

Scuola Politecnica e delle Scienze di Base
Corso di Laurea in Ingegneria Informatica

Elaborato finale in Fondamenti di Sistemi Dinamici

Development of an installation package
for the EFIT++ code on Linux distributions

Anno Accademico 2013/2014

Relatore:

Ch.mo Prof.

Alfredo Pironti

 Candidato:

Pietro Liguori

matr. N46000088

Index

Index... III
Introduction .. 4
Chapter 1: Installing EFIT++ ... 8

1.1 Download ... 8

1.2 External libraries .. 9
1.3 EFIT++ environment settings .. 10
1.4 Compiling... 12
1.5 Running .. 12

Chapter 2: Development of the Installation Package ... 14
2.1 Debreate ... 15

2.2 Creating the installation package of EFIT++ ... 16
2.2.1 Creating the package structure .. 16
2.2.3 Starting Debreate... 20

2.3 Installing and running the package .. 22
2.3.1 Removing the package .. 23

2.3.2 Recompiling the source code .. 23
Conclusions .. 25

Bibliography... 27

4

Introduction

The possibility to use controlled nuclear fusion as a source of alternative energy is one of

the main objectives pursued by the scientific community for the benefits offered in terms

of availability of raw materials and security.

In a fusion reaction, two light atomic nuclei fuse by clashing together, giving place to a

heavier nucleus.

As atomic nuclei are positively charged, they tend to repel each other and therefore, for the

fusion to take place, they must have sufficient kinetic energy to overcome the repulsion

itself. Such energy can be provided to the nuclei by taking them to very high temperatures

(4x107 K). At such temperatures, all gas atoms are dissociated into their constituents: the

nuclei, and the electrons.

The electric charge density is such that the behaviour of the set of particles is totally

governed by electromagnetic phenomena. This set of ionized matter subject to

electromagnetic actions is defined as plasma.

High temperature plasma is unconfinable by material walls: therefore, the confinement

device has to be of inertial or of magnetic type. The creation of a magnetic field

configuration able to contain the plasma in a stable equilibrium has always represented a

major problem in the production of energy by fusion.

The Tokamak (Russian acronym for Toroidal Chamber and Magnetic Coil) is a machine

produced in the Soviet Union at the end of the sixties for the magnetic confinement of

5

plasma. It is characterized by a toroidal geometry in which the equilibrium is achieved by

inducing an electrical current into the plasma and making it interact with a magnetic field

produced by external coils. Furthermore, the current induced into the plasma also provides

to its heating by means of the Joule effect.

Unfortunately, the equilibrium, so achieved, proves to be unstable and the ring of plasma

in the Tokamak disintegrates in a time lapse, still today, considered to be too short and far

from the necessary standards to make the fusion process energetically favourable.

Hence, the need of a controller able to act upon the plasma’s evolution over time so as to

ensure it remains confined for as long as possible.

In view of this, the importance of a plasma boundary identification algorithm is evident in

order to control the position and the shape of the plasma itself.

EFIT (Equilibrium Fitting) is a computer code written by Lang Lao in FORTRAN 77 for

the Tokomak and developed to translate measurements from plasma diagnostics into

useful information like plasma geometry, stored energy, and electrical current profiles.

Tokamak Structure Figure 1. Tokamak structure.

6

The Grad-Shafranov equilibrium equation, which describes the force equilibrium inside a

plasma, is solved by using the available measurements as constraints on the toroidal

electric current density.

The EFIT++ code is a substantial rewrite of the EFIT code originally written by Lang

Lao. The original version, implemented in FORTRAN 77, has been installed on many

Tokamaks. However, there has been a gradual diversification of the original source code

as each installation was created by simply copying the EFIT source code.

In EFIT++, all machine dependencies have been removed and now reside either in local

data files or in databases. Thus, the EFIT++ code has no pre-set values and all

configurable parameters need to be explicitly set by the user. At present, output is written

to an HDF51 file.

The implementation of EFIT++ is in a mix of C++ and Fortran 90. The user interface is

written in C++ whereas the algorithmic elements (i.e. the construction of the tabulated

response functions and the calculation of the individual equilibria) are written in Fortran

90. The reason for this mixed-language approach is a consequence of how the EFIT++

project evolved rather than due to any inherent performance issues of FORTRAN

compared to C++.

The EFIT++ code sets out to compute the axisymmetric magnetic field distribution

satisfying radial force balance in Tokamaks. The EFIT++ field solution provides the best

fit to user-supplied synthetic and measured data relating to the magnetic fields, taking

account of the uncertainties in the data. EFIT++ can calculate the magnitude of toroidal

currents induced in conducting structures which may not have been explicitly measured. In

addition, EFIT++ can model material with non-linear finite permeability characteristics by

using an axisymmetric treatment.

In view of all this, it is clear that EFIT++ turns out to be an excellent solution to the

plasma boundary identification problem and to the reconstruction of the equilibrium in the

Tokamak. However, the procedure of using the EFIT++ code is not easy. In fact, the long

compilation time of the code together with the many external libraries needed, and the not

1 HDF5 is a file format designed to store and organize large amounts of numerical data.

7

simple compilation procedure that requires a shell script and therefore addressed only to

expert users in programming, make not optimal the compilation procedure and the

subsequent use of EFIT++ in terms of time and difficulty. These reasons have led to the

idea of creating an installation package that would solve the above-mentioned

problematic.

This study aims, precisely, to create an installation package of the EFIT++ code for Linux

distributions and to highlight the advantages of its use rather than that of the standard

procedure.

In the first chapter, the standard procedure for the use of EFIT++, based on the

compilation of the source code, will be illustrate.

In the second chapter, the procedure for creating the installation package of the EFIT++

code for Linux distributions, the relevant installation directives and the program execution

instructions will be illustrated. The Linux distribution on which the research has been

carried out is Ubuntu and, therefore, the study will go on to illustrate how to create a

debian package of the EFIT++ code.

This work also aims to be an actual installation manual.

8

Chapter 1: Installing EFIT++

As mentioned, EFIT++ is a rewrite of EFIT code written by Lao Lang in FORTRAN 77.

The implementation of EFIT ++ is in a mix of C++ and Fortran 90. It is an excellent

solution to the plasma boundary identification problem and to the reconstruction of the

equilibrium in the Tokamak.

This chapter shows the download procedure, the compiling and the running of the EFIT++

code.

1.1 Download

The first thing to do is to create a directory and to rename it "efit++". Then you have to

download the main development version2 of the EFIT++ code, i.e.:

mkdir efit++

cd efit++

svn checkout https://mastweb.fusion.org.uk/svnroot/efit++/development/trunk

After which, the EFIT++ source code and the make file will be located in the "src"

subdirectory.

2 The main development version used is of October 2011

9

1.2 External libraries

EFIT++ needs the following libraries to be compiled and installed:

Library Description

Qt Contains many facilities including a DOM

parser and a regular expression evaluator.

Blitz A C++ class library for scientific

computing.

GSL Gnu scientific library numerical library for

C and C++.

IDAM Universal API for data access.

BOOST (above version 1.35) C++ source libraries.

pspline Collection of Spline and Hermite

interpolation tools.

lapack Linear algebra package.

netCDF Common data format.

netCDF C++ (local version) Local version of the netCDF C++ library.

HDF5 Hierarchical data format.

BLAS Routines that provide standard building

blocks for performing basic vector and

matrix operations.

efitxml IDAM EFIT magnetics XML library.

xml2 Convert between XML, HTML, CSV and a

line-oriented format.

ICU Development files for International

Components for Unicode.

10

You can easily install some of the required libraries by using Synaptic, the Ubuntu

package management system. The following table shows which packages you have to

install with Synaptic:

Library Package Name

Qt libqt4-dev

Blitz libblitz0-dev

GSL libgsl0-dev

BOOST libboost-all-dev

lapack liblapack-dev

netCDF libnetcdf-dev

HDF5 libhdf5-serial-dev

BLAS libblas-dev

xml2 libxml2

ICU libicu-dev

As for the following libraries: IDAM, pspline, netCDF C++ (local version) and efitxml,

they have to be downloaded, compiled and then installed in locations where you have

normal user privileges by using the terminal and by following the proper instructions. The

compilation procedure and the subsequent installation of the above-mentioned libraries are

relatively complicated and require a considerable amount of time.

1.3 EFIT++ environment settings

The locations of the executable files, the include files, the object files and the libraries

required by EFIT++ are specified in a single shell script3. You have to name this script

efitEnvironmentSettings.sh and to place it in a location known to the system (i.e. a location

specified in the PATH environment variable).

3 A shell script is a computer program designed to be run by the Unix terminal. It is a text file that uses the .sh extension

and its first line has to start with "#! /bin/sh".

11

The location of the executable files is specified by the variable

"EFIT_LOCAL_BIN_PATH"; the location of the object files is specified by the variable

"EFIT_LOCAL_OBJ_PATH" and the location of the data for parallel architectures by

"EFIT_LOCAL_OBJECT_PARALLEL_PATH".

An example of instructions in efitEnvironmentSettings.sh that shows how to specify these

variables is the following:

export EFIT_LOCAL_BIN_PATH=$HOME/efit++/bin

export EFIT_LOCAL_OBJ_PATH=$HOME/efit++/obj

export EFIT_LOCAL_OBJECT_PARALLEL_PATH=$HOME/efit++/obj_parallel

By so doing, the "bin", "obj" and "obj_parallel" subdirectories, located in the

"$HOME/efit++" directory, respectively contain the executable files, the object files and

the files for parallel architectures.

It is also necessary to specify in the efitEnvironmentSettings.sh script the locations of all

the libraries and of the include files required by EFIT++. Include files must be specified in

the "C_INCLUDE_PATH" and "CPLUS_INCLUDE_PATH" variables, while the locations

of the libraries are specified by the "LIBRARY_PATH" and "LD_LIBRARY_PATH"

variables. An example of instructions contained in the script that shows how to specify

these variables is the following:

BOOSTINC=/usr/include/boost

NETCDFINC=$HOME/netcdf/include

BOOSTLIB=/usr/lib/

NETCDFLIB=/$HOME/netcdf/lib

export C_INCLUDE_PATH=$BOOSTINC’:’$NETCDFINC

export CPLUS_INCLUDE_PATH==$BOOSTINC’:’$NETCDFINC

export LIBRARY_PATH==$BOOSTLIB’:’$NETCDLIB

export LD_LIBRARY_PATH==$BOOSTLIB’:’$NETCDLIB

12

In addition, efitEnvironmentSettings.sh must also contain an instruction declaring the

Fortran Flags that specify the location of the .mod file of the pspline and netcdf libraries,

e.g.:

export FFLAGS= "-I. -I./home/username/pspline/LINUX/mod -

I/home/username/netcdf/include –g"

1.4 Compiling

At this point, you can compile the EFIT++ source files by first using the source4 command

and then the make command, i.e.:

cd efit++/src

source efitEnvironmentSettings.sh

make

In order to compile them you must have installed the gfortran and g++ compilers.

If the build is successful, the object files and the efit++.exe executable file will be

respectively generated in the locations specified by "EFIT_LOCAL_OBJ_PATH" and by

"EFIT_LOCAL_BIN_PATH".

1.5 Running

To run the program, you need the following data files:

 efitOptions.xml (contains data describing EFIT++ specific parameters);

 pfCircuits.xml (describes active currents driven by pf supplies, and passive currents

induced by the active currents);

 tokamakData.xml (contains details of a particular Tokamak, for example its

geometry and measurement data).

4 The source command in shell is used to execute commands from a file in the current shell. This is useful to load

function or variables stored in another file.

13

These files have to be positioned in the directory specified by

"EFIT_LOCAL_BIN_PATH" (the directory where is located the efit++.exe file) and are

used both to provide the program input and to customize the output.

To run the program, you must use the following commands:

cd efit++/bin

source efitEnvironmentSettings.sh

./efit++.exe

If execution of the program is successfully completed, the efitOut.hdf5 output file will be

created in the same location of the efit++.exe file.

14

Chapter 2: Development of the Installation Package

This chapter shows how to create an installation package of the EFIT++ code for Linux

distributions.

The Linux distribution used is Ubuntu 12.04 (64-bit); hence, the procedure of creating a

debian package (.deb extension)5 will be shown.

Debian packages are standard UNIX archives that include two tar archives optionally

compressed: one archive holds the control information and another contains the program

data.

To be able to create the package of the EFIT++ code, the source code has to be compiled

and the object files and the executable files have to be generated (see Chapter 1).

The installation package has been created by using Debreate, an aid utility for the building

of debian packages. The goal is to make packaging for Debian based Linux distributions

more appealing with an easy to use interface for creating distributable archives of

applications, artworks, media, and more.

5 deb is the extension of the Debian software package format and the most often used name for such binary packages.

15

2.1 Debreate

First, you have to download Debreate from the following URL:

http://debreate.sourceforge.net/

Then, you have to install this utility with the terminal by using the dpkg6 command, e.g.:

sudo dpkg -i ./debreate_version.deb

Debreate needs the python-wxgtk2.8 library in order to work. You can install it via the

terminal or with the package management system.

After that, you can execute the utility with the command:

debreate

and start the creation and the customization of the package.

Debreate is divided into several sections that will be specifically considered.

The "Control" section of Debreate is where the control file is to be created. The control

file is a text file that is the core of the debian package. This file contains all the package

information needed by the package manager (package name and version, package

maintainer's name and email address, computer architecture for which the package is

intended, package description, etc.). This section of Debreate has a field for the necessary

entries of the control file.

The "Dependencies and Conflicts" section provides an interface to specify which packages

are required for the correct installation.

The "Files" section is for specifying which files will make up the contents of the package.

In the "Script" section, you can create scripts. Maintainer scripts are executables that can

6 dpkg is the software at the base of the package management system in the free operating system Debian and its

numerous derivatives. It is used to install, remove, and provide information about .deb packages.

16

be called during the installation and/or removal processes.

In the "Changelog" section, you can create the changelog file. The changelog is a

documentation of changes across different versions. Changelogs are gzip compressed text

files containing the information on the package changes.

The "Copyright" section is simply a plain text editor where the entire copyright license or

a copyright declaration with the path to a common license available on the system can be

declared.

In the "Menu Launcher" section, you can create a single launcher to be installed to

/usr/share/applications. These menu entries are normally based on text files that use the

".desktop extension" and are often referred to as desktop files. Desktop files contain

information about what the launcher should look like and how it should act.

The "Build" section is where the actual building of the package begins. Once the "build

button" is pressed, Debreate will gather all of the information inputted into each section

and start the process.

2.2 Creating the installation package of EFIT++

First, you have to create the directory "efiit++" that will turn out to be the content of the

installation package. Then you have to start Debreate in order to create the package itself.

2.2.1 Creating the package structure

You need to create a directory and name it "efit++".

This directory should contain:

 The "src" subdirectory containing all the source files of EFIT++ and the

efitEnvironmentSettings.sh script file;

 The "lib" subdirectory containing all the libraries and header files used to execute

and to compile the program;

 The "obj" subdirectory containing all object files that are generated during the

compilation of the EFIT++ source code. This subdirectory must be specified by the

17

"EFIT_LOCAL_OBJ_PATH" variable in efitEnvironmentSettings.sh script that is

located in the "src" subdirectory;

 The "bin" subdirectory containing the executable file efit++.exe. This subdirectory

must be specified by "EFIT_LOCAL_BIN_PATH" variable in the

efitEnvironmentSettings.sh script located in the "src" subdirectory;

 The "obj_parallel" subdirectory containing the data for parallel architecture. This

subdirectory must be specified by the

"EFIT_LOCAL_OBJECT_PARALLEL_PATH" variable in the

efitEnvironmentSettings.sh script located in the "src" subdirectory;

 The "test" subdirectory containing a copy of efit++.exe located in the "bin"

subdirectory, the three data files (efitOptions.xml, pfCircuits.xml,

tokamakData.xml) and the copy of the efitEnvironmentSettings.sh script located in

the "src" subdirectory. This subdirectory will contain the output file and will be

used for testing.

Furthermore, the efitEnvironmentSettings.sh script must be properly edited so that all users

can use it. This script will be used to indicate the location of the libraries that are needed

for the execution of the program.

Figure 2. Structure of the "efit++" directory.

18

An example of instructions of this script after the appropriate modifications is the

following:

BOOSTINC=../lib/boost

NETCDFINC=../lib/netcdf/include

BOOSTLIB=../lib/boost

NETCDFLIB=../lib/netcdf/lib

export C_INCLUDE_PATH=$BOOSTINC’:’$NETCDFINC

export CPLUS_INCLUDE_PATH==$BOOSTINC’:’$NETCDFINC

export LIBRARY_PATH==$BOOSTLIB’:’$NETCDLIB

export LD_LIBRARY_PATH==$BOOSTLIB’:’$NETCDLIB

export EFIT_LOCAL_BIN_PATH=../bin

export EFIT_LOCAL_OBJ_PATH=../obj

export EFIT_LOCAL_OBJECT_PARALLEL_PATH=../obj_parallel

As mentioned above, all the libraries necessary to execute EFIT++ have to be placed

inside the "lib" subdirectory. The list of all the libraries can be found in section 1.2

Figure 3. Example of the "lib" subdirectory.

19

Having the IDAM, pspline, netCDF C ++ (local version) and efitxml libraries been

regularly compiled and installed by the user, they can be simply copied into the "lib"

subdirectory.

While, instead, the libraries installed with Synaptic and therefore installed in the system

directories, can be copied to the "lib" subdirectory only with administrator permissions.

Because of the large number of files to copy, you should use the sudo nautilus7 command.

The system directories that contain these libraries are:

 usr/include/

 usr/lib/

 usr/lib/x86_64-linux-gnu/

Considering that files copied from system directories can be read, written and performed

only with administrator permissions, you must change the permissions to all the files

located in the "efit++" directory and subdirectories. To do this, use the chmod8 command.

7 GNOME Files, formerly called Nautilus, is the official file manager for the GNOME desktop.
8 chmod is the command and system call which may change the access permissions to file system objects (files and

directories).

Figure 4. This figure shows some files of the Blitz library. Header files, static (.a extension) and

dynamically linked shared object (.so extension) libraries of each external library required have to be

copied to the "lib" subdirectory.

20

If, for example, the "efit++" directory has been created in the home directory, then insert:

sudo chmod –R 777 $HOME/efit++

2.2.3 Starting Debreate

Once created the "efit++" directory containing everything that is needed for the package,

you have to start Debreate and particularly dwell on the "Control", "Files" and "Build"

sections.

In the "Control" section, you must specify the information required for the control file,

such as the name of the program, the version, your name, your e-mail address and the

computer architecture9 for which the package is intended. You can also enter information

about the program in the "Short Desciption" and "Long Description" fields.

9 In the "Architecture" field, you have to select the same computer architecture on which the EFIT++ code has been

compiled.

Figure 5. The "Control" section of Debreate.

21

In the "Files" section, you must first select the "custom" option in "Target" and then digit

the destination directory "/efit++" which will also become the package installation

directory. Then you must select the previously created directory "efit++" (on the left)

which is our package structure and finally you must press the "Add" button as shown in

the figure below:

In the "Build" section, click on the "build" button: then choose the name of the package

and the directory where you wish to save it.

Figure 6. The "Files" section of Debreate

Figure 7. The "Build" section of Debreate.

22

2.3 Installing and running the package

Now it is possible to simply install the package by using the terminal with the following

command:

dpkg-deb -x /Package_Path/Package_Name.deb /Installation_Path

in which:

a) the Package_Path indicates the debian package path;

b) the Package_Name indicates the name of the debian package;

c) the Installation_Path indicates the path where you want to install the program. It is

necessary to choose a location in which the user has the read, write, and execute

permissions.

For example, if the package (e.g. EFIT ++_10-2010_amd64.deb) is located on your

"Desktop" and you want to install it in your "Home directory", then you must use the

following command:

dpkg-deb -x $HOME/Desktop/EFIT++_10-2010_amd64.deb $HOME

The result of the above-mentioned operation is that the "efit++" directory will be created

in the chosen installation path. This directory will contain all the files that were included

in the package. The overall time for the package installation will be merely a few seconds.

Regarding the execution of EFIT++, by using the terminal just move into the directory

containing the efit++.exe executable file and run it after having first executed the

efitEnvironmentSettings.sh script, i.e.:

cd efit++/test

source ./efitEnvironmentSettings.sh

./efit++.exe

23

Execution of the script is necessary because it indicates the locations of the libraries that

have been included in the package and which are essential for the execution of the EFIT++

code.

As previously explained, the script has been conveniently modified so as to require no

further editing by the user.

The program will begin to perform calculations based on the values contained in the input

data file in the "test" subdirectory. The output will be saved in the efitout.hdf5 file.

2.3.1 Removing the package

You can easily remove EFIT++ by deleting the "efit++" directory.

The cancellation does not require any special permissions.

2.3.2 Recompiling the source code

In addition to the libraries, even the header files, needed to compile the source code, have

been inserted inside the installation package. Although this choice significantly increases

the size of the debian package, it gives the user the option to recompile the source code

contained in the "src" subdirectory. This option might be useful if you should decide to

change the source code.

In case you want to recompile the source code, it is necessary to conveniently modify the

Fortran Flags in line 33 of the efitEnvironmentSettings.sh script positioned in the "src"

subdirectory. After this change, you can recompile the source code with these commands:

cd efit++/src

make clean

make

At the end of the recompilation process the efit++.exe file will be generate in the "bin"

subdirectory. You have to copy this file to the "test" subdirectory before starting the

program execution.

When recompiling the source code, since all the libraries have been compiled with a

24

specific version of g++ and gfortran10, it is absolutely necessary to install the same

compiler versions used and to uninstall any other installed version.

10 Compiler versions used are: g++ 4.6 and gfortran 4.6

25

Conclusions

The EFIT++ code turns out to be extremely useful for those working in the field of nuclear

fusion.

However, the long-time needed both to compile the source code and to compile and install

the external libraries, the not simple library compiling procedure, the use and the

modification of a script make difficult the process of installing the EFIT++ code and, in

terms of time, very inconvenient.

The creation of the debian package of EFIT++ code has brought significant improvements.

In fact, with the newly created installation package we have the following significant

advantages:

 Not having to compile the source code because it is already pre-compiled;

 Not having to either download, compile or install the libraries necessary to run

EFIT++ because they are already included in the package;

 Not having to create or to edit the script efitEnvironmentSettings.sh because it has

been conveniently modified for use by the user;

 Possibility to be able to recompile the source code after any change;

 Very short installation time that turns out to be even more significant when

compared with the time needed both for the compilation of the source code and of

the external libraries;

 Possibility of having all the program files located in the same directory instead as

26

having them dispersed throughout the system as was the case with the standard

procedure.

Therefore, it is clear that the use of the installation package brings significant

improvements both in terms of difficulty and in terms of speed of use.

Concerning the Debreate utility, it has been extremely useful in the development of the

installation package. In fact, by having a very intuitive graphical interface, it has made the

development of the debian package of the EFIT++ code sufficiently easy.

27

Bibliography

[1] Alfredo Pironti, Identificazione della frontiera di plasma in un Tokamak con

l’espansione di Legendre-Fourier, Academic Year1990-91

[2] Lynton Appel, EFIT++ user manual, 2nd July 2010

[3] Alfredo Pironti and Michael Walker; Fusion, Tokamaks and Plasma Control; IEEE

Control Systems Magazine; October 2005, Volume 25 Number 5

[4] Lynton Appel, EFIT++ Equilibrium Reconstruction, 2010

[5] Debreate Usage, Versione 0.3

[6] Theory and Computational Sciences website, https://fusion.gat.com/theory/Efitdef,

October 2014

[7] Official Ubuntu Documentation, https://help.ubuntu.com/12.04/index.html,

November 2014

[8] Debreate - Debian Package Builder, http://debreate.sourceforge.net, October 2014

