

Revision 1.00 - February 28, 2008

AMCC 1

AMCC Security Look-aside Driver
Preliminary User’s Manual

Security Look-aside Driver (SLAD)
for

AMCC Security Co-Processor, v2.2
User’s Manual

2 AMCC

AMCC Security Look-aside Driver
Revision 1.00 - February 28, 2008

Preliminary User’s Manual

Copyright and Disclaimer

Applied Micro Circuits Corporation
215 Moffett Park Drive, Sunnyvale, CA 94089
Phone: (408) 542-8600 — Fax: (408) 542-8601

http://www.amcc.com

AMCC reserves the right to make changes to its products, its datasheets, or related documentation, without notice and warrants its
products solely pursuant to its terms and conditions of sale, only to substantially comply with the latest available datasheet. Please
consult AMCC’s Term and Conditions of Sale for its warranties and other terms, conditions and limitations. AMCC may discontinue
any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information is current. AMCC does not assume any liability arising out of the application or
use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
AMCC reserves the right to ship devices of higher grade in place of those of lower grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUIT-
ABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

AMCC is a registered Trademark of Applied Micro Circuits Corporation. Copyright © 2007 Applied Micro Circuits Corporation.
PowerPC and PowerPC logo are registered trademarks of IBM Corporation. All other trademarks are the property of their
respective holders.
All Rights Reserved.

AMCC 3

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Contents

1. Introduction ... 9
1.1 Acronyms . 9
1.2 Overview . 10

1.2.1 Initialization and Configuration Overview . 12
1.2.2 Operation after Initialization . 12

1.3 General Notes . 12
1.3.1 Device Numbers . 12
1.3.2 Virtual Memory and Physical Memory . 12
1.3.3 CGX Command Parsing . 12
1.3.4 RSA-CRT Modular Exponentiation . 13
1.3.5 Target Mode vs. Autonomous Ring Mode . 13

2. SLAD API Function Summary ... 14
2.1 SLAD Function Details . 15

2.1.1 slad_driver_version . 15
2.1.2 slad_device_info . 15
2.1.3 slad_setup_pe_initblk . 15
2.1.4 slad_pe_init . 16
2.1.5 slad_pka_init . 16
2.1.6 slad_rng_init . 16
2.1.7 slad_pe_uninit . 16
2.1.8 slad_pka_uninit . 17
2.1.9 slad_rng_uninit . 17
2.1.10 slad_register_sa . 17
2.1.11 slad_register_srec . 18
2.1.12 slad_unregister_sa . 18
2.1.13 slad_pkt_put . 19
2.1.14 slad_pkt_get . 19
2.1.15 slad_pkt_sync . 20
2.1.16 slad_pkt_ready . 20
2.1.17 slad_bus_read . 20
2.1.18 slad_bus_write . 21
2.1.19 slad_allocate_buffer . 21
2.1.20 slad_free_buffer . 21
2.1.21 slad_buffer_copy_in . 22
2.1.22 slad_buffer_copy_out . 22
2.1.23 slad_map_addr_range . 22
2.1.24 slad_unmap_addr_range . 23
2.1.25 slad_get_random . 23
2.1.26 slad_expmod . 23
2.1.27 slad_expcrtmod . 24

2.2 Function Return Codes . 25

3. Data Structures ... 26
3.1 SLAD_DEVICEINFO . 26
3.2 PE_INIT_BLOCK . 26
3.3 PKA_INIT_BLOCK . 30
3.4 RNG_INIT_BLOCK . 31
3.5 SLAD_NOTIFY . 31
3.6 SLAD_PKT . 32
3.7 Security Association (SA) Record Format . 34
3.8 State Record . 36
3.9 RANDOM_PARAM_BLK . 37

4 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.10 EXPMOD_PARAM_BLK . 38
3.11 EXPCRT_PARAM_BLK . 39

Index .. 57
Revision Log ... 55

AMCC 5

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Figure 1-1. SLAD Communications ..11

6 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

AMCC 7

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminay User’s Manual

Table 1-1. List of Acronyms ...9
Table 2-1. List of SLAD API Functions ..14
Table 2-2. Function Return Codes ...25
Table 3-1. PE_INIT_BLOCK Element Values ..28
Table 3-2. SLAD Notify ..31
Table 3-3. SLAD PKT ..32
Table 3-4. State Record ...36
Table 3-5. Random Param Blk ..37
Table 3-6. EXPMOD Param Blk ..38
Table 3-7. EXPCRT Param Blk ...39
Table 3-8. SLAD_BUSID_xxx Definitions ..43

8 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

AMCC 9

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Abstract
This document is derived from the original, Security Look-aside Accelerator Driver (SLAD) User Manual, 1.7,
Date: 11 Jan, 2008.

Any errors noted here would be translation errors from the original.

Any additions will be duly marked as such and do not reflect back to the original documentation.

1. Introduction
The Security Look-aside Driver (SLAD) provides a driver that is used by user-mode and kernel-mode applications
to communicate with the security engine used in applicable AMCC processor products. This driver implements an
Application Programming Interface (API) for communication between applications and the security engine. This
manual is primarily intended for a software developers.

For general information about AMCC processors products, please visit the AMCC Web site at:

http://www.amcc.com/Embedded/

1.1 Acronyms

Table 1-1 provides a list of all acronyms used in this manual.

Table 1-1. List of Acronyms

IP Internet Protocol

AH IPSec Authentication Header IPcomp IP Compression Protocol

API Application Programming Interface IPSec IP Security Protocol

BM Byte Memory IV Initialization Vector

CBC Cipher Block Chaining Mode KCR Key Cache Register

CC Crypto Context KEK Key Encryption Key

CDR CGX Descriptor Ring KRAM Kernel RAM

CFB Cipher Feedback Mode LSV Local Storage Variable (KEK)

CGX Cryptographic Extensions Library MD5 Message Digest 5

CPI Compression Parameters Index OFB Output Feedback Mode

CRT Chinese Remainder Theorem PCDB Program Control Data Bits

DEK Data Encryption Key PDR Packet Descriptor Ring

DES Data Encryption Standard PF Programmable Flags

DH Diffie-Hellman PKA Public Key Acceleration

DKEK Hash/Encrypt Data Key Protection KEK PKCP Public Key Co-Processor

DM Data Memory PM Program Memory

DSA Digital Signature Algorithm RAM Random Access Memory

10 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

1.2 Overview

The Security Look-aside Driver (SLAD) is a very flexible driver that facilitates communication between security
applications and the security engine subsystem. It provides services to both kernel-mode and user-mode applica-
tions.

AMCC SLAD uses a pair of descriptor rings for communication with the host system. These rings are designated
as the Packet Descriptor Ring (PDR) and the CGX Descriptor Ring (CDR).

The driver is responsible for setting up and managing these rings on behalf of the host application. For details
about the behavior and control of these rings, please refer to the PPC405/PPC460 User Manual. The driver is also
responsible for booting, initializing and configuring the hardware device subsystem.

The driver provides the following primary functions:
• Initialization, de-initialization and general management of the hardware subsystem
• Functions to put commands on, and get results back from the CGX Descriptor Ring (CDR)
• Functions to put commands on, and get results back from the Packet Descriptor Ring (PDR)
• Functions to read and write directly to the security co-processor
• Buffer management functions such as allocate, copy in and copy out

Figure 1-1 provides an overview of the driver. To minimize waiting for applications, SLAD maintains two rings-PDR
and CDR. Generally applications put commands in PDR while only the CGX library uses the CDR. The SLAD inter-
acts with the security-device to execute the required commands. The SLAD maintains a pool of memory to store
the data received from applications and the security-device. Since the security-device may read and write data
directly to the memory through DMA, the memory is non-paged and locked.

DSP Digital Signal Processor RDR Result Descriptor Ring

ECB Electronic Codebook Mode ROM Read Only Memory

EMI External Memory Interface RNG Random Number Generator

ESP IPSec Security Encapsulating Payload RSA Rivest, Shamir, Adelman (public key algorithm)

GKEK Generator KEK SA Security Association

HMAC Hash Message Authentication Code SHA-1 Secure Hash algorithm, Version 1

IKE Internet Key Exchange SPI Security Parameters Index

Table 1-1. List of Acronyms

AMCC 11

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Figure 1-1. SLAD Communications

AMCC
Security

Co-Processor

Security Look-aside Driver

Other Security
Applications

Locked Down
Non Paged

Memory Pool

Packet
Descriptor Ring

(PDR)

CGX
Descriptor Ring

(CDR)

Processor Local Bus

IPSec IKE
Application

IPSec Packet
Application

12 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

1.2.1 Initialization and Configuration Overview

The initialization and configuration functions of the SLAD prepare the security co-processor for operation. This may
include the following steps:

1. Bootloading any operating code into the security co-processor device.

2. Passing values from the PE_INIT_BLOCK structure into the hardware device. The PE_INIT_BLOCK is used to
define the configuration options for the device as well as the settings for various registers within the device.

1.2.2 Operation after Initialization

Once the hardware device is booted and initialized, the driver manages the descriptor rings and thus the submis-
sion of commands to the co-processor. Its operation is asynchronous to the host processor, as descriptor rings are
used for inter-process communications.

1.3 General Notes

This section provides miscellaneous information about the SLAD.

1.3.1 Device Numbers

The SLAD supports more than one security co-processor at a time. The current implementation only assumes a
single device, numbered zero (0).

1.3.2 Virtual Memory and Physical Memory

When a security co-processor device is accessing data stored in system memory, for example, across a PCI bus, it
is always referencing physical memory locations. Linux supports “virtual memory” and implements “paged
memory,” which allows different banks of memory to be switched in for access. Both virtual memory and paged
memory pose a problem, because the physical addressing used by the security co-processor cannot understand
virtual or paged addresses.

To avoid this problem, data must be placed in contiguous, non-paged, non-virtual memory (locked). Most kernel-
mode applications only operate out of non-paged non-virtual memory, so there is no issue in the kernel space.
However, data originating in the user space will generally have to be copied by the driver into non-paged memory.
The driver copies the user mode application data into driver allocated/managed bounce buffers.

1.3.3 CGX Command Parsing

In systems with virtual or paged memory, the security co-processor may have to fetch its CGX arguments as a bus
master, and it will, of course, use physical addresses. As with packet operations, the arguments will have to be
stored in locked, non-paged memory. The driver takes care of this by parsing each CGX command, isolating the
pointer type arguments, and then copying the argument data from the virtual location to a physical, locked memory
area.

AMCC 13

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

1.3.4 RSA-CRT Modular Exponentiation

The formula for RSA-CRT modular exponentiation is as follows (definitions of the variables used are provided after
the formula):

/*** Garner Recombination ***/
if(mp >= mq)

tmp1 = mp – mq

else (where QINV=MODQ-1 mod MODP)

tmp1 = mq – mp

tmp1 = MODP – tmp1

tmp2 = (QINV * tmp1) mod MODP
RESULT = (tmp2 * MODQ) + mq

where:

cp INPUT mod MODP

cq INPUT mod MODQ

mp cpDP mod MODP

mq cqDQ mod MODQ

1.3.5 Target Mode vs. Autonomous Ring Mode

All the APIs shall use Autonomous ring mode. Target mode is implemented only for debugging purposes and
should not be used in any production environment.

14 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

2. SLAD API Function Summary
The following table provides a summary of the SLAD API functions (the platform-specific sections also be exam-
ined in order to determine if there have been any additions or subtractions to this list):

The prototypes for all of the driver functions are in the slad.h header file.

Table 2-1. List of SLAD API Functions

Function Name Notes

slad_driver_version Returns the slad version number

slad_device_info Returns the SLAD_DEVICEINFO structure for a specified device

slad_setup_pe_initblk Fills up the default values in the PE_INIT_BLOCK structure

slad_pe_init Initializes the hardware co-processor using a supplied PE_INIT_BLOCK structure

slad_pe_uninit Un-initializes the hardware co-processor and de-allocates buffer memory

slad_pka_init Initializes the security hardware PKA using a supplied PKA_INIT_BLOCK structure

slad_pka_uninit Un-initializes the security hardware PKA

slad_rng_init Initializes the security hardware random number generator using a supplied RNG_INIT_BLOCK structure

slad_rng_uninit Un-initialize the security hardware random number generator

slad_register_sa Register SA with the driver. After registration, SA can be used in slad_pkt_put/slad_cgx_put functions

slad_register_srec Register Srec so that the driver may associate it with its corresponding SA

slad_unregister_sa Unregister SA or state record from the driver

slad_pkt_put Enqueues a packet processing command onto the Packet Descriptor Ring

slad_pkt_get Dequeues the next completed Packet from the Packet Descriptor Ring

slad_pkt_sync Enqueues/dequeues a single packet

slad_pkt_ready Fetches packet completion status for all active devices in a system

slad_bus_read Reads data directly from the security co-processor’s memory space

slad_bus_write Writes data directly into the security co-processor’s memory space

slad_allocate_buffer Allocates a physical memory buffer for hardware access

slad_free_buffer Frees the physical memory allocated by slad_allocate_buffer from the caller-supplied source buffer

slad_buffer_copy_in Copies data to the buffer allocated by slad_allocate_buffer from the caller-supplied source buffer

slad_buffer_copy_out Copies data from the buffer allocated by slad_allocate_buffer to the caller-supplied destination buffer

slad_map_addr_range Map a physical address range to virtual addresses

slad_unmap_addr_range Unmaps the memory obtained by slad_map_addr_range()

slad_get_random Generates a true random number of the required size.

slad_expmod Performs the a^p mod m mathematic calculation

slad_expcrtmod Performs the RSA-CRT modular exponentiation

AMCC 15

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

2.1 SLAD Function Details

2.1.1 slad_driver_version

int slad_driver_version (UINT32 *vers)

where:

vers pointer to 32-bit version number to be populated by this function

Gets the SLAD version number of the driver. The 32-bit variable pointed to by the vers parameter is filled in by the
driver. This command does not require any device to be initialized. The 32-bit version number has the following
format:

Bits 24-31 (MSB): major version number (NN.xx.xx)

Bits 16-23: minor version number (xx.NN.xx)

Bits 8-15: very minor version number (xx.xx.NN)

Bits 0-7 (LSB): pre-release number (set to 0 for official release)

2.1.2 slad_device_info

int slad_device_info (int device_num, SLAD_DEVICEINFO *info)

where:

device_num hardware device number

info pointer to SLAD_DEVICEINFO structure to be populated by this function

Gets information about the specified device. The SLAD_DEVICEINFO structure (see SLAD_DEVICEINFO on
page 26) is filled in by the driver. This command does not require the device to be initialized.

2.1.3 slad_setup_pe_initblk

int slad_setup_pe_initblk (int device_num, PE_INIT_BLOCK *iblk, int *psg_flag)

where:

device_num hardware device number

iblk pointer to the PE_INIT_BLOCK structure

psg_flag pointer to an integer flag, indicating if scatter/gather must be initialized (1) or not (0)

Fills up the default values in the PE_INIT_BLOCK structure for the device specified in slad_device_info(). A user
can change the values of PE_ INIT_BLOCK as needed, and initialize the device by calling slad_pe_init().

16 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

2.1.4 slad_pe_init

int slad_pe_init (slad_app_id_type * app_id, int device_num, PE_INIT_BLOCK *iblk)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime.

device_num hardware device number

iblk pointer to populated PE_INIT_BLOCK structure

Initializes a device using parameters in the caller-supplied PE_INIT_BLOCK structure. If the device has already
been initialized, the device will first be un-initialized, and then re-initialized.

2.1.5 slad_pka_init

int slad_pka_init (slad_app_id_type *app_id, int device_num, PKA_INIT_BLOCK *iblk)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime.

device_num hardware device number

iblk pointer to populated PKA_INIT_BLOCK structure

Initialize the security device PKA engine using the parameters in the caller supplied PKA_INIT_BLOCK structure

2.1.6 slad_rng_init

int slad_rng_init (slad_app_id_type *app_id, int device_num, RNG_INIT_BLOCK *iblk)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime.

device_num hardware device number

iblk pointer to populated RNG_INIT_BLOCK structure

Initialize the security device random number generator engine using the parameters in the caller supplied
RNG_INIT_BLOCK structure

2.1.7 slad_pe_uninit

int slad_pe_uninit (slad_app_id_type app_id, int device_num)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime

device_num hardware device number

AMCC 17

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Un-initializes a device. This command should especially be used before de-allocating any application memory that
was supplied to the driver for DMA access (for example, user-supplied ring space in host memory). All devices will
be automatically un-initialized if the driver is unloaded.

2.1.8 slad_pka_uninit

int slad_pka_uninit (slad_app_id_type app_id, int device_num)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime.

device_num hardware device number

Un-initialize the security device PKA engine. The device will be automatically un-initialized if the driver is unloaded.

2.1.9 slad_rng_uninit

int slad_rng_uninit (slad_app_id_type app_id, int device_num)

where:

app_id An opaque output parameter to the caller, used in other API functions; must not be modified by the
caller at anytime.

device_num hardware device number

Un-initialize the security device, random number generator engine. The device will be automatically un-initialized if
the driver is unloaded.

2.1.10 slad_register_sa

int slad_register_sa(sa_handle *handle, void *sa_buff, slad_bus_addr bus_addr, int len, unsigned flags)

where:

handle An opaque parameter to the caller which is used in slad_pkt_put/get functions. It should not be
modified by the client.

sa_buff Address of the buffer containing the Security Association (SA)

bus_addr Bus Address of the SA buffer

len Size of SA buffer in bytes

flags Flags specifying properties of the SA buffer.

These may be:

SLAD_CACHE_COHERENT - The buffer is cache coherent

SLAD_NON_CACHE_COHERENT - The buffer is not cache coherent.

Registers an SA with the driver, which maintains mapping between handle and sa_buff for internal house-keeping.
It simplifies the driver in the case where the SA is to be re-used. The client must provide this handle in the
SLAD_PKT structure in slad_pkt_put/slad_cgx_put functions.

18 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

The ‘bus_addr’ field may be ‘0’ if user does not know the physical address of the SA buffer. If the supplied address
is not ‘0’, the driver obtains the physical address of the buffer through OS specific functions. Thus, there are OS
specific limitations on what kind of buffers the driver can compute physical addresses. The buffer provided by the
user must be exactly of that type, otherwise the user must provide the physical address. Please also see the
‘Virtual-to-Physical Address Translation’ section in the OS specific appendix.

2.1.11 slad_register_srec

int slad_register_srec(int device_num, sa_handle *handle, void *srec_buff, slad_bus_addr bus_addr,
int len, unsigned flags)

where:

device_num hardware device number

handle An opaque parameter to the caller which is used in slad_pkt_put/get functions. It should not be
modified by the client.

sa_buff Address of the buffer containing the SA

srec_buff Virtual-address of the buffer storing State Record

bus_addr Bus Address of the State Record buffer

len Size of State Record buffer in bytes

flags Flags specifying properties of the SA buffer.

These may be:

SLAD_CACHE_COHERENT - The buffer is cache coherent

SLAD_NON_CACHE_COHERENT - The buffer is not cache coherent.

This function associates an Srec with an SA. This is done by passing the appropriate SA handle as a second
parameter to this function.

A call to this function is not required when the SA does not require a State record.

This association is valid until slad_unregister_sa() is called. For ‘bus_addr’, similar restrictions apply to this buffer
as to the SA buffer in the slad_register_sa() function call.

2.1.12 slad_unregister_sa

void slad_unregister_sa (sa_handle *handle)

where:

handle Handle returned from a successful call to slad_register_sa()

Un-registers the SA and its associated State Record from the driver. After this call, the SA or State Record can not
be used in other functions, e.g. slad_pkt_put/get, etc.

AMCC 19

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

2.1.13 slad_pkt_put

int slad_pkt_put (slad_app_id_type app_id, int device_num, SLAD_PKT pkt[], UINT32 *cnt)

where:

app_id Application-id obtained from successful call to slad_pe_init()

device_num hardware device number

pkt pointer to populated array of SLAD_PKT structures

cnt pointer to maximum/actual packet count

Enqueues packets onto the packet descriptor ring (PDR) of the specified device. Values from the caller supplied
SLAD_PKT structures will be used to populate the next available packet descriptors, and those descriptors will be
flagged as ready for processing.

A valid ‘sa_handle’ (which is a handle returned by the slad_register_sa() call, must be passed by the caller in the
SLAD_PKT because it is used by the driver to identify the associated SA for the packet(s).

The caller sets cnt to the maximum number of packets to be enqueued, and upon exit this function will set cnt to the
actual number of packets enqueued (which may be zero). It is important to check the value of cnt upon return from
this function, because if it is less than the caller-supplied value of cnt, that means that some packets were not
queued for processing, and they will not be returned by means of the slad_pkt_get() function. The user may either
try to enqueue these packets again at a later time, or to discard them as an overrun condition.

Aside from an error condition, this function will return SLAD_DRVSTAT_SUCCESS even if no packets were
enqueued (PDR full condition). However, it is possible for this function to return error status even if some of the
packets have been successfully enqueued, so it is always important to check the value of cnt after this function
returns, no matter what the return status is.

2.1.14 slad_pkt_get

int slad_pkt_get (slad_app_id_type app_id, int device_num, SLAD_PKT pkt[], int *cnt);

where:

app_id Application-id obtained from successful call to slad_pe_init()

device_num hardware device number

pkt pointer to array of SLAD_PKT structures to be populated by this function

cnt pointer to maximum/actual packet count

Dequeues one or more completed packets from the packet descriptor ring of the specified device.

If packets are ready to be dequeued, the results are retrieved from the completed packet descriptors and placed
into the caller supplied SLAD_PKT structures. The caller sets cnt to the maximum number of packets to be
dequeued, and upon exit this function will set cnt to the actual number of packets de-queued (which may be zero).
The caller’s pkt array should be large enough to hold the maximum number of packets specified by cnt.

20 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

2.1.15 slad_pkt_sync

int slad_pkt_sync (slad_app_id_type app_id, int device_num, SLAD_PKT *pkt);

where:

app_id Application-id obtained from successful call to slad_pe_init()

device_num hardware device number

pkt pointer to populated SLAD_PKT structure

Enqueues a single packet onto the packet descriptor ring (PDR) of the specified device, then waits for the same
packet to be ready, then dequeues the packet. This function will not return until the packet has been processed and
dequeued. This function is similar to making consecutive calls to slad_pkt_put() and slad_pkt_get(), except that it
guarantees that the dequeued packet is the same one that was enqueued. This function will return
SLAD_DRVSTAT_PDR_FULL if there was no room in the PDR to enqueue the packet.

2.1.16 slad_pkt_ready

int slad_pkt_ready (slad_app_id_type app_id, UINT32 *ready);

where:

app_id Application-id obtained from successful call to slad_pe_init()

ready pointer to flags, to be populated by this function

Gets the packet completion status for all devices in the system. The ready variable is a bit-mapped flag, with each
bit representing one device in the system. Bit 0 represents device number 0; bit 1 represents device number 1, and
so on. A bit set to 1 indicates that one or more packets entries are ready to be removed from the descriptor ring
(with the slad_pkt_get() function) for the corresponding device.

Note that this function always returns SLAD_DRVSTAT_SUCCESS whether or not any devices are ready.

2.1.17 slad_bus_read

int slad_bus_read (int device_num, void *buf, int offset, int len);

where:

device_num hardware device number

buf pointer to destination buffer

offset source offset (in bytes) into chip bus memory space

len number of bytes to read

Reads some data directly from the device bus memory space.

The offset and length are not checked for validity, and the actual read operation is not verified. This command does
not require the device to be initialized.

AMCC 21

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

2.1.18 slad_bus_write

int slad_bus_write (int device_num, void *buf, int offset, int len);

where:

device_num hardware device number

buf pointer to source buffer

offset destination offset (in bytes) into chip bus memory space

len number of bytes to write

Writes some data directly to the device bus memory space.

The offset and length are not checked for validity, and the actual write operation is not verified. This command does
not require the device to be initialized.

2.1.19 slad_allocate_buffer

int slad_allocate_buffer (void **handle, void **buf_addr, void **bus_add, void **buf, int len, int flags)

where:

handle Pointer to the opaque handle of the physical buffer

buf_addr Pointer to the virtual address of the allocated buffer

bus_addr Pointer to the bus address of the physical buffer

len length of buffer (in bytes) to allocate

flags Flags specifying coherency of the buffer to be allocated

SLAD_CACHE_COHERENT - make the buffer cache coherent

SLAD_NON_CACHE_COHERENT - do not make the buffer cache coherent

Allocates a physical (also known as DMA) buffer, which the user can manipulate by means of the slad_buf_copy_in()
and slad_buf_copy_out() functions.

It is important to note that the buffer address returned by this function is the “bus address” of the buffer, which is the
address used to access the buffer by the device when it is a bus master. Depending on your platform or operating
system, this may or may not be the same as the address used to access the buffer by the host processor. For this
reason, software should always use the slad_buf_copy_in() and slad_buf_copy_out() functions to read and write to
this buffer. However, the bus address can be used to calculate pointers to locations within the buffer that are passed
as parameters to the device that will access these locations as a bus master.

Be sure to check the return value of this function. Any value other than SLAD_DRVSTAT_SUCCESS indicates that
the buffer was not allocated.

2.1.20 slad_free_buffer

slad_free_buffer (void **handle, int flags)

where:

handle handle to the physical memory to be freed

flags Flags specifying coherency of the buffer to be allocated

SLAD_CACHE_COHERENT - make the buffer cache coherent

SLAD_NON_CACHE_COHERENT - do not make the buffer cache coherent

Frees the physical memory allocated by the slad_buffer_allocate function.

22 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

2.1.21 slad_buffer_copy_in

int slad_buffer_copy_in (void *handle, void *in_buf, int offset, int len)

where:

handle Handle to the physical buffer

in_buf pointer to source buffer

offset destination offset (in bytes) into the allocated buffer

len number of bytes to copy

Copies some data from a caller supplied source buffer to the buffer that was previously allocated by the
slad_allocated_buffer function. The handle was returned from the slad_allocated_buffer() function is used to refer
to the buffer.

The offset and length are not checked for validity, and the actual copy operation is not verified.

2.1.22 slad_buffer_copy_out

int slad_buf_copy_out (void *handle, void *out_buf, int offset, int len)

where:

handle Handle to the physical buffer

out_buf pointer to destination buffer

offset source offset (in bytes) into the allocated buffer

len number of bytes to copy

Copies some data from the buffer that was previously allocated by the slad_buffer_allocate() function to a caller
supplied destination buffer.

The offset and length are not checked for validity, and the actual copy operation is not verified.

The handle refers to the handle returned by the slad_allocate_buffer() function call.

2.1.23 slad_map_addr_range

int slad_map_addr_range (void *phy_addr, int len, void **mapped_addr)

where:

phy_addr Physical address to map

len number of bytes to map

mapped_addr Pointer to the virtual address to which the physical address will be mapped

Maps a physical address range to a virtual address so that it can be read and written by the host processor
program. The virtual address obtained may be used to access the memory space. It can be useful when on-chip
RAM is available, such a RAM can be mapped and used from the host processor program.

AMCC 23

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

2.1.24 slad_unmap_addr_range

int slad_unmap_addr_range (void *mapped_addr)

where:

mapped_addr Mapped virtual address obtained from an earlier successful call to slad_map_addr_range()

Unmaps the memory obtained by mapping created by a call to slad_map_addr_range()

The memory is no longer unable until it is mapped again.

2.1.25 slad_get_random

int slad_get_random(slad_app_id_type app_id, int device_num, RANDOM_PARAM_BLK *arg)

where:

device_num hardware device number, must be ‘0’

app_id Application-id obtained from a successful call to slad_rng_init().

arg pointer to the RANDOM_PARAM_BLK

Generates a true random number of the required size.

The RANDOM_PARAM_BLK structure will contain the output buffer and size of the number.

2.1.26 slad_expmod

int slad_expmod (slad_app_id_type app_id, int device_num, EXPMOD_PARAM_BLK *info)

where:

device_num hardware device number, must be ‘0’

app_id Application-id obtained from a successful call to slad_pka_init.

info pointer to the EXPMOD_PARAM_BLK structure

Calculates the a ^ p mod m modular exponentiation.

Note: All operands in the EXPMOD_PARAM_BLK must be supplied in little-endian format. Refer to the
PPC405/PPC460 User Manual for the hardware device to understand the input vector requirements/restrictions of
the PKCP subsystem.

24 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

2.1.27 slad_expcrtmod

int slad_expcrtmod (slad_app_id_type app_id, int device_num, EXPCRTMOD_PARAM_BLK *iblk)

where:

app_id Application-id obtained from a successful call to slad_pka_init()

device_num hardware device number

iblk pointer to the EXPCRTMOD_PARAM_BLK

Calculates the RSA-CRT Modular Exponentiation (see RSA-CRT Modular Exponentiation on page 13).

The input data, the half-length modulus vectors (MODP and MODQ), the exponential vectors (DP and DQ), and the
Qinv vectors must be supplied by the caller. All operands in the EXPCRTMOD_PARAM_BLK must be supplied in
little-endian format.

The result obtained will be returned in the res buffer of the EXPCRT_PARAM_BLK structure. The caller needs to
check the first dword-aligned zero in the res buffer to find the actual result.

AMCC 25

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

2.2 Function Return Codes

The possible return values for each of the SLAD functions are indicated by the SLAD_DRVSTAT_xxxx values
defined in slad.h. Note that the status returned by the driver functions is not the same as the status placed into the
packet descriptor by the device after descriptor processing.

Table 2-2. Function Return Codes

Status Code Description

SLAD_DRVSTAT_SUCCESS Command successful

SLAD_DRVSTAT_COMMAND_INVALID An invalid SLAD_DRVCMD_xxxx value was specified. This applies only when making SLAD calls from a
user-mode application.

SLAD_DRVSTAT_DEVICE_INVALID The value of device_num is out of range, either because it is less than zero, or greater than the maximum
number of devices supported by the driver.

SLAD_DRVSTAT_DEVICE_NOT_FOUND The specified device_num is not present in this system.

SLAD_DRVSTAT_DEVICE_NOT_INIT The specified device_num has not been initialized.

SLAD_DRVSTAT_PDR_FULL There is no more room in this device’s packet descriptor ring to enqueue another entry.

SLAD_DRVSTAT_MALLOC_ERR Memory could not be allocated or remapped.

SLAD_DRVSTAT_UPLOAD_ERR Upload of device firmware failed.

SLAD_DRVSTAT_INIT_FAIL General device initialization fault.

SLAD_DRVSTAT_PDR_EMPTY There are no entries in this device’s packet descriptor ring (PDR) that are ready to be dequeued.

SLAD_DRVSTAT_GDR_FULL There is no more room in this device’s gather particle descriptor ring to enqueue another entry.

SLAD_DRVSTAT_IOCTL_ERR An error occurred during command processing through the IOCTL interface. This applies only when mak-
ing SLAD calls from a user-mode application.

SLAD_DRVSTAT_USERMODE_API_ERR The file for IOCTL could not be accessed. This applies only when making SLAD calls from a user-mode
application.

PE_INIT_BLOCK Parameter Errors (See Note)

SLAD_DRVSTAT_BAD_PARAM_PDR_BUSID

SLAD_DRVSTAT_BAD_PARAM_PDR_ENTRIES

SLAD_DRVSTAT_BAD_PARAM_PDR_POLL_DELAY

SLAD_DRVSTAT_BAD_PARAM_PDR_DELAY_AFTER

SLAD_DRVSTAT_BAD_PARAM_PDR_INT_COUNT

SLAD_DRVSTAT_BAD_PARAM_PDR_OFFSET

SLAD_DRVSTAT_BAD_PARAM_SA_BUSID

SLAD_DRVSTAT_BAD_PARAM_SA_ENTRIES

SLAD_DRVSTAT_BAD_PARAM_SA_CONFIG

SLAD_DRVSTAT_BAD_PARAM_PAR_SRC_BUSID

SLAD_DRVSTAT_BAD_PARAM_PAR_SRC_SIZE

SLAD_DRVSTAT_BAD_PARAM_PAR_DST_BUSID

SLAD_DRVSTAT_BAD_PARAM_PAR_DST_SIZE

SLAD_DRVSTAT_BAD_PARAM_PAR_CONFIG

SLAD_DRVSTAT_BAD_PARAM_OFFSET

Note: The PE_INIT_BLOCK parameter errors indicate invalid parameters in either the PE_INIT_BLOCK structure or API command parameters. The
names should be self-explanatory. Please also see platform specific details in Appendix A.

26 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3. Data Structures
This chapter describes the various data structures used by the Security Look-aside Driver Module. These struc-
tures are defined in the slad.h header file, except for PE_INIT_BLOCK, which is defined in initblk.h. The platform-
specific sections should also be examined in order to determine if there have been any changes to the data struc-
tures listed in this section.

3.1 SLAD_DEVICEINFO

This data structure is returned in response to a slad_device_info() function call.
typedef struct {

UINT32 device_num;
UINT32 device_type; /* one of the SLAD_DEVICETYPE_xxxx defs */
UINT32 base_addr; /* base memory address (hardware) */
VPTR base_addr_mapped /* base memory address (virtual/mapped) */
UINT32 addr_len; /* size of memory space, in bytes */
UINT32 vendor_id; /* PCI vendor id */
UINT32 device_id; /* PCI device id */
UINT32 features; /* bits defined by DEVICEINFO_FEATURES_xxxx */
UINT32 crypto_algs; /* bits defined by DEVICEINFO_CRYPTO_ALGS_xxxx */
UINT32 crypto_mode; /* bits defined by DEVICEINFO_CRYPTO_MODE_xxxx */
UINT32 crypto_feedback; /* bits defined by DEVICEINFO_CRYPTO_FEEDBACK_xxxx */
UINT32 hash_algs; /* bits defined by DEVICEINFO_HASH_ALGS_xxxx */
UINT32 comp_algs; /* bits defined by DEVICEINFO_COMP_ALGS_xxxx */
UINT32 pkt_ops; /* bits defined by DEVICEINFO_PKT_OPS_xxxx */
UINT32 pkt_features; /* bits defined by DEVICEINFO_PKT_FEATURES_xxxx */

} SLAD_DEVICEINFO;

The SLAD_DEVICETYPE_xxxx values and DEVICEINFO_xxx bit masks are all defined in slad.h.

3.2 PE_INIT_BLOCK

During the device initialization process invoked by slad_device_init(), an Initialization Block must be passed from
the application to the driver to configure device options, set-up the locations of descriptor rings, and so on. A
common PE_INIT_BLOCK exists for all device types. Be aware that some of the items in the PE_INIT_BLOCK are
not used for all device types.

This structure, or any substructures it contains, do not need to persist outside of the call to slad_device_init().
typedef struct {
 UINT32 cdr_busid;
 VPTR cdr_addr;
 UINT16 cdr_entries;

 UINT16 hpcdr_entries;
 UINT16 cdr_poll_delay;
 UINT16 cdr_delay_after;
 UINT32 sa_config;
 UINT32 sa_entries;
 UINT32 sa_busid;
 VPTR sa_addr;

AMCC 27

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

 UINT32 token_busid;
 VPTR token_addr;
 UINT16 cdr_int_count;
 UINT16 cdr_int_type;
 UINT16 online_int_type;
 UINT16 fatalerror_int_type;
 UINT16 resetack_int_type;
 UINT16 pf_active_low_int;
 UINT16 reserved;
 UINT16 max_cgx_pci_burst;
 UINT32 dma_config;
 UINT32 target_read_count;
 UINT16 pe_endian_mode;
 UINT16 target_endian_mode;
 UINT32 pe_dma_config;
 VPTR pdr_addr;
 VPTR pdrr_addr;
 UINT16 pdr_entries;
 UINT16 pdr_offset;
 UINT16 pe_dma_input_threshold;
 UINT16 pe_dma_output_threshold;
 UINT16 dram_config;
 UINT16 ext_map;
 UINT16 ext_memcfg;
 UINT16 refresh_timer;
 UINT16 ext_mem_wait;
 UINT16 pdr_poll_delay;
 UINT16 pdr_delay_after;
 VPTR part_src_addr;
 VPTR part_dst_addr;
 UINT16 part_src_entries;
 UINT16 part_dst_entries;
 UINT32 part_config;
 UINT32 device_block_busid;
 UINT32 device_block_addr;
 UINT32 pdr_int_count;
 SLAD_NOTIFY *pdr_notify;
 SLAD_NOTIFY *cdr_notify;
 SLAD_NOTIFY *exp0_notify;
 SLAD_NOTIFY *exp2_notify;
 SLAD_NOTIFY *pkcp_notify;
 UINT32 int_config;
 UINT32 bus_id_config;
 UINT16 user_boot_control;
 UINT16 user_boot_interrupt_to_force;
 UINT32 user_boot_signblock_busid;
 VPTR user_boot_signblock_addr;
 UINT32 intsrc_mailbox_busid;
 VPTR intsrc_mailbox_addr;
 UINT32 software_timer_busid;

28 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

 VPTR software_timer_addr;
 UINT32 target_delay_specified;
 UINT32 target_read_interval;
 UINT32 target_read_delay;
 UINT32 target_write_interval;
 UINT32 target_write_delay;
 UINT32 misc_options;
 interrupt_pid interrupt_callout;
 UINT32 pdr_time_out_cnt;

Note: (There are additional items in the PE_INIT_BLOCK beyond this point, but they are used only for other
initialization and ignored by the SLAD.)

}PE_INIT_BLOCK;

Table 3-1. PE_INIT_BLOCK Element Values

Parameter Description

cdr_busid Bus ID for the CGX Descriptor Ring. One of the SLAD_BUSID_xxxx4 definitions.

cdr_addr
Base address of CGX Descriptor Ring (CDR). If this value is 0, and cdr_busid is equal to
SLAD_BUSID_HOST, the SLAD will allocate the space for the CDR, and the address of the allo-
cated space will be written back here in the PE_INIT_BLOCK. If non-zero, this address must point
to contiguous physical memory aligned on a dword boundary.

cdr_entries Number of CGX Descriptors in the CDR.

cdr_poll_delay Interval between CGX Descriptor polls, once an empty descriptor is encountered. The units of this
timing interval are device-type dependent.

cdr_delay_after Interval until the next CGX Descriptor poll, immediately after a descriptor is processed. The units of
this timing interval are device-type dependent.

sa_config If set to 0, the host will manage the SA database. If set to 1, the device will manage the SA data-
base by means of CGX commands.

sa_entries Number of entries in the SA database. Used only if sa_config is set to 1.

sa_busid Bus ID for the SA database. One of the SLAD_BUSID_xxxx4 definitions.

sa_addr

Base address of SA database. Used only if sa_config is set to non-zero. If this value is 0, and
sa_bus id is equal to SLAD_BUSID_HOST, and sa_config is non-zero, the driver will allocate the
space for the SA database, and the address of the allocated space will be written back here in the
PE_INIT_BLOCK. If supplied, this address must point to contiguous physical memory aligned on a
dword boundary.

token_busid Bus ID for the token. One of the SLAD_BUSID_xxxx4 definitions.

token_addr Base address of the token.

cdr_int_count Specifies how many CDR entries must be processed before generating a host interrupt.

cdr_int_type See documentation of device(s) supporting it.

online_int_type See documentation of device(s) supporting it.

fatalerror_int_type See documentation of device(s) supporting it.

resetack_int_type See documentation of device(s) supporting it.

pf_active_low_int Unused with SLAD applications, although still applicable for legacy applications.

max_cgx_pci_burst Unused with SLADapplications, although still applicable for legacy applications.

AMCC 29

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

dma_config Value for the device DMA CONFIG register.

target_read_count Value for the device TARG RDCNT register.

pe_endian_mode Value for the device PE ENDIAN MODE register.

target_endian_mode Value for the device TARG ENDIAN MODE register.

pe_dma_config Value for the device PE DMA CONFIG register. Note that the PDR bus ID is specified by bits 4 and
5 of this value.

pdr_addr

Base address of Packet Descriptor Ring (PDR). If this value is 0, and the PDR bus ID (as specified
by bits 4 and 5 of pe_dma_config) is equal to SLAD_BUSID_HOST4, the driver will allocate the
space for the PDR, and the address of the allocated space will be written back here in the
PE_INIT_BLOCK. If non-zero, this address must point to contiguous physical memory aligned on a
dword boundary.

pdrr_addr Unused with SLAD applications, although still applicable for legacy applications.

pdr_entries Number of Packet Descriptors in the PDR.

pdr_offset Size (in dwords) of each PDR entry.

pe_dma_input_threshold Value for the device PE DMA INPUT THRESHOLD register.

pe_dma_output_threshold Value for the device PE DMA OUTPUT THRESHOLD register.

dram_config Value for the device DRAM CONFIG register.

ext_map Value for the device EXT MAP register.

ext_memcfg Value for the device EXT MEM CFG register.

refresh_timer Value for the device DRAM REFRESH TIMER register.

ext_mem_wait Value for the device EXT MEM WAIT register.

pdr_poll_delay Interval between Packet Descriptor polls, immediately after a descriptor is processed. The units of
this timing interval are device-type dependent.

pdr_delay_after Interval until the next Packet Descriptor poll, once an empty descriptor is encountered. The units of
this timing interval are device-type dependent.

part_src_addr
Base address of Gather Particle Descriptor Ring (GDR). If this value is 0, the gather feature will not
be used. If non-zero, this address must point to a contiguous physical bus memory address aligned
on a dword boundary.

part_dst_addr
Base address of Scatter Particle Descriptor Ring (SDR). If this value is 0, the scatter feature will not
be used. If non-zero, this address must point to a contiguous physical bus memory address aligned
on a dword boundary.

part_src_entries Number of gather particles in the GDR.

part_dst_entries Number of scatter particles in the SDR.

part_config Value for the PE PART CFG register.

pdr_int_count Specifies how many PDR entries must be processed before generating a host interrupt.

pdr_notify Pointer to SLAD_NOTIFY structure, which specifies the method to be used for notifying the host
that one or more entries are ready to be removed from the PDR.

cdr_notify Pointer to SLAD_NOTIFY structure, which specifies the method to be used for notifying the host
that one or more entries are ready to be removed from the CDR.

exp0_notify Pointer to SLAD_NOTIFY structure, which specifies the method to be used for notifying the host
that the channel 0 exponentiator is finished.

exp2_notify Pointer to SLAD_NOTIFY structure, which specifies the method to be used for notifying the host
that the channel 2 exponentiator is finished.

Table 3-1. PE_INIT_BLOCK Element Values (Continued)

30 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.3 PKA_INIT_BLOCK
typedef struct {
 //to be completed
}PKA_INIT_BLOCK;

pkcp_notify Pointer to SLAD_NOTIFY structure, which specifies the method to be used for notifying the host
that the public key co-processor is finished.

int_config Value for the device INT CONFIG register.

bus_id_config Value for the device BUS ID CONFIG register.

user_boot_control User Boot is not currently supported by the SLAD.

user_boot_interrupt_to_force User Boot is not currently supported by the SLAD.

user_boot_signblock_busid User Boot is not currently supported by the SLAD.

user_boot_signblock_addr User Boot is not currently supported by the SLAD.

intsrc_mailbox_busid Bus ID for the intsrc mailbox. One of the SLAD_BUSID_xxxx4 definitions.

intsrc_mailbox_addr
Base address of intsrc mailbox. If this value is 0, and intsrc_mailbox_busid is equal to
SLAD_BUSID_HOST4, the driver will allocate the space for the intsrc mailbox, and the address of
the allocated space will be written back here in the PE_INIT_BLOCK. If non-zero, this address must
point to contiguous physical memory aligned on a dword boundary.

software_timer_busid Unused with SLAD applications, although still applicable for legacy applications.

software_timer_addr Unused with SLAD applications, although still applicable for legacy applications.

target_delay_specified

This is a mechanism for allowing the application to override the default target access delays (if any)
that are built into the SLAD for certain devices. If target_delay_specified is set FALSE, the built in
delays are used, and if set TRUE, the specified interval and delay values are used (these are the
next four values in the PE_INIT_BLOCK). To specify no delay at all, set both the interval and delay
to zero.

target_read_interval Number of consecutive target reads between each target_read_delay.
Ignored if target_delay_specified is FALSE.

target_read_delay Target read delay (in microseconds).
Ignored if target_delay_specified is FALSE.

target_write_interval Number of consecutive target reads between each target_write_delay.
Ignored if target_delay_specified is FALSE.

target_write_delay. Target write delay (in microseconds).
Ignored if target_delay_specified is FALSE

misc_options
A bit map of various SLAD options.
The bits are defined by the SLAD_MISC_OPTIONS_xxx 5 definitions in the initblk.h header file. See
the comments in initblk.h for an explanation of all of the current options.

pdr_time_out_cnt Time out counter

pe_mode Mode configuration settings for the packet engine

Note 1: This bus ID value also includes endian configuration information in the upper byte.

Note 2: This bus ID value must be set to SLAD_BUSID_HOST.

Note 3: For the 2141, which does not physically have this register, bits 4 and 5 of this value will be used to derive the PDR bus ID.

Note 4: SLAD_BUSID_xxx are defined in the source file slad.h.

Note 5: SLAD_MISC_OPTIONS are defined in the source file slad.h

Table 3-1. PE_INIT_BLOCK Element Values (Continued)

AMCC 31

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

3.4 RNG_INIT_BLOCK

typedef struct {
 //to be completed
}RNG_INIT_BLOCK;

3.5 SLAD_NOTIFY

There are several of these sub-structures within the PE_INIT_BLOCK structure. These O/S and platform-depen-
dent parameters specify the method for notifying the host that a specific event has occurred, e.g., the completed
processing of a packet or CGX command.

typedef struct {
UINT32 process_id;
UINT32 signal_number;
void (*callback)(int device_num);

} SLAD_NOTIFY;

Table 3-2. SLAD Notify

Term Definition

process_id The process ID of the process where the signal will be sent

 signal_number Signal number to send for notification to the process identified by process_id. If zero, no signal will be sent.

callback Function to call for notification. If NULL, no callback will be made.

32 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.6 SLAD_PKT

typedef struct {
UINT32 control_status;
VPTR src;
VPTR dst;
VPTR sa;
UNIT32 sa_len
UINT32 len_control2;
VPTR user_handle;
VPTR srec;
slad_bus_addr src_bus_addr;
slad_bus_addr dst_bus_addr;
UINT32 dst_len;
UINT32 flags;

} SLAD_PKT;

Table 3-3. SLAD PKT

Term Definition

control_status
This is the same as the 32-bit Control/Status field as defined in the Packet Engine Descriptor. This value is
supplied by the caller when putting packets, and supplied by the driver when getting packets. The use of
this field is transform and device dependent.

src
This is a pointer to the packet source address. This value is supplied by the caller when putting packets,
and supplied by the driver when getting packets. The value supplied by the driver after the get will be the
same as the value originally supplied by the caller during the put of the corresponding packet.

dst
This is a pointer to the packet Destination Address. This value is supplied by the caller when putting pack-
ets, and supplied by the driver when getting packets. The value supplied by the driver after the get will be
the same as the value originally supplied by the caller during the put of the corresponding packet.

sa
This is a pointer to the Security Association (SA). This value is supplied by the caller when putting packets,
and supplied by the driver when getting packets. The value supplied by the driver after the get will be the
same as the value originally supplied by the caller during the put of the corresponding packet.

sa_len Used when specifying “Dynamic SA”, this field contains the length in bytes of the “Dynamic SA”.

len_control2
This is the same as the 32-bit Length/Control2 field as defined in the Packet Engine Descriptor. This value
is supplied by the caller when putting packets, and supplied by the driver when getting packets. The use of
this field is transform and device dependent

user_handle
This is a convenient general-purpose variable that may be used by the caller’s application. The caller sup-
plies this value when putting a packet; and that same value will be written back here by the driver when get-
ting the same packet. This value is never referenced or altered by the driver.

srec

This is a pointer to the State Record. This value is supplied by the caller when putting packets, and sup-
plied by the driver when getting packets. The value supplied by the driver after the get will be the same as
the value originally supplied by the caller during the put of the corresponding packet. This value can remain
un-initialized for packets that do not use a state record.

src_bus_addr

Physical address of source buffer or zero. When the user does not know the physical address this should
be set to ‘0’. If the supplied address is not ‘0’, the driver obtains the physical address of the buffer through
OS specific functions. So there are OS specific limitations on the buffers that the driver is capable of com-
puting physical addresses. The buffer provided by the user must be of the appropriate type otherwise the
user must provide the physical address.

dst_bus_addr Physical address of the destination buffer or zero. The same restrictions that apply to the above
src_bus_addr also apply to this field.

dst_len The length of the destination buffer (dst).

flags Unused in the current version of the SLAD.

AMCC 33

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

/* Same as SLAD_PKT, but using bitfields for the control words. */
typedef struct {
 UINT32 pad_control:8; /* 31-24 */
 UINT32 status:8; /* 23-16 */
 UINT32 next_header:8; /* 15-08 */
 UINT32 sa_busid:2; /* 07-06 */
 UINT32 chain_sa_cache:1; /* 05 */
 UINT32 hash_final:1; /* 04 */
 UINT32 init_stateful_arc4:1; /* 03 */
 UINT32 load_sa_digests:1; /* 02 */
 UINT32 done1:1; /* 01 */
 UINT32 ready1:1; /* 00 */
 VPTR src;
 VPTR dst;
 VPTR sa;

 UINT32 sa_len
 UINT32 bypass_offset:8; /* 31-24 */
UINT32 done2:1; /* 23 */

 UINT32 ready2:1; /* 22 */
 UINT32 reserved2:2; /* 21-20 */
 UINT32 len:20; /* 19-00 */
 VPTR user_handle;
 VPTR srec;

slad_bus_addr src_bus_addr;
slad_bus_addr dst_bus_addr;
UINT32 dst_len;
UINT32 flags;

} SLAD_PKT_BITS;

Packet Engine Descriptor is the definition of the packets as contained within the Packet Descriptor Ring (PDR)

Note: Note: When descriptors are fetched from the host memory locations the descriptor must be set to little-
endian.

34 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.7 Security Association (SA) Record Format

SLAD_SA

typedef struct {
//SA_Command_0
UINT32 output_scatter:1;
UINT32 input_gather:1;
UINT32 save_hash:1;
UINT32 save_iv:1;
UINT32 hash_loading:2;
UINT32 iv_loading:2;

UINT32 digest_len:4;
UINT32 header_proc:1;
UINT32 ext_pad:1;
UINT32 stream_cipher_pad:1;
UINT32 reserved0:1;

UINT32 hash_algo:4;
UINT32 crypto_algo:4;

UINT32 crypto_pad:2;
UINT32 op_code:6;

//SA_COMMAND_1
UINT32 offset:8;

UINT32 rev:2; //00-->rev0, 10-->rev1, 01-->rev2, 11-->reserved
UINT32 byte_offset:1;
UINT32 hmac:1;
UINT32 crypto_feedback:2;
UINT32 crypto_mode:2;

UINT32 ext_seq_num:1;
UINT32 seq_num_mask:1;
UINT32 mutable_bits:1;
UINT32 ipv6:1;
UINT32 copy_pad:1;
UINT32 copy_payload:1;
UINT32 copy_header:1;
UINT32 use_red_keys:1;

BYTE salt[8];

BYTE key1[8];
BYTE key2[8];
BYTE key3[8];
BYTE key4[8];
BYTE inner[20];
BYTE outer[20];
UINT32 spi;
volatile UINT32 seq;
BYTE seq_mask[8]

AMCC 35

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

UINT32 cpi_size;
volatile UINT32 srec;
UINT32 ij;
volatile UINT32 srec_arc4;
volatile UINT32 management0;
volatile UINT32 management1;
}SLAD_SA_REV1;

A Security Association record along with the packet descriptor, provides the Packet Engine with all of the neces-
sary information to process an operation.

36 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.8 State Record

typedef struct {
volatile BYTE IV[16];
volatile UINT32 HashByteCount;
volatile BYTE InnerDigest[20];

} SLAD_STATE_RECORD_REV1

Table 3-4. State Record

Term Definition

IV
Initialization Vectors
 0-4[32bit each]

Hash BYTE Count Starting hash byte count

Inner Digest Starting hash state

AMCC 37

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

3.9 RANDOM_PARAM_BLK

typedef struct {
unsigned char *output;
unsigned int size;

} RANDOM_PARAM_BLK;

Table 3-5. Random Param Blk

Term Definition

char *output Pointer to the buffer where the random number generated will be stored.

int size Size of the random number generated in bytes. It cannot be longer than 256 bytes.

38 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

3.10 EXPMOD_PARAM_BLK

typedef struct {
unsigned int *res;
unsigned int ressize;
unsigned int *a;
unsigned int asize;
unsigned int *p;
unsigned int psize;
unsigned int *m;
unsigned int msize;

} EXPMOD_PARAM_BLK;

where:

res Pointer to the result of the exponential modular calculation obtained by a ^ p mod m.

The a, p, and m are to be represented in little-endian encoding, irrespective of the device. Further, these cannot be
longer than 256 bytes.

Note: The caller needs to specify the values for a, p, and m.

Table 3-6. EXPMOD Param Blk

Term Definition

res Pointer to the result of the exponential modular calculation obtained by a ^ p mod m.

ressize Length of block to hold the results of the exponentiation

*a Pointer to parameter a of the exponential

asize Length of block that contains the parameter a

*p Pointer to the parameter p of the exponential

psize Length of block that contains the parameter p

*m Pointer to the parameter m of the exponential

msize Length of block that contains the parameter m

AMCC 39

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

3.11 EXPCRT_PARAM_BLK

typedef struct {
unsigned int *res;
unsigned int ressize;
unsigned int *a;
unsigned int asize;
unsigned int *p;
unsigned int psize;
unsigned int *q;
unsigned int qsize;
unsigned int *dp;
unsigned int dpsize;
unsigned int *dq;
unsigned int dqsize;
unsigned int *qinv;
unsigned int usize;

} EXPCRTMOD_PARAM_BLK;

Note: The caller needs to specify the values for a, p, q, dp, dq, and qinv are to be represented in little-endian
encoding, irrespective of the device. Further, these cannot be longer than 256 bytes.

Table 3-7. EXPCRT Param Blk

Term Definition

ressize Length of block to receive the result after exponentiation

*a Pointer to the parameter a of the exponentiation

asize Length of the block containing the parameter a

*p Pointer to the parameter p of the exponentiation

psize Length of the block containing the parameter p

*q Pointer to the parameter q of the exponentiation

qsize Length of the block containing the parameter q

*dp Pointer to the parameter dq of the exponentiation

dpsize Length of the block containing the parameter dp

*qinv Pointer to the parameter qinv of the exponentiation

usize Length of the block containing the parameter qinv

40 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

Appendix A. Linux Platform Specifics

A.1 Introduction

In the Linux environment, the SLAD is implemented as a loadable kernel module, compatible with Linux kernel
versions 2.6. Kernel versions below 2.6 are not supported. The makefile supplied with the SLAD source code can
be used with Linux kernel version 2.6.x only.

After building the Linux version of the SLAD from the source code, the resultant file (named slad.ko) is produced.
Two shell scripts are provided to load and unload the driver:

./slad_load.sh

./slad_unload.sh

A.2 Kernel-Mode Interface

Note: The slad_load.sh script processing requires that the system has the /proc filesystem and the awk utility.

The kernel-mode interface is simple. The SLAD API functions are all exported and available for use by any soft-
ware running in kernel mode.

A.3 Kernel-Mode Interface

The kernel mode interface is simple. The SLAD API functions are all exported and available for use by any soft-
ware running in kernel mode.

A.4 Kernel-Mode User Application supplied buffers

All buffers supplied by kernel mode applications to SLAD must be DMA safe buffers. Also kernel mode applications
must supply the bus address of these buffers in the SLAD_PKT (for the packet source and destination buffers)
structure.

A.5 User-Mode Interface

The Linux SLAD uses a file I/O write interface to provide user applications with the API. However, the user-mode
helper functions (see “SLAD API Function Summary”) make the file I/O interface transparent to the user.

The load/unload scripts mentioned in the introduction to this appendix automatically handle creation of the “special
character file” device node /dev/slad, so a mknod command is not necessary.

A.6 Build Instructions

The driver package contains both the driver and test application source code as well as the kernel and user mode
binaries. Please refer to the README.TXT files for detailed instructions.

Driver Build Instructions are contained in:

AMCC 41

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

slad/README.TXT

The Makefile for the driver is in

slad/build/Makefile

Please ensure that the KDIR and CROSS_COMPILER_PREFIX variables in the Makefile is set to point to the
correct linux kernel (KDIR or kernel directory) and tool chain directory respectively.

A.7 Test Environment

Please refer to the Driver Release Notes for the Linux kernel version and hardware platform used for testing the
driver.

A.8 Virtual-to-Physical Address Translation

The driver can obtain the physical address of Source/Destination, SA and State Record buffers, given their virtual
addresses; if these buffers are allocated through kmalloc(). For buffers allocated by any other kernal memory allo-
cation function like ‘ioremap(), cache-coherent memory allocation by dma_alloc_coherent()’ etc, the user should
provide the physical address whenever required by the driver API functions.

For user-mode applications, the driver allocates bounce buffers and can compute the required physical addresses
of these buffers internally.

A.9 Bounce Buffer Allocation

Since the device accesses physical addresses with the DMA controller, these buffers must be DMA-SAFE. The
driver guesses that buffer is DMA-SAFE if it is aligned at cache-line size from beginning to end. If the driver detects
that a buffer is not DMA-SAFE, it allocates a cache aligned buffer internally and copies the content of the original
buffer. These types of buffers are referred to as “Bounce Buffers”.

When the user is certain that the buffers provided to the driver (in slad_pkt_put/get API calls), are already DMA-
SAFE, the driver can be configured to not allocate bounce-buffers.

To configure the driver not to allocate bounce buffers ensure the line below is active, not commented out, in the file
$(SLAD_INSTALL_DIR)/os/inc/slad_osal.h. Where $(SLAD_INSTALL_DIR) is the directory that the driver source
code was installed into.

42 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

Appendix B. Security Co-Processor v2.2 Specifics
This appendix describes the SLAD features specific to the Security Co-Processor v2.2 security device.

B.1 Single Device Support

The SLAD supports a single security device. The API functions requiring a device number as a parameter must be
supplied with the value zero, '0'.

B.2 PE_INIT_BLOCK Elements

Table 3-1 shows the PE_INIT_BLOCK elements used by the security device.

sa_busid Bus ID for the SA database. One of the SLAD_BUSID_xxx defi-
nitions, see header file slad.h for definitions.

dma_config Value for the device DMA_CONFIG register

pe_endian_mode Value for the device PE_ENDIAN_MODE register

pe_dma_config Value for the device PE_DMA_CONFIG register. Note that the
PDR bus ID is specified by bits 4 and 5 of this value.

pdr_addr Base address of the Packet Descriptor Ring (PDR). If this
value is 0, and the PDR bus ID, as specified by bits 4 and 5
of the PE_DMA_CONFIG register, is equal to SLAD_BUSID_HOST,
the driver will allocate the space for the PDR, and the
address of the allocated space will be written back here to
the PE_INIT_BLOCK. If this value is non-zero, this address
must point to a contiguous physical block of memory aligned
on a dword boundary.

pdr_entries Number of packet descriptors to be created in the PDR.

pdr_offset Size, in dwords, of each PDR entry.

pe_dma_input_threshold Value of the PE_DMA_INPUT_THRESHOLD register

pe_dma_output_threshold Value of the PE_DMA_OUTPUT_THRESHOLD register

pdr_poll_delay Interval between packet descriptor polls, immediately after
a descriptor is processed. The units of this timing interval
are device dependent.

pdr_delay_after Interval until the next packet descriptor poll, once an
empty descriptor is encountered. The units of this timing
interval are device dependent.

part_src_addr Base address of the Gather Particle Descriptor Ring (GDR).
If this value is zero, the gather feature will not be used.
If non-zero, this address must point to a contiguous block
of physical memory aligned on a dword boundary

part_dst_addr Base address of the Scatter Particle Descriptor Ring (SDR).
If this value is zero, the scatter feature will not be used.
If non-zero, this address must point to a contiguous block
of physical memory aligned on a dword boundary

part_src_entries Number of gather particles in the GDR

part_dst_entries Number of scatter particles in the SDR

part_config Value for the PE_PART_CONFIG register

pdr_init_count Specifies how many PDR entries must be processed before gen-
erating a host interrupt

int_config Value for the device INT_CONFIG register

AMCC 43

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

target_delay_specified Method of allowing the application to override the default
target access delays (if any) that are built into the SLAD
for certain devices. If this value is set to FALSE (0), the
built in delays will be used, and if set to TRUE (1), the
specified interval and delay values are used (these are the
next 4 values in the PE_INIT_BLOCK). To specify no delay at
all, set both the interval and delay values to zero

target_read_interval Number of consecutive target device reads between each
target_read_delay. Ignored if target_delay_specified is
FALSE (0)

target_read_delay Target device read delay (in microseconds). Ignored if
target_delay_specified is FALSE(0)

target_write_inteval Number of consecutive target device writes between each
target_write_delay. Ignored if target_delay_specified is
FALSE(0)

target_write_delay Target device write delay (in microseconds). Ignored if
target_delay_specified is FALSE(0)

misc_options A bit-map of various SLAD options. The bits are defined by
the SLAD_MISC_OPTIONS_xxx definitions in the initblk.h
header file. See the comments in that file for an explana-
tion of the current options

pdr_time_out_cnt Number of clock cycles befora issuing a Timeout interrupt

pe_mode Mode configuration settings for the packet engine

enable_dynamic_sa Must be set to '1, if dynamic SA is to be used

Table 3-8. SLAD_BUSID_xxx Definitions

SLAD_BUSID_EMI 0x0000 0000
SLAD_BUSID_HOST 0x0000 0001
SLAD_BUSID_INTERNAL 0x0000 0002
SLAD_BUSID_DISABLED 0x8000 0000

44 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

Index
Preliminary User’s Manual

AMCC 57

AMCC Security Look-aside Driver

Index

A
acronyms, 9

B
block diagram, 11
Build Instructions, 40

C
CGX command parsing, 12
Codes, 25

D
data structures, 26
Device Numbers, 12

E
EXPMOD_PARAM_BLK, 38

F
Function Return Codes, 25
functions

slad_buffer_copy_in_in, 22
slad_buffer_copy_out, 22
slad_bus_read, 20
slad_bus_write, 21
slad_device_info, 15
slad_driver_version, 15
slad_expcrtmod, 24
slad_expmod, 23
slad_free_buffer, 21
slad_get_random, 23
slad_pe_init, 16
slad_pe_uninit, 16
slad_pkt_get, 19
slad_pkt_put, 19
slad_pkt_ready, 20
slad_pkt_sync, 20
slad_setup_pe_initblk, 15

G
General Notes, 12

H, I, J, K
Index, 57
Initialization and Configuration Overview, 12
Introduction, 40
introduction, 9
kernel-mode interface, 40

, 40

M
memory

physical, 12
virtual, 12

O
Operation after Initialization, 12
Overview, 10

P
PE_INIT_BLOCK, 26
PE_INIT_BLOCK Elements, 42
physical memory, 12

R
RANDOM_PARAM_BLK, 37
RNG_INIT_BLOCK, 31
RSA-CRT exponentiation, 13

S
Security Association (SA) Record Format, 34
Security Co-Processor v2.2 Specifics, 42
SLAD API Function Summary, 14
SLAD API function summary, 14
SLAD Function Details, 15
slad_allocate_buffer, 21
slad_buffer_copy_in, 22
slad_buffer_copy_out, 22
slad_bus_read, 20
slad_bus_write, 21
slad_device_info, 15
SLAD_DEVICEINFO, 26
slad_driver_version, 15
slad_expcrtmod, 24
slad_expmod, 23
slad_free_buffer, 21
slad_get_random, 23
slad_map_addr_range, 22
SLAD_NOTIFY, 31
slad_pe_init, 16

58 AMCC

AMCC Security Look-aside Driver
Revision 1.00 - February 28, 2008

Preliminary User’s Manual

slad_pe_uninit, 16
slad_pka_init, 16
slad_pka_uninit, 17
SLAD_PKT, 32
slad_pkt_get, 19
slad_pkt_put, 19
slad_pkt_ready, 20
slad_pkt_sync, 20
slad_register_sa, 17
slad_register_srec, 18
slad_rng_init, 16
slad_rng_uninit, 17
slad_setup_pe_initblk, 15
slad_unmap_addr_range, 23
slad_unregister_sa, 18
State Record, 36

T
Target Mode vs. Autonomous Ring Mode, 13

U, V, W
user-mode

interface
Linux, 40

User-mode interface, 40
virtual memory, 12

AMCC 55

Revision 1.00 - February 28, 2008

AMCC Security Look-aside DriverPreliminary User’s Manual

Revision Log

Revision Date Level Contents of Modification

02/28/2008 1.00 Initial document creation.

56 AMCC

AMCC Security Look-aside Driver

Revision 1.00 - February 28, 2008

Preliminary User’s Manual

	Contents
	Abstract
	1. Introduction
	1.1 Acronyms
	1.2 Overview
	1.2.1 Initialization and Configuration Overview
	1.2.2 Operation after Initialization

	1.3 General Notes
	1.3.1 Device Numbers
	1.3.2 Virtual Memory and Physical Memory
	1.3.3 CGX Command Parsing
	1.3.4 RSA-CRT Modular Exponentiation
	1.3.5 Target Mode vs. Autonomous Ring Mode

	2. SLAD API Function Summary
	2.1 SLAD Function Details
	2.1.1 slad_driver_version
	2.1.2 slad_device_info
	2.1.3 slad_setup_pe_initblk
	2.1.4 slad_pe_init
	2.1.5 slad_pka_init
	2.1.6 slad_rng_init
	2.1.7 slad_pe_uninit
	2.1.8 slad_pka_uninit
	2.1.9 slad_rng_uninit
	2.1.10 slad_register_sa
	2.1.11 slad_register_srec
	2.1.12 slad_unregister_sa
	2.1.13 slad_pkt_put
	2.1.14 slad_pkt_get
	2.1.15 slad_pkt_sync
	2.1.16 slad_pkt_ready
	2.1.17 slad_bus_read
	2.1.18 slad_bus_write
	2.1.19 slad_allocate_buffer
	2.1.20 slad_free_buffer
	2.1.21 slad_buffer_copy_in
	2.1.22 slad_buffer_copy_out
	2.1.23 slad_map_addr_range
	2.1.24 slad_unmap_addr_range
	2.1.25 slad_get_random
	2.1.26 slad_expmod
	2.1.27 slad_expcrtmod

	2.2 Function Return Codes

	3. Data Structures
	3.1 SLAD_DEVICEINFO
	3.2 PE_INIT_BLOCK
	3.3 PKA_INIT_BLOCK
	3.4 RNG_INIT_BLOCK
	3.5 SLAD_NOTIFY
	3.6 SLAD_PKT
	3.7 Security Association (SA) Record Format
	3.8 State Record
	3.9 RANDOM_PARAM_BLK
	3.10 EXPMOD_PARAM_BLK
	3.11 EXPCRT_PARAM_BLK

	Appendix A. Linux Platform Specifics
	A.1 Introduction
	A.2 Kernel-Mode Interface
	A.3 Kernel-Mode Interface
	A.4 Kernel-Mode User Application supplied buffers
	A.5 User-Mode Interface
	A.6 Build Instructions
	A.7 Test Environment
	A.8 Virtual-to-Physical Address Translation
	A.9 Bounce Buffer Allocation

	Appendix B. Security Co-Processor v2.2 Specifics
	B.1 Single Device Support
	B.2 PE_INIT_BLOCK Elements

	Index
	Revision Log

