UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informéatica

MEMORY PROTECTION AND QUALIFICATION
OF REAL-TIME OPERATING SYSTEMS FOR
SPACE APPLICATIONS

José Joaquim Pinto de Sousa

MESTRADO EM ENGENHARIA INFORMATICA
Arquitectura, Sistemas e Redes de Computadores

2009

UNIVERSIDADE DE LISBOA

Faculdade de Ciéncias
Departamento de Informética

MEMORY PROTECTION AND
QUALIFICATION OF REAL-TIME OPERATING
SYSTEMS FOR SPACE APPLICATIONS

José Joaquim Pinto de Sousa

PROJECTO

Trabalho orientado pelo Prof. Doutor José Manuebolesa de Matos Rufino

e co-orientado pelo Eng® Helder Filipe MonteircSilaa

MESTRADO EM ENGENHARIA INFORMATICA
Arquitectura, Sistemas e Redes de Computadores

2009

Declaration

José Joaquim Pinto de Sousa, student n°26666 ofildage de Ciéncias
Universidadede Lisboa, declares to give the copysigf its Report of Projecto em
Engenharia Informatica, named “Memory Protection &ualification of real-time
perating systems for Space Applications”, accorhplisduring the year 2008/2009 to
Faculdade de Ciéncias Universidade de Lisboa fiecesf of archive and consultation
on its libraries and publication on electronic fatrnon the Internet.

José Joaquim Pinto de Sousa aluno n°26666 da FRkadeuldle Ciéncias
Universidade de Lisboa, declara ceder os seudatirde cOpia sobre o seu Relatorio de
Projecto em Engenharia Informatica, intitulado “Megn Protection and Qualification
of real-time perating systems for Space Applicaipnmealizado no ano lectivo de
2008/2009 a Faculdade de Ciéncias Universidadeistoé para o efeito de arquivo e
consulta nas suas bibliotecas e publicacdo do memmoformato electronico na
Internet.

Lisboa, 29 de Setembro de 2009

Resumo

O RTEMS Real Time Executive for MultiprocessorSystems) € um sistema
operativo de tempo real (RTOS) que esta a seraawtate desenvolvido e utilizado em
aplicacdes de tempo real. Este facto motivou o medemento de um centro de
investigacdo e desenvolvimento para o RTEMS, o dBdRTEMS Centre, com o
intuito de dar suporte a comunidade espacial etaope

As primeiras actividades do RTEMS Centre consistirea criacdo de ferramentas
de suporte e auxilio a configuracdo e compilacasistema operativo RTEMS. E ainda
na criacdo de uma ferramenta que verifica o corapwhto de uma aplicacdo em
tempo de execucdo. Numa fase mais avancada do RTEd®e foi iniciado o
projecto RTEMS Improvement, o qual visa dispondaiti uma versao ajustada do
sistema operativo RTEMS (4.8.0) com o objectivoafledar e facilitar o processo da
qualificacdo de aplicacbes baseadas no RTEMS maraissfes espaciais. A versao
produzida auxilia o processo de qualificacdo euingina bateria de testes que rastreia
0s requisitos de software, estes testes cobrerdigaconte segundo a norma SW-DAL
(Software Development Assurence Level) nivel Bualgbriga a que todas as linhas
do cddigo fonte de uma aplicacdo sejam executadpge ¢éodos 0s blocos de deciséo
tenham sido também executados.

A qualificacdo de software que necessita de seguitormas definidas no Galileo
Software standards SW-DAL B56WS [RD1]) € um processo longo e complexo. O
processo completo de qualificacdo das aplicacopacess s6 pode ser concluido
conjugando o sistema com os componentes de softl@aaplicacdo e com o hardware
onde a mesma se executa. Uma vez que o hardwarsen@&acontra disponivel, o
principal objectivo consiste em facilitar o proaeste qualificacdo de aplicacbes que
utilizem RTEMS fornecendo: a RTEMS tailored versimmm todas as modificacdes
necessarias para corrigir os bugs detectados; MSTEest Suite, que testa 0 RTEMS
Tailored; e a documentacao associada (documenteqdésitos, documento de desenho
detalhado, documento de configuracédo, manual tieador, etc).

Numa fase mais avancada do projecto do RTEMS Inepnewt, e quando todas as
etapas anteriores estiverem concluidas sera ddselovaam modulo de gestdo de
memoria para o RTEMS para a classe de processddo@is3.

Palavras-chave: RTEMS Improvement, RTEMS, Qualificacdo de aplies;fpara o
espaco, Gestdo de Memodria, Sistemas EmbebidosTerdpo-Real, Missédo Critica,
Qualificacao .

Vi

Abstract

The Real Time Executive forMultiprocessoiSystems (RTEMS) is &eal Time
OperatingSystem (RTOS) that is being actively developed asedun hard real time
applications development. This fact has motivated tevelopment of a RTEMS
Centre, the Edisoft RTEMS Centre, which investigaia RTEMS and be able to give
help and support to the European space community.

The first RTEMS Centre activities were the develepinof support tools to help
in the configuration and build RTEMS. Another tdus been developed; this tool
verifies the RTEMS applications behaviour at executtime. In a later phase, the
RTEMS Centre has started the RTEMS Improvementeptdjhat aims to create a
RTEMS (4.8.0) Tailored version that will help iretfacilitation of qualification process
for the RTEMS applications to the space missiome produced material that helps in
the facilitation of qualification process has irbda the design of a new test suite to
cover the requirements for software and the soootke using the standard SW-DAL
(Software Development Assurance Level) level B wiif0% statement coverage, all
the lines of code has to be executed, and 100%sidaccoverage, all the decision
blocks has been executed.

The qualification of software that needs to follogithe Galileo Software
Standards SW-DAL BGSWS [RD1]) is a long and complex process. The complete
qualification process implies the qualification lwdth software and hardware platform
where the software application runs. Since the REBMprovement project does not
have the hardware support needed, the main gtaféilitate the qualification process
of the applications that runs with RTEMS, throughRTEMS Tailored version, with
the necessary modifications required to correcdttected bugs; a RTEMS Test Suite,
to test the RTEMS Tailored; and the associated miectation (requirements document,
design document, configuration document, user maseta.

In a later phase of the RTEMS Improvement projelsénvall the previous tasks
for the RTEMS Tailored version add been concludedili be developed a RTEMS
Memory Management module for the LEONS3 class pramss

Vil

Keywords: RTEMS Improvement, RTEMS, Qualification of Applins to Space,
Memory management, Real-Time embedded systemsaliission, Qualification.

viii

Contents

CHAPTER 1 INTRODUCGTIONciiieiiieiies ittt e e e aaeeeas 1
I R |V o 3 1Yy T USSR 1
I © 1= N = 1Y/ == SRS 2
1.3 INSTITUTIONAL INTEGRATIONuetuititeesueesueeteesueaneeaneeaneesseesseanssansesneesseeseeesseenseessesnseaneens 3
R U= TN Ty o N SR 4
1.5 DOCUMENT ORGANIZATIONeiuttauteaneeaueeateesteesteeteenseanseaseesseenseanseaneeaseesneesneesseesseenseensens 4

CHAPTER 2 RTEMS OVERVIEW ...ttt 5
2.1 RTEMSMANAGERS .. .tttttttitttttttteta e e et it et t e e ettt e et e e e e e e e e e e s s e s s s b bbb b e br e e e e e eeaaaeeas 7

2.1.1 INItialiZation MANAGETuueeeiiiiiieiee e e e ettt e e e e e e e e e e reaaaae e e e e e e 7
N - 1) Q) 1Y/ = T = o = R 7
N G T [01 (=T ¢ (U] 1Y =T g = Vo = 7
0 S O [Yo 2 1V - Vg =T [U 7
0 L T 14 1= Y g V= U g = Vo = U 8
2.1.6 SemMaphore Man@AQErccoeecuuurieiiesrnmmneeentretereeeeereereaeaaaaeaaeeeesesssnnnrennneees 8
2.1.7 Message QUEUE MaANAQGETccceveeeeeeees e eeeeesnsnnassseeeeaaeseessssnsnnnaaaaeeeaeees 8
N T T V7T o | 1Y = T = Vo = PR 8
PN e B = T ¢ =T 1Y = g = o = PR 8
220 I O o F= U 1Y = T =T =T RS 8
2% I R - v 10T T Y= U = T = P 9
0 I =Yoo TN 1Y F= U =T = SRR 9
2.1.13 Dual-Ported MemOory ManAQEr...........ccoceurceceeerrrreeerrereereaaaaaaesessessasansnsnnnnssnees 9
N I S 1@ Y- g - Vo 1= PSSR 9
2.1.15 Fatal Error MAnAQETcccccuvuuiiiiieieeesimmmme e e e e e e e e s sessessnennsasssssneseeeeeeeaasesesssnnnnnns 9
2.1.16 Rate MoNOtONIC MANAGETuuvureeieeiieieeeeeeeeeesiterierrreeeeerrereeeaaeaaaeeesessasannnnees 10
2.1.17 User EXtENSIONS MANAGETcciveeeeeeee s e eeeeeeeeessessennsnsssnanaaeeeeeeeeaaeaeesans 10
2.1.18 MUltiproCeSSING MaANAQETccceiieiieeeet e e e e e e e e e s e e e esenennrbatbraaeeeeeeeeaaaaeesans 10
2.1.19 Stack BouNds CheCKET.........coccuiiiiiiiiccrreeee et 10
2.1.20 CPU USAQE STAtiSHCSuuvvuriiiiiiiiiiiisierssesreereereeseeaeeeaassssssssssssssssssensreeneesaeeeees 10
2.2 SUMMARY ettt ettt ettt s et et e sttt et et e ke ekt bttt n et Rt eRe e Rt e eeeeereeneeneeeneenreenneas 10

CHAPTER 3 RTEMS SUITE TAILORINGcooiiiiiiiiiitt e 13
3.1 RTEMSMANAGERSUTILIZATION SURVEY ...cteiittiiiiatiaeeaeeaseeaneesneeseesseesnsesseesseeseessnens 13
3.2 RTEMSMANAGERSEVALUATIONoiitiiiiiiitiietsteesteesteesteesteenteaseesneesteeseeensesseesneesneeseeens 15
3.3 RTEMSTAILORING PLAN ..eittiitiiteiie ettt stee sttt et e st e ee s e sneesne e st e seeesaeeneeeneeaneas 16

3.3.1 Dead Code REMOVAL........ceii it 17

I I O (1= | T =T ST UL < 18

ICTRC TR T 10 To I= U To 3T 16 o P SEERU 18
3.3.4 Customize RTEMSttt 19
3.3.5 CUSIOMIZE TESt SUILE ...eviiiiiiii e rereeeee et 20
3.4 RTEMSTAILORING WORKFLOW.uutiuttatetaieesteesteesteateeneeaneeaneesseesseaneesnesssessseenseenseenes 20
3.5 RTEMSIMPROVEMENTOVERVIEWccuttitititeeaueenteesteesteateaeeaneeaseesseanseaseansessessneessessees 21
3.6 SUMMARY .iiiiitieniteit ettt ettt st e st e bt et et e et e ekt e Rt ettt e Rt Rt Rt e eReeeteeereeneeneeareenreenneas 26
CHAPTER 4 RTEMS FACILITATION OF QUALIFICATION......uuviiiiiit it 27
4.1 GALILEO SOFTWARE STANDARDS.eettttteesteeteesueanteaneeaneeaneeaseeaseesseaseessessaessseenseensesnes 27
4.2 SW-DAL B FACILITATION OF QUALIFICATIONuutiuitaeieaieesieesteeseeesteeaeenseeneesseeneeeneeenees 28
4.2.1 GNU GCOV brief explanationcooo e e eeeee e e e e e e e e eeeaee s 28
422 GNUGCOV ONRTEMSottt et e e e e e 31
4.3 RTEMSREVERSE ENGINEERINGtteuttiuttateesteesteanteenueaseaneesueesseaseaneeaseesneesseesseesseennens 32
4.4 RTEMSDOCUMENTATION ...uieutiiitauteateeaneesteesteesueesteanseaneesaeesseanseanseaneesseesneesseesseesseensens 34
4.5 TESTSUITE DESIGN.....ceitiettettaieatieaeeeaeeeateesteesteeneeaneesaeeseeaseaneeaneeaneeseeeseeenseenseeneeenes 38
4.6 TESTSUITE IMPLEMENTATIONuttitieiteeteesteenteanteaneeaneeaseesseenseenseaneeaseesseesseessessseenseensens 39
4.7 TESTSUITE EXECUTION ...otiiittitietiaiteanteeteeaneesteesteeseeemeesseesseeseeenaeaneeeneeaneesseesnessneenes 41
4.7.1 SEMAPHORE WITHPRIORITY INHERITANCE/CEILING PROTOCOL BUG......ccsteeeeaneeaneenne 42
4.8 RTEMSTAILORED AND TESTSUITE EXECUTIONccuviiiieiiieniiesieenieenieenee e seeeseeeneesneenes 43
e TS B 1Y . SRS 43
CHAPTER 5 MEMORY MANAGEMENT ...cooiiiiiiiiii e 45
5.1 MEMORY MANAGEMENT MODULEuutiutiiuetiueesteesteesueasteesteansesneesneesseesseenseaseesneessesssenns

5.1.1 Memory used by the application

5.1.2 RTEMS MemOry Prote€CHONuuuuiiiiiiiiimmmcne e e eeeeeeeesessssssnnneneresereeeeeeeeaaeens
5.1.3 Memory Management and Protection ModelSeeeeeeeeeeeeeiieiiiicciiiiiiieeee, a7
5.2 HARDWARE MEMORY MANAGEMENT UNIT ..ciiiiiiiieiiiiieestieeesiieeeseeeeesneeessnneeesnseeeesnneeas 47
5.2.1 HARDWARE MMU SUPPORT.....cctutteittteeitieeasstereesseeeesastessasesesnsseessnsssessnseeessseesanses 47
5.2.2 Address TranSlationcoooiiiiiiiiie e 47
L0720 TN Y/ [T 0 ¢ To VA o] o 1 £=Tox 1T o RSP 49
5.3 RTEMSIMPROVEMENTMEMORY MANAGEMENT MODULEcccoiviieiiiiieesiireeseeeeseneeeeenens 51
5.4 SUMMARY .eeiiitiieesitieeestteeesteeeasnteeeessteeeasaeeasteeesasteeeantteeeanteeeeanteeeeanteeeanaeeenaeeeenneen 53
CHAPTER 6 CONCLUSIONciiiitiiie it e eiiee e sees e e e iee e sntee e sneee e s snteeeennaeee s sneeeenes 55
EXTENSIVE ABSTRACT IN PORTUGUESEccciiiiieiiie et nneee e 57
2] = 1@ 1] = ¥ 2 o S STR 59

List of Figures

Figure 1: RTEMS ArChItECIUIE.........coe e ettt e e e e e e e eeeeees 6
Figure 2: RTEMS Tailoring Plan.............uveceii e 17
Figure 3: RTEMS WOIKIIOWcoooiiiiiiiiiiceeme e e e 21
Figure 4: RTEMS IMmprovement OVEIVIEWccceeeeeeeerieeeeeiiiiiiiiinneseeeeeeeeens 22

Figure 5: RTEMS Improvement Overview with Memory hdgement module... 22

Figure 6: RTEMS Improvement Roadmap.........cccceeeeeiiiiieeeeeiiiiccee e 23
Figure 7: RTEMS Improvement Main ACHIVItIEScc.uvuvuiiiiiiiieei e, 25
Figure 10: Example of a GCOV coverage file.. o reeiiiiiiieiiieeeiiiiiieeieiiiiiiinns 30
Figure 11: LCOV Index page for the RTEMS Improvem@oject..................... 30
Figure 8: libgcov, work on target boardsccccceevvvviiiiiiiiii s 32
Figure 12: rtems_clock_set, changes to be MISRAHE 4.7 compliant 34
Figure 13: doxygen first page for RTEMS SDD ...ccccceooiiiiiiiiiiiiiceeeee e 37
Figure 14: the interaction between header filleSvvviiiiiiiiiiieeiiiiiieeeieii, 73
Figure 15: Block Diagram of a SPARC V8 System WUoeeee 48

Figure 16: MMU physical address COMPOSItION . ceeeeeerereeerirrininniiinnineneenenn. 48

Figure 17: Reference MMU three-level Mapping e ..oooeeveevveveveiiiiiiiiieeeeenn. 49
Figure 18: MMU virtual address COMPOSItION....ccceeuvevveiiiiiieeeeeeeeeeeeeeeeeeeieeiinnnns 49
Figure 19: Composition of a Page Table ENtryccccoeeeveeiiiiieiiiiiiieeeeiiiens 50
Figure 20: MMU fault address regisSter........irurieiiiiiiiiieee e eeeeeeeeeeeeesannees 50
Figure 21: RTEMS Improvement main activities witltetMemory Management
[gaTeTe (U1 TSI 1 (=T =1 =T 52
Figure 22: RTEMS Improvement road map with MMU............cccccceviiiiiieeeennn. 52

Xi

Xii

List of Tables

Table 1: Edisoft Representative Survey ReSUltS...........ccoooeeeviiiiiiiviiiiiiin, 14
Table 2: Some of the RTEMS Improvement Deliverables...............ccceeeee. 35
Table 3: ACC ACCESS LYPES....cii i e e e e eeeereeee e a e e e e naeaee s 50

Xiii

Xiv

Acronyms and Abbreviations

Term Description

ADD Architectural Design Document

API Application Programming Interface
BSP Board Support Package

COTS Commercial Off The Shelf

DAL Development Assurance Level

DDD Detailed Design Document

DDF Design Definition File

DJF Design Justification File

DRD Document Requirements Description
ESA European Space Agency

GCC GNU Compiler Collection

GCoVv GCC Coverage Tool

GDB GNU Debugger

GNU GNU's Not Unix

GPL General Public License

HW HardWare

IPR Intellectual Property Rights

ISVV Independent Software Verification and Validetti
LGPL Lesser GPL

MMU Memory Management Unit

OAR On-Line Applications Research

0S Operative System

RAMS Reliability, Availability, Maintainability, Skety
RD Reference Document

RTEMS Real Time Executive for Multiprocessor System
RTOS Real Time OS

SCF Software Configuration File

SDD Software Design Document

SDP Software Development Plan

SIP Software Integration Test Plan

SOM Software Operation Manual

SOwW Statement Of Work

SPA Software Product Assurance

XV

SPAP Software Product Assurance Plan
SPAR Software Product Assurance Report
SPARC Scalable Processor ARChitecture

SRD Software Requirements Document

SUP Software Unit test-Plan

SVR Software Verification Report

SVVP Software Verification and Validation Plan
SW SoftWare

UML Unified Modelling Language

VTS Software Validation Testing Specification

XVi

Chapter 1

Introduction

This document describes the work developed dudng year in the RTEMS
(Real-Time Executive for Multiprocessor Systems)iayement project on the Edisoft
RTEMS CENTRE, in collaboration with ESAto produce a RTEMS Tailored version
optimized for the SPARC V8 compliant processorsnely the ERC32, LEON2 and
LEON3 processors, in order to facilitate the quedifion of RTEMS based space
applications.

1.1 Motivation

RTEMS, the Real Time Executive for Multiprocessorstems, is a free open
source Real Time Operating System (RTOS) desigoedideply embedded systems
that aim to be competitive with closed source amdnmercial products. It was
developed to support applications with strict timess requirements, making possible
for the user to develop hard real time systems. MRS lso offers several features, such
as multitasking capabilities, inter-task communaatand synchronization, support for
several network protocols, different platform supp@md it is being actively developed.

The RTEMS CENTRE was a project under the ESA-Paitligsk Force aiming to
develop a support and maintenance centre for thEME operating system. This
project was also the first shoot to develop a EeaopRTEMS CENTRE for the
European Space Community. In an initial phase tdisdi RTEMS CENTRE team
developed technical expertise and some suppor foothe RTEMS. In a second phase
the RTEMS improvement project was started.

The RTEMS Improvement is a project that aims todpoe a tailored version of
the RTEMS Operating System, based on version 4ti8al facilitates the qualification

! ESA-European Space Agency

of software space applications produced over thENRS Tailored version. To achieve
this goal a stripped version of the RTEMS kerned @ be produced. This stripped
version includes only a minimal set of functionabtand a minimal set of managers.
The process taken to choose this minimal set ottionalities and managers is
explained in detail in chapter 2 and chapter isf document.

Another goal for the RTEMS Improvement project & firoduce a RTEMS
memory management module for SPARC V8, LEON 3, ggsors. This goal is not the
primary goal of the RTEMS Improvement project, @ndill be developed only upon
completion of the previous tasks.

1.2 Objectives

The main goal of the work described in this docutrisrnto produce a RTEMS
Tailored version with a minimal set of functionsg and managers that satisfy the
software requirements for space applications. $hisof functionalities and managers
will be chosen taking in account the managers amdtfonalities most used in space
software applications. The aim is to facilitate REEMS qualification for future space
missions. The full qualification implies to qualiboth the software application and the
hardware where that application will work. Eacheasf these missions has its own
software and hardware and particular configuratBy.using the outputs produced in
the RTEMS Improvement project, it shall be possilide the European Space
Community to qualify applications using the taildneersion of RTEMS.

Another important goal of the RTEMS Improvementjgcbis to provide RTEMS
with Memory Management and protection support f&XON processors. The RTEMS
version 4.8.0, which is the version adopted for ttevelopment of the RTEMS
Improvement project do not offer a Memory Manageiéodule.

The usage of a Memory Management module is impbitamemory protection
since without usage of such module, memory accéslations, i.e. the access to
memory that do not belongs to the running task, taréetectable. These unwanted
accesses need to be avoided because one task at@mride data in the memory of
another task. The gravity of this unwanted acceg®ds on the how important is the
changed data and how important is the task thathieglata changed. The lack of
memory protection leads the applications to be rsaseeptible to errors.

1.3 Institutional integration

Established in 1988&:DISOFT, S. A is a specialised Portuguese company that
offers technologically advanced software solutiansl highly qualified IT consulting
services to the design, development and integraiowritical real-time command,
control, communications, computer and intelligesgstems, being thus a reference in
the national defence industry nucleus.

EDISOFT has a solid technical and technologicaleeiige in air traffic control
systems, networking, information security and th&egration of strategic collective
security systems, dedicated to the professionatgeney and civil protection sector.

EDISOFT also holds a profound knowledge in the tmweent of integrated
business solutions, in the banking, civil serviedecommunications and logistic areas,
and in the definition of decisional solutions basedgeographical information systems,
as well as a broad experience in internationalareteand development projects in the
Space field of expertise.

Due to the friendly environment existent on Edisuit integration was easy and a
positive experience. | have joined to a team tlaaeha large and deeply knowledge on
the embedded systems area and also have a largeesqe to work with ESA on the
development of space applications.

EDISOFT also promotes that their collaborators aequew or more knowledge in
the area that they are working. With this in mird tcompany very often gives
formation to their collaborators.

In order to give RTEMS Improvement team membersataedge about work with
FPGA?, EDISOFT has given formation to them on VHDIor Xilinx FPGA boards. |
have participated in that formation to acquire klemlge to design components in
VHDL. In the formation it has been used the XiftHSE® WebPACK™ development
tool and the Xilinx Spartan 3A FPGA developmentrdsaThis formation has taken an
entire week and has started from the basics, thignief one VHDL simple component
and has evolved to the design of a more complex sincttured component that
integrates all the previously designed componentéis formation was given in a
strong practical environment and the team couldl ttes developed systems on both
Xilinx ISE simulator and on Xilinx Spartan 3 devetoent FPGA boards.

2 FPGA —Field ProgrammableGateArrays

¥ VHDL — VHSIC HardwareDescription Language, VHSIC stands fafery-High-Speed Integrated
Circuit

4 Xilinx — http://www.xilinx.com/
® ISE® WebPACK™s a free and fully featured front-to-back FPG/Aide tool

1.4 Publications

As a member of the RTEMS Improvement team the Wafg articles have been
published:

« DASIA 2009 - RTEMS CENTRE — SUPPORT AND MAINTENANCE
CENTRE TO RTEMS OPERATING SYSTEM, Silva, H.; Comngtao, A.;
Freitas, D.; Coutinho, MFaustino, S.; Mota, M.; Colaco, P.; Sousa, J.; Dias
L.; Damjanovic, B.; Zulianello, M. And Rufino, J.

* INFORUM 2009 - RTEMS Improvement — Space Qualifmatof RTEMS
Executive, Silva, H.; Sousa, J.; Freitas, D.; HaostS.; Constantino, A. and
Coutinho, M.

1.5 Document organization

This document is organized as follows:

* Chapter 2 — will give a RTEMS operating system wiav and a brief explanation
of the RTEMS managers.

 Chapter 3 — provides a justification for the inalusand the exclusion of some
managers in the RTEMS Tailored version and alseiges a detailed description
of the tailoring plan for RTEMS version 4.8.0, amglstification for the dead code
removal.

« Chapter 4 — presents a brief explanation of theil&®alSW-DAL® B software
requirements. It also explains the steps taken rieroto achieve RTEMS
facilitation of qualification and the policy adogtéor the RTEMS Improvement
test suite in all of its steps: design, implemaataand execution.

* Chapter 5 — will give an overview over the Memoramagement Module.

e Chapter 6 — draws some conclusions about the wenflopned and presents a few
directions for future work.

® Software Development Assurance Levels

Chapter 2

RTEMS Overview

The Real Time Executive for Multiprocessor SystefRIEMS) is a free open
source Real Time Operating System (RTOS) desigoedideply embedded systems
that aim to be competitive with closed source amdnmercial products. It was
developed to support applications with strict timets requirements, making it possible
for the user to develop hard real time systemsprof it. RTEMS is maintained by the
On-Line Research Corporation (OAR) and it offersesal features such as network
protocols, file systems support, debug supportgdll and other debugging tools and
new features are currently being actively developgdRTEMS community. RTEMS
also supports several CPUs from different architest which include the SPARC,
1386, PowerPC, ARM, Motorola, MIPS and Hitachi peesor families. The first
version of RTEMS was released in 1988.

The basic RTEMS kernel features supported inclondtitasking, different
scheduling algorithms such as Event Driven Prioitgsed Preemptive and Rate
Monotonic, inter-task synchronization and intelktagommunication, interrupt
management and dynamic memory management. Thel keitmghly configurable as it
allows selecting which modules to use before itasnpiled, avoiding unnecessary
initialization delays and memory usage on the fitgaget image. As for networking
capabilities it uses a customized high performdeeBSD TCP/IP stack and supports
different protocols like UDP, TCP, ICMP, RARP ant#lOP; additionally there are also
servers implemented for FTP and HTTP protocols.p8tipd file systems include the
IMFS (In Memory File System), FAT12, FAT16, FAT32dclients for TFTP and
NFS. Despite lacking of an Integrated Developmemtitenment (IDE) or polished
monitoring/trace tools, there is support for remaobugging using GDB via the
Ethernet or serial ports.

" Gdb is the gnu debugger tool, it is a free opem@®debugger (http://directory.fsf.org/project/ydb

Applications can be developed in C, C++ and Ada@Bhgugh the support is
limited for Ada95) using different APIs such as A@OSIX, uITRON and RTEMS’
own API set (based on the RTEID/ORKID standard)p&them use RTEMS internal
functions, except for the Ada APl which uses RTEM®I as an abstraction layer. The
RTEID (Real Time Executive Interface Definition) svdeveloped by Motorola with
technical input from the company that developedd®®S RTOS. The VITA (VMEbus
Industry Trade Association) adopted RTEID as atdaaftheir interface, ORKID (Open
Real Time Kernel Interface Definition). Posterioffoeis in RTOS interface
standardization resulted in the POSIX (Portable répeg System Interface) 1003.1b
standard, which included real time extensions. TH&RON (Micro Industrial The Real
time Operating system Nucleus) is an interface thiabs to standardize RTOS
specifications for embedded systems.

RTEMS can be characterized by three layers: haelsapport, kernel and APIs.
The user then develops his application by using dhailable APIs. This layered
architecture is depicted in the diagram of Figure 1

C/C+HAda application

Initiglzaton || Task |[interrupt |[Clog: | Timer

Crual Ported hdemong I femony P artition || Memony Region || Signal
R ate honotonic F atal Errar

Uz er Extension

Tl e=s age hultiprocessing

Frocess Creation and Execution femony Management |8 Thread

Thread Cancellation I hessage Passing I Semaphore | Scheduler

Crewice and Class Specific Functions I Input and Clutput P rimitives

Language- Specific Senices for the © Programming Language I Ky

Frocess Ernvironment Systemn D atabazes | Files and Crirectories
Condtion Wariable | Signal || Mutex | Clodk || Timer

Task || Task- Dependent Synchronization || Semaphore | Eventflags
Tl 3ilbna: I Mz age Buffer I Rend ezvous I Interrupt || bAemory Poal
Fi<ed Block || Time)| Swtem || Metwok Support

Figure 1. RTEMS Architecture

The hardware support layer encompasses the procasddoard dependent files
as well as a common hardware library. RTEMS Boargp®rted Packages (BSP) and
Device Drivers is the layer that ports RTEMS to tlaedware boards.

The kernel layer is the heart of RTEMS operatingtayn and encompasses the
super core, the super APl and several portable support libraries. Haper core is

organized into handlers and provides a common strirature and a high degree of
interoperability between APIs. Treiper APl contains the code for services that are
beyond any standardization, such as API initialimaand extensions support.

The API layer makes the bridge between the kermel @he application. The
Classic, POSIX and ITRON APIs are implemented mmge of super core services.
Each API is organized into managers (the right sidkhe Figure 1 illustrates that). The
Ada APl is a direct mapping of the Classic integfac

2.1 RTEMS Managers

This section provides a brief description of ale tRTEMS Managers and its
relevance for the development of RTEMS applications

2.1.1 Initialization Manager

The Initialization Manager is called by the BSPthe system Initialization phase
and is responsible for the initialization and simgttdown of the remaining RTEMS
Managers and RTEMS Core.

2.1.2 Task Manager

The Task Manager is responsible for the managewnfeRTEMS tasks (in Linux
nomenclature RTEMS tasks are referred as threadistontains primitives to
create/destroy tasks, as well as functions to sukpEsume a task or make a task sleep
for a specified amount of time, etc.

2.1.3 Interrupt Manager

The Interrupt Manager is responsible for the mamege of interrupts. It allows
the establishment of user-defined Interrupt SerRoaitines (ISR) and the disable/re-
enable of interrupts.

2.1.4 Clock Manager

The Clock Manager is responsible for the managerokttie time in RTEMS. It
can be called by the application (in order to seget the current time, for example) or
by the BSP (in order to update the current clock)ti

2.1.5 Timer Manager

The Timer Manager is responsible for the managenoértimers in RTEMS.
Timers are RTEMS objects that call user specifmatines at defined instants in time.
There are two forms of timers: raw and server. Wikl raw timers, the user specified
routine is executed in the context of an ISR. Ashsit has a limited functionality. The
server timers are executed in the context of tlyhdst priority task named “Timer
Server”. The user routines have more flexibilitytie operations performed (e.g., they
can use floating point operations).

2.1.6 Semaphore Manager

The Semaphore Manager is responsible for interg$gskhronization through the
use of semaphores. It implements both binary antghtory semaphores. Only the
binary semaphores implement priority inheritancemority ceiling protocols (in order
to avoid priority inversions scenarios).

2.1.7 Message Queue Manager

The Message Queue Manager is responsible for tasér-synchronization and
communication through the passage of messagesdnatask to another(s).

2.1.8 Event Manager

The Event Manager is responsible for inter-taskchyonization through the
triggering of events from one task to another. 8ktanay choose to block until a
specific event is sent.

2.1.9 Barrier Manager

The Barrier Manager is responsible for the syncizaiion of a set of multiple
tasks at once, i.e. one set of tasks could be ngaiti the barrier for some condition;
when that condition happens the barrier releasesagks in order to them proceed with
their execution.

2.1.10 Signal Manager

The Signal Manager is responsible for the manageroemsignals in RTEMS.
Signals are user-specified routines that are erdcwthen the RTEMS scheduler
decides to perform task switching. These user-pdcroutines can perform more

operations than the ISR's counterpart but haveeatgr latency (need more time until
they are executed). Because the execution of sigaalomewhat unpredictable (is only
performed during the context switches of the taskhich the signal is directed to), it is
difficult to integrate in a schedulability analysigurthermore, the functionality

provided by this Manager can also be obtained tiraine use of events which are
processed in the context of the task.

2.1.11 Partition Manager

The Partition Manager is responsible for dynamycateating fixed-size memory
units. The usage of fixed sized memory buffers enéy the memory external
fragmentation phenomenon, which happens when tmeameis full of small pieces of
free memory that because of its size could notlloeaed. However it could increase
the memory internal fragmentation, which happensmihe size of the allocated block
is bigger than the requested leading that the egjin do not use all the memory that it
holds. The usage of fixed sized memory buffers domhprove performance and
decrease the allocation time.

2.1.12 Region Manager

The Region Manager is responsible for dynamicalkjating variable-size memory
units.

2.1.13 Dual-Ported Memory Manager

The Dual-Ported Manager is responsible for convgrtaiddress representations
between internal and external dual-ported memaegsarThis conversion is sometimes
needed in multiprocessor systems or systems wiglligent peripheral controllers, to
convert the internal representation of a memoryna processor/component to another.

2.1.14 1/0O Manager

The 1/0 Manager is responsible for directing agglans calls (such as a read or
write operation) to the selected driver.

2.1.15 Fatal Error Manager

The Fatal Error Manager is responsible for procesgtal errors in RTEMS. The
user can announce the occurrence of a fatal etnatwmcan be caught (and recovered)
by a user specified error handling routine.

2.1.16 Rate Monotonic Manager

The Rate Monotonic Manager is responsible for miasis periodic, that is, to
produce periodic tasks to be scheduled accordinthéorate monotonic scheduling
analysis.

2.1.17 User Extensions Manager

The User Extensions Manager is responsible forkimgpuser-specified functions
at specific scheduling points, such as task creatask dispatching, fatal error, etc. The
functions specified on these extensions are invoketthe reverse order that they are
installed, LIFO® order, and they are invoked before the default R$Eunction.

2.1.18 Multiprocessing Manager

The Multiprocessing Manager is responsible for pioyg inter-processor
synchronization and communication.

2.1.19 Stack Bounds Checker

The Stack Bounds Checker is responsible for detengithe stack usage of each
task. The determination of the stack usage is pedd at each context switch and the
time to perform this operation is currently propamal to the stack size.

2.1.20 CPU Usage Statistics

The CPU Usage Statistics Manager is responsible ditermining the total
execution time and CPU percentage of each tasle tiiat these values are related with
the average case. This is not useful in a scheiityabnalysis for hard real-time
systems because the worst case scenario is natrdaedo

2.2 Summary

This chapter has presented a RTEMS Architectuiacltides brief explanation for
the RTEMS operating system major components suclassic APIl, POSIX API and
uITRON API. It also presents an overview of the RTEMxecutive kernel which
includes the API Layer, RTEMS Super Core and th&RE support libraries.

8 LIFO (Last In First Out), the first extension ellis the last extension installed.

10

Due the fact that the RTEMS integrates severalfeatlike network protocols, file
systems support, multitasking support, interruphaggement, inter-task communication
and inter-task synchronization, the basic RTEMS&kis highly configurable.

This chapter also provides a brief explanationsimme of the RTEMS Managers
such as Initialization Manager; Task Manager; migr Manager; Clock Manager;
Timer Manager; Semaphore Manager; Fatal Error Managnd Rate Monotonic
Manager.

11

12

Chapter 3

RTEMS Suite Tailoring

This chapter will present and explain the selecpoocess that has been taken to
decide the included RTEMS Managers and the excludadagers for the RTEMS
tailored version and provides a brief justificatifum the inclusion or the exclusion of
some managers. It explains the necessity to ceeamwv test suite, the Tailorable test
suite, which covers all the requirements imposeitié¢cRTEMS Tailorable version.

This chapter, also, explains the necessary workftoachieve a RTEMS tailorable
pre-qualified version by applying the RTEMS patbhattwill be produced by Edisoft,
the Edisoft patch, and it includes a RTEMS ImprogatrOverview.

3.1 RTEMS Managers Utilization Survey

This section presents the RTEMS Managers Candidatebe validated. To
perform a correct tailoring of the RTEMS Operatigstem, EDISOFT has contacted
some of the European space industry members likeBSand OHB and heard their
necessities about the RTEMS managers used ondinatoped applications as also has
heard ESA necessities and requirements for theespaglications they need. Based on
the collected information Edisoft has performeapresentative survey of the possible
RTEMS managers used by the European Space commuiBased on the Edisoft
produced survey, Table 1 provides some high lem&rination of the managers
currently being used in the space applications.

13

RTEMS Managers SAAB OHB ESA
Initialization Manager Yes Yes Yes
Task Manager Yes Yes Yes
Interrupt Manager Yes Yes Yes
Clock Manager Yes Yes Yes
Timer Manager Yes Yes Yes
Semaphore Manager Yes Yes Yes
Message Manager Yes Maybe Yes
Event Manager Yes Maybe Yes
Signal Manager No Maybe Yes
Partition Manager Yes Maybe No
Region Manager No Maybe No
Dual-Ported Memory Manag No No No
I/0 Manager No Yes Yes
Fatal Error Manager Yes Yes Yes
Rate Monotonic Manager Yes Yes Yes
Barrier Manager No Maybe No
User Extensions Manager No No Yes
Multiprocessing Manager No No Yes
Stack Bounds Checker No No No
CPU Usage Statistics No No No

Table 1: Edisoft Representative Survey Results

The information contained on Table 1 provides RTEMfprovement guides for
the facilitation of qualification to be done. Framncareful observation of Table 1 we
could verify that the most important RTEMS manadershe space applications are:

* Initialization Manager;
* Task Manager,

* Interrupt Manager;

e Clock Manager;

* Timer Manager;

* Semaphore Manager;
» Fatal Error Manager;

* Rate Monotonic Manager.

14

3.2 RTEMS Managers Evaluation

Based on the survey answers, completed by a ditaialysis performed by

Edisoft RTEMS CENTRE team, the proposed RTEMS adatdi managers are:

Initialization Manager;
Task manager,

Interrupt Manager,

Clock Manager;

Timer Manager,
Semaphore Manager;
Message Queue Manager,
Event Manager,

Fatal Error Manager;

Rate Monotonic Manager;
I/O Manager,

User Extensions Manager.

Following is the list that justifies the includedanagers:

Initialization Manager - This manager is necesdarythe initialization of the
other managers, the system do not work propethisfmanager is excluded.

Task Manager - This manager is necessary for raskiihg capabilities and is
one essential requirement of the RTEMS tailoredioec

Rate Monotonic Manager - This manager is usefareéate periodic tasks.

Interrupt Manager - This manager is necessary tdrabthe access to the
hardware interface.

Clock Manager - This manager is necessary for tnagagement.

Timer Manager - This manager is necessary to parfmeriodic operations such
as task switching.

Semaphore Manager - This manager is necessarmtiartask synchronization
and control access to critical sections such asedhaariables and hardware
resources between others.

Message Queue Manager - This manager is necessaryinfer-task
synchronization and communication.

Event Manager — The team has decided to includerttanager because it is
useful for inter-task synchronization and commuinica

I/O Manager - This manager is necessary to interfathe application with the
device drivers.

15

« Fatal Error Manager - This manager is useful foorenandling and recovering.

» User Extensions Manager - This manager is usefulatoleast, the Fatal Error
Manager.

Following is the list that justifies the exclude@mnagers:

* Barrier Manager - Since this functionality can alse achieved with the
semaphore manager, even though with greater complékis manager is out
of scope of the RTEMS Improvement project.

e Signal Manager — For the evaluation performed byisétl RTEMS
Improvement project team this manager is not ofte®d in space applications
and is out of scope of the RTEMS Improvement pitojec

e Partition Manager — Since the project has to beeldgped using the code
standards of MISRA-C and the rule 20.Qyhamic heap memory allocation
shall not be us€dorbids the usage of dynamic memory. The teamdesded
to not include this manager, staying it out of IEEMS Improvement scope.

» Region Manager - The functionality provided by tlnanager has a determinism
closely related with the memory units in the systléence it not safe to use in
terms of the amount of execution time required.

* Dual-Ported Memory Manager — Since this functidgal not required in most
systems, this manager is out of the project scope.

e Multiprocessing Manager - This manager is not angbope of the project.

» Stack Bounds Checker - This functionality will no¢ used on the onboard
software because it introduces a great overheadgleach context switch to
determine the stack usage. This Manager is outteoptoject scope.

e CPU Usage Statistics - Because the onboard softwdir@ot use this feature
this manager is out of the scope of the RTEMS Iwg@neent project

3.3 RTEMS Tailoring Plan

The RTEMS Tailoring Plan is illustrated in FigureAs depicted, on a first stage,
from the original RTEMS 4.8.0 source code, the RTENMprovement project team
will remove the dead code, as could be seen inr€iguin order to produce a minimal
subset of RTEMS according to the RTEMS Candidateddars. At the same time, a
test suite will start to be created in order ta thss minimal subset. On the second
stage, the minimal RTEMS and the test suite wilubed as inputs to find and fix bugs
present. At this stage the test suite shall be tetegh The third stage will take the
complete test suite and fixed RTEMS and custonheentboth in order to produce the

16

tailorable test suite and tailorable RTEMS, usedheythird parties to create and certify
their applications.

— Remove Minimal Find & Fix MFi:ﬁfndal
Original | | pead code || RTEMS |+ Bugs |}
N2 (1st stage) (1st stage) (2nd stage) FAJ2E
9 (2nd stage)

! t

CregLei,t;I'est S ——
> (1st and — (1stand 2nd RTEMS
LA stage) (3rd stage)
Y
Customize
Test Suit

(3rd stage)

v

Tailorable Test Tailorable
Suite RTEMS
(3rd stage) (3rd stage)

Figure 2: RTEMS Tailoring Plan

3.3.1 Dead Code Removal

Due the fact that the tailored RTEMS version hawmesgestrictions at source
code level, it should not contain dead code or d¢bdeis not executed. All the unused
RTEMS Managers as well as all the unused RTEMS 8Bsould be removed from the
source tree since it is considered dead code. oAkl de seen in Figure 2 the removal
of dead code, identified by Remove Dead Code irfithee, is in the first stage of the
Tailoring Plan and it leads to a RTEMS minimal vens Minimal RTEMS in the
figure, which is the start point to build the RTEMSilored version.

The unused Managers and BSP's removal impliestladsoecessity to perform
changes in the remaining RTEMS source code in otderemove permanently
functionalities and/or code related with the rentbianagers and BSP’s. The research
made by the RTEMS Improvement team shows that saihehis unwanted
functionalities require some interaction betweerERIE Managers. This requires that

17

the source code needs to be changed carefullydinl #veaking functionalities on the
Managers selected for the tailored version of RTEpI®duced by the RTEMS
Improvement project.

In a first phase the dead code removal has beee hgrselecting all the source
code files related with the exclude Managers an®’'8&nd remove them from the
Makefile’'s structure. This causes that when comgiliRTEMS the removed
functionalities are not built. Since RTEMS is ajpobd completely managed by the gnu
auto tools, when changes like add or remove sotwde files or configuration files is
also necessary to change some of the auto toofgyuaation files, like Makefile.am
and configure.ac files, in the directories where ¢hanges have been done.

In a second phase the detection of the dead calbd®mn done by running the test
suite produced by RTEMS Improvement team. This seste is fully featured and
covers all the requirements for the RTEMS Improvenpeoject. The test suite runs on
all processors and boards selected for the RTEMBrawement project, ERC32,
LEONZ2 and LEON3, with all the selected managersuBiyng the GNU Coverage tool
GCOV it was possible to verify and analyse what wiesd code and what was
defensive code.

The code considered to be dead code will be remdhexligh one patch, the
Edisoft Patch produced by the RTEMS Improvemenjegtdeam. This patch, besides
remove dead code, when applied transforms an atigRTEMS distribution (version
4.8.0) downloaded from the OAR website in a RTEMi®ted version.

3.3.2 Create Test Suite

After removed all the unwanted Managers and BSs fRTEMS source code,
the resultant code needs to be properly testedetet the requirements for the RTEMS
Improvement project. Since the Minimal RTEMS thasults from the dead code
removal phase have some new features and havedeaamoved, in relation with the
original RTEMS version, this implies the design dhd creation of a new tailored test
suite that covers not the original REMS source cbdeto cover the source code
resultant from the dead code removal phase. &ilmed test suite has been design to
test and cover all the situations that the TaildR&EMS could be exposed.

3.3.3 Find and Fix bugs

After the creation of the tailorable test suitehds been executed to find all the
possible bugs that remain in the Minimal RTEMS. #iké found bugs have been fixed

18

by applying the OARpatches, if they already exist, or producing netcpes to fix the
RTEMS source code. In some cases, when the patohddug already exist and since
the Minimal RTEMS is different from the original EMS, it was necessary to change
the Minimal RTEMS source code to reflect the changegroduced by the applicable
parts of the patch. Applying the full patch couliroduce errors in the Minimal
RTEMS. In section 4.7 (Test Suite Execution) thiespswill be explained with more
detail.

The execution of the test suite also has beendlelptietect dead code. The output
of this phase was the Fixed Minimal RTEMS.

3.3.4 Customize RTEMS

The Fixed Minimal RTEMS was an important input bistphase, since it was the
start point of the RTEMS Tailorable version. CusttenRTEMS has implied, the
necessity to change the RTEMS source code to beRBKHS compliant and also to
clean the source code from all the dead code d@etécithe Find and Fix bugs phase.

The customization process of RTEMS has implied gearand adds some features
to RTEMS in order to meet the project software nenents. One important feature
added was a safe state point to where RTEMS suifitahfatal error occurs allowing
RTEMS take an action to treat or recover from titalferror that occurred.

Another feature that has been added was systemmptaverification at boot time,
this feature checks if all the system parameteesba&ing initialized with the correct
values avoiding the wrong behaviour of the systiémuring the initialization phase the
system detects that a configuration value is wrdnggnerates an event that is reported
to the user application identifying the paramehat has the wrong value.

One of the added features was a set of macros alests the user, using
compilation warnings, if the application uses mobgects than the maximum number
of objects specified for the RTEMS Tailorable, tlee system should have a maximum
of 64 threads and for some reason the user degfatlereads in their application, when
the user is compiling its application, the useenees a warning message indicating that
the number of threads used in the application el#dee maximum number of threads
that the RTEMS Tailored version should handle.

° Online Applications Research, http://www.rtems.com

19

3.3.5 Customize Test Suite

After customize RTEMS to achieve the Tailorable RIE version it is also
necessary to customize the created test suitevier tbe changes made in the Minimal
RTEMS. The first version of the test suite was glesd to meet the requirements for
the RTEMS Improvement project and to test the MaliRTEMS. Since the Minimal
RTEMS has been modified in the RTEMS customizagimtess, the test suite has also
to test and cover the modified features. At thiagghof the project the customization
process of the test suite had implied the necegsitylesign stress to verify the
Tailorable RTEMS version reliability. The custontiba process also had implied the
creation of tests that verify the maximum memongages of the applications, the
performance of it, the size of the produced exdiasa between other system features.

3.4 RTEMS Tailoring Workflow

In Figure 3 it is illustrated the RTEMS Workflown the final of the project there
are two ways to achieve the Tailorable RTEMS, tin& is downloading the source
code from the RTEMS Centre site and the other jpdyapg the Edisoft patch to original
RTEMS Version. As depicted, the Edisoft patch iplieggl to the original RTEMS 4.8.0
source code to remove dead code and fixes bugslfdums will produce a Tailorable
RTEMS with all functionalities of the selected mgees available and free from all the
known bugs, at date of the patch delivery.

Since the applications only need a subset of th&NRS API, this can be
configured to fit the application’s needs so thaniamimal footprint can be achieved.
Accordingly, only a subset of the Test Suite widaabe produced, the necessary tests to
ensure the RTEMS correct operation. The tests @ ienportant because is they
ensure the pre-qualification of the applicationthé Tailored RTEMS passes all of the
generated tests.

20

RTEMS
4.8.0

h J

®= Patching

Tailorable
RTEMS

Edisoft Patch

(Remove unused

unused Managers, Dead
Code and bugs)

BSP's,

Edisoft

Tailorable Test Suite

RTEMS Tailoring @4—

RTEMS Configuration
Parameters

h J

Tailored
RTEMS

Test Suite Tailoring

Edisoft

Tailored Test Suite

Figure 3: RTEMS Workflow

3.5 RTEMS Improvement Overview

In the Figure 4 is depicted the RTEMS Improvemewti@iew where is possible to
clearly see the target processors and boardsifptbject. It also shows the Test Suite
that was developed to facilitate the qualificat@RTEMS. The main purpose of the
tests is to validate RTEMS against the SoftwareuRement DocumentSRD).

21

LECN 2

CRXC35-1500

Figure 4: RTEMS Improvement Overview

When the tailorable RTEMS and the tailored TesteSaie complete an additional
extra module will be developed and integrated | RTEMS Operating System, the
Memory Management module. This module will be tédig an independent team that
will perform the verification and validation of itFigure 5 shows the RTEMS
Improvement Overview now with the new Memory Manmaget module incorporated.

LECN 2
CGR-XC35-1500

CGR-XC35-1500
Board

Figure 5: RTEMS Improvement Overview with Memory M@ement module

22

The Figure 6 presents the RTEMS Improvement roadmapthe base of the
project we can find the original version of RTEM$eoating system, the RTEMS
patches that will be produced in the project, #sts that have been created for RTEMS

facilitation of qualification.

Original RTEMS
<"

Test Suite

oD
%

S
%‘I’EMS Improvement

Configuration Tool

Taﬂured Test Suite
Tailored RTEMS

Facilitation Qualification Material

Figure 6: RTEMS Improvement Roadmap

23

With the original RTEMS software and the RTEMS pat it will be possible to
generate a version of the RTEMS Tailored softwaemparing to the original
RTEMS, this version has bugs fixed, dead code remowall managers and APIs
present and the complete kernel. In parallel, at Beste to test the requirements,
produced based in the RTEMS source code and RTEM& Wanual, will be
generated and will have the complete set of tests.

The next step is to configure the RTEMS and TesteSfor the space mission.
Each space mission has its own requirements, thEM®T shall be configured to
support and accomplish the requirements of theespaission. To support the above
described configuration, RTEMS Improvement will dmp a configuration tool able to
correctly configure the RTEMS and Test Suite. Thetpot, the test suite plus the
project documentation, of this activity is the Daélble RTEMS and the Tailorable Test
Suite.

The Tailorable RTEMS and the Tailorable Test Saite merged to produce and
execute the tests for the facilitation of the didtion. The results are then used as
inputs for the RTEMS OS updates, the patches tprbéuced, the MMU updates, the
Tests and the MMU tests updates. This will clogelttop of the RTEMS Improvement.

The project was divided into two distinguish phaggisase 1 implemented the
RTEMS improvement and the MMU and phase 2 mainthared updated the RTEMS
test suite. The Figure 7 displays a schematic thighproject activities.

24

Phase1:MIVL ancd ETEVE Inprovament inmplaemeritation

Task 2.1: NIV Specifications
Architectire

!

Task2Z MVL! Desion

'

Task1.3 Test Design Task 2.3 MIVL Inplamertation

!

Task24: NIVL Testing
|

Task 1.5: HFTEVE Tailonng Test Suite Ressecution

¥
Phase2 FTEVE Test Suite Mbintaining andd Lpcating

Task 1.6 HIEVE Test Suite Maintenance
Tas=k 1.7 Management Cuality, Reporting Task1.8: Product Assirance and

Figure 7: RTEMS Improvement Main Activities

Task 1.& Test Implementation and
BExecution

pausbeuey Lo e e

i
!:IJ;
%
a
d

Phase 1, MMU and RTEMS Improvement implementatienendeveloped and all
the activities related with the development on Tlaglorable RTEMS, the Tailorable
Test Suite and the MMU block. The following subtaties were defined:

e Task 1.1: RTEMS Reverse Engineering & Architecture RTEMS
documentation was analyzed and improved, sourcee cads reversed
engineered and the RTEMS architecture was built;

e Task 1.2: RTEMS Design — RTEMS design was performsithg the UML
language, interface description was performed am@&NRS dynamic aspects
were developed and described,;

» Task 1.3: Test Design — This activity designedTibst Suite described above;

e Task 1.4: Test Implementation and Execution — Testee implemented and
execution of the tests in the ERC32 and LEON;

e Task 1.5: RTEMS Tailoring Test Suite Re-executioRFEMS and Test Suite
were tailored and executed jointly;

25

* Task 1.6: RTEMS Test Suite Maintenance — The Tage Svill be maintained
for the period of time;

» Task 1.7: Management, Quality, Reporting and Megstin This task managed
the project and was in charge of the reportingngagency;

e Task 1.8: Product Assurance and Configuration Mamemt — Product
assurance and configuration management activiteze werformed in this task;

* Task 2.1: MMU Specification & Architecture — Thissk specified will develop
the architecture of the MMU block;

e Task 2.2: MMU Design — MMU design will be produdedhis activity;

e Task 2.3: MMU Implementation — Code will be deveddpn this activity;

e Task 2.4: MMU Testing — MMU will be tested in trastivity.

3.6 Summary

This chapter has presented and explained the melquiocess taken to decide the
RTEMS Managers that have been included and the geanahat have been excluded
from the RTEMS tailored version. It explains thecessity of a new test suite for
Tailorable RTEMS, the Tailorable test suite.

The chapter explains the necessary workflow by yapglthe Edisoft patch to
achieve a tailorable pre-qualified RTEMS versiom @ives a RTEMS Improvement
Overview.

26

Chapter 4

RTEMS facilitation of qualification

The qualification of one application for space nussis only possible using both
software application and the hardware platform (thission hardware) where that
application will run. Taken this in account the qaate qualification must be performed
using the produced RTEMS Tailored version adapeithé space mission and running
in mission hardware supp&tt

One important output of this project is that a Tesite will be developed in order
to facilitate the qualification of RTEMS. This TeSuite will provide 100% statement
and decision coverage of the RTEMS source codewalhdacilitate the qualification
based in the Galileo Software Standards SW-DALWIland a minimum part of it will
be used to reach desired coverage.

4.1 Galileo Software standards

The "Galileo Software Standards ", GSWS, are thrdsirds adopted by ESA and
it defines procedures to be followed for softwanegieeering, software product
assurance and software configuration management.

These standards are defined in a document productte Galileo Industries. The
GSWS document define five levels, from the mosgeni SW-DAL A to most flexible
SW-DAL E, and for each type of software and forre&W-DAL, it also define the
required life cycle model, the programming langsateat can be used in the project
development, the structural coverage, the formdteafders that identify the author and
the company to be used in the code files, the digislity and safety management. It
presents formulas for the metrics and defines trendt for the project applied
documentation.

% The hardware platforms used in RTEMS Improvemest autside of scope of the facilitation of
qualification.

27

For the RTEMS Improvement project, the GSWS defibeth documentation
format and the documents that need to be comphatedery deliverable. The GSWS
also defines the format used to exchange informatietween the RTEMS
Improvement team and ESA. The usage of GSWS SW-BAlor the RTEMS
Improvement project also implies that the souraeachanged and produced during the
development phase to integrate the RTEMS Tailomdion, excluding the tests that
belongs to the test suite, needs to have 100%atérsent coverage, this means that
each RTEMS line of code needs to run at least aicthe declared variables should be
used, the application should not contain unusedbi@s. The source code should not
contain dead code, source code that never runs GBWS SW-DAL B also obliges
that the RTEMS source code should have 100% okdeccoverage, this means that
decision blocksijf-else, while, do-while, for, switchand others should run at least
once.

4.2 SW-DAL B facilitation of qualification

For the RTEMS Tailorable version, the final prodatthe RTEMS Improvement
project, it was adopted the Galileo SW-DAL level s SW-DAL level implies that
the RTEMS CENTRE team only can use Assembly, ADA rlanguages in
development and in structural coverdigée tailored RTEMS version, must have 100%
statement coverage and 100% of decision coveragerder to meet the 100% of
statement coverage the tailored RTEMS version shaokt contain dead code. This
means all the code that is not covered by thertdile test suite must be removed.

To analyse the code coverage and the decision aggehe RTEMS Centre team
has adopted the open source tool GNU GCOV.

4.2.1 GNU GCOV brief explanation

Gnu GCOV is an open source tool that is used tdys@and give the values for
the statement coverage and decision coverage dadtrce files. To give the coverage
information values, the GNU GCOV uses three typefiles to give the coverage, the
original source code file (in the RTEMS case cdugda .c or a .inl file), the .gcno file,
which is a graph file where GCOV stores the infaiora about the source file, this
.gcno file is created at compilation time when GG@énerates the object file. For
example if the RTEMS file clockset.c was compilezing the GCOV flags the GCC
will create at compilation time two files: the ckset.o, that is the object file, and the

1 |s the result from the Statement Coverage forsthece code, Statement Coverage for the object, code
Decision Coverage for the source code and Modifieddition & Decision Coverage for the source code

28

clockset.gcno that is the graph file for the clatks The graph file contains the

information about number of lines that is possitdecover in that source file. It also

contains numbers to identify the functions thasexon clockset.c, and other important
coverage information.

At running time the application creates a file, theda file that is a data file that
contains the counts for the lines and functionsetesl and information about decision
coverage like branches executed.

Later, after running the application, when GCOV imwvoked to process the
coverage information for a specific applicationyetds the information contained in
both .gcno and .gcda files. With that informatio@@V generates all the code coverage
and decision coverage information for each sourgdecfile that belongs to the
application storing it in a .c.gctifile. In the above example, for the RTEMS clockset
file, GCOV stores all the coverage information lackset.c.gcov in a human readable
form.

These .gcov files are quite similar to the origisalirce code files. GCOV adds a
header where it identifies the source code file,graph file and the data file, number of
times that the program has been run. Besides #asldr gcov adds two columns in
front of each line of source code. The first ofsiaeolumns indicates the number of
times that that line has been executed; the seobtitese columns identifies the line
number.

Figure 8: shows an example of a part of the GCQ&/féir the above example the
RTEMS clockset.c source file. In it is possibleste three columns: the first with the
count values, the second that identifies the limmiper and the third that is the source
code line. In Figure 8 it is possible to see tla¢ Inumber 53 has been executed 24
times and the line number 57 only had executediome

12 Assuming the source file has another extension BOM@Il produce one file named like
name_of the_file.extension_of the_file.gcov

29

-1 5@:rtems_status_code rtems_clock_set(
-: 51: rtems_time_of_day *time_buffer

- 52y)
24 53:4{

-: 54 struct timespec newtime;

ol 55
24 56: 1f (!time_buffer)

1: 37 return RTEMS_INVALID ADDRESS:

- 58
23: 59: 1if (_TOD Validate(time_buffer)) {
18: 60: newtime.tv_sec = TOD To_seconds(time_buffer };
18: 6L: newtime.tv_nsec = time_buffer->ticks *

- B2 (_TOD Microseconds_per tick * TOD _MANCSECONDS PER._MICROSECOMD) ;
ol G63:
18: 64 _Thread_Disable_dispatch();
18: 65: _TOD_Set(&newtime };
18: 66 _Thread_Enable_dispatch();
18: 67 return RTEMS_SUCCESSFLUL;

-1 B8 }

3 69: return RTEMS_INVALID CLOCK:

- 70:}

Figure 8: Example of a GCOV coverage file

In order to have general coverage information mae user friendly format the
RTEMS Centre team uses the LCOV tool. LCOV tookidront end for the GNU
GCOV that generates fancy html pages to analysthaltoverage information using a
web browser, Figure 9 shows the start page for siered RTEMS.

LCOV - code coverage report

Current view: directory Found Hit Caverage
Test: RTEMS Improvement Coverage Lines: 3521 3293 93.5 %
Date: 2009-07-28 Functions: 395 389 98.5 %
Line coveragea: Function coverags:

Colors: EEESESEN 15% to S0% 50% to 100% I o to 0% 90% to 100%
coverage/build/sparc-rtems4. 8/sis/lib/include/rtems | I—— 100.0 % TI7 100.0 % 3/3
coverage/build/sparc-rtems4. 8/sis/lib/include/rtens/riens] 100.0 % 87 f 87 100.0 %% 39 /38
coverages/build/sparc-rtems4. 8/sis/libsinclude/ritems/score [T 95.2 % 4355 [458 99.1 %% 116/ 117
home/rtems/rtems-impricpukit /rtems/src I | 97.8% 10855/ 1113 100.0 %o 82 f 82
home/rtems/rtems-impricpukit/sapi/src | —— 98.7 % 148 [160 100.0 %o 18/ 18
home/rtems/rtems-impricpukit /score/cpu/sparc | E— 100.0 % 45 f 46 100.0 %% 5/5
home/rtems/rtems-impricpukit /scoressre | —— 89.4 % 1380/ 1544 99.1 %% 106 f 107

src/lib/libbsp/shared | —— 87.2 % 34 /39 83.3 % 578
src/lib/libbsp/sparc/erc22/clock 1 83.3 % 5/6 100.0 % 1/1
src/Lib/libbsp/sparc/ercaz/startup —— 76.9 % 2o/ 2 [IEEEN
src/lib/libbsp/spare /shared 1 | 88.0 % 22426

src/lib/libecpussharedssre | —— 100.0 % 2)2 100.0 %% 1/1
src/optman/rtems | — 100.0 %% 10/ 10 100.0 %o 5/5
src/optman/sapi | —— 100.0 %% S/8 100.0 %o 4/ 4

Generated by: L COV version 1.7

Figure 9: LCOV Index page for the RTEMS Improvemgrtject

30

LCOV also navigates in the source code to visuadimd analyze the coverage
information resultant from the test suite executiathout needing to edit each .c.gcov,
.h.gcov and .inl.gcov file created be the GCOV todiich is the default method.

4.2.2 GNU GCOV on RTEMS

To evaluate the code coverage and decision covénegRTEMS CENTRE team
has adopted the GNU GCOV tool. This tool is par6&C- and since that is primarily
designed and built to be used for applications ilmas in the host computer. This means
GCOV will not work on the targ&tboards without be modified. The main GCC library
that GCOV uses is libgcov, which uses functionaditifrom the host libc. The
functionalities from the host libc that are used limgcov will not be present in the
application that goes to the target board. By ibéson the libgcov has been modified in
order to remove all the functionalities that ussthitbc references from it.

The libgcov changes have been made in order to aasreall part of the GCOV
library working inside the target, a stand alonegdiov that only have the basic
functionalities to GCOV work properly has been tedaThe rest of the libgcov library
was built as a program that works autonomouslyhenhtost. This part, which runs on
the host, contains all the stuff that uses hostrdierences.

The Figure 10 shows how the libgcov was separatedder to give the target code
and decision coverage information.

In the left side of the Figure 10 is representedlitigcov part that is compiled with
the application that goes to the target. The tacgeld be a development board or a
simulator. This part of the libgcov is responsitdénitiate the GCOV_INFO structures.
These structures are where GCOV stores the infaomatalues and counts, for the
statement coverage and decision coverage. Laten Wiee application is terminating,
the target libgcov is called again to start sendhmgy data stored in the GCOV_INFO
structures, via serial port, to the host part bfdiov. This host part is the application
built with the remaining code of libgcov and exexsutin the host computer. It is
represented in the right side of Figure 10, whishaitached to the host serial port
collecting data to create the gcda’s data filesesehgcda’s files will be evaluated and
used by GCOV to generate the coverage informatabmes for each one of the RTEMS
source code files that has been used to buildesiteapplication executing in the target.

13 GCC is the GNU C Compiler and GCOV is a librargttts part of GCC.

% The target is the board where the application mili, for example the LEON3 development board is
one of the possible targets to the applicationekbped using the RTEMS tailored.

31

HOST FC LIBSCOW DUMP

HOST GEDA

FILE
RTEMS APPLICATION ON TARGET GENERATOR
BOARD

HOST PRINT

TO SCREEN

TARGET PART | SERIAL PORT CONNECTION | sgmial LINE NON GCOW
OF LIEGCOV CONMECTOR INFORMATION

Figure 10: libgcov, work on target boards

After the changes needed in GCOV modules, the niaksfucture has also to be
changed in order to compile the sources with th@®®Glags and to use the libgcov
produced by the RTEMS Improvement team insteathi@fiefault GCC libgcov, which
do not implement all the necessary functionalite$COV work on target. The cross
compiler only includes dummy implementatibhsof the GCOV required
functionalities.

4.3 RTEMS reverse engineering

The reverse engineering is a technique that follawapproach in the reverse order
that normally is used to develop software projebtstmally, in most of the software
projects, the development starts by the designhefdystem followed by the build
phase, the production of the source code, untdhrélae final product when the system
is complete and ready to be delivered to the cliemthe reverse engineering process
we start for the last phase, the system is alréadly and the main goal is to go in the
reverse path, in source code direction. This reveath implies a deep and careful
analysis from both application and source code,nwies available. This careful
analysis is necessary to understand the main it &R TEMS Improvement project.

The RTEMS reverse engineering was the processlehdt us to a most deeply
knowledge of the RTEMS functionalities and implemagion. This process was a
necessary step to achieve one important goal dRTeMS Improvement Project (Task
1.1 to Task 1.3), obtain a strong and deep knowdeofgthe RTEMS source code,
performing a deep analysis on them, and also todes how the RTEMS managers are
related one to each other and how they are impleedem order to produce a tailored

!> Dummy implementations in this case implies that¢tpss compiler only includes one implementation
of the functionality with an empty body this im@i¢hat the default libgcov in the cross compilertfe
target do not collect any statistics or counts alstatement and decision coverage.

32

version of the RTEMS operating system and a taildrest Suite. During this phase of
the project, a deep assessment of the source esdiedlen made. As result of that deep
analysis violations to MISRA-C coding standards aods were found. The MISRA-C
coding standards define strict rules and recommendato use when developing and
coding applications for real time and critical €8s. These rules are defined to
promote that the code execution flow and the execuime is determinate, avoiding
the usage of all the functionalities that executiame is not determinate. The rules are
also defined to make readable and understandatée co

Some of the violations to MISRA-C coding standarftsynding in the code
analysis phase, have major severity and are relsittxdthe usage of the C statements
goto and continue that could the execution of the code unpredictafilee goto
statement violates the MISRA-C rule 14.4, “Tgato statement shall not be used” and
the continuestatement violates the MISRA-C rule 14.5, “T¢entinuestatement shall
not be used”. Other violations to MISRA-C codingrstards are related with MISRA-C
rule 14.7, “A function shall have a single pointefit at the end of the function”. A
clearly violation of this rule is stated in FiguB that shows part of the code of
clockset.c file. The Figure 11 shows in (A) thegoral code of the function
rtems_clock_set, the same code that appears irréciguand in (B) the necessary
changes that have been made to the function saade to turn it compliant with
MISRA-C rule 14.7.

33

aen
rtems status_ code rtems clock set |
rtem= tim= of day T"cime= bhuffer

]
{

sStruct timesapec newt ime:

if { !time buffer | A
recurn RTEMES_ INVALID ADDRESS:

if [_TOD_Validace (| cime_buffer | |
newtime. ty_sec = ToD_To seconds(time buffer)
newtime.ty nsec = time buffer->ticks 7

(_TOD Microsecond=s per tick * TOD NANOSECCONDS FER MICROSIECOND) :

_Thread Disable dispatchi):
_TDD_Set(inewcime)
_Thread Enakble dispacchi):
recurn RTEMNS SUCCES3FUL:

)
return BTEMS TNVALID CLOCK:

e
rtems scatus_ code rtems_clock set |

reems_time of day *time buffer
!

{
struct timespec news ime E3
rcems_status code ret _status = 0O:
if (!'time buffer) {
ret status = RTEMS INVALID ADDRESS:
} mlam |
if { _ToOD Validate | time buffer | |
nemtime.tv_sec = _TOD_Tq_secnndsq time_huffer 0
newcime.tv_nsec - tlme_huznter—:»tlcks =

[_TOD_ HMicroseconds per tick * TOD_NANOSECONDZ PER MICROSECOND)
_Thread Disable dispatchi):
_ToD _Set | &Lnewvtime |
"Thread_Enable*dispatch[];
rec_scatu= = RTEMS _SUCCESSFUL:
} o ml=e |
ret_scatus = RTEMS _INVALID_CLOCK:
H

return ret_stat.ua;

Figure 11: rtems_clock_set, changes to be MISRAHE 14.7 compliant

Violations to the MISRA-C rule 14.8, “The statemdontming the body of a

switch, while, do
been found.

... While or for statement shial a compound statement” has also

Some of the bugs that have been found are relatbdsemaphores as described in

the section Test Suite Execution.

4.4 RTEMS Documentation

Added to the development of the RTEMS Tailored ioerand validation test suite,
a full set of documentation deliverables for RTEM@erating system has been
developed. The documentation associated to RTEMProvement project is an

34

important issue since it is 90% of the deliverailaterial for this project, The Table 2
presents a list with some of the deliverable doauaten produced by the RTEMS
Improvement project on which the author has pauiEd.

Deliverable Item Reference
RTEMS Improvement Software Requirement Document SRD
RTEMS Improvement User Manual and Design Notes UMDN
RTEMS Improvement Design Document SDD
RTEMS Improvement Software Integration Test Plan SIP
RTEMS Improvement Software Unit Test Plan SUP
RTEMS Improvement Validation Testing Specificatio echnical Specification VTS
RTEMS Improvement Generic Test Report GTR
RTEMS Test Suite SFW
RTEMS Tailored SFW
Software Development Plan SDP
RTEMS Improvement SO€with GSWS socC

Table 2: Some of the RTEMS Improvement Deliverables

The first step of the RTEMS Improvement project wgenerating the
documentation that will serve to the basis of thEERIS Improvement project. The
RTEMS Improvement project also uses Galileo Soféw8&tandards GSWS/SOQ
because this project is a Galileo SW-DAL B classifion. The produced
documentation for RTEMS Improvement project is d f&et of documents that
includes:

* RTEMS User Manual and Design Notes (UMDN) for th#doted version of
RTEMS OS;

» System Requirements Document (SRD) were the rageimés for the project
are stated,;

» Validation Test Specification (VTS) where it is dabed all steps and all the
stuff related with the Validation test suite;

» Software Integration Test Plan (SIP) like the VT& for the integration test
suit. This last document is under the respongybilit the author of this
dissertation with the participation of other elemsenf the RTEMS Centre
team.

e Software Unit Test plan (SUP), this document ig NKTS and SIP but is for
the unitary test suite.

16 State Of Compliance

35

In the documentation part of the project the authfothis dissertation also have
been actively involved in the production of scriptdo analyse and generate
documentation, like traceability tables betweenemthand scripts that also generate
documentation in various formats like:

« CSV*® tables that lately was used as input for necessamgject
documentation;

* Word documents that have specific parts changdtidogcripts and

» Documents in rich text format (RTF).

Most of the produced scripts have been made in:
e Perl,

» JavaScript;

* Visual basic scripts between other scripting lamgsa

In a later phase of the project the author has ladsm responsible for the doxygen
tool that also generates some graphical documentaissociated to the project. The
doxygen tool generates graphs that shows the aitensbetween RTEMS components,
it also generate documentation that includes thedéws of the functions. All the
documentation generated by doxygen is in both HTavid XML format which gives an
easy way to browse over the RTEMS functionalitidse doxygen was also used to help
in the generation of the Software Design Docum8&nitld). Figure 12 and Figure 13 are
two examples of the documentation automaticallyegated by doxygen in this case
HTML™. The doxygen tool also generates other formatslamumentation such as
XML %, RTF andLaTEX.

7 ascriptis a sequence of instructions that is interpréeenother program

'8 Comma-Separated-Values (CSV) is a file format thaised to store data structured in a table &f lis
form, where a row corresponds to a row in the tattle fields of the different columns in a row are
separated by a comma.

' Hyper Text Markup Language

? extended Markup Language

36

RTEMS

B

B

-~ [Main Page

EH[] Modules

- [E] SPARC CPUs

- [£] Shared between BSPs

- [£] SPARC ERC32 BSP

- [£] SPARC LEON2 BSP
[£] SPARC LEON3 BSP

- [] UNIX BSP

- [£] Shared between CPUs

- [£] Optional Managers
i Libe

E ¢ RTEMS API

@ Super AP

=@ Super Core

"¢ Data Structures

- B Data Fields

2@ File List

~[2] Globals

[El cpukitiibelincludelsysidire
N @ cpukit/libelinclude/sys/errn
N @ cpukit/libelinclude/sysHcnt|
N @ cpukit/libclinclude/sysifeat
N @ cpukit/libclinclude/sysiile.
B cpukit/libe/include/syslicon
B cpukit/libe/include/sys/lock
“[B cpukitlincincludelsysique

[El cpukitiibeiincludelsysireer
N @ cpukit/libelinclude/sys/resa
N @ cpukit/libelinclude/sys/sche
N @ cpukit/libelinclude/sys/sign
N @ cpukit/libelinclude/sys/stat.
B cpukit/libe/include/sys/stdi
B cpukit/libe/include/sys/strin
B cpukit/libe/include/sys/sysli
“[B cpukiiinciincludelsysitime

[E] cpukitiibclincludelsysitime
N @ cpukit/libelinclude/sysitime
N @ cpukit/libelinclude/sysitype

- [£] Shared between SPARC BSPs

° - Y
“[B cpukiiinciincludelsysicont

Modules | Data Structures | Files

RTEMS Documentation

Main Page

This is the RTEMS Improvement Detailed Design Document in HTML,

Generated an Wed Jul 22 16:45:10 2009 for ATEMS by dm¥sm 156

Figure 12: doxygen first page for RTEMS SDD

Main Page | Modules | DataStructures | Files
cpukit/libe/include/sys/param.h File Reference

#include "sys/config.h"
#include "machine/endian.h"
#include "machine/param.h"

Include dependency graph for param.h

|q:|l.kib‘|ibcfimludefsys.fparam.h |

N

‘machinefendian.h | |machinea‘param.h

sys/config.h

¥

./machinefieeefp.h

Go to the source code of this file

Figure 13: the interaction between header files

The documentation associated to the project iselgtbeing developed, actualized
and produced since every delivery of the projeetdbcumentation has to be actualized
to match the current stage of the project. Alsodbeumentation has to be revised and
changed to meet the ESA requirements for that 8pelivery.

37

4.5 Test Suite Design

The test suite have been thinking and designed rideroto cover a set of
requirements that are stated on the Software Rememts Document, also known as
SRD, for the RTEMS Improvement Project. This setasfuirements was the result of
the evaluation of the selected RTEMS managers,thaaidin that sense the foreseen
necessities for the European Space Community.

The policy adopted for the test suite design wasdate subsets of tests that cover
the requirements for the specific RTEMS managees! uis the RTEMS Improvement
project. We also have followed the approach of makek box tests for the validation
tests, assuming that the RTEMS source code is unkrad this time, using only the
functionalities described in the RTEMS Improvemesg¢r manual. It was used grey box
and white box for the integration and unit testgic8 this phase comes after the
completion of the validation test suite we assuimg the RTEMS source code is
already known and the test design will be spedlfida cover some functionality that is
not covered by the validation tests.

By following the above policy, we have noticed tkia¢re are some managers that
could not be separated from other managers. Fongheathe task manager is needed to
create tasks to run the tests for this reasonatsle nanager is present in all of the test
subsets. Initialization manager is like the taskagger, this manager is also present in
all of the other tests since it is needed to il#gaall of the other managers and also
some specific parts of the hardware.

Another feature of this Project, and is relatedhwihe fact that is a reverse
engineering Project, is that the test design wadest in reverse order, instead of start
by unit tests, passing by the integration tests fanighing on the validation tests, the
test design have started by the validation testsigding integration and unit tests only
to cover specific situations or code that havebesn covered by the execution of the
validation test suite.

The test design has also separated the tests bysl&R TEMS have the following
well known layersCORE, SUPER CORE (SCORE)API andSUPER API (SAPI).

Next we discuss with some detail some specificgesharios. In the design of the
tests for the semaphore manager, all of the cortibiveafor semaphores have been
taken in account in order to design tests that galler all the possible situations that
probably the designers of space applications vedichand to cover several situations as
also all combinations that are prone to originaters. To verify if RTEMS can handle
it, the same is done in the test design for thertopt manager and all the other
managers.

38

RTEMS offers three types of semaphores: the Cogn8emaphores; Simple
Binary Semaphores, which act as a Boolean, the@®ona is or is not free, and Binary
Semaphores that are really mutex. At the contrdnSimple Binary Semaphores,
Binary Semaphores can handle nested access, y@wiling and Priority Inheritance
Protocols. Following are presented some of the coations used in the tests of the
Semaphore Manager:

* Binary semaphores (mutex) with FIFO queuing policy

* Binary semaphores with priority queuing policy,ngsipriority inheritance
and priority ceiling protocols and without any bése protocols.

» Simple Binary semaphores with FIFO and priorityipol
» Counting semaphores with both FIFO and priorityigyol

The design of the stress tests was made takingastount that system is working
at it full capacity. This means that the systemw@king with maximum configurable
threads, that are 64 for the RTEMS tailored versi®s® semaphores, 64 rate monotonic
periods, 64 timers, 16 user extensions and 256agespueues. These maximum object
numbers for the configuration are stated on the SBR&ument as a requirement for the
RTEMS Improvement Project. In this test the threads always changing messages
between them, make use of semaphores that corttielsaccess to some shared
variables and the threads are always sending et@ntber threads.

The test suite will run as standalone and it wibypde 100% statement coverage
and decision coverage for RTEMS source code. Thisecessary to facilitate the
qualification based in the Galileo Software Stadd&8W-DAL B level.

4.6 Test Suite Implementation

The test suite implementation has closely followkd adopted strategy in the
design phase. The majority of the tests have bepremented in a manager fashion, as
expressed in the previous section. The test supdeimentation was a process that leads
us to increase the knowledge of what RTEMS is anl the managers interact one to
each others, not in code analysis this time batpnactical way.

As described in the Test Suite Design we had stadhte test suite implementation
creating the validation tests. This approach revéalbe the best choice because in
earlier tests execution we had the opportunity ¢b wplues rounding 90% in the
statement coverage and decision coverage, redtloeengumber of Integration and Unit
tests that needs to be designed and implementeditingt from those values for

39

statement coverage and decision coverage, we madessessment to the produced
tests, the validation tests, and check if they @dnd changed in order to add some new
features to better cover the requirements. As altre$ this assessment the values for
statement coverage and decision coverage haveasemdo 93%. The remaining 7% of
source code was been covered by the integratiomibdests. The source code that has
not been covered by the validations tests, thegiateon test and unit tests, has been
accessed and if it was considerate dead code itbeas removed. An example of a
RTEMS source code file that needs more than onetest, to verify all the possible
return conditions, for the functions defined invitas the file semtranslatereturncode.c.
The unit tests for this file have the purpose tbtge RTEMS_INTERNAL_ERROR
return value. Return on lines 104 and 144.

In order to implement some of the designed testm@asied to make use of some
techniques such as using wrappers and stubs. Ehefgsich techniques was necessary
to implement some of integration and unit tests;haee to test components and verify
their behaviour. Some times we had to test someifSspdRTEMS component in
isolation. In this case we had used wrappers obssthhat permit us replace the
functionalities that are called by that specificEBMIS component testing it against all
the possible returns of the functionalities thatcdlls. In most cases the usage of
wrappers reveals to be a better choice since thayits us to make the replacement of
some functionality without the necessity to isoldte RTEMS component from the rest
of the code.

Like stubs, wrappers also need to have the same reard parameters of the
function that it goes to replace but adding thdipre wrap_ to the function name and
at compile time passing one extra parameter to dempWI,--wrap,function_name and
at link time the linker replace the real functiam the wrapper function that could or not
call the real function.

In the Tasks 1.4 and 1.5 in the test suite exexutihase it was need to use
wrappers to some RTEMS functions in order to gefiopmance results in the execution
of the test suite. The use of wrappers has also beeessary to get the results of code
coverage and decision coverage on target. In #ss the wrappers were necessary to
invoke the GCOV constructors; in order to they edil statistics and to send the
collected data to the host computer. This is uguddine by the host libc that is not
present on target and should, also, not be thetause it increases the size of the
application that should be as small as possiblesidgs that, the RTEMS tailored
version does not use the [fcThis means that when the application starts ésdoot

2L The RTEMS Tailored version should be possibleampile with a bootstrap compiler and without the
need of any library external to RTEMS. A bootsteamnpiler its one compiler that was built only with

40

invoke the constructors created by GCOV at conipitatime, or writes the collected
data to the gcov data files. This is done by funwilities offered by the host libc

In the RTEMS Improvement project this was been dsmreehow by the hard way.
It was solved using one wrapper to the first fumttcalled in the system initialization,
in this case is the wrapper for the RTEMS bootdartttion that is the first function
called during the RTEMS initialization. And usingwaapper to last function called
when the system s finishing is execution, in thisase the function
rtems_initialize_executive_late.

4.7 Test Suite Execution

The produced test suite for the RTEMS Improvemeajelet has been executed in
all of the target processor defined in the Projeltts the UNIX BSP. During the phase
of implementation the test suite have been alreagicuted not directly on the target
boards but in the processor simulators like tsion® tsim-leon3 and sis64 namely for
LEONZ2, LEON3 and ERC32 processors.

The UNIX BSP has been only used in an earlier pludshe Project to collect
some statistics for code coverage and decisionragee This BSP also give the chance
to have a quickly way to verify if the RTEMS answierthe executed test is what we
expected.

During test suite execution phase, especially @ ekecution of the semaphore
manager tests, some bugs have been detected, iIMKVErsion 4.8.0. These bugs are
related with Priority Ceiling Protocol (PCP) anddfity Inheritance Protocol (PIP). The
found bugs are violations of the protocol defimBo Next are presented some of the
bugs found.

The Simple Binary semaphores should not use Bria@eiling or Priority
Inheritance since the behaviour for these typeseafaphores is not defined when using
these protocols, despite this; RTEMS has the saetmauiour for both semaphores
Simple Binary and Binary semaphores. This bug wasnted to the OAR Bugzilla and
fixed.

In another case the bug is when a task, for examille priority 10 tries to acquire
a semaphore with a priority ceiling value 20. INBMS priority value 10 is higher than
priority value 20. This acquire generate an errat acquire should fail. This happens if

the compiler sources without using any externatalip. Most of the cross compilers are bootstrap
compilers.

41

the task is the first task trying to acquire themaphore, but if that we have another task
on the system with priority 30, that already has skemaphore when the first task, the
higher priority task, try to acquire the semaphdiiee higher priority task will wait for
the semaphore and when the less priority task getedt the higher priority task
acquires the semaphore successfully when it shamddh receive one error.

4.7.1 Semaphore with Priority Inheritance/Ceiling protocd bug

Another bug detected, this time for both Priorithéritance Protocols.
Priority Inheritance Protocols

The priority inheritance protocols, Priority CeitjinProtocol (PCP) and Priority
Simple Inheritance Protocol (PIP), were introdudedsolve the priority inversion
phenomenon. This situation occurs when a high ipyitask is blocked on a semaphore
owned by a low priority task. If a middle prioritask becomes ready and does not
allow the low priority task to free the semaphdhe high priority task will not execute.
Hence, in this situation, a high priority task tarsed by a middle priority task.

A semaphore with priority ceiling protocol is assbed with a priority ceiling
value. This priority ceiling must be specified dwgithe creation of the semaphore and
corresponds to the priority of the highest priotiygk that may obtain the semaphore.
When a task obtains a semaphore with priority mgiWill have its priority increased up
to the semaphore priority ceiling value. When thktreleases the semaphore it returns
to is previous priority value.

A semaphore with priority simple inheritance (ie tRTEMS nomenclature, simple
inheritance is equivalent to inheritance) is nosoasated with any value, like the
priority ceiling. Instead, when a task tries toabta semaphore with priority simple
inheritance (currently held by another task), thorgy of the task that holds the
semaphore will be increased up to the priorityhaf highest priority task blocked on the
semaphore.

Bug Detection

The bug was detected when a system uses two or searaphores with a priority
protocol (ceiling or inheritance) and uses founmre tasks, all with different priorities.
The scenario for this test is quite similar for tbgirotocols: high priority tasks are
blocked by semaphores (with a priority protocol)ishhare all held by a low priority
task. When the low priority task starts releasihg semaphores, its priority is now
correctly lowered, as defined by the protocol. thar priority ceiling protocol, it should
be lowered to the highest priority ceiling valueatif sesmaphores held by the task. For
the priority inheritance protocol, it should be kned to the priority of the highest

42

priority task still blocked on a semaphore holdtbg lower priority task. Instead, for
both protocols, RTEMS only lowers the priority dfet low priority task when all

semaphores are release. This behaviour corruptsdheduling analysis taken into
account when using semaphores with these prioratiopols.

4.8 RTEMS Tailored and Test Suite Execution

The RTEMS tailored is the final product of the RTEMmprovement project.
Again this is a RTEMS version 4.8.0 tailored to rspecifically over the SPARC
ERC32, LEON2 and LEONS3 processors and it has al ssiabf RTEMS managers, the
included managers are that are used in space atptis. The RTEMS Improvement
test suite has been designed in order, like allather RTEMS sources, to give the
maximum code and decision coverage.

The test suite execution will be made majorityanget boards. In punctual cases
where EDISOFT do not has the specific board thedese is executed on processor
simulators. The existing target boards have a swéwrocessor over a Spartan 3 Xilinx
FPGA. The use of software processors turns theetdrgard highly configurable. For
example to change the current processor in thedlbaronly thing that we need to do
is to get the new processor, or the wanted proce$$tDL code and reprogram the
existing FPGA board.

4.9 Summary

In this chapter we have described the steps toqtiadification process of the
Tailorable RTEMS. It starts giving a brief explaoatof what is the Galileo Software
Standards followed by an explanation of what iseseary to do to achieve the Galileo
SW-DAL B requirements. In this chapter an overviefrthe reverse engineering was
given and is explained some of the MISRA-C codeddads violations as some of the
bugs found. It is introduced the necessary prajieciumentation to meet the Galileo
SW-DAL B requirements and explained the steps takerthe test suite design,
implementation and execution. Finishing the chapteaves a brief presentation of the
final product, the Tailored RTEMS.

43

44

Chapter 5

Memory Management

The memory management is an important module incggrating system since
this module makes the interface between the opgratystem and the MMU that has
the responsible to verify and check if one certaser or application could access to
some portion of memory.

5.1 Memory Management module

For the RTEMS Improvement project, that the mospanant goal is the
presentation of RTEMS Tailorable version that featié the qualification of
applications for space missions, the primary godhe Memory Management module is
to provide memory protection to RTEMS operatingsiys

5.1.1 Memory used by the application

Currently RTEMS determines the necessary memory tiier applications at
compilation time using a set of C macrfdgo calculate the needed memory space for
the application. RTEMS reserve the calculated rsggganemory in a continuous space
that contains all the variables used by the tds&isdre part of the application. When the
application is running, is difficult to know whetke memory for a specific task starts
and ends.

2. C macros are a set of instructions that are iné¢ep by the C pre-processor and replaced by the va
that they represent in compilation time, the valeakulated by the pre-processor are unchangeable
during execution time.

45

5.1.2 RTEMS Memory Protection

Currently RTEMS, version 4.8.0, do not offer meukms to perform memory
protection. Proofing this are tests that have b#eveloped and verify that one task
could change data of another task just using at@birto a memory position. l.e., task
A holds a piece of memory for exclusive use; tasksBs a pointer to a variable owned
by it self. The execution of the above mentionatsttiave shown that by incrementing
or decrementing the value of the pointer, changjtregmemory to where it points, Task
B could read, write (changing, clearing or writwwgong data) on any memory address,
including the memory owned by task A.

There at least three important memory places, uUsedny application, which
needs memory protection, those three regions arésthck®, code and data which also
includes the BSS and the heap):

» data section — is the place where the initializatacand variables of the
application are stored, this section could alsoeh#w heap and BSS
section;

» text or code section — is where the code of thdiegipn is stored, it
contains the instructions that will be loaded bg finocessor; the instruction
pointer register iterates over this section;

» the stack — this is very sensible region because the place where the
application reserves memory for function variablsres the values that
will be passed from the caller to the called fumetistores the address to
return after the function finishes is execution.eTketurn value of the
function usually is stored in a one general propegéster.

The inexistence of a memory protection mechanisiplies that any task could
read or write in any place on the memory, suchaa,dtode or stack area, of another
task, leading that the execution of one task cterchinate in an erroneous state.

2 A pointer is a variable that reference the contdfranother variable, basically a pointer contatmes
memory address of the variable that is pointed fitom

4 The stack is a LIFO (last in first out) structutesually located in the higher part of memory. he t
SPARC Architecture the stack “grows" from the loweemory address to higher memory addresses on
every register, immediate value or stack framedpanided to it. A stack frame consists at leastrietarn
address

% BSS — stands for Block Start by Symbol. In embedsieitware, the BSS segment is mapped into
"Uninitialized RAM".

46

The problems caused by this unwanted access depenttee importance of the
task that have is data changed. l.e., if task Asirdts important data, says
meteorological data, stored on a memory buffertaskl B writes over that buffer, when
task A will transmit the stored data, it sends eeaus data because task B meanwhile
have changed the data stored in the memory buffer.

5.1.3 Memory Management and Protection Models

There are basically two main models of memory @tata, the segmentation
model and paging model.

The Segmentation model, briefly, consists in divile memory in segments,
basically four segments, the code segment, the skdment, the stack segment and
extra segment, this model is especially used ial k&6 Architectures and it reveals to
be a good choice to implement some memory protedtiatures.

The Paging Model consists in divide the memorynrals pieces of the same size,
called pages. The Paging model reveals no to bbakemodel for embedded systems
where applications are entirely loaded in physmamory. Although this consideration
the memory management model implemented in the $PXB Architecture, namely
in the LEONZ2 and LEON3 processors is the Pagingehod

5.2 Hardware Memory Management Unit

5.2.1 Hardware MMU support

The SPARC V8 Reference MMU provides two primarydions:

1) Address translation from the virtual addressésach running process to
physical addresses in main memory. This mappingpige in units of 4KiB and any
virtual page can be mapped into any available glaygage.

2) Memory protection, so a process cannot read rite vithe address space of
another process. This is necessary to allow maltjmocesses to safely reside in
physical memory at the same time.

5.2.2 Address Translation

The MMU provides address translation from a virtadtiress (corresponding to a
32 bit CPU) to a physical address (corresponding 8% bit Main Memory bus). This
mapping allows processes with large memory requergs) e.g., 8 MiB, to be located
in different memory areas instead of one contigusmetion. This is performed in pages

47

of 4 KiB each. The following figure shows a 32 Wittual address is translated to a 36
bit physical address.

data
CPU | Virtual Physical M':'If]';
address address Y
: Pl b L :
a2 hits a6 hits

Figure 14: Block Diagram of a SPARC V8 System witU

The use of 36 bits for physical address providé4@iB physical address space to
support large physical memories and memory mappir& bit. A physical address is
logically composed of an offset into a 4KiB pagel anPhysical Page Number.

Pages are always aligned on 4KiB boundaries; hehedpwer-order 12 bits of a
physical address are always the same as the logv-t&bits of the virtual address, and
do not require translation. For every valid virtyesge resident in memory there is a
corresponding Page Table Entry that contains tlysiphl page number for that virtual
page. Translating a virtual address to a physicalress replaces the virtual page
number with the physical page number.

Physical Page Number Page Offset
35 17 11 0

Figure 15: MMU physical address composition

All the address translation information requiredtbg SPARC Reference MMU
resides in physically addressed data structuresxam memory. The MMU fetches
translations from these data structures, as redjuiby accessing main memory.
Mapping a virtual address space is accomplisheapbty three levels of page tables, in
order to efficiently support sparse addressing. fiiseand second levels of these tables
typically (though not necessarily) contain desanipt(called Page Table Descriptors)
which point to the next-level tables. A third-lewable entry is always a Page Table
Entry (PTE) which points to a physical page. Atfiter second-level entry may also be
a PTE. A representation of the full three levelsnafpping is shown below:

48

Foot Pomter Lewel-1 Table Lewel-I Table Lewel-3 Table

Page Table Desc. — Page Table Desc [— Page Table Dresc [—— Page Table Entry

256 Endries G4 Enries G4 Eniries

Figure 16: Reference MMU three-level mapping

The Root Pointer Page Table Descriptor is uniqueakth context and is found in
the Context Table. The figure below shows the §eldmposition of a virtual address:

Index | |Index 2 | Index 3 Page Offset
31 4 13 18 17 1Z 11 0

Figure 17: MMU virtual address composition

Each index field provides an offset into the cqoaexling level of page table. A
full set of tables is rarely required.

5.2.3 Memory protection

The MMU also provides memory protection. A mal-ftiaging process should not
write in the address space of another process.ififpbes protecting memory against
unauthorized access. When an application requeeatitess to a specified memory
address, instead the application make the accesstlgj the access should be first
verified if the address belongs to the applicatimemory segment, what type of access
the application is trying to do, if is a read/writead only or a write only access, the
access type is dependent of the level of the memmatgction.

The level of protection is usually described inaa descriptor that stores all the
information about the page, this information uspalbntains the type of access, if the
page is present in memory or not. In the SPARC fieatee MMU this descriptor is a
Page Table Entry (PTE) and it specifies both thesial address of a page and its
access permissions.

PFM CM|R| ACC | ET
31 E 7 6 5 4 2 1 10

Figure 18: Composition of a Page Table Entry

The relevant PTE fields are defined as follow:

PPN Physical Page Number - the high-order 24 lithe 36-bit physical address
of the page. The PPN appears on bits 35 throughf it physical address bus when a
translation completes.

ACC Access Permissions - these bits indicate whe#iteess to this page is
allowed for the transaction being attempted.

ET Entry Type - this field differentiates a PTErfr@a PTD.

From the above description we could see that ferniemory protection the most
relevant field in the page table entry is the AQDe ACC field has the following
interpretation:

Accesses Allowed User access Supervisor access
0 Read Only Read Only
1 Read/Write Read/Write
2 Read/Execute Read/Execute
3 Read/Write/ExecuteRead/Write/Execute
4 Execute Only Execute Only
5 Read Only Read/Write
6 No Access Read/Execute
7 No Access Read/Write/Execute

Table 3: ACC access types

Memory Access permissions are checked for eactslaton; if the requested
access violates those permissions, a trap is gederand the appropriate error
processing actions should be performed.

Fault Address
31 i

Figure 19: MMU fault address register

50

The EBE field records the type of bus error. In&mrror indications are set when the
MMU detects an internal inconsistency. This sholbé& considered a fatal error by
software, requiring a system reset.

The highest priority fault is recorded in the Falype field. Reading the Fault Status
Register clears it. Writes to the Fault Status Begiare ignored.

5.3 RTEMS Improvement Memory Management
Module

Since the RTEMS Improvement project due the usagtandards like MISRA-C
and Galileo SW-DAL B will not use dynamic memoryoahtion, even if the memory
allocation has deterministic time, the main objextiof the memory management
module that will be developed in the scope of ti&ERS Improvement project will be
for memory protection. Taking in account the projeestrictions the segmentation
model appears to be more useful to implement theeng management module than
the paging Model. Besides this, the module will essentially the hardware MMU
features that deal with memory protection like thtisat verifies the access rights in the
MMU page table entries.

The Memory Management module, like all the othefl£RS modules, will be
developed and tested according to the Galileo So&wtandards SW-DAL B Level.

When the phase of the Memory Management moduletsstdre RTEMS
Improvement main activities will change and Figurevill stay like the exposed on
Figure 20.

51

Phase 1:MMLU and RTEMS Improvement implementation

1.1: RTEMS 1 Task 2.1: MMU Specification &
eri Architecture

Task 1.2: RTEMS Design Task 2.2: MMU Design

Task 1.3: Test Design Task 2.3: MMU Implaementation

Task 1.4: Te plementation and

Executian Task 2.4: MMLU Testing

Task 1.5 RTEMS Tailoring Test Suite Re-execution

'

Phase 2: RTEMS Test Suite Maintaining and Updating

Task 1.6: RTEMS Test Suite Maintenance

Task 1.7: Management, Quality, Reporting Task 1.8: Product Assurance amnd
and Meetings Configuration Manage it

Figure 20: RTEMS Improvement main activities witle tMemory Management module integrated.

After this module is implemented the RTEMS Improesiiiroad map exposed in
the Figure 6 will be like the exposed on Figure 21.

B OO o O

FARALY Tests KM Tasis

Oiriginal RTEMS

1S Patches

v

Tast Suite

RTEMS Improwameant
Configuration Tool

Tailored Test Suite
Tailorad RTEMSE

Facilitation Gualification Material

Figure 21: RTEMS Improvement road map with MMU

52

5.4 Summary

This chapter has presented a brief overview of rtteanory management and
protection models. The chapter also indicates RAWEMS calculate the memory that
will be used by the application and ends indicatiagpossible vision to the
implementation of the memory model that will be guwoed by the RTEMS
Improvement project and the changes to the RTEM@&diement development plan
when the develop of the Memory Management modaie. st

53

54

Chapter 6

Conclusion

The present report is result of the work developethe RTEMS Improvement
project, where the author has participated in tnesal steps of the project, which
includes a participation in the design and develemnof test suite (task 1.3 and 1.4), a
light participation in the selection of RTEMS quigiation modules (task 1.2) and will
include a participation in the definition of the Mery Management module for the
RTEMS Operating System (task 2.1 and 2.2).

The RTEMS Improvement project is being developedigyRTEMS Centre team
on the Edisoft facilities.

The author has also been involved in producingotctio generate documentation
in an automatic fashion, and was his responsikiigy changes that were made to gnu
libgcov sources, to GCOV work on target, turninggible to get statement coverage
and decision coverage on target boards and pracgissolators.

To increase the necessary knowledge to perform gfatthe work it has been a
formation to develop and design hardware componeantgHDL for FPGA (Field
Programmable Gate Arrays).

This experience have also contributed to learrsadsvare engineer, new coding
standards associated to development to embeddéehsysone of this standards is
MISRA-C coding standards. MISRA stands fofhe Motor Industry Software
Reliability Association”, www.misra-c.com. MISRA-C is a book where we cardfin
the basic that we should follow when we are devatppor embedded systems, this
standards could also be applied to other systemse #i is basically a set of simple rules
to make the code more easily to read and more staohetable.

During the test suite development phase, the RTEMSBtre team has noticed the
necessity that some embedded systems have in mgrmgction, currently from the
results obtained in the simulators, RTEMS do néradny kind of memory protection,
instead it gives to the application extra memorgeeting that if one interruption occurs

55

that extra memory be sufficient to store all neagsslata that could result from the
interrupt.

56

Extensive Abstract in Portuguese

O RTEMS Real Time Executive for MultiprocessorSystems) € um sistema
operativo de tempo real “open source” desenhadesenyolvido para ser competitivo
com sistemas comerciais idénticos. O RTEMS enceatractualmente numa fase de
desenvolvimento bastante activa, nomeadamenteapaplicacdes espaciais. Tendo em
conta este aspecto foi criado um centro de invasdig, o Edisoft RTEMS Centre, em
colaboracdo com a Agéncia Espacial Europeia (ES¥res o sistema operativo
RTEMS, com o intuito de ajudar a comunidade espa&tisopeia na utilizacdo deste
sistema operativo.

As primeiras actividades da equipa de desenvolMinalo RTEMS Centre
consistiram na criacdo de ferramentas de supateiéio a configuragdo e compilagédo
do sistema operativo RTEMS. Numa fase mais avangad@IEMS Centre foi iniciado
0 projecto RTEMS Improvement, que visa disponibilizima versdo do sistema
operativo RTEMS, esta versdo tem como objectivalitac a qualificacdo de
aplicacdes, e esta optimizada para funcionar coprasessadores da familia SPARC,
nomeadamente os processadores ERC32, LEON2 e LE@NS3 sua utilizagdo em
aplicacdes espaciais. O processo completo de igaghio das aplicagbes espaciais sO
poderd ser concluido conjugando o sistema com ogpaoeentes de software da
aplicacdo e com o hardware onde a mesma iré correr.

Para que possa ser produzida a versdo adaptadastada do sistema operativo
RTEMS € necessario seguir determinadas normas @aea a producdo de
documentacdo, quer para a correc¢cdo e modificagdoraprio coédigo fonte. Para o
projecto do RTEMS Improvement foi necessario seguir conjunto de normas base
resultantes da conjugacdo das normas definidast @allileo Industries, Galileo
Software standard$sSSWS [RD1]), que impde modelos para a documentacéo & @ar
codigo fonte; e pelas normas definidas no ambitor@dmual MISRA-C [RDO], da
MIRA Limited, que impde modelos de codificacdo nalimados para aplicagbes em

sistemas embebidos e de missao critica.

Para além de toda a documentacdo associada aotprmjenecesséria a criacédo de
uma nova bateria de testes. Esta foi criada comctbp de cobrir todos os requisitos

57

impostos a RTEMS Tailored version, versado do siateperativo RTEMS resultante do
projecto RTEMS Improvement, para que a referidasd@rdo RTEMS possa
efectivamente facilitar o processo de qualificadae aplicacdes espaciais, pois este €
um item essencial do projecto: produzir uma vedi@gistema operativo RTEMS que
facilite a qualificacdo das aplicacGes espaciais.

Numa fase mais avancada do projecto do RTEMS Inepnewt, e quando todas as
etapas anteriores estiverem concluidas sera ddselovaam modulo de gestdo de
memoria para o RTEMS para a classe de processdde@@s3. Este desenvolvimento
numa fase mais avancada deve-se ao facto destdars@luwm objectivo secundario do
projecto, relembrando que o principal objectivo plmjecto visa a facilitagdo da
qualificacéo de aplicacbes baseadas no sistematmoeRTEMS para o espaco.

Devido as imposic¢des colocadas pela utilizacdandamas da Galileo industries a
RTEMS Tailored version ndo pode conter cédigo die seja executaddead codeo
que implicou na realizacdo deste projecto a nedadside remover todo o codigo fonte
que demonstrasse nao ter sido executado, com éaepe codigo fonte que foi
considerado codigo defensivo. Foram ainda elimisdaddas as BSPs (Board Support
Packages) para os processadores que nao foramadn#i no desenvolvimento do
projecto.

Para obter a cobertura do cédigo fonte que foi ®aelo nos processadores-alvo
foi necessario adaptar uma biblioteca da ferram@gan source” GNU GCOV. Esta
biblioteca é incluida na aplicacdo para processaesultados finais das contagens das
linhas de cddigo fonte que foram executadas. Asragldes efectuadas a biblioteca
acima citada foram necessarias, porque originaritanea ferramenta utiliza
funcionalidades que n&o se encontram presentesiioaiandos sistemas operativos para
sistemas embebidos, ndo facultando assim a cobedar codigo fonte para as
aplicacdes embebidas a funcionar no sistema alvo.

Conclusao

O projecto RTEMS Improvement tem como missdo asamtacao de uma versao
ajustada do sistema operativo RTEMS, a RTEMS Teadlorersion, esta versao ao
seguir a norma Galileo SoftWare Standards (GSWSL]RBo seu nivel B, SW-DAL
B, responde aos mais apertados requisitos apressnfzara o desenvolvimento de
aplicacdes para sistemas de tempo real e de nussi&ga. A RTEMS Tailored version
pretende dar e ser resposta as necessidades #gdasepela comunidade espacial
europeia.

58

Bibliography

[RDO] MIRA Limited, MISRA-C: 2004 Guidelines for the use of the C laggu
in critical systemsMIRA Limited, Watling Street, Nuneaton, WarwickshiiCV10
0TU, UK, © MIRA Limited, 2004.

[RD1] Galileo Software standard$sSWS), Galileo Industries Doc. No.: GAL-
SPE-GLI-SYST-A/0092ISSUE: 7, DATE: 24/05/2004

[RD2] Kernighan, Brian W., Ritchie, Dennis MTHE C PROGRAMMING
LANGUAGE SECOND EDITIONPRENTICE HALL SOFTWARE SERIES, 1988

[RD3] RTEMS Improvement RTEMS managers candidasduation report.
[RD4] SPARC International, The SPARC ArchitecturarMal Version 8.
[RD5] GNU websitewww.gnu.org

[RD6] Silva, H., Constantino, A., Coutinho, M., Res, D., Faustino, S., Mota,
M., Colago, P., Sousa, J., Dias, L., Damjanovi¢,Alianello, M., Rufino, J.: RTEMS
CENTRE — Support and Maintenance CENTRE to RTEM&r&gng System, DAta
Systems in Aerospace (2009)

[RD7] Silva, H., RTEMS CENTRE Final presentatiorddfinal Report, ESTEC
(European Space Research and Technology CentrejdiNigk - Netherlands (2008)

[RD8] RTEMS CENTRE websitéhttp://rtemscentre.edisoft.pt

[RD9] RTEMS website: http://www.rtems.com

[RD10] Constantino, A., Freitas, D., Mota, M., SiJvH.: RTEMS CENTRE
Software System Specification, RTEMS CENTRE pro{2608)

[RD11] Coutinho, M.: RTEMS Managers Candidate Easibn Report, RTEMS
Improvement project (2009)

[RD12] Coutinho, M.: RTEMS Improvement Generic Téeport, RTEMS
Improvement project (2009)

[RD13] Freitas, D.: RTEMS Improvement Software BetdQeport, RTEMS
Improvement project (2009)

59

[RD14] Dias, L.. RTEMS Improvement Preliminary Sedire Criticality
Analysis Report, RTEMS Improvement project (2009)

[RD15] Colaco, P., Coutinho, M.: RTEMS Improveme8bftware Design
Document, RTEMS Improvement project (2009)

[RD16] Coutinho, M.: RTEMS Improvement Software Regments Document,
RTEMS Improvement project (2009)

[RD17] Polock, D., Zébel D.: Conformance Testing Bfiority Inheritance
Protocols, IEEE (2000)

[RD18] Sha, L., Rajkumar, R., Lehoczky, J. P.: Btydnheritance Protocols: An
Approach to Real-Time Synchronization, IEEE (1990)

[RD19] Lam, K., Son, S. H., Hung S.. A Priority Geg with Dynamic
Adjustment of Serialization Order, IEEE (1997)

[RD20] Sha, L., Rajkumar, R., Son, S. H., Chang, £.Real-Time Locking
Protocol, IEEE (1991)

60

