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Abstract 

CCSTOOL2: An Expansion, Minimization, and Verification Tool 
for Finite State CCS Descriptions 

A. van Rangelrooij and J.P.M. Voeten 

CCStool2 is an automated tool able to perform various computations on fsCCS (finite state 
CCS (Calculus of Communicating Systems)) descriptions, including expansion, reduction, 
abstraction, restriction, and strong and weak minimization and verification. Basically, 
CCStool2 behaves as a filter taking an input file containing an fsCCS description together 
with a command indicating the computation to be performed on that description, and 
generating an output file containing the result of the computation in the form of another 
fsCCS description and/or optionally a report file containing information concerning the 
performed computation. CCStool2 is efficient both in time and space, and can handle 
fsCCS descriptions with a relative large number of states and transitions. In contrast with 
other verification tools, graph generation (expansion) is performed very time-efficiently, 
probably due to the chosen fsCCS description language. The tool has been implemented 
in the programming language C and is portable to a wide range of computers and operating 
systems including MS-DOS and UNIX. 

The key feature of CCStool2 is modularity. The fsCCS description language is compo­
sitional, the input files and output files are in plain ASCII, and the provided functions 
can easily be combined to form more complex ones. Therefore, CCStool2 together with 
file-handling and text-handling commands and tools provide a powerful mechanism to use 
macros or scripts to define generic higher-order functions and specific complex tasks. 

Keywords: formal verification, formal specification, CCS. 

Van Rangelrooij A. and J.P.M. Voeten 
CCSTOOL2: An Expansion, Minimization, and Verification Tool 
for Finite State CCS Descriptions 
Eindhoven: Faculty of Electrical Engineering, Eindhoven University of Technology, 1994. 
EUT Report 94-E-284 

Address of the authors: 
Section of Digital Information Systems 
Faculty of Electrical Engineering 
Eindhoven University of Technology 
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands 



IV 

Table of Contents 

Table of Contents 

List of Figures 

List of Tables 

1 Introduction 
1.1 CCStool2 ..... . 
1.2 Related Work . . . . 
1.3 Report Organization 

2 Functionality 
2.1 Basic Functionality . . . . . . . . 
2.2 Syntactical and Seman tical Check 
2.3 State Relabeling. . 
2.4 Action Relabeling . 
2.5 Extraction. 
2.6 Abstraction 
2.7 Restriction. 
2.8 Expansion. 
2.9 Minimization Modulo Observational Equivalence. 
2.10 Minimization Modulo Strong Equivalence ... 
2.11 Reduction Modulo Observational Equivalence 
2.12 Observational Equivalence Verification 
2.13 Strong Equivalence Verification 
2.14 Combined Functions ..... . 

IV 

vi 

vii 

1 
1 
2 
3 

5 
6 
9 

10 
10 
10 
10 
10 
11 
12 
12 
13 
14 
15 
15 

3 Algorithms 17 
3.1 An Algorithm for Strong Equivalence Verification 17 
3.2 An Algorithm for Observational Equivalence Verification 21 
3.3 Two Minimization Algorithms . . . . . . . . . . . . . . . 24 
3.4 Two Algorithms for Reduction Modulo Observational Equivalence 25 

3.4.1 An Algorithm for Reduction Modulo Strongly-Connected r-Components 26 



Table of Contents 

3.4.2 An Algorithm for Reduction Modulo Single-r Chains 

4 Implementation 
4.1 Data Representation and Storage . . . . . . . . 

4.1.1 Basic Data Structures ......... . 
4.1.2 CCS Agent Representation and Storage. 
4.1.3 Skip List ................. . 
4.1.4 State-Partition Representation and Storage. 

4.2 Implementation Language and Environment 

5 Macro Functionality 

6 Performance 

7 Conclusions and Recommendations for Future Extensions 
7.1 Conclusions ............... . 
7.2 Recommendations for Future Extensions . 

A fsCCS Description Language of CCStool2 

References 

CCStool2 

v 

27 

31 
31 
32 
34 
37 
40 
43 

45 

51 

55 
55 
56 

57 

61 



VI 

List of Figures 

2.1 Flow diagram of the behaviour of eeStool2 6 
2.2 Parallel composit.ion of two I-place buffers 7 

3.1 Algorithm of procedure Bisim ....... 19 
3.2 Algorithm of procedure CheckUnstableBlock . 20 
3.3 Algorithm of procedure Refine . . . 20 
3.4 Algorithm of procedure T - Closure . . . . . 23 
3.5 Algorithm of procedure Closure ....... 24 
3.6 Algorithm of procedure Single - T partitioning 28 

4.1 Basic data structure . . . . . . . . . . . . . . . 33 
4.2 Data structure used to store the representation of the structure of ees 

agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 
4.3 Data structure used to store the representation of the names of ees agents 36 
4.4 Example of a skip list . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
4.5 Example of a top-down 1-2-3 skip list . . . . . . . . . . . . . . . . . . 38 
4.6 Example of a top-down 1-2-3 skip list and its linked-list representation 39 
4.7 Linked-list representation of an empty top-down 1-2-3 skip list . . . . 40 
4.8 Data structure used to store the representation of a state-partition block. 41 
4.9 Data structure used to store the representation of a state partition 42 

5.1 Macro verify ..... 
5.2 Macro rename . . . . . 
5.3 Macro direct_ve,rify . 
5.4 Macro combine .... 
5.5 Macro compos_ve,rify . 

46 
46 
47 
48 
49 



List of Tables 

6.1 
6.2 
6.3 

CCStool2 

Benchmark results of Milner's distributed scheduler ........... . 
Benchmark results of Milner's abstract distributed scheduler 
Benchmark results of Milner's abstract distributed scheduler usil}g compo­
sitional minimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vll 

51 
52 

53 



Vlll 



1 

Chapter 1 

Introd uction 

Currently, there is a growing interest within the Digital Information Systems Group in the 
use of formal specification, description, and verification techniques for the development of 
complex digital information systems. One of the techniques we are looking at is CCS (Cal­
culus of Communicating Systems) [MiI89, Ko091]. CCS is one of the first theories dealing 
in a formal way with the communication behaviour of parallel systems. Over the past years 
it has proven its usefulness in the specification and verification of complex parallel systems. 
A number of currently used formal specification, description, and verification techniques 
are (partially) based on CCS. 

In practice, CCS (and other algebraic process) descriptions tend to become rather large. 
Without the proper tools such descriptions become unmanageble. This especially applies 
to computations on CCS descriptions, such as expansion, minimization, and verification, 
which are rather laborious, time consuming, and prone to error if done by hand. In this 
report we describe an automated tool called CCStool2 which has been developed within the 
Digital Information Systems Group, and which is able to perform various computations on 
fsCCS (finite state CCS) descriptions. This chapter gives a global description of CCStoo12, 
relates it to already-existing tools, and gives an overview of the remainder of this report. 

Section 1.1 gives a global description CCStoo12. Section 1.2 describes a number of related 
tools. Section 1.3 contains an overview of the organization of the remainder of this report. 

1.1 CCStoo12 

We have developed CCStool2 with the following goals in mind: Firstly, it should offer 
a rather complete set of basic functions including expansion, minimization, and verifica­
tion (see below), which should be easily extensible to meet possible future requirements. 
Secondly, CCStool2 should support the possibility to combine these basic functions into 
user-defined macros or scripts. Thirdly, the tool should be efficient in both time and space. 
Since in practice space efficiency is more important than time efficiency [Kor91], we es-

CCStool2 



2 Related Work 

pecially put effort in the former. Last but not least, the tool should be easy to use, and 
portable to a wide range of computers and operating systems including at least MS-DOS 
and UNIX. 

CCStool2 offers the following main functions: 

• expanSIOn 

• reduction modulo observational equivalence 

• minimization modulo observational equivalence 

• minimization modulo strong equivalence 

• observational equivalence verification 

• strong equivalence verification 

Further, it offers the following supporting functions: 

• syntactical and semantical check 

• state relabeling 

• action relabeling 

• extraction 

• abstraction 

• restriction 

1.2 Related Work 

Several other automatic verification tools for the analysis of concurrent systems have 
been developed and are still under development. Examples are The Concurrency Work­
bench [CPS89, CPS93j, Auto & Autograph [BRSY89, RS90j, Winston [MSGS88j, and 
Clara [GS88j. They vary in the supported process algebras and process calculi, the offered 
functionality, and the efficiency in time and space. An overview and evaluation of a number 
of tools can be found in [Kor91j. 

1 Introduction 
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1.3 Report Organization 

In this report we describe the functionality of CCStoo12, the core algorithms implementing 
the main part of this functionality, various implementation aspects, and the macro func­
tionality. Further, it gives the results of several performance tests on CCStoo12. Finally, it 
presents the conclusions and some recommendations for future extensions. For information 
on how to install and use CCStoo12, see [VV94]. 

The remainder of this report is organized as follows: 

• Chapter 2 gives a detailed description of the functionality of CCStoo12. 

• Chapter 3 discusses the core algorithms implementing the main part of this function­
ality. 

• Chapter 4 describes various implementation aspects of CCStoo12. 

• Chapter 5 presents the macro functionality of CCStoo12. 

• Chapter 6 contains the results of several performance tests on CCStoo12. 

• Chapter 7 presents the conclusions and recommendations for future extensions. 

• Appendix A contains a context-free grammar of the fsCCS description language of 
CCStoo12. 

CCStool2 
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Chapter 2 

Functionality 

In this chapter we give a detailed description of the functionality of eeStool2. We assume 
that the reader is familiar with ees. For a formal introduction into ees we suggest [MiI89]. 
In [Koo9l] a link is established between theoretical work on ees and its application in 
several design fields. 

As mentioned in Chapter 1, eeStool2 can perform the following computations on fseeS 
(finite state eeS) descriptions: 

• syntactical and semantical check 

• state relabeling 

• action relabeling 

• extraction 

• abstraction 

• restriction 

• expansIOn 

• minimization modulo observational equivalence 

• minimization modulo strong equivalence 

• reduction modulo observational equivalence 

• observational equivalence verification 

• strong equivalence verification 

Section 2.1 presents the basic functionality of eeStool2. Sections 2.2-2.13 respectively 
give a detailed description of each of the computations listed above. Section 2.14 describes 
several combinations of computations. 

eeStool2 



6 Basic Functionality 

2.1 Basic Functionality 

Basically, CCStool2 behaves as a filter taking an input file containing an fsCCS description 
together with a command indicating the computation to be performed on this description, 
and generating an output file containing the result of the computation in the form of 
another fsCCS description and/or optionally a report file containing information concerning 
the performed computation. 

input file with fseeS description 

~ 
syntactical check 

semantical checks 

computation I 
output I~eneration report generation 

'" output file with fseeS description 
'it 

report file 

Figure 2.1: Flow diagram of the behaviour of eeStool2 

A flow diagram of the behaviour of eeStool2 is shown in figure 2.1. After reading an 
input file with an fseCS description, first a syntactical check is performed on this de­
scription. Next, various semantical checks are performed. If no syntactical or semantical 
errors are encountered, the indicated computation is performed. Finally, the result of this 
computation is decompiled into an fseeS description and written to an output file, and/or 
optionally a report is generated and written to a report file. 

An fseeS description cons:ists of a number of fseeS equations and a number of operators. 

2 Functionality 



Basic Functionality 7 

The fsCCS equations specify the "pure" behaviour of one or more finite state CCS agents. 
The operators specify certain operations to be performed on certain states or actions of 
these agents. Further, an fsCCS description may also contain comment. Appendix A 
contains a context-free grammar defining the fsCCS description language of CCStoo12. 
This language is based on the CCS description language described in [Por87] and on the 
so-called normal form of [Ko09l]. 

As an example we consider the parallel composition of two l-place buffers called BufAo 
and BufBo as shown in figure 2.2. 

~--------------------------------' , 
BufAo BufBo 

inA inA oulA .------. inS outS.-7"- oulA : 
, , 
L ________________________________ I 

Figure 2.2: Parallel composition of two l-place buffers 

These buffers may be specified by the following fsCCS agent expression: 

((BufAo I (BufBa [outA/inB])) \ {outAn [outA/outB] 

where 

BufAo ~ inA· BufAI 
d,j--

BufAI = outA· BufAo 

BufBo ~ inB· BufBI 
d,j--

BufBI = outB· BufBo 

An equivalent specification written in the fsCCS description language of CCStool2 is 

{ fsCCS description of the parallel composition} 
{ of t~o 1-place buffers } 

BufAO = inA? BufA1 
BufA1 = outA! BufAO 

BufBO = inB? BufB1 
BufB1 = outB! BufBO 

CCStoo12 
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start (BufAO, BufBO) 
link (outA!, inB?) 
invisible (outA!, inB?) 
relabel (outB!, outA!) 

Basic Functionality 

In this description we reco!~nize 4 fsCCS equations and 4 operators, as well as some com­
ment. The operators have the following general meaning: 

• The start operator defines the starting states of all agents involved. This operator 
implements the paranel operator· I . as defined in [MiI89]. 

• A link operator specifies a pair of actions which are connected. It implements both the 
relabel operator -If] and the action complementation operator: as defined in [MiI89]. 

• The invisible operator defines which actions are not externally observable. Depend­
ing on the computat:ion to be performed, this operator implements the restriction 
operator· \ . as defined in [MiI89] or the hiding operator I as defined in [Hoa8S]. 

• The relabel operator implements the action relabel operator -f.fl. relabel (a, b) 
indicates that all actions a must be renamed to b. 

All operators may occur more than once in any fsCCS description and have the following 
properties: 

• ... operatorJ ... operator2 ... = ... operator2 ... operatorJ ... 

• start ( ... , A, ... , B, ... ) = start ( ... , B, ... , A, ... ) 

• ... start (A J, ... , Am)'" start (B), ... , Bn)'" = 
... start (A), ... , Am, B), ... , Bn)······ 

• link ( a, b) = link ( b, a) 

• link (a, b)··· invisible (a, b) = 
link (a, b) ... invisible (a) = 
link (a, b) ... invisible (b) 

• invisible ( ... , a, ... , b, ... ) = invisible ( ... , b, ... , a, ... ) 

• invisible ( ... , a, ... , a, ... ) = invisible ( ... , a, ... , ... ) 

• ... invisible (aJ' ... , am) ... invisible (b l , ... , bn ) ••. = 
... invisible (al, ... , am., hI, ... , bn )······ 

As shown in figure 2.1, CCStool2 first checks the syntactical correctness of an fsCCS de­
scription. This is done usin;g a built-in combination of a lexical scanner, a recursive descent 
parser, and a compiler. Next, CCStool2 always checks whether this fsCCS description 
meets several context cond:itions in the following way: 

2 Functionality 



Syntactical and Semantical Check 9 

1. Check whether all information needed to perform the indicated function is present. 

2. Verify whether each state S defined as a NIL state (8 = NIL) is a proper NIL state, 
which means that S cannot perform any actions. 

3. Determine whether each defined start state is actually used in at least one fsCCS 
equation. 

4. If any start states are defined, the corresponding agents are extracted from the fsCCS 
description. The remaining semantical checks as well as the indicated computation 
are performed on these extracted agents. If no start states are defined, the original 
fsCCS description is used. 

5. Check whether each linked action is used in at least one fsCCS equation, is not a 
silent T action, and is linked to at most one other action. 

6. Determine whether each invisible action is used in at least one fsCCS equation, and 
is not a silent action. 

7. Verify whether each action to be relabeled is used in at least one fsCCS equation and 
is to be relabeled only once. Further, check that the T action is not involved in any 
relabel operator. 

Syntactical and semantical errors are reported by corresponding errOr messages. If no 
such errors are encountered, the tool performs the indicated computation. The result of 
this computation is decompiled into an fsCCS description and written to an output file. 
Further, the output file contains all, possibly adapted, operators found in the original 
fsCCS description, except in the following cases: 

• action relabeling consumes the relabel operators 

• abstraction and restriction both consume the invisible operators 

• expansion consumes the link operators and the invisible operators, and reduces the 
amount of start states to one 

Comment found in the original fsCCS description is not retained. 

2.2 Syntactical and Semantical Check 

This function performs the syntactical and semantical checks mentioned in Section 2.1. 
If no syntactical or semantical errors are encountered, the original fsCCS description is 
written to an output file in the structured form used in the example of Section 2.1. Further, 
the description is checked for so-called undefined NIL states. This are states which only 
appear on the right-hand side of an fsCCS equation. If such states are encountered, a 
corresponding warning is issued. In the output file these states appear as proper defined 
NIL states (see item 2 of semantical checks above). 

CCStool2 



10 State Relabeling 

2.3 State Relalbeling 

The state relabel function offers the possibility to replace the state names of all agents in 
an fseeS description specified by the start operators by new state names (Str)o, (Strh, 
(Str)2, ... , where (Str) denotes a user-definable character string (default the character 
string Q is used). The start states listed in the start operators are also relabeled. If no 
start states are defined, all states in the fseeS description are renamed. Next to the output 
file, a report file can be generated containing a list of all relabeled states and their new 
names. 

2.4 Action Relabeling 

Through action relabeling the action names in an fseeS description can be renamed. 
Action renamings are defined by the relabel operators, which are consumed. All action 
names contained in other operators are also renamed. 

2.5 Extraction 

Extraction can be used to extract one or more agents from one or more larger agents. The 
start operator specifies the agents to be extracted. Given such a start state, extraction 
searches for all reachable states. 

2.6 Abstraction 

Given an agent P and a set of actions L, one can compute the abstracted agent P / L, where 
I is the hiding operator as defined in [Hoa85]. The actions to be abstracted are defined 
by the invisible operators, which are consumed. 

2.7 Restriction 

Given an agent P and a set of actions L, restriction offers the functionality to compute 
the restricted agent P \ L, where· \ . is the restrict operator as defined in [Mil89J. The 
difference between hiding and restricting can intuitively be seen as follows: 

• Hiding a set of actions L permits the actions in L to occur unobserved, which basically 
amounts to replacing them by the silent T action in the fsCCS description . 

• Restricting a set of actions L prevents the actions in L from occurring. This basically 
amounts to removing them from the fseeS description. 

The actions to be restricted are specified using the invisible operators. 

2 Functionality 
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2.8 Expansion 

This function implements the expansion theorem as defined in [MiI89]. In the context of 
expansion the operators start, link, and invisible have the following meaning: 

• The start operators are used to indicate the initial states of all agents involved in the 
expansion process. 

• The link operators specify a pair of connected actions. If agents P and Q can perform 
actions p and q respectively, and if these actions are linked, P and Q may synchronize 
on these actions if p and q are not restricted, otherwise they have to synchronize, 
i.e., they may not perform actions p and q separately. Such a synchronization results 
in a silent (T) action. 

• The invisible operators define which actions are not externally observable. If an 
fsCCS description contains no invisible operators, it is implicitly assumed that all 
actions are observable. 

As an example, the expansion of the fsCCS specification of the two I-place buffers In 

Section 2.1 will result in the following fsCCS description: 

BufAOIBufBO = inA? 
Buf A 11 BufBO = tau 
BufAO IBufB1 = inA? 

+ outB! 
BufA11BufB1 = outB! 

start (BufAOIBufBO) 

relabel (outB!, outA!) 

BufA11BufBO 
BufAOIBufB1 
BufA11BufB1 
BufAOIBufBO 
Buf All BufBO 

Here, tau denotes the silent T action. Note that the relabel operator is retained. After 
performing an explicit action relabeling, we get the following result: 

BufAOIBufBO = inA? BufA11 BufBO 
BufA11BufBO = tau BufAO1 BufB1 
BufAOIBufB1 = inA? BufA11BufB1 

+ outA! BufAOIBufBO 
BufA11 BufB1 = outA! BufAlIBufBO 

start (BufAO1 BufBO) 

CCStool2 



12 Minimization Modulo Observational Equivalence 

2.9 Minimizatiion Modulo Observational Equivalence 

CCStool2 can be used to compute a minimal agent, with respect to the amount of states 
and transitions, which is observational equivalent (~) to a given agent. The start operator 
specifies the agents which have to be minimized. All agents which are not specified in this 
way are left out of the resulting minimal fsCCS description. If no start state is defined, it 
is assumed that all agents have to be minimized. Next to the output file, a report file can 
be generated containing a so-called state-partition table. This table indicates which states 
are observational equivalent. It also indicates which states are used as representatives (of 
the state equivalence classes) in the resulting fsCCS description. 

Consider, for example, the expanded and relabeled buffers of Section 2.8. The minimization 
of this example results in the following fsCCS description: 

BufAOIBufBO = inA? 
BufA1IBufBO = inA? 

+ outA! 
BufA11BufBl = outA! 

start (BufAOIBufBO) 

Buf All BufBO 
BufAlIBufB1 
BufAO1 BufBO 
Buf A 11 BufBO 

and in the following state-partition table: 

State Partition Table 

BufA1IBufBO (- (BufA1IBufBO. BufAOIBufB1> 
NIL (- (NIL> 
BufA1IBufB1 (- (BufA1IBufB1> 
BufAOIBufBO (- (BufAOIBufBO> 

This table shows, for example, that state BufAll BufBO is equivalent to state BufAO I BufBl, 
and that it is used to repre.sent the equivalence class <BufAll BufBO. BufAO I BufBl> in the 
resulting fsCCS description. 

2.10 Minimization Modulo Strong Equivalence 

Using this type of minimization one can compute a minimal agent, with respect to the 
amount of states and transjitions, which is strong equivalent (~) to a given agent. Except 
for the fact that this functionality deals with strong equivalence instead of observational 
equivalence, it is completely equivalent to the functionality described in the previous sec­
tion. 

2 Functionality 



Reduction Modulo Observational Equivalence 13 

2.11 Reduction Modulo Observational Equivalence 

Minimization modulo observational equivalence can be used to compute a minimal agent 
which is observational equivalent to a given agent. The worst-case complexity of this 
type of minimization is of order 0 (IQn, where IQI denotes the amount of states of 
the agent to be minimized. Next to minimization, CCStool2 offers the possibility for 
reduction. Reducing an agent means computing an agent which is observational equivalent 
but has fewer states and transitions. Reduction basically consists of deletion of all strongly­
connected T-components and of single-T transitions (see Section 3.4), and is performed in 
linear time. 

For example, reconsider the expanded and relabeled buffers of Section 2.8. The reduction 
of this example results in the following fsCCS description: 

BufAOIBufBO = 
BufAOIBufB1 = 

BufA11BufB1 = 

inA? 
inA? 

+ outA! 
outA! 

start (BufAOIBufBO) 

BufAOIBufB1 
BufA11 BufB1 
BufAOIBufBO 
BufAOIBufB1 

and in the following state-partition tables: 

State Partition Table of Strongly-Connected Tau-Components Reduction 

BufA11BufB1 <- <BufA1IBufB1> 
BufA11BufBO <- <BufA1IBufBO> 
BufAOIBufB1 <- <BufAOIBufB1> 
BufAOIBufBO <- <BufAOIBufBO> 
NIL <- <NIL> 

State Partition Table of Single-Tau Reduction 

NIL <- <NIL> 
BufA11BufB1 <- <BufA1IBufB1> 
BufAOIBufB1 <- <BufAOIBufB1, BufA1IBufBO> 
BufAOIBufBO <- <BufAOIBufBO> 

Note that in this case two state-partition tables are generated. The first is a result of the 
reduction modulo strongly-connected T-components and the second is a result of the single­
T reduction applied to the agent which is previously reduced modulo strongly-connected 
T-components. Both tables can easily be combined into a single partition table by substi­
tuting all state names in the right-hand side of the second table by the state names of the 
corresponding equivalence classes in the right-hand side of the first partition table. 

CCStool2 



14 Observational Equivalence Verification 

In the case of the expanded and relabeled buffers, reduction and minimization (modulo 
observational equivalence) yield similar results (except for the fact that different state 
representatives are used). Note that, in general, this will not be the case. 

2.12 Observational Equivalence Verification 

CCStool2 also supports the possibility to verify whether two agents are observational equiv­
alent. The original fsCCS description must contain start operators defining exactly 2 start 
states indicating the agents to be verified. The equivalence verification results in a positive 
or a negative answer. Further, a report file containing the state-partition table can be 
generated (see Section 2.9). 

Assume, for example, that we would like to verify whether the expanded and relabeled 
version of the buffers in Section 2.8 is equivalent to the minimal version in Section 2.9. 
This problem can be specified in terms of an fsCCS description as follows: 

BufAOIBufBO_l = inA? BufAllBufBO_l 
BufAllBufBO_l = tau BufAOIBufBl_l 
BufAOIBufBl_1 = inA? BufAllBufBl_l 

+ outA! BufAOI BufBO_l 
BufAllBufBl_l = outA! BufAllBufBO_l 

BufAOIBufBO_2 = inA? BufAOIBufBl_2 
BufAOIBufBl_2 = inA? BufAl1BufBL2 

+ outA! BufAOIBufBO_2 
BufAll BufBl_2 = outA! BufAOIBufBL2 

start (BufAOIBufBO_l, BufAOIBufBO_2) 

Equivalence verification results in the following message from CCStoo12: 

Agents BufAOIBufBO_l and BufAOIBufBO_2 are observational equivalent 

The resulting state-partition table is as follows: 

State Partition Table 

BufAllBufBO_l (- (BufAlIBufBO_l, BufAOIBufBl_1, BufAlIBufBO_2> 
NIL (- (NIL> 
BufAllBufBl_l (- (BufAlIBufBl_1, BufAlIBufBl_2> 
BufAOIBufBO_l (- (BufAOIBufBO_l, BufAOIBufBO_2> 

2 Functionality 
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2.13 Strong Equivalence Verification 

This functionality is equivalent to the functionality described in the previous section, except 
for the fact that it deals with strong equivalence instead of observational equivalence. 

2.14 Combined Functions 

CCStool2 provides the possibility to combine the reduction function described in Sec­
tion 2.11 with 

• expansion 
In this case reduction is used as a postprocessing step. First, the agents are expanded 
as described in Section 2.8. Next, the resulting agent is reduced. The fsCCS descrip­
tion of the reduced agent is written to an output file and optionally the resulting 
state-partition tables are written to a report file. 

• minimization modulo observational equivalence 
Now reduction is used as a preprocessing step. The agents to be minimized are first 
reduced and optionally the resulting state-partition tables are written to a report 
file. Next, the reduced agents are minimized as described in Section 2.9. The fsCCS 
description of the minimized agents is written to an output file and the resulting 
state-partition table can be appended to the (already existing) report file. 

• observational equivalence verification 
In this case reduction is also used as a preprocessing step. The agents to be verified 
are first reduced and optionally the resulting state-partition tables are written to a 
report file. Next, the reduced agents are verified as described in Section 2.12. The 
resulting state-partition table can appended to the (already existing) report file. 

Further, it is possible to combine expansion with reduction and/or with either observational 
or strong minimization as a postprocessing step. The fsCCS description of the minimized 
agent is written to an output file and optionally the resulting state-partition tables are 
written to a report file. 

CCStool2 
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Chapter 3 

Algorithms 

In Chapter 2 we described the functionality of CCStoo12. In this chapter we discuss the 
core algorithms which implement the following functions: 

• minimization modulo observational equivalence 

• minimization modulo strong equivalence 

• reduction modulo observational equivalence 

• observational equivalence verification 

• strong equivalence verification 

Section 3.1 describes the algorithm used to verify whether two agents are strong equivalent. 
Section 3.2 presents the algorithm used to verify observational equivalence. Section 3.3 
describes two minimization algorithms: one for minimization modulo observational equiv­
alence and one for minimization modulo strong equivalence. Section 3.4 discusses two 
algorithms for reduction modulo observational equivalence. 

3.1 An Algorithm for Strong Equivalence 
Verification 

Strong equivalence is defined on transition graphs. Vertices in these graphs correspond to 
the states a system may reach during execution, with one vertex being distinguished as 
the start state. The edges, which are directed, are labeled with the actions and represent 
the state transitions a system may undergo. The formal definition is as follows: 

Definition 3.1 
A transition graph is a quadruple (Q, q, Act, -+), where 

• Q is a set of states 
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• q E Q is the start state 

• Act is a set of actions 

• -> ~ Q x Act x Q is a derivation relation 

o 

We shall often write ql -'0. q2 to indicate that there is a edge labeled a from state ql 
to state q2. When a graph does not have a start state indicated, we shall refer to the 
corresponding triple as a transition system. A transition graph may contain a number of 
strong-equivalent states. Two states in a transition system are strong equivalent if there 
exists a strong bisimulation relating them. The formal definition of a strong bisimulation 
is as follows: 

Definition 3.2 
Let (Q, Act, -» be a transition system. Then a relation R ~ Q x Q is a strong bisimulation 
if R is symmetric and whenever ql R q2, the following holds: 

• If ql ~ q; then there is a q~ such that q2 ~ q~ and q; R q~. 

o 

When states ql and q2 are strong equivalent we often write ql ~ q2. 

Let GI = (QI, ql, Act, ->1) and G2 = (Q2, q2, Act, ->2) be two transition graphs satisfying 
QI n Q2 = 0. GI and G2 are strong equivalent exactly if the two start states ql and q2 are 
strong equivalent in the transition system (QI U Q2, Act, ->1 U ->2). 

The most popular technique to verify strong equivalence is based on partition-refinement 
algorithms [Kor91]. To decide whether two graphs TI and T2 are strong equivalent, one 
first takes the union T of these graph. Next, a partition-refinement algorithm is applied to 
this graph T. If the two start states of TI and T2 appear in the same equivalence class of 
the final partition of T, one can conclude that the graphs TI and T2 are strong equivalent. 

The partition-refinement all~orithm used in CCStool2 is based on the implementation of the 
Kanellakis-Smolka algorithm [KS83] as described in [Bou92]. This implementation exploits 
the fact that an equivalence relation on a set of states may be viewed as a partition, 
or as a set of pairwise-disjoint subsets called blocks, of the set of states, whose union 
is the set of states. In this representation a block corresponds to an equivalence class. 
Two states are equivalent exactly if they belong to the same block. Starting with the 
partition containing one block representing the trivial equivalence relation consisting of 
one equivalence class, the algorithm repeatedly refines this partition by splitting blocks, 
until the associated equivalence class becomes a bisimulation. To determine whether the 
partition needs further refining, the algorithm looks at each block in turn. If a state in a 
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block B has an a-derivative in a block Bf and another state in B does not, the algorithm 
splits B into two blocks, one containing the states having an a-derivative in Bf and the 
other containing the states that do not. A block Bf against which other blocks can be 
split is called unstable in the corresponding partition. If no blocks can be split against a 
certain block B", B" is called stable. If the algorithm cannot split any blocks anymore, the 
resulting equivalence relation corresponds exactly to bisimulation equivalence on the given 
transition system. The abstract algorithm is shown in figure 3.1. 

procedure Bisim (Q, Act, ---» 

[ 

] 

Stable Blocks := () 

Unstable Blocks := (Q) 
do UnstableBlocks oF () 

od 

B := First (UnstableBlocks) 
Delete (B, Unstable Blocks ) 
AddFirst (B, Stable Blocks ) 
CheckUnstableBlock (B, StableBlocks, UnstableBlocks) 

Figure 3.1: Algorithm of procedure Bisim 

Throughout the algorithm we maintain two lists of blocks. One is called StableBlocks 
which contains the blocks with respect to which each block of the current partition is 
stable. The other one, called UnstableBlocks, collects the blocks with respect to which 
stability still has to be checked for each block of the partition. Initially, StableBlocks is 
empty and UnstableBlocks contains the unique block of the initial partition. The loop of 
the algorithm repeatedly takes a block B from UnstableBlock and transfers it temporarily 
to StableBlocks. Then the procedure CheckUnstableBlock takes each block of the current 
partition and checks whether block B is stable with respect to those blocks. If B is not 
stable with respect to a certain block C, C is split into C1 and C2 which are both added 
to UnstableBlocks. Procedure CheckUnstableBlock is shown in figure 3.2. 

The function sort used in the procedure CheckUnstableBlocks determines all actions a with 
respect to a block B for which there exists a transition labeled a with a target state inside 
B, or formally 

sort (B) = {a E Act 1::3 sEQ::3 Sf E B : s ~ Sf} 
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proced ure CheckUnstableBiock (B, Stable Blocks , UnstableBlocks) 
[ 

] 

for all a E sort(B)andwhilefirst(StableBiocks) = B 

rof 

BlockSet :== {Bl I (Bl in StableBiocks V Bl in UnstableBlocks) A 

(3 s E Bl3 s' E B : s ~ s')} 
Refine (B, BlockSet, StableBlocks, UnstableBlocks, a) 

Figure 3.2: Algorithm of procedure CheckUnstableBlock 

procedure Refine (B, BlockSet, StableBiocks, UnstableBiocks, a) 
[ 

] 

do BlockSet i 0 A first (Stable Block) = B 

od 

C :E BlockSet 
if splittable (C, a, B) 

fi 

Ct :'= {s E C I 3 s' E B : s ~ s} 
C2 :'= C \ Ct 

delete ( C, Stable Blocks ) 
delete (C, UnstableBlocks) 
add (Ct , Unstable Blocks ) 
add (C2, UnstableBlocks) 

BlockSet :=, BlockSet \ { C} 

Figure 3.3: Algorithm of procedure Refine 
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Procedure CheckUnstableBlock is a loop over the sort of B while it does not appear as 
an unstable block (with respect to itself). Inside the loop a set of blocks BlockSet is 
determined. This set contains all blocks in StableBlocks or UnstableBiocks from which 
there exists an outgoing transition labeled a with a target state inside B. These blocks are 
potential candidates to be split against block B. After BlockSet is calculated, all blocks in 
this set are refined in procedure Refine which is shown in figure 3.3. 

Procedure Refine loops over all blocks in BlockSet while B is still stable. In the body of 
the loop an element C of BlockSet is taken. Function splittable checks whether C can 
really be split against B. This is the case if block C contains a state with an a-derivative 
in block B and another state with an a-derivative not in B, or formally 

splittable (C, a, B) = (::l sEC::l s' E B : s ~ s') 1\ (::l sEC::l s' rf. B : s ~ s') 

If C is splittable, it is split into sets Cl and C2 • Cl contains all states of C having an 
a-derivative in Band C2 contains all other states of C. After this, C is deleted either from 
UnstableBlocks or from StableBlocks. Both sets Cl and C2 are added to UnstableBlocks. 

The worst-case complexity of algorithm Bisim is 0 (1->1 * 1 Q I). A more sophisticated 
partition-refinement algorithm has been developed by Paige and Tarjan [PT87]. This lat­
ter algorithm has a worst-case complexity of order 0 (1->1 * log 1 Q I), but only becomes 
practical in the case of large graphs. For graphs of a normal size it has too much over­
head [Kor91]. Further, there is not yet enough evidence to suggest that it is appreciably 
faster in practice [CPS93]. 

3.2 An Algorithm for Observational Equivalence 
Verification 

Observational equivalence is one of the most-used behavioral equivalences to verify con­
current systems. Observational equivalence on a transition graph is defined as follows: 

Definition 3.3 
Let (Q, Act, -» be a transition system. 

• If t E Act', then t E (Act \ {T})* is the sequence obtained by deleting all occurrences 
of T from t. 

• If t = al ... an E Act*, then s ~ s' if s( 2,)* ~ (2,)* ... (2,)' ~ (2,)' s'. 

• A binary relation R <;; Q x Q is a weak bisimulation, if R is symmetric and whenever 
R 'f a , th f ' ii, d' R ' ql q2:] q] -> ql en or some q2, q2 ==> q2 an ql Q2' 

o 
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As in the case of strong equivalence, two states in a transition system are observational 
equivalent if there is a weak bisimulation relating them. If states ql and q2 are observa­
tional equivalent, we often write q, ~ Q2. Verifying whether two transition graphs are 
observational equivalent is done in the same way as in the case of strong equivalence. It is 
not hard to proof that the definition of a weak-bisimulation relation is equivalent to 

Definition 3.4 
Let (Q, Act, -+) be a transition system. A binary relation R <:;:: Q x Q is a weak bisimulation 
if R is symmetric, and whenever q, R q2 

o 

According to this definition we can decide whether two states q, and q2 in a transition 
system (Q, Act, -+) are observational equivalent in the following way: 

• Construct relation =0;. <:;:: Q x Ad x Q. This relation is called the reflexive-transitive 
closure of -+. An algorithm for constructing =0;. is described below . 

• Decide whether q, and q2 are strong equivalent in transition system (Q, Ad, =0;.) 

where lkt = {a 1 a E Act} = {c:} U Act \ {T}. This can be decided using the 
algorithms described in Section 3.1. 

Our algorithm for calculating relation =0;. is based upon the following property: 

Property 3.1 
=o;.=~U~-+~ 

o 

The algorithm consists of two procedures called T- Closure and Closure. Procedure T­
Closure (shown in figure 3.4) calculates, given a transition system (Q, Act, -+), the corre­
sponding relation~. Procedure Closure (shown in figure 3.5) takes as input a transition 
system (Q,Act,-+) together with relation ~ and computes =0;.. 

The procedure T- Closure loops over all states of the transition system. For every state s it 
is determined which states can be reached, starting in s and by performing only (zero or 
more) T steps. To establish this two sets States Visited and States To Visit are maintained. 
States Visited contains all states which have already been inspected. States which still have 
to be visited are stored in States To Visit. This algorithm is a variant of the famous Single 
Source Shortest Path algorithm of Edger W. Dijkstra [AHU87]. The worst-case complexity 

of T-Closure is () (I Q n. 
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proced ure T - Closure ( Q, Act, -> ) 

[ 

] 

=S:=0 
fors E Q 

rof 

States To Visit := {s} 
States Visited := 0 
do States To Visit i 0 

od 

s' :E States To Visit 
=S := =S U {(s,c, s')} 
States To Visit := States To Visit u {s" E Q I s' ~ s"} \ 

(StatesTo Visit U States Visited) 
States To Visit:= States To Visit \ {s'} 
States Visited := States Visited U {s'} 

Figure 3.4: Algorithm of procedure T - Closure 

23 

The first main loop of Closure calculates relation ==¢>' = ~ U ~~. For every state s it 
determines every state s' which is reachable (with respect to ~ ) from s by only performing 
T steps. After that all transitions of the form s' ~ s" are determined and finally transition 
(s, a, s") is added to ==¢>'. The second part of the algorithm uses ==¢>' to calculate relation 
==¢>. It operates in a similar way as the first part. 

Procedure Closure has a worst-case complexity of order 0 (I Q n and thus the complexity 

of calculating the reflexive-transitive closure ==¢> is 0 (I Q n. In the literature there are 

numerous sub-cubic reflexive-transitive closure algorithms which work in 0 (I Q 1
2.49) or 

less [Kor91]. However, these algorithms tend to be practical only for large values of 1 Q 1 

(i.e., 1 Q I> 1000) [BS87]. 

We conclude this section by noting that, by using the algorithms described in this section 
and in the previous section, observational equivalence can be decided in worst-case time 

0(1 Q n· 
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proced ure Closure ( Q, Act, ->, ~ ) 
[ 

] 

~':=:4}. 
fors E Q 

for s' E {t I::: Q I s ~ t} 

for(a,s") E {(b, t) I s'1. tAb f r} 

=-':==-' U{(s, a, s")} 
rof 

rof 
rof 

• =-:==-
fors E Q 

! 
for(a,s') E {(b, t) Is=-' tAb f r} 

for s" E -[ t E Q I s' ~ t} 

=-:='==? U{(s, a, s")} 
rof 

rof 
rof 

Figure 3.5: Algorithm of procedure Closure 

3.3 Two Minimization Algorithms 
Algorithms which compute state partitions or bisimulation relations are often used as a 
preprocessing step in the computation of minimal transition graphs. A minimal graph is 
equivalent to the original graph and is minimal in states and edges. 

Let (Q, q, Act, -+) be a transition graph. An algorithm for constructing a minimal graph 
(Q', q', Act', -+') which is strong equivalent to the original is the following: 

• The set of actions Act' becomes equal to the set of actions Act. 
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• Calculate the state partition P of transition system (Q, Act, -+). The blocks of P 
become the states of Q'. 

• The start state q' becomes the unique block B for which q E B holds. 

• If Bl and B2 are blocks in P, BE, E B1, BE, E B2 and if BE, ...'; BE" then add triple 
(B1 , a, B2) to relation -+'. 

Computing a graph which is minimal modulo observational equivalence is done in a similar 
way. The algorithm is as follows: 

• The set of actions Act' becomes equal to the set of actions Act. 

• Calculate the state partition P of transition system (Q, Act, ==}) (as defined In 

Section 3.2). The blocks of P become the states of Q'. 

• The start state q' becomes the block B for which q E B holds. 

• If Bl and B2 are blocks in P, BE, E B1, BE, E B2 and if SE, ...'; SE, and if Bl =fi B2 and 
a =fi r, then add triple (B1 , a, B2) to relation -+'. 

Note the differences between the last parts of both algorithms. Because observational 
equivalence "ignores" r-loops, i.e., B ~ B + r : B, these are never added to relation -+'. 
In the case of strong equivalence r-loops may not be left out the relation. 

3.4 Two Algorithms for Reduction Modulo 
Observational Equivalence 

As described in the previous section, minimization modulo observational equivalence and 
verification modulo observational equivalence are based upon the following two algorithms: 

• an algorithm for calculating the reflexive-transitive r-closure with a worst-case com­

plexityof 0 (I Q n 
• a partition-refinement algorithm with a worst-case complexity of 0 (1-+1 * 1 Q I) 

The partition-refinement algorithm is applied to the reflexive transitive r-closure of the 
transition system for which a state partition has to be calculated. Such a closure can 
become extremely large, especially if the transition system contains a lot of r-transitions. 
For example, consider transition system T = (Q, Act, -+) defined as follows: 

• Q = {Ql,···, QlOOO} 

• Act = {r} 
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• -> = {( Qi, r, Qi+tlll ::; i ::; 1000} U {(l000, r, In 

This transition system T has 1000 states and 1000 transitions. The reflexive-transitive 
r-closure of T, however, has as many as 1000 states and 1000000 transitions! This is 
due to the fact that T has a large r-cycie Qt, Q2"'" QtOoo. In general, transitions sys­
tems which have (large) r-cycles may have huge reflexive-transitive r-ciosures. This can 
make minimization modulo observational equivalence and verification modulo observational 
equivalence very expensive in both time and space. 

This section describes two algorithms which reduce the amount of r-transitions as well 
as the amount of states of a transition system in linear time. The first algorithm deletes 
so-called strongly-connected r-components. The second algorithm deletes so-called single-r 
chains. Both algorithms reduce modulo observational equivalence. 

3.4.1 An Algorithm for Reduction Modulo Strongly-Connected 
T-Components 

We will start with the defin.ition of an equivalence relation x. 

Definition 3.5 
Let T = (Q,Act,-» be a transition system. We define relation x C;;; Q x Q as follows: 

o 

Two states qt and q2 are re:iated by relation x if and only if there exists a path consisting 
of r-transitions from qt to q2 as well as from q2 to qt. It is easy to proof that X is an 
equivalence relation. This implies that x induces a partitioning of the set of states of 
transition system T. If q E Q we will denote the equivalence class induced by q as 

[qJx={rEQlqxr} 

We will call such an equivalence class a strongly-connected r-component, since such a class 
is a strongly-connected component of the transition system T obtained by deleting from 
T all non-r transitions, i.e., all transitions which are not labeled with a r. 

The algorithm is based upon the following property: 

Property 3.2 
Let (Q, Act, -» be a transition system and let q E Q. Then for all q E Q the following 
holds: 

o 
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This property implies that, given a transition graph T = (Q, q, Act, --+), we can construct a 
reduced observational-equivalent transition-graph T' = (Q', q', Act, --+') using the following 
algorithm: 

• The set of actions Act' becomes equal to the set of actions Act. 

• Calculate the state partition P induced by relation x of transition system T. The 
blocks of P become the states of Q'. 

• The start state q' becomes the unique block B for which q E B holds. 

• If Bl and B2 are blocks in P, S8, E B1, S8, E B2 and if S8, ~ S8" then add triple 
(Bl' a, B2) to relation -t'. 

The calculation of the state partition P of a transition system T = (Q, q, Act, -t) amounts 
to the calculation of all strongly-connected r-components of T which are obtained by 
deleting all non-r transitions from T. This can be performed by the well-known linear­
time algorithm Strongconnect. This algorithm is based upon depth-first search and was 
first exploited by Tarjan [Tar72]. 

3.4.2 An Algorithm for Reduction Modulo Single-r Chains 

The main idea behind this algorithm is that, if two states are connected by precisely one r­
transition (are "single-r connected"), those states are observational equivalent. In general, 
all states in a chain of pairwise single-r connected states are observational equivalent. To 
characterize such chains we will define an ordering relation 1;;;*. 

Definition 3.6 
Let (Q,Act,-t) be a r-loop free transition system, i.e., Vq E Q: ~ q(~)+q. 

o 

We define relation I;;; <; Q x Q as 

ql I;;; q2 iff ql ~ q2 and V Ci E Act: V q E Q : if ql ~ q then Ci = rand q = q2 

So, ql I;;; q2 if and only if ql has precisely one outgoing transition, which is labeled with a 
r action and which ends in Q2. 

We will write 1;;;* to denote the reflexive-transitive closure of 1;;;. It is not hard to proof 
that 1;;;* is an ordering and thus that (Q, I;;;*) is a POSET (Partially-Ordered SET). 

The algorithm is based upon the following property: 

Property 3.3 
Let (Q, Act, -t) be a r-loop-free transition system, let M be the set of maximal elements 
of the corresponding POSET ( Q, 1;;;*), and define [m] = {q 1;;;* m I Q E Q} for all m EM, 
then 
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• {[m]1 mE M} is a partitioning of Q, and 

• for all m E M for all ql, q2 E [m], ql and q2 are observational equivalent 

o 

Ordering relation !;* parti tions the set of states Q into a set of observational-equivalence 
classes. This set of equivalence classes is induced by the set of maximal elements of 
POSET (Q, !;*). A class [m] is called a single-T chain because [m] is a chain and all 
states in [m] are pairwise single-T connected. 

procedure Single _. T partitioning (Q, Act, -» 

[ 

] 

=7:= 0 
maximaLelemenLlist := £ 

forql E Q 
-> 

if there exists a q2 such that ql !;;; q2 
then =7:= =7 U {(q2,T,qt}} 
else Add (q}, maximaLelemenLlist) 

fi 
rof 
P:=0 
do maximaLdemenLlist i £ 

-> 

ad 

m := First (maximaLelemenLlist) 
Delete (m, maximaLelemenLlist) 
S := Reachable (m, =7) 
Add(S,P) 

Figure 3.6: Algorithm of procedure Single - T partitioning 

The state partitioning P can be calculated in linear time using the algorithm shown in 
figure 3.6. The first part of the algorithm constructs an " inverse" -T relation =7 such that 
ql =7 q2 if and only if q2 2, ql for all ql, q2 E Q. Also a list maximaLelemenLlist of 
all maximal elements of POSET (Q,!;) is built which is used in the second part of the 
algorithm. In this second part, for every maximal element m in the list, the set of states 
which are reachable from m in relation =7 is calculated using a variant of Dijkstra's Single 
Source Shortest Path algorithm [AHU87] and assigned to S. It is easy to see that this set 
S is equal to set [m]. 
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Note that the algorithm only operates properly if the transition system contains no r-loops, 
for example, after the strongly-connected r-components have been removed. 
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Chapter 4 

Implementation 

As mentioned in Chapter 1, CCStool2 should be efficient in both time and space. The use of 
fast algorithms such as those described in Chapter 3 is a necessary but not sufficient condi­
tion to be fulfilled to be time efficient. The complementary condition is to use combinations 
of a data representation and a data structure storing this representation which allow for a 
fast data manipulation as needed by these algorithms. At the same time these algorithms 
as well as both these data representations and these data structures should be space ef­
ficient. Since in practice space efficiency is more important than time efficiency [Kor91], 
special attention has been given to the former. La.5t but not least, the implementation 
language and environment should provide support for both these efficiencies. 

Section 4.1 describes the representation and storage of data within CCStoo12. Section 4.2 
discusses the choice of implementation language and environment. 

4.1 Data Representation and Storage 

This section presents three basic data structures supporting both a fast data manipulation 
and an efficient memory usage on which the data structures used in CCStool2 are based. 
This section also describes the representation and storage of the two main data objects 
in CCStoo12: CCS agents, and the state partitions as used in the partition-refinement 
algorithm discussed in Section 3.1. Further, this section presents the so-called skip list. 
Skip lists are used in the representation and storage of CCS agents to improve the search for 
the names of states and actions. This data structure has been introduced only recently as 
an alternative to balanced trees and self-adjusting trees. Skip-list algorithms are simpler, 
and therefore easier to implement, than, and provide significant constant-factor speed­
improvements over balanced-tree and self-adjusting-tree algorithms. 

Subsection 4.1.1 discusses the three basic data structures. Subsections 4.1.2 describes 
the representation and storage of CCS agents. Subsection 4.1.3 presents the skip list. 
Subsection 4.1.4 describes the representation and storage of the state partition. 

CCStool2 



32 Data Representation and Storage 

4.1.1 Basic Data Structures 

The data structures used in CCStool2 are based on three basic data structures each of 
which support both a fast data manipulation and an efficient memory usage. The first 
basic data structure is used when the amount of data to be stored is known and consists 
of a dynamically allocated one-dimensional array with a large enough size. 

The other two basic data structures are used when the amount of data to be stored in not 
known. There are several solutions to solve the problem of storing an unknown amount of 
data. The use of static arrays with a "large enough" predefined size does not provide a 
solution to this problem for apparent reasons. 

An obvious solution is to use a list-type data structure, but this creates the following new 
problems: 

• Manipulation of list-t.ype data structures tends to be time consuming. 

• List-type data structures can be very inefficient with respect to the memory usage 
for the following reasons: 

Each data item usually is stored in a separate memory block. Besides the item 
itself, a memory block also contains data needed by the memory-management 
scheme with a typical size of four or eight bytes. 

- Each item contains a pointer to the next item. 

This inefficiency especially applies if data items with a size of only a few bytes, such 
as booleans or words, need to be stored. 

Another solution is to use a dynamically {re)allocated one-dimensional array: One allocates 
an array which can store a certain amount of data. When the array is filled up, it is 
reallocated to store a certain larger amount of data, etc. Although this solution allows 
for a fast access to individual data items and has a low memory-management overhead, it 
does not provide a general solution for the problems of a slow data manipulation and an 
inefficient memory usage for the following reasons: 

4 

• Depending on the u8ed memory-management scheme, the memory may be frag­
mented in such a way that a reallocation results in a move of the array to be re­
allocated to a new memory location. With an array of a few hundred bytes this is 
not a problem, but moving an array of a size of several tens or hundreds of kilobytes 
can take a lot of time. 

• The memory may even be fragment.ed in such a way that, although the t.otal amount 
of free memory is sufficient to store the array to be reallocated, none of the free 
memory-blocks is large enough to store this array. 
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However, to store dynamically-sized character strings, representing, for example, state 
names and action names, this data structure is very suitable. Therefore, it is applied as 
such as the second basic data structure. 

A more general solution is to use a dynamically (re)allocated two-dimensional array. This 
array consists of one so-called column array and several so-called row arrays as shown in 
figure 4.1. The column array contains pointers to the row arrays. The row arrays contain 
the representation of the actual data. Initially, one allocates a column array to contain 
pointers to a certain amount of row arrays. Further, one allocates one row array. When this 
row array is filled up, one allocates a second row array, etc. When as many row arrays have 
been allocated as the column array can contain pointers to, the column array is reallocated 
to contain a certain larger amount of pointers to row arrays, etc. This solution does not 
only have the same advantages as using a dynamically (re )allocated one-dimensional array, 
but also solves the problems of a slow data manipulation and an inefficient memory usage. 

array 

t -

1 I I I I I I I I 
I row array 1 

-

~ I I I I 

-- -

I I I I 
I row array 2 , , , , - -, , , , - -

, 
I I I I 

I row array n-1 , 
-- --

-- --

I ... 
I I I I 

I row array n column array , 
- -

Figure 4.1: Basic data structure 

The key issue of this third basic data structure is the size of the row array. This size influ· 
ences the amount of data to be reallocated (the column array), the memory-management 
overhead (the number of blocks), and the memory waste due to a partially-filled last row 
array. Given a certain amount of data to be stored, the following applies: A large row 
array results in few column array reallocations and a low memory-management overhead, 
but also in a large waste of memory if the last row array is only partially filled. A small 
row array reduces this waste, but results in more column array reallocations and a larger 
memory-management overhead. Currently, the various data structures used in CCStool2 
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which are based on this data structure have been configured to accommodate for medium­
sized ees agents with row-array sizes ranging from 5 to 1000 data items depending on the 
amount of data items expected to be stored. 

To access the i-th item, one calculates the column-array index and the row-array index of 
this element as follows (using zero-based indices): 

column_army_index = i / row_array_size 
row_army_index - i-x * row_army....size 

Next, one uses these indices to access the item itself, e.g. as follows: 

4.1.2 CCS Agent Representation and Storage 

The following three types of operations are performed on ees agents in eeStool2: 

• manipulation of the st.ructure of ees agents, e.g. as in the abstraction and restriction 
functions (see Sections 2.6 and 2.7 respectively), and in the two closure algorithms 
used for observationa:l equivalence verification discussed in Section 3.2 

• manipulation of the names of states and actions, e.g. as in the state relabel and action 
relabel functions (see Section 2.3 and 2.4 respectively) 

• manipulation of both the structure and the names, e.g. as III the extraction and 
expansion functions (see Sections 2.5 and 2.8 respectively) 

For all three types of operations to be efficient in both time and space, the representation 
of ees agents is split into two parts, each of which is stored in a separate data structure. 
The first data structure stores the representation of the structure of the agent.s with the 
states and actions represented as numbers. The second data structure stores the names 
of these states and actions represented as strings, and provides a mapping of the numbers 
used in the representation of the structure to the actual names. This latter data structure 
also contains the skip lists (see Subsection 4.1.3) which are used to improve the search 
for these names as mentioned previously. Further, this second data structure also stores 
the defined NIL states, start states, linked actions, invisible actions, and relabel actions 
(see Section 2.1), with the first represented as numbers and the latter four represented as 
strings. 

Using the latter two basic data structure described in Subsection 4.1.1, the two data 
structures used to store the representation of ees agents become as shown in figures 4.2 
and 4.3 respectively. 
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agent 

~ ------I number I number number number I 

• • • states 
-------

,if 
--------numberi I number I number number 

• , • • actions 
--------, , , , • 

'" -------, , , , , number number number number nextstates , 
--------, , , , 

[j -------

+umbe'l numbe'l number number nextstates 
-------, , , , 

- - - --
number number number number 

~ • • states (cont'd) 
- - - --

, 
-'- - - --

number number number number 
, • • • actions 

--------

• V ------, , , , , number number number number nextstates ,. 
--------, , , , 

V - -- --
number number number number 

, • • • actions 
- - - --

• 'if -------, , , , , number number number number nextstates ,. 
--------, , , , 

Figure 4.2: Data structure used to store the representation of the structure of ees agents 
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~ • ... string string , , 
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string string , 

" • .... triple triple , 

.~r-~ triple 
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~~J ~I::I ::1 
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- - - - - - - -I &ring 1 &ring 1 state names 
________ . . (cont'd) 

-------

1 

triple 

-------

--------

1 

triple 

-------

triple 1 state name 
skip list 

1 state name 
skip list (cont'd) 

string 1 action names 

triple 1 action name 
skip list 

triple 1 action na me 
skip list (cont'd) 

-------,--,---, 

________ I number number NIL states 

~ ~ ~ _ ~ ~ ~ 1 string 1 string 1 start state names 

- n - - n 1 string 1 string 1 linked action 
string string names 

--------

- - - - - -- - .,--,..,--.-:-:--; 
string string 

1-:--:-+-:-:----; relabel action 
string string names 

- - - - - - -- -'---'-------' 

Figure 4.3: Data structure used to store the representation of the names of CCS agents 
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4.1.3 Skip List 

In the data structure storing the representation of the names of the states and actions of 
CCS agents described in Subsection 4.1.2, these names are represented as strings which 
are stored in an array. Searching a string in an array using linear search takes a worst-case 
time of 0 (n) with n the number of strings. For the names of the start states, restricted 
actions, and linked actions, linear search is not a problem given the facts that the amount 
of names usually is small and that the names are accessed only a few times. However, 
linear search can become a serious problem for the names of states and actions, since 
CCStool2 has to be able to handle CCS agents with a large amount of states and actions. 
Especially compilation and expansion, during which the amount of states and actions with 
corresponding names increases, suffer from this. 

The obvious approach to get worst-case search-costs of a order lower than 0 (n) is to use 
a binary-search scheme using a balanced tree or a self-adjusting tree. Binary search has 
a worst-case time of 0 (log n). However, balanced-tree and self-adjusting-tree algorithms 
are complex, hard to implement, and time consuming. 

head tail 

NI 

Figure 4.4: Example of a skip list 

An only-recently introduced alternative to balanced trees and self-adjusting trees is the 
so-called skip list [Pug90a, Pug90b, LD91, MPS92, PMP92j of which an example is shown 
in figure 4.4. Skip-list algorithms are simpler, and therefore easier to implement, than, 
and provide significant constant-factor speed-improvements over, balanced-tree and self­
adjusting-tree algorithms. The basic idea behind the skip list is to give certain nodes in 
a linked list not only a forward pointer to the successor node, but also to nodes "further 
away" to make it possible to skip one or more nodes when searching for a particular node. 
Searching for an element is done as follows: Starting at the top level of forward pointers 
of a dummy header-node, we traverse forward pointers that do not overshoot the element 
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being searched for. When no more progress can be made at the current level of forward 
pointers, the search moves down one level. When no more progress can be made at level 
1, we must be immediately in front of the node containing the element being searched for, 
if it is in the list. 

The original skip list [PugSIOa, Pug90b] is probabilistic in nature, i.e., given a set of values 
to be stored in a skip list and the insertion order of these values, the shape of the resulting 
skip list is not determined, but depends on the outcome of coin flips. Although the average 
search-cost of the probabilistic skip Jist is 0 (log n), the worst-case search-cost is 0 (n). 

In [MPS92] several determ:inistic versions of the skip Jist are presented that have a worst­
case search-cost of 0 (log n). We have chosen for the so-called top-down 1-2-3 skip list 
and especially for the linked-list representation of this type of skip list for reasons of code 
simplicity. Further, all operations on this type of skip list are performed in a top-down 
manner which eliminates the need to maintain a stack for the search path. The main 
characteristic of this type of skip list is that only 1 or 2 nodes with k - 1 forward pointers 
are allowed between two nodes with k forward pointers. An example is shown in figure 4.5. 

head tail 
r- - r-

... ... , ,. 
r- - - -

... ... • ... ... Nil , , , , 
f- r- r- - r- - r- f- - -

... ... ... ~ ... ... ... , , , , - , , , 
~ r- '- - r- - r- r- - - ~ 

9 13 20 30 39 41 48 51 55 
~ - ~ ~ - ~ ~ - -

Figure 4.5: Example of a top-down 1-2-3 skip list 

Each node in this skip Jist has two pointers: one forward pointer to the successor node 
at the same level and one pointer to the node at the next lower level. The skip list has 
a dummy node head and two sentinel nodes bottom and tail to avoid special cases in the 
algorithms. Further, to avoid a level of indirection, each node in which a comparison is 
made also contains the element needed for this comparison. Figure 4.6 shows another 
example of a top-down 1-2·3 skip list and its linked-list representation. Figure 4.7 shows 
the linked-list representation of an empty top-down 1-2-3 skip list. 
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head tail 

, , , , 
- nil 

... ... ... ... -'" , , , , , 
- -

20 30 40 50 

-

head tail 

1 ,It 
max max+1 

, 

,it ~ 
-

40 max 
... , 
, 

~ 

,it _L 
20 30 ~ 50 max -... ... ... '" 

, , , , -
- -

~I' 
,it ,It , , , V 

bottom ... , 
~ , 

L1' 

Figure 4.6: Example of a top-down 1-2-3 skip list and its linked-list representation 
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head tail 

, , ,if 
max max+1 

" , 
~ , 

~, , , 

bottom-> 

kJ , 
~I' 

Figure 4.7: Linked-ilist representation of an empty top-down 1-2-3 skip list 

Skip lists are implemented using dynamically (re)allocated two-dimensional arrays de­
scribed in Subsection 4.1.1. Skip lists are used alongside string arrays as shown in figure 4.3 
to keep these arrays accessible in a linear way. The elements of the skip list are the indices 
into these arrays. 

4.1.4 State-Partition Representation and Storage 

As mentioned in Section 3.1, the partition-refinement algorithm used in eeStool2 is based 
on the Kanellakis-Smolka algorithm [KS83]. The data structure used to store the repre­
sentation of the state partition as used in our partition-refinement algorithm is based on 
the one described in [Bou9:!]. 

As also mentioned in Section 3.1, the partition-refinement algorithm maintains two block 
lists called UnstableBlocks and StableBlocks. Each block contains three lists: a list of the 
states in the block (state list), a list of the transitions of which the target states are states 
in the block (transition list) and a list of the actions through which the states in the block 
can be reached (action list). For efficiency reasons the block lists contain pointers to the 
blocks instead of the blocks themselves. 

The states in the state list and the actions in the action list are represented as num­
bers which correspond with their respective numbers in the representation of the struc­
ture of a ees agent described in Subsection 4.1.2. For each state a 2-tuple of the form 
(block, marker) is maintained for various computational purposes with block a pointer to 
the block that state belongs to and marker a boolean. Since the amount of states is known 
when building the initial partition (through maintenance of a counter in the representa-
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tion of the structure of a ees agent), a dynamically allocated one-dimensional array as 
described in Subsection 4.1.1 is used to store the representation of these 2-tuples. The 
state numbers in the state list are used as indices in this array. 

The transitions are represented as 3-tuples of the form (sourcestate, action, targetstate) 
of which the elements are also represented as numbers which correspond to their respec­
tive numbers in the representation of the structure of a ees agent. Since the amount 
of transitions also is known when building the initial partition (also through maintenance 
of a counter in the representation of the structure of a ees agent), again a dynamically 
allocated one-dimensional array as described in Subsection 4.1.1 is used to store the rep­
resentation of these 3-tuples. The transition list contains the indices in this array of the 
transitions in the list represented as numbers. 

Using the basic data structures described in Subsection 4.1.1, the two data structures used 
to store the representation of a state-partition block and a state partition become as shown 
in figures 4.8 and 4.9 respectively. 

block 
------

.... .... number number number number state list , , 
------

-------

~ number number number number state list (cont'd) , , , ------

------

~ .... number number number number transition list , 
- - - --

- - - --

~ number number number number transition list (cont'd) , , , , - - - --

--------

" .... number number number number action list , , 
--------

- - - --

~ number number number number action list (cont'd) , , , , - - - --

Figure 4.8: Data structure used to store the representation of a state·partition block 
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partition 

I~l-------, state stab~ state state state state states info , info info info info info Info 
--------

lran-
lran~--------

Iran- lran- lran- transitions sition sition silion sition sition silion 
--------

-------
~ " • • unstable block list .' 

-------, ; 'If 
block block , , , , 

L~ ~ ~ ~ ~ ~ ~ ~ ~ IP unstable block list (cont'd) 

B B 
" 

., • ~ ~ ~ ~ ~ ~ ~ ~ IP stable block list , ., 

\ ; 

block B , , , , 
-------

,,~ • • stable block list (cont'd) 

------, ; ,If 

block block 

Figure 4.9: Data structure used to store the representation of a state partition 
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4.2 Implementation Language and Environment 

One of the problems in implementing CCStool2 is the access to the available memory 
resources. The way these resources are made available to a program depends on the run­
time environment of the program. To keep a program (as much as possible) independent 
of the way these resources are made available to it, and thereby "easily" portable, the 
run-time environment has to present these memory resources as one (large) memory pool, 
provide a uniform interface to it and take care of the mapping of this memory pool onto the 
available memory resources. A UNIX environment provides such a run-time environment, 
but an MS-DOS environment does not. In an MS-DOS environment programs are run 
in the so-called real mode of the processor in which the available memory resources are 
limited to 640kb. To access more memory, usually available as XMS and/or EMS, special 
code is needed which makes the program less portable to other environments. This latter 
approach is not needed, if a so-called DOS extender is used. Such an extender creates a 
run-time environment of the type described above by forcing the processor to run in the 
so-called protected mode. 

We have chosen to implement CCStool2 in the programming language C for the following 
reasons: 

• C is supported on a wide variety of computers and operating systems. This should 
make it easy to port a program written in C from one computing environment to 
another, especially if written in ANSI C. 

• Implementations in C are in general efficient in both time and space. 

• C makes it possible to implement pointer-based and array-based data structures very 
efficiently. 

We have used the GNU C compiler which is available for both MS-DOS and UNIX envi­
ronments. There are two MS-DOS ports of this compiler available, both of which include 
a DOS extender. For more information on this, see [VV94]. 
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Chapter 5 

Macro Functionality 

CCStool2 has the following properties: 

• The fsCCS description language is compositional. This means that the concatenation 
of two syntactically correct fsCCS descriptions is again a syntactically correct fsCCS 
description. 

• The input files and output files are plain ASCII files. 

• The provided functions can easily be combined to form more complex functions. 

The combination of these three properties together with file-handling and text-handling 
commands and utilities provide a powerful mechanism to use macros or scripts to define 
generic higher-order functions and specific complex tasks. 

In this chapter we give a number of examples demonstrating this mechanism. In these 
examples we use UNIX file-handling commands as well as CCStool2 commands. For the 
specific syntax of these latter commands, see [VV94]. 

Example 1 

The first example is a macro to verify whether two agents are observational equivalent. 
Both agents are described in separate files. The macro is called verify and is invoked as 

verify file! file2 

The body of the macro itself is shown in figure 5.1. 

Example 2 

A second example is a macro to rename a single action action! in an fsCCS description 
to action2. This macro is called rename and is used as 

rename file action! action2 

The body of this macro is shown in figure 5.2. 
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5 

#!/bin/sh 

# concatenate both input files 
cat $1 $2 > dummy.ccs 

#call CCSt;0012 to verify observational equivalence 
ccstool2 ~. -0 dummy. ccs 

# delete t.emporary file 
rm dummy. c:cs 

Figure 5.1: Macro verify 

#!/bin/sh 

# generate a temporary file vith a relabel operator 
echo "relabel ($2, $3)" » relabel.ccs 

# concatenate this file and the fsCCS description 
cat $1 relabel. ccs > dummy. ccs 

# call CCStool2 to perform the action relabeling 
ccstool2 1 -a dummy.ccs $1 

# delete tllmporary files 
rm relabel. ccs 
rm dummy. CGS 

Figure 5.2: Macro rename 
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Example 3 

A frequently occurring problem is the following: Given a specification Spec. Verify whether 
a potential implementation (II I 12 I ... I In) \ L ~ Spec. 

Assume that agents II, ... , In and Spec are described in separate files. Assume further that 
\L is described in a separate file usin·g the appropriate link and invisible operators. We 
write a macro direct_verify invoked as 

direct_verify I L n Spec 

where I denotes the set of implementation components stored in the files I1, ... , In, L 
denotes the set of restrictions, n indicates the amount of components, and Spec is the 
specification. 

The body of this macro is shown in figure 5.3. 

#!/bin/sh 

# concatenate restrict information and minimized components 
cp $2 X 
i=O 
Ilhile [ $i != 'expr $3' ] 
do 

i='expr $i + l' 
ccstool2 m -0 $l"$i" dummy.ccs 
cat dummy.ccs » X 

done 

# calculate the expansion and minimize the result 
ccstool2 q -0 X X 

# perform the actual verification 
verify $4 X 

• delete temporary file 
rm dummy.ccs 
rmX 

Figure 5.3: Macro direct_verify 

Note that the agents It, .. . , In are minimized before the actual expansion and verification 
is performed. In general, this can speed up the verification considerably (see Chapter 6). 
Note further that this macro uses the macro verify described in Example 1. 
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Example 4 

A possibly better approach to solve the problem stated in Example 3 arises from the 
property that in general (II I 12 I ... I In) \ L is observational equivalent to ( ... (((II I 
12 ) \ L2 ) I h) \ L3) ... I In) \ Ln for some properly chosen L2 , ••• , Ln. This property enables 
us to solve the problem compositionally. 

First, we write a macro combine (see figure 5.4) invoked as 

combine P Q L R 

which calculates the expansion and minimization of two agents stored in the files p and Q 

with restrict information in L and returns the resulting agent in R. 

#!/bin/sh 

# concatenate th .. tllO components and their restrict information 
cat $1 $2 $3 > dummy. ccs 

# minimize the s .. parate components 
ccstool2 m -0 dwnmy.ccs dwnmy.ccs 

# calculate the "xpansion and the minimization 
ccstool2 q -0 dwnmy.ccs dwnmy.ccs 

# relabel the states 
ccstool2 1 -s dwnmy.ccs $4 

# delete temporary file 
rm dwnmy.ccs 

Figure 5.4: Macro combine 

Next, we use this macro together with the macro verify (see Example 1) in compos_verify 
(see figure 5.5). This macro is invoked as 

compos_verify I L n Spec 

where I, n, and Spec have the same meaning as in direct_verify of Example 3, and L 
denotes the set of restrictions stored in the files L2, ... , Ln. 
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#!/bin/sh 

# combine the components 
combine $1'1' $1'2' $2'2' X 
i=2 
while [ $i != 'expr $3' ] 
do 

i='expr $i + l' 
combine X $1"$i" $2"$i" X 

done 

# perform the actual verification 
verify X $4 

# delete temporary file 
rmX 

Figure 5.5: Macro compos_verify 

49 

We conclude this chapter by remarking again that concatenating two valid fsCCS descrip­
tions always results in a syntactically correct fsCCS description. However, the resulting 
description is not necessarily semantically correct due to the fact that concatenation can 
introduce double-linked actions and/or double-to-be-relabeled actions. Further, concatena­
tion can introduce clashes of state names and action names. 
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Chapter 6 

Performance 

The most-used benchmark for determining the performance of verification tools is the mini­
mization modulo observational equivalence of Milner's distributed scheduler [Fer89, GV90, 
EFT91, CPS93]. This scheduler consists of a starter process and N schedule processes. 
These processes are expressed in CCS [MiI89] as follows: 

Starter '!;! Cl • 0 

C1 '!;! Cl • al . (b1 • C2 • C1 + C2 • b1 • C1 ) 

C2 '!;! C2' a2 • (b2 • C3' C2 + C3 • b2 • C2) 

The specification of the scheduler is 

I N I states I transitions II AUTO I Aldebaran I CCStool2 I 
4 97 241 0.5s 0.26s 0.17s 
5 241 721 1.9s 0.88s 0.53s 
6 577 2017 8.0s 2.6s 1.7s 
7 1345 5377 38s 7.2s 5.9s 
8 3073 13825 201s 21s 23s 
9 6913 34561 - 56s lOIs 

10 15361 84481 - 160s 452s 
11 33794 326661 - * 2169s 

Table 6.1: Benchmark results of Milner's distributed scheduler 
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figures available for these two tools of the execution of the complete "filter" process de­
scribed above, we find it very hard to draw any conclusions with respect to the relative 
time performances of the execution of the complete process. 

The benchmark results described above are obtained using a minimization process in which 
the starter process and the schedule processes are combined into a single process which 
subsequently is minimized. In practice, such an approach can be very inefficient in both 
time and space. As mentioned in Chapter 5, it is often more efficient to minimize systems 
in a compositional way. We applied a compositional-minimization macro, similar to the 
verification macro of Example 3 in Chapter 5, to the abstracted scheduler. The results 
of this benchmark are shown in table 6.3. Furthermore, we used a macro to generate the 
scheduler processes automatically. 

N I states I transitions I CCStool2 I 
4 97 241 0.18s 
8 241 721 0.38s 

16 220 223 0.78s 
32 236 239 1.8s 
64 268 271 5.2s 

128 2132 2135 21s 
256 2260 2263 104s 
512 2516 2519 773s 

1024 21028 21031 5954s 

Table 6.3: Benchmark results of Milner's abstract distributed scheduler using composI­
tional minimization 

Here, the amounts of states and transitions refer to the expanded scheduler. For N > 8 
these amounts are estimated. As far as we know no such figures are available for Aldebaran. 
For a scheduler with 128 schedule processes AUTO needs approximately 30 seconds to 
compute the minimal observational-equivalent [Bou92]. 

If we assume that the partitioning algorithm of CCStool2 is of order 0 (I Q n, we estimate 

that it would take about 101000 years! to minimize a scheduler with 1024 components in a 
non-compositional way. 
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6 Performance 



Chapter 7 

Conclusions and Recommendations 
for Future Extensions 

7.1 Conclusions 

55 

CCStool2 is an easy-to-use and automated tool which can perform various computations 
on fsCCS (finite state CCS) descriptions. The tool offers a rather complete set of ba­
sic functions including expansion, reduction, minimization, verification, state relabeling, 
action relabeling, abstraction, and restriction, which is easily extensible to meet possible 
future requirements. 

CCStool2 behaves as a filter taking an input file containing an fsCCS description together 
with a command indicating the computation to be performed on the fsCCS description, and 
generating an output file containing the result of the computation in the form of another 
fsCCS description and/or optionally a report file containing information concerning the 
performed computation. 

An fsCCS description consists of a number of fsCCS equations and a number of operators. 
The fsCCS equations specify the "pure" behaviour of the finite state CCS agents. The 
operators specify certain operations to be performed on certain states or actions of these 
agents. 

CCStool2 is efficient in both time and space. Since in practice space efficiency is more 
important than time efficiency, we especially put effort in the former. 

The minimization algorithms are based on the partition-refinement algorithm of Kanellakis 
and Smolka, and have a worst-case complexity of order 0 (I Q n. The tool also contains 
two reduction algorithms which have a linear-time complexity. (n contrast to other veri­
fication tools, graph generation (expansion) is performed very efficiently, probably due to 
the chosen fsCCS description language. 
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Most data structures are based on dynamically (re)allocated two-dimensional arrays which 
support both a fast data manipulation and an efficient memory usage. Further, to improve 
the search in (very) large amounts of data, an only-recently introduced alternative to 
balanced trees and self-adjusting trees, called skip lists, is used. 

CCStool2 has been implemented in the programming language C to keep it portable to a 
wide variety of computers and operating systems, to obtain an implementation which is 
efficient in both time and space, and to be able to implement pointer-based and array-based 
data structures very efficiently. We have used the GNU C compiler which is available for 
both MS-DOS and UNIX environments. To circumvent the well-known 640 kbyte memory 
limit of MS-DOS, a so-called DOS extender has been used. 

The fsCCS description language is compositional, the input files and output files are in 
plain ASCII, and the provided functions can easily be combined to form more complex 
ones. Therefore, CCStool2 together with file-handling and text-handling commands and 
tools provide a powerful mechanism to use macros or scripts to define generic higher-order 
functions and specific complex tasks. 

7.2 Recommendations for Future Extensions 

The current version of CCStool2 provides only a basic set of functions. A number of 
practically applicable functions are not yet supported. For instance, it would be useful, 
especially in the context of digital system design, to support multi-way synchronization as 
in CSP [Hoa85]. To this we could, for example, add a multi-link operator and a multi-way 
expansion function. 

Currently, the most famous equivalence relation is observational equivalence. However, a 
number of other useful equivalence relations have been defined which could be added, such 
as failure equivalence, test equivalence, and branching bisimulation. Also preorder checking 
and model checking are interesting possibilities to add to CCStoo12. Through preorder 
checking it is verified whether a specification is a potential implementation of another 
specification. Using model checking certain temporal properties of a specification can be 
proven, such as deadlock freedom and absence of individual starvation. 

Further, a more expressive (fs )CCS description language could be defined, which allows for 
an easier system specificat:ion. This language could be build in CCStool2 itself. An other 
approach is to develop a front-end which translates this languages into that of the current 
description language. However, the danger of a too powerful description language is that 
translation could become e:normously time consuming. 

7 Conclusions and Recommendations for Future Extensions 
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This appendix contains a context-free LL-1 grammar called GCCStooI2, which defines the 
syntax of the fsCCS description language implemented in CCStoo12. 

G CCStool2 is defined as 

GCCStool2 = (NCCStooI2, ~CCStooI2' RCCStooI2, SCCStoo12) 

NCCStooI2, the set of nonterminals, is defined as 

NCCStoo12 = {!sCCStext, Equation, GoalState, RestEquation, Start, RestStart, 
Link, Invisible, RestInvisible, Relabel, Comment, CommentChars, 
CommentChar, State, Action, RestName, Letter, Capita/Letter, 
SmaliLetter, Digit} 

The set of terminals ~ CCStool2 is defined as 

~CCStooI2 = {" NIL", "start", " link", "invisible", "relabel"} U ASCII 

The start symbol SCCStool2 is defined as 

SCCStool2 = fsCCStext 

CCStool2 
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ReeStool2 consists of the foUowing production rules: 

fsCCStext 
fsCCStext 
fsCCStext 
fsCCStext 
fsCCStext 
fsCCStext 
fsCCStext 

Equation 

GoalState 
GoalState 

RestEquation 
RestEquation 
RestEquation 

Start 

RestStart 
RestStart 

Link 

Invisible 

RestInvisible 
RestInvisible 

Relabel 

Comment 

-> c: 
-> Equation fsCCStext 
-> Start fsCCStext 
-> Link fsCCStext 
-> Invisible fsCCStext 
-> Relabel fsCCStext 
-> Comment fsCCStext 

-> State" = " GoalState 

-> "NIL" 
-> Action":" State RestEquation 

--+ t; 

-> Comment RestEquation 
-> "+" Action" :" State RestEquation 

-> "start" "(" State RestStart ")" 

---+ E 

-> "," State RestStart 

--+ "link" "C' Action"," Action ")" 

-> "invisible" "(" Action RestInvisible ")" 

--+ E 

-> "," Action Restlnvisible 

--+ "relabel" "(" Action"," Action ")" 

-> "{" CommentChars "}" 

Comment Chars -> c: 
Comment Chars -> CommentChar Comment Chars 

Comment Char -> ASCII \ { "{", "}" } 

State -> CapitalLetter RestName 

Action -> SmallLetter RestName 

A fseeS Description Language of eeStool2 
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RestName -+ c: 
RestName -+ Letter RestName 
RestName -+ Digit RestName 
RestName -+ " I" RestName 
RestName -+ " ?" RestName 
RestName -+ " !" RestName 
RestName -+ " _" RestName 
RestName -+ " [" RestName 
RestName -+ "1" RestName 
RestName -+ " <" RestName 
RestName -+ " >" RestName 
RestName -+ "; " RestN ame 
RestName -+ " -" RestN ame 
RestName -+ " #" RestName 
RestName -+ " $" RestName 
RestName -+ " %" RestName 
RestName -+ " &" RestName 
RestName -+ " *" RestName 
RestName -+ " -" RestName 
RestName -+ " -" RestName 
RestName -+ " '" RestName 
RestName -+ " \" RestName 
RestName -+ " /" RestName 
RestName -+ "I" RestName 
RestName -+ " "" RestName 
RestName -+ " ." RestName 

Letter -+ CapitalLetter 
Letter -+ SmaliLetter 

CapitalLetter -+ " A" 
CapitalLetter -+ 

CapitalLetter -+ " Z" 

SmaliLetter -+ " a" 
SmaliLetter -+ 

SmaliLetter -+ " z" 

Digit -+ " 0" 
Digit -+ 

Digit -+ " 9" 

CCStool2 
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N I states I transitions II AUTO I Aldebaran I CCStool2 I 
4 97 1735 O.4s 0.15s 0.16s 
5 241 6487 LIs 0.6s 0.56s 
6 577 23335 3.3s 1.9s 2.1s 
7 1345 81655 12s 6.9s 7.3s 
8 3073 279943 57s 24s 26s 
9 6913 944791 - 80s 95s 

10 15361 3149287 - - 338s 

Table 6.2: Benchmark results of Milner's abstract distributed scheduler 

The benchmark results of schedulers of different sizes are presented in tables 6.1 and 6.2. 
The latter refers to the scheduler where the actions b; are hidden (abstracted). The first ta­
ble shows the amount of states and transitions of the expanded scheduler. The second table 
shows the amount of states and transitions after the reflexive-transitive closure has been 
calculated. Both tables show the execution times of AUTO, Aldebaran, and CCStoo12. 
As far as we know the former two are the fastest verification tools currently available for 
deciding observational equivalence using an approach similar to that of CCStoo12. The 
figures for AUTO and Aldebaran are obtained using a SUN 3/60 with 16 Mbyte RAM and 
50 Mbyte RAM respectively and are taken from [GV90j. Those for CCStool2 are obtained 
using a Silicon Graphics Power Challenge XL with 12 MIPS R4400 processors each running 
at 150 MHz, 1.5 Gbyte RAM, and 12 Mbyte cache (1 Mbyte per processor). In both tables 
a "-" indicates that no outcome could be obtained due to a lack of memory, and a "*" 
means that no outcome is available. 

Of course, an absolute comparison of the various figures only yields a very gross estimate of 
the relative efficiencies of the various tools, since the results were obtained using machines 
with a large speed difference. Further, the figures of CCStool2 refer to the execution of the 
complete "filter" process (see Section 2.1) which includes compilation, graph generation 
(expansion), calculation of the reflexive-transitive closure, calculation of the observational­
equivalence classes, and output generation, whereas those of the other tools do not. The 
figures of AUTO only refer to the calculation of the reflexive-transitive closure and that 
of the observational-equivalence classes, whereas those of Aldebaran only refer to the cal­
culation of the equivalence classes. In general, graph generation (expansion) and graph 
transformation (for instance, closure calculation) are the most costly. In comparison with 
these operations, graph partitioning can be neglected [Kor91j. However, CCStool2 shows 
the opposite, probably due to the chosen fsCCS description language which enables ef­
ficient expansion (graph generation). This means that the figures of CCStool2 give an 
indication of the performance of the partitioning algorithm (in practice, partitioning takes 
approximately half of the total time). So, AUTO and Aldebaran are probably more time 
efficient with respect to m£nimization of state graphs than CCStoo12. Since there are no 
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