog systems.

Keywords: Logic Programming, language interfaces, implementatpp)lication devel-
opment.

1 Introduction

An important practical aspect of a high-level programmiagduage such as Prolog is
its interface to other programming languages. In a largkegmagramming setting, it is
unlikely that any one programming language will be usedwesigely. In particular, the
strengths of Prolog which make it ideal for expressing arvdisg complex problems also
means it is not well suited for non-logical tasks such lowelgorogramming and providing
a graphical user interface (GUI) to applications. Thuss iniportant to provide means to
interface Prolog to other programming languages that are sigted to such tasks.

Many Prolog systems have interfaces to other programmirgulages, these generally
allow Prolog code to invoke commands/procedures writteaniother programming lan-
guage (which we will refer to as thexternal language), and/or for code in the external
language to invoke Prolog predicates (if both directioesnssible, the interface is said to
be bi-directional). The interfaces can be broadly classifiéo two categories by the level
of access to the internals of the Prolog system:

Low-level interfaces these provide the external language with direct accessetonm-
ory areas and low level representation of data structuréseoProlog system. The
external language is thus tightly coupled to the Prologesystand able to manip-
ulate the Prolog data structures and machine state. Indante form of such an
interface is normally used in the implementation of the Bgalystem itself, as the
interface between Prolog and the language it is implementeshich is usually C.
Because of the low-level nature of the interface, it is verstem specific, and is
usually restricted to interfacing to the one language.

Allowing the Prolog data structures to be directly manipedecan be powerful and
efficient, but at the same time, it can be dangerous. It algoires the programmer
to have a reasonable knowledge of the Prolog system.

High-level interfaces these provide the external language with a less direct atodabe
Prolog side. In particular, the external language is no¢ d@bldirectly access or
manipulate the Prolog data structures.

For many purposes, such as providing a GUI, low-level acteeglse Prolog state
is not required or even desirable. Furthermore, some pnugiag languages (e.g.
script-based languages such as Tcl/Tk or Perl) are unsitabmanipulating the
raw Prolog data structures in any case. In these cases, theaamunicated be-
tween the two sides often have their own, separate, regegiers, and manipulating
the data on one side does not directly affect the other side.

There are of course many different programming languages diéferent ways they
can be interfaced to Prolog. Many issues are involved in #sigth of such an interface,
and various interfaces have been developed for various@sylstems to various program-
ming languages. However, there has been little or no digmugsthe published literature
about the reasons and issues behind the design of the oasrfaVe feel that there are
common issues that are worth discussing, and in this paggsr@sent our experience with
developing a high-level interface for several externafjlzages with ECIPS.

ECL'PS is a constraint logic programming system being developa@-&arc. It is
used at IC-Parc, and its spin-off company, Parc Technadpgie the core for developing
industrial scheduling and planning applications. In theigie of our external language in-
terface, we needed to meet the commercial demands of Pdindlegies, and this strongly
influenced some of our design decisions, which will be disedsn this paper.

ECL!PS has both a low-level, bi-directional, interface to C, andighHevel, also
bi-directional, interface to Java, Tcl/Tk and Visual Basla this paper, we concentrate
on the high-level interface because it involves issues fwhigply to other Prolog/Logic
Programming systems (and perhaps other declarative lgaguss well). This interface
was first introduced in version 4.1 of EERS, released early in 1999, and evolved to its
current form described here.

2 Motivation and Objective

Our main motivation for the development of a new externatriisice was to allow our
ECL!PS applications to be used within larger applications writtedifferent languages.
We also wanted to implement a robust development GUI for &, and provide a stable
basis for a multitude of GUIs for various EGRS applications in the future.

From experience with previous external language intesfacel requirements for our
applications, we had several issues and objectives in mhikwe were developing the
interface:

Language generic We did not want an interface that was specific to a particalagliage.
Developments in programming languages mean that a langu&aeur today may
no longer be so in the future. Also, in commercial settingsy¢ may be specific
requirements to use a particular language, e.g. a clienbrferof our commercial
applications explicitly required Visual Basic as the ertdiinterface language, while
at the time we provided a Tcl/Tk interface.

We wanted an interface that is generic in the sense that théf= side is indepen-
dent of the languages used on the external side. Thus anwgtah in a different
programming language can be substituted on the exterrealstdout changing any
code on the ECIPS side of the interface. In addition, while the syntax on the

Peer #1 Peer #2

resume
yue\\

ECLiPSe
agent

Figure 1: The Generic External Interface with Multiple Peer

external side would certainly differ from language to laage, they should all im-
plement the same concepts, so it should be easy to move friogp the interface in
one language to another.

Maintenance We wanted to minimise the development/maintenance ovddteasupport
a new language via the interface. Thus, when interfacingrieva language is re-
quired, we can rapidly develop the interface required.

Control When ECLPS is interfaced to an external language, we often need to nesh t
very different control regimes of the two languages: ERE is non-deterministic
and single-threaded, and the external language tend totbardeistic and multi-
threaded. We wanted to avoid complex control flow betweenttlelanguages,
as this can easily lead to unmanageable nesting and interadietween the two
languages.

Syntax We wanted to avoid any conflicts in syntax between BEFE and the external lan-
guage, which could happen if commands or data structurdmimtternal language
can occur in their native syntax within the EGS’ side and vice-versa. Allowing
syntax of one language to appear in another is always ermreprespecially for
quoting of special characters (which are likely to be déferin the languages), and
when the command may be assembled dynamically during égecut

Uniform Usage We wanted to have a uniform interface, no matter whether’PSLwas
used as a library (embedded into an external language hogitgmm) or as a server
(in a separate process, possibly on a remote machine).

2.1 Conceptual Model

We developed a message-based, data-driven interfacepas & Figure 1. The inter-
face connects one agent written in E@IS' with one or more agents written in external
languages.

The main conceptual points of the interface can be sumnthioige

Multiple agents Multiple external agents can be connected to an 8. agent via the
interface, and the connection itself may be by differenthods. The interface provides
the concept opeersto allow these external sides to be accessed in a uniform Avager
is any external side (i.e. the external agent and its comggpeer queues).

Data-driven queues The two sides are connected by 1/0 queues with data-driven ha
dlers, calledpeer queues. The interface provides operations to set up peer queugs tha
connect the two sides. These are I/0O queues that can sendgesdsetween the two sides

in one direction. If the direction of data flow is from EERS side to the external side,

the queue is called tom-ECL!PS queue; if the data flow is from the external side to
ECL'PS, itis called ato-ECL'PS queue.

For each peer queue,handler can be defined to handle the data transfer. These are
procedures (or predicates in EBS’) which are invoked to handle the transfer of data. The
handler can either bedata provider, which supplies data to the other side when requested
(when the other side reads from the queue and no data islaiedjlar be adata consumer,
which consumes data arriving on a queue. The execution dfahdler for a queue is thus
driven by the data transfer on that queue.

Structured messages To allow for platform and language independent interchamfge
typed data on the queues connecting the two sides, ariEEElexternal data represen-
tation (EXDR) format was defined. EXDR allows the represgéoeof a large subset of
ECL'PS’s data types, including lists and nested structures. EX2R imspired by Sun
Microsystem’s XDR format [7], however, unlike XDR, every BER term also includes its
own type information.

Synchronous control flow Conceptually, there is a single thread of control flow betwee
the external and ECPS sides. At any time, one side has control, and only it candtsti
the transfer of data on the queues (i.e. either sending ddketother side, or requesting
data from the other side). On the EEIS side, execution is suspended while the external
side has control. Execution on the external side may or mayacsuspendédwhile
ECL‘PS side has control, depending on the programming languageraihe platform.

ECL’PS remote predicate call (ERPC) The queue handlers already provide all the
means for invoking actions in both directions. For conveoé and because an external
side is always interfaced to an EGS agent, a form of Remote Procedure Call [1], which
we call ECL!PS Remote Predicate Call (ERPC) is always provided. It allowsxernal
agent to conveniently invoke deterministic EGIS’ predicates and retrieve their results.

3 Design Details
3.1 Peers

In the conceptual view of the interface, the way an exteriggné is connected to an
ECL!PS agent is not important, only that the two sides can commumidia data-driven
peer queues. Thus, different concrete realisations ofrttegface are possible. We have
provided two: arembeddedvariant, where the ECIPS agent and the external agent are
in the same process (communicating through main memorg)aa@mote variant, where
the ECL!PS and remote agents are separate processes (connected b 6&Kets). In
the latter case, as the connections are sockets, the twésazgmbe located on different
machines.

An ECL!PS agent can be embedded into only one external agent. Mulépiete con-
nections (perhaps to agents of different external langs)aga be made, and any ERS
agent can be connected, including one that is already enebleld. an ECIPS agent can
have at most one embedded peer, but multiple remote peers.

The differences between the embedded and remote interéa@nts are largely ab-
stracted away by the unified conceptual view and the condeears. From the program-
mer’s point of view, the remote and embedded variants camafgely used in the same
way, and code written for one can be reused for the other. i$tashieved by providing
the same predicate/procedure names/methods interfdsevithl both variants on both the
ECL'PS and external sides.

1if execution is not suspended, then it cannot initiate datasfer to the ECLPS side.

The one main difference visible to the programmer is the gge®f initialising and
terminating the connection with the two interfaces. Witk #mbedding interface, the
ECL'PS agent is started from within the external agent (the ageadddECLEPS as a
library), and the connection terminated by terminatingg@®.*PS agent. With the remote
interface, the external agent has to be explicitiached to the ECLEPS agent for the
connection, and detached for the termination. Attachmstabdishes an initial control
connection between the two sides, along with some initiaharge of information. The
control connection is used to co-ordinate and synchronissesjuent actions.

As an example of the use of both variants, the TKEEE development tools (a set of
development tools including debugger and state browsetsih were originally written
to be used in an embedded setting together with the TkPSLtoplevel GUI, runs in the
remote setting with very few modifications, even though thi& bf the code was developed
before the conception of the remote interface. In terms décgizes, there is about 4260
lines of Tcl and 1750 lines of ECPS' code that are shared. The specific code for starting
the tools with the remote interface is about 200 lines of Beleand 60 lines of ECPS
code. About 30 lines of Tcl code and no E®S code would be needed to start the
development tools with the embedding interface.

3.2 Peer Queues

The peer queues are implemented differently in the embeddédemote setting. In the
embedded case the queues are shared memory buffers, wifiteremote case the queues
are implemented with sockets connecting the two sides.

To a user, a peer (once it is set up), whether remote or embedda be treated in
the same way. Information is transferred between the twessiih the peer queues, which
are created in a uniform way. The creation can be initiatechfeither the ECLPS or
the peer side. From the EGRS side, the difference between a remote peer queue and an
embedded peer queue is hidden by providing the same predicateate the queue — the
user just specifies which peer the queue is for, and then th@ppate queue is created.

3.3 Typed EXDR Messages

The EXDR encoding is instrumental in providing language arahitecture independence
for the interface. Similar to XML [11], and unlike XDR, EXDRath includes type infor-
mation. This is implemented in a very compact way by taggmchedata item with a byte
that identifies the particular data type. This allows thestgpthe data sent to be dynami-
cally determined when the data is sent, rather than beitigaity fixed, and is particularly
useful for a dynamically typed language like Prolog.

The data types that are available in this format are listeBligure 2. The idea is to
represent that subset of ERS types which has a meaningful mapping to many other
languages’ data types. Apart from the basic types, listsnasted structures are available
and are mapped to meaningful types in many external langualfee main restriction is
that logical variables (which have no equivalent in moseothnguages) are not allowed
in their general form. However, singleton occurrences #osvad and useful to serve as
place-holders, e.g. for result arguments in ERPCs (sempex)

A small difficulty arises with a language like Tcl whose typestem is too weak to
distinguish between all the EXDR types: different EXDR tgpeap to the same string in
Tcl. While this is usually no problem when Tcl receives data,have augmented the Tcl
send primitive to take an additional argument which spesifie EXDR type into which a
given string should be encoded.

The complete specification including the concrete physiceloding for the EXDR
format is given in [6] and appendex A. As part of the externdé ©f the interface for a
particular external language, the mapping of EXDR datagypw that language must be
defined.

| EXDRtype || ECLiPSetype | Tcltype [VBtype Java type |
Integer (32bit) | integer int Long java.lang.Integer
Long (64bit) integer string n/a java.lang.Long
Double float double Double java.lang.Double
String string string String java.lang.String
List 12 list Collection of Variant| java.util.Collection
Nil []/0 string™ | Collection of Variant| java.util.Collection
Struct compound list Array of Variant CompoundTerm
Placeholder anon variable | string”.” | Empty Variant null

Figure 2: EXDR types with some language mappings

Ecl

Ex1

Ec2

Ex2

Ec2

Ex1

Ecl

ECLiPSe External

Figure 3: Nesting of Handlers

3.4 Control Flow

The control flow between the two sides is based on the synobsoyield/resume model:
Control is transferred from ECPS to the external side when ECRS' yields to the ex-
ternal side. Control is transferred from the external sidekito ECL!PS’ by resuming
ECLPS. For example, when data is transferred from ERE to the external side on a
peer queue, ECPS will yield to the external side to allow the external side togess
the data (via a handler for the queue). When the externalcsideletes the processing,
control is returned to the ECPS by resuming ECEPS'.

Note that handler execution on the two sides can be nestedx@mple of this is shown
in Figure 3. In the figure, time advances down the page, anfitihe shows the transfer of
control between the ECPS and remote sides. A vertical line shows that a particulae sid
has control, and the horizontal arrows shows the transfeowiiol. Initially, the ECEPS
handler Ec1 is executing, and EBS has control. At some point, control is transferred
to the external language, and the external handler Ex1 aked. This transfers control
back to ECEPS, starting a new handler Ec2 (the line is thicker to more dgadistin-
guish it from Ec1l), which in turn invokes an external handi&R. When Ex2 completes,
control is returned to ECIPS and the execution of Ec2 continues until it also completes
and returns to the remote side, where Ex1 continues and et@splreturning control to
ECL'PS, which continues the execution of Ec1. Thus, Ex2 is nestéinvihe execution
of Ec2, which is nested within Ex1, which is nested within EGhis nesting allows the
implementation of the equivalent of the ‘call back’ functadity of traditional RPCs.

The thread-based control flow limits the complexity of imieions between the two
sides. As ECEPS has only a single thread of execution, it would not be seagibbllow

the external side to request execution of other goals wi@le‘BS’ side has control and is
executing a goal. Note that the external side is not limitelblging single threaded (and in
fact neither Java or Tcl are single threaded).

The topology for transferring control with multiple peessiways a star shape with the
ECL!PS agent in the middle: control is handed over from the agent to a peer,
which can then only hand back control to that ERE agent. This is shown in Figure 1.

3.5 Generic invocation of action

We achieve language independence in our interface by usingeneric concept of queues
over which messages in the language independent EXDR faraatansferred. We did
not provide any built-in method to directly execute comnsnoéithe external language
from within ECL'PS’. Nevertheless, ECPS can cause actions to take place on the ex-
ternal side. The idea is that instead of making a proceddrdicectly, data transfers on a
gueue are used to invoke the handler for the queue. The datsferred specifies how the
procedure should be invoked. The E@S side can thus regard the remote side as a black
box, where the programming of a particular queue just ire®bpecifying the protocol for
transferring data and what the data is for. None of the detdihow the data would be
processed need to be known on the side — all the code for doing this remains on
the remote side. In particular, a different language carubstguted on the remote side,
and as long as the handler for the queue obeys the same dratoiting on the ECIPS
side is affected by the change.

3.6 Generic interface within the external language

The key abstractions of peer and of a peer queue allow natoualterpart abstractions on
the external side, which can give a highly flexible undedyamchitecture. Abstraction is a
strong element of object-oriented language such as Jadawanlava side of the interface
demonstrates this. Just as a peer is a generic interfaceextamal side of any kind, the
EclipseConnectioninterface in our Java code is implemented by different elagsoviding

a connection to an ECPS engine. For examplémbeddedEclipseimplementsEclipseC-
onnection in the embedded variant of the interface; aRainoteEclipse class on the other
hand implementég&clipseConnection in the remote variant. Just as a peer queue allows
communication between EGRS and any kind of peer, so the Java classesnEclipse-
Queue and ToEclipseQueue are provided by any class implementidipseConnection.

3.7 ERPC

The ERPC mechanism is provided for ease of programming.imgemented on top of
a pair of peer queues (to- and from-E®S’), with the handler for the to-ECPS queue
reading the goal (in EXDR format), executing it, and retagnthe resulting goal to the
external side. The handler essentially looks like:

erpc_handl er : -
read_exdr(rpc_in, CGoal), once(Goal), wite_exdr(rpc_out, Coal).

The actual ERPC handler code deals with failures and exarepdis well. These queues and
the handler are pre-defined by the E€B-side of the interface, along with the handler.

Since we are interfacing to a variety of different exteraaguages, none of which have
concepts of logical variables, backtracking or goal susjmen the kind of ECEPS goals
that can be called through the interface must be restridthd.abstraction of an ECPS
goal which the interface provides to the external languagledt of a procedure with input
arguments and output arguments which expect/return datart#in EXDR types.

On the ECEPS side that means that (i) externally callable goals are éichtb return
only one solution by committing to the first one, (ii) all vabies in input arguments will

be singleton variables and can only be used to return regiilfgesults cannot contain

shared variables. It is in the responsibility of the ERS programmer to provide callable
predicates that observe these restrictions. In practienteans that e.g. difference lists
need to be transformed into standard lists, and multipletiswis can be either collected
and returned in a list, or alternatively returned increraiptvia a dedicated, application-
specific peer queue (as demonstrated in the map coloringggarhsection 5).

Since the external languages have different, incompatillement passing conven-
tions, especially for output arguments, we decided on an@ERi®tocol that is at least
natural and easy to implement on the EEB side: the goal is sent as a compound term,
which may contain one or more singleton variables as plddeh®for the output argu-
ments. To return the result after successful execution,end back the complete original
goal, but with the former variables replaced by result valukhis method avoids the need
for a complex return-result protocol involving variablertdles or identifiers. It does how-
ever requires the external side to extract the results fl@mgbal term. This protocol is
suitable for most rpcs except those that have very largd emguments. In this latter case,
the programmer would set up a queue for sending the inputaieha

4 Discussion

4.1 Separation of ECL’PS’ and external code

The interface clearly separates the code for BEE and the code for the external lan-
guage. This means that the EBIS’ code and the external code can be developed sepa-
rately with just the interchanges between the two langualgesly specified. In particular,

it means that

e Any problems with incompatibilities between the syntax GLEPS and the remote
language is avoided.

¢ The same ECIPS side of the interface can be used for different languagesrerh
is no need to learn to use a different interface if the exidamguage is changed.

e The development of the interface for a new external languagans only a new
external side of the interface has to be developed.

e The programmers on one side need not have much knowledgé thigoather pro-
gramming language. In the case of Parc Technologies, tasmsthat GUI and Java
programmers can be hired without requiring them to eithreraaly know or undergo
extensive training in ECIPS or Prolog.

e The converse is also true: E@RS and CLP programmers do not need expertise or
knowledge in GUI or Java programming.

e Each language is left to do the tasks they are most suitedviter.do not need to
‘enhance’ ECEPS to provide features for tasks it is not suited for. For examiu
properly support GUIs, a language needs to support somematimulti-threading
or an event-loop to cope with the inherently reactive nabfréhe task. As none
of this management of the GUI is done on the ERE side, there is no need to
introduce such features to ERS'.

e Where the external language is used for providing a GUI, thercore part of the
ECL!PS code can often be easily detached from the interface andsegstately.
This is particularly convenient for both development anit-testing of the ECEPS
code.

4.2 Supporting a New External Language

The ECLPS side and the external side are loosely coupled, and have dpantiencies
on the low-level workings of either ECPS or the external language.

To implement the embedded variant of the interface, theeatéanguage system must
be able to load ECIPS as a library and to invoke a subset of the functions provided b
ECL!PS’s C/C++ interface. These are the functions needed to lisiand finalise the
ECL!PS engine and to access the memory queue buffers.

For the remote variant of the interface, the remote sidesiitterface protocol has to be
implemented, i.e. sending the appropriate message at gie@mate time, and performing
the right actions on receiving messages from the B3 side. The protocol is specified
in the ECL!PS Embedding and Interfacing manual. This code should begstifairward
to write and basically requires that sockets can be progmrdrimthe language.

Both interfaces also need to provide support for the EXDihr i.e. encoding/decoding
native data into/from EXDR format. Depending on the extelaaguage, this may need
to be supported at the C level (for example, in Tcl this is dion€, in Java this is done in
Java).

Our experience so far is positive: the interface was imtideveloped mainly for use
with Tcl/Tk for the development of the GUI for ECBS itself. Since then, Parc Tech-
nologies have decided to standardise on using Java foreitl &I (and any other non-
ECL!PS) development, and support through this interface for Jasnapidly developed,
both in the embedded and remote variants.

We could also confirm the reusability of the E®IS side code with different external
languages: parts of the EGRS development GUI that was written in Tcl originally have
been successfully replicated in Visual Basic or Java. Hewevith the introduction of the
peer concept, this replication is now rarely necessary, dsd@mponents can be written
in different languages.

4.3 Synchronous Control Flow

In our interface, the interaction between the external a@t’PS sides is synchronous.
We deliberately avoided the complexity of a general mespagsing system, which would
be difficult to combine with the already complex control flawa constraint programming
system.

As control is transferred for each exchange of data, and wieeaxternal side has con-
trol, ECL!PS execution is suspended, there might be a problem with effigicHowever,
as discussed in section 2.1, the execution of the exterealtagnot necessarily suspended
while ECL'PS side has control. In a multi-threaded external languageJiva, the data
can be read by the Java side and control returned to'ESLside quickly while the Java
side then processes the data concurrently.

With our current main area of application, the provision dfI§, efficiency does not
seem to be a problem. Asynchronous communications can lgggmmed separately,
using standard sockets, if necessary.

4.4 Scope of Applicability

The high-level interface is a general interface to an edldemguage, and is of course not
limited to allowing the external language to providing Gifds ECL!PS’ applications.

The different strengths of the embedding and remote variahthe interface makes
them suitable for different uses. Some of the issues to densire efficiency, flexibility,
security and fault tolerance.

4.4.1 Efficiency

The memory buffers of the embedded interface offer fastarmanications between the
two sides than the socket connections of the remote varlafith the remote interface,
data sent from one side needs to be physically transmitiadsfckets) to the other side,
perhaps with buffering on both sides. TCP/IP also imposessarhead on each transmis-
sion of data, such that it takes tens of milliseconds peistrassion, regardless of the size
of data transmitted, even when the two sides are on the saroeimea This means that
for applications where there are frequent exchanges of tteggrocess can be noticeably
slowed by the interface. In some situations, it might be jds$o reduce the number of
times the control is transferred by pooling the updates andiag them in batches.

4.4.2 Flexibility

The flexibility of connecting to multiple external agentsithe remote interface is quite
useful. For example, Parc Technologies decided to starsgewd using Java for all its non-
ECL!PS coding, while the ECIPS graphical development tools are written in Tcl/Tk.
With the initial embedding interface, these tools were amfgilable to programs which
also used Tcl/Tk for their GUI, but the remote interface wlcahese tools to be used in
conjunction with a Java agent, making the process of dewstop much easier. The mul-
tiple agents approach will also allow new tools to be devetbip Java, without needing to
recode all the existing development tools into Java.

The remote interface allows an ERS agent to be run remotely, on any machine that
can be reached via the internet. One use for this is to alloE@IFPS program to be
debugged remotely.

A practical advantage for the remote interface that we didimtally foresee is that
the memory and other resources are not shared between tH®BCind external agents.
In the embedding interface, our experience with prograngrtange applications in Java,
ECL‘PS and also other software systems such as an external MixegenProgramming
solver, all doing their own memory management and all irttiimg as a single process,
non-repeatable problems (perhaps due to some memory lealQadir that are difficult to
track down. In the remote interface, bugs caused by theadtien of different memory
management are less likely to occur, and any bugs which darace easier to track down.

4.4.3 Security

Potentially, because the remote interface allows conorestirom anywhere reachable on
the network, the remote side can be ‘hijacked’ by an imposted once attached, it has
full access to the ECIPS side through ERPC, and hence to the ERF side’s file space.
The remote protocol implements a ‘pass-term’ check, whel@L:PS term is transmit-
ted from the remote side to the ERS side and checked before the socket connection for
the ERPC is allowed. Another method to limit access is tonalittachment on the local
machine only via the loopback address. Further securitypbeamposed by the program-
mer, e.g. encryption of the data transmitted on the queues.

4.4.4 Fault-tolerance

With the remote variant, there is the possibility that tharcection between the two sides
may be lost unexpectedly, either because of some netwolkgms, or because one side
dies unexpectedly. In such cases, the peer queues will bergiscted, and when one side
detects this, a unilateral detachment will be performedieyrémote protocol, and control

is returned to the programmer to deal with this unexpecteatbdn. In the embedded

variant, the two sides are in the same process, so the praldesnot arise.

10

get _map_data/1l, colouring/5
ERPC queues

map data Main
file yes no

continue queue

country/5, end/ 0 setup
setup_map queue handler
col our/ 2 update
update_map queue handler
ECLiPSe Agent External Agent

Figure 4: Structure of Map Colouring Program

5 An Example — Map Colouring

In the ECLIPS distribution, there is an example illustrating the use efititerface. Cur-
rently Tcl/Tk is used as the external language, providingld @r the main ECLEPS
code, which solves the standard map colouring problem waanap of countries should
be coloured with four colours such that no neighbouring toesi share the same colour.

The overall structure of the program is shown in Figure 4.riafpthe EC’PS agent
can colour a map by several different methods, using the ratgpgpecified in a map data
file. The external agent provides the GUI for the user to $e¢kexmap, and how many
countries from the map, should be coloured; method of calguhe map, and also for
displaying the map as it is being coloured by the ER® agent. Finally, when the map is
successfully coloured, the external agent allows the usask for more solutions.

The two sides communicate via ERPCs, and three peer queues:

setupmap : this from-ECL!PS queue transmits the shape and position information of a
map to the external side, which uses the information to coosthe map.

update_map : this from-ECL’PS queue transmits the information for updating the map
as it is being coloured by the EGRS program.

continue : this to-ECL!PS' queue transmits the request for further solutions once tg@ m
is coloured.

The ECL!PS code consists of two main components: the setting up of theforahe
external side iget _map_dat a/ 1, and the colouring of the map @ol ouri ng/ 5. The
abstract outline of the code relevant to the interface inbovs:

get _map_dat a(Si ze) : -
write_exdr(setup_map, country(C, X1, Y1, X2, Y2)),
write_exdr(setup_nmap, end)

col ouring(Type, Select, Choice, Size, Tinme) :-
(wite_exdr(update_nap, colour(C, Colour))

write_exdr(update_map, colour(C, gray)), fail

)
read_exdr (conti nue, Continue),

Conti nue == no.

get _-map_dat a/ 1 sends the data for the map to be coloured to the externalBiaefull
map has been read into the E®S side earlier by another predicate (not shown here).

11

Si ze specifies how many countries from the full map are to be celduconfiguration
information onSi ze countries are sent to the external side. This informaticseit in a
loop, consisting of a series abunt r y/ 5 terms, terminating in and term.
col ouri ng/ 5 does the actual colouring of the map. The first four argumspesify
various options, and the last argumditre is an output argument for returning the cpu
time consumed for colouring the map. When a coui@ris set to a particular colour
Col our during the colouring process, this information is sent @ dhternal side via the
updatemap queue; a choice-pointis created so that the colour ceesbe(to gray) when it
is backtracked over. Finally, when the map is successfoligjured, the program reads from
thecont i nue peer queue. This hands control over to the external sidefenthe user
can specify via the GUI if the program should continue andrreanother solution or not.
By clicking on the appropriate widget, either yes or no istsémthecont i nue queue to
the ECLPS side, and ead_exdr / 2 on the ECLPS side returns. The execution then
either backtracks to get the next solution or finishes.

Both predicates are called from the external side via ERRIE, agith the ERPC in-
voked when the user clicks on the appropriate widget in thé. GU

This example shows the generic nature of the interface etelgr the ECLPS side
of the code does not depend on the external side being Tclth&nexternal language can
be used to provide the GUI, as long as the implementatiooslithe protocol defined
above. The actual example program in the distribution cam laé run either embedded or
remotely.
For illustration, we outline the Tcl code for handling thepr@louring:

proc run {} {

;# calling colouring/5, followed by the type information
ec_rpc [list colouring $sol ver $sel ect $choice $mapsize] (()()()1)

}
proc update_map {...} {

;# read the colour/2 term

set info [ec_read_exdr update_map]

;# extract the country and colour fromthe data and display it
set country [lindex $info 1]

set colour [lindex $info 2]

}

proc continue_col ouring {conti nue_queue} {
gl obal continue_state

;# wait for user to decide if nore solution is wanted
tkwait variable continue_state

; # send decision to ECLi PSe
ec_wite_exdr $continue_queue $continue_state ()

r un is a procedure invoked by pressing a ‘Run’ button which stda# colouring process.
This procedure makes an ERPC call. As discussed previdaslweakly typed language
like Tcl, type information has to be specified (the) () () |) string, see the manual [6]
for more details).

12

While col our i ng/ 5 is running, it sends the colour information as described/abo
On the Tcl side, this invokes the handigrdat e_map, which reads the information from
the updatemap queue and displays it.

conti nue_col ouri ng is the handler procedure for tlmnt i nue queue. When
ECL!PS reads from the queue, this procedure is invoked on the Tel Slthe Tcl code
waits for the continuestate variable to be set by the appropriate widgets (butttatshe
user clicks to specify if another solution is wanted). Thisiable is set to eitheres or
no, and the information is returned to the E®IS' side.

6 Related Work

Many existing Prolog systems provide some form of exteraagjlage interface. Most of
the earliest are ‘low-level interfaces to C. Interface§td/Tk and, more recently, to Java
and Visual Basic have been developed. For script languagbsas Tcl/Tk, the interface is
usually high-level, because Tcl itself cannot represemanipulate the raw representation
of Prolog data structures. On the other hand, Java interfe@e be either high-level or
low-level.

Examples of high-level interfaces include the old ProT&{Idf ECL'PS'; the Tcl/Tk
and Visual Basic interfaces of SICStus [8]; the Tcl/Tk aneaJaterfaces of Ciao [2]; the
Tcl/Tk interface of BinProlog and ProLog by BIM [9].

Most of these interfaces are not generic; for example, teealiBasic, Tcl/Tk and Java
interfaces of SICStus are very different from each othed, smare the Tcl/Tk and Java
interfaces of Ciao. In fact, Java interfaces can be lowtlie C interfaces, allowing the
Java program to directly access the Prolog data. An exanfpl@sois Jasper, the Java
interface of SICStus. Foreign language interfaces tene toonplex (this can be seen by
simply looking at the amount of documentation that the ménneed to dedicate to their
description). We hope that having a generic interface vghiicantly reduce the learning
curve for the user.

The design of our interface was motivated partly by our elegmee with ProTcXI, an
earlier interface for ECIPS to Tcl/Tk, which we abandoned in favour of starting afresh
with the generic interface. We designed the new interface/é&scome some of the prob-
lems of ProTcXI: it was Tcl specific, had a complex controlestie that inexperienced
programmers often got wrong, allowed Tcl commands in Toltay to be assembled and
called within the ECEPS' code, which often lead to incorrect parsing by the Tcl inter-
preter. In contrast, the new interface is not Tcl specifis, danuch simpler control flow,
and does not provide for executing Tcl commands directifiwithe ECLIPS code. In
addition, there are less low-level ‘glue’ code, so maintex@aand portability should be
easier.

Our interface avoided the problem of syntax conflicts betwthe external language
and Prolog by avoiding the specification of external procesifrom within Prolog code.
Other ways of avoiding this problem are:

e Wrapping the components of a command with ‘type-wrappershat they would
not be mis-identified. An example of this is Ciao’s Tcl/Tkerface.

e Specifying the external command in Prolog syntax, and perfon-the-fly transla-
tion into the external language. This was the approach takbrBinProlog’s Tcl/Tk
interface. It offers the possibility that the command mayekecuted in a different
external language with a different translator. Howeves, éipproach may have some
problems with statically and strongly typed languages.

The Ciao Java interface has some interesting similaribesuts. The two sides are
also connected via sockets, and a serialised represantdtiRrolog terms and Java object
references is used to transport data between the two sidg®na on both sides can be

13

invoked via event handlers. One main difference from owerfate is that the interaction
between the Prolog and Java sides appear more complex tban scheme, and requires
the Prolog side to be multi-threaded. With our more simpleticd scheme, we do not need
threads.

An alternative to providing external interfaces directlight be to use a ‘middle-ware’
layer like Corba [10], which will allow RPC calls, but at thege of an additional software
layer, and an unnatural match of the object oriented aspé@srba and ECLPS (which
currently does not have an interface to Corba). The maiemiffce between an interface
specified in Corba IDL versus one in EGXS' EXDR would be that the IDL typing is more
rigid and does not offer such a natural match with EEE/Prolog data types. Another
concern is that Corba is mainly designed for network interapility, and having unified
embedded and remote versions would require the definitiasoitable subset.

Of course, there is nothing inherent in our interface thatildhdimit it to a Logic Pro-
gramming language. It should be equally applicable to Ranat Programming languages.
We are not aware of any direct equivalent in Functional Raogning languages: although
foreign language interfaces also exist for Functional Progning languages, many such
interfaces seem to be targeted to C. HaskellDirect [3] alélaskell to be interfaced to
an external language, generating the necessary code tofaradt®n calls (and be called
from an external language) by specifying the ‘signaturesftinctions in an Interface Def-
inition Language, which is then compiled by HaskellDire@ithough it can be used to
interface to different languages, it seems to be mainlhetad)for C. Unlike our interface,
function calls are to be made directly in the language, atstef just passing the data. An
example of a non-C foreign language interface is_8aj#], which is an interface to Tcl/Tk
for Standard ML. This interface is quite tightly coupled td/Tk, and probably cannot be
used to interface to another language.

7 Conclusion

We have presented the E@S high level external language interface. Since its initial
development two years ago, this interface has been useasdrtty by us. The Java inter-
face is being used for all the commercial applications tlaat Fechnologies is developing.
The interface has also been used for a development GUI ®ifEvECLPS, and a set of
development tools that can be accessed from the toplevedthied ECLI!PS applications
that use the embedded Tcl/Tk interface, and through theteeimterface, the development
tools can be used with any EGRS process. The Tcl/Tk interface was also used in an
application that IC-Parc was developing for a customer.

We believe that the interface offers advantages over pusvéaternal language inter-
faces in that it cleanly separates the ERS (Prolog) and the external code. This allows
the interface to be generic and eases our development amtemance efforts.

Acknowledgements

The authors gratefully acknowledge the invaluable helpdiacolleagues at IC-Parc and
Parc Technologies for their feedback and discussions oddghelopment of the interface.
We also thank Mark Wallace for his quick feedback and commentthis paper. We also
thank the referees for their comments.

14

A The EXDR Format Specification

ExdrTerm::= "'V Version Term Struct

"F Arity String Ternt

Term = (I nteger| Doubl e| String| Li st Vari abl e =
| Ni | Struct| Vari abl e) Length = XDR_i nt
I nt eger ='1" XDR.int | 'J XDR_.long Arity = XDR_i nt
Doubl e ='D XDR_double Ver si on = <byte>
String ='S Length <byte>* XDR_i nt = <4 bytes, nsb first>
Li st ="'[" Term(List|Nl) XDR_| ong ;.= <8 bytes, nmsb first>
Ni | =] XDR_doubl e ::= <ieee doubl e, exponent first>
References

[1] A. D. Birrell and B. J. Nelson. Implementing Remote Prdgee Calls.ACM Trans-
actions on Computer Systems, 2(1), Feb. 1984.

[2] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lopezl G. Pueblarhe Ciao
Prolog System Reference Manual, 2000.

[3] S. Finne, D. Leijen, and E. Meijer. Calling Hell from Heavand Heaven from Hell.
In Proceedings of the International Conference on Functional Programming. ACM
Press, 1999.

[4] C. Luth and B. Wolff. sml_tk: Functional Programming for Graphical User Inter-
faces, Release 3.0.

[5] M. Meier. ProTcXI 2.1 User Manual, 1996.

[6] S. Novello, J. Schimpf, J. Singer, and K. Sh&CLiPSe Embedding and Interfacing
Manual, Release 5.2, 2001.

[7] R. SrinivasanXDR: External Data Representation Standard. Request for Comments
(RFCs) 1832. The RFC Editor, Sun Microsystems, Inc., 1995.

[8] Swedish Institute of Computer Scienc8 CStus Prolog User’s Manual, 1995.

[9] P. Tarau and B. Demoen. Language Embedding by Dual Cautiquil and State Mir-
roring. InProceedings of the 6-th Workshop on Logic Programming Environments,
ICLP94, 1994.

[10] S. Vinoski. CORBA: Intergrating Diverse Applicatiofithin Distributed Hetroge-
neous Environment$dEEE Communications, Feb. 1997.

[11] W3C. Extensible Markup Language (XML) 1.0 (Second Edition), 2000. available at
url: http://www.w3.0rg/YR/2000/REC-xmI-20001006.

15

