
Topics in IRIX® Programming

Document Number 007-2478-007



Topics in IRIX® Programming
Document Number 007-2478-007

CONTRIBUTORS

Written by David Cortesi based on previous versions by Arthur Evans,
Wendy Ferguson, and Jed Hartman; updated by Susan Thomas

Production by Linda Rae Sande
Engineering contributions by Ivan Bach, Greg Boyd, Joe CaraDonna, Srinivas

Lingutla, Bill Mannell, Paul Mielke, Huy Nguyen, James Pitcairne-Hill, Paul Roy,
Jonathan Thompson, and Ira Pramanick

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1996 - 1999, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor
clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished
rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, CHALLENGE, Indy, IRIS, IRIX, Onyx,
and OpenGL are registered trademarks and Developer Magic, Impressario, Indigo2,
IRIS Inventor, IRIS GL, IRIS IM, IRIS Insight, IRIS POWER C, IRIS Showcase,
IRIS Performer, O2, OCTANE, Onyx2, Origin200, Origin2000, POWER
CHALLENGE, POWER CHALLENGEarray, POWER Series, REACT, and XFS are
trademarks of Silicon Graphics, Inc. Cray is a registered trademark and CRAY T3E
and CrayLink are trademarks of Cray Research, Inc. MIPS, R4000, and R8000 are
registered trademarks and MIPSpro and R10000 are trademarks of MIPS
Technologies, Inc. Ada is a registered trademark of Ada Joint Program Office, U.S.
Government. AT&T is a trademark of AT&T, Inc. NFS is a registered trademark of
Sun Microsystems, Inc. OSF/Motif is a trademark of Open Software Foundation, Inc.
POSIX is a registered trademark of the Institute of Electrical and Electronic
Engineers, Inc. (IEEE). PostScript and Display Postscript are registered trademarks of
Adobe Systems, Inc. Speedo is a trademark of Bitstream, Inc. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd. X Window System is a trademark of X Consortium, Inc..



iii

Contents

List of Examples    xxv

List of Figures    xxvii

List of Tables    xxix

About This Manual    xxxiii
What This Manual Contains    xxxiii
What You Should Know Before Reading This Manual    xxxiv
Other Useful References    xxxiv

Obtaining Manuals    xxxv
Conventions Used in This Manual    xxxv

1. Process Address Space    3
Defining the Address Space    3

Address Space Boundaries    4
Page Numbers and Offsets    5
Address Definition    5
Address Space Limits    6
Delayed and Immediate Space Definition    7
Page Validation    9
Read-Only Pages    10
Copy-on-Write Pages    10

Interrogating the Memory System    11



iv

Contents

Mapping Segments of Memory    12
Segment Mapping Function mmap()    12

Describing the Mapped Object    13
Describing the New Segment    13

Mapping a File for I/O    15
Mapped File Sizes    16
Apparent Process Size    16
Mapping Portions of a File    17
File Permissions    17
NFS Considerations    17
File Integrity    18

Mapping a File for Shared Memory    19
Mapping a Segment of Zeros    19
Mapping Physical Memory    20
Mapping Kernel Virtual Memory    20
Mapping a VME Device    20
Choosing a Segment Address    21

Segments at Fixed Offsets    21
Segments at a Fixed Address    22



Contents

v

Locking and Unlocking Pages in Memory    23
Memory Locking Functions    24

Locking Program Text and Data    24
Locking Mapped Segments    25
Locking Mapped Files    26

Unlocking Memory    27
Additional Memory Features    27

Changing Memory Protection    28
Synchronizing the Backing Store    28
Releasing Unneeded Pages    29

Using Origin2000 Nonuniform Memory    29
About Origin Hardware    30

Basic Building Blocks    30
Uniform Addressing    30

Cache Coherency    31
Cache Coherency in CHALLENGE Systems    32
Cache Coherency in Origin Systems    32

About CC-NUMA Performance Issues    33
About Default Memory Location    33
About Large Memory Use    34
About Multithreaded Memory Use    34

Dealing With Cache Contention    34
Detecting Cache Contention    35
Correcting Cache Contention Problems    36

Getting Optimum Memory Placement    38
Detecting Memory Placement Problems    38
Programming Desired Memory Placement    39
Using Compiler Directives for Memory Placement    39
Taking Advantage of First-Touch Allocation    40
Using Round-Robin Allocation    41
Using Dynamic Page Migration    41
Using Explicit Memory Placement    42



vi

Contents

2. Interprocess Communication    45
Types of Interprocess Communication Available    46
Using POSIX IPC    48

POSIX IPC Name Space    48
Using IRIX IPC    49
Using System V IPC    49

SVR4 IPC Name Space    50
Configuring the IPC Name Space    50
Listing and Removing Persistent Objects    50
Access Permissions    51
Choosing and Communicating Key Values    51
Using ID Numbers    51
Private Key Values    52

Using 4.2 BSD IPC    52



Contents

vii

3. Sharing Memory Between Processes    53
Overview of Memory Sharing    53

Shared Memory Based on mmap()    54
Sharing Memory Between 32-Bit and 64-Bit Processes    54

POSIX Shared Memory Operations    55
Creating a Shared Object    55

Shared Object Pathname    56
Shared Object Open Flags    56
Shared Object Access Mode    56
Using the Shared Object File Descriptor    57

Using a Shared Object    57
Example Program    57

IRIX Shared Memory Arenas    61
Overview of Shared Arenas    61
Initializing Arena Attributes    61
Creating an Arena    63
Joining an Arena    63

Restricting Access to an Arena    64
Arena Access From Processes in a Share Group    64

Allocating in an Arena    65
Exchanging the First Datum    66

System V Shared Memory Functions    71
Creating or Finding a Shared Memory Segment    71

Attaching a Shared Segment    72
Managing a Shared Segment    72

Information About Shared Memory    73
Shared Memory Examples    73

Example of Creating a Shared Segment    73
Example of Attaching a Shared Segment    74



viii

Contents

4. Mutual Exclusion    77
Overview of Mutual Exclusion    78

Test-and-Set Instructions    78
Locks    79
Semaphores    80
Condition Variables    81
Barriers    82

POSIX Facilities for Mutual Exclusion    82
Managing Unnamed Semaphores    83
Managing Named Semaphores    84

Creating a Named Semaphore    84
Closing and Removing a Named Semaphore    85

Using Semaphores    85
Using Mutexes and Condition Variables    86

IRIX Facilities for Mutual Exclusion    87
Using IRIX Semaphores    87

Creating Normal Semaphores    87
Creating Polled Semaphores    88
Operating on Semaphores    89

Using Locks    90
Creating and Managing Locks    90
Claiming and Releasing Locks    91

Using Barriers    92
Using Test-and-Set Functions    92

Using Test-and-Set    93
Using Compare-and-Swap    93
Using Compiler Intrinsics for Test-and-Set    95

Creating or Finding a Semaphore Set    97
Managing Semaphore Sets    98
Using Semaphore Sets    100
Example Programs    101

Example Uses of semget()    102
Example Uses of semctl() for Management    104



Contents

ix

Example Uses of semctl() for Query    106
Example Uses of semop()    108
Using the Examples    110

5. Signalling Events    113
Signals    113

Signal Numbers    114
Signal Implementations    116
Signal Blocking and Signal Masks    117

Multiple Signals    117
Signal Handling Policies    118

Default Handling    118
Ignoring Signals    118
Catching Signals    118
Synchronous Signal Handling    119

Signal Latency    119
Signals Under X-Windows    120
POSIX Signal Facility    120

Signal Masking    122
Using Synchronous Handling    122
Using Asynchronous Handling    123

System V Signal Facility    124
BSD Signal Facility    126

Timer Facilities    127
Timed Pauses and Schedule Cession    127



x

Contents

Time Data Structures    128
Time Signal Latency    128
How Timers Are Managed    129
POSIX Timers    129

Getting Program Execution Time    130
Creating Timestamps    131
Using Interval Timers    133

BSD Timers    134
Hardware Cycle Counter    135

6. Message Queues    137
Overview of Message Queues    138

Implementation Differences    138
Uses of Message Queues    140

POSIX Message Queues    140
Managing Message Queues    141

Creating a Message Queue    141
Opening an Existing Queue    142
Specifying Blocking or Nonblocking Access    142

Using Message Queues    143
Sending a Message    143
Receiving a Message    143
Using Asynchronous Notification    143

Example Programs    144
Example of mq_getattr()    145
Example of mq_open()    147
Example of mq_send()    149
Example of mq_receive()    151



Contents

xi

System V Message Queues    153
Managing SVR4 Message Queues    154

Creating a Message Queue    154
Accessing an Existing Queue    155
Modifying a Message Queue    155
Removing a Message Queue    155

Using SVR4 Message Queues    156
Sending a Message    156
Receiving a Message    156

Example Programs    157
Example of msgget    159
Example of msgctl    161
Example of msgsnd    163
Example of msgrcv    166

7. File and Record Locking    171
Overview of File and Record Locking    172

Terminology    172
Record    172
Read (Shared) Lock    173
Write (Exclusive) Lock    173
Advisory Locking    173
Mandatory Locking    173
Lock Promotion and Demotion    174

Controlling File Access With File Permissions    174
Using Record Locking    175

Opening a File for Record Locking    175
Setting a File Lock    176

Whole-File Lock With fcntl()    177
Whole-File Lock With lockf()    178
Whole-File Lock With flock()    178

Setting and Removing Record Locks    179
Getting Lock Information    183
Deadlock Handling    186



xii

Contents

Enforcing Mandatory Locking     186
Record Locking Across Multiple Systems    188

NFS File Locking    188
Configuring NFS Locking    189
Performance Impact    189

8. Using Asynchronous I/O    191
About Synchronous and Asynchronous I/O    191

About Synchronous Input    191
About Synchronous Output    192
About Asynchronous I/O    192

Asynchronous I/O Functions    193
Asynchronous I/O Control Block    194

Initializing Asynchronous I/O    194
Implicit Initialization    194
Initializing with aio_sgi_init()    195
When to Initialize    196

Scheduling Asynchronous I/O    196
Assuring Data Integrity    197

Checking the Progress of Asynchronous Requests    198
Polling for Status    198
Checking for Completion    199
Establishing a Completion Signal    199
Establishing a Callback Function    200
Holding Callbacks Temporarily    203

Multiple Operations to One File    203
Asynchronous I/O Example    204



Contents

xiii

9. High-Performance File I/O    223
Using Synchronous Output    223

About Buffered Output    223
Requesting Synchronous Output    224

Using Direct I/O    225
Direct I/O Example    225

Using a Delayed System Buffer Flush    230
Using Guaranteed-Rate I/O    230

About Guaranteed-Rate I/O    230
About Types of Guarantees    231
About Device Configuration    231

Creating a Real-time File    232
Requesting a Guarantee    233
Releasing a Guarantee    234

10. Models of Parallel Computation    237
Parallel Hardware Models    238

Parallel Programs on Uniprocessors    239
Types of Memory Systems    239

Single Memory Systems    239
Multiple Memory Systems    240
Hierarchic, Nonuniform Memory Systems    241

Parallel Execution Models    241
Process-Level Parallelism    242
Thread-Level Parallelism    243
Statement-Level Parallelism    245
Message-Passing Models    245

Shared Memory (SHMEM) Model    246
Message-Passing Interface (MPI) Model    247
Parallel Virtual Machine (PVM) Model    247



xiv

Contents

11. Statement-Level Parallelism    249
Products for Statement-Level Parallelism    250

Silicon Graphics Support    250
Products from Other Vendors    250

Creating Parallel Programs    251
Managing Statement-Parallel Execution    252

Controlling the Degree of Parallelism    252
Choosing the Loop Schedule Type    253
Distributing Data    254

12. Process-Level Parallelism    255
Using Multiple Processes    256

Process Creation and Share Groups    256
Process Creation    257
Process Management    258
Process “Reaping”    259

Process Scheduling    260
Controlling Scheduling With IRIX and BSD-Compatible Facilities    260
Controlling Scheduling With POSIX Functions    262

Self-Dispatching Processes    263
Parallelism in Real-Time Applications    265

13. Thread-Level Parallelism    267
Overview of POSIX Threads    268
Compiling and Debugging a Pthread Application    269

Compiling Pthread Source    270
Debugging Pthread Programs    271

Creating Pthreads    271
Initial Detach State    272
Initial Scheduling Scope, Priority, and Policy    272
Thread Stack Allocation    273



Contents

xv

Executing and Terminating Pthreads    274
Getting the Thread ID    275
Initializing Static Data    275
Setting Event Handlers    275
Terminating a Thread    276
Joining and Detaching    277

Using Thread-Unique Data    277
Pthreads and Signals    278

Setting Signal Masks    279
Setting Signal Actions    279
Receiving Signals Synchronously    280

Scheduling Pthreads    280
Contention Scope    280
Scheduling Policy    281
Scheduling Priority    282

Synchronizing Pthreads    282
Mutexes    283

Preparing Mutex Objects    283
Using Mutexes    286

Condition Variables    286
Preparing Condition Variables    287
Using Condition Variables    288

Read-Write Locks    292
Preparing Read-Write Locks    292
Using Read-Write Locks    293



xvi

Contents

14. Message-Passing Parallelism    295
Choosing a Message-Passing Model    296
Choosing Between MPI and PVM    297

Differences Between PVM and MPI    298

15. Working With Fonts    303
Font Basics    304

Terminology    304
Typography    304
Character    305
Font    305
Font Family, or Typeface    305

How Resolution Affects Font Size    306
Font Names    307
Writing Programs That Need to Use Fonts    308

Using Fonts With the X Window System    309
Listing and Viewing Fonts    309

Getting a List of Font Names and Font Aliases    309
Viewing Fonts    310

Getting the Current X Font Path    312
Changing the X Font Path    312

Installing and Adding Font and Font Metric Files    313
Locations of Font and Font Metric Files    313

Conventions for Bitmap Font Filenames    315
Creating Font Aliases    315

Adding Font and Font Metric Files    316
Adding a Bitmap Font    316
Adding an Outline Font    319
Adding a Font Metric File    322

Downloading a Type 1 Font to a PostScript Printer    323



Contents

xvii

16. Internationalizing Your Application    327
Overview of Internationalization    328

Some Definitions of Internationalization    329
Locale    329
Internationalization (i18n)    329
Localization (l10n)    329
Nationalized Software    330
Multilingual Software    330

Areas of Concern in Internationalizing Software    330
Standards    331
Internationalizing Your Application: The Basic Steps    331
Additional Reading on Internationalization    333

Using Locales    334
Setting the Current Locale    334

Using Locale Categories    335
Setting the Locale    336
Empty String    336
Nonempty Strings in Calls to setlocale()    337
Location of Locale-Specific Data    337
Locale Naming Conventions    337

Limitations of the Locale System    339
Multilingual Support    339
Misuse of Locales    339
No Filesystem Information for Encoding Types    340



xviii

Contents

Character Sets, Codesets, and Encodings    340
Eight-Bit Cleanliness    341
Character Representation    342
Multibyte Characters    343

Use of Multibyte Strings    344
Handling Multibyte Characters    344
Conversion to Constant-Size Characters    344
Finding the Number of Bytes in a Character    344
How Many Bytes in an MB String?    345
How Many Characters in an MB String?    345

Wide Characters    346
Uses for wchar Strings    346
Support Routines for Wide Characters    347
Conversion to MB Characters    347

Reading Input Data    347
Cultural Items    347

Collating Strings    348
Specifying Numbers and Money    349

Using printf()    350
Using localeconv()    350
Using strfmon()    351

Formatting Dates and Times    351
Character Classification and ctype    351
Regular Expressions    353

Locale-Specific Behavior    353
Overview of Locale-Specific Behavior    354

Local Customs    354
Regular Expressions    354
ANSI X3.159-198X Standard for C    354



Contents

xix

Native Language Support and the NLS Database    356
Configuration Data    356
Collating Sequence Tables    357
Character Classification Tables    357
Shift Tables    358
Language Information    358

Using Regular Expressions    359
Internationalized Regular Expressions    360

Cultural Data    362
NLS Interfaces    364

NLS Utilities    364
NLS Library Functions    365

XSI Curses Interface    365
Strings and Message Catalogs    366

XPG/4 Message Catalogs    366
Opening and Closing XPG/4 Catalogs    366
Using an XPG/4 Catalog    367
XPG/4 Catalog Location    368
Creating XPG/4 Message Catalogs    368
Compiling XPG/4 Message Catalogs    369

SVR4 MNLS Message Catalogs    370
Putting MNLS Strings Into a Catalog    370
Using MNLS in Shell Scripts    370
Specifying MNLS Catalogs    371
Getting Strings From MNLS Message Catalogs    371
Using pfmt()    372
Labels, Severity, and Flags    372
Format Strings for pfmt()    373
Using fmtmsg()    373
Internationalizing File Typing Rule Strings With MNLS    374

Variably Ordered Referencing of printf() Arguments    375



xx

Contents

Internationalization Support in X11R6    377
Limitations of X11R6 in Supporting Internationalization    377

Vertical Text    378
Character Sets    378
Xlib Interface Change    378

Resource Names    379
Getting X Internationalization Started    379

Initialization for Toolkit Programming    379
Initialization for Xlib Programming    379

Fontsets    380
Example: EUC in Japanese    380
Specifying a Fontset    380
Creating a Fontset    381
Using a Fontset    381

Text Rendering Routines    382
New Text Extents Functions    382

Internationalization Support in Motif    384
Translating User Input    385

About User Input and Input Methods    385
Reuse Sample Code    386
GL Input    386

About X Keyboard Support    386
Keys, Keycodes, and Keysyms    387
Composed Characters    387
Supported Keyboards    388

Input Methods (IMs)    389
Opening an Input Method    389



Contents

xxi

IM Styles    391
Root Window    391
Off-the-Spot    392
Over-the-Spot    392
On-the-Spot    393
Setting IM Styles    393
Using Styles    393

Input Contexts (ICs)    394
Find an IM Style    394
IC Values    395
Pre-Edit and Status Attributes    396
Creating an Input Context    397
Using the IC    397

Events Under IM Control    398
Using XFilterEvent()    398
Using XLookupString(), XwcLookupString(), and XmbLookupString()    399

GUI Concerns    401
X Resources for Strings    401
Layout    402

Dynamic Layout    402
Constant Layout    402
Localized Layout    403
IRIS IM Localization With editres    403

Icons    403
Popular Encodings    403

The ISO 8859 Family    404
Asian Languages    405

Some Standards    406
EUC    406

Unicode    407

A. ISO 3166 Country Names and Abbreviations    409

Index    413





xxiii

List of Examples

Example 1-1 Using systune to Check Address Space Limits    7
Example 1-2 Function to Lock Maximum Stack Size    25
Example 3-1 POSIX Program to Demonstrate shm_open()    58
Example 3-2 Initializing a Shared Memory Arena    63
Example 3-3 Setting Up an Arena With uscasinfo()    67
Example 3-4 Resigning From an Arena    70
Example 3-5 shmget() System Call Example    73
Example 3-6 shmat() System Call Example    75
Example 4-1 Dynamic Allocation of POSIX Unnamed Semaphore    83
Example 4-2 Using Compare-and-Swap on a LIFO Queue    94
Example 4-3 Program to Demonstrate semget()    102
Example 4-4 Program to Demonstrate semctl() for Management    104
Example 4-5 Program to Demonstrate semctl() for Sampling    106
Example 4-6 Program to Demonstrate semop()    108
Example 5-1 Example of POSIX Time Functions    131
Example 6-1 Program to Demonstrate mq_getattr() and mq_setattr()    146
Example 6-2 Program to Demonstrate mq_open()    147
Example 6-3 Program to Demonstrate mq_send()    149
Example 6-4 Program to Demonstrate mq_receive()    151
Example 6-5 Program to Demonstrate msgget()    159
Example 6-6 Program to Demonstrate msgctl()    161
Example 6-7 Program to Demonstrate msgsnd()    163
Example 6-8 Program to Demonstrate msgrcv()    166
Example 7-1 Opening a File for Locked Use    175
Example 7-2 Setting a Whole-File Lock With fcntl()    177
Example 7-3 Setting a Whole-File Lock With lockf()    178
Example 7-4 Setting a Whole-File Lock With flock()    179



xxiv

List of Examples

Example 7-5 Record Locking With Promotion Using fcntl()    180
Example 7-6 Record Locking Using lockf()    182
Example 7-7 Detecting Contending Locks Using fcntl()    184
Example 7-8 Testing for Contending Lock Using lockf()    185
Example 7-9 Setting Mandatory Locking Permission Bits    187
Example 8-1 Initializing Asynchronous I/O    196
Example 8-2 Polling for Asynchronous Completion    198
Example 8-3 Set of Functions to Schedule Asynchronous I/O    201
Example 8-4 Source Code of aiocat    205
Example 9-1 Source of Direct I/O Example    226
Example 9-2 Function to Create a Real-time File     233
Example 12-1 Partial Code to Manage a Pool of Processes    263
Example 13-1 One-Time Initialization    275
Example 13-2 Function to Set Own Priority    282
Example 13-3 Use of Condition Variables    289
Example 16-1 Find Number of Bytes in an MB Character    345
Example 16-2 Counting MB Characters Without Conversion    346
Example 16-3 Reading an XPG/4 Catalog    367
Example 16-4 Internationalized Code    376
Example 16-5 Initializing Xlib for a Locale    379
Example 16-6 Creating a Fontset    381
Example 16-7 Opening an IM    390
Example 16-8 Finding What a Client Can Do    394
Example 16-9 Setting the Desired IM Style    395
Example 16-10 Creating an Input Context With XCreateIC()    397
Example 16-11 Using the IC    398
Example 16-12 Event Loop    398
Example 16-13 KeyPress Event    400



xxvii

List of Figures

Figure 1-1 Segments With a Fixed Offset Relationship    22
Figure 15-1 X Window System Font Name Example    308
Figure 15-2 Sample Display From xfd    311
Figure 16-1 Root Window Input    391
Figure 16-2 Off-the-Spot Input    392





xxix

List of Tables

Table i Books for Further Reading in IRIX Development    xxxiv
Table ii Typographical Conventions    xxxv
Table 1-1 Memory System Calls     11
Table 1-2 Functions for Locking Memory    24
Table 1-3 Functions for Unlocking Memory    27
Table 2-1 Types of IPC and Compatibility    46
Table 2-2 SVR4 IPC Name Space Management    50
Table 3-1 POSIX Shared Memory Functions    55
Table 3-2 IRIX Shared Arena Management Functions    61
Table 3-3 Arena Features Set Using usconfig()    62
Table 3-4 IRIX Shared Memory Arena Allocation Functions    65
Table 3-5 IRIX Shared Memory First-Datum Functions    66
Table 3-6 SVR4 Shared Memory Functions    71
Table 3-7 SVR4 Shared Segment Management Operations    72
Table 4-1 POSIX Functions to Manage Unnamed Semaphores    83
Table 4-2 POSIX Functions to Manage Named Semaphores    84
Table 4-3 POSIX Functions to Operate on Semaphores    86
Table 4-4 IRIX Functions to Manage Nonpolled Semaphores    87
Table 4-5 IRIX IPC Functions for Managing Polled Semaphores    88
Table 4-6 IRIX IPC Functions for Semaphore Operations    89
Table 4-7 IRIX IPC Functions for Managing Locks    90
Table 4-8 IRIX IPC Functions for Using Locks    91
Table 4-9 IRIX IPC Functions for Barriers    92
Table 4-10 Compiler Intrinsics for Atomic Operations    95
Table 4-11 SVR4 Semaphore Management Functions    97
Table 4-12 SVR4 Semaphore Set Management Operations    98
Table 4-13 SVR4 Semaphore Management Operations    99



xxx

List of Tables

Table 5-1 Signal Numbers and Default Actions    114
Table 5-2 Signal Handling Interfaces    116
Table 5-3 Functions for POSIX Signal Handling    121
Table 5-4 Functions for SVR4 Signal Handling    125
Table 5-5 Functions for BSD Signal Handling    126
Table 5-6 Functions for Timed Suspensions    127
Table 5-7 Time Data Structures and Usage    128
Table 5-8 POSIX Time Management Functions    130
Table 5-9 POSIX Time Management Functions    130
Table 5-10 BSD Functions for Interval Timers    134
Table 5-11 Types of itimer     135
Table 6-1 Abstract Operations on a Message Queue    138
Table 6-2 POSIX Functions for Managing Message Queues    141
Table 6-3 POSIX Functions for Using Message Queues    143
Table 6-4 SVR4 Functions for Managing Message Queues    154
Table 6-5 SVR4 Functions for Using Message Queues    156
Table 7-1 Functions for File and Record Locking    172
Table 10-1 Comparing Parallel Models    242
Table 11-1 Documentation for Statement-Level Parallel Products    250
Table 11-2 Loop Scheduling Types    253
Table 12-1 Commands and System Functions for Process Management    256
Table 12-2 Functions for Child Process Management    259
Table 12-3 Commands and Functions for Scheduling Control    260
Table 12-4 POSIX Functions for Scheduling    262
Table 13-1 Comparison of Pthreads and Processes    268
Table 13-2 Header Files Related to Pthreads    270
Table 13-3 Functions for Creating Pthreads    271
Table 13-4 Functions for Managing Thread Execution    274
Table 13-5 Functions for Thread-Unique Data    278
Table 13-6 Functions for Schedule Management    281
Table 13-7 Functions for Preparing Mutex Objects    284
Table 13-8 Functions for Using Mutexes    286
Table 13-9 Functions for Preparing Condition Variables    287



List of Tables

xxxi

Table 13-10 Functions for Using Condition Variables    288
Table 13-11 Functions for Preparing Read-Write Locks    292
Table 13-12 Functions for Using Read-Write Locks    293
Table 15-1 Font and Font Metric Directories    313
Table 16-1 Locale Categories    335
Table 16-2 Category Environment Variables    336
Table 16-3 Some Monetary Formats    350
Table 16-4 ANSI Compatible Functions    355
Table 16-5 X/Open Additional Functions    356
Table 16-6 Regular Expression Libraries in IRIX    359
Table 16-7 Character Expressions in Internationalized Regular Expressions    360
Table 16-8 Examples of Internationalized Regular Expressions    361
Table 16-9 Cultural Data Names, Categories, and Settings    362
Table 16-10 ISO 8859 Character Sets    404
Table 16-11 Character Sets for Asian Languages    406
Table A-1 ISO 3166 Country Codes    409





xxxiii

About This Manual

This manual discusses several topics of interest to programmers writing applications for
the IRIX operating system on Silicon Graphics computers. These topics include memory
management, interprocess communication, models of parallel computation, file and
record locking, font access, and internationalization.

What This Manual Contains

This manual contains the following major parts:

• Part I, “The Process Address Space,” tells how the virtual address space of a process
is created and how objects are mapped into it.

• Part II, “Interprocess Communication,” covers all the facilities for communicating
and coordinating among processes such as semaphores, shared memory, signals,
message queues, and file and record locks.

• Part III, “Advanced File Control,” describes advanced uses of disk files: file locking,
asynchronous I/O, direct I/O, and guaranteed-rate I/O.

• Part IV, “Models of Parallel Computation,” gives an overview of the different ways
you can specify parallel execution in Silicon Graphics systems.

• Part V, “Working With Fonts,” discusses typography and font use on Silicon
Graphics computers, and describes the Font Manager library.

• Part VI, “Internationalizing Your Application,” explains how to create an
application that can be adapted for use in different countries.

• Appendix A, “ISO 3166 Country Names and Abbreviations,” lists country codes for
use with internationalization and localization.
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About This Manual

What You Should Know Before Reading This Manual

This manual assumes that you are writing an application that executes under IRIX
version 6.2 or later, and that you are familiar with the programming conventions of UNIX
in general and IRIX in particular.

All examples are in the C language, although the descriptions are valid for C++ or any
other language that provides access to IRIX kernel functions, such as Silicon Graphics
Ada95 or MIPSpro Fortran 90.

Other Useful References

In addition to this manual, which covers specific IRIX features, you will need to refer to
Silicon Graphics manuals that describe compilers and programming languages. Some of
the most useful are listed in Table i.

Table i Books for Further Reading in IRIX Development

Topic Document Title  Number

Overview of the IRIX library of
manuals for developers

Programming on Silicon Graphics Systems: An
Overview

007-2476-nnn

Compiling, linking, and tuning
programs in C, C++, or Fortran

MIPSpro Compiling and Performance Tuning
Guide

007-2360-nnn

Writing modules in assembly
language.

MIPSpro Assembly Language Programmer’s Guide 007-2418-nnn

C language C Language Reference Manual 007-0701-nnn

C++ language C++ Language System Overview 007-1621-nnn

Fortran language MIPSpro Fortran 77 Programmer’s Guide 007-2361-nnn

MIPSpro Fortran 90 Programmer’s Guide 007-2761-nnn

System Configuration IRIX Admin: System Configuration and Tuning 007-2859-nnn
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You can find additional information about internationalization from X/Open Company
Limited. X/Open Portability Guide, Volume 1, XSI Commands and Utilities, Volume 2; XSI
System Interface; and Volume 3, XSI Supplementary Definitions. Berkshire, United Kingdom.
Prentice-Hall, Inc.

Obtaining Manuals

Silicon Graphics manuals are usually read online using IRIS InSight. This manual and
many of the books in Table i are installed as part of the IRIS Development Foundation
feature. When the books are installed or mounted on your workstation, use the
command iiv, or double-click the IRIS InSight icon, to launch IRIS Insight. Then select the
book you want from the “bookshelf” display.

When the manuals are not accessible to your workstation you can examine or order any
Silicon Graphics manual on the World Wide Web using the following URL:
http://techpubs.sgi.com/library .

If you do not have Web access, you can order a printed manual from Silicon Graphics by
telephone. Inside the U.S. and Canada, call 1-800-627-9307. In other countries, call the
U.S. telephone number 415-960-1980, and ask for extension 5-5007.

Conventions Used in This Manual

This manual uses the conventions and symbols shown in Table ii.

Table ii Typographical Conventions

Type of Information Example of Typography

Filenames and pathnames This structure is declared in /usr/include/sys/time.h.

IRIX command names and options used in
normal text

Update these variables with systune; then build a
new kernel with autoconfig -vf.

Names of program variables, structures,
and data types, used in normal text

Global variable mainSema points to an IRIX
semaphore, which has type usema_t.

Names of IRIX system functions, library
functions, and functions in example code

Use mmap() to map an object into the address
space, and munmap() to remove it.
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When complete lines of example code or commands are set off from normal text, they are
displayed as follows.

ipcrm -s semid

Parts of the code or command that need to be typed exactly as shown are displayed in a
monospaced font. Operands that you supply are italicized.
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The Process Address Space I

Chapter 1

Tells how the virtual address space of a process is created under IRIX. Lists the
parts of the address space and their sources; discusses memory mapping; gives
tips on cache management.
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Chapter 1

1. Process Address Space

When planning a complex program, you must understand how IRIX creates the virtual
address space of a process, and how you can modify the normal behavior of the address
space. The major topics covered here are as follows:

• “Defining the Address Space” on page 3 tells what the address space is and how it
is created.

• “Interrogating the Memory System” on page 11 summarizes the ways your
program can get information about the address space.

• “Mapping Segments of Memory” on page 12 documents the different ways that you
can create new memory segments with predefined contents.

• “Locking and Unlocking Pages in Memory” on page 23 discusses when and how to
lock pages of virtual memory to avoid page faults.

• “Additional Memory Features” on page 27 summarizes functions for address space
management.

• “Using Origin2000 Nonuniform Memory” on page 29 describes the use of
CC-NUMA memory in the Origin2000 and Onyx2 systems.

Defining the Address Space

Each user-level process has a virtual address space. This term means simply: the set of
memory addresses that the process can use without error. When 32-bit addressing is in
use, addresses can range from 0 to 0x7fffffff; that is, 2^31 possible numbers, for a total
theoretical size of 2 gigabytes. (Numbers greater than 2^31 are in the IRIX kernel’s
address space.)

When 64-bit addressing is used, a process’s address space can encompass 2^40 numbers.
(The numbers greater than 2^40 are reserved for kernel address spaces.) For more details
on the structure of physical and virtual address spaces, see the IRIX Device Driver
Programmer’s Guide and the MIPS architecture documents listed on page xxxiv.
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Although the address space includes a vast quantity of potential numbers, usually only
a small fraction of the addresses are valid.

A segment of the address space is any range of contiguous addresses. Certain segments
are created or reserved for certain uses.

The address space is called “virtual” because the address numbers are not directly
related to physical RAM addresses where the data resides. The mapping from a virtual
address to the corresponding real memory location is kept in a table created by the IRIX
kernel and used by the MIPS processor chip.

Address Space Boundaries

A process has at least three segments of usable addresses:

• A text segment contains the executable image of the program. Another text segment
is created for each dynamic shared object (DSO) with which a process is linked.Text
segments are always read-only.

• A data segment contains the “heap” of dynamically allocated data space. A process
can create additional data segments in various ways described later.

• A stack segment contains the function-call stack. This segment is extended
automatically as needed.

Although the address space begins at location 0, by convention the lowest segment is
allocated at 0x0040 0000 (4 MB). Addresses less than this are intentionally left undefined
so that any attempt to use them (for example, through an uninitialized pointer variable)
causes a hardware exception and stops the program.

Typically, text segments are at smaller virtual addresses and stack and data segments at
larger ones, although you should not write code that depends on this.

Tip: The boundaries of all distributed DSOs are declared in the file /usr/lib/so_locations.
When IRIX loads a DSO that is not declared in this file, it seeks a segment of the address
space that does not overlap any declared DSO and that will not interfere with growth of
the stack segment. To learn more about DSOs, see the rld(1) and dso(5) reference pages,
and the MIPSpro Compiling, Linking, and Performance Tuning Guide.
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Page Numbers and Offsets

IRIX manages memory in units of a page. The size of a page can differ from one system
to another. In systems such as the O2 workstation, which support only 32-bit addressing,
the page size is always 4,096 bytes. In each 32-bit virtual address,

• the least-significant 12 bits specify an offset from 0 to 0x0fff within a page

• the most-significant 20 bits specify a virtual page number (VPN)

In systems that support 64-bit addressing the page size is greater than 4,096 bytes. The
page size is configurable, and in fact different programs can have different page sizes,
and a single program can have different size pages for the text segment, stack segment,
and data segments. However, the page size is always a power of 2, and the bits of the
virtual address are used in the same way: the least-significant bits of an address specify
an offset within a page, while the most-significant bits specify the VPN.

You can learn the actual size of a page in the present system with getpagesize(), as noted
under “Interrogating the Memory System” on page 11.

Page tables, built by IRIX during a fork() or exec() call, define the address space for a
process by specifying which VPNs are defined. These tables are consulted by the
hardware. Recently-used table entries are cached for instant lookup in the processor chip,
in an array called the Translation Lookaside Buffer (TLB).

Address Definition

Most of the possible addresses in an address space are undefined; that is, not defined in
the page tables, not related to contents of any kind, and not available for use. A reference
to an undefined address causes a SIGSEGV error.

Addresses are defined—that is, made available for potential use—in one of five ways:

Fork When a process is created using fork(), the new process is given a
duplicate copy of the parent process’s page table, so that any addresses
that were defined in the parent’s address space are defined the same way
in the address space of the new process. (See the fork(2) reference page.)

Exec The exec() function creates a new address space in which to execute a
specified program or interpreter. (See the exec(2) reference page.)
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An address is defined by an entry in the page tables. A defined address is always related
to a backing store, a source from which its contents can be refreshed. A page in a text
segment is related to the executable file. A page of a data or stack segment is related to a
page in a swap partition on disk.

The total size of the defined pages in an address space is its virtual size, displayed by the
ps command under the heading SZ (see the ps(1) reference page).

Once addresses have been defined in the address space by allocation, there is no way to
undefine them except to terminate the process. To free allocated memory makes the freed
memory available for reuse within the process, but the pages are still defined in the page
tables and the swap space is still allocated.

Address Space Limits

The segments of the address space have maximum sizes that are set as resource limits on
the process. Hard limits are set by these variables:

The limits active during a login session can be displayed and changed using the C-shell
command limits. A program can query the limits with getrlimit() and change them with
setrlimit() (see the getrlimit(2) reference page).

Stack The call stack is created and extended automatically. When a function is
entered and more stack space is needed, IRIX makes the stack segment
larger, defining new addresses if required.

Mapping A process can ask IRIX to map (associate byte for byte) a segment of
address space to one of a number of special objects, for example, the
contents of a file. This is covered further under “Mapping Segments of
Memory” on page 12.

Allocation The brk() function extends the heap, the segment devoted to data, to a
specific virtual address. The malloc() function allocates memory for use,
calling brk() as required. (See the brk(2), malloc(3), and malloc(3x)
reference pages).

rlimit_vmem_max Total size of the address space of a process

rlimit_data_max Size of the portion of the address space used for data

rlimit_stack_max Size of the portion of the address space used for stack
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The initial default value and the possible range of a resource limit is established in the
kernel tuning parameters. For a quick look at the kernel limits, use

fgrep rlimit /var/sysgen/mtune/kernel

To examine and change the limits, use systune (see the systune(1) reference page):

Example 1-1 Using systune to Check Address Space Limits

systune -i
Updates will be made to running system and /unix.install
systune-> rlimit_vmem_max

rlimit_vmem_max = 536870912 (0x20000000) ll
systune-> resource
group: resource (statically changeable)
...

rlimit_vmem_max = 536870912 (0x20000000) ll
rlimit_vmem_cur = 536870912 (0x20000000) ll

...
rlimit_stack_max = 536870912 (0x20000000) ll
rlimit_stack_cur = 67108864 (0x4000000) ll

...

Tip: These limits interact in the following way: each time your program creates a process
with sproc() and does not supply a stack area (see the sproc(2) reference page), an
address segment equal to rlimit_stack_max is dedicated to the stack of the new process.
When rlimit_stack_max is set high, a program that creates many processes can quickly run
into the rlimit_vmem_max boundary.

Delayed and Immediate Space Definition

IRIX supports two radically different ways of defining segments of address space.

The conventional behavior of UNIX systems, and the default behavior of current releases
of IRIX, is that space created using brk() or malloc() is immediately defined. Page table
entries are created to define the addresses, and swap space is allocated as a backing store.
Three results follow from the conventional method:

• A program can detect immediately when swap space is exhausted. A call to
malloc() returns NULL when memory cannot be allocated. A program can test the
limits of swap space by making repeated calls to malloc().
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• A large memory allocation by one program can fill the swap disk partition, causing
other programs to see out-of-memory errors—whether the program ever uses its
allocated memory or not.

• A fork() or exec() call fails unless there is free space in swap equal to the data and
stack sizes of the new process.

By default in IRIX 5.2, and optionally in later releases, IRIX uses a different method
sometimes called “virtual swap.” In this method, the definition of new segments is
delayed until the space is actually used. Functions like brk() and malloc() merely test the
new size of the data segment against the resource limits. They do not actually define the
new addresses, and they do not cause swap disk space to be allocated. Addresses are
reserved with brk() or malloc(), but they are only defined and allocated in swap when your
program references them.

When IRIX uses delayed definition (“virtual swap”), it has the following effects:

• A program cannot find the limits of swap space using malloc()—it never returns
NULL until the program exceeds its resource limit, regardless of available swap.

Instead, when a program finally accesses a new page of allocated space and there is
at that time no room in the swap partition, the program receives a SIGKILL signal.

• A large memory allocation by one program cannot monopolize the swap disk until
the program actually uses the allocated memory, if it ever does.

• Much less swap space is required for a successful fork() call.

You can test whether the system uses virtual swap with the chkconfig command (as
described in the chkconfig(1) reference page):

# chkconfig vswap; echo $status
0

As you write a new program, assume that virtual swap may be used. Do not allocate
memory merely to find out if you can. Allocate no more memory than your program
needs, and use the memory immediately after allocating it.
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If you are porting a program written for a conventional UNIX system, you might
discover that it tests the limits of allocatable memory by calling malloc() until malloc()
returns a NULL, and then does not use the memory. In this case you have several choices:

• Recode this part of the program to derive the maximum memory size in some more
reasonable and portable way, for instance from an environment variable or the size
of an input file.

• Using setrlimit(), set a lower maximum for rlimit_data_max, so that malloc() returns
NULL at a reasonable allocation size, independent of the swap disk allocation (see
the getrlimit(2) reference page).

• Restore the conventional UNIX behavior for the whole system. Use chkconfig to turn
off the variable vswap, and reboot (see the chkconfig(1) reference page).

Note: The function calloc() touches all allocated pages in the course of filling them with
zeros. Hence memory allocated by calloc() is defined as soon as it is allocated. However,
you should not rely on this behavior. It is possible to implement calloc() in such a way
that it, like malloc(), does not define allocated pages until they are used. This might be
done in a future version of IRIX.

Page Validation

Although an address is defined, the corresponding page is not necessarily loaded in
physical memory. The sum of the defined address spaces of all processes is normally far
larger than available real memory. IRIX keeps selected pages in real memory. A page that
is not present in real memory is marked as “invalid” in the page tables. When the
program refers to an address on an invalid page, the CPU traps to the kernel, which
supplies the page.

The contents of invalid pages can be supplied in one of the following ways:

Text Pages of program text—executable code of programs and dynamically
linked libraries—can be retrieved on demand from the program file or
library files on disk.

Data Pages of data from the heap and stack can be retrieved from the swap
partition or file on disk.

Mapped When a segment is created by mmap(), a backing store file is specified by
the program (see “Mapping Segments of Memory” on page 12).

Never used Pages that have been defined but never used can be created as pages of
binary zero when they are needed.
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When a process refers to a VPN that is defined but invalid, a hardware interrupt occurs.
The interrupt handler in the IRIX kernel chooses a page of physical RAM to hold the
page. In order to acquire this space, the kernel might have to invalidate some other page
belonging to your process or to another process. The contents of the needed page are read
from the appropriate backing store into memory, and the process continues to execute.

Page validation takes from 10 to 50 milliseconds. Most applications are not impeded by
page fault processing, but a real-time program cannot tolerate these delays.

The total size of all the defined pages in an address space is displayed by the ps command
under the heading SZ. The aggregate size of the pages that are actually in memory is the
resident set size, displayed by ps under the heading RSS.

Tip: A sophisticated IRIX user might know that the daemon responsible for reading and
writing pages from disk was called vhand, and its activity could be monitored. However,
starting with IRIX 6.4 all such system daemons became “kernel threads” and are no
longer visible to commands such as ps or gr_top.

Read-Only Pages

A page of memory can be marked as valid for reading but invalid for writing. Program
text is marked this way because program text is read-only; it is never changed. If a
process attempts to modify a read-only page, a hardware interrupt occurs. When the
page is truly read-only, the kernel turns this into a SIGSEGV signal to the program.
Unless the program is handling this signal, the result is to terminate the program with a
segmentation fault.

Copy-on-Write Pages

When fork() is executed, the new process shares the pages of the parent process under a
rule of copy-on-write. The pages in the new address space are marked read-only. When the
new process attempts to modify a page, a hardware interrupt occurs. The kernel makes
a copy of that page, and changes the new address space to point to the copied page. Then
the process continues to execute, modifying the page of which it now has a unique copy.

You can apply the copy-on-write discipline to the pages of an arena shared with other
processes (see “Mapping a File for Shared Memory” on page 19).
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Interrogating the Memory System

You can get information about the state of the memory system with the system calls
shown in Table 1-1.

The structure used with the sysmp() call shown above has this form (a more detailed
layout is in sys/sysmp.h):

struct rminfo {
__uint32_t freemem; /* pages of free memory */
__uint32_t availsmem; /* total real+swap memory space */
__uint32_t availrmem; /* available real memory space */
__uint32_t bufmem; /* not useful */
__uint32_t physmem; /* total real memory space */

};

Table 1-1 Memory System Calls

Memory Information System Call Invocation

Size of a page (in a data segment) uiPageSize = getpagesize();
uiPageSize = sysconf(_SC_PAGESIZE);

Virtual and resident sizes of a process syssgi(SGI_PROCSZ, pid, &uiSZ, &uiRSS);

Maximum stack size of a process uiStackSize = prctl(PR_GETSTACKSIZE)

Free swap space in 512-byte units swapctl(SC_GETFREESWAP, &uiBlocks);

Total physical swap space in 512-byte
units

swapctl(SC_GETSWAPTOT, &uiBlocks);

Total real memory sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);

Free real memory sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);

Total real memory + swap space sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);
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Mapping Segments of Memory

Your process can create new segments within the address space. Such a “mapped”
segment can represent

• the contents of a file

• a segment initialized to binary zero

• a POSIX shared memory object

• a view of the kernel’s private address space or of physical memory

• a portion of VME A24 or A32 bus address space (when a VME bus exists on the
system)

A mapped segment can be private to one address space, or it can be shared between
address spaces. When shared, it can be

• read-only to all processes

• read-write to the creating process and read-only to others

• read-write to all sharing processes

• copy-on-write, so that any sharing process that modifies a page is given its own
unique copy of that page

Note: Some of the memory-mapping capabilities described in this section are unique to
IRIX and nonportable. Some of the capabilities are compatible with System V Release 4
(SVR4). IRIX also supports the POSIX 1003.1b shared memory functions. Compatibility
issues with SVR4 and POSIX are noted in the text of this section.

Segment Mapping Function mmap()

The mmap() function (see the mmap(2) reference page) creates shared or unshared
segments of memory. The syntax and most basic features of mmap() are compatible with
SVR4 and with POSIX 1003.1b. A few features of mmap() are unique to IRIX.

The mmap() function performs many kinds of mappings based on six parameters. The
function prototype is

void * mmap(void *addr, size_t len, int prot, int flags, int fd, off_t off)
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The function returns the base address of a new segment, or else -1 to indicate that no
segment was created. The size of the new segment is len, rounded up to a page. An
attempt to access data beyond that point causes a SIGBUS signal.

Describing the Mapped Object

Three of the mmap() parameters describe the object to be mapped into memory (which
is the backing store of the new segment):

Describing the New Segment

Three parameters of mmap() describe the segment to be created:

The elements of flags determine the way the segment behaves, and are as follows:

fd A file descriptor returned by open() or by the POSIX-defined function
shm_open() (see the open(2) and shm_open(2) reference pages). All mmap() calls
require a file descriptor to define the backing store for the mapped segment. The
descriptor can represent a file, or it can be based on a pseudo-file that represents
kernel memory or a device special file.

off The offset into the object represented by fd where the mapped data begins. When
fd describes a disk file, off is an offset into the file. When fd describes memory, off
is an address in that memory. off must be an integral multiple of the memory page
size (see “Interrogating the Memory System” on page 11).

len The number of bytes of data from fd to be mapped. The initial size of the segment
is len, rounded up to a multiple of whole pages.

addr Normally 0 to indicate that IRIX should pick a convenient base address, addr
can specify a virtual address to be the base of the segment. See “Choosing a
Segment Address” on page 21.

prot Access control on the new segment. You use constants to specify a combination
of read, write, and execute permission. The access control can be changed later
(see “Changing Memory Protection” on page 28).

flags Options on how the new segment is to be managed.

MAP_FIXED Take addr literally.

MAP_PRIVATE Changes to the mapped data are visible only to this process.

MAP_SHARED Changes to the mapped data are visible to all processes that map
the same object.
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The MAP_FIXED element of flags modifies the meaning of addr. Discussion of this is
under “Choosing a Segment Address” on page 21.

The MAP_AUTOGROW element of flags specifies what should happen when a process
stores data past the current end of the segment (provided storing is allowed by prot).
When flags contains MAP_AUTOGROW, the segment is extended with zero-filled space.
Otherwise the initial len value is a permanent limit, and an attempt to store more than len
bytes from the base address causes a SIGSEGV signal.

Two elements of flags specify the rules for sharing the segment between two address
spaces when the segment is writable:

• MAP_SHARED specifies that changes made to the common pages are visible to
other processes sharing the segment. This is the normal setting when a memory
arena is shared among multiple processes.

When a mapped segment is writable, any changes to the segment in memory are
also written to the file that is mapped. The mapped file is the backing store for the
segment.

When MAP_AUTOGROW is specified also, a store beyond the end of the segment
lengthens the segment and also the file to which it is mapped.

• MAP_PRIVATE specifies that changes to shared pages are private to the process
that makes the changes.

The pages of a private segment are shared on a copy-on-write basis—there is only
one copy as long as they are unmodified. When the process that specifies
MAP_PRIVATE stores into the segment, that page is copied. The process has a
private copy of the modified page from then on. The backing store for unmodified
pages is the file, while the backing store for modified pages is the system swap
space.

When MAP_AUTOGROW is specified also, a store beyond the end of the segment
lengthens only the private copy of the segment; the file is unchanged.

MAP_AUTOGROW Extend the object when the process stores beyond its end (not a
POSIX feature)

MAP_LOCAL Map is not visible to other processes in share group (not POSIX)

MAP_AUTORESRV Delay reserving swap space until a store is done (not POSIX).
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The difference between MAP_SHARED and MAP_PRIVATE is important only when the
segment can be modified. When the prot argument does not include PROT_WRITE, there
is no question of modifying or extending the segment, so the backing store is always the
mapped object. However, the choice of MAP_SHARED or MAP_PRIVATE does affect
how you lock the mapped segment into memory, if you do; see “Locking Program Text
and Data” on page 24.

Processes created with sproc() normally share a single address space, including mapped
segments (see the sproc(2) reference page). However, if flags contains MAP_LOCAL,
each new process created with sproc() receives a private copy of the mapped segment on
a copy-on-write basis.

When the segment is based on a file or on /dev/zero (see “Mapping a Segment of Zeros”
on page 19), mmap() normally defines all the pages in the segment. This includes
allocating swap space for the pages of a segment based on /dev/zero. However, if flags
contains MAP_AUTOGROW, the pages are not defined until they are accessed (see
“Delayed and Immediate Space Definition” on page 7).

Note: The MAP_LOCAL and MAP_AUTOGROW flag elements are IRIX features that
are not portable to POSIX or to System V.

Mapping a File for I/O

You can use mmap() as a simple, low-overhead way of reading and writing a disk file.
Open the file using open(), but instead of passing the file descriptor to read() or write(),
use it to map the file. Access the file contents as a memory array. The memory accesses
are translated into direct calls to the device driver, as follows:

• An attempt to access a mapped page, when the page is not resident in memory, is
translated into a call on the read entry point of the device driver to read that page of
data.

• When the kernel needs to reclaim a page of physical memory occupied by a page of
a mapped file, and the page has been modified, the kernel calls the write entry point
of the device driver to write the page. It also writes any modified pages when the
file mapping is changed by munmap() or another mmap() call, when the program
applies msync() to the segment, or when the program ends.

When mapping a file for input only (when the prot argument of mmap() does not contain
PROT_WRITE), you can use either MAP_SHARED or MAP_PRIVATE. When writing is
allowed, you must use MAP_SHARED, or changes will not be reflected in the file.
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Tip: Memory mapping provides an excellent way to read a file containing precalculated,
constant data used by an interactive program. Time-consuming calculation of the data
elements can be done offline by another program; the other program also maps the file
in order to fill it with data.

You can lock a mapped file into memory. This is discussed further under “Locking and
Unlocking Pages in Memory” on page 23.

Mapped File Sizes

Because the potential 32-bit address space is more than 2000 megabytes (and the 64-bit
address space vastly greater), you can in theory map very large files into memory.
However, many segments of the virtual address space are preassigned to DSOs (see
“Address Space Boundaries” on page 4 and the file /usr/lib/so_locations), and this restricts
the available size of maps in 32-bit space. To map an entire file, follow these steps:

1. Open the file to get a file descriptor.

2. Use lseek(fd,0,SEEK_END) to discover the size of the file (see the lseek(2) reference
page).

3. Map the file with an off of 0 and len of the file size.

Apparent Process Size

When you map a large file into memory, the space is counted as part of the virtual size of
the process. This can lead to very large apparent sizes. For example, under IRIX 5.3
and 6.2, the Object Server maps a large database into memory, with the result that a
typical result of ps -l looks like this:

70 S 0 566 1 0 26 20 * 33481:225 80272230 ? 0:45 objectser

The total virtual size of 33481 certainly gets your attention! However, note the more
modest real storage size of 225. Most of the mapped pages are not in physical memory.
Also realize that the backing store for pages of a mapped file is the file itself—no swap
space is used.
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Mapping Portions of a File

You do not have to map the entire file; you can map any portion of it, from one page to
the file size. Simply specify the desired length as len and the starting offset as off.

You can remap a file to a different segment by calling mmap() again. In this way you can
use the off parameter of mmap() as the logical equivalent of lseek(). That is, to map a
different segment of the file, specify

• the same file descriptor

• the new offset in off

• the current segment base address as addr

• MAP_FIXED in flags to force the use of addr as the base address (otherwise the new
portion of the file maps to a different, additional memory segment)

The old segment is replaced with a new segment at the same address, now containing
data from a different offset in the file.

Note: Each time you replace a segment with mmap(), the previous segment is discarded.
The new segment is not locked in memory, even if the old segment was locked.

File Permissions

Access to a file for mapping is controlled by the same file permissions that control I/O to
the file. The protection in prot must agree with the file permissions. For example, if the
file is read-only to the process, mmap() does not allow prot to specify write or execute
access.

Note: When a program runs with superuser privilege for other reasons, file permissions
are not a protection against accidental updates.

NFS Considerations

The file that is mapped can be local to the machine, or can be mounted by NFS. In either
case, be aware that changes to the file are buffered and are not immediately reflected on
disk. Use msync() to force modified pages of a segment to be written to disk (see
“Synchronizing the Backing Store” on page 28).
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If IRIX needs to read a page of a mapped, NFS mounted file, and an NFS error occurs (for
example, because the file server has gone down), the error is reflected to your program
as a SIGBUS exception.

Caution: When two or more processes in the same system map an NFS-mounted file,
their image of the file will be consistent. But when two or more processes in different
systems map the same NFS-mounted file, there is no way to coordinate their updates,
and the file can be corrupted.

File Integrity

Any change to a file is immediately visible in the mapped segment. This is always true
when flags contains MAP_SHARED, and initially true when flags contains
MAP_PRIVATE. A change to the file can be made by another process that has mapped
the same file.

A mapped file can also be changed by a process that opens the file for output and then
applies either write() to update the file or ftruncate() to shorten it (see the write(2) and
ftruncate(3) reference pages). In particular, if any process truncates a mapped file, an
attempt to access a mapped memory page that corresponds to a now-deleted portion of
the file causes a bus error signal (SIGBUS) to be sent.

When MAP_PRIVATE is specified, a private copy of a page of memory is created
whenever the process stores into the page (copy-on-write). This prevents the change
from being seen by any other process that uses or maps the same file, and it protects the
process from detecting any change made to that page by another process. However, this
applies only to pages that have been written into.

Frequently you cannot use MAP_PRIVATE because it is important to see data changes
and to share them with other processes that map the same file. However, it is also
important to prevent an unrelated process from truncating the file and so causing
SIGBUS exceptions.

The one sure way to block changes to the file is to install a mandatory file lock. You place
a file lock with the lockf() function (see Chapter 7, “File and Record Locking”). However,
a file lock is normally “advisory”; that is, it is effective only when every process that uses
the file also calls lockf() before changing it.
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You create a mandatory file lock by changing the protection mode of the file, using the
chmod() function to set the mandatory file lock protection bit (see the chmod(2) reference
page). When this is done, a lock placed with lockf() is recognized and enforced by
open().

Mapping a File for Shared Memory

You can use mmap() simply to create a segment of memory that can be shared among
unrelated processes.

• In one process, create a file or a POSIX shared memory object to represent the
segment.

Typically a file is located in /var/tmp, but it can be anywhere. The permissions on the
file or POSIX object determine the access permitted to other processes.

• Map the file or POSIX object into memory with mmap(); initialize the segment
contents by writing into it.

• In another process, get a file descriptor using open() or the POSIX function
shm_open(), specifying the same pathname.

• In that other process, use mmap() specifying the file descriptor of the file.

After this procedure, both processes are using the identical segment of memory pages.
Data stored by one is immediately visible to the other.

This is the most basic method of sharing a memory segment. More elaborate methods
with additional services are discussed in Chapter 3, “Sharing Memory Between
Processes.”

Mapping a Segment of Zeros

You can use mmap() to create a segment of zero-filled memory. Create a file descriptor
by applying open() to the special device file /dev/zero. Map this descriptor with addr of 0,
off of 0, and len set to the segment size you want.

A segment created this way cannot be shared between unrelated processes. However, it
can be shared among any processes that share access to the original file descriptor—that
is, processes created with sproc() using the PR_SFDS flag (see the sproc(2) reference
page). For more information about /dev/zero, see the zero(7) reference page.
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The difference between using mmap() of /dev/zero and calloc() is that calloc() defines all
pages of the segment immediately. When you specify MAP_AUTOGROW, mmap() does
not actually define a page of the segment until the page is accessed. You can create a very
large segment and yet consume swap space in proportion to the pages actually used.

Note: This feature is unique to IRIX. The file /dev/zero may not exist in other versions of
UNIX. Since the feature is nonportable, you should not use the POSIX function
shm_open() with /dev/zero (or any device special file).

Mapping Physical Memory

You can use mmap() to create a segment that is a window on physical memory. To do so
you create a file descriptor by opening the special file /dev/mem. For more information,
see the mem(7) reference page.

Obviously the use of such a segment is nonportable, hardware-dependent, and
dependent on the OS release.

Mapping Kernel Virtual Memory

You can use mmap() to create a segment that is a window on the kernel’s virtual address
space. To do so you create a file descriptor by opening the special file /dev/mmem (note the
double “m”). For more information, see the mem(7) (single “m”) reference page.

The acceptable off and len values you can use when mapping /dev/mmem are defined by
the contents of /var/sysgen/master.d/mem. Normally this file restricts possible mappings to
specific hardware registers such as the high-precision clock. For an example of mapping
/dev/mmem, see the example code in the syssgi(2) reference page under the
SGI_QUERY_CYCLECNTR argument.

Mapping a VME Device

You can use mmap() to create a segment that is a window on the bus address space of a
particular VME bus adapter. This allows you to do programmed I/O (PIO) to VME
devices.
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To do PIO, you create a file descriptor by opening one of the special devices in /dev/vme.
These files correspond to VME devices. For details on the naming of these files, see the
usrvme(7) reference page.

The name of the device that you open and pass as the file descriptor determines the bus
address space (A16, A24, or A32). The values you specify in off and len must agree with
accessible locations in that VME bus space. A read or write to a location in the mapped
segment causes a call to the read or write entry of the kernel device driver for VME PIO.
An attempt to read or write an invalid location in the bus address space causes a SIGBUS
exception to all processes that have mapped the device.

Note: On the CHALLENGE and Onyx hardware, PIO reads and writes are
asynchronous. Following an invalid read or write, as much as 10 milliseconds can elapse
before the SIGBUS signal is raised.

For a detailed discussion of VME PIO, see the IRIX Device Driver Programmer’s Guide.

Note: Mapping of devices through mmap() is an IRIX feature that is not defined by
POSIX standard. Do not use the POSIX shm_open() function with device special files.

Choosing a Segment Address

Normally there is no need to map a segment to any particular virtual address. You
specify addr as 0 and IRIX picks an unused virtual address. This is the usual method and
the recommended one.

You can specify a nonzero value in addr to request a particular base address for the new
segment. You specify MAP_FIXED in flags to say that addr is an absolute requirement,
and that the segment must begin at addr or not be created. If you omit MAP_FIXED,
mmap() takes a nonzero addr as a suggestion only.

Segments at Fixed Offsets

In rare cases you may need to create two or more mapped segments with a fixed
relationship between their base addresses. This would be the case when there are offset
values in one segment that refer to the other segment, as diagrammed in Figure 1-1.
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Figure 1-1 Segments With a Fixed Offset Relationship

In Figure 1-1, a word in one segment contains an offset value A giving the distance in
bytes to an object in a different mapped segment. Offset A is accurate only when the two
segments are separated by a known distance, offset S.

You can create segments in such a relationship using the following procedure.

1. Map a single segment large enough to encompass the lengths of all segments that
need fixed offsets. Use 0 for addr, allowing IRIX to pick the base address. Let this
base address be B.

2. Map the smaller segments over the larger one. For the first (the one at the lowest
relative position), specify B for addr and MAP_FIXED in flags.

3. For the remaining segments, specify B+S for addr and MAP_FIXED in flags.

The initial, large segment establishes a known base address and reserves enough address
space to hold the other segments. The later mappings replace the first one, which cannot
be used for its own sake.

Segments at a Fixed Address

You can specify any value for addr. IRIX creates the mapping if there is no conflict with
an existing segment, or returns an error if the mapping is impossible. However, you
cannot normally tell what virtual addresses will be available for mapping in any
particular installation or version of the operating system.

There are three exceptions. First, after IRIX has chosen an address for you, you can
always map a new segment of the same or shorter length at the same address. This allows
you to map different parts of a file into the same segment at different times (see
“Mapping Portions of a File” on page 17).

Offset A

Offset S
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Second, the low 4 MB of the address space are unused (see “Address Space Boundaries”
on page 4). It is a very bad idea to map anything into the 0 page because that makes it
hard to trap the use of uninitialized pointers. But you can use other parts of the initial
4 MB for mapping.

Third, the MIPS Application Binary Interface (ABI) specification (an extension of the
System V ABI published by AT&T) states that addresses from 0x3000 0000 through
0x3ffc 0000 are reserved for user-defined segment base addresses.

You may specify values in this range as addr with MAP_FIXED in flags. When you map
two or more segments into this region, no two segments can occupy the same 256-KB
unit. This rule ensures that segments always start in different pages, even when the
maximum possible page size is in use. For example, if you want to create two segments
each of 4096 bytes, you can place one at 0x30000000 through 0x3000 0fff and the other at
0x3004 0000 through 0x3004 0fff. (256 KB is 0x0004 0000.)

Note: If two programs in the same system attempt to map different objects to the same
absolute address, the second attempt fails.

Locking and Unlocking Pages in Memory

A page fault interrupts a process for many milliseconds. Not only are page faults lengthy,
their occurrence and frequency are unpredictable. A real-time application cannot tolerate
such interruptions. The solution is to lock some or all of the pages of the address space
into memory. A page fault cannot occur on a locked page.
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Memory Locking Functions

You can use any of the functions summarized in Table 1-2 to lock memory.

Locking memory causes all pages of the specified segments to be defined before they are
locked. When virtual swap is in use, it is possible to receive a SIGKILL exception while
locking because there was not enough swap space to define all pages (see “Delayed and
Immediate Space Definition” on page 7).

Locking pages in memory of course reduces the memory that is available for all other
programs in the system. Locking a large program increases the rate of page faults for
other programs.

Locking Program Text and Data

Using mpin() and mlock() you have to calculate the starting address and the length of
the segment to be locked. It is relatively easy to calculate the starting address and length
of global data or of a mapped segment, but it can be awkward to learn the starting
address and length of program text or of stack space.

Using mlockall() you lock all of the program text and data as it exists at the time of the
call. You specify a flag, either MCL_CURRENT or MCL_FUTURE, to give the scope in
time. One possible way to lock only program text is to call mlockall() with
MCL_CURRENT early in the initialization of a program. The program’s text and static
data are locked, but not any dynamic or mapped pages that may be created subsequently.
Specific ranges of dynamic or mapped data can be locked with mlock() as they are
created.

Table 1-2 Functions for Locking Memory

Function Name Compatibility Purpose and Operation

mlock(3C) POSIX Lock a specified range of addresses.

mlockall(3C) POSIX Lock the entire address space of the calling process.

mpin(3C) IRIX Lock a specified range of addresses.

plock(3C) SVR4 Lock all program text, or all data, or the entire address space.
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Using plock() you specify whether to lock text, data, or both. When you specify the text
option, the function locks all executable text as loaded for the program, including shared
objects (DSOs). (It does not lock segments created with mmap() even when you specify
PROT_EXEC to mmap(). Use mlock() or mpin() to lock executable, mapped segments.)

When you specify the data option, plock() locks the default data (heap) and stack
segments, and any mapped segments made with MAP_PRIVATE, as they are defined at
the time of the call. If you extend these segments after locking them, the newly defined
pages are also locked as they are defined.

Although new pages are locked when they are defined, you still should extend these
segments to their maximum size while initializing the program. The reason is that it takes
time to extend a segment: the kernel must process a page fault and create a new page
frame, possibly writing other pages to backing store to make space.

One way to ensure that the full stack is created before it is locked is to call plock() from
a function like the function in Example 1-2.

Example 1-2 Function to Lock Maximum Stack Size

#define MAX_STACK_DEPTH 100000 /* your best guess */
int call_plock()
{

char dummy[MAX_STACK_DEPTH];
return plock(PROCLOCK);

}

The large local variable forces the call stack to what you expect will be its maximum size
before plock() is entered.

The plock() function does not lock mapped segments you create with MAP_SHARED.
You must lock them individually using mpin(). You need to do this from only one of the
processes that shares the segment.

Locking Mapped Segments

It may be better for your program to not lock the entire address space, but to lock only a
particular mapped segment.

Immediately after calling mmap() you have the address and length of the mapped
segment. This is a convenient time to call either mpin() or mlock() to lock the mapped
segment.
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The mmap() flags MAP_AUTOGROW and MAP_AUTORESRV are unique to IRIX and
not defined by POSIX. However, the POSIX mlock() function for IRIX does recognize
autogrow segments. If you lock an autogrow segment with mpin(), mlock(), or
mlockall() with the MCL_FUTURE flag, additional pages are locked as they are added
to the segment. If you lock the segment with mlockall() with the MCL_CURRENT flag,
the segment is locked for its current size only and added pages are not locked.

Locking Mapped Files

If you map a file before you use mlockall(MCL_CURRENT) or plock() to lock the data
segment into memory (see “Mapping a File for I/O” on page 15), the mapped file is read
into the locked pages during the lock operation. If you lock the program with
mlockall(MCL_FUTURE) and then map a file into memory, the mapped file is read into
memory and the pages locked.

If you map a file after locking the data segment with plock() or
mlockall(MCL_CURRENT), the new mapped segment is not locked. Pages of file data
are read on demand, as the program accesses them.

From these facts you can conclude the following:

• You should map small files before locking memory, thus getting fast access to their
contents without paging delays.

• Conversely, if you map a file after locking memory, your program could be delayed
for input on any access to the mapped segment.

• However, if you map a large file and then try to lock memory, the attempt to lock
could fail because there is not enough physical memory to hold the entire address
space including the mapped file.

One alternative is to map an entire file, perhaps hundreds of megabytes, into the address
space, but to lock only the portion or portions that are of interest at any moment. For
example, a visual simulator could lock the parts of a scenery file that the simulated
vehicle is approaching. When the vehicle moves away from a segment of scenery, the
simulator could unlock those parts of the file, and possibly use madvise() to release them
(see “Releasing Unneeded Pages” on page 29).
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Unlocking Memory

The function summarized in Table 1-3 are used to unlock memory.

You should avoid mixing function families; for example, if you lock memory with the
POSIX function mlock(), do not unlock the memory using munpin().

The mpin() function maintains a counter for each locked page showing how many times
it has been locked. You must call munpin() the same number of times before the page is
unlocked. This feature is not available through the POSIX and SVR4 interfaces.

Locked pages of an address space are unlocked when the last process using the address
space terminates. Locked pages of a mapped segment are unlocked when the last process
that mapped the segment unmaps it or terminates.

Additional Memory Features

Your program can work with the IRIX memory manager to change the handling of the
address space.

Table 1-3 Functions for Unlocking Memory

Function Name Compatibility Purpose and Operation

munlock(3C) POSIX Unlock a specified range of locked addresses.

mlockall(3C) POSIX Unlock the entire address space of the calling process.

munpin(3C) IRIX Unlock a specified range of addresses.

punlock() SVR4 Unlock addresses locked by plock().



28

Chapter 1: Process Address Space

Changing Memory Protection

You can change the memory protection of specified pages using mprotect() (see the
mprotect(2) reference page). For a segment that contains a whole number of pages, you
can specify protection of these types:

Note: The mprotect() function changes the access rights only to the memory image of a
mapped file. You can apply it to the pages of a mapped file in order to control access to
the file image in memory. However, mprotect() does not affect the access rights to the file
itself, nor does it prevent other processes from opening and using the file as a file.

Synchronizing the Backing Store

IRIX writes modified pages to the backing store as infrequently as possible, in order to
save time. When pages are locked, they are never written to backing store. This does not
matter when the pages are ordinary data.

When the pages represent a file mapped into memory, you may want to force IRIX to
write any modifications into the file. This creates a checkpoint, a known-good file state
from which the program could resume.

Read-only By making pages read-only, you cause a SIGSEGV signal to be generated
in any process that tries to modify them. You could do this as a
debugging measure, to trap an intermittent program error.
You can change read-only pages back to read-write.

Read-write You can put read-write protection on pages of program text, but this is
bad idea except in unusual cases. For example, a debugging tool makes
text pages read-write in order to set breakpoints.

Executable Normal data pages cannot be executed. This is a protection against
program errors—wild branches into data are trapped quickly. If your
program constructs executable code, or reads it from a file, the protection
must be changed to executable before the code can be executed.

No access You can make pages inaccessible while retaining them as part of the
address space.
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The msync() function (see the msync(2) reference page) asks IRIX to write a specified
segment to backing store. The segment must be a whole multiple of pages. You can
optionally request

• synchronous writes, so the call does not return until the disk I/O is complete—
ensuring that the data has been written

• page invalidation, so that the memory pages are released and will have to be
reloaded from backing store if they are referenced again

Releasing Unneeded Pages

Using the madvise() function (see the madvise(2) reference page), you can tell IRIX that
a range of pages is not needed by your process. The pages remain defined in the address
space, so this is not a means of reducing the need for swap space. However, IRIX puts the
pages at the top of its list of pages to be reclaimed when another process (or the calling
process) suffers a page fault.

The madvise() function is rarely needed by real-time programs, which are usually more
concerned with keeping pages in memory than with letting them leave memory.
However, there could be a use for it in special cases

Using Origin2000 Nonuniform Memory

In the Origin2000 systems (which include the Origin200 and Onyx2 product lines)
physical memory is implemented using a cache-coherent nonuniform memory architecture,
abbreviated CC-NUMA (or sometimes simply NUMA).

For almost all programs, the CC-NUMA hardware makes no difference at all. The virtual
address space as described in this chapter is implemented exactly the same in all versions
of IRIX. Your program cannot tell whether the memory hardware is bus-based as in a
CHALLENGE system, or uses CC-NUMA as in the Origin2000 (except that in a
heavily-loaded multiprocessor, your program will run faster in an Origin than in a
CHALLENGE).

However, when you implement a program that has critical performance requirements,
uses multithreading, and needs a large memory space—all three conditions must be
present—you may need to control the placement of virtual pages in physical memory for
best performance.
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About Origin Hardware

You need to understand the Origin hardware at a high level in order to understand
memory placement.

Basic Building Blocks

The basic building block of an Origin system is a node, a single board containing

• Two MIPS R10000 CPUs, each with a secondary cache of 1 MB or 4 MB.

• Some amount of main memory, from 64 MB to 4 GB.

• One hub custom ASIC that manages all access to memory in the node.

Nodes are packaged into a module. A module contains

• One to four node boards.

• One or two routers, high-bandwidth switches that connect nodes and modules.

• Crossbow I/O interface chips.

The Crossbow chips are used to connect I/O devices of all sorts: SCSI, PCI, FDDI, and
other types. Each Crossbow chip connects to the hub of one or two nodes, so any I/O
card is closely connected to as many as two main-memory banks and as many as four
CPUs.

An Origin2000 or Onyx2 system can consist of a single module, or multiple modules can
be connected to make a larger system. Modules are connected by their routers. Routers
in different modules are connected by special cables, the CrayLink interconnection
fabric. Routers form a hypercube topology to minimize the number of hops from any
node to any other.

Uniform Addressing

Physical memory is distributed throughout an Origin system, with some memory
installed at each node. However, the system maintains a single, uniform, physical
address space. Each CPU translates memory addresses from virtual to physical, and
presents the physical address to its hub. A few high-order bits in the physical address
designate the node where the physical memory is found. The hub uses these bits to direct
the memory request as required: to the local memory in its own node, or through a router
to another node.
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All translation and routing of physical addresses is entirely transparent to software,
which operates in a uniform virtual memory space.

Two aspects of memory mapping are not uniform. First, the physical memory map can
contain gaps. Not all nodes have the same amount of memory installed. Indeed, there is
no requirement that all nodes be present in the system, and in future releases of IRIX it
will be possible to remove and replace nodes while the system remains up.

Second, the access time to memory differs, depending on the distance between the
memory and the CPU that requests it:

• Memory in the same node is accessed fastest.

• Memory located on another node in the same module costs one or two router hops.

• Memory in another module costs additional router hops.

Normally, memory location relative to a program has an insignificant effect on
performance, because

• IRIX takes is careful to locate a process in a CPU near the process’s data.

• Most programs are so written that 90% or more of the memory accesses are satisfied
from the secondary cache, which is connected directly to the CPU.

• The CrayLink interconnection fabric has an extremely high bandwidth (in excess of
600MB/sec sustained bidirectionally on every link), so each router hop adds only a
small fraction of a microsecond to the access time.

Performance problems only arise when multithreaded programs defeat the caching
algorithms or place high-bandwidth memory demands from multiple CPUs to a single
node.

Cache Coherency

Each CPU in an Origin system has an independent secondary cache, organized as a set
of 128-byte cache lines. The memory lines that were most recently used by the CPU are
stored here for high-speed access.

When two or more CPUs access the same memory, each has an independent copy of that
data. There can be as many copies of a data item as there are CPUs; and for some
important tables in the IRIX kernel, this may often be the case.
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Cache coherency means that the system hardware ensures that every cached copy remains
a true reflection of the memory data, without software intervention.

Cache coherency requires no effort as long as all CPUs merely read the memory data. The
hardware must intervene when a CPU attempts to modify memory. Then, that CPU must
be given exclusive ownership of the modified cache line, and all other copies of the same
data must be marked invalid, so that when the other CPUs need this data, they will fetch
a fresh copy.

Cache Coherency in CHALLENGE Systems

The CHALLENGE and Onyx systems are designed around a central bus over which all
memory requests pass. Each CPU board in a CHALLENGE system monitors the bus.
When a board observes a write to memory, it checks its own cache and, if it has a copy of
that same line, it invalidates the copy. This design, often called a “snoopy cache” because
each CPU reads its neighbors’ mail, works well when all memory access moves on a
single bus.

Cache Coherency in Origin Systems

The cache coherency design of the Origin systems is fundamentally different, because in
the Origin machines there is no central bus. Memory access packets can flow within a
node or between any two nodes. Instead, cache coherence is implemented using what is
called a directory-based scheme. The following is a simplified account of it.

Each 128-byte line of main memory is supplied with extra bits, one for each possible
node, plus an 8-bit integer for the number of the node that owns the line exclusively.
These extra bits are called directory bits. The directory bits are managed as part of
memory by the hub chip in the node that contains the memory. The directory bits are not
accessible to user-level software. (The kernel can read and write the directory bits using
privileged instructions.)

When a CPU accesses an unmodified cache line for reading, the request is routed to the
node that contains the memory. The hub chip in that node returns the memory data, and
also sets the bit for the reading CPU to 1. When a CPU discards a cached line for any
reason, the corresponding bit is set to 0. Thus the directory bits reflect the existence of
cached copies of data. As long as all CPUs only read the data, there is no time cost for
directory management.
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When a CPU wants to modify a cache line, two things happen. The hub chip in the node
that contains the memory sends a message to every CPU whose directory bit for that line
is 1, telling the CPU to discard its copy because it is no longer valid. And the modifying
CPU is noted as the exclusive owner of that line. Any further requests for that line’s data
are rerouted to the owning CPU, so that it can supply the latest version of the data.

Eventually the owning CPU updates memory and discards the cache line, and the
directory status returns to its original condition.

About CC-NUMA Performance Issues

Most programs operate with good performance when they simply treat the system as
having a single large, uniform, memory. When this is not the case, IRIX contains tools you
can use to exploit the hardware.

About Default Memory Location

Clearly it is a performance advantage for a process to execute on a CPU that is as close as
possible to the data used by the process. Default IRIX policies ensure this for most
programs:

• Memory is usually allocated on a “first touch” basis; that is, it is allocated in the
node where the program that first defines that page is executing. When that is not
possible, the memory is allocated as close as possible (in router hops) to the CPU
that first accessed the page.

• The IRIX scheduler maintains process affinity to CPUs based on both cache affinity
(as in previous versions) and on memory affinity. When a process is ready to run it
is dispatched to

– The CPU where it last ran, if possible

– The other CPU in the same node, if possible

– A CPU in a nearby node

The great majority of commands and user programs have memory requirements that fit
comfortably in a single node; and most execute at least as well, usually faster, than in any
previous Silicon Graphics system.
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About Large Memory Use

Only one memory performance issue arises with a single-threaded program. When the
program allocates much more virtual memory than is physically available in its node, at
least some of its virtual address space is allocated in other nodes. The program pays an
access time penalty on some segments of its address space. When this occurs, the penalty
is usually unnoticeable as long as the program has good cache behavior.

Typically, IRIX allocates the first-requested memory in the requester’s node. When the
first-requested memory is also the most-used, average access time still remains low.
When this is not the case, there are tools you can use to ensure that specific memory
segments are located next to specific CPUs.

About Multithreaded Memory Use

IRIX supports parallel processing under several different models (see Chapter 10,
“Models of Parallel Computation”). When a program uses multiple, parallel threads of
execution, additional performance issues can arise:

• Cache contention can occur as multiple threads, running in different CPUs,
invalidate each other’s cached data.

• Default allocation policies can place memory segments in different nodes from the
CPUs the threads that use the data.

• Default allocation to a single node, when threads are running in many nodes, can
saturate the node with memory requests, slowing access.

These issues are discussed in the following topics.

Dealing With Cache Contention

When one CPU updates a cache line, all other CPUs that refer to the same data must fetch
a fresh copy. When a line is used often from multiple CPUs and is also updated
frequently, the data is effectively not cached, but accessed at memory speeds.

In addition, when more than one CPU updates the same cache line, the CPUs are forced
to execute in turn. Each waits until it can have exclusive ownership of the line. When
multiple CPUs update the same line concurrently, the data is accessed at a fraction of
memory speeds, and all the CPUs are forced to idle for many cycles.
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An update of one 64-bit word invalidates the 15 other words in the same cache line.
When the other words are not related to the new data, false sharing occurs; that is,
variables are invalidated and have to be reloaded from memory merely by the accident
of their address, with no logical need.

These cache contention issues are not new to the Origin architecture; they arise in any
multiprocessor that supports cache coherency.

Detecting Cache Contention

The first problem with cache contention is to recognize that it is occurring. In earlier
systems you diagnosed cache contention by elimination. Now you can use software tools
and the hardware features of the MIPS R10000 CPU to detect it directly.

The R10000 includes hardware registers that can count a variety of discrete events during
execution, at no performance cost. The R10000 can count individual clock cycles,
numbers of loads, stores, and floating-point instructions executed, as well as cache
invalidation events.

The IRIX kernel contains support for “virtualizing” the R10000 counter registers, so that
each IRIX process appears to have its own set of counters (just as the kernel ensures that
each process has its own unique set of other machine register contents).

Included with IRIX is the perfex profiling tool (see the perfex(1) reference page). It
executes a specified program after setting up the kernel to count the events you specify.
At the end of the test run, perfex displays the profile of counts. You can use perfex to count
the number of instructions a program executes, or the number of page faults it
encounters, and so on. No recompilation or relinking is required, and the program runs
only fractionally slower than normal.

Using perfex you can discover approximately how much time a program, or a single
thread of a program, loses to cache invalidations, and how many invalidations there
were. This allows you to easily distinguish cache contention from other performance
problems.
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Correcting Cache Contention Problems

Cache contention is corrected by changing the layout of data in the source program. In
general terms, the available strategies are these:

1. Minimize the number of variables that are accessed by more than one thread.

2. Segregate nonvolatile data items into different cache lines from volatile items.

3. Isolate volatile items that are not related into separate cache lines to eliminate false
sharing.

4. When volatile items are updated together, group them into single cache lines.

A common design for a large program is to define a block of global status variables that
is visible to all parallel threads. In the normal course of the program, every CPU caches
all or most of such a common area. Read-only access does no harm, but if the items in the
block are volatile, contention occurs. For example a global area might contain the anchor
for a LIFO queue of some kind. Every time a thread puts or takes an item from the queue,
it updates the queue anchor, and invalidates that cache line for every other thread.

It is inevitable that a queue anchor variable will be frequently invalidated. However, the
time cost can be isolated to queue access by applying strategy 2: allocate the queue
anchor in separate memory from the global status area. Put a nonvolatile pointer to the
queue in the status area. Now the cost of fetching the queue anchor is born only by
threads that access the queue.

If there are other items that are updated with the queue anchor, such as the lock that
controls exclusive access to the queue (see Chapter 4, “Mutual Exclusion”), place those
items adjacent to the queue anchor so that all are in the same cache line (strategy 4).
However, if there are two queues that are updated at unrelated times, place each in its
own cache line (strategy 3).
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The locks, semaphores, and message queues that are used to synchronize threads (see
“Types of Interprocess Communication Available” on page 46) are global variables that
must be updated by any CPU that uses them. It is best to assume that such objects are
accessed at memory speeds. Two things can be done to reduce contention:

• Minimize contention for locks and semaphores through algorithmic design. In
particular, use more rather than fewer semaphores, and make each stand for the
smallest possible resource. (Of course, this makes it more difficult to avoid
deadlocks.)

• Never place unrelated synchronization objects in the same cache line (strategy 3). A
lock or semaphore can be in the same cache line as the data that it controls, because
an update of one usually follows an update of the other (strategy 4).

Carefully review the design of any data collection that is used by parallel code. For
example, the root and the first few branches of a binary tree or B-tree are likely to be
visited by every CPU that searches that tree, and therefore will be cached by every CPU.
Elements at higher levels in the tree may be visited and cached by only a few CPUs.

Other classic data structures can cause cache contention (computer science textbooks on
data structures are generally still written from the standpoint of a single-level mainframe
memory architecture). For example, a hash table can be implemented compactly, with
only a word or two in each entry. But that creates false sharing by putting several table
entries (which are unrelated by definition) in the same cache line. To avoid false sharing
in a hash table, make each table entry a full 128 bytes, cache-aligned. You can take
advantage of the extra bytes in each entry to store a list of overflow hits—such a list can
be quickly scanned because the entire cache line is fetched as one memory access.
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Getting Optimum Memory Placement

Suppose a Fortran program allocates a 1000 by 1000 array of complex numbers. By
default IRIX places this 16 MB memory allocation in the node where the program starts
up. But what if the program contains the C$DOACROSS directive to parallelize the
DO-loop that processes the array? (See Chapter 11, “Statement-Level Parallelism.”) Some
number threads—say, four—execute blocks of the DO-loop in parallel, using four CPUs
located in two, three, or even four different nodes. Two problems arise:

• At least two of the threads have to pay a penalty of at least one router hop to get the
data.

It would be better to allocate parts of the array in the nodes where those threads are
running.

• A single hub chip can easily keep up with the memory demands of two CPUs, but
when four CPUs are generating constant memory requests, one hub may saturate,
slowing access.

It would be better to distribute the array data among other nodes—any other
nodes—to prevent a single hub from being a bottleneck.

Detecting Memory Placement Problems

Unfortunately none of the counter values reported by perfex provide a direct diagnosis of
bad memory placement. You can suspect memory placement problems from a
combination of circumstances:

• Performance does not improve as expected when more parallel threads and CPUs
are added.

• The perfex report shows a relatively low percentage of cache line reuse (less than
85% secondary cache hits, to pick a common number).

This is a performance problem you can address for its own sake; but it demonstrates
that the program depends on a high memory bandwidth.

• The program has a high CPU utilization, so it is not being delayed for I/O or by
synchronization with other threads.

• The program has no other performance problems that can be detected with perfex of
the Speedshop tools (see the speedshop(1) reference page).
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There are two issues: to make sure that each thread concentrates memory access on some
definable subset of the data; and second, to make sure that this data is allocated on or
near the node where the thread executes.

The first issue is algorithmic. It is not possible for a page of data to be in two nodes at
once. When data is used simultaneously by two or more threads, that data must be closer
to some threads than to others, and it must be delivered to all threads from a single hub
chip. (Parenthetically, what is true of data is not necessarily true of program text, which
is read-only. The kernel can and does replicate the pages of common DSOs in every node
so that there is no time penalty for fetching instructions from common DSOs like the C
or Fortran runtime libraries.)

Programming Desired Memory Placement

When you have a clear separation of data between parallel threads, there are several tools
for placing pages near the threads that use them. The tool you use depends on the model
of parallel computation you use.

• Using the Fortran compiler, specify how array elements are distributed among the
threads of a parallelized loop using compiler directives. The C compiler supports
pragma statements for the same purpose.

• Take advantage of IRIX memory-allocation rules to ensure that memory is allocated
next to the threads that use it.

• Enable dynamic page migration to handle slowly-changing access patterns.

• Use the dprof tool to learn the memory-use patterns of a program (see the dprof(1)
reference page).

• Use the dplace tool to set the initial memory layout of any program, without needing
to modify the source code (see the dplace(1) reference page).

• Code dynamic calls to dplace within the program, to request dynamic relocation of
data between one program phase and the next.

Using Compiler Directives for Memory Placement

The Silicon Graphics Fortran 77 and Fortran 90 compilers support compiler directives for
data placement. You use compiler directives to specify parallel processing over loops.
You can supplement these with directives specifying how array sections should be
distributed among the nodes that execute the parallel threads.
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You use the Fortran directives to declare a static placement for array sections. You can
also use directives to specify redistribution of data at runtime, when access patterns
change in the course of the program. For details on these directives, see the Fortran
programmer’s guides cited under “Other Useful References” on page xxxiv.

The Silicon Graphics C and C++ compilers support some pragma statements for data
placement. These are documented in the C Language Reference Manual (see “Other Useful
References” on page xxxiv).

Taking Advantage of First-Touch Allocation

By default, IRIX places memory pages in the nodes where they are first “touched,” that
is, referenced by a CPU. In order to take advantage of this rule you have to be aware of
when a first touch can take place. With reference to the different means of “Address
Definition” on page 5,

• The system call fork() duplicates the address space, including the placement of all
its pages.

• The system call exec() creates initial stack and data pages in the node where the new
program will run.

• The system calls brk() and sbrk() extend the virtual address space but do not
“touch” new, complete pages.

• The standard and optional library functions malloc(), when called to allocate more
than a page size aligned on a page boundary, do not touch any new pages they
allocate. (Space that has been allocated, touched, and freed can be reused, and it
stays where it was first touched.)

• The system call mmap() does not touch the pages it maps (see “Mapping Segments
of Memory” on page 12).

• The library call calloc() touches the pages it allocates to fill them with zero.

• The system functions to lock memory pages (see “Locking and Unlocking Pages in
Memory” on page 23) do touch the pages they lock.

It is typical to allocate all memory, including work areas used by subprocesses or threads,
in the parent process. This practice ensures that all memory is allocated in the node
where the parent runs. Instead, the parent process should allocate and touch only data
space that is used by multiple threads. Work areas that are unique to a thread should be
allocated and touched first by that thread; then they are placed in the node where the
thread runs.
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Shared memory arenas (see Chapter 3, “Sharing Memory Between Processes”) are based
on memory-mapping. However, the library function or system call that creates an arena
will typically touch at least the beginning of the arena in order to initialize it. If each
thread is to have a private data area within an arena, make the private area at least a page
in size, allocated on a page-size boundary; and allocate it from the thread that uses it.

Using Round-Robin Allocation

When a Fortran or C program uses statement-level parallelism (based on the
multiprocessing library libmp—see “Managing Statement-Parallel Execution” on
page 252), you can replace the first-touch allocation rule with round-robin allocation.
When you set an environment variable _DSM_ROUND_ROBIN, libmp distributes all
data memory for the program across the nodes in which the program runs. Each new
virtual page is allocated in a different node.

Round-robin allocation does not produce optimal placement because there is no
relationship between the threads and the pages they use. However, it does ensure that
the data will be served by multiple hub chips.

Using Dynamic Page Migration

Dynamic page migration can be enabled for a specific program, or for all programs.
When migration is enabled, IRIX keeps track of the source of the references to each page
of memory. When a page is being used predominately from a different node, IRIX copies
the page contents to the node that is using it, and resets the page tables to direct
references to the new location.

Dynamic migration is a relatively expensive operation: besides the overhead of a
daemon that uses hardware counters to monitor page usage, a migration itself entails a
memory copy of data and the forced invalidation of translate lookaside registers in all
affected nodes (see “Page Numbers and Offsets” on page 5). For this reason, migration is
not enabled by default. (The system administrator can turn it on for all programs using
the sn command as described in the sn(1) reference page, but this is not recommended.)

You can experiment to see whether dynamic page migration helps a particular program.
It is likely to help when the initial placement of data is not optimal, and when the
program maintains consistent access patterns for long periods (many seconds to
minutes). When the program has variable, inconsistent access patterns, migration can
hurt performance by causing frequent, unhelpful page movements.
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To enable migration for a Fortran or C program using libmp, set the _DSM_MIGRATION
environment variable, as described in mp(3). In order to enable migration for another
type of program, run the program under the dplace command with the -migration option.

Using Explicit Memory Placement

The dplace execution monitor is a powerful tool that runs any program (other than
programs that use libmp; dplace and libmp manage the same facilities and cannot be used
together) using a custom memory-placement policy that you define using a simple
control file. The program you run does not have to be recompiled or modified in any way
to take advantage of the memory placement, and it runs at full speed once started.

The dplace tool is documented in three reference pages: dplace(1) describes the command
syntax and options; dplace(5) documents the control file syntax; and dplace(3) describes
how you can call on dplace dynamically, from within a program.

Using dplace you can:

• Establish the virtual page size of the stack, heap, and text segments individually at
sizes from 16 KB to 16 MB. For example, if the perfex monitor shows the program is
suffering many TLB misses, you can increase the size of a data page, effectively
increasing the span of addresses covered by each TLB entry.

• Turn on dynamic page migration for the program, and set the threshold of local to
remote accesses that triggers migration.

• Place each process within the program on a specific node, either by node number or
with respect to the node where a certain I/O device is attached.

• Distribute the processes of a program among any available cluster of nodes having
a specified topology (usually cube topology to minimize router distances between
nodes).

• Place specified segments of the virtual address space in designated nodes.

The dprof profiler (see the dprof(1) reference page) complements dplace. You use dprof to
run a program and get a trace report showing which pages are read and written by each
process in the program.

When you have control of the source code of a program, you can place explicit calls to
dplace within the code. The program can call dplace to move specific processes to specific
nodes, or to migrate specific ranges of addresses to nodes.
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Interprocess Communication II

Chapter 2, “Interprocess Communication”

Provides an overview of the different communication mechanisms, and
describes the POSIX, System V, and BSD compatibility features.

Chapter 3, “Sharing Memory Between Processes”

Describes the different ways of sharing segments of memory between different
processes.

Chapter 4, “Mutual Exclusion”

Describes semaphores, locks, and other means of synchronization and exclusion
between processes and threads.

Chapter 5, “Signalling Events”

Describes the different interfaces to UNIX signals, and the interval timer
facilities.

Chapter 6, “Message Queues”

Describes two different facilities for creating and using message queues.
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2. Interprocess Communication

The term interprocess communication (IPC) describes any method of coordinating the
actions of multiple processes, or sending data from one process to another. IPC is
commonly used to allow processes to coordinate the use of shared data objects; for
instance, to let two programs update the same data in memory without interfering with
each other, or to make data acquired by one process available to others.

This chapter provides an overview of the IPC implementations available, including:

• “Types of Interprocess Communication Available” on page 46

• “Using POSIX IPC” on page 48

• “Using IRIX IPC” on page 49

• “Using System V IPC” on page 49

• “Using 4.2 BSD IPC” on page 52

The following chapters in this Part provide details, as follows:

• Chapter 3, “Sharing Memory Between Processes,” covers shared memory.

• Chapter 4, “Mutual Exclusion,” covers semaphores, locks, and similar facilities.

• Chapter 5, “Signalling Events,” covers the different signal facilities.

• Chapter 6, “Message Queues,” describes two varieties of message queue.
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Types of Interprocess Communication Available

IRIX is compatible with a broad variety of IPC mechanisms. IRIX conforms to the POSIX
standards for real-time extensions (IEEE standard 1003.1b) and threads (IEEE 1003.1c).
Other IPC features are compatible with the two major schools of UNIX programming:
BSD UNIX and AT&T System V Release 4 (SVR4) UNIX.

Table 2-1 summarizes the types of IPC that IRIX supports, and lists the systems with
which IRIX is compatible.

Table 2-1 Types of IPC and Compatibility

Type of IPC Purpose Compatibility

Signals A means of receiving notice of a software or
hardware event, asynchronously.

POSIX, SVR4, BSD

Shared memory A way to create a segment of memory that is mapped
into the address space of two or more processes, each
of which can access and alter the memory contents.

POSIX, IRIX, SVR4

Semaphores Software objects used to coordinate access to
countable resources.

POSIX, IRIX, SVR4

Locks, Mutexes,
and Condition
Variables

Software objects used to ensure exclusive use of
single resources or code sequences.

POSIX, IRIX

Barriers Software objects used to ensure that all processes in a
group are ready before any of them proceed.

IRIX

Message Queues Software objects used to exchange an ordered
sequence of messages.

POSIX, SVR4

File Locks A means of gaining exclusive use of all or part of a
file.

SVR4, BSD

Sockets Virtual data connections between processes that may
be in different systems.

BSD
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The different implementations of these IPC features can be summarized as follows:

• POSIX compliant library calls are provided for signal handling, shared memory,
semaphores, mutexes, condition variables, and message queues. The
implementation is highly tuned and has low system overhead. POSIX facilities are
usable from POSIX threads (see Chapter 13, “Thread-Level Parallelism”).

• IRIX unique library calls are provided for shared memory, semaphores, locks, and
barriers. The implementation has slightly more overhead than POSIX operations,
but sometimes takes advantage of concurrent hardware in multiprocessors, and has
a number of special features, such as the ability to apply poll() to semaphores.

• System function calls compatible with AT&T System V Release 4 are provided for
signal handling, shared memory, semaphores, message queues, and file locking.
The implementation is provided for ease of porting software, but is not particularly
efficient.

• Library functions compatible with BSD UNIX are provided for signal handling, file
locking, and socket support.

Select your IPC mechanisms based on these guidelines:

• Never mix the implementations of a given mechanism in a single program. For
example, unpredictable results can follow when a single program mixes POSIX and
System V signal-handling functions, or mixes both BSD and System V file locking
calls.

• The POSIX libraries are the newest implementations, and in many cases they are the
most efficient.

• A program based on POSIX threads should use POSIX synchronization
mechanisms because they are optimized for pthreads use.

• Use System V IPC functions for code that must comply with the MIPS ABI, or code
that you are porting from another System V operating system.
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Using POSIX IPC

In order to use the POSIX IPC functions described in this part of the book, you must
include the correct header files and libraries when compiling.

The header files required for each function are listed in the reference pages for the
functions.

POSIX IPC functions are defined in the standard libc library. That library is included
automatically in any link by the cc command.

POSIX IPC Name Space

POSIX shared memory segments, named semaphores, and message queues are
persistent objects that survive the termination of the program that creates them (unless
the program explicitly removes them). The POSIX standard specifies that these persistent
names can be implemented in the filesystem, and the current IRIX implementation does
use filenames in the filesystem to represent IPC objects. In order to access a named
semaphore or message queue, a program opens the object using a pathname, similar to
the way a program opens a disk file.

Because these persistent objects are currently implemented as files, you can display and
access them using IRIX commands for files such as ls, rm, chmod and chown. However,
you should keep in mind that this is an implementation choice, not a standardized
behavior. Other implementations of POSIX IPC may not use the filesystem as a name
space for IPC objects, and the IRIX implementation is free to change its implementation
in the future. For best portability, do not assume that IPC objects are always files.

If you plan to share an object between processes that could be started from different
working directories, you should always open the object using the full pathname starting
with a slash (“/”). That ensures that unrelated processes always refer to the same object,
regardless of their current working directory.

When a shared object is temporary, you can use the tempnam() library function to
generate a temporary pathname (see the tempnam(3) reference page).

Other POSIX IPC objects—nameless semaphores, mutexes, and condition variables—are
not persistent, but exist only in memory and are identified only by their addresses. They
disappear when the programs that use them terminate.
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Using IRIX IPC

The IRIX IPC facilities are designed to meet the demands of parallel programming in
multiprocessor systems. They offer advantages for this use, but they are IRIX specific, so
programs using them are not portable to other systems.

In order to use any IRIX IPC functions, you need to include the correct header files and
link libraries when compiling. The header files required for each function are listed in the
reference pages for the functions.

IRIX IPC functions are defined in the standard libc library (it is included automatically in
any link by the cc command) and in the libmpc library, which you include with -lmpc.

IRIX IPC functions all require the use of a shared arena, a segment of memory that can be
mapped into the address spaces of multiple processes. The first step in preparing to use
any IRIX IPC object is to create a shared arena, as documented under “Initializing Arena
Attributes” on page 61.

A shared arena is identified with a file that acts as the backing store for the arena memory.
Communicating processes gain access to the arena by specifying its filename. All
processes using the same arena have access to the same set of IPC objects. This makes it
relatively easy for unrelated processes to communicate using IRIX IPC; they only have to
know the filename of the arena to gain access.

Using System V IPC

IRIX supports SVR4 functions for signals, shared memory, semaphores, message queues,
and file locking. To use them you need to include the correct header files when
compiling. The header files required for each function are listed in the reference pages for
the functions.

System V functions are primarily kernel functions. No special library linkage is required
to access them. There is general discussion of SVR4 IPC operations in the intro(2)
reference page.
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SVR4 IPC Name Space

All SVR4 IPC objects are named in a special IPC name space. An object such as a shared
memory segment or message queue is named by a numeric key, and has the following
attributes (which are defined in the header file sys/ipc.h):

• the UID and GID of the creating process

• the UID and GID of the owning process (which can be different from the creator)

• access permissions in the same format as used with files

The commands and functions used to manage the IPC name space are listed in Table 2-2.

Configuring the IPC Name Space

SVR4 IPC objects are stored in kernel tables of limited, fixed size. You configure the size
of these tables by changing kernel tunable parameters. These parameters are
documented in detail in the book IRIX Admin: System Configuration and Operation
(007-2859-nnn). See “Appendix A: IRIX Kernel Tunable Parameters.”

Listing and Removing Persistent Objects

Objects in the IPC name space are created by programs and can be removed by programs.
However, IPC objects by definition are used by multiple processes, and it is sometimes a
problem to determine which process should remove an object, and when it is safe to do
so.

For this reason, IPC objects are often created and never removed. In these cases, they
persist until the system is rebooted, or until they are removed manually.

Table 2-2 SVR4 IPC Name Space Management

Function Name Purpose and Operation

ipcs(1) List existing shared memory segments (and other IPC objects) in the system
name space with their status.

ipcrm(1) Remove a shared memory segment (or other IPC object) from the system
name space.

ftok(3) Create a semi-unique numeric key based on a file pathname.
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You can list all the components of the IPC name space using the ipcs command. You can
remove an object with the ipcrm command. If you remove an object that is in use,
unpredictable results will follow.

Access Permissions

IPC objects are not part of any filesystem, but access to IPC objects is controlled by rules
like the rules that govern file access. For example, if the access permissions of a shared
memory segment are set to 640, the segment can be read-write for processes that have the
same UID as the segment owner, but the segment is read-only to processes that have only
the GID of the owner, and is inaccessible to other processes.

Choosing and Communicating Key Values

The “name” of an IPC object is an integer. Two small problems are: how a program can
select a unique key to use when making an IPC object, and how to communicate the key
to all the processes that need access to the object. The ftok() library function can be used
to create a predictable key based on a file pathname. For example, unrelated but
cooperating programs can agree to use ftok() with a designated project file and project
code, so that each program will arrive at the same key.

Using ID Numbers

When an IPC object is created, it has the key it is given by the creating process, but it is
also assigned a second integer, the ID. The key number is chosen by the application, and
is predictable. If the application creates the object each time the application starts up, the
key is always the same. The ID number is arbitrary, and a new ID is created each time an
object is created.

A process can gain access to an object based on either number, the key or the ID. For
example, an SVR4 shared memory segment has a key and an ID. The shmget() function
takes a key and returns the corresponding ID. The ID is used to attach the segment.
However, if a process knows the ID, it can simply use it, without first calling shmget() to
obtain it.
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Private Key Values

When creating an IPC object, you can specify a key of KEY_PRIVATE (0). This causes an
object to be created and recorded in the IPC name space with a key of 0. The created
object cannot be accessed from another process by key, because if another process uses
KEY_PRIVATE, it creates its own object. However, another process can access a
key-private object using the object’s ID number.

You can use the KEY_PRIVATE feature when you want to create an IPC object for use
within a single process or share group (a share group is the set of processes that share one
address space; see “Process Creation and Share Groups” on page 256). The IPC object can
be used within the share group based on its address or by ID number. Because it has no
key, it cannot be used outside the share group.

Using 4.2 BSD IPC

The 4.2 BSD functions for signals and file locking are available. To use them, you must
include the correct header files and link libraries when compiling. The header files
required for each function are listed in the reference pages for the functions.

One header file, signal.h, declares both SVR4 and BSD signal-handling functions. Some of
the BSD and SVR4 functions have the same names, but different types of arguments or
different results when called. In order to declare the BSD family of signal functions in
your program, you must be sure to define the compiler variable _BSD_SIGNALS or
_BSD_COMPAT to the compiler. You could do this directly in the source code. More often
you will manage compilation with make, and you will include -D_BSD_SIGNALS as one
of the compiler options in the Makefile.

The BSD compatible function for file locking, flock(), is defined in the standard libc
library. That library is included automatically in any link by the cc command. However,
when you are using C++ (not C), the function name “flock” conflicts with a structure
name declared in sys/fcntl.h. In order to define the flock() function and not the structure,
define the compiler variable _BSD_COMPAT.

A BSD-compatible kernel function for managing the termination of child processes,
wait3(), is discussed under “Process “Reaping”” on page 259.
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3. Sharing Memory Between Processes

There are three families of functions that let you create a segment of memory and share
it among the address spaces of multiple processes. All produce the same result: a
segment of memory that can be accessed or updated asynchronously by more than one
process. You have to design protocols that prevent one process from changing shared
data while another process is using the same data (see Chapter 4, “Mutual Exclusion”).

This chapter covers three major topics:

• “POSIX Shared Memory Operations” on page 55 describes the POSIX functions for
sharing memory.

• “IRIX Shared Memory Arenas” on page 61 describes IRIX shared memory arenas.

• “System V Shared Memory Functions” on page 71 describes the SVR4 functions.

Overview of Memory Sharing

The address space is the range of memory locations that a process can use without an
error. (The concept of the address space is covered in detail in Chapter 1, “Process
Address Space.”) In a pthreads program, all threads use the same address space and
share its contents. In a program that starts multiple, lightweight processes with sproc(),
all processes share the same address space and its contents. In these programs, the entire
address space is shared automatically.

Normally, distinct processes (created by the fork() or exec() system calls) have distinct
address spaces, with no writable contents in common. The facilities described in this
chapter allow you to define a segment of memory that can be part of the address space
of more than one process. Then processes or threads running in different address spaces
can share data simply by referring to the contents of the shared segment in memory.
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Shared Memory Based on mmap()

The basic IRIX system operation for shared memory is the mmap() function, with which
a process makes the contents of a file part of its address space. The fundamental uses of
mmap() are covered under “Mapping Segments of Memory” on page 12 (see also the
mmap(2) reference page). When two or more processes map the same file into memory
with the MAP_SHARED option, that single segment is part of both address spaces, and
the processes can update its contents concurrently.

The POSIX shared memory facility is a simple, formal interface to the use of mmap() to
share segments. The IRIX support for shared arenas is an extension of mmap() to make
it simpler to create a shared allocation arena and coordinate its use. The SVR4 facilities
do not directly use mmap() but have similar results.

Sharing Memory Between 32-Bit and 64-Bit Processes

Larger Silicon Graphics systems support both 32-bit and 64-bit programs at the same
time. It is possible for a memory segment to be mapped by programs using 32-bit
addresses, and simultaneously mapped by programs that use 64-bit addresses. There is
nothing to prevent such sharing.

However, such sharing can work satisfactorily only when the contents of the shared
segment include no addresses at all. Pointer values stored by a 64-bit program can’t be
used by a 32-bit program and vice versa. Also the two programs will disagree about the
size and offset of structure fields when structures contain addresses. For example, if you
initialize an allocation arena with acreate() from a 64-bit program, a 32-bit program
calling amalloc() on that same arena will almost certainly crash or corrupt the arena
pointers.

You can use POSIX shared memory, SVR4 shared memory, or basic mmap() to share a
segment between a 32-bit and a 64-bit program, provided you take pains to ensure that
both programs view the data contents as having the same binary structure, and that no
addresses are shared. You cannot use an IRIX shared memory arena between 32-bit and
64-bit programs at all, because the usinit() function stores addresses in the arena.
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POSIX Shared Memory Operations

Shared-memory support specified by POSIX is based on the functions summarized in
Table 3-1.

The use of mmap() is described at length under “Mapping Segments of Memory” on
page 12. In essence, mmap() takes a file descriptor and makes the contents of the
described object accessible as a segment of memory in the address space. In IRIX, a file
descriptor can describe a disk file, or a device, or a special pseudo-device such as
/dev/kmem. Thus mmap() can make a variety of objects part of the address space. POSIX
adds one more type of mappable object, a persistent shared segment you create using the
shm_open() function.

Creating a Shared Object

The shm_open() function is very similar to the open() function and takes the same
arguments (compare the shm_open(2) and open(2) reference pages). The arguments are
as follows:

In order to declare shm_open() and its arguments you need to include both sys/mman.h
and fcntl.h header files.

Table 3-1 POSIX Shared Memory Functions

Function Name Purpose and Operation

mmap(2) Map a file or shared memory object into the address space.

shm_open(2) Create, or gain access to, a shared memory object.

shm_unlink(2) Destroy a shared memory object when no references to it remain open.

path Name of object, a character string in the form of a file pathname.

oflag Option flags, detailed in the reference page and discussed in following text.

mode Access mode for the opened object
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Shared Object Pathname

The POSIX standard says that a shared object name has the form of a file pathname, but
the standard leaves it “implementation defined” whether the object is actually a file or
not. In the IRIX implementation, a shared memory object is also a file. The pathname you
specify for a shared memory object is interpreted exactly like the pathname of a disk file
that you pass to open(). When you create a new object, you also create a disk file of the
same name. (See “POSIX IPC Name Space” on page 48.)

You can display the size, ownership, and permissions of an existing shared segment
using ls -l. You can dump its contents with a command such as od -X. You can remove it
with rm.

Shared Object Open Flags

The flags you pass to shm_open() control its actions, as follows:

The flags have the same meaning when opening a disk file with open(). However, a
number of other flags allowed by open() are not relevant to shared memory objects.

You can use the combination O_CREAT+O_EXCL to ensure that only one process
initializes a shared object.

Shared Object Access Mode

The access mode that you specify when creating an object governs the users and groups
that can open the object later, exactly as with a disk file.

O_RDONLY Access can be used only for reading.

O_RDWR Access can be read-write (however, you can enforce read-only access
when calling mmap()).

O_CREAT If the object does not exist, create it.

O_TRUNC If the object does exist and O_RDWR is specified, truncate it to zero
length.

O_EXCL If the object does exist and O_CREAT is specified, return the EEXIST
error code.
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Using the Shared Object File Descriptor

The value returned by shm_open() is a file descriptor and you can use it as such; for
example you can apply the dup() function to make a copy of it. You can also use it as an
argument to fcntl(), but most of the features of fcntl() are irrelevant to a shared memory
object. (See the dup(2) and fcntl(2) reference pages.)

Using a Shared Object

In order to use a shared object, your program first opens it with shm_open(), then maps
it into memory with mmap(). The arguments to mmap() include

• the file descriptor for the shared object

• the size of the memory segment

• access protection flags

The returned value is the base address of the segment in memory. You can then use it like
any block of memory. For example, you could create an allocation arena in the segment
using the acreate() function (see the amalloc(3) reference page). For more on the use of
mmap(), read “Segment Mapping Function mmap()” on page 12 and “Mapping a File for
Shared Memory” on page 19.

Example Program

The program in Example 3-1 allows you to experiment with shm_open() and mmap()
from the command line. The program accepts the following command-line arguments:

path The pathname of a shared memory segment (file) that exists or that is to be
created.

-p perms The access permissions to apply to a newly-created segment, for example
-p 0664.

-s bytes The initial size at which to map the segment, for example -s 0x80000.

-c Use the O_CREAT flag with open(), creating the segment if it doesn’t exist.

-x Use the O_EXCL flag with open(), requiring the segment to not exist.

-t Use the O_TRUNC flag with open(), truncating the file to zero length.
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To create a segment named /var/tmp/test.seg, use a command such as

shm_open -c -x -p 0644 -s 0x80000 /var/tmp/test.seg

To attach that segment read-only and then wait, use the command

shm_open -r -w /var/tmp/test.seg

From a different terminal window, enter the command

shm_open /var/tmp/test.seg

In the original window, press <Enter> and observe that the value of the first word of the
shared segment changed during the wait.

Example 3-1 POSIX Program to Demonstrate shm_open()

/*
|| Program to test shm_open(3).
|| shm_open [-p <perms>] [-s <bytes>] [-c] [-x] [-r] [-t] [-w] <path>
|| -p <perms> access mode to use when creating, default 0600
|| -s <bytes> size of segment to map, default 64K
|| -c use O_CREAT
|| -x use O_EXCL
|| -r use O_RDONLY, default is O_RDWR
|| -t use O_TRUNC
|| -w wait for keyboard input before exiting
|| <path> the pathname of the queue, required
*/
#include <sys/mman.h> /* shared memory and mmap() */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <fcntl.h> /* O_flags */
#include <stdio.h>
int main(int argc, char **argv)
{

int perms = 0600; /* permissions */
size_t size = 65536; /* segment size */

-r Use the O_RDONLY flag with open() and PROT_READ with mmap(). If this
option is not used, the program uses O_RDWR with open() and
PROT_READ, PROT_WRITE, PROT_AUTOGROW with mmap().

-w Wait for keyboard input before exiting, allowing you to run other copies of
the program while this one has the segment mapped.
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int oflags = 0; /* open flags receives -c, -x, -t */
int ropt = 0; /* -r option seen */
int wopt = 0; /* -w option seen */
int shm_fd; /* file descriptor */
int mprot = PROT_READ; /* protection flags to mmap */
int mflags = MAP_SHARED; /* mmap flags */
void *attach; /* assigned memory adddress */
char *path; /* ->first non-option argument */
int c;
while ( -1 != (c = getopt(argc,argv,"p:s:cxrtw")) )
{

switch (c)
{
case 'p': /* permissions */

perms = (int) strtoul(optarg, NULL, 0);
break;

case 's': /* segment size */
size = (size_t) strtoul(optarg, NULL, 0);
break;

case 'c': /* use O_CREAT */
oflags |= O_CREAT;
break;

case 'x': /* use O_EXCL */
oflags |= O_EXCL;
break;

case 't': /* use O_TRUNC */
oflags |= O_TRUNC;
break;

case 'r': /* use O_RDONLY */
ropt = 1;
break;

case 'w': /* wait after attaching */
wopt = 1;
break;

default: /* unknown or missing argument */
return -1;

} /* switch */
} /* while */
if (optind < argc)

path = argv[optind]; /* first non-option argument */
else

{ printf("Segment pathname required\n"); return -1; }
if (0==ropt)
{ /* read-write access, reflect in mprot and mflags */

oflags |= O_RDWR;
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mprot |= PROT_WRITE;
mflags |= MAP_AUTOGROW + MAP_AUTORESRV;

}
else
{ /* read-only access, mprot and mflags defaults ok */

oflags |= O_RDONLY;
}
shm_fd = shm_open(path,oflags,perms);
if (-1 != shm_fd)
{

attach = mmap(NULL,size,mprot,mflags,shm_fd,(off_t)0);
if (attach != MAP_FAILED) /* mmap worked */
{

printf("Attached at 0x%lx, first word = 0x%lx\n",
attach, *((pid_t*)attach));

if (mprot & PROT_WRITE)
{

*((pid_t *)attach) = getpid();
printf("Set first word to 0x%lx\n",*((pid_t*)attach));

}
if (wopt) /* wait a while, report possibly-different value */
{

char inp[80];
printf("Waiting for return key before unmapping...");
gets(inp);
printf("First word is now 0x%lx\n",*((pid_t*)attach));

}
if (munmap(attach,size))

perror("munmap()");
}
else

perror("mmap()");
}
else

perror("shm_open()");
return errno;

}
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IRIX Shared Memory Arenas

The shared memory arena is basic to all IRIX IPC mechanisms. IRIX semaphores, locks,
and barriers are all represented as objects within a shared arena.

Overview of Shared Arenas

A shared arena is a segment of memory that can be made part of the address space of
more than one process. Each shared arena is associated with a disk file that acts as a
backing store for the file (see “Page Validation” on page 9). Each process that wants to
share access to the arena does so by specifying the file pathname of the file. The file
pathname acts as the public name of the memory segment. The file access permissions
determine which user IDs and group IDs can share the file.

The functions you use to manage a shared arena are discussed in the following topics and
are summarized in Table 3-2.

Initializing Arena Attributes

A program creates a shared memory arena with the usinit() function. However, many
attributes of a new arena are set by preceding calls to usconfig(). The normal sequence of
operations is to make several calls to usconfig() to establish arena attributes, then to make
one call to usinit() to create the arena.

Table 3-2 IRIX Shared Arena Management Functions

Function Name Purpose and Operation

usconfig(3) Establish the default size of an arena, the number of concurrent processes
that can use it, and the features of IPC objects in it.

usinit(3) Create an arena or join an existing arena.

usadd(3) Join an existing arena.
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You call usconfig() to establish the features summarized in Table 3-3.

See the usconfig(3) reference page for a complete list of attributes. The use of metering
and history information for locks and semaphores is covered in Chapter 4, “Mutual
Exclusion.”

Tip: In programs that use an arena and start a varying number of child processes, it is a
common mistake to find that the eighth child process cannot join the arena. This occurs
simply because usconfig() has not been called with CONF_INITUSERS to set the number
of users higher than the default 8 before the arena was created.

Table 3-3 Arena Features Set Using usconfig()

usconfig() Flag Name Meaning

CONF_INITSIZE The initial size of the arena segment. The default is 64 KB. Often you
know that more is needed.

CONF_AUTOGROW Whether or not the arena can grow automatically as more IPC objects
or data objects are allocated (default: yes).

CONF_INITUSERS The largest number of concurrent processes that can use the arena.
The default is 8; if more processes than this will use IPC, the limit
must be set higher.

CONF_CHMOD The effective file permissions on arena access. The default is 600,
allowing only processes with the effective UID of the creating process
to attach the arena.

CONF_ARENATYPE Establish whether the arena can be attached by general processes or
only by members of one program (a share group).

CONF_LOCKTYPE Whether or not lock objects allocated in the arena collect metering
statistics as they are used.

CONF_ATTACHADDR An explicit memory base address for the next arena to be created (see
“Choosing a Segment Address” on page 21).

CONF_HISTON
CONF_HISTOFF

Start and stop collecting usage history (more bulky than metering
information) for semaphores in a specified arena.

CONF_HISTSIZE Set the maximum size of semaphore history records.
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Creating an Arena

After setting the arena attributes with usconfig(), the program calls usinit(), specifying a
file pathname string.

Tip: The mktemp() library function can be used to create a unique temporary filename
(see the mktemp(3C) reference page).

If the specified file doesn’t exist, usinit() creates it (and gives it the access permissions
specified to usinit() with CONF_CHMOD). If a shared arena already exists based on that
name, usinit() joins that shared arena. If the file exists but is not yet a shared arena,
usinit() overwrites it. In any case, usinit() is subject to normal filesystem permission
tests, and it returns an error if the process doesn’t have read and write permission on the
file (if it already exists) or permission to create the file (if it doesn’t exist).

Code to prepare an arena is shown in Example 3-2.

Example 3-2 Initializing a Shared Memory Arena

usptr_t
makeArena(size_t initSize, int nProcs)
{

int ret;
char * tmpname = "/var/tmp/arenaXXXXXX";
if (ret = usconfig(CONF_INITUSERS, nProcs))
{ perror("usconfig(#users)"); return 0; }
if (ret = usconfig(CONF_INITSIZE, initSize))
{ perror("usconfig(size)"); return 0; }
return usinit(mktemp(tmpname));

}

Joining an Arena

Only one process creates a shared arena. Other processes “join” or “attach” the arena.
There are three ways of doing this. When the arena is not restricted to a single process
family (either by file permissions or by CONF_ARENATYPE setting), any process that
calls usinit() and passes the same pathname string gains access to the same arena at the
same virtual base address. This process need not be related in any way to the process that
created the arena.
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Restricting Access to an Arena

You can restrict arena access to a single process and the children it creates with sproc() (a
share group; see “Process Creation and Share Groups” on page 256) by calling usconfig()
to set CONF_ARENATYPE to US_SHAREDONLY before creating the arena. When this
is done, the file is unlinked immediately after the arena is created. Then a call to usinit()
with the same pathname from a different process creates a different arena, one that is not
shared with the first one. This has several side-effects that are detailed in usconfig(3).

Arena Access From Processes in a Share Group

An arena is a segment in the address space of a process. When that process creates a new
process using sproc(), the child process usually shares the same address space (see the
sproc(2) reference page and Chapter 12, “Process-Level Parallelism”). The child process
has access to the arena segment on the same basis as the parent process. However, the
child process needs to join the arena formally.

The child process should join the arena by calling usadd(), passing the address of the
arena. The child should test the return code of this function, since it can reflect an error
in either of two cases:

• The arena has not been created, or an incorrect arena address was passed.

• The arena was not configured to allow enough using processes, and no more users
can be allowed.

A child process can join an arena automatically, simply by using a semaphore, lock, or
barrier that was allocated within that arena. These function calls perform an automatic
call to usadd(). However, they can also encounter the error that too many processes are
already using the arena. It is best for the child process to check for this condition with an
explicit call to usadd().
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Allocating in an Arena

Allocating shared memory from a shared arena is much like the regular process of
allocating memory using the malloc() and free() library routines. The functions related
to allocation within an arena are summarized in Table 3-4.

The address of an object allocated using usmalloc() or a related function is a valid
address in any process that is attached to the shared arena. If the address is passed to a
process that has not attached the arena, the address is not valid for that process and its
use will cause a SIGSEGV.

The usmalloc() family of functions is based on the arena-allocation function family
described in the amalloc(3) reference page. The usmallopt() function is the same as the
amallopt() function, and both provide several options for modifying the memory
allocation methods in a particular arena. In a similar way, usmallinfo() is the same as
amallinfo(), and both return detailed statistics on usage of memory allocation in one
arena.

Table 3-4 IRIX Shared Memory Arena Allocation Functions

Function Name Purpose and Operation

usmalloc(3) Allocate an object of specified size in an arena.

uscalloc(3) Allocate an array of zero-filled units in an arena.

usmemalign(3) Allocate an object of specified size on a specified alignment boundary in
an arena.

usrealloc(3) Change the allocated size of an object in an arena.

usrealloc(3) Change the allocated size of an array created with uscalloc().

usmallocblksize(3) Query the actual size of an object as allocated.

usfree(3) Release an object allocated in an arena.

usmallopt(3) Tune the allocation algorithm using constants described in amallopt(3).

usmallinfo(3) Query allocation statistics (see amallinfo(3) for structure fields).
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Exchanging the First Datum

The processes using a shared arena typically need to locate some fundamental data
structure that has been allocated within the arena. For example, the parent process
creates a foundation data structure in the arena, and initializes it with pointers to other
objects within the arena. Any process starting to use the arena needs the address of the
foundation structure in order to find all the other objects used by the application.

The shared arena has a special one-pointer field for storing such a basic address. This area
is accessed using the functions summarized in Table 3-5.

Note: The precision of the usgetinfo() field in an arena, 32 or 64 bits, depends on the
execution model of the program that creates the arena. This is one reason that processes
compiled to different models cannot share one arena (see “Sharing Memory Between
32-Bit and 64-Bit Processes” on page 54).

Often, the parent process creates and initializes the arena before it creates any of the child
processes that will share the arena. In this case, you expect no race conditions. The parent
can set the shared pointer using usputinfo() because no other process is using the arena
at that time. Each child process can fetch the value with usgetinfo().

The purpose of uscasinfo() is to change the contents of the field in an atomic fashion,
avoiding any race condition between concurrent processes in a multiprocessor. All three
functions are discussed in detail in the usputinfo(3P) reference page.

Tip: The data type of the shared pointer field is void*, a 64-bit value when the program
is compiled to the 64-bit model. If you need to cast the value to an integer, use the type
__psint_t, a pointer-sized integer in any model.

Table 3-5 IRIX Shared Memory First-Datum Functions

Function Name Purpose and Operation

usputinfo(3) Set the shared-pointer field of an arena to a value.

usgetinfo(3) Retrieve the value of the shared-pointer field of an arena.

uscasinfo(3) Change the shared-pointer field using a compare-and-swap.
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In the less-common case when an arena is shared by unrelated processes, each process
that calls usinit() might be the first one to create the arena—or might not. If the calling
process is the first, it should initialize the basic contents and set the shared pointer. If it is
not the first, it should use the initialized contents that another process has already
prepared. This problem is resolved with uscasinfo(), as sketched by the code in
Example 3-3.

Example 3-3 Setting Up an Arena With uscasinfo()

typedef struct arenaStuff {
ulock_t updateLock; /* exclusive use of this structure */
short   joinedProcs; /* number of processes joined */
...pointers to other things allocated by setUpArena()...

} arenaStuff_t;
/*
|| The following function performs the one-time setup of the
|| arenaStuff contents. It assumes that updateLock is held.
*/
extern void
setUpArena(usptr_t *arena, arenaStuff_t *stuff);
/*
|| The following function joins a specified arena, creating it
|| and initializing it if necessary.  It could be extended with
|| values to pass to usconfig(3) before the arena is created.
*/
usptr_t*
joinArena(char *arenaPath)
{

usptr_t *arena;
arenaStuff_t *stuff;
int ret;
/*
|| Join the arena, creating it if necessary. Exit on error.
*/
if (!arena = usinit(arenaPath))
{

perror("usinit");
return arena;

}
/*
|| Do the following as many times as necessary until the arena
|| has been initialized.
*/
for(ret=0; !ret; )
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{
if (stuff = (arenaStuff_t *)usgetinfo(arena))
{

/*
|| Another process has created the arena, and either has
|| initialized it or is initializing it right now. Acquire
|| the lock, which will block us until initializing is done.
*/
ussetlock(stuff->updateLock);
/* here do anything needing exclusive use of arena */
++stuff->joinedProcs; /* another process has joined */
usunsetlock(stuff->updateLock); /* release arena */
ret = 1; /* end the loop */

}
else
{

/*
|| This process appears to be first to call usinit().
|| Allocate an arenaStuff structure with its updateLock
|| already held and 1 process joined, and try to swap it
|| into place as the active one. We expect no errors
|| in setting up arenaStuff. If one occurs, the arena is
|| simply unusable, and we return a NULL to the caller.
*/
if (! (stuff = usmalloc(sizeof(arenaStuff_t),arena) ) )

return stuff; /* should never occur */
if (! (stuff->updateLock = usnewlock(arena) ) );

return (usptr_t*)0; /* should never occur */
if (! uscsetlock(stuff->updateLock, 1) )

return (usptr_t*)0; /* should never occur */
stuff->joinedProcs = 1;
if (ret = uscasinfo(arena,0,stuff))
{

/*
|| Our arenaStuff is now installed. Initialize it.
|| We hold the lock in arenaStuff as setUpArena expects.
|| The loop ends because ret is now nonzero.
*/
setUpArena(arena,stuff);
usunsetlock(stuff->updateLock);

}
else
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{
/*
|| uscasinfo() either did not find a current value of 0
|| (indicates a race with another process executing this
|| code) or it failed for some other reason. In any case,
|| release allocated stuff and repeat the loop (ret==0).
*/
usfreelock(stuff->updatelock,arena);
usfree(stuff,arena);

}
} /* usgetinfo returned 0 */

} /* while uscasinfo swap fails */
/* arena->initialized arena, updateLock not held */
return arena;

}

Example 3-3 assumes that everything allocated in the arena is accessed through a
collection of pointers, arenaStuff. The two problems to be solved are these:

• Which asynchronous process is the first to call usinit(), and therefore should
allocate arenaStuff and initialize it with pointers to other objects?

• How can the second and subsequent processes know when the initialization of
arenaStuff is complete (it might take some time) and the arena is completely ready
for use?

The solution in Example 3-3 is based on the discussion in the uscasinfo(3P) reference
page. Each process calls function joinArena(). If a call to usgetinfo() returns nonzero, it
is the address of an arenaStuff_t that has been allocated by some other process. Possibly
that process is concurrently executing, initializing the arena. The current process waits
until the lock in the arenaStuff_t is released. On return from the ussetlock() call, the
process has exclusive use of arenaStuff until it releases the lock. It uses this exclusive
control to increment the count of processes using the arena.

When usgetinfo() returns 0, the calling process is probably the first to create the arena,
so it allocates an arenaStuff structure, and also allocates the essential lock and puts it in a
locked state. Then it calls uscasinfo() to swap the arenaStuff address for the expected
value of 0. When the swap succeeds, the process completes initializing the arena and
releases the lock.
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The call to uscasinfo() could fail if, between the time the process receives a 0 from
usgetinfo() and the time it calls uscasinfo(), another process executes this same code and
installs its own arenaStuff. The process handles this unusual event by releasing the items
it allocated and repeating the whole process.

When unrelated processes join an arena with code like that shown in Example 3-3, they
should terminate their use of the arena with code similar to Example 3-4.

Example 3-4 Resigning From an Arena

/*
|| The following function reverses the operation of joinArena.
|| Even if the calling process is the last one to hold the arena,
|| nothing drastic is done. This is because it is impossible to
|| perform {usinit(); usgetinfo(); ussetlock();} as an atomic
|| sequence.  Once an arena comes into being it must remain
|| usable until the entire application shuts down. Unlinking the
|| arena file can be the last thing that main() does.
*/
void
resignArena(usptr_t *arena)
{

arenaStuff_t *stuff = (arenaStuff_t *)usgetinfo(arena);
ussetlock(stuff->updateLock);
-- stuff->joinedProcs;
usunsetlock(stuff->updateLock);

}

It might seem that, when the function resignArena() in Example 3-4 finds that it has
reduced the joinedProcs count to 0, it could deinitialize the arena, for example unlinking
the file on which the arena is based. This is not a good idea because of the remote chance
of the following sequence of events:

1. Process A executes joinArena(), initializing the arena.

2. Unrelated process B executes joinArena() through the usinit() call, but is suspended
for a higher-priority process before executing usgetinfo().

3. Process A detects some error unrelated to arena use, and as part of termination, calls
resignArena().

4. Process B resumes execution with the call to usgetinfo().

If the resignArena() function did something irrevocable, such as unlinking or truncating
the arena file, it would leave process B in an unexpected state.
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System V Shared Memory Functions

The System V shared memory functions allow two or more processes to share memory.
Unlike the IRIX method, in which the external name of a shared arena is also the name
of a file, the external name of an SVR4 shared segment is an integer held in an IPC name
table (see “SVR4 IPC Name Space” on page 50).

The functions and commands used with SVR4 shared memory are discussed in the
following topics and summarized in Table 3-6.

Creating or Finding a Shared Memory Segment

A process creates a shared memory segment, or locates an existing segment, using the
shmget() system function. When it creates a segment, the arguments to this function
establish:

• The numeric key of the segment.

• The size of the segment.

• The user ID and group ID of the segment creator and owner.

• The access permissions to the segment.

When the function locates an existing segment, access to the segment is controlled by the
access permissions and by the user ID and group ID of the calling process.

Table 3-6 SVR4 Shared Memory Functions

Function Name Purpose and Operation

shmget(2) Create a shared memory IPC object or return the ID of one.

shmctl(2) Get the status of a shared memory segment, change permissions or user IDs,
or lock or unlock a segment in memory.

shmat(2) Attach a shared memory segment to the address space.

shmdt(2) Detach a shared memory segment from the address space.
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Unlike an IRIX shared arena, a shared segment does not grow automatically as it is used.
The size specified when it is created is fixed. The shared segment is initialized to binary
zero. (As implemented in IRIX, the pages of the segment are created as they are first
referenced; see “Mapping a Segment of Zeros” on page 19.)

The value returned by shmget() is the ID number of the segment. It is used to identify the
segment to other functions.

Attaching a Shared Segment

The shmget() function creates the segment, or verifies that it exists, but does not actually
make it a part of the process address space. That remains to be done with a call to shmat()
(“attach”), passing the identifier returned by shmget().

You can pass a desired base address to shmat(), or you can pass NULL to have the system
select the base address. It is best to let the system choose the base; this ensures that all
processes have the same base address for the segment.

A process can detach a segment from its address space by calling shmdt().

Managing a Shared Segment

The shmctl() function gives you the ability to get information about a segment, or to
modify its attributes. These operations are summarized in Table 3-7.

Table 3-7 SVR4 Shared Segment Management Operations

Keyword Operation Can Be Used By

IPC_STAT Get information about the segment. Any process having read access.

IPC_SET Set owner UID, owner GID, or access
permissions.

Creator UID, owner UID, or
superuser.

IPC_RMID Remove the segment from the IPC
name space.

Creator UID, owner UID, or
superuser.

SHM_LOCK Lock the segment pages in memory. Superuser process only.

SHM_UNLOCK Unlock a locked segment. Superuser process only.
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Information About Shared Memory

The information structure returned by shmctl(IPC_STAT) is declared in the sys/shm.h
header file. The first field, shm_perm, is an ipc_perm structure. This structure is declared
in the sys/ipc.h header file.

Shared Memory Examples

The example programs in this section illustrate the use of some of the SVR4 shared
memory system functions.

Example of Creating a Shared Segment

The program in Example 3-5 illustrates the use of shmget(). You can specify command
parameters to exercise any combination of shmget() function arguments.

Example 3-5 shmget() System Call Example

/*
|| Program to test shmget(2) for creating a segment.
|| shmget [-k <key>] [-s <size>] [-p <perms>] [-c] [-x]
|| -k <key> the key to use, default == 0 == IPC_PRIVATE
|| -s <size> size of segment, default is 64KB
|| -p <perms> permissions to use, default is 0600
|| -x use IPC_EXCL
|| -c use IPC_CREAT
*/
#include <unistd.h> /* for getopt() */
#include <sys/shm.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key = IPC_PRIVATE; /* key */
size_t size = 65536; /* size */
int perms = 0600; /* permissions */
int shmflg = 0; /* flag values */
struct shmid_ds ds; /* info struct */
int c, shmid;
while ( -1 != (c = getopt(argc,argv,"k:s:p:cx")) )
{

switch (c)
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{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 's': /* size */
size = (size_t) strtoul(optarg, NULL, 0);
break;

case 'p': /* permissions */
perms = (int) strtoul(optarg, NULL, 0);
break;

case 'c':
shmflg |= IPC_CREAT;
break;

case 'x':
shmflg |= IPC_EXCL;
break;

default: /* unknown or missing argument */
return -1;

}
}
shmid = shmget(key,size,shmflg|perms);
if (-1 != shmid)
{

printf("shmid = %d (0x%x)\n",shmid,shmid);
if (-1 != shmctl(shmid,IPC_STAT,&ds))
{

printf("owner uid/gid: %d/%d\n",
ds.shm_perm.uid,ds.shm_perm.gid);

printf("creator uid/gid: %d/%d\n",
ds.shm_perm.cuid,ds.shm_perm.cgid);

}
else

perror("shmctl(IPC_STAT)");
}
else

perror("shmget");
return errno;

}

Example of Attaching a Shared Segment

The program in Example 3-6 illustrates the process of actually attaching to and using a
shared memory segment. The segment must exist, and is specified by its ID or by its key.
You can use the program in Example 3-5 to create a segment for this program to use.
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The attachment is either read-write or read-only, depending on the presence of the -r
command parameter. When the program attaches the segment read-write, it stores its
own PID in the first word of the segment. Run the program several times; each time it
reports the previous PID value and sets a new PID value. This illustrates that the contents
of the segment persist between uses of the segment.

You can use the -w parameter to have the program wait after attaching. This allows you
to start more copies of the program so that multiple processes have attached the segment.

Example 3-6 shmat() System Call Example

/*
|| Program to test shmat().
|| shmat {-k <key> | -i <id>} [-a <addr>] [-r] [-w]
|| -k <key> the key to use to get an ID..
|| -i <id> ..or the ID to use
|| -a <addr> address to attach, default=0
|| -r attach read-only, default read/write
|| -w wait on keyboard input before detaching
*/
#include <unistd.h> /* for getopt() */
#include <sys/shm.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key = -1; /* key */
int shmid = -1; /* ..or ID */
void *addr = 0; /* address to request */
void *attach; /* address gotten */
int rwflag = 0; /* read or r/w */
int wait = 0; /* wait before detach */
int c, ret;
while ( -1 != (c = getopt(argc,argv,"k:i:a:rw")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* id */
shmid = (int) strtoul(optarg, NULL, 0);
break;
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case 'a': /* addr */
addr = (void *) strtoul(optarg, NULL, 0);
break;

case 'r': /* read/write */
rwflag = SHM_RDONLY;
break;

case 'w': /* wait */
wait = 1;
break;

default:
return -1;

}
}
if (-1 == shmid) /* key must be given */

shmid = shmget(key,0,0);
if (-1 != shmid) /* we have an ID */
{

attach = shmat(shmid,addr,rwflag);
if (attach != (void*)-1)
{

printf("Attached at 0x%lx, first word = 0x%lx\n",
attach, *((pid_t*)attach));

if (rwflag != SHM_RDONLY)
{

*((pid_t *)attach) = getpid();
printf("Set first word to 0x%lx\n",*((pid_t*)attach));

}
if (wait)
{

char inp[80];
printf("Press return to detach...");
gets(inp);
printf("First word is now 0x%lx\n",*((pid_t*)attach));

}
if (shmdt(attach))

perror("shmdt()");
}
else

perror("shmat()");
}
else

perror("shmget()");
return errno;

}
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4. Mutual Exclusion

You use mutual exclusion facilities whenever data is shared by multiple, independent
processes or threads. Using such objects as locks (also called mutexes) and semaphores, you
can:

• Ensure that only one process or thread uses a particular data structure at any time.

• Synchronize activities, so that processes or threads can wait for the completion of
events or actions by other processes or threads.

• Coordinate the use of a shared collection such as a ring buffer or queue.

In order to share data between processes, you share memory between them. Memory
sharing is covered in Chapter 3, “Sharing Memory Between Processes.” When
independent processes share access to data in disk files, they can ensure mutual
exclusion using file locks, which are covered in Chapter 7, “File and Record Locking.”

This chapter covers the following major topics:

• “Overview of Mutual Exclusion” on page 78 defines such terms as lock, mutex,
semaphore, and barrier.

• “POSIX Facilities for Mutual Exclusion” on page 82 covers the POSIX functions for
semaphores and mutexes.

• “IRIX Facilities for Mutual Exclusion” on page 87 covers IRIX locks, barriers, and
semaphores, and the test-and-set facility.

• “Using Compiler Intrinsics for Test-and-Set” on page 96 covers System V
semaphores.
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Overview of Mutual Exclusion

IRIX offers five kinds of mutual exclusion, each kind with its limits and advantages:

• Test-and-set instructions use special instructions in the MIPS CPU to update a
memory location in a predictable way.

• The lock (or mutex) enables processes to enforce serial use of data or code.

• The condition variable lets a thread give up a lock and sleep until an event happens,
then reclaim the lock and continue, all in a single operation.

• The semaphore lets independent processes manage a countable resource in an
orderly way.

• The barrier lets processes coordinate their initialization.

There is a hierarchy of complexity. Test-and-set instructions are a primitive facility that
could be used to implement the others. The lock is a simple object that could be used to
implement semaphores and barriers. The semaphore is the most flexible and general
facility.

Test-and-Set Instructions

The MIPS instruction architecture includes two instructions designed to let programs
update memory from independent processes running concurrently in a multiprocessor.

• The Load Linked (LL) instruction loads a 32- or 64-bit word from memory and also
tags that cache line so that the hardware can recognize any change to memory from
any CPU in a multiprocessor.

• The Store Conditional (SC) instruction stores a 32- or 64-bit word into memory
provided that the destination cache line has not been modified. If the cache line has
been altered since the LL instruction was used, SC does not update memory and
sets a branch condition.

The combination of LL and SC can be used to guarantee that a change to a memory
location is effective, even when multiple concurrent CPUs are trying to update the same
location. You can use LL and SC only from an assembly language module. However, the
IRIX kernel contains a family of services that are implemented using LL/SC, and you can
call them from C or C++. These calls are discussed under “Using Test-and-Set Functions”
on page 92.
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Locks

A lock is a small software object that stands for the exclusive right to use some resource.
The resource could be the right to execute a section of code, or the right to modify a
variable in memory, or the right to read or write in a file, or any other software operation
that must by performed serially, by one process at a time. Before using a serial resource,
the program claims the lock, and releases the lock when it is done with the resource.

The POSIX standard refers to an object of this kind as a mutex, a contraction of “mutual
exclusion” that is a conventional term in computer science. This book uses the simpler
word “lock” when discussing locks in general and IRIX locks in particular, and uses
“mutex” when discussing POSIX mutexes.

You can use IRIX locks to coordinate between unrelated processes or lightweight
processes through an IRIX shared memory arena. You can use POSIX mutexes to
coordinate between POSIX threads in a threaded program only (not IRIX processes).

You define the meaning of a lock in terms that are relevant to your program’s design. You
decide what resources can be used freely at any time, and you decide what resources
must be used serially, by one process at a time. You create and initialize a lock for each
serial resource.

It is also your job to ensure that locks are used consistently in all parts of the program.
Two errors are easy to make. You can forget to claim a lock, so that some part of the
program uses a resource freely instead of serializing. Or you can forget to release a lock,
so that other processes trying to claim the lock “hang,” or wait forever.

Both of these errors can be hard to find because the symptoms can be intermittent. Most
of the time, there is no contention for the use of a shared variable. For example, if one
process sometimes fails to claim a lock before updating memory, the program can seem
to run correctly for hours (or months) before it suffers precisely the right combination of
coincidences that cause two processes to update the variable at the same time.
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Semaphores

A semaphore is an integer count that is accessed atomically using two operations that are
conventionally called P and V:

• The P operation (mnemonic deplete) decrements the count. If the result is not
negative, the operation succeeds and returns. If the result is negative, the P
operation suspends the calling process until the count has been made nonnegative
by another process doing a V operation.

• The V operation (mnemonic revive) increments the count. If this changes the value
from negative to nonnegative, one process that is waiting in a P operation is
unblocked.

You can use a semaphore in place of a lock, to enforce serial use of resource. You initialize
the semaphore to a value of 1. The P operation claims the semaphore, leaving it at 0 so
that the next process to do P will be suspended. The V operation releases the semaphore.

You can also use a semaphore to control access to a pool that contains a countable number
for resources. For example, say that a buffer pool contains n buffers. A process can
proceed if there is at least 1 buffer available in the pool, but if there are no buffers, the
process should sleep until at least 1 buffer is returned.

A semaphore, initialized to n, represents the population of the buffer pool. The pool itself
might be implemented as a LIFO queue. The right to update the queue anchor (either to
remove a buffer or to return one) is a separate resource that is guarded by a lock. The
procedure for obtaining a buffer from the pool is as follows:

1. Perform P on the pool semaphore. When the operation completes, you are assured
there is at least one buffer in the pool; and you are also assured that the count
representing the buffer you need has been decremented from the semaphore.

2. Claim the lock that guards the buffer queue anchor. This ensures that there will be
no conflict with another process taking or returning a buffer at the same time.

3. Remove one buffer from the queue, updating the queue anchor. Step 1 assures that
the queue is not empty.

4. Release the lock on the queue anchor.
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The procedure for returning a buffer to the pool is as follows:

1. Claim the lock that guards the buffer queue anchor. This ensures that there will be
no conflict with another process taking or returning a buffer at the same time.

2. Put the returned buffer back on the queue, updating the queue anchor. The queue
could be empty at this time.

3. Release the lock on the queue anchor.

4. Perform V on the pool semaphore. This announces that at least one additional buffer
is now free, and may unblock some process waiting for a buffer.

The same two basic procedures work to allocate any collection of objects. For example,
the semaphore could represent the number of open slots in a ring buffer, and the lock
could stand for the right to update the ring buffer pointers. (A LIFO queue can be
managed without a lock; see “Using Compare-and-Swap” on page 93.)

Semaphores created using POSIX functions, and semaphores created by the SVR4 IPC
facility, can be used to coordinate IRIX processes or POSIX threads. Semaphores
supported by the IRIX IPC facility can be used to coordinate IRIX processes only.

Condition Variables

A condition variable is a software object that represents the occurrence of an event.
Typically the event is a software action such as “other thread has supplied needed data.”

Condition variable support is included in the POSIX pthreads library, and can be used
only to coordinate among POSIX threads, not between IRIX processes. (See Chapter 13,
“Thread-Level Parallelism” for information on the pthread library.)

A thread that wants to wait for an event claims the condition variable, which causes the
thread to wait. The thread that recognizes the event signals the condition variable,
releasing one or all threads that are waiting for the event.
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In the expected mode of use, there is a shared resource that can be depleted. Access to the
resource is represented by a mutex. A thread claims the mutex, but then finds that the
shared resource is depleted or unready. This thread needs to do three things:

1. Give up the mutex so that some other thread can renew the shared resource.

2. Wait for the event that “resource is now ready for use.”

3. Re-claim the mutex for the shared resource.

These three actions are combined into one action using a condition variable. When a
thread claims a condition variable, it must pass a mutex that it owns. The claim releases
the mutex, waits, and reclaims the mutex in one operation.

Barriers

Barriers provide a convenient way of synchronizing parallel processes on multiprocessor
systems. To understand barriers, think of a time when you planned to go to lunch with
other people at your workplace. The group agrees to meet in the lobby of the building.
Some of your coworkers reach the lobby early, and others arrive later. One comes
running in last, apologizing. When all of you have gathered and you know that everyone
is ready, you all leave the building in a group.

A barrier is the software equivalent of the lobby where you waited. A group of processes
are going to work on a problem. None should start until all the data has been initialized.
However, starting each process is part of the initialization, and they cannot all be started
at the same time. Each process must be created; each must join an arena and perhaps
open a file; and you cannot predict when they will all be ready. To coordinate them, you
create a barrier. Each process, when it is ready to start the main operation, calls barrier(),
passing the address of the barrier and the number of processes that will meet. When that
many processes have called barrier(), all of them are released to begin execution.

Barriers are part of IRIX IPC and require the use of a shared arena. Barriers cannot be
used to coordinate POSIX threads.

POSIX Facilities for Mutual Exclusion

The POSIX real-time extensions (detailed in IEEE standard 1003.1b) include named and
unnamed semaphores. The POSIX threads library (detailed in IEEE standard 1003.1c)
introduces mutexes and condition variables.
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Managing Unnamed Semaphores

An unnamed semaphore is a semaphore object that exists in memory only. An unnamed
semaphore can be identified only by its memory address, so it can be shared only by
processes or threads that share that memory location.

The functions for creating and freeing unnamed semaphores are summarized in
Table 4-1.

The type of a POSIX semaphore is sem_t, which is declared in the header file semaphore.h.
You create an unnamed semaphore by allocating memory for a sem_t variable, either
dynamically or statically, and initializing it with sem_init(). The function in Example 4-1
allocates and initializes an unnamed semaphore and returns its address. It returns NULL
if there is a failure of either malloc() or sem_init().

Example 4-1 Dynamic Allocation of POSIX Unnamed Semaphore

sem_t * allocUnnSem(unsigned initVal)
{

sem_t *psem = (sem_t*)malloc(sizeof(sem_t));
if (psem) /* malloc worked */
{

if (sem_init(psem,0,initVal))
{

free(psem);
psem = NULL;

}
}
return psem;

}

The function in Example 4-1 passes the second argument of sem_init(), pshared, as 0,
meaning the semaphore can only be used within the current process. A semaphore of this
kind can be used to coordinate pthreads in a threaded program.

Table 4-1 POSIX Functions to Manage Unnamed Semaphores

Function Name Purpose and Operation

sem_init(3) Initialize a semaphore object, setting its value and preparing it for use.

sem_destroy(3) Make a semaphore unusable.
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If you want to use a semaphore to coordinate between IRIX processes with separate
address spaces, you must create the semaphore with a nonzero pshared, and place the
semaphore in a memory segment that is shared among all processes. This feature is fully
supported. However, you should specify pshared as 0 when possible, because nonshared
semaphores have higher performance.

Managing Named Semaphores

A named semaphore is named in the filesystem, so it can be opened by any process
(subject to access permissions), even when the process does not share address space with
the creator of the semaphore. The functions used to create and manage named
semaphores are summarized in Table 4-2.

The sem_open() function takes the following arguments:

Creating a Named Semaphore

The POSIX standard leaves it to the implementation whether or not a named semaphore
is represented by a disk file. The IRIX implementation does create a file to stand for each
named semaphore (see “POSIX IPC Name Space” on page 48). The file that stands for a
semaphore takes up no disk space other than the file node in a directory.

Table 4-2 POSIX Functions to Manage Named Semaphores

Function Name Purpose and Operation

sem_open(3) Create or access a named semaphore, returning an address.

sem_close(3) Give up access to a named semaphore, releasing a file descriptor.

sem_unlink(3) Permanently remove a named semaphore.

name Name of the semaphore in the form of a file pathname.

oflag Either zero, or O_CREAT, or O_CREAT+O_EXCL.

mode The access permissions to apply if the semaphore is created.

value Initial value of the semaphore.
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The oflag is used to handle the following cases:

• Specify 0 to receive an error if the semaphore does not exist; that is, to require that
the semaphore must exist.

• Specify O_CREAT+O_EXCL to receive an error if the semaphore does exist; that is,
to require that the semaphore not exist.

• Specify O_CREAT to have the semaphore created if necessary.

When sem_open() creates a semaphore, it sets the file permissions specified by mode.
These permissions control access to a semaphore by UID and GID, just as for a file. (See
the open(2) and chmod(2) reference pages.)

When sem_open() creates a semaphore, it sets the initial value to value, or to 0 if value is
not specified. Otherwise the value depends on the history of the semaphore since it was
created. The value of a semaphore is not preserved over a reboot (the POSIX standard
says it is not valid to depend on the value of a semaphore over a reboot).

A named semaphore is opened as a file, and takes up one entry in the file descriptor table
for the process. There is no way to convert between the address of the sem_t and the file
descriptor number, or vice versa. As a result, you cannot directly pass the semaphore to
a function such as fcntl() or chmod().

Closing and Removing a Named Semaphore

When a process stops using a named semaphore, it can close the semaphore, releasing
the associated file descriptor slot. This is done with sem_close(). The semaphore name
persists in the filesystem, and as long as the system is up, the current semaphore value
persists in a table in memory.

To permanently remove a semaphore, use sem_unlink().

Using Semaphores

POSIX named and unnamed semaphores can be used to coordinate the actions of IRIX
processes and POSIX threads. They are the only mutual-exclusion objects that can be
freely used to coordinate between threaded and unthreaded programs alike. (Message
queues can be used between threaded and unthreaded programs also; see Chapter 6,
“Message Queues.”)
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The functions that operate on semaphores are summarized in Table 4-3.

The abstract operation P is implemented as the sem_wait() function. Use this to
decrement a semaphore’s value and, if the result is negative, to suspend the calling
function until the value is restored. The V operation is sem_post().

You can sample a semaphore’s value using sem_getvalue(). The sem_trywait() operation
is useful when a process or thread cannot tolerate being suspended.

Using Mutexes and Condition Variables

Two additional types of mutual exclusion are available only within a threaded program,
to coordinate the actions of POSIX threads. The mutex is comparable to a lock or to a
semaphore initialized to a count of 1. The condition variable provides a convenient way
for a thread to give up ownership of a mutex, wait for something to happen, and then
reclaim the mutex.

Both of these facilities are covered in detail in Chapter 13, “Thread-Level Parallelism.”
See the headings “Mutexes” on page 283 and “Condition Variables” on page 286.

Table 4-3 POSIX Functions to Operate on Semaphores

Function Name Purpose and Operation

sem_getvalue(3) Return a snapshot of the current value of a semaphore.

sem_post(3) Perform the P operation, incrementing a semaphore and possibly
unblocking a waiting process.

sem_trywait(3) Perform the V operation only if the value of the semaphore is 1 or more.

sem_wait(3) Perform the V operation, decrementing a semaphore and blocking if it
becomes negative.
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IRIX Facilities for Mutual Exclusion

IRIX supports a wide selection of mutual-exclusion facilities, all tuned for use between
processes that run concurrently in a multiprocessor.

Using IRIX Semaphores

Two kinds of semaphores are supported in IRIX IPC: normal and polled. Both are
allocated in a shared memory arena (see “IRIX Shared Memory Arenas” on page 61).

Creating Normal Semaphores

The functions for managing normal semaphores are summarized in Table 4-4.

To allocate a new shared-arena semaphore and set its initial value, call usnewsema(). Use
usctlsema() to enable recursive use of the semaphore and to enable the collection of
metering information. You can use the metering information to find out whether a
semaphore is a bottleneck or not.

Tip: When reading the reference pages cited above, notice that usnewsema() returns the
address of a usema_t object, and all the other functions take the address of a usema_t. That
is, usema_t represents the type of the semaphore object itself, and you refer to a
semaphore by its address. This is different from locks, which are discussed later in this
chapter.

Table 4-4 IRIX Functions to Manage Nonpolled Semaphores

Function Name Purpose and Operation

usnewsema(3P) Allocate a semaphore in an arena and give it an initial value.

usfreesema(3P) Release arena memory used by a semaphore (does not release any process
waiting on the semaphore).

usinitsema(3P) Reset a semaphore value and its metering information (does not release any
process waiting on the semaphore).

usctlsema(3P) Set and reset semaphore metering information and other attributes.

usdumpsema(3P) Dump semaphore metering information to a file.
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Creating Polled Semaphores

A polled semaphore differs from a normal semaphore in the P operation. When
decrementing the semaphore value produces a negative number, the calling process is
not blocked. Instead, it receives a return code. The process then has to include the address
of the semaphore in the list of events passed to poll() (see the poll(2) reference page). The
V operation, applied to a polled semaphore, does not release a block process but rather
causes a poll() operation to end.

You can use polled semaphores to integrate semaphore handling with other events for
which you wait with poll(), such as file operations. You cannot combine the use of
normal semaphores with the use of polled devices, since a single process cannot wait in
a poll() call and in a uspsema() call at the same time. The functions for creating and
controlling polled semaphores are summarized in Table 4-5.

Table 4-5 IRIX IPC Functions for Managing Polled Semaphores

Function Name Purpose and Operation

usnewpollsema(3P) Allocate a polled semaphore in an arena and give it an initial value.

usopenpollsema(3P) Assign a file descriptor to a polled semaphore. The file descriptor can be
passed to poll() or select(). This must be done before the semaphore can
be used.

usclosepollsema(3P) Release a file descriptor assigned with usopenpollsema().

usfreepollsema(3P) Release arena memory used by a polled semaphore and invalidate any
file descriptors assigned to it.



IRIX Facilities for Mutual Exclusion

89

Operating on Semaphores

The functions for semaphore operations are summarized in Table 4-6.

To perform the P operation on a semaphore of either type, use uspsema(). When the
decremented semaphore value is nonnegative, the function returns 1. The action when
the decremented count would be negative differs between the polled and normal
semaphores:

• When a normal semaphore count remains or becomes negative, the calling process
is blocked; the function does not return until the count is nonnegative.

• When a polled semaphore count remains or becomes negative, the function returns
0 and the calling process must use poll() to find out when it becomes nonnegative.

To perform the V operation on a semaphore of either type, call usvsema().

The uscpsema() function provides a conditional P operation: it performs a P operation
on the semaphore only if it can do so without making the value negative. The
ustestsema() function returns the current value of the semaphore—which of course is
immediately out of date.

The usinitsema() function reinitializes the semaphore to a specified value. Note that if
you reinitialize a semaphore on which processes are waiting, the processes continues to
wait. You should reinitialize a semaphore only in unusual circumstances.

Table 4-6 IRIX IPC Functions for Semaphore Operations

Function Name Purpose and Operation

uspsema(3P) Perform the P operation on either type of semaphore.

usvsema(3P) Perform the V operation on either type of semaphore.

ustestsema(3P) Return the current (instantaneous) value of a semaphore.

uscpsema(3P) Perform the P operation only if the resulting count will be nonnegative.

usinitsema(3P) Reset a semaphore value and its metering information (does not release
any process waiting on the semaphore).

usctlsema(3P) Set and reset semaphore metering information and other attributes.

usdumpsema(3P) Dump semaphore metering information to a file.
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You can call usctlsema() to enable the keeping of either metering information—
cumulative counts of usage—or a history trace. The metering information shows
whether a semaphore is a bottleneck in the program’s operations. The history trace can
be used to analyze bugs.

Using Locks

IRIX locks are implemented differently depending on the hardware architecture of the
computer using them. On a multiprocessor computer, locks are busy-wait locks, so the
processor continually tries to acquire the lock until it succeeds. This implementation
makes sense only on multiprocessor systems, where one processor can release the lock
while another processor is “spinning,” trying to acquire the lock. On a uniprocessor, a
process waiting to claim a lock is suspended until the lock is released by another process.

Creating and Managing Locks

The functions for creating and controlling locks are summarized in Table 4-7.

You decide whether the locks in an arena will have metering information or not. You
specify this before creating the arena, to usconfig() (see “Initializing Arena Attributes”
on page 61). When lock metering is enabled, you can retrieve the information about a
lock at any time to find out whether a lock is a bottleneck in a program.

Table 4-7 IRIX IPC Functions for Managing Locks

Function Name Purpose and Operation

usnewlock(3P) Allocate a lock in a specified arena.

usfreelock(3P) Release lock memory (does not release any process waiting on the lock).

usinitlock(3P) Reset a lock and its metering information (does not release any process
waiting on the lock).

usctllock(3P) Fetch and reset semaphore metering information or debugging
information.

usdumplock(3P) Dump lock metering information to a file.
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Claiming and Releasing Locks

The functions for using locks are summarized in Table 4-8.

Tip: When reading the reference pages cited above, notice that usnewlock() returns a
ulock_t object, which is simply a pointer. All the functions that operate on locks take a
ulock_t object—not a pointer to a ulock_t. That is, the ulock_t type represents a handle or
reference to a lock, not a lock itself. This differs from the treatment of semaphores, which
is described under “Creating Normal Semaphores” on page 87.

On uniprocessors, none of the functions us[c,w]setlock() spin; if the lock is available they
return immediately, and if it is not, they suspend the calling process and give up the CPU.
On multiprocessors, ussettlock() spins for a default number of times before it suspends
the process. The function uswsetlock() is the same, but you can specify the number of
spins to take before suspending.

A process can call usunsetlock() on a lock that is either not locked or locked by another
process. In either case, the lock is unlocked. “Double tripping”—calling a set-lock
function twice with the same lock—is also permissible. The caller blocks until another
process unsets the lock.

Table 4-8 IRIX IPC Functions for Using Locks

Function Name Purpose and Operation

ussetlock(3P) Seize a lock, suspending the caller if necessary, until the lock is available.

usunsetlock(3P) Release a lock, making it available for other processes.

uscsetlock(3P) Seize a lock if it is available; otherwise return a 1.

uswsetlock(3P) Seize a lock, suspending the caller if necessary; takes a specified number of
spins as an argument.

ustestlock(3P) Test a lock, returning 0 if it is instantaneously available and 1 if it is not
available.
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Using Barriers

The functions to manage and use barriers are summarized in Table 4-9.

The main process uses new_barrier() to allocate a barrier in some arena. To use the
barrier, each process calls barrier(), passing the number of processes that are supposed
to meet before proceeding.

Note: The barrier() function assumes that it is used on a multiprocessor. It always passes
time by spinning in an empty loop. When used on a uniprocessor (or when used on a
multiprocessor with fewer available CPUs than barrier processes), a call to barrier(n) can
be quite inefficient. The waiting functions spin until each in turn uses up its time-slice. In
general it is not a good idea to use barrier() except in a multiprocessor with a number of
CPUs approximately equal to the number of coordinating processes.

Using Test-and-Set Functions

The C library includes a family of functions that apply the MIPS instructions Load
Linked and Store Conditional to modify memory words in a reliable way in a
multiprocessor. These functions are detailed in the test_and_set(3) and uscas(3) reference
pages. In addition, the MIPSpro C and C++ compilers, version 7.0 and after, contain
built-in support for these operations.

Table 4-9 IRIX IPC Functions for Barriers

Function Name Purpose and Operation

new_barrier(3P) Allocate and initialize a barrier in a specified arena.

free_barrier(3P) Release the storage associated with a barrier.

barrier(3P) Wait at a barrier until a specified number of processes have gathered.

init_barrier(3P) Reinitialize a barrier (does not release any processes waiting).
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Using Test-and-Set

All test-and-set functions solve a similar problem: how to update the contents of a
memory word reliably from two or more CPUs concurrently. Use a test-and-set function
to avoid the traditional “race” condition. For example, suppose that two or more
processes could execute code to increment a variable, as in the C expression ++shared:

• Process A loads shared into a register and adds 1 to it.

• Process B loads shared into a register and adds 1 to it.

• Process A stores the value in memory.

• Process B stores the value in memory.

The result is to increment shared by 1 when it should be incremented by 2. However, if
both processes use test_then_add(&shared,1) instead, they are assured that both
increments will occur regardless of timing.

Using Compare-and-Swap

The test-and-set functions are not adequate to do race-free pointer manipulation; you
need a compare-and-swap function for that. The C library includes the uscas() and
uscas32() functions for this purpose. Use uscas() to work with pointer-sized values
(which can be either 32 or 64 bits depending on compile options). Use uscas32() to work
with words that should always be 32 bits in every program.

The compare-and-swap functions take four arguments:

The arena address u is not actually used by the functions. However, the functions cannot
work until usinit() has been called at least once. Passing an arena address ensures that
this has happened.

destp Address of the target memory field you want to update.

old Expected current value of the memory field.

new Desired new value, based on the expected old value.

u Address of any IRIX shared memory arena.
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Use a compare-and-swap function in a loop like the following:

1. Copy the current value of the target memory field.

2. Calculate a new value based on that current value.

3. Use compare-and-swap to install the new value, provided that the current value has
not changed during step 2.

4. If the compare failed so the swap was not done (uscas() returns 0), another process
has changed the target: return to step 1 and repeat.

The code in Example 4-2 illustrates how this type of loop can be used to manage a simple
LIFO queue.

Example 4-2 Using Compare-and-Swap on a LIFO Queue

#include <ulocks.h>
typedef struct item_s {

struct item_s *next;
/* ... other fields ... */

} item_t;
void push_item( item_t **lifo, item_t *new, usptr_t *u)
{

item_t *old;
do {

new->next = old = *lifo;
} while(0 == uscas(lifo,(ptrdiff_t)old,(ptrdiff_t)new,u));

}
item_t * pull_item( item_t **lifo, usptr_t *u)
{

item_t *old, *new;
do {

old = *lifo;
if (!old) break;
new = old->next;

} while(0 == uscas(lifo,(ptrdiff_t)old,(ptrdiff_t)new,u));
return old;

}
#include <stdio.h>
main()
{

usptr_t *arena = usinit("/var/tmp/cas.arena");
item_t *lifo = NULL;
item_t t1, t2;
item_t *p1, *p2;
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push_item(&lifo, &t1, arena);
push_item(&lifo, &t2, arena);
p2 = pull_item(&lifo, arena);
p1 = pull_item(&lifo, arena);
printf("%x == %x ?\n", &t1, p1);
printf("%x == %x ?\n", &t2, p2);

}

In Example 4-2, the push_item() function pushes an item_t onto a LIFO queue, and
pull_item() removes and returns the first item_t from a queue. Both use uscas() to update
the queue anchor. The main() function contains a unit-test of the functions, first pushing
two items, then pulling them off, finally displaying the addresses to verify that what was
pushed, could be pulled.

Using Compiler Intrinsics for Test-and-Set

The MIPSpro C and C++ compilers version 7.0 introduce the intrinsic functions
summarized in Table 4-10.

Table 4-10 Compiler Intrinsics for Atomic Operations

Intrinsic Prototype Purpose Barrier

_ _op_and_fetch(p,v...) Atomically execute {*p op= v; *p;}. The op can be
add, sub, or, and, xor, and nand.

Full

_ _fetch_and_op(p,v...) Atomically execute {t = *p; *p op= v; t;}. The op can
be add, sub, or, and, xor, and nand.

Full

_ _lock_test_and_set(p,v...) Atomically execute {t = *p; *p = v; t;}. Backward

_ _lock_release(p...) Atomically execute {*p = 0;}. Forward

_ _compare_and_swap(p,w,v...) Atomically execute (w==*p) ?(*p=v, 1): 0. Full

_ _synchronize(...) Issue the MIPS-3 instruction sync to synchronize
the cache with memory.

Full
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Each of the compiler intrinsics except __synchronize() causes the compiler to generate
inline code using Load Linked and Store Conditional to update memory predictably. In
this respect they are similar to the library functions documented in the test_and_set(3)
and uscas(3) reference pages. For example, the statement

__add_and_fetch(&shared,1);

is functionally equivalent to the library call

test_then_add(&shared,1);

The compiler intrinsic __compare_and_swap() is simpler to use than uscas() since you
do not have to create a shared memory arena first, and avoids the overhead of a system
call.

The compiler intrinsics are different from the library functions, and different from an
assembly language subroutine you might write, in one important way. The optimizer
phases of the compiler recognize these intrinsics as barriers to code motion. The
“Barrier” column in Table 4-10 shows this effect. For example, the compiler cannot move
code in either direction across s use of __compare_and_swap(). However, it can move
code backward (but not forward) across __lock_test_and_set().

You can make the code motion barrier explicit or general. If you invoke
__compare_and_swap() passing only the pointer and two value arguments, the compiler
can move no code across that source line. Alternatively, you can list specific variables as
additional arguments to __compare_and_swap() (this is why the functions are shown as
having a variable number of arguments). When you do so, the compiler cannot move
assignments to the named variables across this point, but can move assignments to other
variables, if the optimizer needs to.

System V Facilities for Mutual Exclusion

The System V Release 4 (SVR4) semaphore facility lets you create persistent semaphores
that can be used to coordinate any processes or threads. The SVR4 facility differs from
POSIX named semaphores in two ways:

• Each object is a set of from 1 to 25 independent semaphores, rather than a single
semaphore. A process can operate on any selection of semaphores in a set in one
system call.
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• You can use SVR4 semaphores in ways that IRIX and POSIX do not support:
incrementing or decrementing by more than 1, and waiting for a zero value.

• The name of a set is an integer in a kernel table, rather than a pathname in the
filesystem (see “SVR4 IPC Name Space” on page 50).

The functions used to create and operate on semaphore sets are summarized in
Table 4-11.

Semaphores are also discussed in the intro(2) reference page. You can display semaphore
sets from the command line using ipcs, and remove them with ipcrm (see the ipcs(1) and
ipcr(1) reference pages).

Creating or Finding a Semaphore Set

A process creates a semaphore set, or locates an existing set, using the semget() system
function. The function creates a set only if the specified key is IPC_PRIVATE, or no set
with that key exists, and the IPC_CREAT flag is used. When it creates a set, the
arguments to the function establish

• the numeric key of the set

• the number of semaphores in the set, from 1 to 25

• the access permissions to the set

In addition, the effective user ID and group ID of the calling process become the creator
and owner identification of the new semaphore set. (See “Example Uses of semget()” on
page 102 for example code.)

Table 4-11 SVR4 Semaphore Management Functions

Function Name Purpose and Operation

semget(2) Create a semaphore set, or return the ID of a semaphore set.

semctl(2) Query or change semaphore values; query or change semaphore set
attributes.

semop(2) Perform operations on one or more semaphores in a set.
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When semget() locates an existing set, access is controlled by the access permissions of
the set and by the user ID and group ID of the calling process.

The value returned by semget() is the ID number of the semaphore set. It is used to
identify the segment to other functions.

Managing Semaphore Sets

The semctl() function gives you the ability to get information about a semaphore set, or
to modify its attributes. These operations are summarized in Table 4-12.

Examples of some of these uses can be found under “Example Uses of semctl() for
Management” on page 104.

Table 4-12 SVR4 Semaphore Set Management Operations

Keyword Operation Can Be Used By

IPC_STAT Get information about the set. Any process having read access.

IPC_SET Set owner UID, owner GID, or access
permissions.

Creator UID, owner UID, or
superuser.

IPC_RMID Remove the set from the IPC name
space.

Creator UID, owner UID, or
superuser.

GETALL Copy current values of all semaphores
to an array.

Any process having read access.

SETALL Set current values of all semaphores
from an array of integers.

Any process having write access.
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In addition, semctl() allows you to query or set information about individual
semaphores within the set, as summarized in Table 4-13.

Examples of some of these uses can be seen under “Example Uses of semctl() for Query”
on page 106.

Caution: Some operations of the semctl() function use only three arguments, but some
operations require a fourth argument (see reference page semctl(2) for details). When
passing a fourth argument to semctl(), it is extremely important that you pass a union
semun, as specified in the reference page. You might look at the contents of the union and
think that, since all its fields are addresses, there is no effective difference between
passing a union and passing a plain address of a buffer or array. However, if your
program is compiled with the -n32 or -64 options, the alignment of the two kinds of
arguments is different. Always pass an address as shown in the example programs in this
chapter:

union semun arg4;
...
arg4.buffer = &ds_buffer;
semctl(a,b,c,arg4);

If your program passes only the address, as in

semctl(a,b,c,&ds_buffer);

the code will not work correctly when compiled -n32 or -64.

Table 4-13 SVR4 Semaphore Management Operations

Keyword Operation Can Be Used By

GETVAL Return value of one semaphore. Any process having read access.

GETPID Return process ID of the process that
last operated on a semaphore.

Any process having read access.

GETNCNT Return number of processes waiting
for one semaphore to exceed zero

Any process having read access.

GETZCNT Return number of processes waiting
for one semaphore to equal zero.

Any process having read access.

SETVAL Set current value of one semaphores. Any process having write access.
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Using Semaphore Sets

You perform operations on the semaphores in a set by calling semop(). This function
takes a semaphore set ID, and an array of one or more semaphore operation structures.
Each of the operation structures specifies the following:

• The index of a semaphore in the set, numbering the semaphores from 0

• A number specifying one of three operations:

– Zero, meaning to test the semaphore for equality to 0.

– A positive number such as 1, meaning to increment the semaphore value,
possibly releasing waiting processes or threads (the V operation).

– A negative number such as -1, meaning to decrement the semaphore value
when that can be done without making it negative (the P operation).

• A flag word that can specify these flags:

– IPC_NOWAIT, do not suspend but return an error if the Zero test fails or the P
operation cannot be done.

– SEM_UNDO, undo this operation if it succeeds but an operation later in the
array should fail.

In the simplest case, you pass an array containing just one operation, to increment or
decrement one semaphore by 1 (the traditional V or P operation). Used this way, a
semaphore in a set is functionally the same as an IRIX or POSIX semaphore.

SVR4 semaphores permit additional operations not available with IRIX or POSIX
semaphores. The negative or positive value in the operation structure is not required to
be 1, so you can increment or decrement a semaphore by more than 1 in an operation.
The wait-for-zero operation allows one process or thread to monitor the state of a
semaphore, independent of the P and V operations performed on the semaphore by
other processes or threads.

You can also perform a sequence of operations—a sequence of P, or V, or zero-wait
operations, or a mix of operation types—on multiple semaphores in a single call. To do
this, you specify an array containing more than one operation structure. The semop()
function performs each operation in sequence.
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You can use this feature, for example, to claim multiple resources, each represented by a
different semaphore. Your array would specify the P operation on each of the
semaphores in sequence. When semop() returns successfully, you own all the resources.
A similar, multiple V operation returns all the resources at once.

The IPC_NOWAIT and SEM_UNDO flags are important when claiming multiple
resources at once. Specify SEM_UNDO on all operations; and specify IPC_NOWAIT on
all but the first one. If the second or later resource is unavailable, semop() restores all
preceding claims and returns an error code. As long as all processes or threads operate
on semaphores in the same order, this logic prevents deadlocks, and it avoids long,
fruitless suspensions.

Example Programs

The programs in this section allow you to experiment with semaphore sets from the
command line:

• Example 4-3 on page 102 can be used to experiment with semget(), creating
semaphore sets with different sizes and permissions.

• Example 4-4 on page 104 can be used to test semctl() for displaying and changing
owner IDs and permissions.

• Example 4-5 on page 106 can be used to test semctl() for sampling the values of
semaphores, or to display the state of a semaphore set.

• Example 4-6 on page 108 can be used to test semop() for single or multiple
operations.
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Example Uses of semget()

The program in Example 4-3, semget, invokes semget() with arguments you specify on
the command line:

Example 4-3 Program to Demonstrate semget()

/*
|| semget: program to test semget(2) for creating semaphores.
|| semget [-k <key>] [-c] [-x] [-p <perms>] [-s <setsize>]
|| -k <key> the key to use, default == 0 == IPC_PRIVATE
|| -p <perms> permissions to use, default is 0666
|| -s <setsize> size to use, default is 1
|| -c use IPC_CREAT
|| -x use IPC_EXCL
*/
#include <unistd.h> /* for getopt() */
#include <sys/sem.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key = IPC_PRIVATE;/* key */
int nsems = 1; /* setsize */
int perms = 0600; /* permissions */
int semflg = 0; /* flag values */
struct semid_ds ds; /* info struct */
union semun arg4; /* way to pass &ds properly aligned */
int c, semid;
while ( -1 != (c = getopt(argc,argv,"k:p:s:xc")) )
{

switch (c)
{

-k key Numeric key to identify the semaphore set, required; for example -k 99.
Default is IPC_PRIVATE.

-p perms Access permissions to apply to a created set; for example, -p 0664. Default
is octal 0600.

-s setsize Number of semaphores in a created set; for example -s 8. The limit is 25,
but feel free to experiment with larger numbers to see the return code.

-c Use IPC_CREAT. No set is created unless this is specified.

-x Use IPC_EXCL. Use with -c to require that a set not exist.
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case 'k': /* key */
key = (key_t) strtoul(optarg, NULL, 0);
break;

case 's': /* setsize */
nsems = (int) strtoul(optarg, NULL, 0);
break;

case 'p': /* permissions */
perms = (int) strtoul(optarg, NULL, 0);
break;

case 'c':
semflg |= IPC_CREAT;
break;

case 'x':
semflg |= IPC_EXCL;
break;

default: /* unknown or missing argument */
return -1;

}
}
semid = semget(key,nsems,semflg+perms);
if (-1 != semid)
{

printf("semid = %d\n",semid);
arg4.buf = &ds;
if (-1 != semctl(semid,0,IPC_STAT,arg4))
{

printf(
"owner uid.gid: %d.%d creator uid.gid: %d.%d mode: 0%o nsems:%d\n",

ds.sem_perm.uid,ds.sem_perm.gid,
ds.sem_perm.cuid,ds.sem_perm.cgid,
ds.sem_perm.mode, ds.sem_nsems);

}
else

perror("semctl(IPC_STAT)");
}
else

perror("semget()");
return errno;

}
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Example Uses of semctl() for Management

The program in Example 4-4, semmod, allows you to call semctl() from the command line
to display the size, permissions, and owner and creator IDs of a semaphore set, and to
change the permissions and owner. It takes the following arguments on the command
line:

If only the key or ID is given, the program only displays the state of the set. When you
specify permissions, owner, or group, the program first queries the current information
to initialize an information structure. Then it inserts the new items you specified, and
calls semctl() with IPC_SET to change the information.

Example 4-4 Program to Demonstrate semctl() for Management

/*
|| semmod: program to test semctl(2) for status, ownership and permissions.
|| semmod {-k <key> | -i <semid>} [-p <perms>] [-u <user>] [-g <group>]
|| -k <key> the key to use, or..
|| -i <semid> ..the semid to use
|| -p <perms> permissions to set with IPC_SET
|| -u <uid> uid to set as owner with IPC_SET
|| -g <gid> gid to set as owner with IPC_SET
*/
#include <unistd.h> /* for getopt() */
#include <sys/sem.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key; /* key */
int semid = -1; /* object ID */
int perms, popt = 0; /* perms to set, if given */
int uid, uopt = 0; /* uid to set, if given */
int gid, gopt = 0; /* gid to set, if given */
int val, vopt = 0; /* setall value if given */
struct semid_ds ds;

-k key Numeric key to identify the semaphore set; for example -k 99.

-i id Semaphore ID number, alternative to specifying the key.

-p perms Access permissions to apply to the selected set; for example, -p 0664.

-u uid New user ID for the semaphore owner.

-g gid New group ID for the semaphore owner.
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union semun arg4; /* way to pass semctl 4th arg, properly aligned */
int c;
while ( -1 != (c = getopt(argc,argv,"k:i:p:u:g:")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* semid */
semid = (int) strtoul(optarg, NULL, 0);
break;

case 'p': /* permissions */
perms = (int) strtoul(optarg, NULL, 0);
popt = 1;
break;

case 'u': /* uid */
uid = (int) strtoul(optarg, NULL, 0);
uopt = 1;
break;

case 'g': /* gid */
gid = (int) strtoul(optarg, NULL, 0);
gopt = 1;
break;

default: /* unknown or missing argument */
return -1;

}
}
if (-1 == semid) /* -i not given, must have -k */

semid = semget(key,0,0);
if (-1 != semid)
{

arg4.buf = &ds;
if (0 == semctl(semid,0,IPC_STAT,arg4))
{

if ((popt)||(uopt)||(gopt))
{

if (popt) ds.sem_perm.mode = perms;
if (uopt) ds.sem_perm.uid = uid;
if (gopt) ds.sem_perm.gid = gid;
if (0 == semctl(semid,0,IPC_SET,arg4) )

semctl(semid,0,IPC_STAT,arg4); /* refresh info */
else

perror("semctl(IPC_SET)");
}
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printf(
"owner uid.gid: %d.%d creator uid.gid: %d.%d mode: 0%o nsems:%d\n",

ds.sem_perm.uid,ds.sem_perm.gid,
ds.sem_perm.cuid,ds.sem_perm.cgid,
ds.sem_perm.mode, ds.sem_nsems);

}
else

perror("semctl(IPC_STAT)");
}
else

perror("semget()");
}

Example Uses of semctl() for Query

The program in Example 4-5, semsnap, displays a snapshot of the current values of all
semaphores in a set you specify. The value of each semaphore is displayed in the first row
(GETVAL), followed by the count of processes waiting in a P operation (GETNCNT) and
the count of processes waiting for zero (GETZCNT). The arguments are as follows:

Example 4-5 Program to Demonstrate semctl() for Sampling

/*
|| semsnap: program to test semctl(2) for semaphore status commands
|| semsnap {-k <key> | -i <semid>}
|| -k <key> the key to use, or..
|| -i <semid> ..the semid to use
*/
#include <unistd.h> /* for getopt() */
#include <sys/sem.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key; /* key */
int semid = -1; /* object ID */
int nsems, j; /* setsize, and loop variable */
ushort_t semvals[25]; /* snapshot of values */
ushort_t semns[25]; /* snapshot of P-waiting */
ushort_t semzs[25]; /* snapshot of zero-waiting */
struct semid_ds ds;

-k key Numeric key to identify the semaphore set; for example -k 99.

-i id Semaphore ID number, alternative to specifying the key.
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union semun arg4; /* semctl 4th argument, properly aligned */
int c;
while ( -1 != (c = getopt(argc,argv,"k:i:")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* semid */
semid = (int) strtoul(optarg, NULL, 0);
break;

default: /* unknown or missing argument */
return -1;

}
}
if (-1 == semid) /* -i not given, must have -k */

semid = semget(key,0,0);
if (-1 != semid)
{

arg4.buf = &ds;
if (0 == semctl(semid,0,IPC_STAT,arg4))
{

nsems = ds.sem_nsems;
arg4.array = semvals;
semctl(semid,0,GETALL,arg4);
for (j=0; j<nsems; ++j)
{

semns[j] = semctl(semid,j,GETNCNT);
semzs[j] = semctl(semid,j,GETZCNT);

}
printf("vals:");
for (j=0; j<nsems; ++j) printf(" %2d",semvals[j]);
printf("\nncnt:");
for (j=0; j<nsems; ++j) printf(" %2d",semns[j]);
printf("\nzcnt:");
for (j=0; j<nsems; ++j) printf(" %2d",semzs[j]);
putc('\n',stdout);

}
else

perror("semctl(IPC_STAT)");
}
else

perror("semget()");
}
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Example Uses of semop()

The program in Example 4-6, semop, performs one or more semaphore operations on a set
you specify. You can use it to specify any sequence of operations (including nonsensical
sequences) from the command line. The command arguments are:

You can give a sequence of operations. For example, consider the following sequence:

1. Wait for zero in semaphore 4.

2. Increment semaphore 0, with undo if a following operation fails.

3. Decrement semaphore 2, not waiting and with undo.

4. Decrement semaphore 3, not waiting and with undo.

The sequence above can be specified as follows:

semop -k 0x101 -z 4 -u -v 0 -n -p 2 -p 3

The program does not support incrementing or decrementing by other than 1, and there
is no way to turn off IPC_NOWAIT or SEM_UNDO once it is on.

Example 4-6 Program to Demonstrate semop()

/*
|| semop: program to test semop(2) for all functions.
|| semop {-k <key> | -i <semid>} [-n] [-u] {-p <n> | -v <n> | -z <n>}...
|| -k <key> the key to use, or..
|| -i <semid> ..the semid to use
|| -n use the IPC_NOWAIT flag on following ops
|| -u use the SEM_UNDO flag on following ops
|| -p <n> do the P operation (+1) on semaphore <n>
|| -v <n> do the V operation (-1) on semaphore <n>
|| -z <n> wait for <n> to become zero

-k key Numeric key to identify the semaphore set; for example -k 99.

-i id Semaphore ID number, alternative to specifying the key.

-n Apply IPC_NOWAIT to all following operations.

-u Apply SEM_UNDO to all following operations.

-p sem Apply the P (decrement by 1) operation to sem; for example, -p 1.

-v sem Apply the V (increment by 1) operation to sem; for example, -v 1.

-z sem Wait for sem to contain 0; for example, -z 4.



IRIX Facilities for Mutual Exclusion

109

*/
#include <unistd.h> /* for getopt() */
#include <sys/sem.h> /* for shmget etc */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key; /* key */
int semid = -1; /* object ID */
int nsops = 0; /* setsize, and loop variable */
short flg = 0; /* flag to use on all ops */
struct semid_ds ds;
int c, s;
struct sembuf sops[25];
while ( -1 != (c = getopt(argc,argv,"k:i:p:v:z:nu")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* semid */
semid = (int) strtoul(optarg, NULL, 0);
break;

case 'n': /* use nowait */
flg |= IPC_NOWAIT;
break;

case 'u': /* use undo */
flg |= SEM_UNDO;
break;

case 'p': /* do the P() */
sops[nsops].sem_num = (ushort_t) strtoul(optarg, NULL, 0);
sops[nsops].sem_op = -1;
sops[nsops++].sem_flg = flg;
break;

case 'v': /* do the V() */
sops[nsops].sem_num = (ushort_t) strtoul(optarg, NULL, 0);
sops[nsops].sem_op = +1;
sops[nsops++].sem_flg = flg;
break;

case 'z': /* do the wait-for-zero */
sops[nsops].sem_num = (ushort_t) strtoul(optarg, NULL, 0);
sops[nsops].sem_op = 0;
sops[nsops++].sem_flg = flg;
break;
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default: /* unknown or missing argument */
return -1;

}
}
if (-1 == semid) /* -i not given, must have -k */

semid = semget(key,0,0);
if (-1 != semid)
{

if (0 != semop(semid,sops,nsops) )
perror("semop()");

}
else

perror("semget()");
}

Using the Examples

The following commands demonstrate the use of the example programs. First, a
semaphore set is created by semget and its existence verified with ipcs:

$ ipcs -s
IPC status from /dev/kmem as of Wed Jun 19 11:19:37 1996
T     ID     KEY        MODE       OWNER    GROUP
Semaphores:
$ semget -k 0xfab -c -x -p 0666 -s 4
semid = 130
owner uid.gid: 1110.20  creator uid.gid: 1110.20  mode: 0100666 nsems:4
$ ipcs -s
IPC status from /dev/kmem as of Wed Jun 19 11:19:59 1996
T     ID     KEY        MODE       OWNER    GROUP
Semaphores:
s    130 0x00000fab --ra-ra-ra-  cortesi     user

The effect of the IPC_EXCL flag is tested:

$ semget -k 0xfab -c -x
semget(): File exists
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The permissions are changed using semmod:

$ semmod -i 130 -p 0640
owner uid.gid: 1110.20  creator uid.gid: 1110.20  mode: 0100640 nsems:4
$ ipcs -s
IPC status from /dev/kmem as of Wed Jun 19 11:20:09 1996
T     ID     KEY        MODE       OWNER    GROUP
Semaphores:
s    130 0x00000fab --ra-r-----  cortesi     user

The present state of the four semaphores in the set is displayed, then semop is used to
increment the first two.

$ semsnap -i 130
vals:  0  0  0  0
ncnt:  0  0  0  0
zcnt:  0  0  0  0
$ semop -i 130 -v 0 -v 1
$ semsnap -i 130
vals:  1  1  0  0
ncnt:  0  0  0  0
zcnt:  0  0  0  0

One instance of semop is started in the background to wait on a sequence of operations.
The semsnap display verifies that one process is waiting on zero in semaphore 0:

$ semop -i 130 -z 0 -p 1 -p 2 &
9956
$ semsnap -i 130
vals:  1  1  0  0
ncnt:  0  0  0  0
zcnt:  1  0  0  0

Semaphore 0 is decremented, and semsnap reveals that there is no longer a process
waiting for zero in that semaphore, but that now a process is waiting for semaphore 2 to
be incremented:

$ semop -i 130 -p 0
$ semsnap -i 130
vals:  0  1  0  0
ncnt:  0  0  1  0
zcnt:  0  0  0  0



112

Chapter 4: Mutual Exclusion

Semaphore 2 is incremented and now there are no processes waiting:

$ semop -i 130 -v 2
$ semsnap -i 130
vals:  0  0  0  0
ncnt:  0  0  0  0
zcnt:  0  0  0  0

Another process is put in the background waiting on semaphore 0. Then the semaphore
set is removed with ipcrm. The waiting instance of semop ends, displaying the error code
from semop():

$ semop -i 130 -p 0 &
9962
$ ipcrm -s 130
$ semop(): Identifier removed
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5. Signalling Events

Processes can receive signals in order to respond to asynchronous requests from software
or to unexpected hardware events. There are three different programming interfaces for
receiving signals; you must select one and use it consistently throughout a program.

Many programs need access to time data for one of two purposes: to produce timestamps
so that data can be ordered by its time of origin, and to define intervals so the program
can take action at regular times. (Intervals are presented to the program as signals.)

These two issues are covered in the following topics:

• “Signals” on page 113 describes signal facilities in general and details the
differences between the POSIX, SVR4, and BSD interfaces.

• “Timer Facilities” on page 127 describes POSIX and IRIX methods of defining
timestamps and intervals.

Signals

A signal is a notification of an event, sent asynchronously to a process. Some signals
originate from the kernel in response to hardware traps; for example, the SIGFPE signal
that notifies of an arithmetic overflow, or the SIGALRM that notifies of the expiration of
a timer interval. Other signals are issued by software. For a detailed, formal discussion
of signals, read the signal(5) reference page.

A process can block all signals or selected signals, ignore some signals, or request a
default system handling for some signals. When a signal that has been sent to a process
is blocked by the process, the signal remains pending. When a signal is not blocked, the
process receives the signal. In a multithreaded process, signals can be blocked or received
by individual threads.

When receiving a signal, a process or thread can handle the signal by an asynchronous
call into a signal-handling function. Alternatively, using the POSIX interface, a process or
thread can handle signals synchronously, as a stream of event objects.
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Signal Numbers

IRIX supports the following 64 signal numbers:

Signals with smaller numbers have priority for delivery. The low-numbered
BSD-compatible signals, which include all kernel-produced signals, are delivered ahead
of real-time signals, and signal 49 takes precedence over signal 64.

Table 5-1 is reproduced from the signal(5) reference page for convenience.

1-31 Same meanings as SVR4 and BSD; see Table 5-1.

32 Reserved by IRIX kernel.

33-48 Reserved by the POSIX standard for system use.

49-64 Reserved by POSIX for real-time programming.

Table 5-1 Signal Numbers and Default Actions

Symbolic
Name

Numeric
Value Default Action Normal Meaning

SIGHUP 1 Terminate Controlling terminal disconnect; see termio(7).

SIGINT 2 Terminate Interrupt key signal from controlling terminal;
see termio(7).

SIGQUIT 3 Terminate and dump Quit key signal from controlling terminal; see
termio(7).

SIGILL 4 Terminate and dump Attempt to execute illegal instruction.

SIGTRAP 5 Terminate and dump Trace/breakpoint reached; see proc(4).

SIGABRT 6 Terminate and dump Abort.

SIGEMT 7 Terminate and dump Emulation trap.

SIGFPE 8 Terminate and dump Arithmetic exception; see math(3M), sigfpe(3C),
and matherr(3M).

SIGKILL 9 Terminate Kill request from software or user.

SIGBUS 10 Terminate and dump Bus error (hardware exception).

SIGSEGV 11 Terminate and dump Segmentation fault (illegal address).
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SIGSYS 12 Terminate and dump Invalid system call.

SIGPIPE 13 Terminate Read or write to broken pipe; see pipe(2),
read(2), write(2).

SIGALRM 14 Terminate Interval timer elapsed; see “Timer Facilities” on
page 127.

SIGTERM 15 Terminate Process terminated.

SIGUSR1 16 Terminate Programmer-defined; see also text below.

SIGUSR2 17 Terminate Programmer-defined.

SIGCHLD or
SIGCLD

18 Terminate Child process status change; see wait(2) and
“Process “Reaping”” on page 259.

SIGPWR 19 Ignore Power fail/restart.

SIGWINCH 20 Ignore Change in size of window; see xterm(1).

SIGURG 21 Ignore Urgent socket condition; see socket(2).

SIGPOLL 22 Terminate Pollable event from a STREAMS device, see
streamio(7).

SIGIO 22 Terminate Input/output possible.

SIGSTOP 23 Suspend Stopped.

SIGTSTP 24 Suspend Stop key signal from controlling terminal; see
termio(7).

SIGCONT 25 Ignore Continued.

SIGTTIN 26 Suspend Attempt to read terminal from background
process; see termio(7).

SIGTTOU 27 Suspend Attempt to write terminal from background
process; see termio(7).

SIGVTALRM 28 Terminate Virtual timer expired; see getitimer(2).

SIGPROF 29 Terminate Profiling timer expired; see getitimer(2).

Table 5-1 (continued) Signal Numbers and Default Actions

Symbolic
Name

Numeric
Value Default Action Normal Meaning
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Although SIGUSR1 and SIGUSR2 are nominally defined by the you for your program’s
purposes, they are also used by different application packages for special signals. For
example, if you set a file lock on an NFS mounted file, the NFS lock daemon may send
SIGUSR1—see “NFS File Locking” on page 188.

Signal Implementations

There are three UNIX traditions for signals, and IRIX supports all three. They differ in the
library calls used, in the range of signals allowed, and in the details of signal delivery.
The basic signal operations and the implementing functions are summarized in
Table 5-2.

SIGXCPU 30 Terminate and dump CPU time limit exceeded; see getrlimit(2).

SIGXFSZ 31 Terminate and dump File size limit exceeded; see getrlimit(2) and
write(2).

(no symbol) 32-48 Terminate Unassigned; do not use.

SIGRTMIN -
SIGRTMAX

49-64 Terminate POSIX real-time signal range.

Table 5-2 Signal Handling Interfaces

Function POSIX Functions SVR4 Functions BSD 4.2 Functions

Set and query signal
handler

sigaction(2)
sigsetops(3)
sigaltstack(2)

sigset(2)
signal(2)

sigvec(3)
signal(3)

Send a signal sigqueue(2)
kill(2)
pthread_kill(3P)

sigsend(2)
kill(2)

kill(3)
killpg(3)

Temporarily block
specified signals

sigprocmask(2)
pthread_sigmask(3P)

sighold(2)
sigrelse(2)

sigblock(3)
sigsetmask(3)

Query pending signals sigpending(2) n.a. n.a.

Table 5-1 (continued) Signal Numbers and Default Actions

Symbolic
Name

Numeric
Value Default Action Normal Meaning
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It is important to not mix these signal facilities. Your program should use functions from
only one column of Table 5-2; otherwise unexpected results can occur.

Signal Blocking and Signal Masks

Certain ideas are basic to the use of signals. One basic idea is that a program can block
the delivery of any signal. When a signal that is sent to a program is blocked, the signal
is queued and remains pending until the program unblocks the signal, or terminates.
Certain urgent signals—SIGKILL, SIGSTOP, SIGCONT—cannot be blocked.

You specify which signals are blocked using a signal mask, a set of bits in which each bit
corresponds to one signal number. When a bit in the mask is set on, the signal is blocked
(if it is a signal that can be blocked).

Each process has a signal mask, inherited from its parent process. All three interfaces
provide ways to set and clear bits in the current signal mask. The BSD interface, however,
only lets you mask the first 32 signal numbers listed in Table 5-1.

Each POSIX thread has a signal mask also (see “Setting Signal Masks” on page 279). A
multithreaded program (defined as a program that is linked with libpthread, so it uses the
pthreads version of the standard library) should use the POSIX interface for signal
handling.

Multiple Signals

In most cases, if a signal of a certain number is pending for a process, and another signal
of the same number arrives, the second signal is discarded. In other words, at most one
signal of a given number can normally be pending for a process.

Wait for a signal handler
to be invoked.

sigsuspend(2) sigpause(2) sigpause(3)

Wait for a signal and
receive synchronously

sigwait(2)
sigwaitinfo(2)
sigtimedwait(2)

n.a. n.a.

Table 5-2 (continued) Signal Handling Interfaces

Function POSIX Functions SVR4 Functions BSD 4.2 Functions
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In the POSIX interface you can use one particular function, sigqueue(), to send a signal
that is queued regardless of how many signals of the same number are already pending.

Signal Handling Policies

You can specify one of three policies for handling an unblocked signal. You set the policy
for each signal number individually.

Default Handling

Initially, all signals receive default handling. This means that when a signal arrives and
is not blocked, it causes the default action listed in Table 5-1. In many cases the default
action is to ignore the signal, that is, to silently discard it. In other cases, the default action
is to terminate the program, or to terminate it with a dump.

Each signal interface gives you a way to specify non-default handling or a specified
signal, or to return a signal to default handling.

Ignoring Signals

You can request that a specified signal be ignored. You would do this when the signal is
not meaningful to your program and the default action is not what you wish. For
example, in a noninteractive program, you might set Ignore handling for SIGHUP (the
default action is to terminate).

Catching Signals

You can request that a signal be caught and handled asynchronously, at the moment it
arrives. You specify that a signal should be caught by specifying the address of a function
to be called when the signal is received.

The signal-handling function is entered asynchronously, without regard for what the
process was doing at the time the signal was delivered. You cannot be sure what code
was executing when the signal handler is called; it could have been any function in your
own code, or it could have been code in the C library or in any layer of the X-Windows
or Motif support libraries.
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All three interfaces provide for passing the signal number as the first argument of the
signal-handling function. Other arguments to the handler function depend on the
interface used and the options you specify when establishing the handler.

You can create an alternate memory area to be used as a stack when executing the signal
handler. Typically a signal handler does not require a great deal of stack space. On the
other hand, each POSIX thread has limited stack space, and when you provide an
alternate signal-handling stack, you do not have to allow for possible signals in
allocating thread stack space (see “Setting Signal Actions” on page 279).

Synchronous Signal Handling

Using the POSIX signal interface you can process signals in a synchronous way, as a
stream of input items to your program. This allows you to design your program so that
signals are received when the process is in a known state, without the uncertainties of
asynchronous delivery.

Signal Latency

The time that elapses from the moment a signal is generated until a signal handler begins
to execute is the signal latency. Signal latency can be long (as real-time programs measure
time) and signal latency has a high variability.

The IRIX kernel normally delivers a pending, unblocked signal the next time the process
returns to user code from the kernel domain. In most cases, this occurs

• when the process is dispatched after a wait or preemption

• upon return from a system function

• upon return from the kernel’s usual 10-millisecond “tick” (dispatch) interrupt

SIGALRM, which signals the expiration of a real-time timer (see “Timer Facilities” on
page 127), is given special treatment. It is delivered as soon as the kernel is ready to
return to a user process after the timer interrupt, in order to preserve timer accuracy.
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When a process is ready to run and is not preempted by a process of higher priority, and
is executing in user code, not calling a system function, the latency for other than
SIGALRM can be as much as 10 milliseconds. However, when the process is suspended
(for example, waiting on a semaphore), or when there are competing processes having
higher priorities, the delivery of a signal is delayed until the next time the receiving
process is scheduled. This can be many milliseconds.

In general, you should use signals to deliver infrequent messages of high priority. You
should not use the exchange of signals as the basis for real-time scheduling.

Signals Under X-Windows

If you plan to handle signals asynchronously in a program that uses X intrinsics, you
must take special steps. Before establishing a signal handler with the operating system,
you establish one or more signal callback procedures using XtAppAddSignal(). Then, in
the asynchronous signal handling function, you call XtNoticeSignal(). This function
ensures that the established signal callback will be invoked like other callback functions,
when it is safe to do so. This process is documented in the XtAppAddSignal(3Xt)
reference page.

The only X-windows function that can safely be called from a signal handler is
XtNoticeSignal().

POSIX Signal Facility

The POSIX interface to signals is the most functionally complete and robust of the three.
It is the recommended interface for all new programs. The functions used in POSIX style
signal handling are summarized in Table 5-3.
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In addition to the reference pages listed in Table 5-3, the following have important
information about signal handling:

Table 5-3 Functions for POSIX Signal Handling

Function Purpose

kill(2) Send a signal to a process or process group. (Discards multiple signals
of the same number.)

sigqueue(3) Queue a signal to a specified process, including a sigval for added
information about the signal. (Queues multiple signals of the same
number.)

pthread_kill(3P) Send a signal to a specified thread.

sigprocmask(2)
pthread_sigmask(3P)

Examine or change the mask of signals allowed and blocked. You
must use pthread_sigmask() in a program that is linked with
libpthread.

sigaction(2) Specify or query the signal handling policy for a specified signal.

sigaltstack(2) Specify or query an alternate stack area to be used by a signal handler.

sigpending(2) Return the set of signals pending for the calling process or thread.

sigsetops(3) Manipulate signal mask objects in memory.

sigsuspend(2) Unblock selected signals for the calling process or thread, and wait for
a signal to be received asynchronously.

sigwait(3)
sigtimedwait(3)
sigwaitinfo(3)

Wait for and receive specified signals in a synchronous manner.

signal(5) Detailed overview of signals and signal handling.

siginfo(5) Description of the information structure passed to a POSIX
signal handler.

ucontext(5) Description of machine context structure passed to a POSIX
signal handler.
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Signal Masking

Each process and thread has an active signal mask. A single-thread program sets or
queries its signal mask using sigprocmask(). A multithreaded program (any program
that linked libpthread, which provides the pthread version of the standard library) should
use pthread_sigmask().

Besides the active signal mask, you may have other signal mask objects (type sigset_t) in
memory. The sigsetops(3) reference page documents a number of utility functions for
setting, clearing, and testing the bits in a signal mask object. Several POSIX signal
functions take a signal mask as an argument. For example, sigsuspend() takes a new
signal mask and swaps it for the current signal mask, establishing which pending signals
will be accepted while the process is suspended.

Using Synchronous Handling

You can design your program so that it treats arriving signals as a stream of event records
to be processed in sequence. For example, you could use one or more signal numbers in
the POSIX real-time range to signify events that are meaningful to your application. Your
application, or one thread in your application, can receive each signal in turn and act
upon it.

To implement this design approach, follow these steps:

1. Block the expected signal numbers in all processes or threads using sigprocmask()
or pthread_sigmask().

2. Send the signals using sigqueue(). This function permits you to augment the signal
number with a union sigval (in effect creating an open-ended set of sub-signals), and
also assures that multiple signals will be retained until you process them.

3. In the signal-processing loop, wait for the next signal with sigwaitinfo() or
sigtimedwait(). When the signal arrives, act accordingly and wait again.

The sigwaitinfo() and sigtimedwait() functions accept a new signal mask. They unblock
the specified signal or signals and suspend until one such signal arrives. They accept that
signal, restore the original signal mask, and return the signal information.

You could construct a very similar work-handling application using a message queue
(see Chapter 6, “Message Queues”). However, this design approach allows you to
integrate the handling of unplanned signals such as SIGPIPE, and interval-timer signals
such as SIGALRM, into the same scheme as planned application events.



Signals

123

Using Asynchronous Handling

Using sigaction(), you specify a function to be called when a particular signal is received.
You have a choice of function prototypes. In each case the signal handler is passed the
signal number, additional information about the signal, and information about the
machine context at the time the signal was delivered.

Your signal handler can have the POSIX prototype, as follows:

void name(int sig, siginfo_t *sip, ucontext_t *up)

The second argument, a POSIX information structure siginfo_t, contains these fields:

When the signal is an error reported by the kernel or hardware, si_code is an explanatory
number. These values are spelled out in detail in the siginfo(5) reference page. The third
argument, a pointer to a ucontext_t object, gives the machine state at the time the signal
was delivered. The ucontext_t is detailed in the ucontext(5) reference page.

Alternatively, your signal handler can have this prototype:

void name(int sig, int code, struct sigcontext *sc);

The second argument gives some added information about the signal (see signal(5) for a
list of codes). The third argument, a pointer to a sigcontext_t object, gives the machine
state at the time the signal was delivered (in slightly different form from the ucontext_t).

si_signo The signal number (again).

si_errno Either 0 or an error code from errno.h.

si_code An indication of the source of the signal.

si_value When si_code is SI_QUEUE, the union sigval passed to sigqueue().

si_pid When si_code is SI_USER, the process ID that called kill().
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When you use sigaction() to set up a signal handler, you pass an argument structure
containing option flags that affect the treatment of the signal:

System V Signal Facility

The System V signal interface is compatible with code ported from UNIX System V. It
includes compatibility for release 3 (SVR3) and release 4 (SVR4). Table 5-4 summarizes
the functions you use to manage signals through this interface.

SA_SIGINFO When set, you are specifying asynchronous handling and your
handler uses the POSIX prototype. Its address is passed in the
sa_sigaction structure field. When not set, a handler uses the older
prototype and its address is passed in sa_handler.

SA_ONSTACK When set, your handler is called using alternate stack memory you
have previously assigned with sigaltstack(). Otherwise the
handler uses the stack of the process or thread stack executing at
the time of the signal.

SA_RESETHAND When set, the policy for this signal is reset to the default when your
handler is called. Your handler is expected to reestablish the action
if that is desired.

SA_NODEFER When not set, the signal is automatically blocked while your
handler executes, and unblocked when your handler returns.
When set, the same signal could be taken while your handler
executes, resulting in multiple entries to the handler.

SA_RESTART When not set, if this signal interrupts a blocked system function
the system function returns EINTR. When set, the system function
is restarted.
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Only asynchronous signal handling is supported by the System V interface. Also, you
must block and unblock signals individually; there is no support for setting the entire
signal mask in one operation.

The semantics of SVR3-compatible signal established with signal() are not desirable for
most programs. When control enters a signal handler you established using signal(), the
handling of that same signal is set to default, and that signal remains unblocked. Your
signal handler can use signal() to reestablish itself as the handler, or it can use sighold()
to block the signal. However, even if these actions are the first statements of the handler
function, there is a period of time at the beginning of the handler during which a second
signal of the same type could be received. If this occurs, the second signal receives default
handling and is not seen by your handler.

You can avoid this problem by using the SVR4 function sigset() instead of signal() to
establish a handler. Before a handler established by sigset() is called, that signal is
blocked until the handler returns, and the signal disposition is not reset to default.

Table 5-4 Functions for SVR4 Signal Handling

Function Purpose

kill(2) Send a signal to a process or process group. (A duplicate of a pending signal
is discarded.)

sigsend(2) Send a signal to a set of processes or process groups, specified in a variety of
ways, for example by user ID.

signal(2) SVR3 call to establish handling policy of default, ignore, or catch for a
specified signal.

sigset(2) SVR4 call to establish handling policy of default, ignore, or catch for a
specified signal.

sighold(2) Hold (block) a specified signal.

sigignore(2) Set the handling for a specified signal to Ignore.

sigrelse(2) Release (unblock) a specified signal.

sigpause(2) Suspend the calling process until a specified signal arrives.
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BSD Signal Facility

The BSD signal facility is compatible with code ported from the BSD 4.2 distribution.
Table 5-5 summarizes the functions you use to manage signals with this interface.

Note: In order to use any of the functions in Table 5-5 you must define one of the
compiler variables _BSD_SIGNALS or _BSD_COMPAT prior to the inclusion of the
header file signal.h. You can do this directly in the source file with #define. More
commonly you will include -D_BSD_COMPAT as one of the compiler flags you define in
your Makefile.

Only asynchronous signal handling is supported by the BSD interface. It is possible to set
and interrogate the signal mask in a single operation; however, the signal mask type is
the integer, so only signal numbers 1-32 can be blocked. The BSD interface does not
recognize higher-numbered signals.

Table 5-5 Functions for BSD Signal Handling

Function Name Purpose and Operation

kill(3B) Send a signal to a specified process, or broadcast a signal to a process
group or to all processes with the same effective user ID. (A duplicate of
a pending signal is discarded.)

killpg(3B) Send a signal to all members of a process group. (A duplicate of a
pending signal is discarded.)

sigvec(3) Establish a policy of default, ignore, or catch for a specified signal.

signal(3B) Simplified interface to sigvec().

sigstack(2B) Establish an alternate stack for the use of signal-handling functions.

sigsetmask(3) Set the active signal mask.

sigblock(3) Add blocked signals to the active signal mask.

sigpause(3B) Wait for specified signals to arrive.
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Timer Facilities

You use timer facilities for a number of purposes: to get information about program
performance; to make a program pause for a certain time; to program an interval of time;
and to create a timestamp value to store with other data.

Timed Pauses and Schedule Cession

In many instances a program, or a process within a multiprocess program, needs to
suspend execution for a period of time. IRIX contains a variety of functions that provide
this capability. The functions differ in their precision and in their portability. Table 5-6
contains a summary.

Sometimes you do not want to suspend for any particular amount of time, but simply
want to make the current process defer to other processes, so that any waiting processes
receive a chance to run. You can achieve this in two ways. The IRIX unique function
sginap() accepts an argument of 0, meaning to defer for the minimum amount of time.
However, sched_yield() is a POSIX compliant function for this purpose.

Table 5-6 Functions for Timed Suspensions

Reference Page Precision Compatibility Operation

sched_yield(2) n.a. POSIX Defer to any processes eligible to run.

sginap(2) dispatching
interval (10ms)

IRIX Defer to other processes for the specified
number of dispatching cycles.

sleep(3C) second POSIX Suspend for a number of seconds or until a
signal arrives.

usleep(3C) microsecond IRIX Suspend for a number of microseconds or
until a signal arrives.

nanosleep(2) nanosecond POSIX Suspend for a number of seconds and
nanoseconds or until a signal arrives.
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Time Data Structures

The include files time.h and sys/time.h define several data types and data structures
related to time. Some of these are used in POSIX time functions and others in BSD-based
functions; and there are somewhat confusing similarities between them. Features of
these structures are summarized in Table 5-7.

Time Signal Latency

It takes time for the kernel to deliver the SIGALRM that notifies your program at the end
of an interval. (The issue of signal latency in general is discussed under “Signal Latency”
on page 119.) The signal latency is less for SIGALRM than for other signals, since the
kernel initiates a scheduling cycle immediately after the timer interrupt, without waiting
for the end of a fixed time slice. When the receiving process or thread is running or ready
to run, the latency is fairly short and consistent from one signal to the next. (Even so, it is
not advisable to use a repeating itimer as the time base for a real-time program). Under
less favorable conditions, signal latency can be variable and sometimes lengthy (tens of
milliseconds) relative to a fast timer frequency.

Table 5-7 Time Data Structures and Usage

Data Type Declared In Contains Some Functions Using This Type

time_t time.h long int with time in seconds since
00:00:00 UTC, January 1, 1970

time(2), ctime(3C), cftime(3C),
difftime(3C)

timeval sys/time.h structure of time_t giving seconds
and a long int giving microseconds

adjtime(2), getitimer(2),
getrusage(3C),
gettimeofday(3C), select(2),
utimes(3B)

itimerval sys/time.h structure of two timeval fields for
first interval and repeat interval

getitimer(2) and setitimer(2)

timespec_t time.h structure of time_t giving seconds
and a long int giving nanoseconds

clock_gettime(2), nanosleep(2),
aio_suspend(3),
sigtimedwait(3C)

itimerspec time.h structure of two timespec_t fields
for first interval and repeat interval

timer_settime(3C),
timer_gettime(3C)

tm time.h structure of int fields for seconds,
minutes, hours, day, month, etc.

localtime(2), gmtime(2),
strftime(3C)
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How Timers Are Managed

The IRIX kernel can be asked to implement itimers for many processes at once, each
interval having a different length and starting at a different time. The kernel’s method
differs depending on the hardware architecture (this issue is discussed at length in the
timers(5) reference page).

• Some obsolete Silicon Graphics systems have no hardware support for interval
timers, so the kernel had to rely on frequent, periodic interrupts as a time base.

In those systems, the precision of timer interrupts was controlled by a kernel tuning
variable, fasthz, which determined the rate at which the kernel was interrupted to
poll for an expired timer.

• In all current architectures, each CPU has a clock comparator that the kernel can
program to cause an interrupt after a specific interval has elapsed.

In these systems, timer interrupts have sub-microsecond precision and do not
impose overhead for timer-polling interrupts.

In earlier versions of IRIX, in order to minimize the overhead of polling for elapsed
timers, the kernel did not allow normal processes to ask for timer intervals with fine
granularity (sub-millisecond precision). Only processes that executed under real-time
scheduling priority could ask for precise timer intervals.

Starting with IRIX 6.2, any process can request a timer interval with any precision. If this
support is misused, it is possible to cause performance problems. For example, a process
can set up a repeating timer at an interval so short that one CPU is monopolized by
setting and handling that timer.

POSIX Timers

IRIX supports the time and timer facilities specified by IEEE standard 1003.1b-1993,
commonly called POSIX timers. This timer interface is the most complete, robust, and
portable, and is recommended for all new applications. The functions it includes for time
measurement are summarized in Table 5-8.
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The POSIX functions for interval timers are summarized in Table 5-9.

Getting Program Execution Time

The times() function returns counts of accumulated user-process and system execution
time. These counts have a resolution of the system dispatching interval, 10 milliseconds.

Table 5-8 POSIX Time Management Functions

Function Name Purpose and Operation

time(2) Return a time_t value containing the count of seconds elapsed since
00:00:00 UTC, January 1, 1970.

times(2) Return user and system execution time consumption for the calling
process and its terminated child processes.

clock_gettime(2) Return the instantaneous reading of one of two clocks: the system
time (CLOCK_REALTIME), or the hardware cycle counter
(CLOCK_SGI_CYCLE).

clock_getres(2) Return the precision of the system time (CLOCK_REALTIME), the
hardware cycle counter in this system (CLOCK_SGI_CYCLE) or
the high-resolution timer base (CLOCK_SGI_FAST).

Table 5-9 POSIX Time Management Functions

Function Name Purpose and Operation

alarm(2) Cause a SIGALRM signal after a specified number of whole
seconds.

timer_create(3C) Create a POSIX timer and specify its time base
(CLOCK_REALTIME or CLOCK_SGI_FAST) and the signal
number it can generate.

timer_delete(3C) Remove a timer created with timer_create().

timer_settime(3C) Set expiration and reload times of a timer, or disarm it.

timer_gettime(3C) Query the time remaining in a timer.

timer_getoverrun(3C) Query the number of overrun events generated by a timer.
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Creating Timestamps

The time() function returns a timestamp with a resolution of 1 second. A timestamp with
a resolution this coarse can be used only for infrequent events.

You can use the clock_gettime() function to sample the system time with a resolution of
0.01 second, or you can use it to read the hardware cycle counter—a free-running binary
counter with an update frequency near the machine clock rate. The clock_getres()
function returns the resolution of either of these clocks.

The program in Example 5-1 demonstrates the use of clock_gettime() and
clock_getres(). The following is an example of the output of this program, ptime, as
executed on an Indy workstation:

$ ptime
CLOCK_REALTIME value: sec 835660711, ns 465330000 [8.35661e+08 sec]
CLOCK_REALTIME units: sec 0, ns 10000000 [0.01 sec]
CLOCK_SGI_CYCLE value: sec 83, ns 449744360 [83.4497 sec]
CLOCK_SGI_CYCLE units: sec 0, ns 40 [4e-08 sec]
CLOCK_SGI_FAST units: sec 0, ns 1000000 [0.001 sec]

Example 5-1 Example of POSIX Time Functions

/*
|| Program to exercise POSIX clock_gettime() and clock_getres() functions.
||
|| ptime [-r -c -R -C -F]
|| -r display CLOCK_REALTIME value
|| -R display CLOCK_REALTIME resolution
|| -c display CLOCK_SGI_CYCLE value
|| -C display CLOCK_SGI_CYCLE resolution
|| -F display CLOCK_SGI_FAST resolution (cannot get time from this)
|| Default is display everything (-rRcC).
*/
#include <time.h>
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <stdio.h>
void showtime(const timespec_t tm, const char *caption)
{

printf("%s: sec %ld, ns %ld [%g sec]\n",
caption, tm.tv_sec, tm.tv_nsec,
((double)tm.tv_sec) + ((double)tm.tv_nsec / 1e9));

}
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main(int argc, char **argv)
{

int opta = 1;
int optr = 0;
int optR = 0;
int optc = 0;
int optC = 0;
int optF = 0;
timespec_t sample, res;
int c;
while ( -1 != (c = getopt(argc,argv,"arRcCF")) )
{

switch (c)
{
case 'a': opta=1; break;
case 'r': optr=1; opta=0; break;
case 'R': optR=1; opta=0; break;
case 'c': optc=1; opta=0; break;
case 'C': optC=1; opta=0; break;
case 'F': optF=1; opta=0; break;
default: return -1;
}

}
if (opta || optr)
{

if (!clock_gettime(CLOCK_REALTIME,&sample))
showtime(sample,"CLOCK_REALTIME value");

else
perror("clock_gettime(CLOCK_REALTIME)");

}
if (opta || optR)
{

if (!clock_getres(CLOCK_REALTIME,&res))
showtime(res,"CLOCK_REALTIME units");

else
perror("clock_getres(CLOCK_REALTIME)");

}
if (opta || optc)
{

if (!clock_gettime(CLOCK_SGI_CYCLE,&sample))
showtime(sample,"CLOCK_SGI_CYCLE value");

else
perror("clock_gettime(CLOCK_SGI_CYCLE)");

}
if (opta || optC)
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{
if (!clock_getres(CLOCK_SGI_CYCLE,&res))

showtime(res,"CLOCK_SGI_CYCLE units");
else

perror("clock_getres(CLOCK_SGI_CYCLE)");
}
if (opta || optF)
{

if (!clock_getres(CLOCK_SGI_FAST,&res))
showtime(res,"CLOCK_SGI_FAST units");

else
perror("clock_getres(CLOCK_SGI_FAST)");

}
}

The real-time clock (CLOCK_REALTIME) can shift backward or jump forward under the
influence of adjustments to the system time by a time daemon. The Silicon Graphics
hardware cycle counter always increases at a steady rate. However, the cycle counter has
a limited precision that depends on the hardware. You can use the syssgi() system
function to find out the precision of the cycle counter (see syssgi(2) and look for the
SGI_CYCLECNTR_SIZE option).

Using Interval Timers

You create an interval timer object by calling timer_create(). To this function you pass
codes that specify the time base to use and the signal to send upon timer expiration. It
returns an ID value to identify the timer to other functions.

The time base for a timer is either CLOCK_REALTIME or CLOCK_SGI_FAST (the latter
is a nonportable request). Typically CLOCK_SGI_FAST has finer resolution, but you can
verify that using the clock_getres() function, as shown in Example 5-1.

You also pass a sigevent_t object to timer_create(). In it you would normally set the
following values:

sigev_notify SIGEV_SIGNAL to have the timer generate a signal on
expiration.

sigev_signo The signal number you want sent, possibly selected from the
POSIX real-time range, for example, SIGRTMIN+1.

sigev_value.sival_int
sigev_value.sival_ptr

An extra value to be passed to the signal-handling function or
to sigwait() when the signal is delivered.
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You can pass a NULL instead of the address of a sigevent_t. In that case, the timer signals
with a SIGALRM.

Initially, a timer is disarmed (inactive). You start a timer by calling timer_settime(). The
principal argument to this function is an itimerspec_t object, which contains two times.
One, it_value, specifies when the timer next expires. The other, it_interval, is the value to
be loaded into the timer when it expires. You can call timer_settime() to accomplish any
of three different operations:

• With it_value nonzero and it_interval zero, arm the timer and initiate a one-time
interval.

• With it_value nonzero and it_interval nonzero, arm and initiate a repeating timer.

• With it_value zero, disarm the timer, preventing it from expiring (if it has not
expired already).

You can also use timer_settime() to reprogram the intervals in a timer while it runs.

A timer can be programmed in terms of relative time (you pass an it_value that represents
increments past the present time) or absolute time (you pass an it_value that represents
actual future times when the timer should expire).

You can interrogate the time remaining in a timer by calling timer_gettime(). After a
timer has expired—for example, in the signal handling function—you can call
timer_getoverrun() to find out how many additional intervals it would have signalled,
but could not signal because the first signal was pending.

BSD Timers

IRIX supports the BSD UNIX feature of interval timers or “itimers.” Table 5-10
summarizes the functions you use to manage itimers.

Table 5-10 BSD Functions for Interval Timers

Function Name Purpose and Operation

setitimer(2) Set the expiration and repeat interval of a timer.

getitimer(2) Return the current value of a timer.
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Each process has three itimers available to it, as summarized in Table 5-11.

The ITIMER_VIRTUAL and ITIMER_PROF have a relatively coarse precision. Their
intervals vary depending on when and how often the process is dispatched. The
ITIMER_REAL timer is comparable to the POSIX time base CLOCK_SGI_FAST.

In order to use an itimer, you establish a signal handler for the appropriate signal as
shown in Table 5-11, then issue the setitimer() call. The principal argument to this
function is a struct itimerval, an object containing two incremental time values. The
it_value field specifies the time until the timer should expire. The it_interval field, when
nonzero, gives the time that should be loaded into the timer after it expires.

Tip: One excellent reason not to mix BSD and POSIX timer support in the same program
is that the POSIX struct itimerspec, used to set a POSIX timer, and the BSD struct itermval,
used to set a BSD itimer, have fields with identical names, but these fields have different
data types and precisions.

You can use setitimer() for any of three operations:

• With it_value nonzero and it_interval zero, initiate a one-time interval.

• With it_value nonzero and it_interval nonzero, initiate a repeating timer.

• With it_value zero, disarm the timer, preventing it from expiring (if it has not
expired already).

Hardware Cycle Counter

All current Silicon Graphics systems have a hardware “cycle counter,” a free-running
binary counter that is incremented at a high, regular frequency. You can use the cycle
counter as a high-precision timestamp.

Table 5-11 Types of itimer

Kind of itimer Interval Measured Resolution Signal Sent

ITIMER_REAL Elapsed clock time 1 millisecond or less SIGALRM

ITIMER_VIRTUAL User time (process
execution time)

1 second SIGVTALRM

ITIMER_PROF User+system time 1 second SIGPROF
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The precision of the cycle counter is different in different system types; for example, it is
a 24-bit counter in the Indy workstation, but a 64-bit counter in CHALLENGE and Onyx
systems. The rate at which the timer increments is its resolution, and this also varies with
the hardware type.

The cycle counter is an addressable hardware device that you can map into the address
space of your process (see “Mapping Physical Memory” on page 20). When this is done
you can sample the cycle counter as if it were a program variable. The code to do this
mapping is discussed in the syssgi(2) reference page under SGI_QUERY_CYCLECNTR.

However, the use of the hardware cycle counter has been integrated into the POSIX timer
support beginning in IRIX 6.2, and this makes access to the cycle counter much simpler
than before:

• In order to sample the cycle counter, call clock_gettime() passing
CLOCK_SGI_CYCLE.

• In order to find out the resolution (update frequency) of the cycle counter, call
clock_getres() passing CLOCK_SGI_CYCLE.

• In order to find out the precision of the cycle counter, call syssgi() passing
SGI_CYCLECNTR_SIZE. The returned value is the number of bits in the counter.

The first two operations are illustrated in Example 5-1 on page 131.
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6. Message Queues

You use a message queue to pass blocks of data between processes or threads without
having to share any memory between the processes. One process or thread puts a
message into the queue. The message is held in the queue until another process or thread
asks for the message.

IRIX supports two implementations of message queues: a POSIX implementation as
specified by IEEE standard 1003.1b-1993, and an SVR4 implementation compatible with
System V Release 4. Both implementations can be used to coordinate POSIX threads or
IRIX processes. This chapter discusses message queues under these headings:

• “Overview of Message Queues” on page 138 describes message queues and the
differences between the two implementations.

• “POSIX Message Queues” on page 140 documents the use of the POSIX
implementation.

• “System V Message Queues” on page 153 documents the use of the SVR4
implementation.
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Overview of Message Queues

A message queue is a software object maintained by the IRIX kernel, logically apart from
the address space of any process. When you create a message queue, the queue has a
public identifier. (The identifier is a file pathname for POSIX, or an integer for SVR4.) A
process uses the identifier to open the queue. When the queue is open, the process can
send messages to the queue or receive messages from the queue.

A message queue has an access mode similar to a file access mode, specifying read and
write access for its owner, its owner’s group, or all users. A process with an effective user
ID giving only read access can only receive messages from the queue. A process with an
effective user ID lacking access cannot open the queue.

When a process requests a message from a queue and no message is available, the
process can be notified immediately with an error code, or it can be suspended until a
message is sent.

A message queue has a limit on the amount of data that can be queued. (POSIX limits the
number of messages; SVR4 limits the total size of queued messages.) When a process
sends a message that would exceed the queue’s limit, the process can be notified
immediately with an error code, or it can be suspended until there is room in the queue.

Implementation Differences

The abstract operations that a message queue supports are summarized in Table 6-1 with
the names of the POSIX and SVR4 functions that implement them.

Table 6-1 Abstract Operations on a Message Queue

Operation POSIX Function SVR4 Function

Gain access to a queue, creating it if it
does not exist.

mq_open(3) msgget(2)

Query attributes of a queue and
number of pending messages.

mq_getattr(3) msgctl(2)

Change attributes of a queue. mq_setattr(3) msgctl(2)

Give up access to a queue. mq_close(3) n.a.

Remove a queue from the system. mq_unlink(3), rm(1) msgctl(2), ipcrm(1)
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Both implementations can be used to communicate between POSIX threads and between
IRIX processes in any combination. Besides obvious features of syntax, the principal
differences between the two implementations are as follows:

• POSIX functions are implemented as library functions in the libc library and operate
primarily in the user process address space. SVR4 functions are implemented in the
kernel, and every operation requires a context switch. This generally results in
lower overhead for the POSIX functions.

• The identity of a POSIX or an SVR4 queue is retained over a reboot. The contents of
a POSIX queue might or might not survive a reboot, but you should not depend on
either type of queue to retain its state after the last program closes it.

• POSIX allows you to set a limit on the number of messages and the size of one
message. SVR4 allows you to set a limit on the aggregate size of queued messages,
but not on their number or their individual sizes.

• With a POSIX queue, the choice of whether or not operations should block on a full
or empty queue is an attribute of the queue descriptor. With SVR4, you specify
blocking or nonblocking operation on each send or receive operation.

• POSIX supports asynchronous notification of a message arrival. SVR4 does not.

• SVR4 allows a receiver to request a message from a particular priority class, in effect
creating sub-queues within a queue. POSIX supports a priority class on each
message, but it always returns the first message of the highest priority class.

Send a message to a queue. mq_send(3) msgsnd(2)

Receive a message from a queue. mq_receive(3) msgrcv(2)

Request asynchronous notification of a
message arriving at a queue.

mq_notify(3) n.a.

Table 6-1 (continued) Abstract Operations on a Message Queue

Operation POSIX Function SVR4 Function
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Uses of Message Queues

You can use message queues in a variety of ways. For example, you can use a message
queue to implement the “producer-consumer” model of cooperating processes or
threads. The “producer” sends its output to the queue; the “consumer” receives the data
from the queue. When one process gets ahead of the other, it is automatically suspended
on the queue until the other process catches up.

Another design model, common in real-time programming, is to use message queues to
dispatch units of work to waiting processes or threads. A process or thread dedicated to
one type of work waits on a message queue. Whenever another process or thread needs
a unit of work of that type, it sends the unit to that queue as a message.

Another use of a message queue is to regulate the use of a scarce resource, such as the
buffers in a pool of buffers. Each resource unit is represented by a message. In order to
obtain a unit, you receive one message from the queue. To release a unit for other
processes to use, you send the unit message back to the queue.

The latter scheme can be used to compensate for a performance problem. The speed of
communication through a queue is limited by the fact that every message is copied twice:
when a message is sent, it is copied from the sender’s buffer to some reserved memory
space; when the message is received, it is copied into the buffer supplied by the receiving
process or thread. When messages are small (or few in number), copying is not a serious
problem.

When messages are large, copying can be avoided as follows. Allocate a pool of message
buffers. Set up a queue of small messages, each message representing a “ticket” to use a
particular buffer. In order to obtain a buffer, a process receives a message from this queue.
The process fills the buffer, then it sends the buffer without copying, by sending only the
“ticket” on another message queue. The process that receives the “ticket” uses the data
in the buffer without needing to copy it, and releases the buffer by sending the “ticket”
to the original queue.

POSIX Message Queues

The POSIX real-time extensions (detailed in IEEE standard 1003.1b) include support for
messages queues. These functions are discussed in the following topics and
demonstrated in example programs.
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Managing Message Queues

The POSIX functions for creating, controlling, closing, and removing message queues are
summarized in Table 6-2.

Creating a Message Queue

The mq_open() function has two purposes. It is used to gain access to a queue that exists,
and it can create a queue that does not exist. To create a new queue, call mq_open() with
four arguments as follows (using the names given in the reference page):

The name of a queue has the same form as a disk filename, and in fact a queue is
implemented as a file. This implementation is permitted, but not required, by the POSIX
standard. Other implementations might not use it.

Once created, a queue is a persistent object that survives until removed. If you want the
program to create a queue, use it, and then remove it during termination, you can call
mq_unlink() to remove the queue.

Table 6-2 POSIX Functions for Managing Message Queues

Function Name Purpose and Operation

mq_open(3) Create a queue if it does not exist, and gain access to it.

mq_getattr(3) Get information about an open message queue.

mq_setattr(3) Change the blocking/nonblocking attribute of an open message queue.

mq_close(3) Give up access to a queue.

mq_unlink(3) Remove a message queue from the system when the last process to have it
open, closes it.

mq_name The pathname that the queue will have.

oflag A set of flags that includes O_CREAT and may include O_EXCL.

mode The access permissions the queue will have.

mq_attr Either NULL or the address of an mq_attr structure specifying the
queue attributes of maximum message size and maximum messages.
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The file can retain some queued messages when the queue is not open, so that some
queued data can persist beyond the termination of the programs that use the queue. The
queued data cannot be trusted after a reboot, because the data might not have been
written to disk before the system came down. You should not depend on the state of the
message queue after a reboot.

Opening an Existing Queue

It is more common to open an existing queue. When the program expects the queue to
exist, it omits the O_CREAT flag bit. An error is returned if the queue does not exist, or
if the queue exists but the effective user ID or group ID of the program does not allow
access to it.

The program can specify the O_RDONLY, O_WRONLY, or O_RDWR flag to show its
intended use of the queue. Access is controlled by the access permissions of the queue,
just as for a file.

Specifying Blocking or Nonblocking Access

An important flag when opening a queue is the O_NONBLOCK flag. When the program
specifies O_NONBLOCK, it wants an immediate return with an error code (EAGAIN)
when it sends a message to a full queue or requests a message from an empty queue.
When the program omits O_NONBLOCK, it specifies that it is willing to be suspended
in these situations.

The O_NONBLOCK flag applies to all operations using the queue descriptor returned
by mq_open(). (The same queue, opened under a different descriptor, can have different
blocking behavior.) The blocking behavior can be changed by applying mq_setattr() to
the queue descriptor. If the program normally wants to allow suspension, but in a
particular situation wants to avoid suspension, it can apply mq_setattr() to change the
blocking state, and then set it back again.
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Using Message Queues

The POSIX functions for using an open queue are summarized in Table 6-3.

Sending a Message

To send a message to a queue, call mq_send() specifying the queue, the address and
length of the message data, and an integer specifying the priority class of the message.
Messages on the queue are retained in arrival sequence within priority classes.

The message is copied out of the caller’s buffer, so the buffer can be reused immediately
after a successful send. The mq_send() function blocks if the queue is full, unless the
O_NONBLOCK attribute is in effect for the queue.

Receiving a Message

To receive a message, call mq_receive() specifying the queue, the address and size of a
buffer, and the address of an integer to receive the message’s priority. The size of the
buffer must be at least as large as the maximum size allowed by that queue. You can learn
this size using mq_getattr() (see Example 6-4 for an example of this).

The mq_receive() function blocks if the queue is empty, unless O_NONBLOCK is in
effect for the queue. The message returned is always the oldest message in the highest
priority class.

Using Asynchronous Notification

Some applications are designed so that each process or thread does nothing but process
messages. In a design of this kind, it makes sense for a process or thread to suspend itself
when no messages are available on its queue.

Table 6-3 POSIX Functions for Using Message Queues

Function Name Purpose and Operation

mq_send(3) Send a message to a queue.

mq_receive(3) Receive a message from a queue.

mq_notify(3) Request asynchronous notification of a message on a queue.
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Other applications are designed so that one process or thread performs multiple tasks
besides handling messages, or handles messages from multiple queues. In this kind of
program, a process cannot suspend itself on a single message queue. Instead, it needs to
do other work and only request a message when a message is available. One way to do
this is to set the O_NONBLOCK flag, and to periodically poll for a message by calling
mq_receive() and testing its return code. However, this is inefficient.

The POSIX message facility offers the ability to receive an asynchronous notification in
the event that a message is posted to an empty queue and no process or thread is
suspended waiting for that message. You do this by calling mq_notify() passing a queue
and a sigevent_t structure. (The sigevent_t is declared in sys/signal.h, which is included by
mqueue.h.)

The sigevent_t structure allows you to specify either a signal or a callback function.
However, only the signal notification (SIGEV_SIGNAL) request is supported by the
POSIX message queue implementation.

Example Programs

The following programs demonstrate the use of POSIX message queues:

• Example 6-1 on page 146 demonstrates the use of mq_getattr() to query the
attributes of a queue.

• Example 6-2 on page 147 demonstrates the use of mq_open() to create or access a
message queue.

• Example 6-3 on page 149 demonstrates the use of mq_send() to put messages onto a
message queue.

• Example 6-4 on page 151 demonstrates the use of mq_receive() to take messages
from a message queue.

The four example programs have a consistent design and use consistent command-line
arguments. Each accepts optional arguments that allow you to exercise most features of
each function, including most error return codes. The following is a simple example of
use. First, a queue is created:

$ mq_open -p 0664 -b 128 -m 32 -c -x /var/tmp/Q32x128
flags: 0x0  maxmsg: 32  msgsize: 128  curmsgs: 0
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An attempt is made to send a message that is larger than the queue maximum size:

$ mq_send -b 129 /var/tmp/Q32x128
mq_send(): Inappropriate message buffer length

A message of appropriate size is sent. Its presence on the queue is verified using
mq_getattr():

$ mq_send -b 128 -p 7 /var/tmp/Q32x128
$ mq_attr /var/tmp/Q32x128
flags: 0x0  maxmsg: 32  msgsize: 128  curmsgs: 1

An attempt is made to send a message with an illegal priority (32 is the highest allowed):

$ mq_send -p 99 /var/tmp/Q32x128
mq_send(): Invalid argument

A message is sent with a valid priority:

$ mq_send -p 19 /var/tmp/Q32x128
$ mq_attr /var/tmp/Q32x128
flags: 0x0  maxmsg: 32  msgsize: 128  curmsgs: 2

The two messages are received. The one with higher priority is received first:

$ mq_receive -c 2 /var/tmp/Q32x128
1: priority 19  len 63 text 00001 Fri Jun 14 09:19:12 1996
2: priority 7  len 128 text 00001 Fri Jun 14 09:17:15 1996

Another message is requested. Since the O_NONBLOCK flag is used, the absence of any
message is reported as an error code, rather than suspending the process:

$ mq_receive -n /var/tmp/Q32x128
mq_receive(): Resource temporarily unavailable

Example of mq_getattr()

The program mq_attr in Example 6-1 uses mq_getattr() to get and display the queue
attributes. Only one command-line argument is accepted:

path The file pathname of the queue must be given following all options.
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Example 6-1 Program to Demonstrate mq_getattr() and mq_setattr()

/*
|| Program to test mq_getattr(3), displaying queue information.
|| mq_attr <path>
|| <path> pathname of the queue, which must exist
*/
#include <mqueue.h> /* message queue stuff */
#include <errno.h> /* errno and perror */
#include <fcntl.h> /* O_RDONLY */
#include <stdio.h>
int main(int argc, char **argv)
{

mqd_t mqd; /* queue descriptor */
struct mq_attr obuf; /* output attr struct for getattr */
if (argc < 2)
{

printf("A pathname of a message queue is required\n");
return -1;

}
mqd = mq_open(argv[1],O_RDONLY);
if (-1 != mqd)
{

if ( ! mq_getattr(mqd,&obuf) )
{

printf("flags: 0x%x maxmsg: %d msgsize: %d curmsgs: %d\n",
obuf.mq_flags, obuf.mq_maxmsg, obuf.mq_msgsize, obuf.mq_curmsgs);

}
else

perror("mq_getattr()");
}
else

perror("mq_open()");
}
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Example of mq_open()

The program mq_open in Example 6-2 allows you to create a message queue from the
command line. The following command-line arguments are supported:

Example 6-2 Program to Demonstrate mq_open()

/*
|| Program to test mq_open(3).
|| mq_open [-p <perms>] [-b <bytes>] [-m <msgs>] [-c] [-x] <path>
|| -p <perms> access mode to use when creating, default 0600
|| -b <bytes> maximum message size to set, default MQ_DEF_MSGSIZE
|| -m <msgs> maximum messages on the queue, default MQ_DEF_MAXMSG
|| -f <flags> flags to use with mq_open, including:
|| c use O_CREAT
|| x use O_EXCL
|| <path> the pathname of the queue, required
|| Numeric arguments can be given in any form supported by strtoul(3).
*/
#include <mqueue.h> /* message queue stuff */
#define MQ_DEF_MSGSIZE 1024
#define MQ_DEF_MAXMSG 16
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <fcntl.h> /* O_flags */
#include <stdio.h>
int main(int argc, char **argv)
{

int perms = 0600; /* permissions */
int oflags = O_RDWR; /* flags: O_CREAT + O_EXCL */
int rd=0, wr=0; /* -r and -w options */
mqd_t mqd; /* returned msg queue descriptor */
int c;
char *path; /* ->first non-option argument */

path The file pathname of the queue must be given, following all options.

-p perms Access permissions to set, for example, -p 0664.

-b bytes The maximum message size this queue allows, for example, -b 256.

-m msgs The maximum number of messages that can be pending on this queue,
for example, -m 64.

-c Use the O_CREAT flag to create the queue if it doesn’t exist.

-x Use the O_EXCL flag to require that the queue not exist.
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struct mq_attr buf; /* buffer for stat info */
buf.mq_msgsize = MQ_DEF_MSGSIZE;
buf.mq_maxmsg = MQ_DEF_MAXMSG;
while ( -1 != (c = getopt(argc,argv,"p:b:m:cx")) )
{

switch (c)
{
case 'p': /* permissions */

perms = (int) strtoul(optarg, NULL, 0);
break;

case 'b': /* message size */
buf.mq_msgsize = (int) strtoul(optarg, NULL, 0);
break;

case 'm': /* max messages */
buf.mq_maxmsg = (int) strtoul(optarg, NULL, 0);
break;

case 'c': /* use O_CREAT */
oflags |= O_CREAT;
break;

case 'x': /* use O_EXCL */
oflags |= O_EXCL;
break;

default: /* unknown or missing argument */
return -1;

} /* switch */
} /* while */
if (optind < argc)

path = argv[optind]; /* first non-option argument */
else

{ printf("Queue pathname required\n"); return -1; }
mqd = mq_open(path,oflags,perms,&buf);
if (-1 != mqd)
{

if ( ! mq_getattr(mqd,&buf) )
{

printf("flags: 0x%x maxmsg: %d msgsize: %d curmsgs: %d\n",
buf.mq_flags, buf.mq_maxmsg, buf.mq_msgsize, buf.mq_curmsgs);

}
else

perror("mq_getattr()");
}
else

perror("mq_open()");
}



POSIX Message Queues

149

Example of mq_send()

The mq_send program in Example 6-3 allows you to send from 1 to 9999 messages to a
queue from the command line. The following command line arguments are accepted:

The count argument is limited to 99,999 so that the message text will not exceed 32 bytes,
the (arbitrary) minimum message size the program defines.

Example 6-3 Program to Demonstrate mq_send()

/*
|| Program to test mq_send(3)
|| mq_send [-p <priority>] [-b <bytes>] [-c <count>] [-n] <path>
|| -p <priority> priority code to use, default 0
|| -b <bytes> size of the message, default 64, min 32
|| -c <count> number of messages to send, default 1, max 9999
|| -n use O_NONBLOCK flag in open
|| <path> path to queue, required
|| The program sends <count> messages of <bytes> each at <priority>.
|| Each message is an ASCII string containing the time and date and
|| a serial number 1..<count>. The minimum message is 32 bytes.
*/
#include <mqueue.h> /* message queue stuff */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <time.h> /* time(2) and ctime_r(3) */
#include <fcntl.h> /* O_WRONLY */
#include <stdlib.h> /* calloc(3) */
#include <stdio.h>
int main(int argc, char **argv)

path The file pathname of the queue must be given following all options.

-b bytes Size of each message, for example -b 0x200.

-c count Number of messages to send. The default is 1.

-p priority Numeric priority of message to send. Numbers from 0 to 32 are allowed by
mq_send().

-n Use the O_NONBLOCK flag with mq_open().
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{
char *path; /* -> first non-option argument */
int oflags = O_WRONLY; /* open flags, O_NONBLOCK may be added */
mqd_t mqd; /* queue descriptor from mq_open */
unsigned int msg_prio = 0; /* message priority to use */
size_t msglen = 64; /* message size */
int count = 1; /* number of messages to send */
char *msgptr; /* -> allocated message space */
int c;
while ( -1 != (c = getopt(argc,argv,"p:b:c:n")) )
{

switch (c)
{
case 'p': /* priority */

msg_prio = strtoul(optarg, NULL, 0);
break;

case 'b': /* bytes */
msglen = strtoul(optarg, NULL, 0);
if (msglen<32) msglen = 32;
break;

case 'c': /* count */
count = strtoul(optarg, NULL, 0);
if (count > 99999) count = 99999;
break;

case 'n': /* use nonblock */
oflags |= O_NONBLOCK;
break;

default: /* unknown or missing argument */
return -1;

}
}
if (optind < argc)

path = argv[optind]; /* first non-option argument */
else

{ printf("Queue pathname required\n"); return -1; }
msgptr = calloc(1,msglen);
mqd = mq_open(path,oflags);
if (-1 != mqd)
{

char stime[26];
const time_t tm = time(NULL); /* current time value */
(void)ctime_r (&tm,stime); /* formatted time string */
stime[24] = '\0' ; /* drop annoying \n */
for( c=1; c<=count; ++c)
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{
sprintf(msgptr,"%05d %s",c,stime);
if ( mq_send(mqd,msgptr,msglen,msg_prio) )
{

perror("mq_send()");
break;

}
}

}
else

perror("mq_open(O_WRONLY)");
}

Example of mq_receive()

The mq_receive program in Example 6-4 allows you to receive and display messages from
a queue. These command-line arguments are accepted:

You can use the -q option to keep the program from displaying messages. Do this when
receiving a large number of messages, for example, to test performance.

Example 6-4 Program to Demonstrate mq_receive()

/*
|| Program to test mq_receive(3)
|| mq_receive [-c <count>] [-n] [-q] <path>
|| -c <count> number of messages to request, default 1
|| -n use O_NONBLOCK flag on open
|| -q quiet, do not display messages
|| <path> path to message queue, required
|| The program calls mq_receive <count> times or until an error occurs.
*/
#include <mqueue.h> /* message queue stuff */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <fcntl.h> /* O_RDONLY */
#include <stdlib.h> /* calloc(3) */
#include <stdio.h>

path The file pathname of the queue must be given following all options.

-c count Number of messages to send. The default is 1.

-q Tells program not to display a line for each message received.

-n Use the O_NONBLOCK flag with mq_open().
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int main(int argc, char **argv)
{

char *path; /* -> first non-option argument */
int oflags = O_RDONLY; /* open flags, O_NONBLOCK may be added */
int quiet = 0; /* -q option */
int count = 1; /* number of messages to request */
mqd_t mqd; /* queue descriptor from mq_open */
char *msgptr; /* -> allocated message space */
unsigned int msg_prio; /* received message priority */
int c, ret;
struct mq_attr obuf; /* output of mq_getattr(): mq_msgsize */
while ( -1 != (c = getopt(argc,argv,"c:nq")) )
{

switch (c)
{
case 'c': /* count */

count = strtoul(optarg, NULL, 0);
break;

case 'q': /* quiet */
quiet = 1;
break;

case 'n': /* nonblock */
oflags |= O_NONBLOCK;
break;

default: /* unknown or missing argument */
return -1;

}
}
if (optind < argc)

path = argv[optind]; /* first non-option argument */
else

{ printf("Queue pathname required\n"); return -1; }
mqd = mq_open(path,oflags);
if (-1 != mqd)
{

if (! (mq_getattr(mqd,&obuf)) ) /* get max message size */
{

msgptr = calloc(1,obuf.mq_msgsize);
for( c=1; c<=count; ++c)
{

ret = mq_receive(mqd,msgptr,obuf.mq_msgsize,&msg_prio);
if (ret >= 0) /* got a message */
{

if (!quiet)
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{
if ( isascii(*msgptr) )

printf("%d: priority %ld len %d text %-32.32s\n",
c, msg_prio, ret, msgptr);

else
printf("%d: priority %ld len %d (nonascii)\n",

c, msg_prio, ret);
}

}
else /* an error on receive, stop */
{

perror("mq_receive()");
break;

}
} /* for c <= count */

} /* if getattr */
else
{

perror("mq_getattr()");
return -1;

}
} /* if open */
else

perror("mq_open(O_WRONLY)");
}

System V Message Queues

IRIX contains an implementation of message queues compatible with UNIX System V
Release 4 (SVR4). These message queue functions are demonstrated in example
programs in this section.
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Managing SVR4 Message Queues

The functions used to create and control SVR4 message queues are summarized in
Table 6-4.

Unlike a POSIX message queue, whose name is also a filename, the external name of an
SVR4 message queue is an integer held in an IPC name table (see “SVR4 IPC Name
Space” on page 50). You specify this key when creating the message queue, and again
whenever you access it for use.

Creating a Message Queue

The msgget() function has two purposes. It is used to gain access to a queue that exists,
and it can create a queue that does not exist. To create a new queue, call msgget() with
the following arguments:

For example, a call to create a queue might be written as follows:

ret = msgget(PROJ_KEY,IPC_CREAT+IPC_EXCL+0660);

This example relies on a constant PROJ_KEY to supply the key. Another option is to use
the ftok() library function (see the ftok(3C) reference page).

Table 6-4 SVR4 Functions for Managing Message Queues

Function Name Purpose and Operation

msgget(2) Create a message queue if it does not exist, and gain access to it.

msgctl(2) Query the status of a queue, change its owner ID or access permissions,
or remove it from the system.

key An integer key that is not defined at this time.

msgflag A set of flags that includes IPC_CREAT and may include IPC_EXCL.
This value also contains the access permission bits.
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Accessing an Existing Queue

When the program expects the queue to exist, it calls msgget() passing the expected key
value and omitting the IPC_CREAT flag. If the queue does not exist, or if the effective
user and group ID of the process are not allowed access to the queue, an error is returned.
The program receives read-only or read-write access depending on the access
permissions of the queue, just as with a file.

Modifying a Message Queue

You can use msgctl() to modify four attributes of a queue after creating or accessing it:

• the user ID and group ID that owns the queue

• the access permissions

• the limit on the total size of all queued messages

The size limit on a new queue is set to the system limit (32,768 bytes as of IRIX 6.2). This
determines how many messages can be waiting, unreceived, on the queue. That in turn
determines how far the message-sending process can get ahead of the message-reading
process. You can lower the limit to limit the sending process or thread more closely to the
speed of the receiving process or thread.

Removing a Message Queue

You can remove a message queue using the ipcrm command (see the ipcrm(1) reference
page), or by calling msgctl() and passing the IPC_RMID command code. In many cases,
a message queue is meant for use within the scope of one program only, and you do not
want the queue to persist after the termination of that program. Call msgctl() to remove
the queue as part of termination.
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Using SVR4 Message Queues

The SVR4 functions for using message queues are summarized in Table 6-5.

Sending a Message

To send a message to a queue, call msgsnd() and specify the queue, the address and
length of the message data, and a flag number that can contain IPC_NOWAIT. The
message buffer contains an integer specifying the “type” of the message. Messages on the
queue are retained in arrival sequence within types.

The message is copied out of the caller’s buffer, so the buffer can be reused immediately
after a successful send. If the queue is full, the msgsnd() function blocks unless the
IPC_NOWAIT flag is passed.

Receiving a Message

To receive a message, call msgrcv() and specify the queue, the address and size of a
buffer, a number for the desired message type, and a flag value. If the queue is empty, the
msgrcv() function blocks unless the IPC_NOWAIT flag is passed. If the message buffer is
not as large as the message, an error is returned unless the IPC_NOERROR flag is passed.
Then the message is simply truncated to fit the buffer.

The type value can be 0, to specify “any type,” or it can be a specific (positive) type
number to select the first number of that type. Finally, it can be a negative value to specify
“any type less than or equal.”

Table 6-5 SVR4 Functions for Using Message Queues

Function Name Purpose and Operation

msgsnd(2) Send a message to a queue.

msgrcv(2) Receive a message from a queue.
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Example Programs

The following programs demonstrate the use of SVR4 message queues:

• Example 6-5 on page 159 demonstrates the use of msgget() to create or access a
queue.

• Example 6-6 on page 161 demonstrates the use of msgctl() to query or modify a
queue.

• Example 6-7 on page 163 demonstrates the use of msgsnd() to put messages onto a
queue.

• Example 6-8 on page 166 demonstrates the use of msgrcv() to take messages from a
queue.

The four example programs have a consistent design and use consistent command-line
argument letters. Each accepts optional arguments that allow you to exercise all the
features of one function, including most error return codes. The following is a simple
example of use. First, ipcs is used to show no queues exist.

$ ipcs -q
IPC status from /dev/kmem as of Wed Jun 12 10:36:38 1996
T     ID     KEY        MODE       OWNER    GROUP
Message Queues:

Then a queue is created with key 9 and ipcs used to verify the operation.

$ msgget -k 9 -c
msqid = 0x0032. owner = 1110.20, perms = 100600, max bytes = 32768
0 msgs = 0 bytes on queue
$ ipcs -q
IPC status from /dev/kmem as of Thu Jun 20 09:32:25 1996
T     ID     KEY        MODE       OWNER    GROUP
Message Queues:
q     50 0x00000009 --rw-------  cortesi     user

The use of the IPC_EXCL flag is tested:

$ msgget -k 9 -c -x
msgget(): File exists



158

Chapter 6: Message Queues

A message is sent to the queue, addressing the queue by its ID.

$ msgsnd -i 50 -t 17
$ msgctl -i 50
owner = 1110.20, perms = 100600, max bytes = 32768
1 msgs = 64 bytes on queue

The maximum queue size is changed, this time addressing the queue by its key.

$ msgctl -k 9 -b 1024
owner = 1110.20, perms = 100600, max bytes = 1024
1 msgs = 64 bytes on queue

A second message is sent:

$ msgsnd -i 50 -t 18
$ msgctl -i 50
owner = 1110.20, perms = 100600, max bytes = 1024
2 msgs = 128 bytes on queue

The first and second messages are received:

$ msgrcv -k 9
1: type 17  len 64 text 00001 Thu Jun 20 09:32:55 1996
$ msgrcv -i 50
1: type 18  len 64 text 00001 Thu Jun 20 09:33:18 1996

Another message receipt is attempted, first with IPC_NOWAIT:
$ msgrcv -i 50 -n
msgrcv(): No message of desired type

Another message is attempted without IPC_NOWAIT. While msgrcv is suspended, the
message queue is removed.

$ msgrcv -k 9 &
12477
$ ipcrm -q 50
$ msgrcv(): Identifier removed
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Example of msgget

The program msgget in Example 6-5 allows you to create a message queue from the
command line. The following command-line arguments are supported:

If the -k argument is omitted, the program uses a private key and thus creates a message
queue that can be used from this program only. (This is not useful, since the program
does nothing with the queue before it terminates.)

Example 6-5 Program to Demonstrate msgget()

/*
|| Program to test msgget(2).
|| msgget [-k <key>] [-p <perms>] [-x] [-c]
|| -k <key> the key to use, default == 0 == IPC_PRIVATE
|| -p <perms> permissions to use, default 600
|| -x use IPC_EXCL
|| -c use IPC_CREAT
*/
#include <sys/msg.h> /* msg queue stuff, ipc.h, types.h */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key = IPC_PRIVATE; /* key */
int perms = 0600; /* permissions */
int msgflg = 0; /* flags: CREAT + EXCL */
int msqid; /* returned msg queue id */
struct msqid_ds buf; /* buffer for stat info */
int c;
while ( -1 != (c = getopt(argc,argv,"k:p:xc")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

-k key Numeric identifier of a message queue, for example -k 99.

-p perms Access permissions to set, for example -p 0664.

-x Use the IPC_EXCL flag with msgget().

-c Use the IPC_CREAT flag with msgget().



160

Chapter 6: Message Queues

case 'p': /* permissions */
perms = (int) strtoul(optarg, NULL, 0);
break;

case 'c':
msgflg |= IPC_CREAT;
break;

case 'x':
msgflg |= IPC_EXCL;
break;

default: /* unknown or missing argument */
return -1;

}
}
msqid = msgget (key, msgflg|perms);
if (-1 != msqid)
{

printf("msqid = 0x%04x. ",msqid);
if (-1 != msgctl(msqid,IPC_STAT,&buf))
{

printf("owner = %d.%d, perms = %04o, max bytes = %d\n",
buf.msg_perm.uid,
buf.msg_perm.gid,
buf.msg_perm.mode,
buf.msg_qbytes);

printf("%d msgs = %d bytes on queue\n",
buf.msg_qnum, buf.msg_cbytes);

}
else

perror("\nmsgctl()");
}
else

perror("msgget()");
}
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Example of msgctl

The program msgctl in Example 6-6 allows you to display the state of a queue, or to
change the permissions, owner ID, group ID, or maximum size of a queue. The following
command-line arguments are supported:

Example 6-6 Program to Demonstrate msgctl()

/*
|| Program to test msgctl(2).
|| msgctl {-k <key> -i <id>} [-b <bytes>] [-p <perms>] [-u <uid>] [-g <gid>]
|| -k <key> the key to use, or..
|| -i <id> ..the mq id
|| -b <bytes> new max number of bytes to set in msg_qbytes
|| -p <perms> new permissions to assign in msg_perm.mode
|| -u <uid> new user id (numeric) for msg_perm.uid
|| -g <gid> new group id (numeric) for msg_perm.gid
*/
#include <sys/msg.h> /* msg queue stuff, ipc.h, types.h */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key; /* key for msgget.. */
int msqid = -1; /* ..specified or received msg queue id */
long perms = -1L; /* -1L is not valid for any of these */
long bytes = -1L;
long uid = -1L;
long gid = -1L;
struct msqid_ds buf;
int c;
while ( -1 != (c = getopt(argc,argv,"k:i:b:p:u:g:")) )
{

switch (c)

-k key Numeric identifier of a message queue, for example, -k 99.

-i id Message queue ID, alternative to specifying the key; for example, -i 80.

-p perms Access permissions to set, for example, -p 0664.

-b bytes Maximum size of the message queue, for example, -b 0x1000.

-u uid Numeric user ID to set as owner.

-g gid Numeric group ID to set as owner.
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{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* id */
msqid = (int) strtoul(optarg, NULL, 0);
break;

case 'p': /* permissions */
perms = strtoul(optarg, NULL, 0);
break;

case 'b': /* bytes */
bytes = strtoul(optarg, NULL, 0);
break;

case 'u': /* uid */
uid = strtoul(optarg, NULL, 0);
break;

case 'g': /* gid */
gid = strtoul(optarg, NULL, 0);
break;

default: /* unknown or missing argument */
return -1;

}
}
if (-1 == msqid) /* no id given, try key */

msqid = msgget (key, 0);
if (-1 != msqid)
{

if (-1 != msgctl(msqid,IPC_STAT,&buf))
{

if ((perms!=-1L)||(bytes!=-1L)||(uid!=-1L)||(gid!=-1L))
{

/* put new values in buf fields as requested */
if (perms != -1L) buf.msg_perm.mode = (mode_t)perms;
if (uid != -1L) buf.msg_perm.uid = (uid_t)uid;
if (gid != -1L) buf.msg_perm.gid = (gid_t)gid;
if (bytes != -1L) buf.msg_qbytes = (ulong_t)bytes;
if (-1 == msgctl(msqid,IPC_SET,&buf))

perror("\nmsgctl(IPC_SET)");
}
printf("owner = %d.%d, perms = %04o, max bytes = %d\n",

buf.msg_perm.uid,
buf.msg_perm.gid,
buf.msg_perm.mode,
buf.msg_qbytes);

printf("%d msgs = %d bytes on queue\n",
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buf.msg_qnum, buf.msg_cbytes);
}
else

perror("\nmsgctl(IPC_STAT)");
}
else

perror("msgget()");
}

Example of msgsnd

The msgsnd program in Example 6-7 allows you to send one or more messages of
specified length and type to a message queue. The following command-line arguments
are supported:

The program sends as many messages as you specify, each with the specified type and
size. The first 32 bytes of each message is a printable string containing a sequence number
and the date and time. The message is padded out to the specified size with binary 0.

Example 6-7 Program to Demonstrate msgsnd()

/*
|| Program to test msgsnd(2)
|| msgsnd {-k <key> -i <id>} [-t <type>] [-b <bytes>] [-c <count>] [-n]
|| -k <key> the key to use, or..
|| -i <id> ..the mq id
|| -t <type> the type of each message, default = 1
|| -b <bytes> the size of each message, default = 64, min 32
|| -c <count> the number of messages to send, default = 1, max 99999
|| -n use IPC_NOWAIT flag
|| The program sends <count> messages of <type>, <bytes> each on the queue.
|| Each message is an ASCII string containing the time and date, and
|| a serial number 1..<count>, minimum message is 32 bytes.

-k key Numeric identifier of a message queue, for example, -k 99.

-i id Message queue ID, alternative to specifying the key; for example, -i 80.

-c count Number of messages to send. The default is 1.

-t type Numeric type of message to send. Types less than 1 are rejected by
msgsnd().

-b bytes Size of each message, for example, -b 0x200.

-n Use the IPC_NOWAIT flag with msgsnd().
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*/
#include <sys/msg.h> /* msg queue stuff, ipc.h, types.h */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <time.h> /* time(2) and ctime_r(3) */
#include <stdio.h>
int main(int argc, char **argv)
{

key_t key; /* key for msgget.. */
int msqid = -1; /* ..specified or received msg queue id */
int msgflg = 0; /* flag, 0 or IPC_NOWAIT */
long type = 1; /* message type -- 0 is not valid to msgsnd() */
size_t bytes = 64; /* message text size */
int count = 1; /* number to send */
int c;
struct msgspace { long type; char text[32]; } *msg;
while ( -1 != (c = getopt(argc,argv,"k:i:t:b:c:n")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* id */
msqid = (int) strtoul(optarg, NULL, 0);
break;

case 't': /* type */
type = strtoul(optarg, NULL, 0);
break;

case 'b': /* bytes */
bytes = strtoul(optarg, NULL, 0);
if (bytes<32) bytes = 32;
break;

case 'c': /* count */
count = strtoul(optarg, NULL, 0);
if (count > 99999) count = 99999;
break;

case 'n': /* nowait */
msgflg |= IPC_NOWAIT;
break;

default: /* unknown or missing argument */
return -1;

}
}
msg = (struct msgspace *)calloc(1,sizeof(long)+bytes);
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if (-1 == msqid) /* no id given, try key */
msqid = msgget (key, 0);

if (-1 != msqid)
{

const time_t tm = time(NULL);
char stime[26];
(void)ctime_r (&tm,stime); /* format timestamp for msg */
stime[24] = '\0'; /* drop annoying \n */
for( c=1; c<=count; ++c)
{

msg->type = type;
sprintf(msg->text,"%05d %s",c,stime);
if (-1 == msgsnd(msqid,msg,bytes,msgflg))
{

perror("msgsnd()");
break;

}
}

}
else

perror("msgget()");
}
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Example of msgrcv

The program msgrcv in Example 6-8 allows you to receive messages from a specified
queue. The following arguments are used in more than one program:

As each message is received, it is displayed. A sequence number and the message type
are always displayed; the first 32 bytes of the text are displayed if it begins with ASCII.

Example 6-8 Program to Demonstrate msgrcv()

/*
|| Program to test msgrcv(2)
|| msgrcv {-k <key> -i <id>} [-t <type>] [-b <bytes>] [-c <count>]
|| [-n] [-e] [-q]
|| -k <key> the key to use, or..
|| -i <id> ..the mq id
|| -t <type> the type of message, default = 0 (any msg)
|| -b <bytes> the max size to receive, default = 64
|| -c <count> the number of messages to receive, default = 1
|| -n use IPC_NOWAIT flag
|| -e use MSG_NOERROR flag (truncate long msg)
|| -q quiet, do not display received message
|| The program calls msgrcv <count> times or until an error occurs,
|| each time requesting a message of type <type> and max size <bytes>.
*/
#include <sys/msg.h> /* msg queue stuff, ipc.h, types.h */
#include <unistd.h> /* for getopt() */
#include <errno.h> /* errno and perror */
#include <ctype.h> /* isascii() */
#include <stdio.h>
int main(int argc, char **argv)

-k key Numeric identifier of a message queue, for example -k 99.

-i id Message queue ID, alternative to specifying the key; for example, -i 80.

-c count Number of messages to attempt to receive.

-b bytes Maximum size of a message, for example, -b 0x200.

-n Use the IPC_NOWAIT flag with msgrcv().

-e Use the MSG_NOERROR flag with msgrcv(), to truncate messages longer
than bytes.

-q Be quiet, do not display the received message. Use for performance testing.
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{
key_t key; /* key for msgget.. */
int msqid = -1; /* ..specified or received msg queue id */
int msgflg = 0; /* flag, 0, IPC_NOWAIT, MSG_NOERROR */
long type = 0; /* message type */
size_t bytes = 64; /* message size limit */
int count = 1; /* number to receive */
int quiet = 0; /* quiet flag */
int c;
struct msgspace { long type; char text[32]; } *msg;
while ( -1 != (c = getopt(argc,argv,"k:i:t:b:c:enq")) )
{

switch (c)
{
case 'k': /* key */

key = (key_t) strtoul(optarg, NULL, 0);
break;

case 'i': /* id */
msqid = (int) strtoul(optarg, NULL, 0);
break;

case 't': /* type -- can be negative */
type = strtol(optarg, NULL, 0);
break;

case 'b': /* bytes -- no minimum */
bytes = strtoul(optarg, NULL, 0);
break;

case 'c': /* count - no maximum */
count = strtoul(optarg, NULL, 0);
break;

case 'n': /* nowait */
msgflg |= IPC_NOWAIT;
break;

case 'e': /* noerror -- allow truncation of msgs */
msgflg |= MSG_NOERROR;
break;

case 'q': /* quiet */
quiet = 1;
break;

default: /* unknown or missing argument */
return -1;

}
}
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if (-1 == msqid) /* no id given, try key */
msqid = msgget (key, 0);

msg = (struct msgspace *)calloc(1,sizeof(long)+bytes);
if (-1 != msqid)
{

for( c=1; c<=count; ++c)
{

int ret = msgrcv(msqid,msg,bytes,type,msgflg);
if (ret >= 0) /* got a message */
{

if (!quiet)
{

if (isascii(msg->text[0]))
printf("%d: type %ld len %d text %-32.32s\n",

c, msg->type, ret, msg->text);
else

printf("%d: type %ld len %d (nonascii)\n",
c, msg->type, ret);

}
}
else /* an error, end loop */
{

perror("msgrcv()");
break;

}
} /* for c<=count */

} /* good msgget */
else

perror("msgget()");
}



PART THREE

Advanced File Control III

Chapter 7, “File and Record Locking”

Describes the different ways of locking files or records within files for exclusive
use between processes and systems.

Chapter 8, “Using Asynchronous I/O”

Describes how to schedule file I/O asynchronously, in a parallel thread.

Chapter 9, “High-Performance File I/O”

Describes the use of direct-to-disk file I/O, and guaranteed-rate I/O.
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7. File and Record Locking

IRIX supports the ability to place a lock upon an entire file or upon a range of bytes
within a file. Programs must cooperate in respecting record locks. A file lock can be made
mandatory but only at a cost in performance. For these reasons, file and record locking
should normally be seen as a synchronization mechanism, not a security mechanism.

The chapter includes these topics:

• “Overview of File and Record Locking” presents an introduction to locking
mechanisms.

• “Controlling File Access With File Permissions” discusses the relationship of file
permissions to exclusive file access.

• “Using Record Locking” discusses the use of file and record locks to get exclusive
data access.

• “Enforcing Mandatory Locking” describes how file locks can be made mandatory
on programs that do not use locking.

• “Record Locking Across Multiple Systems” discusses how file locking can be
extended to NFS-mounted files.
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Overview of File and Record Locking

Simultaneous access to file data is characteristic of many multiprocess, multithreaded, or
real-time applications.The purpose of the file and record locking facility is to provide a
way for programs to synchronize their use of common file data.

Advisory file and record locking can be used to coordinate independent, unrelated
processes. In mandatory locking, on the other hand, the standard I/O subroutines and
I/O system calls enforce the locking protocol. Mandatory locking keeps unrelated
programs from accessing data out of sequence, at some cost of access speed.

The system functions used in file and record locking are summarized in Table 7-1.

Terminology

The discussion of file and record locking depends on the terms defined in this section.

Record

A record is any contiguous sequence of bytes in a file. The UNIX operating system does
not impose any record structure on files. The boundaries of records are defined by the
programs that use the files. Within a single file, a record as defined by one process can
overlap partially or completely on a record as defined by some other process.

Table 7-1 Functions for File and Record Locking

Function Name Purpose and Operation

fcntl(2), fcntl(5) General function for modifying an open file descriptor; can be used to
set file and record locks.

lockf(3C), lockf(3F) Library function to set and remove file and record locks on open files
(SVR4 compatible).

flock(3B) Library function to set and remove file and record locks on open files
(BSD compatible).

chmod(1), chmod(2) Command and system function that can enable mandatory file locking
on a specified file.
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Read (Shared) Lock

A read lock keeps a record from changing while one or more processes read the data. If
a process holds a read lock, it may assume that no other process can alter that record at
the same time. A read lock is also a shared lock because more than one process can place
a read lock on the same record or on a record that overlaps a read-locked record. No
process, however, can have a write lock that overlaps a read lock.

Write (Exclusive) Lock

A write lock is used to gain complete control over a record. A write lock is an exclusive
lock because, when a write lock is in place on a record, no other process may read- or
write-lock that record or any data that overlaps it. If a process holds a write lock it can
assume that no other process will read or write that record at the same time.

Advisory Locking

An advisory lock is visible only when a program explicitly tries to place a conflicting
lock. An advisory lock is not visible to the file I/O system functions such as read() and
write(). A process that does not test for an advisory lock can violate the terms of the lock,
for example, by writing into a locked record.

Advisory locks are useful when all processes make an appropriate record lock request
before performing any I/O operation. When all processes use advisory locking, access to
the locked data is controlled by the advisory lock requests. The success of advisory
locking depends on the cooperation of all processes in enforcing the locking protocol; it
is not enforced by the file I/O subsystem.

Mandatory Locking

Mandatory record locking is enforced by the file I/O system functions, and so is effective
on unrelated processes that are not part of a cooperating group. Respect for locked
records is enforced by the creat(), open(), read(), and write() system calls. When a record
is locked, access to that record by any other process is restricted according to the type of
lock on the record. Cooperating processes should still request an appropriate record lock
before an I/O operation, but an additional check is made by IRIX before each I/O
operation to ensure the record locking protocol is being honored. Mandatory locking
offers security against unplanned file use by unrelated programs, but it imposes
additional system overhead on access to the controlled files.
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Lock Promotion and Demotion

A read lock can be promoted to write-lock status if no other process is holding a read lock
in the same record. If processes with pending write locks are waiting for the same record,
the lock promotion succeeds and the other (sleeping) processes wait. Demoting a write
lock to a read lock can be done at any time.

Because the lockf() function does not support read locks, lock promotion is not
applicable to locks set with that call. >

Controlling File Access With File Permissions

The access permissions for each UNIX file control which users can read, write, or execute
the file. These access permissions may be set only by the owner of the file or by the
superuser. The permissions of the directory in which the file resides can also affect the
access permissions for a file. Note that if the permissions for a directory allow anyone to
write in the directory, and the “sticky bit” is not included in the permissions, files within
that directory can be removed even by a user who does not have read, write, or execute
permission for those files.

If your application warrants the use of record locking, make sure that the permissions on
your files and directories are also set properly. A record lock, even a mandatory record
lock, protects only the records that are locked, while they are locked. Unlocked parts of
the files can be corrupted if proper precautions are not taken.

Only a known set of programs or users should be able to read or write a database. This
can be enforced through file permissions as follows:

1. Using the chown facility (see the chown(1) and chown(2) reference pages), set the
ownership of the critical directories and files to reflect the authorized group ID.

2. Using the chmod facility (see also the chmod(1) and chmod(2) reference pages), set
the file permissions of the critical directories and files so that only members of the
authorized group have write access (“775” permissions).

3. Using the chown facility, set the accessing program executable files to be owned by
the authorized group.

4. Using the chmod facility, set the set-GID bit for each accessing program executable
file and to permit execution by anyone (“2755” permissions).
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Users who are not members of the authorized group cannot modify the critical
directories and files. However, when an ordinary user executes one of the accessing
programs, the program automatically adopts the group ID of its owner. The accessing
program can create and modify files in the critical directory, but other programs started
by an ordinary user cannot.

Using Record Locking

This section covers the following topics:

• “Opening a File for Record Locking”

• “Setting a File Lock”

• “Setting and Removing Record Locks”

• “Getting Lock Information”

• “Deadlock Handling”

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid open file
descriptor. If read locks are to be used, then the file must be opened with at least read
access; likewise for write locks and write access.

Example 7-1 opens a file for both read and write access.

Example 7-1 Opening a File for Locked Use

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
int fd; /* file descriptor */
char *filename;
main(argc, argv)
int argc;
char *argv[];



176

Chapter 7: File and Record Locking

{
extern void exit(), perror();
/* get database file name from command line and open the
* file for read and write access.
*/
if (argc < 2) {

(void) fprintf(stderr, "usage: %s filename\n", argv[0]);
exit(2);

}
filename = argv[1];
fd = open(filename, O_RDWR);
if (fd < 0) {

perror(filename);
exit(2);

}
}

The file is now open to perform both locking and I/O functions. The next step is to set a
lock.

Setting a File Lock

Several ways exist to set a lock on a file. These methods depend upon how the lock
interacts with the rest of the program. Issues of portability and performance need to be
considered. Three methods for setting a lock are given here: using the fcntl() system call;
using the /usr/group standards-compatible lockf() library function; and using the BSD
compatible flock() library function.

Locking an entire file is just a special case of record locking—one record is locked, which
has the size of the entire file. The file is locked starting at a byte offset of zero and size of
the maximum file size. This size is beyond any real end-of-file so that no other lock can
be placed on the file.

You have a choice of three functions for this operation: the basic fcntl(), the library
function lockf(), and the BSD compatible library function flock(). All three functions can
interoperate. That is, a lock placed by one is respected by the other two.
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Whole-File Lock With fcntl()

The fcntl() function treats a lock length of 0 as meaning “size of file.” The function
lockWholeFile() in Example 7-2 attempts a specified number of times to obtain a
whole-file lock using fcntl(). When the lock is placed, it returns 0; otherwise it returns the
error code for the failure.

Example 7-2 Setting a Whole-File Lock With fcntl()

#include <fcntl.h>
#include <errno.h>
#define MAX_TRY 10

int
lockWholeFile(int fd, int tries)
{

int limit = (tries)?tries:MAX_TRY;
int try;
struct flock lck;
lck.l_type = F_WRLCK; /* write (exclusive) lock */
lck.l_whence = 0; /* 0 offset for l_start */
lck.l_start = 0L; /* lock starts at BOF */
lck.l_len = 0L; /* extent is entire file */
for (try = 0; try < limit; ++try)
{

if ( 0 == fcntl(fd, F_SETLK, &lck) )
break; /* mission accomplished */

if ((errno != EAGAIN) && (errno != EACCES))
break; /* mission impossible */

sginap(1); /* let lock holder run */
}
return errno;

}

The following points should be noted in Example 7-2:

• Because fcntl() supports both read and write locks, the type of the lock (F_WRLCK)
is specified in the l_type.

• The operation code F_SETLK is used to request that the function return if it cannot
place the lock. The code F_SETLKW would request that the function suspend until
the lock can be placed.

• The starting location of the record is the sum of two fields, l_whence and l_start. Both
must be set to 0 in order to get the starting point to the beginning of the file.
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Whole-File Lock With lockf()

Example 7-3 shows a version of the lockWholeFile() function that uses lockf(). Like
fcntl(), lockf() treats a record length of 0 as meaning “to end of file.”

Example 7-3 Setting a Whole-File Lock With lockf()

#include <unistd.h> /* for F_TLOCK */
#include <fcntl.h> /* for O_RDWR */
#include <errno.h> /* for EAGAIN */
#define MAX_TRY 10

int
lockWholeFile(int fd, int tries)
{

int limit = (tries)?tries:MAX_TRY;
int try;
lseek(fd,0L,SEEK_SET); /* set start of lock range */
for (try = 0; try < limit; ++try)
{

if (0 == lockf(fd, F_TLOCK, 0L) )
break; /* mission accomplished */

if (errno != EAGAIN)
break; /* mission impossible */

sginap(1); /* let lock holder run */
}
return errno;

}

The following points should be noted about Example 7-3:

• The type of lock is not specified, because lockf() only supports exclusive locks.

• The operation code F_TLOCK specifies that the function should return if the lock
cannot be placed. The F_LOCK operation would request that the function suspend
until the lock could be placed.

• The start of the record is set implicitly by the current file position. That is why
lseek() is called, to ensure the correct file position before lockf() is called.

Whole-File Lock With flock()

Example 7-4 displays a third example of the lockWholeFile subroutine, this one using
flock().
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Example 7-4 Setting a Whole-File Lock With flock()

#define _BSD_COMPAT
#include <sys/file.h> /* includes fcntl.h */
#include <errno.h> /* for EAGAIN */
#define MAX_TRY 10
int
lockWholeFile(int fd, int tries)
{

int limit = (tries)?tries:MAX_TRY;
int try;
for (try = 0; try < limit; ++try)
{

if ( 0 == flock(fd, LOCK_EX+LOCK_NB) )
break; /* mission accomplished */

if (errno != EWOULDBLOCK)
break; /* mission impossible */

sginap(1); /* let lock holder run */
}
return errno;

}

The following points should be noted about Example 7-4:

• The compiler variable _BSD_COMPAT is defined in order to get BSD-compatible
definitions from standard header files.

• The only use of flock() is to lock an entire file, so there is no attempt to specify the
start or length of a record.

• The LOCK_NB flag requests the function to return if the lock cannot be placed.
Without this flag the function suspends until the lock can be placed.

Setting and Removing Record Locks

Locking a record is done the same way as locking a file, except that the record does not
encompass the entire file contents. This section examines an example problem of dealing
with two records (which may be either in the same file or in different files) that must be
updated simultaneously so that other processes get a consistent view of the information
they contain. This type of problem occurs, for example, when updating the inter-record
pointers in a doubly linked list.
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To deal with multiple locks, consider the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get one or more locks?

In managing record locks, you must plan a failure strategy for the case in which you
cannot obtain all the required locks. It is because of contention for these records that you
have decided to use record locking in the first place. Different programs might

• wait a certain amount of time, and try again

• end the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• a combination of the above

Look now at the example of inserting an entry into a doubly linked list. All the following
examples assume that a record is declared as follows:

struct record {
.../* data portion of record */...

long prev; /* index to previous record in the list */
long next; /* index to next record in the list */

};

For the example, assume that the record after which the new record is to be inserted has
a read lock on it already. The lock on this record must be promoted to a write lock so that
the record may be edited. Example 7-5 shows a function that can be used for this.

Example 7-5 Record Locking With Promotion Using fcntl()

/*
|| This function is called with a file descriptor and the
|| offsets to three records in it: this, here, and next.
|| The caller is assumed to hold read locks on both here and next.
|| This function promotes these locks to write locks.
|| If write locks on "here" and "next" are obtained
|| Set a write lock on "this".
|| Return index to "this" record.
|| If any write lock is not obtained:
|| Restore read locks on "here" and "next".
|| Remove all other locks.
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|| Return -1.
*/
long set3Locks(int fd, long this, long here, long next)
{

struct flock lck;
lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offsets are absolute */
lck.l_len = sizeof(struct record);
/* Promote the lock on "here" to write lock */
lck.l_start = here;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

return (-1);
}
/* Lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* Failed to lock "this"; return "here" to read lock. */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);

}
/* Promote lock on "next" to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* Failed to promote "next"; return "here" to read lock... */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLK, &lck);
/* ...and remove lock on "this". */
lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1)

}
return (this);

}

Example 7-5 uses the F_SETLKW command to fcntl(), with the result that the calling
process will sleep if there are conflicting locks at any of the three points. If the F_SETLK
command was used instead, the fcntl() system calls would fail if blocked. The program
would then have to be changed to handle the blocked condition in each of the error
return sections (as in Example 7-2).
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It is possible to unlock or change the type of lock on a subsection of a previously set lock;
this may cause an additional lock (two locks for one system call) to be used by the
operating system. This occurs if the subsection is from the middle of the previously set
lock.

Example 7-6 shows a similar example using the lockf() function. Since it does not
support read locks, all (write) locks are referenced generically as locks.

Example 7-6 Record Locking Using lockf()

/*
|| This function is called with a file descriptor and the
|| offsets to three records in it: this, here, and next.
|| The caller is assumed to hold no locks on any of the records.
|| This function tries to lock "here" and "next" using lockf().
|| If locks on "here" and "next" are obtained
|| Set a lock on "this".
|| Return index to "this" record.
|| If any lock is not obtained:
|| Remove all other locks.
|| Return -1.
*/
long set3Locks(int fd, long this, long here, long next)
{

/* Set a lock on "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

return (-1);
}
/* Lock "this" */
(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Failed to lock "this"; clear "here" lock. */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}
/* Lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Failed to lock "next"; release "here"... */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
/* ...and remove lock on "this". */
(void) lseek(fd, this, 0);
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(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1)

}
return (this);

}

Locks are removed in the same manner as they are set; only the lock type is different
(F_UNLCK or F_ULOCK). An unlock cannot be blocked by another process. An unlock
can affect only locks that were placed by the unlocking process.

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set. This can
be used as a simple test or as a means to find locks on a file. To find this information, set
up a lock as in the previous examples and use the F_GETLK command in the fcntl() call.
If the lock passed to fcntl() would be blocked, the first blocking lock is returned to the
process through the structure passed to fcntl(). That is, the lock data passed to fcntl() is
overwritten by blocking lock information.

The returned information includes two pieces of data, l_pidf and l_sysid, that are used
only with F_GETLK. These fields uniquely identify the process holding the lock. (For
systems that do not support a distributed architecture, the value in l_sysid can be
ignored.)

If a lock passed to fcntl() using the F_GETLK command is not blocked by another lock,
the l_type field is changed to F_UNLCK and the remaining fields in the structure are
unaffected.

Example 7-7 shows how to use this capability to print all the records locked by other
processes. Note that if several read locks occur over the same record, only one of these is
found.
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Example 7-7 Detecting Contending Locks Using fcntl()

/*
|| This function takes a file descriptor and prints a report showing
|| all locks currently set on that file. The loop variable is the
|| l_start field of the flock structure. The function asks fcntl()
|| for the first lock that would block a lock from l_start to the end
|| of the file (l_len==0). When no lock would block such a lock,
|| the returned l_type contains F_UNLCK and the loop ends.
|| Otherwise the contending lock is displayed, l_start is set to
|| the end-point of that lock, and the loop repeats.
*/
void printAllLocksOn(int fd)
{

struct flock lck;
/* Find and print "write lock" blocked segments of file. */
(void) printf("sysid pid type start length\n");
lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
for( lck.l_type = 0; lck.l_type != F_UNLCK; )
{

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK)
{

(void) printf("%5d %5d %c %8d %8d\n",
lck.l_sysid,
lck.l_pid,
(lck.l_type == F_WRLCK) ? 'W' : 'R',
lck.l_start,
lck.l_len);

if (lck.l_len == 0)
break; /* this lock goes to end of file, stop */

lck.l_start += lck.l_len;
}

}
}

fcntl() with the F_GETLK command always returns correctly (that is, it will not sleep or
fail) if the values passed to it as arguments are valid.
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The lockf() function with the F_TEST command can also be used to test if there is a
process blocking a lock. This function does not, however, return the information about
where the lock actually is and which process owns the lock. Example 7-8 shows a code
fragment that uses lockf() to test for a lock on a file.

Example 7-8 Testing for Contending Lock Using lockf()

/* find a blocked record. */
/* seek to beginning of file */
(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero
* to test until the end of the file address space.
*/
if (lockf(fd, F_TEST, 0L) < 0) {

switch (errno) {
case EACCES:
case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;

default:
(void) printf("lockf: unknown error <%d>\n", errno);
break;

}
}

When a process forks, the child receives a copy of the file descriptors that the parent has
opened. The parent and child also share a common file pointer for each file. If the parent
seeks to a point in the file, the child’s file pointer is also set to that location. Similarly,
when a share group of processes is created using sproc(), and the sproc() flag PR_SFDS
is used to keep the open-file table synchronized for all processes (see the sproc(2)
reference page), then there is a single file pointer for each file and it is shared by every
process in the share group.

This feature has important implications when using record locking. The current value of
the file pointer is used as the reference for the offset of the beginning of the lock, in lockf()
at all times and in fcntl() when using an l_whence value of 1. Since there is no way to
perform the sequence lseek(); fcntl(); as an atomic operation, there is an obvious potential
for race conditions—a lock might be set using a file pointer that was just changed by
another process.
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The solution is to have the child process close and reopen the file. This creates a distinct
file descriptor for the use of that process. Another solution is to always use the fcntl()
function for locking with an l_whence value of 0 or 2. This makes the locking function
independent of the file pointer (processes might still contend for the use of the file pointer
for other purposes such as direct-access input).

Deadlock Handling

A certain level of deadlock detection and avoidance is built into the record locking
facility. This deadlock handling provides the same level of protection granted by the
/usr/group standard lockf() call. This deadlock detection is valid only for processes that
are locking files or records on a single system.

Deadlocks can potentially occur only when the system is about to put a record locking
system call to sleep. A search is made for constraint loops of processes that would cause
the system call to sleep indefinitely. If such a situation is found, the locking system call
fails and sets errno to the deadlock error number.

If a process wishes to avoid using the system’s deadlock detection, it should set its locks
using F_GETLK instead of F_GETLKW.

Enforcing Mandatory Locking

File locking is usually an in-memory service of the IRIX kernel. The kernel keeps a table
of locks that have been placed. Processes anywhere in the system update the table by
calling fcntl() or lockf() to request locks. When all processes that use a file do this, and
respect the results, file integrity can be maintained.

It is possible to extend file locking by making it mandatory on all processes, whether or
not they were designed to be part of the cooperating group. Mandatory locking is
enforced by the file I/O function calls. As a result, an independent process that calls
write() to update a locked record is blocked or receives an error code.

The write() and other system functions test for a contending lock on a file that has
mandatory locking applied. The test is made for every operation on that file. When the
caller is a process that is cooperating in the lock, and has already set an appropriate lock,
the mandatory test is unnecessary overhead.
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Mandatory locking is enforced on a file-by-file basis, triggered by a bit in the file inode
that is set by chmod (see the chmod(1) and chmod(2) reference pages). In order to enforce
mandatory locking on a particular file, turn on the set-group-ID bit along with a
nonexecutable group permission, as in these examples, which are equivalent:

$ chmod 2644 target.file
$ chmod +l target.file

The bit must be set before the file is opened; a change has no effect on a file that is already
open.

Example 7-9 shows a fragment of code that sets mandatory lock mode on a given
filename.

Example 7-9 Setting Mandatory Locking Permission Bits

#include <sys/types.h>
#include <sys/stat.h>
int setMandatoryLocking(char *filename)
{

int mode;
struct stat buf;
if (stat(filename, &buf) < 0)
{

perror("stat(2)");
return error;

}
mode = buf.st_mode;
/* ensure group execute permission 0010 bit is off */
mode &= ~(S_IEXEC>>3);
/* turn on 'set group id bit' in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0)
{

perror("chmod(2)");
return error;

}
return 0;

}

When IRIX opens a file, it checks to see whether both of two conditions are true:

• Set-group-ID bit is 1.

• Group execute permission is 0.
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When both are true, the file is marked for mandatory locking, and each use of creat(),
open(), read(), and write() tests for contending locks.

Some points to remember about mandatory locking:

• Mandatory locking does not protect against file truncation with the truncate()
function (see the truncate(2) reference page), which does not look for locks on the
truncated portion of the file.

• Mandatory locking protects only those portions of a file that are locked. Other
portions of the file that are not locked may be accessed according to normal UNIX
system file permissions.

• Advisory locking is more efficient because a record lock check does not have to be
performed for every I/O request.

Record Locking Across Multiple Systems

Record locking is always effective within a single copy of the IRIX kernel. Locking is
effective within a multiprocessor because processes running in different CPUs of the
multiprocessor share a single copy of the IRIX kernel.

Record locking can be effective on processes that execute in different systems that access
a filesystem mounted through NFS. However, there are these drawbacks:

• Deadlock detection is not possible between processes in different systems.

• You must make sure that the NFS locking daemon is running in both the NFS client
(application) and server systems.

• Using record locking on NFS files has a strong impact on performance.

NFS File Locking

When a process running in an NFS client system requests a file or record lock, a complex
sequence of events begins. (For details, consult the lockd(1M) reference page.)

First the kernel in the client system receives the lock request and determines that the file
resides on a filesystem mounted using NFS. The kernel sends the lock request to a
daemon called rpc.lockd. This daemon is responsible for communicating lock requests to
other systems.
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The rpc.lockd process sends the lock request to the rpc.lockd daemon running on the NFS
server where the target file is physically mounted. On the server, that rpc.lockd issues the
lock request locally. The server rpc.lockd sends the result, success or failure, back to the
client rpc.lockd. The result is passed back to the calling process.

When the lock succeeds on the server side, rpc.lockd on the client system requests another
daemon, rpc.statd, to monitor the NFS server that implements the lock. If the server fails
and then recovers, rpc.statd will be informed. It then tries to reestablish all active locks. If
the NFS server fails and recovers, and rpc.lockd is unable to reestablish a lock, it sends a
signal (SIGUSR1) to the process that requested the lock.

When a process writes to a write-locked record, the data is sent directly to the NFS server,
bypassing the local NFS buffer cache. This can have a significant impact on file
performance.

Configuring NFS Locking

When rpc.lockd is not running in the NFS client system, or in the NFS server system, a
cross-system lock cannot be established. In this case, locks are effective within the local
system, but are not effective against contending file access from other systems.

To discover whether rpc.lockd is running, use the chkconfig command:

% /etc/chkconfig | grep lockd

If the returned value is off, rpc.lockd is not running and locks have local scope only.

To use rpc.lockd, the administrator must configure it on as follows:

% /etc/chkconfig lockd on

Then the system must be rebooted. This must be done on both the NFS file server and on
all NFS clients where locks are requested.

Performance Impact

Normally, the NFS software uses a data cache to speed access to files. Data read or
written to NFS mounted files is held in a memory cache for some time, and access
requests to cached data is satisfied from memory instead of being read from the server.
Data caching has a major effect on the speed of NFS file access.
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As soon as any process places a file or record lock on an NFS mounted file, the file is
marked as uncachable. All I/O requests for that file bypass the local memory cache and
are sent to the NFS server. This ensures consistent results and data integrity. However, it
means that every read or write to the file, at any offset, and from any process, incurs a
network delay.

The file remains uncachable even when the lock is released. The file cannot use the cache
again until it has been closed by all processes that have it open.
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8. Using Asynchronous I/O

When you use asynchronous I/O, the work of buffering data and reading or writing a
device is carried out in a parallel process or thread, while the process or thread that
requested the I/O can continue doing other work. In a multiprocessor system, I/O can
be fully overlapped with processing.

About Synchronous and Asynchronous I/O

Conventional I/O in UNIX is synchronous; that is, the process or thread that requests the
I/O is blocked until the I/O has completed. The effects are different for input and for
output.

About Synchronous Input

The normal sequence of operations for input is as follows:

1. A process invokes the system function read(), either directly or indirectly—for
example, by accessing a new page of a memory-mapped file, or by calling a library
function that calls read().

2. The kernel, operating under the identity of the calling process, enters the read entry
point of a device driver.

3. The device driver initiates an input operation and blocks the calling process, for
example by waiting on a semaphore in the kernel address space.

4. The kernel schedules another process to use the CPU.

5. Later, the device completes the input operation and causes a hardware interrupt.

6. The kernel interrupt handler enters the device driver interrupt entry point.

7. The device driver, finding that the data has been received, unblocks the sleeping
process, for example by posting a semaphore.

8. The kernel notes that the blocked process can now run.
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9. Then or perhaps later, depending on scheduling priorities, the kernel schedules the
process to run on some CPU.

10. The unblocked process exits the read() system call and returns to user code, the read
being complete.

During steps 4-8, the process that requested input is blocked. The duration of the delay
is unpredictable. For example, the delay can be negligible if the data is already in a buffer
in memory. It can be as long as one rotation time of a disk, if the disk is positioned on the
correct cylinder. It can be longer still, if the disk has to seek, or if the disk controller or
bus adapter is busy with other transfers.

About Synchronous Output

For disk files, a process that calls write() is normally delayed only as long as it takes to
copy the output data to a buffer in the kernel address space. The kernel asks the device
driver to schedule the device write. The actual disk output is asynchronous. As a result,
a process that requests output is usually blocked for only a short time. However, a
number of disk write requests could be pending, so the true state of a file on disk is
unknown until the file is closed.

In order to make sure that all data has been written to disk successfully, a program calls
fsync() for a conventional file or msync() for a memory-mapped file (see the fsync(2) and
msync(2) reference pages). The process that calls these functions is blocked until all
buffered data has been written. (An alternative for disk output is to use direct output,
discussed under “Using Direct I/O” on page 225.)

Devices other than disks may block the calling process until the output is complete. It is
the device driver logic that determines whether a call to write() blocks the caller, and for
how long.

About Asynchronous I/O

Some processes should never be blocked for the unpredictable times that I/O can
require. One obvious solution can be summarized as “call read() or write() from a
different process, and run that process in a different CPU.” This is the essence of
asynchronous I/O. You could implement an asynchronous I/O scheme of your own
design, and you may wish to do so in order to integrate the I/O closely with your own
design of processes and data structures. However, a standard solution is available.
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IRIX supports asynchronous I/O library calls conforming to POSIX document
1003.1b-1993. You use relatively simple calls to initiate input or output. The library
package handles the details of

• Creating asynchronous processes or threads to perform the I/O.

• Allocating a shared memory arena and the locks, semaphores, and other structures
used to coordinate the I/O processes or threads.

• Queueing multiple input or output requests to each of multiple file descriptors.

• Reporting results back to your program, either on request, through signals, or
through callback functions.

Asynchronous I/O Functions

Once you have opened the files and initialized asynchronous I/O, you perform
asynchronous I/O by calling some of these functions:

Each of these functions is described in detail in a reference page.

aio_read(3) Initiates asynchronous input from a file or device.

aio_write(3) Initiates asynchronous output to a file or device.

lio_listio(3) Initiates a list of operations to one or more files or devices.

aio_error(3) Returns the status of an asynchronous operation.

aio_fsync(3) Waits for all scheduled output for a file to complete.

aio_cancel(3) Cancels pending, scheduled operations.
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Asynchronous I/O Control Block

Each asynchronous I/O request is represented by an instance of struct aiocb, a data
structure that your program must allocate. The important fields are as follows.

• The file descriptor that is the target of the operation.

File descriptors are returned by open() (see the open(2) reference page). A file
descriptor used for asynchronous I/O can represent any file or device—not only a
disk file.

• The address and size of a buffer to supply or receive the data.

• The file position for the operation as it would be passed to lseek() (see the lseek(2)
reference page)

The use of this value is discussed under “Multiple Operations to One File” on
page 203.

• A sigevent structure, whose contents indicate what, if anything, should be done to
notify your program of the completion of the I/O.

The use of the sigevent is discussed under “Checking for Completion” on page 199.

Note: The IRIX 5.2 implementation also accepted a request priority value. Request
priorities are no longer supported. The request-priority field of aiocb exists for
compatibility and for possible future use, but must currently contain zero.

Initializing Asynchronous I/O

You can initialize asynchronous I/O in either of two ways. One way is simple; the other
gives you control over the initialization.

Implicit Initialization

You can initialize asynchronous I/O simply by starting an operation with aio_read(),
lio_listio(), or aio_write(). The first such call causes default initialization. This is the only
form of initialization described by the POSIX standard. However, you may need to
control at least the timing of initialization.
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Initializing with aio_sgi_init()

You can control initialization of asynchronous I/O by calling aio_sgi_init() (refer to the
aio_sgi_init(3) reference page and to the declarations in /usr/include/aio.h). The argument
to this call can be a null pointer, indicating you want default values, or you can pass an
aioinit_t structure. The principal fields of this structure specify

• the number of asynchronous processes or threads to execute I/O (aio_threads)

The asynchronous I/O library creates asynchronous processes or threads to
perform the I/O. It uses sproc() in normal programs, or pthread_create() in a
pthread program.

In either case, the default of asynchronous threads is 5 and the minimum is 2.
Specify 1 more than the number of I/O operations that could reasonably be
executed in parallel on the available hardware. For example if you will be doing
asynchronous I/O to one disk file and one tape drive, there could be at most two
concurrent I/O operations, so there is no need to have more than 3 (1 more than 2)
asynchronous processes.

• the number of locks that the asynchronous I/O processes should preallocate
(aio_locks)

The default used by aio_init() is 3 locks; the minimum is 1. Specify the maximum
number of simultaneous lio_listio(LIO_NOWAIT), aio_fsync(), and aio_suspend()
calls that your program could execute concurrently. If in doubt, specify the number
of subprocesses your program contains.

• the number of processes or threads that will be sharing the use of asynchronous I/O
(aio_numusers)

The default is 5; the minimum is 2. Specify 1 more than the number of different
processes or pthreads that will be requesting asynchronous I/O.

Other fields of the aioinit_t structure such as aio_num and aio_usedba are not used at this
time and must be zero. Zero-valued fields are taken as a request for the default for that
field. Example 8-1 shows a subroutine to initialize asynchronous I/O, given counts of
devices and calling processes.
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Example 8-1 Initializing Asynchronous I/O

int initAIO(int numDevs, int numSprocs, int maxOps)
{

aioinit_t A = {0}; /* ensure zero’d fields */
if (numDevs) /* we do know how many devices */

A.aio_threads = 1+numDevs;
if (numSprocs) /* we do know how many sprocs */

A.aio_locks = A.aio_numusers = 1+numSprocs;
if (maxOps) /* we do know max aiocbs at 1 time */

A.aio_num = maxOps;
return aioinit(&A);

}

When to Initialize

The time at which initialization occurs is important. If you initialize in a process that has
been assigned to run on an isolated CPU, the asynchronous I/O processes will also run
on that CPU. You probably want the I/O processes to run under normal dispatching on
unrestricted CPUs. In that case, the proper sequence of initialization is:

• Open all file descriptors and verify that files and devices are ready.

• Initialize asynchronous I/O. The lightweight processes created by aioinit() inherit
the attributes of the calling process, including its current priority and access to open
file descriptors.

• Isolate any CPUs that are to be dedicated.

• Create child processes and assign them to their CPUs.

The asynchronous I/O processes created by aioinit() continue to be scheduled according
to their priority in whatever CPUs remain available.

Scheduling Asynchronous I/O

You schedule an input or output operation by calling aio_read() or aio_write(), passing
an aiocb structure to describe the operation (see the aio_read(3) and aio_write(3) reference
pages). The operation is queued to that file descriptor. It will be executed when one of the
asynchronous I/O processes or threads is available. The return code from the library call
says nothing about the I/O operation itself; it merely indicates whether or not the aiocb
could be queued.
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Note: It is important to use a given aiocb for only one operation at a time, and to not
modify an aiocb until its operation is complete.

You can schedule a list of operations using lio_listio() (see the lio_listio(3) reference
page). The advantage of this function is that you can request a single notification (either
a signal or a callback) when all of the operations in the list are complete. Alternatively,
you can be notified of the completion of each one as it happens.

When an asynchronous I/O thread is free, it takes a queued aiocb and performs the
equivalent function to lseek() (if a file position is specified), then the equivalent of read()
or write(). The asynchronous process may be blocked for some time. That depends on the
file or device and on the options that were specified when it was opened. When the
operation is complete, the asynchronous process notifies the initiating process using the
method requested in the aiocb.

You can cancel a started operation, or all pending operations for a given file descriptor,
using aio_cancel() (see the aio_cancel(3) reference page).

Assuring Data Integrity

With sequential output, you call fsync() to ensure that all buffered data has been written.
However, you cannot use fsync() with asynchronous I/O, since you are not sure when
the write() calls will execute.

The aio_fsync() function queues the equivalent of an fsync() call for asynchronous
execution (see the aio_fsync(3) reference page). This function takes an aiocb. The file
descriptor in it specifies which file is to be synchronized. The fsync() operation is done
following all other asynchronous operations that are pending when aio_fsync() is called.
The synchronize operation can take considerable time, depending on how much output
data has been buffered. Its completion is reported in the same ways as completion of a
read or write (see the next topic).
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Checking the Progress of Asynchronous Requests

You can test the progress and completion of an asynchronous operation by polling; or
your program can be informed of the completion of an operation in a variety of ways. In
the aiocb, the program can specify one of three things to be done when the operation is
complete:

• Nothing; take no action.

• Send a signal of a specified number.

• Invoke a callback function directly from the asynchronous process.

In addition, the aio_suspend() function blocks its caller until one of a list of pending
operations is complete.

Polling for Status

You can check the progress of any asynchronous operation (including aio_fsync()) by
calling aio_error(), passing the aiocb for that operation.

While the operation is incomplete, aio_error() returns EIINPROGRESS. When the
operation is complete, you can check the final return code from read(), write(), or fsync()
using aio_return() (see the aio_error(3) and aio_return(3) reference pages).

To see in an example of polling for status, see function inWait0() under “Asynchronous
I/O Example” on page 204. This function is used when the aiocb is initialized with
SIGEV_NONE, meaning that no notification is to be returned at the completion of the
operation. The function waits for an asynchronous operation to complete using a loop in
the general form shown in Example 8-2.

Example 8-2 Polling for Asynchronous Completion

int waitForEndOfAsyncOp(aiocb *pab)
{

while (EINPROGRESS == (ret = aio_error(pab)))
sginap(0);

return ret;
}

The function result is the final return code from the read, write, or sync operation that
was started.
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Checking for Completion

You have a wide variety of design options other than polling. Your program can:

• Use aio_suspend() to wait until one of a list of operations completes.

• Set up an empty signal handler function and use sigsuspend() or sigwait() to wait
until a signal arrives (see the sigsuspend(2) and sigwait(3) reference pages).

• Use either a signal handler function or a callback function to report completion—for
example, the function can post a semaphore.

Most of these methods are demonstrated in the example program under “Asynchronous
I/O Example” on page 204.

Establishing a Completion Signal

You request a signal from an asynchronous operation by setting these values in the aiocb
(refer to /usr/include/aio.h and /usr/include/sys/signal.h):

When you set up a signal handler for asynchronous completion, do so using sigaction()
and specify the SA_SIGINFO flag (see the sigaction(2) reference page). This has two
benefits: any new completion signal that arrives while the first is being handled is
queued; and the aio_sigev.sigev_value word is passed to the handler in a siginfo structure.

aio_sigevent.sigev_notify Set to SIGEV_SIGNAL.

aio_sigevent.sigev_signo The number of the signal. This should be one of
the POSIX real-time signal numbers (see “Signal
Numbers” on page 114).

aio_sigevent.sigev_value A value to be passed to the signal handler. This
can be used to inform the signal handler of which
I/O operation has completed; for example, it
could be the address of the aiocb.
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Establishing a Callback Function

You request a callback at the end of an asynchronous operation by setting the following
values in the aiocb:

The callback function is invoked from the asynchronous I/O thread when the read(),
write() or fsync() operation finishes. This notification method has the lowest overhead
and shortest latency, but it requires careful design to avoid race conditions in the use of
shared variables.

The asynchronous I/O threads share the address space of the processes or threads that
initialize asynchronous I/O. They may execute in a different CPU. Since the callback
function could be entered at any time, it must coordinate its use of shared data structures.
This is a good place to use a lock (see “Locks” on page 79). Locks have very low overhead
in cases such as this, where there is likely to be little contention for the use of the lock.

Tip: You can call aio_read() or aio_write() from within a callback function or within a
signal handler. This lets you start another operation with the least delay.

The code in Example 8-3 demonstrates a hypothetical set of subroutines to schedule
asynchronous reads and writes using a single aiocb. The principle functions and global
variables it uses are:

aio_sigevent.sigev_notify Set to SIGEV_CALLBACK.

aio_sigevent.sigev_func The address of the callback function. Its prototype
must be void functionName(union sigval);

aio_sigevent.sigev_value A word to be passed to the callback function. This
can be used to inform the function of which I/O
operation has completed; for example, it could be
the address of the aiocb.

pendingIO An array of records, each holding one request for an I/O
operation.

dontTouchThatStuff A lock used to gain exclusive use of pendingIO.

scheduleRead() A function that accepts a request to read some amount of data,
from a specified file descriptor, at a specified file offset. It
places the request in pendingIO and then, if no asynchronous
operation is under way, initiates it.
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Note: The code in Example 8-3 is not intended to be realistic and is not recommended as
a model. In order to demonstrate the use of callback functions and the aiocb, it essentially
duplicates work that could be done by the lio_listio() feature of asynchronous I/O.

Example 8-3 Set of Functions to Schedule Asynchronous I/O

#define _ABI_SOURCE
#include <signal.h>
#include <aio.h>
#include <ulocks.h>
#define MAX_PENDING 10
#define STATUS_EMPTY 0
#define STATUS_ACTIVE 1
#define STATUS_PENDING 2
static struct onePendingIO {

int status;
int theFile;
void *theData;
off_t theSize;
off_t theSeek;
int readNotWrite;
} pendingIO[MAX_PENDING];

static unsigned numPending;
static struct aiocb theAiocb;
static ulock_t dontTouchThatStuff;
static unsigned scanner;
static void initiatePending(int P);
static void
yeahWeFinishedOne(union sigval S)
{

ussetlock(dontTouchThatStuff);
pendingIO[S.sival_int].status = STATUS_EMPTY;
if (numPending)
{

while (pendingIO[scanner].status != STATUS_PENDING)

yeahWeFinishedOne() The callback function that is entered when an asynchronous
operation completes. If any more operations are pending, it
initiates one.

initiatePending() A function that initiates one selected pending operation. It
prepares the aiocb structure, including the specification of
yeahWeFinishedOne() as the callback function. The lock
dontTouchThatStuff must be held before this function is called.
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{
if (++scanner >= MAX_PENDING)

scanner = 0;
}
initiatePending(scanner);

}
usunsetlock(dontTouchThatStuff);

}
static void
initiatePending(int P) /* lock must be held on entry */
{

theAiocb.aio_fildes = pendingIO[P].theFile;
theAiocb.aio_buf = pendingIO[P].theData;
theAiocb.aio_nbytes = pendingIO[P].theSize;
theAiocb.aio_offset = pendingIO[P].theSeek;
theAiocb.aio_sigevent.sigev_notify = SIGEV_CALLBACK;
theAiocb.aio_sigevent.sigev_func = yeahWeFinishedOne;
theAiocb.aio_sigevent.sigev_value.sival_int = P;
if (pendingIO[P].readNotWrite)

aio_read(&theAiocb);
else

aio_write(&theAiocb);
pendingIO[P].status = STATUS_ACTIVE;
--numPending;

}
/*public*/ int
scheduleRead( int FD, void *pdata, off_t len, off_t pos )
{

int j;
if (numPending >= MAX_PENDING)

likeTotallyFreakOut();
ussetlock(dontTouchThatStuff);
for(j=0; pendingIO[j].status != STATUS_EMPTY; ++j)

;
pendingIO[j].theFile = FD;
pendingIO[j].theData = pdata;
pendingIO[j].theSize = len;
pendingIO[j].theSeek = pos;
pendingIO[j].readNotWrite = 1;
pendingIO[j].status = STATUS_PENDING;
if (1 == ++numPending)

initiatePending(j);
usunsetlock(dontTouchThatStuff);

}
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Holding Callbacks Temporarily

You can temporarily prevent callback functions from being entered using the aio_hold()
function. This function is not defined in the POSIX standard; it is added by the MIPS ABI
standard. Use it as follows:

• Call aio_hold(AIO_HOLD_CALLBACK) to prevent any callback function from
being invoked.

• Call aio_hold(AIO_RELEASE_CALLBACK) to allow callback functions to be
invoked. Any that were held are now called.

• Call aio_hold(AIO_ISHELD_CALLBACK) returns 1 if callbacks are currently being
held; otherwise it returns 0.

Multiple Operations to One File

When you queue multiple operations to a single file descriptor, the asynchronous
I/O package does not always guarantee the order of their execution. There are three
ways you can ensure the sequence of operations.

You can open any output file descriptor passing the flag O_APPEND (see the open(1)
reference page). Asynchronous write requests to a file opened with O_APPEND are
executed in the sequence of the calls to aio_write() or the sequence they are listed for
lio_listio(). You can use this feature to ensure that a sequence of records is appended to
a file in sequence.

For files that support lseek(), you can specify any order of operations by specifying the
file offset in the aiocb. The asynchronous process executes an absolute seek to that offset
as part of the operation. Even if the operations are not performed in the sequence they
were requested, the data is transferred in sequence. You can use this feature to ensure
that multiple requests for sequential disk input are stored in sequential locations.

For non-disk input operations, the only way you can be certain that operations are done
in sequence is to schedule them one at a time, waiting for each one to complete.
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Asynchronous I/O Example

The following source displays a highly artificial program whose purpose is to exercise
most options of asynchronous I/O. The program syntax is:

aiocat [ -o outfile ] [-a {0|1|2|3} ] infilename...

The actual output of the program is the concatenation of all the one or more files
infilename..., written to the file outfile. The default outfile is $TEMPDIR/aiocat.out. In effect,
the program is an overcomplicated version of the standard cat command.

When you compile it with the variable DO_SPROCS defined as 1, the program creates
one process for each infilename. Each of these processes uses asynchronous I/O requests
to read its corresponding input file, and to write that data to the correct offset in outfile.

After all the files have been read and written, the program reports the CPU time charged
for each file, and the effective data transfer rate in bytes per microsecond.

The -a parameter specifies which of four methods is used to wait for I/O completion:

Execution of aiocat can resemble the following (from an Origin2000 with 8 CPUs):

> ls -l incat?
-rwxr-xr-x    1 cortesi  nuucp     234964 Jun  4 10:17 incat1
-rwxr-xr-x    1 cortesi  nuucp     234964 Jun  4 10:17 incat2
-rwxr-xr-x    1 cortesi  nuucp     234964 Jun  4 10:18 incat3
-rwxr-xr-x    1 cortesi  nuucp     234964 Jun  4 10:19 incat4
> aiocat -o outcat -a 0 incat?
    procid   time     fsize     filename
 0: 920      440000   234964    incat1
 1: 939      480000   234964    incat2
 2: 940      510000   234964    incat3
 3: 936      530000   234964    incat4
total time 1960000 usec, total bytes 939856, 0.479518 bytes/usec
> aiocat -o outcat -a 1 incat?
    procid   time     fsize     filename

-a 0 Poll for completion with aio_error().

-a 1 Wait for completion with aio_suspend().

-a 2 Wait on a semaphore posted from a signal handler.

-a 3 Wait on a semaphore posted from a callback routine.
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 0: 942      350000   234964    incat1
 1: 944      370000   234964    incat2
 2: 949      370000   234964    incat3
 3: 946      370000   234964    incat4
total time 1460000 usec, total bytes 939856, 0.643737 bytes/usec
> aiocat -o outcat -a 2 incat?
    procid   time     fsize     filename
 0: 962      90000    234964    incat1
 1: 955      80000    234964    incat2
 2: 967      90000    234964    incat3
 3: 960      90000    234964    incat4
total time 350000 usec, total bytes 939856, 2.6853 bytes/usec
> aiocat -o outcat -a 3 incat?
    procid   time     fsize     filename
 0: 909      50000    234964    incat1
 1: 969      50000    234964    incat2
 2: 966      60000    234964    incat3
 3: 972      60000    234964    incat4
total time 220000 usec, total bytes 939856, 4.27207 bytes/usec

Example 8-4 Source Code of aiocat

/* ============================================================================
|| aiocat.c : This highly artificial example demonstrates asynchronous I/O.
||
|| The command syntax is:
|| aiocat [ -o outfile ] [-a {0|1|2|3} ] infilename...
||
|| The output file is given by -o, with $TMPDIR/aiocat.out by default.
|| The aio method of waiting for completion is given by -a as follows:
|| -a 0 poll for completion with aio_error() (default)
|| -a 1 wait for completion with aio_suspend()
|| -a 2 wait on a semaphore posted from a signal handler
|| -a 3 wait on a semaphore posted from a callback routine
||
|| Up to MAX_INFILES input files may be specified. Each input file is
|| read in BLOCKSIZE units. The output file contains the data from
|| the input files in the order they were specified. Thus the
|| output should be the same as "cat infilename... >outfile".
||
|| When DO_SPROCS is compiled true, all I/O is done asynchronously
|| and concurrently using one sproc'd process per file. Thus in a
|| multiprocessor concurrent input can be done.
============================================================================ */
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#define _SGI_MP_SOURCE /* see the "Caveats" section of sproc(2) */
#include <sys/time.h> /* for clock() */
#include <errno.h> /* for perror() */
#include <stdio.h> /* for printf() */
#include <stdlib.h> /* for getenv(), malloc(3c) */
#include <ulocks.h> /* usinit() & friends */
#include <bstring.h> /* for bzero() */
#include <sys/resource.h> /* for prctl, get/setrlimit() */
#include <sys/prctl.h> /* for prctl() */
#include <sys/types.h> /* required by lseek(), prctl */
#include <unistd.h> /* ditto */
#include <sys/types.h> /* wanted by sproc() */
#include <sys/prctl.h> /* ditto */
#include <signal.h> /* for signals - gets sys/signal and sys/siginfo */
#include <aio.h> /* async I/O */
#define BLOCKSIZE 2048 /* input units -- play with this number */
#define MAX_INFILES 10 /* max sprocs: anything from 4 to 20 or so */
#define DO_SPROCS 1 /* set 0 to do all I/O in a single process */
#define QUITIFNULL(PTR,MSG) if (NULL==PTR) {perror(MSG);return(errno);}
#define QUITIFMONE(INT,MSG) if (-1==INT) {perror(MSG);return(errno);}
/*****************************************************************************
|| The following structure contains the info needed by one child proc.
|| The main program builds an array of MAX_INFILES of these.
|| The reason for storing the actual filename here (not a pointer) is
|| to force the struct to >128 bytes. Then, when the procs run in
|| different CPUs on a CHALLENGE, the info structs will be in different
|| cache lines, and a store by one proc will not invalidate a cache line
|| for its neighbor proc.
*/
typedef struct child
{

/* read-only to child */
char fname[100]; /* input filename from argv[n] */
int fd; /* FD for this file */
void* buffer; /* buffer for this file */
int procid; /* process ID of child process */
off_t fsize; /* size of this input file */

/* read-write to child */
usema_t* sema; /* semaphore used by methods 2 & 3 */
off_t outbase; /* starting offset in output file */
off_t inbase; /* current offset in input file */
clock_t etime; /* sum of utime/stime to read file */
aiocb_t acb; /* aiocb used for reading and writing */

} child_t;
/******************************************************************************
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|| Globals, accessible to all processes
*/
char* ofName = NULL; /* output file name string */
int outFD; /* output file descriptor */
usptr_t* arena; /* arena where everything is built */
barrier_t* convene; /* barrier used to sync up */
int nprocs = 1; /* 1 + number of child procs */
child_t* array; /* array of child_t structs in arena */
int errors = 0; /* always incremented on an error */
/******************************************************************************
|| forward declaration of the child process functions
*/
void inProc0(void *arg, size_t stk); /* polls with aio_error() */
void inProc1(void *arg, size_t stk); /* uses aio_suspend() */
void inProc2(void *arg, size_t stk); /* uses a signal and semaphore */
void inProc3(void *arg, size_t stk); /* uses a callback and semaphore */
/******************************************************************************
// The main()
*/
int main(int argc, char **argv)
{

char* tmpdir; /* ->name string of temp dir */
int nfiles; /* how many input files on cmd line */
int argno; /* loop counter */
child_t* pc; /* ->child_t of current file */
void (*method)(void *,size_t) = inProc0; /* ->chosen input method */
char arenaPath[128]; /* build area for arena pathname */
char outPath[128]; /* build area for output pathname */
/*
|| Ensure the name of a temporary directory.
*/
tmpdir = getenv("TMPDIR");
if (!tmpdir) tmpdir = "/var/tmp";
/*
|| Build a name for the arena file.
*/
strcpy(arenaPath,tmpdir);
strcat(arenaPath,"/aiocat.wrk");
/*
|| Create the arena. First, call usconfig() to establish the
|| minimum size (twice the buffer size per file, to allow for misc usage)
|| and the (maximum) number of processes that may later use
|| this arena. For this program that is MAX_INFILES+10, allowing
|| for our sprocs plus those done by aio_sgi_init().
|| These values apply to any arenas made subsequently, until changed.
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*/
{

ptrdiff_t ret;
ret = usconfig(CONF_INITSIZE,2*BLOCKSIZE*MAX_INFILES);
QUITIFMONE(ret,"usconfig size")
ret = usconfig(CONF_INITUSERS,MAX_INFILES+10);
QUITIFMONE(ret,"usconfig users")
arena = usinit(arenaPath);
QUITIFNULL(arena,"usinit")

}
/*
|| Allocate the barrier.
*/
convene = new_barrier(arena);
QUITIFNULL(convene,"new_barrier")
/*
|| Allocate the array of child info structs and zero it.
*/
array = (child_t*)usmalloc(MAX_INFILES*sizeof(child_t),arena);
QUITIFNULL(array,"usmalloc")
bzero((void *)array,MAX_INFILES*sizeof(child_t));
/*
|| Loop over the arguments, setting up child structs and
|| counting input files. Quit if a file won't open or seek,
|| or if we can't get a buffer or semaphore.
*/
for (nfiles=0, argno=1; argno < argc; ++argno )
{

if (0 == strcmp(argv[argno],"-o"))
{ /* is the -o argument */

++argno;
if (argno < argc)

ofName = argv[argno];
else
{

fprintf(stderr,"-o must have a filename after\n");
return -1;

}
}
else if (0 == strcmp(argv[argno],"-a"))
{ /* is the -a argument */

char c = argv[++argno][0];
switch(c)
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{
case '0' : method = inProc0; break;
case '1' : method = inProc1; break;
case '2' : method = inProc2; break;
case '3' : method = inProc3; break;
default:

{
fprintf(stderr,"unknown method -a %c\n",c);
return -1;

}
}

}
else if ('-' == argv[argno][0])
{ /* is unknown -option */

fprintf(stderr,"aiocat [-o outfile] [-a 0|1|2|3] infiles...\n");
return -1;

}
else
{ /* neither -o nor -a, assume input file */

if (nfiles < MAX_INFILES)
{

/*
|| save the filename
*/
pc = &array[nfiles];
strcpy(pc->fname,argv[argno]);
/*
|| allocate a buffer and a semaphore. Not all
|| child procs use the semaphore but so what?
*/
pc->buffer = usmalloc(BLOCKSIZE,arena);
QUITIFNULL(pc->buffer,"usmalloc(buffer)")
pc->sema = usnewsema(arena,0);
QUITIFNULL(pc->sema,"usnewsema")
/*
|| open the file
*/
pc->fd = open(pc->fname,O_RDONLY);
QUITIFMONE(pc->fd,"open")
/*
|| get the size of the file. This leaves the file
|| positioned at-end, but there is no need to reposition
|| because all aio_read calls have an implied lseek.
|| NOTE: there is no check for zero-length file; that
|| is a valid (and interesting) test case.
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*/
pc->fsize = lseek(pc->fd,0,SEEK_END);
QUITIFMONE(pc->fsize,"lseek")
/*
|| set the starting base address of this input file
|| in the output file. The first file starts at 0.
|| Each one after starts at prior base + prior size.
*/
if (nfiles) /* not first */

pc->outbase =
array[nfiles-1].fsize + array[nfiles-1].outbase;

++nfiles;
}
else
{

printf("Too many files, %s ignored\n",argv[argno]);
}

}
} /* end for(argc) */
/*
|| If there was no -o argument, construct an output file name.
*/
if (!ofName)
{

strcpy(outPath,tmpdir);
strcat(outPath,"/aiocat.out");
ofName = outPath;

}
/*
|| Open, creating or truncating, the output file.
|| Do not use O_APPEND, which would constrain aio to doing
|| operations in sequence.
*/
outFD = open(ofName, O_WRONLY+O_CREAT+O_TRUNC,0666);
QUITIFMONE(outFD,"open(output)")
/*
|| If there were no input files, just quit, leaving empty output
*/
if (!nfiles)
{

return 0;
}
/*
|| Note the number of processes-to-be, for use in initializing
|| aio and for use by each child in a barrier() call.
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*/
nprocs = 1+nfiles;
/*
|| Initialize async I/O using aio_sgi_init(), in order to specify
|| a number of locks at least equal to the number of child procs
|| and in order to specify extra sproc users.
*/
{

aioinit_t ainit = {0}; /* all fields initially zero */
/*
|| Go with the default 5 for the number of aio-created procs,
|| as we have no way of knowing the number of unique devices.
*/

#define AIO_PROCS 5
ainit.aio_threads = AIO_PROCS;
/*
|| Set the number of locks aio needs to the number of procs
|| we will start, minimum 3.
*/
ainit.aio_locks = (nprocs > 2)?nprocs:3;
/*
|| Warn aio of the number of user procs that will be
|| using its arena.
*/
ainit.aio_numusers = nprocs;
aio_sgi_init(&ainit);

}
/*
|| Process each input file, either in a child process or in
|| a subroutine call, as specified by the DO_SPROCS variable.
*/
for (argno = 0; argno < nfiles; ++argno)
{

pc = &array[argno];
#if DO_SPROCS
#define CHILD_STACK 64*1024

/*
|| For each input file, start a child process as an instance
|| of the selected method (-a argument).
|| If an error occurs, quit. That will send a SIGHUP to any
|| already-started child, which will kill it, too.
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*/
pc->procid = sprocsp(method /* function to start */

,PR_SALL /* share all, keep FDs sync'd */
,(void *)pc /* argument to child func */
,NULL /* absolute stack seg */
,CHILD_STACK); /* max stack seg growth */

QUITIFMONE(pc->procid,"sproc")
#else

/*
|| For each input file, call the selected (-a) method as a
|| subroutine to copy its file.
*/
fprintf(stderr,"file %s...",pc->fname);
method((void*)pc,0);
if (errors) break;
fprintf(stderr,"done\n");

#endif
}

#if DO_SPROCS
/*
|| Wait for all the kiddies to get themselves initialized.
|| When all have started and reached barrier(), all continue.
|| If any errors occurred in initialization, quit.
*/
barrier(convene,nprocs);
/*
|| Child processes are executing now. Reunite the family round the
|| old hearth one last time, when their processing is complete.
|| Each child ensures that all its output is complete before it
|| invokes barrier().
*/
barrier(convene,nprocs);

#endif
/*
|| Close the output file and print some statistics.
*/
close(outFD);
{

clock_t timesum;
long bytesum;
double bperus;
printf(" procid time fsize filename\n");
for(argno = 0, timesum = bytesum = 0 ; argno < nfiles ; ++argno)
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{
pc = &array[argno];
timesum += pc->etime;
bytesum += pc->fsize;
printf("%2d: %-8d %-8d %-8d %s\n"

,argno,pc->procid,pc->etime,pc->fsize,pc->fname);
}
bperus = ((double)bytesum)/((double)timesum);
printf("total time %d usec, total bytes %d, %g bytes/usec\n"

,timesum , bytesum , bperus);
}
/*
|| Unlink the arena file, so it won't exist when this progam runs
|| again. If it did exist, it would be used as the initial state of
|| the arena, which might or might not have any effect.
*/
unlink(arenaPath);
return 0;

}
/******************************************************************************
|| inProc0() alternates polling with aio_error() with sginap(). Under
|| the Frame Scheduler, it would use frs_yield() instead of sginap().
|| The general pattern of this function is repeated in the other three;
|| only the wait method varies from function to function.
*/
int inWait0(child_t *pch)
{

int ret;
aiocb_t* pab = &pch->acb;
while (EINPROGRESS == (ret = aio_error(pab)))
{

sginap(0);
}
return ret;

}
void inProc0(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
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*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break; /* unable to schedule a read */
ret = inWait0(pch);
if (ret)

break; /* nonzero read completion status */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;
ret = inWait0(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
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/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait0(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
return;

} /* end inProc1 */
/******************************************************************************
|| inProc1 uses aio_suspend() to await the completion of each operation.
|| Otherwise it is the same as inProc0, above.
*/

int inWait1(child_t *pch)
{

int ret;
aiocb_t* susplist[1]; /* list of 1 aiocb for aio_suspend() */
susplist[0] = &pch->acb;
/*
|| Note: aio.h declares the 1st argument of aio_suspend() as "const."
|| The C compiler requires the actual-parameter to match in type,
|| so the list we pass must either be declared "const aiocb_t*" or
|| must be cast to that -- else cc gives a warning. The cast
|| in the following statement is only to avoid this warning.
*/
ret = aio_suspend( (const aiocb_t **) susplist,1,NULL);
return ret;

}
void inProc1(void *arg, size_t stk)
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{
child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break;
ret = inWait1(pch);
/*
|| If the aio_suspend() return is nonzero, it means that the wait
|| did not end for i/o completion but because of a signal. Since we
|| expect no signals here, we take that as an error.
*/
if (!ret) /* op is complete */

ret = aio_error(pab); /* read() status, should be 0 */
if (ret)

break; /* signal, or nonzero read completion */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
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pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;
ret = inWait1(pch);
if (!ret) /* op is complete */

ret = aio_error(pab); /* should be 0 */
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait1(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc0 */
/******************************************************************************
|| inProc2 requests a signal upon completion of an I/O. After starting
|| an operation, it P's a semaphore which is V'd from the signal handler.
*/
#define AIO_SIGNUM SIGRTMIN+1 /* arbitrary choice of signal number */
void sigHandler2(const int signo, const struct siginfo *sif )
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{
/*
|| In this minimal signal handler we pick up the address of the
|| child_t info structure -- which was put in aio_sigevent.sigev_value
|| field during initialization -- and use it to find the semaphore.
*/
child_t *pch = sif->si_value.sival_ptr ;
usvsema(pch->sema);
return; /* stop here with dbx to print the above address */

}
int inWait2(child_t *pch)
{

/*
|| Wait for any signal handler to post the semaphore. The signal
|| handler could have been entered before this function is called,
|| or it could be entered afterward.
*/
uspsema(pch->sema);
/*
|| Since this process executes only one aio operation at a time,
|| we can return the status of that operation. In a more complicated
|| design, if a signal could arrive from more than one pending
|| operation, this function could not return status.
*/
return aio_error(&pch->acb);

}
void inProc2(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a signal in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value, for use
|| in the signal handler.
*/
pab->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
pab->aio_sigevent.sigev_signo = AIO_SIGNUM;
pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */
/*
|| Initialize -- set up a signal handler for AIO_SIGNUM.
*/
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{
struct sigaction sa = {SA_SIGINFO,sigHandler2};
ret = sigaction(AIO_SIGNUM,&sa,NULL);
if (ret) ++errors; /* parent will shut down ASAP */

}
#if DO_SPROCS

/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#else
if (ret) return;

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait2(pch);
if (ret)

break; /* could not start read, or it ended badly */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

ret = inWait2(pch);
if (ret)

break;
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pch->outbase += bytes; /* where to write next time */
} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait2(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc2 */

/******************************************************************************
|| inProc3 uses a callback and a semaphore. It waits with a P operation.
|| The callback function executes a V operation. This may come before or
|| after the P operation.
*/
void callBack3(union sigval usv)
{

/*
|| The callback function receives the pointer to the child_t struct,
|| as prepared in aio_sigevent.sigev_value.sival_ptr. Use this to
|| post the semaphore in the child_t struct.
*/
child_t *pch = usv.sival_ptr;
usvsema(pch->sema);
return;

}
int inWait3(child_t *pch)
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{
/*
|| Suspend, if necessary, by polling the semaphore. The callback
|| function might be entered before we reach this point, or after.
*/
uspsema(pch->sema);
/*
|| Return the status of the aio operation associated with the sema.
*/
return aio_error(&pch->acb);

}
void inProc3(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a callback in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value to be passed
|| into the callback.
*/
pab->aio_sigevent.sigev_notify = SIGEV_CALLBACK;
pab->aio_sigevent.sigev_func = callBack3;
pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait3(pch);
if (ret)

break; /* read error */
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/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

ret = inWait3(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait3(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc3 */
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9. High-Performance File I/O

This chapter describes three special modes of disk I/O:

• “Using Synchronous Output” on page 223 describes the effect of the O_SYNC file
option.

• “Using Direct I/O” on page 225 compares the use of direct-to-disk output with
normal (buffered) output.

• “Using Guaranteed-Rate I/O” on page 230 describes a special mode of I/O used
with real-time XFS volumes.

Using Synchronous Output

You use synchronous disk output to prevent the IRIX kernel scheme from deferring disk
output.

About Buffered Output

When you open a disk file and do not specify the O_SYNC flag (see the open(2) reference
page), a call to write() for that file descriptor returns as soon as the data has been copied
to a buffer in the kernel address space.

The actual disk write may not take place until considerable time has passed. A common
pool of disk buffers is used for all disk files. (The size of the pool is set by the nbuf system
configuration variable, and defaults to approximately 2.5% of all physical memory.) Disk
buffer management is integrated with the virtual memory paging mechanism. A daemon
executes periodically and initiates output of buffered blocks according to the age of the
data and the needs of the system.
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The default management of disk output improves performance for the system in general
but has three drawbacks:

• All output data must be copied from the buffer in process address space to a buffer
in the kernel address space. For small or infrequent writes, the copy time is
negligible, but for large quantities of data it adds up.

• You do not know when the written data is actually safe on disk. A system crash
could prevent the output of a large amount of buffered data.

• When the system does decide to flush output buffers to disk, it can generate a large
quantity of I/O that monopolizes the disk channel for a long time, delaying other
I/O operations.

You can force the writing of all pending output for a file by calling fsync() (see the
fsync(2) reference page). This gives you a way of creating a known checkpoint of a file.
However, fsync() blocks until all buffered writes are complete, possibly a long time.
When using asynchronous I/O, you can make file synchronization asynchronous also
(see “Assuring Data Integrity” on page 197).

Requesting Synchronous Output

When you open a disk file specifying O_SYNC, each call to write() blocks until the data
has been written to disk. This gives you a way of ensuring that all output is complete as
it is created. If you combine O_SYNC access with asynchronous I/O, you can let the
asynchronous process suffer the delay (see “About Asynchronous I/O” on page 192).

Synchronous output is still buffered output—data is copied to a kernel buffer before
writing. The meaning of O_SYNC is that the file data is all present even if the system
crashes. For this reason, each write to an O_SYNC file can cause a write of file metadata
as well as the file data itself. These extra writes can make synchronous output quite slow.

The O_SYNC option takes effect even when the amount of data you write is less than the
physical blocksize of the disk, or when the output does not align with the physical
boundaries of disk blocks. In order to guarantee writing of misaligned data, the kernel
has to read disk blocks, update them, and write them back. If you write using incomplete
disk blocks (512 bytes) on block boundaries, synchronous output is slower.
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Using Direct I/O

You can bypass the kernel’s buffer cache completely by using the option O_DIRECT.
Under this option, writes to the file take place directly from your program’s buffer to the
device—the data is not copied to a buffer in the kernel first. In order to use O_DIRECT
you are required to transfer data in quantities that are multiples of the disk blocksize,
aligned on blocksize boundaries. (The requirements for O_DIRECT use are documented
in the open(2) and fcntl(2) reference pages.)

An O_DIRECT read() or write() is synchronous—control does not return until the disk
operation is complete. Also, an O_DIRECT read() call always causes disk input—there is
input cache. However, you can open a file O_DIRECT and use the file descriptor for
asynchronous I/O, so that the delays are taken by an asynchronous thread (see “About
Asynchronous I/O” on page 192).

Direct I/O is required when you use guaranteed-rate I/O (see “Using Guaranteed-Rate
I/O” on page 230).

Direct I/O Example

The program in Example 9-1 allows you to experiment and compare buffered output,
synchronized output, and direct output. An example of using it might resemble this:

> timex dirio -o /var/tmp/dout -m b -b 4096 -n 100
real        0.10
user        0.01
sys         0.02
> timex dirio -o /var/tmp/dout -m d -b 4096 -n 100
real        1.35
user        0.01
sys         0.06
> timex dirio -o /var/tmp/dout -m s -b 4096 -n 100
real        3.43
user        0.01
sys         0.09
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Example 9-1 Source of Direct I/O Example

/*
|| dirio: program to test and demonstrate direct I/O.
||
|| dirio [-o outfile] [ -m {b|s|d} ] [ -b bsize ] [ -n recs ] [ -i ]
||
|| -o outfile output file pathname, default $TEMPDIR/dirio.out
||
|| -m {b|s|d} file mode: buffered (default), synchronous, or direct
||
|| -b bsize blocksize for each write, default 512
||
|| -n recs how many writes to do, default 1000
||
|| -i display info from fcntl(F_DIOINFO)
||
*/
#include <errno.h> /* for perror() */
#include <stdio.h> /* for printf() */
#include <stdlib.h> /* for getenv(), malloc(3c) */
#include <sys/types.h> /* required by open() */
#include <unistd.h> /* getopt(), open(), write() */
#include <sys/stat.h> /* ditto */
#include <fcntl.h> /* open() and fcntl() */

int main(int argc, char **argv)
{

char* tmpdir; /* ->name string of temp dir */
char* ofile = NULL; /* argument name of file path */
int oflag = 0; /* -m b/s/d result */
size_t bsize = 512; /* blocksize */
void* buffer; /* aligned buffer */
int nwrites = 1000; /* number of writes */
int ofd; /* file descriptor from open() */
int info = 0; /* -i option default 0 */
int c; /* scratch var for getopt */
char outpath[128]; /* build area for output pathname */
struct dioattr dio;

/*
|| Get the options
*/
while ( -1 != (c = getopt(argc,argv,"o:m:b:n:i")) )
{



Using Direct I/O

227

switch (c)
{
case 'o': /* -o outfile */
{

ofile = optarg;
break;

}
case 'm': /* -m mode */
{

switch (*optarg)
{
case 'b' : /* -m b buffered i.e. normal */

oflag = 0;
break;

case 's' : /* -m s synchronous (but not direct) */
oflag = O_SYNC;
break;

case 'd' : /* -m d direct */
oflag = O_DIRECT;
break;

default:
fprintf(stderr,"? -m %c\n",*optarg);
return -1;

}
break;

}
case 'b' : /* blocksize */
{

bsize = strtol(optarg, NULL, 0);
break;

}
case 'n' : /* number of writes */
{

nwrites = strtol(optarg, NULL, 0);
break;

}
case 'i' : /* -i */
{

info = 1;
break;

}
default:

return -1;
} /* end switch */

} /* end while */
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/*
|| Ensure a file path
*/
if (ofile)

strcpy(outpath,ofile);
else
{

tmpdir = getenv("TMPDIR");
if (!tmpdir)

tmpdir = "/var/tmp";
strcpy(outpath,tmpdir);
strcat(outpath,"/dirio.out");

}
/*
|| Open the file for output, truncating or creating it
*/
oflag |= O_WRONLY | O_CREAT | O_TRUNC;
ofd = open(outpath,oflag,0644);
if (-1 == ofd)
{

char msg[256];
sprintf(msg,"open(%s,0x%x,0644)",outpath,oflag);
perror(msg);
return -1;

}
/*
|| If applicable (-m d) get the DIOINFO for the file and display.
*/
if (oflag & O_DIRECT)
{

(void)fcntl(ofd,F_DIOINFO,&dio);
if (info)
{
printf("dioattr.d_mem : %8d (0x%08x)\n",dio.d_mem,dio.d_mem);
printf("dioattr.d_miniosz: %8d (0x%08x)\n",dio.d_miniosz,dio.d_miniosz);
printf("dioattr.d_maxiosz: %8d (0x%08x)\n",dio.d_maxiosz,dio.d_maxiosz);
}
if (bsize < dio.d_miniosz)
{

fprintf(stderr,"bsize %d too small\n",bsize);
return -2;

}
if (bsize % dio.d_miniosz)
{

fprintf(stderr,"bsize %d is not a miniosz-multiple\n",bsize);



Using Direct I/O

229

return -3;
}
if (bsize > dio.d_maxiosz)
{

fprintf(stderr,"bsize %d too large\n",bsize);
return -4;

}
}
else
{ /* set a default alignment rule */

dio.d_mem = 8;
}
/*
|| Get a buffer aligned the way we need it.
*/
buffer = memalign(dio.d_mem,bsize);
if (!buffer)
{

fprintf(stderr,"could not allocate buffer\n");
return -5;

}
bzero(buffer,bsize);
/*
|| Write the number of records requested as fast as we can.
*/
for(c=0; c<nwrites; ++c)
{

if ( bsize != (write(ofd,buffer,bsize)) )
{

char msg[80];
sprintf(msg,"%d th write(%d,buffer,%d)",c+1,ofd,bsize);
perror(msg);
break;

}
}
/*
|| To level the playing field, sync the file if not sync'd already.
*/
if (0==(oflag & (O_DIRECT|O_SYNC)))

fdatasync(ofd);

close(ofd);
return 0;

}
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Using a Delayed System Buffer Flush

When your application has both clearly defined times when all unplanned disk activity
should be prevented, and clearly defined times when disk activity can be tolerated, you
can use the syssgi() function to control the kernel’s automatic disk writes.

Prior to a critical section of length s seconds that must not be interrupted by unplanned
disk writes, use syssgi() as follows:

syssgi(SGI_BDFLUSHCNT,s);

The kernel will not initiate any deferred disk writes for s seconds. At the start of a period
when disk activity can be tolerated, initiate a flush of the kernel’s buffered writes with
syssgi() as follows:

syssgi(SGI_SSYNC);

Note: This technique is meant for use in a uniprocessor. Code executing in an isolated
CPU of a multiprocessor is not affected by kernel disk writes (unless a large buffer flush
monopolizes a needed bus or disk controller).

Using Guaranteed-Rate I/O

Under specific conditions, your program can demand a guaranteed rate of data transfer.
You would use this feature, for example, to ensure input of data for a real-time video
display, or to ensure adequate disk bandwidth for high-speed telemetry capture.

About Guaranteed-Rate I/O

Guaranteed-rate I/O (GRIO) allows a program to request a specific data bandwidth to or
from a filesystem. The GRIO subsystem grants the request if that much requested
bandwidth is available from the hardware. For the duration of the grant, the application
is assured of being able to move the requested amount of data per second. Assurance of
this kind is essential to real-time data capture and digital media programming.

GRIO is a feature of the XFS filesystem support—EFS, the older IRIX file system, does not
support GRIO. In addition, the optional subsystem eoe.sw.xfsrt must be installed.With
IRIX 6.5, GRIO is supported on XLV volumes over disks or RAID systems.
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GRIO is available only to programs that use direct I/O (see “Using Direct I/O” on
page 225).

The concepts of GRIO are covered in sources you should examine:

About Types of Guarantees

GRIO offers two types of guarantee: a real-time (sometimes called “hard”) guarantee,
and a non-real-time (or “soft”) guarantee. The real-time guarantee promises to
subordinate every other consideration, including especially data integrity, to on-time
delivery.

The two types of guarantee are effectively the same as long as no I/O read errors occur.
When a read error occurs under a real-time guarantee, no error recovery is attempted—
the read() function simply returns an error indication. Under a non-real-time guarantee,
I/O error recovery is attempted, and this can cause a temporary failure to keep up to the
guaranteed bandwidth.

You can qualify either type of guarantee as being Rotor scheduling, also known as Video
On Demand (VOD). This indicates a particular, special use of a striped volume. These
three types of guarantee, and several other options, are described in detail in IRIX
Admin:Disks and Filesystems and in the grio(5) reference page.

About Device Configuration

GRIO is permitted on a device managed by XFS. A real-time guarantee can only be
supported on the real-time subvolume of a logical volume created by XLV. The real-time
subvolume differs from the more common data subvolume in that it contains only data,
no file system management data such as directories or inodes. The real-time subvolume
of an XLV volume can span multiple disk partitions, and can be striped.

IRIX Admin:Disks and
Filesystems

Documents the administration of XFS and XLV in general, and
GRIO volumes in particular.

grio(5) Reference page giving an overview of GRIO use.

grio(1M) Reference page for the administrator command for querying
the state of the GRIO system.

ggd(1M) Reference page for the GRIO grant daemon.

grio_disks(4) Reference page for the configuration files prepared by the
administrator to name GRIO devices.
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In addition, the predictive failure analysis feature and the thermal recalibration feature
of the drive firmware must be disabled, as these can make device access times
unpredictable. For other requirements see IRIX Admin:Disks and Filesystems and the
grio(5) reference page.

Creating a Real-time File

You can only request a hard guaranteed rate against a real-time disk file. A real-time disk
file is identified by the fact that it is stored within the real-time subvolume of an XFS
logical volume.

The file management information for all files in a volume (the directories as well as XFS
management records) are stored in the data subvolume. A real-time subvolume contains
only the data of real-time files. A real-time subvolume comprises an entire disk device or
partition and uses a separate SCSI controller from the data subvolume. Because of these
constraints, the GRIO facility can predict the data rate at which it can transfer the data of
a real-time file.

You create a real-time file in the following steps, which are illustrated in Example 9-2.

1. Open the file with the options O_CREAT, O_EXCL, and O_DIRECT. That is, the file
must not exist at this point, and must be opened for direct I/O (see “Using Direct
I/O” on page 225).

2. Modify the file descriptor to set its extent size, which is the minimum amount by
which the file will be extended when new space is allocated to it, and also to
establish that the new file is a real-time file. This is done using fcntl() with the
FS_FSSETXATTR command. Check the value returned by fcntl() as several errors
can be detected at this point.

The extent size must be chosen to match the characteristics of the disk; for example
it might be the “stripe width” of a striped disk.

3. Write any amount of data to the new file. Space will be allocated in the real-time
subvolume instead of the data subvolume because of step (2). Check the result of
the first write() call carefully, since this is another point at which errors could be
detected.

Once created, you can read and write a real-time file the same as any other file, except
that it must always be opened with O_DIRECT. You can use a real-time file with
asynchronous I/O, provided it is created with the PROC_SHARE_GUAR option.
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Example 9-2 Function to Create a Real-time File

#include <sys/fcntl.h>
#include <sys/fs/xfs_itable.h>
int createRealTimeFile(char *path, __uint32_t esize)
{

struct fsxattr attr;
bzero((void*)&attr,sizeof(attr));
attr.fsx_xflags = XFS_XFLAG_REALTIME;
attr.fsx_extsize = esize;
int rtfd = open(path, O_CREAT + O_EXCL + O_DIRECT );
if (-1 == rtfd)

{perror("open new file"); return -1; }
if (-1 == fcntl(rtfd, F_FSSETXATTR, &attr) )

{perror("fcntl set rt & extent"); return -1; }
return rtfd; /* first write to it creates file*/

}

Requesting a Guarantee

To obtain a guaranteed rate, a program places a reservation for a specified part of the I/O
capacity of a file or a filesystem. In the request, the program specifies

• the file or filesystem to be used

• the start time and duration of the reservation

• the time unit of interest, typically 1 second

• the amount of data required in any one unit of time

For example, a reservation might specify: starting now, for 90 minutes, 1 megabyte per
second. A process places a reservation by calling either grio_request_file() or
grio_request_fs() (refer to the grio_request_file(3X) and grio_request_fs(3X) reference
pages).

The GRIO daemon ggd keeps information on the transfer capacity of all XFS volumes, as
well as the capacity of the controllers and busses to which they are attached. When you
request a reservation, XFS tests whether it is possible to transfer data at that rate, from
that file, during that time period.

This test considers the capacity of the hardware as well as any other reservations that
apply during the same time period to the same subvolume, drives, or controllers. Each
reservation consumes some part of the total capacity.
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When XFS predicts that the guaranteed rate can be met, it accepts the reservation. Over
the reservation period, the available bandwidth from the disk is reduced by the promised
rate. Other processes can place reservations against any capacity that remains.

If XFS predicts that the guaranteed rate cannot be met at some time in the reservation
period, XFS returns the maximum data rate it could supply. The program can reissue the
request for that available rate. However, this is a new request that is evaluated afresh.

During the reservation period, the process can use read() and write() to transfer up to the
guaranteed number of bytes in each time unit. XFS raises the priority of requests as
needed in order to ensure that the transfers take place. However, a request that would
transfer more than the promised number of bytes within a 1-second unit is blocked until
the start of the next time unit.

Releasing a Guarantee

A guarantee ends under three circumstances,

• when the process calls grio_unreserve_bw() (see the grio_unreserve_bw(3X)
reference page)

• when the requested duration expires

• when all file descriptors held by the requesting process that refer to the guaranteed
file are closed (an exception is discussed in the next topic)

When a guarantee ends, the guaranteed transfer capacity becomes available for other
processes to reserve. When a guarantee expires but the file is not closed, the file remains
usable for ordinary I/O, with no guarantee of rate.
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Models of Parallel Computation IV

Chapter 10, “Models of Parallel Computation”

Provides an overview of the different models around which you can design a
parallel or distributed application in Silicon Graphics systems.

Chapter 11, “Statement-Level Parallelism”

Gives an overview of the use of Power Fortran and Power C to execute do-loops
across multiple CPUs.

Chapter 12, “Process-Level Parallelism”

Describes the use of IRIX processes to execute in parallel within one address
space or in multiple address spaces.

Chapter 13, “Thread-Level Parallelism”

Describes the use of POSIX threads (IEEE 1003.1c) for parallel execution within
a single address space.

Chapter 14, “Message-Passing Parallelism”

Describes two different facilities for distributing an application across multiple
host computers: PVM and MPI.
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10. Models of Parallel Computation

You design a program to perform computations in parallel in order to get higher
performance, by bringing more hardware to bear on the problem concurrently. In order
to succeed, you need to understand the hardware architecture of the target system, and
also the software interfaces that are available.

The purpose of this chapter is to give a high-level overview of parallel programming
models and of the hardware that they use. The parallel models are discussed in more
detail in following chapters.
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Parallel Hardware Models

Silicon Graphics makes a variety of systems:

• The O2, Indy, and Indigo workstations have single CPUs. Although they can
perform I/O operations in parallel with computing, they can execute only one
stream of instructions at a time, and time-share the CPU across all active processes.

• The CHALLENGE and Onyx systems (and their POWER versions) are symmetric
multiprocessor (SMP) computers. In these systems at least 2, and as many as 36,
identical microprocessors access a single, common memory and a common set of
peripherals through a high-speed bus.

• The OCTANE workstation is a two-CPU SMP.

• The POWER CHALLENGEarray comprises 2 or more POWER CHALLENGE
systems connected by a high-speed local HIPPI network. Each node in the array is
an SMP with 2 to 36 CPUs. Nodes do not share a common memory; communication
between programs in different nodes passes through sockets. However, the entire
array can be administered and programmed as a single entity.

• An Origin2000 system provides nodes each containing two or four CPUs, connected
in systems of 2 to 128 nodes by a high-speed connection fabric. All system memory
is uniformly addressable, but there is a time penalty for the use of nonlocal memory
(see “Using Origin2000 Nonuniform Memory” on page 29).

Most programs have a single thread of execution that runs as if it were in a uniprocessor,
employing the facilities of a single CPU. The IRIX operating system applies CPUs to
different programs in order to maximize system throughput.

You can write a program so that it makes use of more than one CPU at a time. The
software interface that you use for this is the parallel programming model. The IRIX
operating system gives you a variety of such interfaces. Each one is designed around a
different set of assumptions about the hardware, especially the memory system.

Each model is implemented using a different library of code linked with your program.
In some cases you can design a mixed-model program, but in general this is a recipe for
confusion.
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Parallel Programs on Uniprocessors

It might seem a contradiction, but it is possible to execute some parallel programs in
uniprocessors. Obviously you would not do this expecting the best performance.
However, it is easier to debug a parallel program by running it in the more predictable
environment of a single CPU, on a multiprocessor or on a uniprocessor workstation.
Also, you might deliberately restrict a parallel program to one CPU in order to establish
a performance baseline.

Most parallel programming libraries adapt to the available hardware. They run
concurrently on multiple CPUs when the CPUs are available (up to some
programmer-defined limit). They run on a limited number, or even just one CPU, when
necessary. For example, the Fortran programmer can control the number of CPUs used
by a MIPSpro Fortran 77 program by setting environment variables before the program
starts (see Chapter 11, “Statement-Level Parallelism”).

Types of Memory Systems

The key memory issue for parallel execution is this: Can one process access data in
memory that belongs to another concurrent process, and if so, what is the time penalty
for doing so? The answer depends on the hardware architecture, and determines the
optimal programming model.

Single Memory Systems

The CHALLENGE/Onyx system architecture uses a high speed system bus to connect
all components of the system.

One component is the physical memory system, which plugs into the bus and is equally
available to all other components. Other units that plug into the system bus are I/O
adapters, such as the VME bus adapter. CPU modules containing MIPS R4000, R8000, or
R10000 CPUs are also plugged into the system bus.
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In the CHALLENGE/Onyx architecture, the single, common memory has these features:

• There is a single address map; that is, the same word of memory has the same
address in every CPU.

• There is no time penalty for communication between processes because every
memory word is accessible in the same amount of time from any CPU.

• All peripherals are equally accessible from any process.

The OCTANE workstation also uses a single, common memory that is accessible from
either of its CPUs in the same amount of time.

The effect of a single, common memory is that processes running in different CPUs can
share memory and can update the identical memory locations concurrently. For example,
suppose there are four CPUs available to a Fortran program that processes a large array
of data. You can divide a single DO-loop so that it executes concurrently on the four
CPUs, each CPU working in one-fourth of the array in memory.

As another example, IRIX allows processes to map a single segment of memory into the
virtual address spaces of two or more concurrent processes (see Chapter 3, “Sharing
Memory Between Processes”). Two processes can transfer data at memory speeds, one
putting the data into a mapped segment and the other process taking the data out. They
can coordinate their access to the data using semaphores located in the shared segment
(see Chapter 4, “Mutual Exclusion”).

Multiple Memory Systems

In an Array system, such as a POWER CHALLENGEarray, each node is a computer built
on the CHALLENGE/Onyx architecture. However, the only connection between nodes
is the high-speed HIPPI bus between nodes. The system does not offer a single system
memory; instead, there is a separate memory subsystem in each node. The effect is that:

• There is not a single address map. A word of memory in one node cannot be
addressed at all from another node.

• There is a time penalty for some interprocess communication. When data passes
between programs in different nodes, it passes over the HIPPI network, which takes
longer than a memory-to-memory transfer.

• Peripherals are accessible only in the node to which they are physically attached.
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Nevertheless, it is possible to design an application that executes concurrently in
multiple nodes of an Array. The message-passing interface (MPI) is designed specifically
for this.

Hierarchic, Nonuniform Memory Systems

The Origin2000 system uses a memory hierarchy. A certain amount of memory is a
physical part of each node. The hardware creates the image of a single system memory.
The memory installed in any node can be accessed from any other node as if all memory
were local. However, the node number is part of the physical address of a word of
memory. There is a multiple-level hierarchy of speed: memory in the same node as the
CPU is accessed in the least amount of time, while memory in any other node takes an
additional fraction of a microsecond to access. The time penalty depends on the relative
location of the two nodes in the system.

These are the results of this design:

• There is a single address map. A word of memory can be addressed from any node.

• There is a time penalty for some accesses, depending on the node that requests the
memory and the node that contains it. However, this time cost is far smaller than
the cost of communicating over a socket and a network link.

• Peripherals are accessible from any node, but there is a time penalty for access to a
peripheral from a node other than the one to which the peripheral is attached.

The implications of these features are explored at more length under “Using Origin2000
Nonuniform Memory” on page 29.

Parallel Execution Models

You can compare the available models for parallel programming on two features:

granularity The relative size of the unit of computation that executes in
parallel: a single statement, a function, or an entire process.

communication
channel

The basic mechanism by which the independent, concurrent units
of the program exchange data and synchronize their activity.
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A summary comparison of the available models is shown in Table 10-1.

Process-Level Parallelism

A UNIX process consists of an address space, a large set of process state values, and one
thread of execution. The main task of the IRIX kernel is to create processes and to
dispatch them to different CPUs to maximize the utilization of the system.

IRIX contains a variety of interprocess communication (IPC) mechanisms, which are
discussed in Chapter 2, “Interprocess Communication.” These mechanisms can be used
to exchange data and to coordinate the activities of multiple, asynchronous processes
within a single-memory system. (Processes running in different nodes of an Array must
use one of the distributed models; see “Message-Passing Models” on page 245.)

Table 10-1 Comparing Parallel Models

Model Granularity Communication

Power Fortran,
IRIS POWER C

Looping statement (DO or for
statement)

Shared variables in a single user
address space.

Ada95 tasks Ada Procedure Shared variables in a single user
address space.

POSIX threads C function Shared variables in a single user
address space.

Lightweight UNIX processes
(sproc())

C function Arena memory segment in a
single user address space.

General UNIX processes
(fork(), exec())

Process Arena segment mapped to
multiple address spaces.

Shared Memory (SHMEM) Process Memory copy.

Parallel Virtual Machine
(PVM)

Process Memory copy within node;
HIPPI network between nodes.

Message-Passing (MPI) Process Memory copy within node;
special HIPPI Bypass interface
between nodes.
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In traditional UNIX practice, one process creates another with the system call fork(),
which makes a duplicate of the calling process, after which the two copies execute in
parallel. Typically the new process immediately uses the exec() function to load a new
program. (The fork(2) reference page contains a complete list of the state values that are
duplicated when a process is created. The exec(2) reference page details the process of
creating a new program image for execution.)

IRIX also supports the system function sproc(), which creates a lightweight process. A
process created with sproc() shares some of its process state values with its parent
process (the sproc(2) reference page details how this sharing is specified).

In particular, a process made with sproc() does not have its own address space. It
continues to execute in the address space of the original process. In this respect, a
lightweight process is like a thread (see “Thread-Level Parallelism” on page 243).
However, a lightweight process differs from a thread in two significant ways:

• A lightweight process still has a full set of UNIX state values. Some of these, for
example the table of open file descriptors, can be shared with the parent process,
but in general a lightweight process carries most of the state information of a
process.

• Dispatch of lightweight processes is done in the kernel, and has the same overhead
as dispatching any process.

The library support for statement-level parallelism is based on the use of lightweight
processes (see “Statement-Level Parallelism” on page 245).

Thread-Level Parallelism

A thread is an independent execution state within the context of a larger program. The
concept of a thread is well-known, but the most common formal definition of threads and
their operation is provided by POSIX standard 1003.1c, “System Application Program
Interface—Amendment 2: Threads Extension.”
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There are three key differences between a thread and a process:

• A UNIX process has its own set of UNIX state information, for example, its own
effective user ID and set of open file descriptors.

Threads exist within a process and do not have distinct copies of these UNIX state
values. Threads share the single state belonging to their process.

• Normally, each UNIX process has a unique address space of memory segments that
are accessible only to that process (lightweight processes created with sproc() share
all or part of an address space).

Threads within a process always share the single address space belonging to their
process.

• Processes are scheduled by the IRIX kernel. A change of process requires two
context changes, one to enter the kernel domain and one to return to the user
domain of the next process. The change from the context of one process to the
context of another can entail many instructions.

In contrast, threads are scheduled by code that operates largely in the user address
space, without kernel assistance. Thread scheduling can be faster than process
scheduling.

The POSIX standard for multithreaded programs is supported by IRIX 6.2 with
patches 1361, 1367, and 1389 installed, and in all subsequent releases of IRIX.

In addition, the Silicon Graphics implementation of the Ada95 language includes
support for multitasking Ada programs—using what are essentially threads, although
not implemented using the POSIX library. For a complete discussion of the Ada 95 task
facility, refer to the Ada 95 Reference Manual, which installs with the Ada 95 compiler
(GNAT) product.
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Statement-Level Parallelism

The finest level of granularity is to run individual statements in parallel. This is provided
using any of three language products:

• MIPSpro Fortran 77 supports compiler directives that command parallel execution
of the bodies of DO-loops. The MIPSpro POWER Fortran 77 product is a
preprocessor that automates the insertion of these directives in a serial program.

• MIPSpro Fortran 90 supports parallelizing directives similar to MIPSpro Fortran 77,
and the MIPSpro POWER Fortran 90 product automates their placement.

• MIPSpro POWER C supports compiler pragmas that command parallel execution
of segments of code. The IRIS POWER C analyzer automates the insertion of these
pragmas in a serial program.

In all three languages, the run-time library—which provides the execution environment
for the compiled program—contains support for parallel execution. The compiler
generates library calls. The library functions create lightweight processes using sproc(),
and distribute loop iterations among them.

The run-time support can adapt itself dynamically to the number of available CPUs.
Alternatively, you can control it—either using program source statements, or using
environment variables at execution time—to use a certain number of CPUs.

Statement-level parallel support is based on using common variables in memory, and so
it can be used only within the bounds of a single-memory system, a CHALLENGE
system or a single node in a POWER CHALLENGEarray system.

Message-Passing Models

One way to design a parallel program is to think of each thread of execution as operating
in an independent address space, communicating with other threads by exchanging
discrete units of data as messages through an abstract, formal interface for message
exchange.
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The threads of a program designed in this way can be distributed over different
computers. Three message-passing execution models are supported by Silicon Graphics
systems. Each defines and implements a formal, abstract model for data exchange. Two
of the models allow a computation to be distributed across the nodes of a
multiple-memory system, without having to reflect the system configuration in the
source code. The programming models are:

• Shared Memory Model (SHMEM)

• Message-Passing Interface (MPI)

• Parallel Virtual Machine (PVM)

All three models are briefly summarized in the following topics, and are discussed in
more detail in Chapter 14, “Message-Passing Parallelism.” Support for all three is
included in the Message-Passing Toolkit (MPT) product. For an overview of MPT, see
this URL:

http://www.cray.com/products/software/mpt/mpt.html

Shared Memory (SHMEM) Model

The SHMEM library has been used for some time on Cray systems and is now available
for all Silicon Graphics multiprocessors as part of the MPT. A program built on SHMEM
is a process-level parallel program. Each process runs in a separate address space. The
SHMEM library routines are used to exchange data, and to coordinate execution,
between the processes.

SHMEM routines support remote data transfer through put operations, which transfer
data to a different process, and get operations, which transfer data from a different
process. Other operations supported include data broadcast and data reduction; barrier
synchronization; as well as atomic memory updates such as a fetch-and-increment on
remote or local data objects.

SHMEM operations are all memory-to-memory, and as a result have extremely high
bandwidth and low latency. However, a SHMEM-based program cannot be distributed
across multiple systems.
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Message-Passing Interface (MPI) Model

MPI is a standard programming interface for the construction of a portable, parallel
application in Fortran 77 or in C, especially when the application can be decomposed into
a fixed number of processes operating in a fixed topology (for example, a pipeline, grid,
or tree). MPI has wide use on many large computers.

A highly tuned, efficient implementation of MPI is part of the MPT. Within a single
system, MPI messages are moved memory-to-memory. Between nodes of an Silicon
Graphics Array system, MPI messages are passed over a HIPPI network. Latency and
bandwidth are intermediate between memory-to-memory data exchange and
socket-based network communication.

Parallel Virtual Machine (PVM) Model

PVM is an integrated set of software tools and libraries that emulates a general-purpose,
flexible, heterogeneous, concurrent computing framework on interconnected computers
of varied architecture. Using PVM, you can create a parallel application that executes as
a set of concurrent processes on a set of computers that can include uniprocessors,
multiprocessors, and nodes of Array systems.

Like MPI, PVM has wide use on many types of supercomputer, including Cray systems.
An implementation of PVM is included in the MPT. PVM is discussed in more detail
under Chapter 14, “Message-Passing Parallelism.”
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11. Statement-Level Parallelism

You can use statement-level parallelism in three language packages: Fortran 77,
Fortran 90, and C. This execution model is unique in that you begin with a normal, serial
program, and you can always return the program to serial execution by recompiling.
Every other parallel model requires you to plan and write a parallel program from the
start.
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Products for Statement-Level Parallelism

Software support for statement-level parallelism is available from Silicon Graphics and
from independent vendors.

Silicon Graphics Support

The parallel features of the three languages from Silicon Graphics are documented in
detail in the manuals listed in Table 11-1.

Products from Other Vendors

In addition to these products from Silicon Graphics, the High Performance Fortran (HPF)
compiler from the Portland Group is a compiler for Fortran 90 augmented to the HPF
standard. It supports automatic parallelization. (Refer to http://www.pgroup.com for
more information).

Table 11-1 Documentation for Statement-Level Parallel Products

Manual
Document
Number Contents

C Language Reference
Manual

007-0701-nnn Covers all pragmas, including parallel ones.

IRIS Power C User’s Guide 007-0702-nnn Use of Power C source analyzer to place pragmas
automatically.

MIPSpro Fortran 77
Programmer’s Guide

007-2361-nnn General use of Fortran 77, including parallelizing
assertions and directives.

MIPSpro Power Fortran 77
Programmer’s Guide

007-2363-nnn Use of the Power Fortran source analyzer to place
directives automatically.

MIPSpro Fortran 90
Programmer’s Guide

007-2761-nnn General use of Fortran 90, including parallelizing
assertions and directives.

MIPSpro Power Fortran 90
Programmer’s Guide

007-2760-nnn Use of the Power Fortran 90 source analyzer to place
directives automatically.
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The FORGE products from Applied Parallel Research (APRI) contain a Fortran 77 source
analyzer that can insert parallelizing directives, although not the directives supported by
MIPSpro Fortran 77. (Refer to http://www.apri.com for more information.)

Creating Parallel Programs

In each of the three languages, the language compiler supports explicit statements that
command parallel execution (#pragma lines for C; directives and assertions for Fortran).
However, placing these statements can be a demanding, error-prone task. It is easy to
create a suboptimal program, or worse, a program that is incorrect in subtle ways.
Furthermore, small changes in program logic can invalidate parallel directives in ways
that are hard to foresee, so it is difficult to modify a program that has been manually
made parallel.

For each language, there is a source-level program analyzer that is sold as a separate
product (IRIS POWER C, MIPSpro Power Fortran 77, MIPSpro Power Fortran 90). The
analyzer identifies sections of the program that can safely be executed in parallel, and
automatically inserts the parallelizing directives. After any logic change, you can run the
analysis again, so that maintenance is easier.

The source analyzer makes conservative assumptions about the way the program uses
data. As a result, it often is unable to find all the potential parallelism. However, the
analyzer produces a detailed listing of the program source, showing each segment that
could or could not be parallelized, and why. Directed by this listing, you insert source
assertions that give the analyzer more information about the program.

The method of creating an optimized parallel program is as follows:

1. Write a complete application that runs on a single processor.

2. Completely debug and verify the correctness of the program in serial execution.

3. Apply the source analyzer and study the listing it produces.

4. Add assertions to the source program. These are not explicit commands to
parallelize, but high-level statements that describe the program’s use of data.

5. Repeat steps 3 and 4 until the analyzer finds as much parallelism as possible.

6. Run the program on a single-memory multiprocessor.
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When the program requires maintenance, you make the necessary logic changes and,
simultaneously, remove any assertions about the changed code—unless you are certain
that the assertions are still true of the modified logic. Then repeat the preceding
procedure from step 2.

Managing Statement-Parallel Execution

The run-time library for all three languages is the same, libmp. It is documented in the
mp(3) reference page. libmp uses IRIX lightweight processes to implement parallel
execution (see Chapter 12, “Process-Level Parallelism”).

When a parallel program starts, the run-time support creates a pool of lightweight
processes using the sproc() function. Initially the extra processes are blocked, while one
process executes the opening passage of the program. When execution reaches a parallel
section, the run-time library code unblocks as many processes as necessary. Each process
begins to execute the same block of statements. The processes share global variables,
while each allocates its own copy of variables that are local to one iteration of a loop, such
as a loop index.

When a process completes its portion of the work of that parallel section, it returns to the
run-time library code, where it picks up another portion of work if any work remains, or
suspends until the next time it is needed. At the end of the parallel section, all extra
processes are suspended and the original process continues to execute the serial code
following the parallel section.

Controlling the Degree of Parallelism

You can specify the number of lightweight processes that are started by a program. In
IRIS POWER C, you can use #pragma numthreads to specify the exact number of processes
to start, but it is not a good idea to embed this number in a source program. In all
implementations, the run-time library by default starts enough processes so there is one
for each CPU in the system. That default is often too high, since typically not all CPUs
are available for one program.
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The run-time library checks an environment variable, MP_SET_NUM_THREADS, for
the number of processes to start. You can use this environment variable to choose the
number of processes used by a particular run of the program, thereby tuning the
program’s requirements to the system load. You can even force a parallelized program to
execute on a single CPU when necessary.

MIPSpro Fortran 77 and MIPSpro Fortran 90 also recognize additional environment
variables that specify a range of process numbers, and use more or fewer processes
within this range as system load varies. (See the Programmer’s Guide for the language for
details.)

At certain points the multiple processes must wait for one another before continuing.
They do this by waiting in a busy loop for a certain length of time, then by blocking until
they are signaled. You can specify the amount of time that a process should spend
spinning before it blocks, using either source directives or an environment variable (see
the Programmer’s Guide for the language for system functions for this purpose).

Choosing the Loop Schedule Type

Most parallel sections are loops. The benefit of parallelization is that some iterations of
the loop are executed in one CPU, concurrent with other iterations of the same loop in
other CPUs. But how are the different iterations distributed across processes? The
languages support four possible methods of scheduling loop iterations, as summarized
in Table 11-2.

Table 11-2 Loop Scheduling Types

Schedule Purpose

SIMPLE Each process executes N/P iterations starting at Q*(N/P). First process to
finish takes the remainder chunk, if any.

DYNAMIC Each process executes C iterations of the loop, starting with the next undone
chunk unit, returning for another chunk until none are left undone.

INTERLEAVE Each process executes C iterations at C*Q, C*2Q, C*3Q...

GSS Each process executes chunks of decreasing size, (N/2P), (N/4P),...



254

Chapter 11: Statement-Level Parallelism

The variables used in Table 11-2 are as follows:

The effects of the scheduling types depend on the nature of the loops being parallelized.
For example:

• The SIMPLE method works well when N is relatively small. However, unless N is
evenly divided by P, there will be a time at the end of the loop when fewer than P
processes are working, and possibly only one.

• The DYNAMIC and INTERLEAVE methods allow you to set the chunk size to
control the span of an array referenced by each process. You can use this to reduce
cache effects. When N is very large so that not all data fits in memory, INTERLEAVE
may reduce the amount of paging compared to DYNAMIC.

• The guided self-scheduling (GSS) method is good for triangular matrices and other
algorithms where loop iterations become faster toward the end.

You can use source directives or pragmas within the program to specify the scheduling
type and chunk size for particular loops. Where you do not specify the scheduling, the
run-time library uses a default method and chunk size. You can establish this default
scheduling type and chunk size using environment variables.

Distributing Data

In any statement-level parallel program, memory cache contention can harm
performance. This subject is covered under “Dealing With Cache Contention” on
page 34.

When a statement-parallel program runs in an Origin2000 or Onyx2 system, the location
of the program’s data can affect performance. These issues are covered at length under
“Using Origin2000 Nonuniform Memory” on page 29.

N Number of iterations in the loop, determined from the source or at run-time.

P Number of available processes, set by default or by environment variable
(see “Controlling the Degree of Parallelism” on page 252).

Q Number of a process, from 0 to N-1.

C “Chunk” size, set by directive or by environment variable.
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12. Process-Level Parallelism

The process is the traditional unit of UNIX execution. The concept of the process (and its
relationship to the concept of a thread) are covered under “Process-Level Parallelism” on
page 242. The purpose of this chapter is to review how you can use IRIX processes to
perform parallel processing in a single program.
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Using Multiple Processes

In general, you can create a new process for each unit of work that your program could
do in parallel. The processes can share the address space of the original program, or each
can have its own address space. You design the processes so that they coordinate work
and share data using any and all of the interprocess communication (IPC) features
discussed in Part II, “Interprocess Communication.”

Software products from Silicon Graphics use process-level parallelism. For example, the
IRIS Performer graphics library normally creates a separate lightweight process to
manage the graphics pipe in parallel with rendering work. The run-time library for
statement-level parallelism creates a pool of lightweight processes and dispatches them
to execute parts of loop code in parallel (see “Managing Statement-Parallel Execution”
on page 252).

Process Creation and Share Groups

The most important system functions you use to create and manage processes are
summarized in Table 12-1.

Table 12-1 Commands and System Functions for Process Management

Function Name Purpose and Operation

npri(1) Command to run a process at a specified nondegrading priority.

runon(1) Command to run a process on a specific CPU.

fork(2) Create a new process with a private address space.

pcreate(3C) Create a new process with a private address space running a designated
program with specified arguments.

sproc(2) Create a new process in the caller’s address space using a private stack.

sprocsp(2) Create a new process in the caller’s address space using a preallocated
stack area.

prctl(2) Query and set assorted process attributes.

sysmp(2) Query multiprocessor status and assign processes to CPUs.

syssgi(2) Query process virtual and real memory use, and other operations.



Using Multiple Processes

257

You can initiate a program at a specified nondegrading priority (explained under
“Process Scheduling” on page 260) using npri. You can initiate a program running on a
specific CPU of a multiprocessor using runon. Both attributes—the assigned priority and
the assigned CPU—are inherited by any child processes that the program creates.

Process Creation

The process that creates another is called the parent process. The processes it creates are
child processes, or siblings. The parent and its children together are a share group. IRIX
provides special services to share groups. For example, you can send a signal to all
processes in a share group.

The fork() function is the traditional UNIX way of creating a process. The new process is
a duplicate of the parent process, running in a duplicate of the parent’s address space.
Both execute the identical program text; that is, both processes “return” from the fork()
call. Your code can distinguish them by the return code, which is 0 in the child process,
but in the parent is the new process ID.

The sproc() and sprocsp() functions create a lightweight process. The difference between
these calls is that sproc() allocates a new memory segment to serve as the stack for the
new process. You use sprocsp() to specify a stack segment that you have already
allocated—for example, a block of memory that you allocate and lock against paging
using mpin().

The sproc() calls take as an argument the address of the function that the new process
should execute. The new process begins execution in that function, and when that
function returns, the process is terminated. Read the sproc(2) reference page for details
on the flags that specify which process attributes a child process shares with its parent,
and for other comparisons between fork() and sproc().

Note: The sproc() and sprocsp() functions are not available for use in a threaded
program (see Chapter 13, “Thread-Level Parallelism”). The pthreads library uses
lightweight processes to implement threading, and has to control the creation of
processes. Also, when your program uses the MPI library (see Chapter 14,
“Message-Passing Parallelism”), the use of sproc() and sprocsp() can cause problems.
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Process Management

Certain system functions give you some control over the processes you create. The prctl()
function offers a variety of operations. These are some of the most useful:

The sysmp() function gives a privileged process information about and control over the
use of a multiprocessor. Some of the operations it provides are as follows:

PR_MAXPROCS Query the system limit on processes per user (also available from
sysconf(_SC_CHILD_MAX), see sysconf(2).

PR_MAXPPROCS Query the maximum number of CPUs that are available to the
calling process and its children. This reflects both the system
hardware and reservations made on CPUs, but does not reflect
system load.

PR_GETNSHARE Query the number of processes in the share group with the
calling process.

PR_GETSTACKSIZE Query the maximum size of the stack segment of the calling
process. For the parent process this reflects the system limit (also
available from getrlimit(RLIMIT_STACK), see getrlimit(2)). For
a process started by sprocsp(), the size of the allocated stack.

PR_SETSTACKSIZE Set an upper limit on stack growth for the calling process and for
child processes it creates in the future.

PR_RESIDENT Prevent the calling process from being swapped out. This has no
connection to paging, but to swapping out an entire, inactive
process under heavy system load.

MP_NPROCS Number of CPUs physically in the system.

MP_NAPROCS Number of CPUs available to the scheduler; should be
the same as prctl(PR_MAXPPROCS).

MP_MUSTRUN Assign the calling process to run on a specific CPU.

MP_MUSTRUN_PID Assign a specified other process (typically a just-created
child process) to run on a specific CPU.

MP_GETMUSTRUN
MP_GETMUSTRUN_PID

Query the must-run assignment of the calling process or
of a specified process.

MP_RUNANYWHERE
MP_RUNANYWHERE_PID

Allow the calling process, or a specified process, to run
on any CPU.
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The runon command (see “Process Creation” on page 257 and runon(1)) initiates the
parent process of a program running on a specific CPU. Any child processes also runs on
that CPU unless the parent reassigns them to run anywhere, or to run on a different CPU,
using sysmp(). The use of restricted CPUs and assigned CPUs to get predictable real-time
performance is discussed at length in the REACT Real-Time Programmer’s Guide.

The syssgi() function has a number of interesting uses but only one of interest for
managing processes: syssgi(SGI_PROCSZ) returns the virtual and resident memory
occupancy of the calling process.

Process “Reaping”

A parent process should not terminate while its child processes continue to run. When it
does so, the parent process of each child becomes 1, the init process. This causes problems
if a child process should loop or hang. The functions you use to collect (the technical term
is to “reap”) the status of child processes are summarized in Table 12-2.

When the parent process has nothing to do after starting the child processes, it can loop
on wait() until wait() reports no more children exist; then it can exit.

Sometimes it is necessary to handle child termination and other work, and the parent
cannot suspend. In this case the parent can treat the termination of a child process as an
asynchronous event, and trap it in a signal handler for SIGCLD (see “Catching Signals”
on page 118). The wait(2) reference page has extensive discussion of the three methods
(BSD, SVR4, and POSIX) for handling this situation, with example code for each.

Table 12-2 Functions for Child Process Management

Function Name Purpose and Operation

wait(2) Function to block until a child stops or terminates, and to receive the cause
of its change of status.

waitpid(2) POSIX extension of wait() which allows more selectivity and returns more
information.

wait3(2) BSD extension of wait() that allows you to poll for terminated children
without suspending.

waitid(2) Function to suspend until one of a selected set of status changes occurs in
one or more child processes.
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Process Scheduling

There are two different approaches to setting the scheduling priorities of a process, one
compatible with IRIX and BSD, the other POSIX compliant.

Controlling Scheduling With IRIX and BSD-Compatible Facilities

The IRIX compatible and BSD compatible scheduling operations are summarized in
Table 12-3.

For BSD compatibility, use the nice and renice commands to alter priorities, and within a
program use getpriority() and setpriority() to query and set priorities. These commands
and functions use priority numbers ranging from -20 through 0 to +20, with lower
arithmetic values having superior access to the CPU.

Only the IRIX schedctl() function gives you complete access to a variety of operations
related to process scheduling. Some of the key operations are as follows:

Table 12-3 Commands and Functions for Scheduling Control

Function Name Purpose and Operation

schedctl(2) Query and set IRIX process scheduling attributes.

getpriority(2) Return the scheduling priority of a process or share group.

setpriority(2) Set the priority of a process or process group.

nice(1) Run a program at a positive or negative increment from normal priority.

renice(1) Alter the priority of a running process by a positive or negative increment.

NDPRI Set a nondegrading priority for the calling process
(see text).

GETNDPRI Query the nondegrading priority of the calling process.

SETMASTER Set the master process of a share group. By default the
parent process is the master process, but it can transfer
that honor.

SCHEDMODE, SGS_SINGLE Cause all processes in the share group to be suspended
except the master process (set with SETMASTER).
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A program started interactively inherits a scheduling discipline based on degrading
priorities. That is, the longer the process executes without voluntarily suspending, the
lower its dispatching priority becomes. This strategy keeps a runaway process from
monopolizing the hardware. However, you may have a CPU-intensive application that
needs a predictable execution rate. This is the purpose of nondegrading priorities set
with schedctl(NDPRI) or with the npri command (see the npri(1) reference page).

There are three bands of nondegrading priorities, designated by symbolic names
declared in sys/schedctl.h:

• A real-time band from NDPHIMAX to NDPHIMIN. System daemons and real-time
programs run in this band, which has higher priority than any interactive process.

• A normal band from NDPNORMMAX to NDPNORMMIN. These values have the
same priority as interactive programs. Processes at these priorities compete with
interactive processes, but their priorities do not degrade with time.

• A batch band from NDPLOMAX to NDPLOMIN. Processes at these priorities
receive available CPU time and are scheduled from a batch queue.

Tip: The IRIX priority numbers are inverted, in the sense that numerically smaller values
have superior priority. For example. NDPHIMAX is 30 and NDPHIMIN is 39. However,
as long as you declare priority values using symbolic expressions, the numbers work out
correctly. For example, the statement

#define NDPHIMIDDLE NDPHIMIN+((NDPHIMAX-NDPHIMIN)/2)

produces a “middle” value of 35, as it should.

When you create a cooperating group of processes, it is important that they all execute at
the same time, provided there are enough CPUs to handle all the members of the group
that are ready to run. This minimizes the time that members of the share group spend
waiting for each other to release locks or semaphores.

Use schedctl() to initiate “gang” scheduling for the share group. IRIX attempts to
schedule all processes to execute at the same time, when possible.

SCHEDMODE, SGS_GANG Cause all processes in the share group to be scheduled as
a “gang,” with all running concurrently.

SCHEDMODE, SGS_FREE Schedule the share group in the default fashion.



262

Chapter 12: Process-Level Parallelism

Note: Through IRIX 6.2, schedctl() also supported a scheduling mode called “deadline
scheduling.” This scheduling mode is being removed and will not be supported in the
future. Do not design a program based on the use of deadline scheduling.

Controlling Scheduling With POSIX Functions

The POSIX compliant functions to control process scheduling are summarized in
Table 12-4.

Use the functions sched_get_priority_max() and sched_get_priority_min() to get the
ranges of priority numbers you can use. Use sched_setparam() to change priorities.
POSIX dispatching priorities are nondegrading. (Note that in a program that links with
the pthreads library, these same function names are library functions that return thread
scheduling priority numbers unrelated to process scheduling.)

Tip: The POSIX scheduling priority values reported by these functions and declared in
sched.h are not numerically the same as the bands supported by schedctl() and declared
in sys/schedctl.h. The POSIX numbers are numerically higher for superior priority.
However, the POSIX range is functionally (but not numerically) equivalent to the
“normal” range supported by schedctl() (NDPNORMMAX to NDPNORMMIN).

Table 12-4 POSIX Functions for Scheduling

Function Name Purpose and Operation

sched_getparam(2)
sched_setparam(2)

Query and change the POSIX scheduling priority of a process.

sched_getscheduler(2)
sched_setscheduler(2)

Query and change the POSIX scheduling policy and priority of a
process.

sched_get_priority_max(2)
sched_get_priority_min(2)

Query the maximum (most use of CPU) and minimum (least use)
priority numbers for use with sched_getparam().

sched_get_rr_interval(2) Query the timeslice interval of the round-robin scheduling
policy.

sched_yield(2) Let other processes of the same priority execute.
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POSIX scheduling uses one of two scheduling policies, strict FIFO and round-robin,
which are described in detail in the sched_setscheduler(2) reference page. The
round-robin scheduler, which rotates processes of equal priority on a time-slice basis, is
the default. You can query the time-slice interval with sched_get_rr_interval(). You can
change both the policy and the priority by using sched_setscheduler().

Self-Dispatching Processes

Often, each child process has a particular role to play in the application, and the function
that you name to sproc() represents that work. The child process stays in that function
until it terminates.

Another design is possible. In some applications, you may have to manage a flow of
many relatively short activities that should be done in parallel. However, the sproc()
function has considerable overhead. It is inefficient to continually create and destroy
child processes. You do not want to create a new child process for each small activity and
destroy it afterward. Instead, you can create a pool containing a small number of
processes. When a piece of work needs to be done, you can dispatch one process to do it.
The fragmentary code in Example 12-1 shows the general approach.

Example 12-1 Partial Code to Manage a Pool of Processes

typedef void (*workFunc)(void *arg);
struct oneSproc {

struct oneSproc *next; /* -> next oneSproc ready to run */
workFunc calledFunc; /* -> function the sproc is to call */
void *callArg; /* argument to pass to the called func */
usema_t *sprocDone; /* optional sema to post on completion */
usema_t *sprocWait; /* sproc waits for work here */

} sprocList[NUMSPROCS];
usema_t *readySprocs; /* count represents sprocs ready to work */
uslock_t sprocListLock; /* mutex control of sprocList head */
struct oneSproc *sprocList; /* -> first ready oneSproc */
/*
|| Put a oneSproc structure on the ready list and sleep on it.
|| Called by a child process when its work is done.
*/
void sprocSleep(struct oneSproc *theSproc)
{

ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc->next = sprocList; /* put self on the list */
sprocList = theSproc;
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usunsetlock(sprocListLock); /* release sprocList */
usvsema(readySprocs); /* notify master, at least 1 on the list */
uspsema(theSproc->sprocWait);/* sleep until master posts me */

}
/*
|| Body of a general-purpose child process. The argument, which must
|| be declared void* to match the sproc() prototype, is the oneSproc
|| structure that represents this process. The contents of that
|| struct, in particular sprocWait, are initialized by the parent.
*/
void childBody(void *theSprocAsVoid)
{

struct oneSproc *mySproc = (struct oneSproc *)theSprocAsVoid;
/* here one could establish signal handlers, etc. */
for(;;)
{

sprocSleep(mySproc); /* wait for work to do */
mySproc->calledFunc(mySproc->callArg); /* do the work */
if (mySproc->sprocDone) /* if a completion sema is given, */

usvsema(mySproc->sprocDone); /* ..post it */
}

}
/*
|| Acquire a oneSproc structure from the ready list, waiting if necessary.
|| Called by the master process as part of dispatching a sproc.
*/
struct oneSproc *getSproc()
{

struct oneSproc *theSproc;
uspsema(readySprocs); /* wait until at least 1 sproc is free */
ussetlock(sprocListLock); /* acquire exclusive rights to sprocList */
theSproc = sprocList; /* get address of first free oneSproc */
sprocList = theSproc->next; /* make next in list, the head of list */
usunsetlock(sprocListLock); /* release sprocList */
return theSproc;

}
/*
|| Start a function going asynchronously. Called by master process.
*/
void execFunc(workFunc toCall, void *callWith, usema_t *done)
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{
struct oneSproc *theSproc = getSproc();
theSproc->calledFunc = toCall; /* set address of func to exec */
theSproc->callArg = callWith; /* set argument to pass */
theSproc->sprocDone = done; /* set sema to post on completion */
usvsema(theSproc->sprocWait); /* wake up sleeping process */

}

Parallelism in Real-Time Applications

In real-time programs such as aircraft or vehicle simulators, separate processes are used
to divide the work of the simulation and distribute it onto multiple CPUs. In these
demanding applications, the programmer frequently uses IRIX facilities to

• reserve one or more CPUs of a multiprocessor for exclusive use by the application

• isolate the reserved CPUs from all interrupts

• assign specific processes to execute on specific, reserved CPUs

These facilities are described in detail in the REACT Real-Time Programmer’s Guide
(007-2499-nnn). Also covered in that book is the use of the Frame Scheduler, an alternate
process scheduler. The normal process scheduling algorithm of the IRIX kernel attempts
to keep all CPUs busy and to keep all processes advancing in a fair manner. This
algorithm is in conflict with the stringent needs of a real-time program, which needs to
dedicate predictable amounts of hardware capacity to its processes, without regard to
fairness.

The Frame Scheduler seizes one or more CPUs of a multiprocessor, isolates them, and
executes a specified set of processes on each CPU in strict rotation. The Frame Scheduler
has much lower overhead than the normal IRIX scheduler, and it has features designed
for real-time work, including detection of overrun (when a scheduled process does not
complete its work in the necessary time) and underrun (when a scheduled process fails
to execute in its turn).

At this writing there are no real-time applications that use multiple nodes of an Array
system.
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13. Thread-Level Parallelism

IRIX 6.5 conforms to ISO/IEC 9945-1:1996 and UNIX 98; that is, it supports POSIX
threads, or pthreads.

This chapter contains the following main topics:

• “Overview of POSIX Threads” on page 268 summarizes the similarities and
differences of pthreads and processes.

• “Compiling and Debugging a Pthread Application” on page 269 covers compiling
and debugging tools.

• “Creating Pthreads” on page 271 covers the process of creating a pthread with the
desired attributes.

• “Executing and Terminating Pthreads” on page 274 discusses how threads initialize
themselves and how you synchronize on thread termination.

• “Using Thread-Unique Data” on page 277 tells how to define variables that have a
unique value in each thread.

• “Pthreads and Signals” on page 278 discusses the pthread-specific details of signal
handling (see “Signals” on page 113 for the general information).

• “Scheduling Pthreads” on page 280 covers scheduling priorities and policies.

• “Synchronizing Pthreads” on page 282 details the use of mutexes and condition
variables.
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Overview of POSIX Threads

A thread is an independent execution state; that is, a set of machine registers, a call stack,
and the ability to execute code. When IRIX creates a process, it also creates one thread to
execute that process. However, you can write a program that creates many more threads
to execute in the same address space. For a comparison of pthreads to processes, see
“Thread-Level Parallelism” on page 243.

POSIX threads are similar in some ways to IRIX lightweight processes made with sproc().
You use pthreads in preference to lightweight processes for two main reasons: portability
and performance. A program based on pthreads is normally easier to port from another
vendor’s equipment than a program that depends on a unique facility such as sproc().
Table 13-1 summarizes some of the differences between pthreads and lightweight
processes.

Table 13-1 Comparison of Pthreads and Processes

Attribute POSIX Threads Lightweight Processes UNIX Processes

Source portability Standard interface,
portable between
vendors

sproc() is unique to
IRIX

fork() is a UNIX
standard

Creation overhead Relatively small Moderately large Quite large

Block/Unblock
(Dispatch) Overhead

Few microseconds Many microseconds Many microseconds

Address space Shared Shared, or copy on
write, or separate

Separate

Memory-mapped
files and arenas

Shared Shared, or copy on
write, or separate

Explicit sharing only

Mutual exclusion
objects

Mutexes, condition
variables, and
read-write locks;
POSIX semaphores;
IRIX semaphores and
locks

IRIX semaphores and
locks; POSIX
semaphores

IRIX semaphores and
locks; POSIX
semaphores

Files, pipes, and I/O
streams

Shared single-process
file table

Shared or separate file
table

Separate file table
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It takes relatively little time to create or destroy a pthread, as compared to creating a
lightweight process. Threads share all resources and attributes of a single process (except
for the signal mask; see “Pthreads and Signals” on page 278). If you want each executing
entity to have its own set of file descriptors, or if you want to make sure that one entity
cannot modify data shared with another entity, you must use lightweight processes or
normal processes.

Compiling and Debugging a Pthread Application

A pthread application is a C or a C++ program that uses some of the POSIX pthreads
functions. In order to use these functions, and in order to access the thread-safe versions
of the standard I/O macros, you must include the proper header files and link with the
pthreads library. You can debug and analyze the compiled program using some of the
tools available for IRIX.

Signal masks and
signal handlers

Each thread has a mask
but handlers are shared

Each process has a
mask and its own
handlers

Each process has a
mask and its own
handlers

Resource limits Single-process limits Single-process limits Limits apply to each
process separately

Process ID One PID applies to all
threads

PID per process plus
share-group PID

PID per process

Table 13-1 (continued) Comparison of Pthreads and Processes

Attribute POSIX Threads Lightweight Processes UNIX Processes
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Compiling Pthread Source

The header files related to pthreads functions are summarized in Table 13-2.

It is recommended that the thread-safe options be enabled at compile time using the
feature test macro, _POSIX_C_SOURCE (see intro(3) for details). For example, to compile
these options, use this command:

cc -D_POSIX_C_SOURCE=199506L app.c -llib0 -llib1 ... -lpthread

You can use pthreads with a program compiled to any of the supported execution
models: -32 for compatibility with older systems, -n32 for 64-bit data and 32-bit
addressing, or -64 for 64-bit addressing.

The pthreads functions are defined in the library libpthread.so. Link with this library using
the -lpthread compiler option, which should be the last library on the command line. The
compiler chooses the correct library based on the execution model: /usr/lib/libpthread.so,
/usr/lib32/libpthread.so, and /usr/lib64/libpthread.so.

Note: A pthread program is a program that links with libpthread. Do not link with
libpthread unless you intend to use the pthread interface, because libpthread replaces many
standard library functions.

Table 13-2 Header Files Related to Pthreads

Header Primary Contents

errno.h System error codes returned by pthreads functions.

pthread.h Pthread functions and special pthread data types.

sched.h The sched_param structure and related functions used in setting thread priorities.

stdio.h Standard stream I/O macros, including thread-safe versions.

sys/types.h IRIX and standard data types.

limits.h Some POSIX constants such as _POSIX_THREAD_THREADS_MAX.

unistd.h Constants used when calling sysconf() to query POSIX limits (see the sysconf(3)
reference page).
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Debugging Pthread Programs

The dbx debugger and Workshop Debugger have been extended for use with threaded
programs. See the dbx(1M) reference page and the documentation for Workshop
Debugger for more details.

Creating Pthreads

You create a pthread by calling pthread_create(). One argument to this function is a
thread attribute object of type pthread_attr_t. You pass a null address to request a thread
having default attributes, or you prepare an attribute object to reflect the features you
want the thread to have. You can use one attribute object to create many pthreads.

Functions related to attribute objects and pthread creation are summarized in Table 13-3
and described in the following sections:

• “Initial Detach State” on page 272

• “Initial Scheduling Scope, Priority, and Policy” on page 272

• “Thread Stack Allocation” on page 273

Table 13-3 Functions for Creating Pthreads

Function Purpose

pthread_attr_init(3P) Initialize a pthread_attr_t object to default settings.

pthread_attr_setdetachstate(3P) Set the automatic-detach attribute.

pthread_attr_setinheritsched(3P) Specify whether scheduling attributes come from the
attribute object or are inherited from the creating thread.

pthread_attr_setschedparam(3P) Set the starting thread priority.

pthread_attr_setschedpolicy(3P) Set the scheduling policy.

pthread_attr_setscope(3P) Set the scheduling scope.

pthread_attr_setstacksize(3P) Set the stack size attribute.

pthread_attr_setguardsize(3P) Set the stack guard size attribute.

pthread_attr_setstackaddr(3P) Set the address of memory to use as a stack (when you
allocate the stack for the new thread).
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Initial Detach State

Detaching means that the pthreads library frees up resources held by the thread after it
terminates (see “Joining and Detaching” on page 277). There are three ways to detach a
thread:

• automatically when the thread terminates

• explicitly by calling pthread_join()

• explicitly by calling pthread_detach()

You can use pthread_attr_setdetachstate() to specify that a thread should be detached
automatically when it terminates. Do this when you know that the thread will not be
joined or detached by an explicit function call.

Initial Scheduling Scope, Priority, and Policy

You can specify an initial thread scheduling scope by calling pthread_attr_setscope() and
passing one of the scope constants (PTHREAD_SCOPE_SYSTEM or
PTHREAD_SCOPE_PROCESS) in the pthread_attr_t object. By default, process scope is
selected and scheduling is performed by the thread runtime, but thread scheduling by
the kernel is provided with the system scope attribute. System scope threads run at
real-time policy and priority and may be created only by privileged users.

You can specify an initial thread priority in a struct sched_param object in memory (the
structure is declared in sched.h). Set the desired priority in the sched_priority field. Pass the
structure to pthread_attr_setschedparam().

You can specify an initial scheduling policy by calling pthread_attr_setschedpolicy(),
passing one of the policy constants SCHED_FIFO or SCHED_RR.

pthread_attr_destroy(3P) Uninitialize a pthread_attr_t object.

pthread_create(3P) Create a new thread based on an attribute object, or with
default attributes.

Table 13-3 (continued) Functions for Creating Pthreads

Function Purpose
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The pthread_attr_setinheritsched() function is used to specify, in the attribute object,
whether a new thread’s scheduling policy and priority should be taken from the attribute
object, or whether they should be inherited from the thread that creates the new thread.
When you set an attribute object for inheritance, the scheduling policy and priority in the
attribute object are ignored.

Scheduling scope, priorities, and policies are described in “Scheduling Pthreads” on
page 280.

Thread Stack Allocation

Each pthread has an execution stack area in memory. By default, pthread_create()
allocates stack space from dynamic memory, and automatically releases it when the
thread terminates.

You use pthread_attr_setstacksize() to specify the size of this stack area. You cannot
specify a stack size less than a minimum. A pthread process can find the minimum by
calling sysconf() with _SC_THREAD_STACK_MIN (see the sysconf(3C) reference page).

Threads may overrun their stack area. By default, a thread's stack is created with guard
protection, and extra memory is allocated at the overflow end of the stack as a buffer. If
an application overflows into this buffer, an exception results (a SIGSEGV signal is
delivered to the thread).

The guardsize attribute controls the size of the guard area for the created thread's stack
and protects against overflow of the stack pointer. The guardsize attribute is set using
pthread_attr_setguardsize().

Note: Because thread stack space is taken from dynamic memory, the allocation is
charged against the process virtual memory limit, not the process stack size limit as you
might expect.
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Executing and Terminating Pthreads

The functions for managing the progress of a thread are summarized in Table 13-4 and
described in the following sections:

• “Getting the Thread ID” on page 275

• “Initializing Static Data” on page 275

• “Setting Event Handlers” on page 275

• “Terminating a Thread” on page 276

• “Joining and Detaching” on page 277

Table 13-4 Functions for Managing Thread Execution

Function Purpose

pthread_atfork(3P) Register functions to handle the event of a fork().

pthread_cancel(3P) Request cancellation of a specified thread.

pthread_cleanup_push(3P) Register function to handle the event of thread termination.

pthread_cleanup_pop(3P) Unregister and optionally call termination handler.

pthread_detach(3P) Detach a terminated thread.

pthread_exit(3P) Explicitly terminate the calling thread.

pthread_join(3P) Wait for a thread to terminate and receive its return value.

pthread_once(3P) Execute initialization function once only.

pthread_self(3P) Return the calling thread’s ID.

pthread_equal(3P) Compare two thread IDs for equality.

pthread_setcancelstate(3P) Permit or block cancellation of the calling thread.

pthread_setcanceltype(3P) Specify deferred or asynchronous cancellation.

pthread_testcancel(3P) Permit cancellation to take place, if it is pending.
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Getting the Thread ID

Call pthread_self() to get the thread ID of the calling thread. A thread can use this thread
ID when changing its own scheduling priority, for example (see “Scheduling Pthreads”
on page 280).

Initializing Static Data

Your program may use static data that should be initialized exactly once. The code can
be entered by multiple threads, and might be entered concurrently. How can you ensure
that only one thread will perform the initialization?

One answer is to create a variable of type pthread_once_t, statically initialized to the value
PTHREAD_ONCE_INIT. Call pthread_once(), passing the addresses of the variable and
of an initialization function. The pthreads library ensures that the initialization function
is called only once, and that any other threads calling pthread_once() for this variable
wait until the first thread completes the initialization function. See Example 13-1.

Example 13-1 One-Time Initialization

pthread_once_t first_time_flag = PTHREAD_ONCE_INIT;
elaborate_struct_t uninitialized; /* thing to initialize */
void elaborate_initializer(void); /* function to do it */
int subroutine(...)
{

...
pthread_once(&first_time_flag, elaborate_initializer);
...

}

Setting Event Handlers

A thread can establish functions that are called when it terminates and when the process
forks.



276

Chapter 13: Thread-Level Parallelism

Call pthread_cleanup_push() to register a function that is to be called in the event that
the current thread terminates, either by exiting or by cancellation. Call
pthread_cleanup_pop() to retract this registration and, optionally, to call the handler.
These functions are often used in library code, with the push operation done on entry to
the library and the pop done upon exit from the library. The push and pop operations are
in fact implemented partly as macro code. For this reason, calls to them must be strictly
balanced—a pop for each push—and each push/pop pair must appear in a single C
lexical scope. A nonstructured jump such as a longjmp (see the setjmp(3) reference page)
or goto can cause unexpected results.

Call pthread_atfork() to register three handlers related to a UNIX fork() call. The first
handler executes just before the fork() takes place; the second executes just after the
fork() in the parent process; the third executes just after the fork() in the child process.

The fork() operation creates a new process with a copy of the calling process’s address
space, including any locked mutexes or semaphores. Typically, the new process
immediately calls exec() to replace the address space with a new program. When this is
the case, there is no need for pthread_atfork() (see the exec(2) and fork(2) reference
pages). However, if the new process continues to execute with the inherited address
space, including perhaps calls to library code that uses pthreads, it may be necessary for
the library code to reinitialize data in the address space of the child process. You can do
this in the fork event handlers.

Terminating a Thread

A thread begins execution in the function that is named in the pthread_create() call.
When it returns from that function, the thread terminates. A thread can terminate earlier
by calling pthread_exit(). In either case, the thread returns a value of type void*.

One thread can request early termination of another by calling pthread_cancel(), passing
the thread ID of the target thread. A thread can protect itself against cancellation using
two built-in switches:

• The pthread_setcancelstate() function lets you postpone cancellation indefinitely
(PTHREAD_CANCEL_DISABLE) or permit cancellation
(PTHREAD_CANCEL_ENABLE).

• The pthread_setcanceltype() function lets you decide when cancellation will take
place, if it is allowed at all. Cancellation can happen whenever it is requested
(PTHREAD_CANCEL_ASYNCHRONOUS) or only at defined points
(PTHREAD_CANCEL_DEFERRED).
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When you prevent cancellation by setting PTHREAD_CANCEL_DISABLE, a
cancellation request is blocked but remains pending until the thread terminates or
changes its cancellation state.

The initial cancellation state of a thread is PTHREAD_CANCEL_ENABLE and the type
is PTHREAD_CANCEL_DEFERRED. In this state, a cancellation request is blocked until
the thread calls a function that is a defined cancellation point. The functions that are
cancellation points are listed in the pthread_setcanceltype(3P) reference page. A thread
can explicitly permit cancellation by calling pthread_testcancel().

Joining and Detaching

Sometimes you do not care when threads terminate—your program starts a set of
threads, and they continue until the entire program terminates.

In other cases, threads are created and terminated as the program runs. One thread can
wait for another to terminated by calling pthread_join(), specifying the thread ID. The
function does not return until the specified thread terminates. The value the specified
thread passed to pthread_exit() is returned. At this time, your program can release any
resources that you associate with the thread, for example, stack space (see “Thread Stack
Allocation” on page 273).

The pthread_join() function also detaches the terminated thread. If your program does
not use pthread_join(), you must arrange for terminated threads to be detached in some
other way. One way is by specifying automatic detachment when the threads are created
(see “Initial Detach State” on page 272). Another is to call pthread_detach() at any time
after creating the thread, including after it has terminated.

If your program creates threads and lets them terminate, but does not detach them,
resources will be used up and eventually an error will occur when trying to create a
thread.

Using Thread-Unique Data

In some designs, especially modules of library code, you need to store data that is both

• unique to the calling thread

• persistent from one function call to another
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Normally, the only data that is unique to a thread is the contents of its local variables on
the stack, and these do not persist between calls. However, the pthreads library provides
a way to create persistent, thread-unique data. The functions for this are summarized in
Table 13-5.

Your program calls pthread_key_create() to define a new storage key. Once created, a key
may be used by all threads to identify a unique key value.

Any thread can use pthread_getspecific() to retrieve that thread’s unique value stored
under a key. A thread can fetch only its own value, which is the value stored by this same
thread using pthread_setspecific(). The initial stored value is NULL.

When you create a key, you can specify a destructor function that is called automatically
when a thread terminates. The destructor is called while the key is valid and the key
value for the terminating thread is not NULL. The destructor receives the thread’s key
value as its argument.

Pthreads and Signals

For a general overview of signal concepts and numbers, see “Signals” on page 113 and
the signal(5) reference page. IRIX supports three different signal facilities: BSD signals,
SVR4 signals, and POSIX signals. When you are writing a pthreads program, you should
use only the POSIX signal facilities (see “POSIX Signal Facility” on page 120).

Table 13-5 Functions for Thread-Unique Data

Function Purpose

pthread_key_create(3P) Create a key.

pthread_key_delete(3P) Delete a key.

pthread_getspecific(3P) Retrieve this thread’s value for a key.

pthread_setspecific(3P) Set this thread’s value for a key.



Pthreads and Signals

279

Setting Signal Masks

Each thread has a signal mask that specifies the signals it is willing to receive (see “Signal
Blocking and Signal Masks” on page 117). In a program that is linked with the pthreads
library, this should be changed using pthread_sigmask(). Each thread inherits the signal
mask of the thread that calls pthread_create(). Typically you set an initial mask in the first
thread, so that it can be inherited by all other threads.

Note: In IRIX, you can use sigprocmask() instead of pthread_sigmask(), but it may not
be portable to other systems.

When a signal is directed to a specific thread that is blocking the signal, the signal
remains pending on the thread until that thread unblocks it. When a signal is directed to
a process, it is delivered to the first thread that is not blocking that signal. If all threads
block that signal, the signal remains pending on the process until some thread unblocks
it or the process terminates.

A thread can find out which signals are pending by calling sigpending(). This function
returns a mask showing the set of signals pending on the process as a whole or for the
calling thread; that is, the signals that could be delivered to the calling thread if they were
not blocked.

Setting Signal Actions

When a signal is delivered, some action is taken. You specify what that action should be
using the sigaction() function. These actions are set on a process-wide basis, not
individually for each thread. Although each thread has a private signal mask, signal
actions are shared with all threads in the process. See “Signal Handling Policies” on
page 118 for details.
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Receiving Signals Synchronously

You can design a program to receive signals in a synchronous manner instead of
asynchronously. To do this, set a mask that blocks all the signals that are to be received
synchronously. Then call one of the following three functions:

Using these functions you can write a thread that treats signals as a stream of events to
be processed. This is generally the safest program model, much easier to work with than
the asynchronous model of signal delivery.

Scheduling Pthreads

The pthreads scheduling algorithm is controlled by three variables: a scope, policy, and
priority for each thread. These variables are set initially when the thread is created (see
“Initial Scheduling Scope, Priority, and Policy” on page 272), but policy and priority can
be modified while the thread is running.

Contention Scope

The scheduling contention scope of a pthread (see pthread_attr_setscope(3P))
determines the set of threads that it competes against for resources.

System scope threads compete with all other threads on the system and can be created
only by privileged users. These threads are used in programs when some form of
guaranteed (that is, real-time) response is required. Their scheduling parameters directly
affect how the system treats them. In addition to the usual scheduling attributes, they can
select a CPU on which to run using the pthread_setrunon_np() call.

Process scope threads compete within the process and their scheduling attributes are
used by the pthread library to select which threads to run on a pool of kernel entities. The
size of the pool is determined dynamically, but may be influenced using the
pthread_setconcurrency() call.

sigwait(3) Suspend until one of a specified set of signals is generated, then
return the signal number.

sigwaitinfo(3) Like sigwait(), but returns additional information about the signal.

sigtimedwait(3) Like sigwaitinfo(), but also returns after a specified time has elapsed
if no signal is received.
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Process scope threads generally require fewer resources than system scope threads
because they can share kernel resources. The kernel entities themselves share a common
set of scheduling attributes which privileged users can change using the process
scheduling interfaces (see sched_setscheduler(2) and sched_setparam(2)). For further
details, see the pthreads(5) reference page.

The functions used in scheduling are summarized in Table 13-6 and described in the
following sections:

• “Scheduling Policy” on page 281

• “Scheduling Priority” on page 282

Scheduling Policy

There are two scheduling policies in this implementation: first-in-first-out
(SCHED_FIFO) and the default round-robin (SCHED_RR). SCHED_FIFO and
SCHED_RR are similar. The round-robin scheduler ensures that after a thread has used
a certain maximum amount of time, it is moved to the end of the queue of threads of the
same priority, and can be preempted by other threads.

The details of scheduling are discussed in the pthread_attr_setschedpolicy(3P) reference
page.

Table 13-6 Functions for Schedule Management

Function Purpose

pthread_getschedparam(3P) Get a thread’s policy and priority.

pthread_setschedparam(3P) Set a thread’s policy and priority.

sched_get_priority_max(3C) Return the maximum priority value.

sched_get_priority_min(3C) Return the minimum priority value.

sched_yield(2) Relinquish the processor.

pthread_setconcurrency(3P) Modify concurrency level.

pthread_getconcurrency(3P) Check the concurrency level.

pthread_setrunon_np(3P) Select a CPU to run a system scope thread.

pthread_getrunon_np(3P) Query a named CPU’s affinity.
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Scheduling Priority

Threads are ordered by priority values, with a small number representing a low priority,
and a larger number representing a higher priority. Threads with higher priorities are
chosen to execute before threads with lower priorities.

The sched_get_priority_max() and sched_get_priority_min() functions return the
highest and lowest priority numbers for a given policy. There are at least 32 priority
values and the lowest is greater than or equal to 0.

A thread can set another’s priority and scheduling policy, using
pthread_setschedparam(). A simple function to set a specified priority on the current
thread is shown in Example 13-2.

Example 13-2 Function to Set Own Priority

#include <sched.h> /* struct sched_param */
void setMyPriority(int newP)
{

pthread_t myTid = pthread_self();
int policy;
struct sched_param sp;
(void) pthread_getschedparam(myTID,&policy,&sp);
sp.sched_priority = newP;
(void) pthread_setschedparam(myTID,policy,&sp);

}

Synchronizing Pthreads

Threads using a common address space must cooperate and coordinate their use of
shared variables. IRIX provides many mechanisms for coordinating threads, including:

• POSIX semaphores for general coordination and resource management (see “POSIX
Facilities for Mutual Exclusion” on page 82).

• POSIX or SVR4 message queues (see Chapter 6, “Message Queues”).

• POSIX mutex objects, which allow threads to gain exclusive use of a shared variable
(see “Mutexes” on page 283).

• POSIX condition variables, which allow a thread to wait when a controlling
predicate is false (see “Condition Variables” on page 286).
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• POSIX read-write locks, which allow one thread exclusive access to locked data to
write it or read access to locked data for several threads (see “Read-Write Locks” on
page 292).

• IRIX semaphores and locks.

• SVR4 semaphores.

Tip: Synchronization between processes (such as POSIX process-shared mechanisms,
IRIX IPC, and SVR4 IPC) is more costly than synchronization between threads (POSIX
process-private mechanisms). So where possible, use the process-private mechanisms.

Mutexes

A mutex is a software object that arbitrates the right to modify some shared variable, or
the right to execute a critical section of code. A mutex can be owned by only one thread
at a time; other threads trying to acquire it wait. Mutexes are intended to be lightweight
and owned only for a short time.

Preparing Mutex Objects

When a thread wants to modify a variable that it shares with other threads, or execute a
critical section, the thread claims the associated mutex. This can cause the thread to wait
until it can acquire the mutex. When the thread has finished using the shared variable or
critical code, it releases the mutex. If two or more threads claim the mutex at once, one
acquires the mutex and continues, while the others are blocked until the mutex is
released.

A mutex has attributes that control its behavior. The pthreads library contains several
functions used to prepare a mutex for use. These functions are summarized in Table 13-7.
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A mutex must be initialized before use. You can do this in one of three ways:

• Static assignment of the constant PTHREAD_MUTEX_INITIALIZER.

• Calling pthread_mutex_init() passing NULL instead of the address of a mutex
attribute object.

• Calling pthread_mutex_init() passing a pthread_mutexattr_t object that you have set
up with attribute values.

The first two methods initialize the mutex to default attributes.

Table 13-7 Functions for Preparing Mutex Objects

Function Purpose

pthread_mutexattr_init(3P) Initialize a pthread_mutexattr_t with default
attributes.

pthread_mutexattr_destroy(3P) Uninitialize a pthread_mutexattr_t.

pthread_mutexattr_getprotocol(3P) Query the priority protocol.

pthread_mutexattr_setprotocol(3P) Set the priority protocol choice.

pthread_mutexattr_getprioceiling(3P) Query the minimum priority.

pthread_mutexattr_setprioceiling(3P) Set the minimum priority.

pthread_mutexattr_getpshared(3P) Query the process-shared attribute.

pthread_mutexattr_setpshared(3P) Set the process-shared attribute.

pthread_mutexattr_gettype(3P) Get the mutex type.

pthread_mutexattr_settype(3P) Set the mutex type.

pthread_mutex_init(3P) Initialize a mutex object.

pthread_mutex_destroy(3P) Uninitialize a mutex object.
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Four attributes can be set in a pthread_mutexattr_t. You can set the priority inheritance
protocol using pthread_mutexattr_setprotocol() to one of three values:

If a thread acquires a mutex and then is suspended (for example, because its time slice is
up), other threads can be blocked waiting for the mutex. The
PTHREAD_PRIO_PROTECT protocol prevents this. Using
pthread_mutexattr_setprioceiling(), you set a priority higher than normal for the mutex.
A thread that acquires the mutex runs at this higher priority while it holds the mutex.

Another problem is that when a low-priority thread has acquired a mutex, and a thread
with higher priority claims the mutex and is blocked, a “priority inversion” takes place—
a higher-priority thread is forced to wait for one of lower priority. The
PTHREAD_PRIO_INHERIT protocol prevents this—when a thread of higher priority
blocks, the thread holding the mutex has its priority boosted during the time it holds the
mutex.

Tip: PTHREAD_PRIO_NONE uses a faster code path than the other two priority options
for mutexes.

By default, only threads within a process share a mutex. Using
pthread_mutexattr_setpshared(), you can allow any thread (from any process) with
access to the mutex memory location to use the mutex. Enable mutex sharing by
changing the default PTHREAD_PROCESS_PRIVATE attribute to
PTHREAD_PROCESS_SHARED.

Note: The PTHREAD_PRIO_INHERIT attribute is not available with
pthread_mutexattr_setpshared().

PTHREAD_PRIO_NONE The mutex has no effect on the thread that acquires it.
This is the default.

PTHREAD_PRIO_PROTECT The thread holding the mutex runs at a priority at least
as high as the highest priority of any mutex that it
currently holds.

PTHREAD_PRIO_INHERIT The thread holding the mutex runs at a priority at least
as high as the highest priority of any thread blocked on
that mutex.
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By default, no error checking is performed on threads that attempt to use a mutex. For
example, a thread that attempts to lock a mutex that it already owns deadlocks. Using
pthread_mutexattr_settype() with PTHREAD_MUTEX_ERRORCHECK allows you to
have the lock call return an error instead. If recursive mutexes are required,
PTHREAD_MUTEX_RECURSIVE enables recursive mutexes.

Using Mutexes

The functions for claiming, releasing, and using mutexes are summarized in Table 13-8.

To determine where mutexes should be used, examine the memory variables and other
objects (such as files) that can be accessed from multiple threads. Create a mutex for each
set of shared objects that are used together. Ensure that the code acquires the proper
mutex before it modifies the shared objects. You acquire a mutex by calling
pthread_mutex_lock(), and release it with pthread_mutex_unlock(). When a thread
must not be blocked, it can use pthread_mutex_trylock() to test the mutex and lock it
only if it is available.

Condition Variables

A condition variable provides a way in which a thread can wait for an event (or
condition) defined by the program, to be satisfied. Condition variables use mutexes to
synchronize the wait and wakeup operations.

Table 13-8 Functions for Using Mutexes

Function Purpose

pthread_mutex_lock(3P) Claim a mutex, blocking until it is available.

pthread_mutex_trylock(3P) Test a mutex and acquire it if it is available, else return
an error.

pthread_mutex_unlock(3P) Release a mutex.

pthread_mutex_getprioceiling(3P) Query the minimum priority of a mutex.

pthread_mutex_setprioceiling(3P) Set the minimum priority of a mutex.
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Preparing Condition Variables

Like mutexes and threads themselves, condition variables are supplied with a
mechanism of attribute objects (pthread_condattr_t objects) and static and dynamic
initializers. (Only the condition variable for the process-shared attribute can be
initialized in this implementation.) The functions for initializing one are summarized in
Table 13-9.

A condition variable must be initialized before use. You can do this in one of three ways:

• Static assignment of the constant PTHREAD_COND_INITIALIZER.

• Calling pthread_cond_init() passing NULL instead of the address of an attribute
object.

• Calling pthread_cond_init() passing a pthread_condattr_t object that you have set up
with attribute values.

The first two methods initialize the variable to default attributes.

By default, only threads within a process share a condition variable. Using
pthread_condattr_setpshared(), you can allow any thread (from any process) with
access to the condition variable memory location to use the condition variable. Enable
condition variable sharing by changing the default PTHREAD_PROCESS_PRIVATE
attribute to PTHREAD_PROCESS_SHARED.

Table 13-9 Functions for Preparing Condition Variables

Function Purpose

pthread_condattr_init(3P) Initialize a pthread_condattr_t to default attributes.

pthread_condattr_destroy(3P) Uninitialize a pthread_condattr_t.

pthread_condattr_getpshared(3P) Get the process-shared attribute.

pthread_condattr_setpshared(3P) Set the process-shared attribute.

pthread_cond_init(3P) Initialize a condition variable based on an attribute object.

pthread_cond_destroy(3P) Uninitialize a condition variable.
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Using Condition Variables

A condition variable is a software object that represents a test of a Boolean condition.
Typically the condition changes because of a software event such as “other thread has
supplied data.” A thread establishes that it needs to wait by first evaluating the
condition. The thread that satisfies the condition signals the condition variable, releasing
one or all threads that are waiting.

For example, a thread might acquire a mutex that represents a shared resource. While
holding the mutex, the thread finds that the shared resource is not complete. The thread
does three things:

• Wait, giving up the mutex so that some other thread can renew the shared resource.

• Wait until the condition is signalled.

• Wake-up, re-acquiring the mutex for the shared resource and rechecking the
condition.

These three actions are combined into one using a condition variable. The functions used
with condition variables are summarized in Table 13-10.

The pthread_cond_wait() and pthread_cond_timedwait() functions require both a
condition variable and a mutex that is owned by the calling thread. The mutex is released
and the wait begins. When the event is signalled (or the time limit expires), the mutex is
reacquired, as if by a call to pthread_mutex_lock().

Table 13-10 Functions for Using Condition Variables

Function Purpose

pthread_cond_wait(3P) Wait on a condition variable.

pthread_cond_timedwait(3P) Wait on a condition variable, returning with an error after a
time limit expires.

pthread_cond_signal(3P) Signal that an awaited event has occurred, releasing at least
one waiting thread.

pthread_cond_broadcast(3P) Signal that an awaited event has occurred, releasing all
waiting threads.
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The POSIX standard explicitly warns that it is possible in some cases for a conditional
wait to return before the event has been signalled. For this reason, a conditional wait
should always be coded in a loop that tests the shared resource for the needed status.
These principles are suggested in the code in Example 13-3, which is modeled after an
example in the POSIX 1003.1c standard.

Example 13-3 Use of Condition Variables

#include <assert.h>
#include <pthread.h>
typedef int listKey_t;
typedef struct element_s { /* list element */

listKey_t key;
struct element_s *next;
int busyFlag;
pthread_cond_t notBusy; /* event of no-longer-in-use */

} element_t;
typedef struct listHead_s { /* list head and mutex */

pthread_mutex_t mutList; /* right to modify the list */
element_t *head;

} listHead_t;
/*
|| Internal function to find an element in a list, returning NULL
|| if the key is not in the list.
|| A returned element could be in use by another thread (busy).
|| The caller is assumed to hold the list mutex, otherwise
|| the returned value could be made invalid at any time.
*/
static element_t *scanList(listHead_t* lp, listKey_t key)
{

element_t *ep;
for (ep=lp->head; (ep) ; ep=ep->next)
{

if (ep->key == key) break;
}
return ep;

}
/*
|| Public function to find a key in a list, wait until the element
|| is no longer busy, mark it busy, and return it.
*/
element_t *getFromList(listHead_t* lp, listKey_t key)
{

element_t *ep;
pthread_mutex_lock(&lp->mutList); /* lock list against changes */
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while ((ep=scanList(lp,key)) && (ep->busyFlag))
{

pthread_cond_wait(&ep->notBusy, &lp->mutList); /* (A) */
}
if (ep) ep->busyFlag = 1;
pthread_mutex_unlock(&lp->mutList);
return ep;

}
/*
|| Public function to release an element returned by getFromList().
*/
void freeInList(listHead_t* lp, element_t *ep)
{

assert(ep->busyFlag);
pthread_mutex_lock(&lp->mutList); /* lock list to prevent races */
ep->busyFlag = 0;
pthread_cond_signal(&ep->notBusy);
pthread_mutex_unlock(&lp->mutList);

}
/*
|| Public function to delete a list element returned by getFromList().
*/
void deleteInList(listHead_t* lp, element_t *ep)
{

element_t **epp;
assert(ep->busyFlag);
pthread_mutex_lock(&lp->mutList);
for (epp = &lp->head; ep != *epp; epp = &((*epp)->next))
{ /* finding anchor of *ep in list */ }
*epp = ep->next; /* remove *ep from list */
ep->busyFlag = 0;
pthread_cond_broadcast(&ep->notBusy);
pthread_mutex_unlock(&lp->mutList);
pthread_cond_destroy(&ep->notBusy);
free(ep);

}

The functions in Example 13-3 implement part of a simple library for managing lists. In
a list head, mutList is a mutex object that represents the right to modify any part of the
list. The elements of a list can be “busy,” that is, in use by some thread. An element that
is busy has a nonzero busyFlag field.
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The getFromList() function looks up an element in a specified list, makes that element
busy, and returns it. The function begins by acquiring the list mutex. This ensures that
the list cannot change while the function is searching the list, and makes it legitimate for
the function to change the busy flag in an element.

When it finds the element, the function might discover that the element is already busy.
In this case, it must wait for the event “element is no longer busy,” which is represented
by the condition variable notBusy in the element. In order to wait for this event,
getFromList() calls pthread_cond_wait() passing its list mutex and the condition
variable (point “(A)” in the code). This releases the list mutex so that other threads can
acquire the list and do their work on other elements.

When any thread wants to release the use of a list element, it calls freeInList(). After
clearing the busy flag in the list element, freeInList() announces that the event “element
is no longer busy” has occurred, by calling pthread_cond_signal().

This call releases a thread that is waiting at point “(A).” If there is more than one thread
waiting for the same element, the first in priority order is released. The released thread
re-acquires the list mutex and resumes execution. The first thing it does is repeat its
search of the list for the desired key and, on finding the element again, test it again for
busyness. This repetition is needed because it is possible to get spurious returns from a
condition variable.

When a thread wants to delete a list element, it gets the list element by calling
getFromList(). This ensures that the element is busy, so no other thread is using it. Then
the thread calls deleteInList(). This function changes the list, so it begins by acquiring the
list mutex. Then it can safely modify the list pointers. It scans up the list looking for the
pointer that points to the target element. It removes the target element from the list by
copying its next field to replace the pointer to the target element.

With the element removed from the list, deleteInList() calls pthread_cond_broadcast()
to wake up all threads—not just the first thread—that might be waiting for the element
to become nonbusy. Each of these threads resumes execution at point “(A)” by
attempting to re-acquire the list mutex. However, deleteInList() is still holding the list
mutex. The mutex is released; then the other threads can resume execution following
point “(A),” but this time when they search the list, the desired key is no longer found.

Meanwhile, deleteInList() uses pthread_cond_destroy() to release any memory that the
pthreads library might have associated with the condition variable, before releasing the
list element object itself.
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Read-Write Locks

A read-write lock is a software object that gives one thread the right to modify some data,
or multiple threads the right to read that data. A read-write lock can be owned for write
or for read. If acquired for write, only one thread can own it and other threads must wait.
If acquired for read, other threads wishing to acquire it for write must wait, but multiple
readers can own the lock at the same time.

Preparing Read-Write Locks

When a thread wants to modify or read data shared by several threads, the thread claims
the associated lock. This can cause the thread to wait until it can acquire the lock. When
the thread has finished reading or writing the shared data, it releases the lock.

A read-write lock has attributes that control its behavior. The pthreads library contains
several functions used to prepare a lock for use. These functions are summarized in
Table 13-11.

A read-write lock must be initialized before use. You can do this in one of three ways:

• Static assignment of the constant PTHREAD_RWLOCK_INITIALIZER.

• Calling pthread_rwlock_init() passing NULL instead of the address of a read-write
lock attribute object.

• Calling pthread_rwlock_init() passing a pthread_rwlockattr_t object that you have
set up with attribute values.

Table 13-11 Functions for Preparing Read-Write Locks

Function Purpose

pthread_rwlockattr_init(3P) Initialize a pthread_rwlockattr_t with default
attributes.

pthread_rwlockattr_destroy(3P) Uninitialize a pthread_rwlockattr_t.

pthread_rwlockattr_getpshared(3P) Query the process-shared attribute.

pthread_rwlockattr_setpshared(3P) Set the process-shared attribute.

pthread_rwlock_init(3P) Initialize a rwlock object based on a
pthread_rwlockattr_t.

pthread_rwlock_destroy(3P) Uninitialize a read-write lock object.
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The first two methods initialize the read-write lock to default attributes.

By default, only threads within a process share a read-write lock. Using
pthread_rwlockattr_setpshared(), you can allow any thread (from any process) with
access to the read-write lock memory location to claim the read-write lock. Enable
read-write lock sharing by changing the default PTHREAD_PROCESS_PRIVATE
attribute to PTHREAD_PROCESS_SHARED.

Using Read-Write Locks

The functions for claiming, releasing, and using read-write locks are summarized in
Table 13-12.

To determine where read-write locks should be used, examine the memory variables and
other objects (such as files) that can be accessed from multiple threads. Create a read lock
for each set of shared objects that are used together. Ensure that the code acquires the
write lock before it modifies the shared objects. You acquire a write lock by calling
pthread_rwlock_wrlock(), and release it with pthread_rwlock_unlock(). A read lock is
acquired by calling pthread_rwlock_rdlock(), and released with
pthread_rwlock_unlock(). When a thread must not be blocked, it can use
pthread_rwlock_trywrlock() or pthread_rwlock_tryrdlock() to test the lock and apply
it only if it is available.

Table 13-12 Functions for Using Read-Write Locks

Function Purpose

pthread_rwlock_wrlock(3P) Apply a write lock, blocking until it is available.

pthread_rwlock_trywrlock(3P) Test a write lock and acquire it if it is available, else
return an error.

pthread_rwlock_rdlock(3P) Apply a read lock, blocking until it is available.

pthread_rwlock_tryrdlock(3P) Test a read lock and acquire it if it is available, else
return an error.

pthread_rwlock_unlock(3P) Release a read or a write lock.
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14. Message-Passing Parallelism

In a message-passing model, your parallel application consists of multiple, independent
processes, each with its own address space. Each process shares data and coordinates
with the others by passing messages, using a formal interface. The formal interface
makes the program independent of the medium over which the message go. The
processes of the program can be in a single computer, with messages moving via
memory-to-memory copy; but it is possible to distribute the program in different
machines, with messages passing over a network.

The Message-Passing Toolkit package supports three libraries on which you can build a
message-passing application. The Cray Shared-Memory (SHMEM) library supports
message passing in a single system. Message-Passing Interface (MPI) and Parallel Virtual
Machine (PVM) models support distribution. High-level overviews of these are given
under “Message-Passing Models” on page 245.
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Choosing a Message-Passing Model

There are five considerations in choosing among the three message-passing models:
compatibility, portability, scope, latency, and bandwidth.

If you require the highest performance within a single Cray or Silicon Graphics system,
use SHMEM. For the highest performance in an Array system linked with HIPPI, use
MPI. Use PVM only when compatibility or portability is an overriding consideration.

Compatibility If you are starting with an existing program that uses one of the three
models, or if you want to reuse code from such a program, or if you
personally are highly familiar with one of the three, you will likely
choose that model in order to minimize development time.

Portability The SHMEM library is portable among all Silicon Graphics/Cray
systems, including both IRIX and UNICOS/MK. However, it is not
supported on systems of other types. Both MPI and PVM are industry
standard libraries that are widely available in public-domain
implementations.

Scope The SHMEM library can be used only within a single multiprocessor
such as Cray T3E or an Origin2000. You can use MPI or PVM to
distribute a program across all nodes in an Silicon Graphics Array, or
across a heterogeneous network.

Latency Latency, the start-up delay inherent in sending any one message of any
size, is the shortest in SHMEM. MPI within a single system is a close
second (both use memory-to-memory copy).
MPI latency across an Array using the Silicon Graphics-proprietary
HIPPI Bypass is an order of magnitude greater. MPI or PVM latency
using ordinary HIPPI or TCP/IP is greater still.

Bandwidth The rate at which the bits of a message are sent is the highest in
SHMEM and MPI within a single system. MPI bandwidth over a HIPPI
link is next, followed by PVM.
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Choosing Between MPI and PVM

When your program must be able to use the resources of multiple systems, you choose
between MPI and PVM. In many ways, MPI and PVM are similar:

• Each is designed, specified, and implemented by third parties that have no direct
interest in selling hardware.

• Support for each is available over the Internet at low or no cost.

• Each defines portable, high-level functions that are used by a group of processes to
make contact and exchange data without having to be aware of the communication
medium.

• Each supports C and Fortran 77.

• Each provides for automatic conversion between different representations of the
same kind of data so that processes can be distributed over a heterogeneous
computer network.

Another difference between MPI and PVM is in the support for the “topology” (the
interconnect pattern: grid, torus, or tree) of the communicating processes. In MPI, the
group size and topology are fixed when the group is created. This permits low-overhead
group operations. The lack of run-time flexibility is not usually a problem because the
topology is normally inherent in the algorithmic design. In PVM, group composition is
dynamic, which requires the use of a “group server” process and causes more overhead
in common group-related operations.

Other differences are found in the design details of the two interfaces. MPI, for example,
supports asynchronous and multiple message traffic, so that a process can wait for any
of a list of message-receive calls to complete and can initiate concurrent sending and
receiving. MPI provides for a “context” qualifier as part of the “envelope” of each
message. This permits you to build encapsulated libraries that exchange data
independently of the data exchanged by the client modules. MPI also provides several
elegant data-exchange functions for use by a program that is emulating an SPMD parallel
architecture.

PVM is possibly more suitable for distributing a program across a heterogeneous
network that includes both uniprocessors and multiprocessors, and includes computers
from multiple vendors. When the application runs in the environment of a Silicon
Graphics Array system, MPI is the recommended interface.
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Differences Between PVM and MPI

This section discusses the main differences between PVM and MPI from the
programmer’s perspective, focusing mainly on PVM functions that are not available in
MPI.

Although to a large extent the library calls of MPI and PVM provide similar functionality,
some PVM calls do not have a counterpart in MPI, and vice versa. Additionally, the
semantics of some of the equivalent calls are inherently different for the two libraries
(owing, for example, to the concept of dynamic groups in PVM). Hence, the process of
converting a PVM program into an MPI program can be straightforward or complicated,
depending on the particular PVM calls in the program and how they are used. For many
PVM programs, conversion is straightforward.

In addition to a message-passing library, PVM also provides the concept of a parallel
virtual machine session. A user starts this session before invoking any PVM programs; in
other words, PVM provides the means to establish a parallel environment from which a
user invokes a parallel program.

Additionally, PVM includes a console, which is useful for monitoring and controlling the
states of the machines in the virtual machine and the state of execution of a PVM job. Most
PVM console commands have corresponding library calls.

The MPI standard does not provide mechanisms for specifying the initial allocation of
processes to an MPI computation and their binding to physical processors. Mechanisms
to do so at load time or run time are left to individual vendor implementations. However,
this difference between the two paradigms is not, by itself, significant for most programs,
and should not affect the port from PVM to MPI.
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The chief differences between the current versions of PVM and MPI libraries are as
follows:

• PVM supports dynamic spawning of tasks, whereas MPI does not.

• PVM supports dynamic process groups; that is, groups whose membership can
change dynamically at any time during a computation. MPI does not support
dynamic process groups.

MPI does not provide a mechanism to build a group from scratch, but only from
other groups that have been defined previously. Closely related to groups in MPI
are communicators, which specify the communication context for a communication
operation and an ordered process group that shares this communication context.
The chief difference between PVM groups and MPI communicators is that any PVM
task can join/leave a group independently, whereas in MPI all communicator
operations are collective.

• A PVM task can add or delete a host from the virtual machine, thereby dynamically
changing the number of machines a program runs on. This is not available in MPI.

• A PVM program (or any of its tasks) can request various kinds of information from
the PVM library about the collection of hosts on which it is running, the tasks that
make up the program, and a task’s parent. The MPI library does not provide such
calls.

• Some of the collective communication calls in PVM (for instance, pvm_reduce()) are
nonblocking. The MPI collective communication routines are not required to return
as soon as their participation in the collective communication is complete.

• PVM provides two methods of signaling other PVM tasks: sending a UNIX signal to
another task, and notifying a task about an event (from a set of predefined events)
by sending it a message with a user-specified tag that the application can check. A
PVM call is also provided through which a task can kill another PVM task. These
functions are not available in MPI.

• A task can leave/unenroll from a PVM session as many times as it wants, whereas
an MPI task must initialize/finalize exactly once.

• A PVM task need not explicitly enroll: the first PVM call enrolls the calling task into
a PVM session. An MPI task must call MPI_Init() before calling any other MPI
routine and it must call this routine only once.

• A PVM task can be registered by another task as responsible for adding new PVM
hosts, or as a PVM resource manager, or as responsible for starting new PVM tasks.
These features are not available in MPI.
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• A PVM task can multicast data to a set of tasks. As opposed to a broadcast, this
multicast does not require the participating tasks to be members of a group. MPI
does not have a routine to do multicasts.

• PVM tasks can be started in debug mode (that is, under the control of a debugger of
the user’s choice). This capability is not specified in the MPI standard, although it
can be provided on top of MPI in some cases.

• In PVM, a user can use the pvm_catchout() routine to specify collection of task
outputs in various ways. The MPI standard does not specify any means to do this.

• PVM includes a receive routine with a timeout capability, which allows the user to
block on a receive for a user-specified amount of time. MPI does not have a
corresponding call.

• PVM includes a routine that allows users to define their own receive contexts to be
used by subsequent PVM receive routines. Communicators in MPI provide this
type of functionality to a limited extent.

On the other hand, MPI provides several features that are not available in PVM,
including a variety of communication modes, communicators, derived data types,
additional group management facilities, and virtual process topologies, as well as a
larger set of collective communication calls.
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Working With Fonts V

Chapter 15, “Working With Fonts”

Describes the use of fonts and font metric files within the X Window System, and
the installation of bit-mapped and Type 1 fonts.
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15. Working With Fonts

This chapter describes how to work with fonts on Silicon Graphics computers. It begins
with an introduction to fonts and digital typography. Then it explains which fonts are
available and how to install additional fonts. It also covers how to download outline
fonts in the Type 1 format to a PostScript printer.

This chapter contains these sections:

• “Font Basics” defines fonts and provides some general background information.

• “Using Fonts With the X Window System” discusses some of the most useful font
utilities of the X Window System.

• “Installing and Adding Font and Font Metric Files” explains how to install and add
font files and font metric files for system-wide use.

• “Downloading a Type 1 Font to a PostScript Printer” explains how to download a
Type 1 font to a PostScript printer.
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Font Basics

Fonts are collections of characters. A font contains the information about the shape, size,
and position of each character in a character set. That information is needed by programs
that process characters, such as editing, word-processing, desktop publishing,
multimedia, titling, and prepress application programs. Almost all software components
in a computer system use fonts to display messages, prompts, titles, and so forth.

Binary digits are used to represent all types of information stored in a digital computer,
including fonts. Digital typography deals with the style, arrangement, and appearance
of typeset matter in digital systems. If you want to use font and font metric files to
correctly typeset text on a digital computer, you need to know some basics about digital
typography. This section contains a brief introduction to fonts and digital typography.
You may want to read a book on typography for more in-depth information.

This section covers the following topics:

• “Terminology” introduces a few basic terms.

• “How Resolution Affects Font Size” describes horizontal and vertical resolution,
pixels, and bitmap fonts.

• “Font Names” explains the differences between PostScript and X Windows font
names.

• “Writing Programs That Need to Use Fonts” covers X programs, Display Postscript
(DPS) programs, and IRIS GL and IRIS GL/X programs.

Terminology

Before discussing how to use fonts, consider these terms.

Typography

Typography is the art and technique of working with type. In traditional typography, the
term type refers to a piece of wood or metal with a raised image of a character or
characters on its upper face. Such pieces of wood or metal are assembled into lines and
pages, which are printed by a letterpress process. What typographers do with type is
called typesetting or composition. Type can also refer to the images produced by using
such pieces of wood or metal.
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Traditional typesetting is seldom used today. In modern typography, type usually refers
to the images produced on typesetting or composition systems, which do not use
wooden or metal type, such as photo and digital composition systems. The typography
on a digital system, such as a digital computer, is called digital typography.

Digital typography is based on a hierarchy of objects called characters, fonts, and font
families (or typefaces). Numeric values or measurements related to those objects can be
divided into character metrics, font metrics, and typeface metrics. Sometimes all information
about a font family, or typeface, is stored in a set of font files, but sometimes metric
information for a set of font files is stored in a separate file called the font metric file.

Character

A character is a graphical or mathematical representation of a glyph. Letters, digits,
punctuation marks, mathematical symbols, and cursors are examples of glyphs.

Font

A font is a set of characters, that is, a set of representations of characters. In a bitmap font,
the shape of each character is represented by a rectangular array of bit values, 1 or 0,
forming a bitmap of the shape. In an outline font, the shape of a character is represented
by a mathematical description of its outline.

A distinction exists between a base and composite font. A base font is a set of characters
of the same size and style. Characters in a base font usually match one another in size,
style, weight, and slant because their shape, size, position, and spacing have been
carefully designed by a skilled font designer. A composite font is composed of base fonts
with various attributes, for example roman and italic, or book weight and semibold.

Font Family, or Typeface

A professional font designer usually creates an entire font family, or typeface, composed of
a variety of base fonts with related forms, rather than a single font. A base font family, or
typeface, is a set of base fonts with the same style or design. A composite font family, or
composite typeface, is composed of base font families. A base font family can consist of
bitmap fonts in certain sizes, a scalable font that can be used to produce bitmap fonts in
different sizes, or both.
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How Resolution Affects Font Size

The images on most output devices, such as laser printers and video monitors, are
created by coloring a rectangular array of small dots or pixels (picture elements). The
number of dots or pixels that can be drawn per unit of length in a horizontal direction is
called the horizontal resolution, while the number of pixels that can be drawn per unit of
length in a vertical direction is called the vertical resolution. The most commonly used unit
of measure for resolution is the number of dots per inch (dpi). Resolution is a
device-dependent unit of measure.

To display the resolution of your video monitor, enter this command:

xdpyinfo | grep resol

You should get a response similar to this:

resolution: 93x93 dots per inch

The first number is the horizontal resolution; the second the vertical resolution.

If you draw a single character at a given resolution, the bounding box of the character is
the smallest rectangle that enclose that character.

If you display all of the characters in a font in the same place (without advancing), you
get a composite image of those characters. If you then draw the smallest rectangle that
encloses that composite image, you have the bounding box for the font. The size of a font
is usually measured in the vertical direction. That size is usually not smaller than the
height of the font bounding box, but it can be greater than that height. It may include
additional vertical spacing that is considered part of the font design.

Typographers use small units of measure called points to specify font size. A point is
approximately equal to 1/72 of an inch. The exact value is 1/72.27 (0.013837) of an inch,
or 0.351 mm.

A point is a device-independent unit of measure. Its size does not depend on the
resolution of an output device. A 12-point font should have approximately the same size
on different output devices, regardless of the resolution of those devices.
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If the resolution of an output device is equal to 72 dots per inch (dpi), the size of a dot or
pixel is approximately equal to the size of a point. If the resolution of an output device is
greater than 72 dpi, the size of a dot or pixel is smaller than the size of a point, and vice
versa. You can use the following formula to calculate a pixel size from a point size:

pixel-size = point-size x device-resolution / 72.27

A bitmap font is usually designed for a particular resolution. Such a font has the point
size specified by its designer only when it is used on an output device whose resolution
matches the resolution for which that font was designed. This is because a font designer
specifies a fixed bitmap for each character. If a pixel is smaller than a point, characters
will be smaller than intended, and vice versa.

Font Names

When a font is designed, it is assigned a name such as Courier Oblique. This font belongs
to a font family called Courier, which includes:

• Courier

• Courier Bold

• Courier Bold Oblique

• Courier Oblique

When the PostScript page description software language was developed by Adobe
Systems, the spaces embedded in font names were replaced with dashes. PostScript font
names look like this:

Courier
Courier-Bold
Courier-BoldOblique
HeiseiMin-W3--Adobe-Japan1-2

The size of a font is usually not part of the name of a scalable font because it can be scaled
to any size. Bitmap fonts are usually designed in specific sizes. They are referred to by
names such as 12-point Courier or 10-pixel Courier Bold.

The X Consortium specified 14-part font names for the X Window System. Each name is
in effect a complete description of the font.



308

Chapter 15: Working With Fonts

Figure 15-1 shows an example 14-part name for a bitmap font, with each part labeled.
Point sizes in X font names are specified in decipoints (tenths of a point).

Figure 15-1 X Window System Font Name Example

Writing Programs That Need to Use Fonts

You can write different types of programs for Silicon Graphics computers, for example,
X, Display PostScript (DPS), IRIS GL, OpenGL, and mixed-model programs. Some of
your programs need fonts.

How a program accesses font files depends on the program type:

• X programs access fonts by calling X font functions, such as XListFonts() and
XLoadFont().

• DPS programs access fonts by calling X and DPS functions, or by using PostScript.

• IRIS GL and IRIS GL/X mixed-model programs usually access fonts by calling font
management (fm) functions from the IRIS GL Font Manager library (fmenumerate()
and fmfindfont(), for example).

Most fonts are installed when you install the X Window System (X11 Execution
Environment). Some fonts are installed with other software components, such as DPS
and IRIS Showcase. Some bitmap fonts are installed when you install a language module,
such as the Japanese Language Module (JLM). Some outline fonts are installed when you
install a font module, such as the Japanese Font Module (JFM). However, most fonts are
shared by the X Window System, DPS (which is an extension of the X Window System),
IRIS GL Font Manager, Impressario, and other software components.
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To maintain compatibility and portability, it is best not to access font files directly from
an application program because font formats, font names, font contents, and the location
of font directories may change. Your program should use the Application Programming
Interfaces (APIs) specified for the X Window System, DPS, and IRIS GL Font Manager, or
call even higher level functions for the 2D and 3D text available from toolkits such as
IRIS Inventor and IRIS Performer.

Using Fonts With the X Window System

This section describes how to use fonts with the X Window System. The X Window
System has several font utilities. This section covers a few of the most useful utilities and
includes:

• “Listing and Viewing Fonts” explains using the xlsfonts command.

• “Viewing Fonts” describes the xfd command.

• “Getting the Current X Font Path” covers the xset command.

• “Changing the X Font Path” explains the xset fp command.

For a complete description of the utilities, refer to your X Window System
documentation.

Listing and Viewing Fonts

Getting a List of Font Names and Font Aliases

To find out which font names and font aliases are known to the X Window System, use
the command xlsfonts.For more information about that command, see the reference page
xlsfonts(1). If you enter the command:

xlsfonts | more

the resulting display contains entries such as:

-adobe-courier-bold-o-normal--0-0-0-0-m-0-iso8859-1
-adobe-courier-bold-o-normal--14-100-100-100-m-90-iso8859-1
-sgi-screen-medium-r-normal--14-140-72-72-m-70-iso8859-1
screen14
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The first entry is an example of a 14-part X name for an outline (scalable) font. Numeric
parts of font names are set to zero for outline fonts, because those fonts can be scaled to
various sizes. The second and third entries are examples of 14-part X font names for
bitmap fonts, while the last entry is an alias for the third entry. An X or DPS program can
get a list of available fonts by calling XListFonts() or the function XListFontsWithInfo().

Viewing Fonts

To see what a particular font looks like, use the command xfd, and specify a font name or
font alias known to the X Window System by using the option -fn. For example, to
display the 14-point Adobe Courier Bold font, enter:

xfd -fn -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1

To request a Utopia Regular font scaled to the size of 28 points, enter:

xfd -fn -adobe-utopia-medium-r-normal--0-280-0-0-p-0-iso8859-1

You can use an asterisk (*) to indicate that any value is acceptable for a part of an X font
name. However, asterisks in a command must be protected from the shell with quotes.
For example, enter:

xfd -fn "-*-itc bookman-demi-i-normal--11-80-100-100-p-63-iso8859-1"

to indicate that xfd can use an ITC Bookman Demi Italic font from any foundry.

The xfd command displays all characters in a specified font, as shown in Figure 15-2.
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Figure 15-2 Sample Display From xfd
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To open a shell window that uses a certain font, enter:

xwsh -fn font-name

Getting the Current X Font Path

The X system locates font files along a path, similar to the execution path used to find
executable files. To display the current X font path, enter this command:

xset q

In addition to other information, the xset utility displays font path information that may
look like this:

Font Path:
/usr/lib/X11/fonts/100dpi/,/usr/lib/X11/fonts/75dpi/,
/usr/lib/X11/fonts/misc/,/usr/lib/X11/fonts/Type1/,
/usr/lib/X11/fonts/Speedo/,/usr/lib/X11/fonts/CID/

The X Window System checks the resolution of your video monitor. If that resolution is
closer to 75 dpi than 100 dpi, it puts the directory 75dpi ahead of the directory 100dpi in
the X font path.

Changing the X Font Path

You can change the default X font path by using the option fp= on an xset command line.
For example, enter:

xset fp=newpath

This command changes the X font path to the new font path (newpath).
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Installing and Adding Font and Font Metric Files

This section explains where the various types of font and font metric files are installed by
default, and how you can add one of your font or font metric files to the IRIX operating
system.

This section describes the following topics:

• “Locations of Font and Font Metric Files” covers the conventional directories and
names for font files.

• “Adding Font and Font Metric Files” details adding a bitmap and outline font, and
adding a font metric file.

Locations of Font and Font Metric Files

By default, font and font metric files are installed in the directories listed in Table 15-1.

Table 15-1 Font and Font Metric Directories

Directory Path Conventional Contents

/usr/lib/DPS/outline/base Outline font files in the Adobe Type 1 format

/usr/lib/X11/fonts/Type1 Symbolic links to font files in /usr/lib/DPS/outline/base

/usr/lib/DPS/AFM Adobe Font Metric (AFM) files

/usr/lib/X11/fonts/100dpi Bitmap fonts designed for the screen resolution of 100 dpi

/usr/lib/X11/fonts/75dpi Bitmap fonts designed for the screen resolution of 75 dpi

/usr/lib/X11/fonts/misc Miscellaneous other bitmap fonts

/usr/lib/X11/fonts/Speedo Outline font files in the Bitstream Speedo™ format

/usr/lib/X11/fonts/CID AFM, CCM, CFM, CIDFont and CMap files for large outline fonts
in the Adobe CID-keyed format
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The X Window System, Display PostScript, IRIS GL Font Manager, Impressario, and
other software components use the directories listed in Table 15-1 by default. The
locations of font files are made known to the X Window System in two ways:

• Within each directory specified in the X font path, a file named fonts.dir contains a
directory of filenames with their corresponding 14-part font names. For example, to
see the font names available in /usr/lib/X11/fonts/100dpi, use the command

more /usr/lib/X11/fonts/100dpi/fonts.dir

This file is created by mkfontdir (see the mkfontdir(1) reference page).

• The files /usr/lib/X11/fonts/ps2xlfd_map* are used by the X Window System and the
IRIS Font Manager to map PostScript names or short font names to 14-part X font
names, and vice versa. The IRIS Font Manager does not use any bitmap fonts that
do not have an entry in those files.

In IRIX 6.5, the twelve bitmap and outline fonts appear in the install directories:

• Dutch 801 Roman, Dutch 801 Italic, Dutch 801 Bold, Dutch 801 Bold Italic

• Swiss 721 Roman, Swiss 721 Italic, Swiss 721 Bold, Swiss 721 Bold Italic

• Courier 10-Pitch Roman, Courier 10-Pitch Italic, Courier 10-Pitch Bold, and Courier
10-Pitch Bold Italic

Each font contains 1015 characters. Those characters adhere to the International
Organization for Standardization ISO8859-1 through ISO8859-10 and the Minimum
European Subset (MES) of ISO10646-1 or Unicode 2.0. For more information about MES,
use a web browser to open http://www.indigo.ie/egt/standards/mes.html.

Swiss 721 fonts are installed when you install the subsystem x_eoe.sw.Xfonts. The rest of
the fonts are in the subsystem x_eoe.sw.Xunicodefonts. The subsystem x_eoe.sw.Xfonts is
installed by default, while the subsystem x_eoe.sw.Xunicodefonts is optional. The new
fonts are sometimes referred to as Unicode fonts, because they include Unicode character
maps, and you can use Unicode codes to access characters in those fonts.
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Conventions for Bitmap Font Filenames

The names of bitmap font files are specified according to the following conventions:

• Most filenames begin with three or four letters unique to the font family, such as
cour for the Courier family, or 8x13 for a utility bitmap family.

• When a family has different style variants such as Roman and Italic, the next
character of the filename is an uppercase letter to indicate the style, for example
courO for Courier Oblique, or 8x13B for a utility bold font.

• The last two characters of the filename are two digits giving the nominal size of the
font in points, as in courO18.

• Most bitmap files are of the Portable Compiled Format (PCF) type and have the file
suffix .pcf, as in courO18.pcf or 8x13B.pcf.

• Files are compressed using the compress command (see the compress(1) reference
page), and, therefore, have the terminal suffix .Z as in courO18.pcf.Z.

• Exceptions to these conventions are names such as
Swiss721-Bold--Bitstream-Unicode-0_10.pcf.Z which are bitmap fonts in the directory
/usr/lib/X11/fonts/100dpi. These fonts use this format:

CIDFontName--CMapName_PointSize.pcf.Z

where CIDFontName is the font family name, CMapName specifies the character map
name, and PointSize is the nominal size of the font. These names are reserved for
bitmap CID-keyed fonts.

In /usr/lib/DPS/AFM there is one font metric file per typeface. When you install a font
module, such as the Japanese Font Module, metric files for CID-keyed fonts are stored in
the directory /usr/lib/X11/fonts/CID/character-collection/AFM. Font metric files are
primarily used by text-processing and desktop-publishing programs to, for example,
generate PostScript code for a specified document.

Creating Font Aliases

If you do not want to use long X font names, you can specify shorter aliases for those
names. Silicon Graphics uses a file called fonts.alias to specify short aliases for fonts. There
can be a fonts.alias file in an X font directory. For example, see the file fonts.alias in the
directory /usr/lib/X11/fonts/100dpi.



316

Chapter 15: Working With Fonts

A typical font alias looks like this:

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

This associates the short alias “fixed” to the longer name that follows it. The alias file can
also be used to specify alternate conventions for the component parts of a 14-part font
name. For example, the following entry creates an alias that uses “regular” instead of
“medium” for the weight component:

-adobe-utopia-regular-i-normal--14-100-100-100-p-74-iso8859-1
-adobe-utopia-medium-i-normal--14-100-100-100-p-74-iso8859-1

To specify your own font aliases in a font directory, store them in a file called
fonts.alias.local in that directory. That way your entries do not disappear when you
upgrade your system software.

Adding Font and Font Metric Files

When you purchase a font or obtain a font that is in the public domain, you need to add
that font to your system and possibly to your printer in order to use it. Adobe Systems
donated bitmap, outline, and font metric files for the Utopia font family to the X
Consortium. This section shows how the font and font metric files for Utopia Regular
were added to the IRIX operating system. Other font and font metric files can be added
in a similar way.

You need superuser privilege to make changes to X font directories. Before you make any
changes to any IRIX directory, make a copy of its contents so that you can restore that
directory if anything goes wrong. For example, your font files may not be in the right
format, and they may interfere with the access of Silicon Graphics font files. Keep a log
of the changes you make, and mention those changes when you report a problem with
font files to Silicon Graphics; otherwise, it may be very difficult or impossible for other
people to reproduce any problems that you might report.

Adding a Bitmap Font

The procedure in this section shows how to add Utopia Regular bitmap fonts to IRIX.
Other fonts can be added in a similar way.
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To add the Utopia bitmap fonts to the X Window System, Display PostScript, and
IRIS GL Font Manager, follow these steps:

1. Log in as root.

2. Choose names for the installed bitmap files. Refer to the naming conventions for
existing bitmap font files (see “Conventions for Bitmap Font Filenames” on
page 315) and use names with a consistent format when you create new font names.
For example, Adobe provided Utopia Regular bitmap font files designed for the
resolutions of 100 and 75 dpi. The original names of these files were UTRG_10.bdf
through UTRG_24.bdf

Filenames closer to IRIX conventions are utopR10 through utopR24 (followed by the
appropriate file suffixes).

3. Convert files in Bitmap Distribution Format (BDF) to Portable Compiled Format
(PCF) font files.

BDF font files are text (ASCII) files. You can think of them as source font files. You
can put BDF font files into an X font directory, but normal practice is to use only
binary font formats such as the PCF (.pcf) or compressed PCF format (.pcf.Z) for
performance reasons.

Use the bdftopcf command to convert a BDF font file to a PCF font file (see the
bdftopcf(1) reference page). For example, Adobe provided two sets of Utopia
Regular bitmap font files that were designed for the resolutions of 100 and 75 dpi.
These files were in the extended Bitmap BDF 2.1 format. The original names of the
bitmap files were UTRG_10.bdf through UTRG_24.bdf. One of them could be
converted with the following command:

bdftopcf -o utopR10.pcf UTRG_10.bdf

However, you normally want to compress the PCF file as well.You can compress a
PCF file by entering a command such as:

compress utopR10.pcf

But you could combine both steps simply as follows:

bdftopcf UTRG_10.bdf | compress -c >utopR10.pcf.Z
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4. Move the bitmap font files to the appropriate directory, /usr/lib/X11/fonts/100dpi or
/usr/lib/X11/fonts/75dpi. You can of course combine this step with the format
conversion step as follows:

bdftopcf UTRG_10.bdf | compress -c
         >/usr/lib/X11/fonts/100dpi/utopR10.pcf.Z

You can tell the resolution for which a font was designed by the name of the
directory in which the font designer stored the font files, or by the information in
the header of a bitmap font file. In a BDF 2.1 font file, the horizontal and vertical
resolution are specified in the X font name. They are also specified after the point
size as the second and third numeric values in a SIZE entry. For example, the entry:

SIZE 8 100 100

within the file indicates an 8-point font that was designed for the horizontal and
vertical resolution of 100 dpi.

5. For Type 1 PostScript font families, there is one entry per font family in the file
/usr/lib/X11/fonts/ps2xlfd_map. For each Japanese font family shipped by Silicon
Graphics, there is an entry in the file /usr/lib/X11/fonts/ps2xlfd_map.japanese.

When adding a new Type 1 font, insert an entry in the appropriate file for each style
variation in the font family. It is not necessary to have an entry for each bitmap size.
For example, the entries in ps2xlfd_map for the Utopia fonts are:

Utopia-Bold -adobe-utopia-bold-r-normal--0-0-0-0-p-0-iso8859-1
Utopia-BoldItalic -adobe-utopia-bold-i-normal--0-0-0-0-p-0-iso8859-1
Utopia-Italic -adobe-utopia-medium-i-normal--0-0-0-0-p-0-iso8859-1
Utopia-Regular -adobe-utopia-medium-r-normal--0-0-0-0-p-0-iso8859-1

The first field is the PostScript font name, as specified in the outline font file (see
“Adding an Outline Font” on page 319). The second field is the X 14-part font name
with 0 for all specific dimension values.

When you add your own bitmap or outline fonts, put their entries in a file called
/usr/lib/X11/fonts/ps2xlfd_map.local. That way your entries do not disappear when
you upgrade your system software.

Make sure that there is no overlap between your entries and the entries in other
ps2xlfd_map* files.

6. If you want to establish alias names for any of the new fonts, create or edit fonts.alias
files in the appropriate directories (see “Creating Font Aliases” on page 315).
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7. Invoke the mkfontdir command to rebuild the fonts.dir database in each directory
where you added bitmap files. Enter the command:

mkfontdir /usr/libX11/fonts/*dpi

to create a new fonts.dir (fonts directory) file in the 100dpi and 75dpi directories.

8. Use the xset command to notify the window system to rebuild its list of fonts:

xset fp rehash

9. To check whether the fonts you added are known to the X Window System, enter:

xlsfonts > /tmp/fontlist

The names of the fonts you added should appear on the list of font names and
aliases produced by xlsfonts.

Bitmap fonts should now be added to the X Window System and the IRIS GL Font
Manager. Since DPS needs both outline and bitmap fonts for each supported typeface, it
first checks which outline fonts are stored in the directory /usr/lib/DPS/outline/base. Then
it looks for the corresponding bitmap fonts in other X font directories. It ignores all other
bitmap fonts. Therefore, DPS ignores the bitmap fonts you added until you add the
corresponding outline fonts.

Adding an Outline Font

To add the Utopia Regular outline font to the X Window System, Display PostScript, and
the IRIS GL Font Manager, follow these steps:

You can install only Adobe text (ASCII) Type 1 font files or compatibles, not binary
Type 1 font files and not Type 3 font files. Display PostScript can handle Type 3 font files,
but the X Window System and IRIS GL Font Manager cannot.

1. Log in as root.

2. Convert the file to Printer Font ASCII (PFA) format if necessary. Printer Font Binary
(PFB) files are not supported. To convert .pfb files to .pfa files, use the pfb2pfa
command shipped with IRIX version 5.3 and higher (see the pfb2pfa(1) reference
page). For example, to convert the Adobe file UTRG____.pfb, enter

pfb2pfa UTRG____.pfb UTRG____.pfa
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3. Look at the names of existing outline font files in the directory
/usr/lib/DPS/outline/base. Display PostScript requires that the name of each outline
font file match the PostScript font name specified in the /FontName entry in the
header of that outline font file. For example, if you enter:

grep /FontName Courier-Bold

in the directory /usr/lib/DPS/outline/base, you get:

/FontName /Courier-Bold def

The name revealed is used for the filename of the outline font, the filename of the
metric file, and in the /usr/lib/X11/fonts/ps2xlfd.map file.

For example, Adobe provided the Utopia Regular outline font file UTRG____.pfa,
which is an outline font file in the Type 1 format. To find the PostScript font name
for this font, enter:

grep /FontName UTRG____.pfa

You should get the response:

/FontName Utopia-Regular def

When this font was added to IRIX, the name of the file UTRG____.pfa was changed
to Utopia-Regular.

4. Put the file Utopia-Regular in the directory /usr/lib/DPS/outline/base, because that
outline font is in the Type 1 format. If you have an outline font in the Speedo format,
put it in the directory:

/usr/lib/X11/fonts/Speedo

5. To add the Utopia Regular font and font metric files to Display PostScript, enter:

/usr/bin/X11/makepsres -o /usr/lib/DPS/DPSFonts.upr
/usr/lib/DPS/outline/base /usr/lib/DPS/AFM

You should now be able to access the font file you added via Display PostScript.
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6. For most font families shipped by Silicon Graphics, there is one entry per font
family in the file:

/usr/lib/X11/fonts/ps2xlfd_map

as described in “Adding a Bitmap Font.” The same entry is used for both bitmap
and outline fonts.

If you add your own (local) bitmap or outline fonts, put an entry for each font
family in the file called:

/usr/lib/X11/fonts/ps2xlfd_map.local

You can use entries in the file ps2xlfd_map as templates for entries in the file
ps2xlfd_map.local.

If the file ps2xlfd_map.local does not exist, log in as root, and create it.

You can now access the font you added via the IRIS GL Font Manager.

7. Display PostScript is an extension of the X Window System. To add an outline font
in the Type 1 format to the rest of the X Window System, in any directory, enter the
commands:

type1xfonts
xset fp rehash

This re-creates symbolic links in the directory /usr/lib/X11/fonts/Type1 that point to
outline font files in the directory /usr/lib/DPS/outline/base, and instructs the X
Window System to check which fonts are available.

8. To check whether the outline fonts you added are known to the X Window System,
enter:

xlsfonts | grep family-name

The entries for the outline fonts you added should appear on the list of font names and
aliases produced by xlsfonts.
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Adding a Font Metric File

Adobe Font Metric (AFM) files are primarily used by application programs—for
example, to generate PostScript code for a specified document. Follow these steps to add
a font metric file for an outline font in the Type 1 format:

1. Log in as root.

2. Put Adobe Font Metric files in the directory /usr/lib/DPS/AFM.

The name of an AFM file must match the PostScript font name as given in the file
/usr/lib/X11/fonts/ps2xlfd_map (see “Locations of Font and Font Metric Files” on page 313).

For example, Adobe provided the Utopia Regular font metric file UTRG____.AFM.
When this font was added to IRIX, the name was changed to Utopia-Regular to
correspond to the line

Utopia-Regular -adobe-utopia-medium-r-normal--0-0-0-0-p-0-iso8859-1

in /usr/lib/X11/fonts/ps2xlfd_map.

The file was put in the directory /usr/lib/DPS/AFM.

Font metric files for a large outline font in the CID-keyed format should be put in the
directory /usr/lib/X11/fonts/CID/character-collection/AFM. There is one AFM file for each
CIDFont file, and one AFM file for each CID-keyed font.
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Downloading a Type 1 Font to a PostScript Printer

Some outline fonts are usually built into a PostScript printer. You can find out which
fonts are known to the PostScript interpreter in your printer by sending the following file
to that printer:

%!
% Produce a list of available fonts
/f 100 string def
/Times-Roman findfont 12 scalefont setfont
/y 700 def
72 y moveto
FontDirectory {
   pop f cvs show 72 /y y 13 sub def y moveto
} forall
showpage

Utopia fonts are not usually built into PS printers. If you try to print a document that
requires a Utopia font on a PS printer that does not have that font, a warning message
about the replacement of a missing font with a Courier font is sent to the file
/usr/spool/lp/log on the system to which that PS printer is attached.

You can download a Type 1 font to a PS printer in either of the following two ways:

• You can insert a Type 1 font file at the beginning of the PostScript file that needs that
font. You should have a statement that starts with:

%!

Put this statement at the beginning of your PS file. If you have two such lines, delete
the second one.

When you download a font this way, the font is available only while your print job
is being processed.
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• You can make a copy of a Type 1 font file, and then insert the statement:

serverdict begin 0 exitserver

after the first group of comment statements (lines that start with %) if no password
has been specified for your printer; otherwise, replace 0 in the above statement with
the password for your printer. Then send the edited file to your printer.

When you download a font this way, the warning message:

%%[ exitserver: permanent state may be changed ]%%

is sent to the file /usr/spool/lp/log on the system to which the printer is attached.

The permanent state of the printer is not really changed. Downloaded fonts
disappear when you reset the printer by switching its power off and on. If there is
not enough memory for additional fonts, you receive a message about a Virtual
Memory (VM) error, and the font is not downloaded.

If you again send the program that produces a list of available fonts to your printer,
you should see the PostScript names of the fonts you downloaded on that list.
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Internationalizing Your Application VI

Chapter 16, “Internationalizing Your Application”

Documents how to prepare an application to execute in more than one language
environment, including the use of character sets and locale-specific behaviors.
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16. Internationalizing Your Application

Internationalization is the process of generalizing an application so that it can easily be
customized—or localized—to run in more than one language environment. You can
provide internationalized software that will produce output in a user’s native language,
format data (such as currency values and dates) according to local standards, and tailor
software to a specific culture.

This chapter describes how to create such an application. It contains the following major
sections:

• “Overview of Internationalization” presents an introduction to internationalization
and defines some common terms.

• “Using Locales” explains how to set the current locale and limitations of the locale
system.

• “Character Sets, Codesets, and Encodings” describes various ways of encoding
characters, the traditional ASCII being just one of these.

•  “Cultural Items” discusses the ways in which different cultures affect the way a
string can be viewed, for example in outputting or collating.

• “Locale-Specific Behavior” covers native language support (NLS) and the NLS
database, regular expressions, and cultural data.

• “Strings and Message Catalogs”describes how to create and use catalogs of
messages to send diagnostic information to users in various locales.

• “Internationalization Support in X11R6” describes internationalization support
provided by X11, Release 6 (including features from X11R5).

• “Internationalization Support in Motif” points to information describing how to
internationalize a Motif application.

• “Translating User Input” discusses the translation of keyboard events into
programmatic character strings for a variety of keyboards.
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• “GUI Concerns” discusses internationalizing applications that use graphical user
interfaces (GUIs)

• “Popular Encodings” presents some common non-ASCII encodings.

For a list of ISO 3166 country names and abbreviations, see Appendix A, “ISO 3166
Country Names and Abbreviations.” You can find detailed information about fonts in
Chapter 15, “Working With Fonts.” Also, you can find additional information about
internationalizing an application in the IRIX Interactive Desktop Integration Guide.

Overview of Internationalization

Internationalized software can be made to produce output in a user’s native language, to
format data (such as dates and currency values) according to the user’s local customs,
and to otherwise make the software easier to use for users from a culture other than that
of the original software developer. As computers become more widely used in
non-American cultures, it becomes increasingly important that developers stop relying
on the conventions of American programming and the English language in their
programs. This chapter provides information on how to make your applications more
widely accessible.

This section presents the following topics:

• “Some Definitions of Internationalization” covers locales, internationalization,
localization, nationalized software, and multilingual software.

• “Areas of Concern in Internationalizing Software” points out a few concerns to
watch for when internationalizing your software.

• “Standards” covers standard-compliant features.

• “Internationalizing Your Application: The Basic Steps” lists the procedures to use
when internationalizing an icon.

• “Additional Reading on Internationalization” provides references you can consult
for additional information about internationalization.
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Some Definitions of Internationalization

This section defines some of the terms used in this chapter.

Locale

Locale refers to a set of local customs that determine many aspects of software input and
output formatting, including natural language, culture, character sets and encodings,
and formatting and sorting rules. The locale of a program is the set of such parameters
that are currently selected. For information on the method for selecting locales, see
“Additional Reading on Internationalization” below.

Internationalization (i18n)

Internationalization is the process of making a program capable of running in multiple
locales without recompiling. To put it another way, an internationalized program is one
that can be easily localized without changing the program itself. (See “Localization
(l10n),” below, for an explanation of the term “localization.”)

Note: The word “internationalization” consists of an i followed by 18 letters followed by
an n. It is thus often abbreviated “i18n” in informal writing. On similar principles,
“localization” is often abbreviated “l10n.”

A program written for a specific locale may be difficult to run in a different environment.
Rewriting such a program to operate in each desired environment would be tedious and
costly.

Your goal as a developer should thus be to write locale-independent programs, programs
that make no assumptions about languages, local customs, or coded character sets. Such
internationalized applications can run in a user’s native environment following native
conventions with native messages, without recompiling or relinking. A single copy of an
internationalized program can be used by a world of different users.

Localization (l10n)

Localization is the act of providing an internationalized application with the environment
and data it needs to operate in a particular locale. For example, adding German system
messages to IRIX is a part of localizing IRIX for the German locale.
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Nationalized Software

Nationalized programs run in only one language and are governed by one set of customs;
in other words, in a nationalized program the locale is built into the application. Even if
the application doesn’t use ASCII or English, as long as it is a single-language program
it is nationalized, not internationalized. Most older UNIX programs can be thought of as
being nationalized for the United States.

Consider two applications, hello and bonjour. The application hello always produces the
output

Hello, world.

and bonjour always produces

Bonjour, tout le monde.

Neither hello nor bonjour are internationalized; they are both nationalized.

There are no special requirements for writing or porting nationalized applications,
whether they are text or graphics programs. Terminal-based programs work on suitable
terminals, including internationalized terminal emulators. “Suitable” means that the
terminal supports any necessary fonts and understands the encoding of the application
output. Graphics programs simply do as they have always done. Applications using
existing interfaces to operate in non-English or non-ASCII environments should
continue to compile and run under an internationalized operating system.

Multilingual Software

A multilingual program is one that uses several different locales at the same time.
Examples are described in “Multilingual Support” on page 339.

Areas of Concern in Internationalizing Software

Few developers will have to pay attention to more than a few items described in this
section. Most will need to catalog their strings. Some will need to use library routines for
character sorting or locale-dependent date, time, or number formatting. A few whose
applications use the eighth bit of 8-bit characters inappropriately will need to stop doing
so. The few applications that do arithmetic to manipulate characters will need to be
cleaned up. Some GUI designers will have to spend just a little more time thinking. But
for the large majority of developers, there isn’t much to do.
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The information presented in the following sections addresses internationalization
issues pertinent to a developer; some sections, however, may not be relevant to your
applications.

Standards

IRIX internationalization includes these standards-compliant features, among others:

• ANSI C and POSIX (ISO 9945-1): Locale

• X/OPEN Portability Guide, Issue 4 (XPG/4): XPG/4 message catalogs, interpretation
of locale strings

• UNIX System V Release 4: Multi-National Language Support (MNLS) message
catalogs

• X11R5 and X11R6: Input methods, text rendering, resource files

Internationalizing Your Application: The Basic Steps

To internationalize your icon, follow these steps:

1. Call setlocale() as soon as possible to put the process into the desired locale. See
“Setting the Current Locale” on page 334 for instructions.

2. Make your application 8-bit clean. (An application is 8-bit clean if it does not use the
high bit of any data byte to convey special information.) See “Eight-Bit Cleanliness”
on page 341 for instructions.

3. If you’re writing a multilingual application, you must do one of two things:

• fork, and then call setlocale() differently in each process

•  call setlocale() repeatedly as necessary to change from language to language

See “Multilingual Support” on page 339 for more information.

4. Use wide character (WC) or multibyte (MB) characters and strings to allow for more
than one byte per character (this is needed for Asian languages, which often require
two or even four bytes per character). See “Character Representation” on page 342
for more information.
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5. Do not rely on ASCII and English sorting rules. Locale-specific collation should be
performed with strcoll() and strxfm(). (These are table-driven functions; the tables
are supplied as part of locale support.) See “Collating Strings” on page 348 for more
information.

6. Use the localeconv() function to find out about general details of numeric
formatting. Use strfmon() to format currency amounts in particular. See “Specifying
Numbers and Money” on page 349 for more information.

7. Use strftime() to format dates and times (strftime() gives a host of options for
displaying locale-specific dates and times.) See “Formatting Dates and Times” on
page 351 for more information.

8. Avoid arithmetic on character values. Use the macros in ctype.h to get information
about a given character. (These macros are table-driven and locale-sensitive.) If you
prefer, you can use the functions that correspond to these macros instead.
“Character Classification and ctype” on page 351 provides more detailed
information on these macros and functions.

9. If you do your own regular expression parsing and matching, use the XPG/4
extensions to traditional regular expression syntax for internationalized software.
See “Regular Expressions” on page 353 for more information.

10. Where possible, use the XPG/4, rather than the MNLS interface in order to
maximize portability. See “Strings and Message Catalogs” on page 366 for more
information.

11. Provide a catalog for your locale. See “SVR4 MNLS Message Catalogs” on page 370
for more information.

12. The File Typing Rule (FTR) strings that are used to customize the IRIX Interactive
desktop can be Internationalized. See “Internationalizing File Typing Rule Strings
With MNLS” on page 374 for more information.

13. Use message catalogs for printf() format strings that take linguistic parameters, and
allow localizers to localize the format strings as well as text strings. See “Variably
Ordered Referencing of printf() Arguments” on page 375 for more information.

14. If you’re using Xlib, initialize Xlib’s internationalization state after calling
setlocale(). See “Initialization for Xlib Programming” on page 379 for more
information.

15. Specify a default fontset suitable for the default locale. Make sure that the
application accepts localized fontset specifications via resources (or message
catalogs) or command-line options. See “Fontsets” on page 380 for more
information.
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16. Use X11R5 and X11R6 text rendering routines that understand multibyte and wide
character strings, not the X11R4 text rendering routines XDrawText(),
XDrawString(), and XDrawImageString(). See “Text Rendering Routines” on
page 382 for more information.

17. Use X11R5 and X11R6 MB and WC versions of width and extents interrogation
routines. See “New Text Extents Functions” on page 382 for more information.

18. If you are writing a toolkit text object, or if you can’t use a toolkit to manage event
processing for you, then you have to deal with input methods. Follow the
instructions in “Translating User Input” on page 385.

19. Use resources to label any object that employs some sort of text label. Your
application’s app-defaults file should specify every reasonable string resource. See
“X Resources for Strings” on page 401 for more information.

20. Use dynamic layout objects that calculate layout depending on the natural
(localized) size of the objects involved. Some IRIS IM widgets providing these
services are XmForm, XmPanedWindow, and XmRowColumn. See “Dynamic
Layout” on page 402 for more information. If you can’t use dynamic layout objects,
refer to “Layout” on page 402 for instructions.

21. Make sure that all icons and other pictographic representations used by your
application are localizable. See “Icons” on page 403 for more information.

Additional Reading on Internationalization

For more information on internationalization, refer to:

• O’Reilly Volume 1, Xlib Programming Manual

• X Window System, by Robert Scheifler and Jim Gettys

• X/Open Portability Guide

• OSF/Motif Style Guide
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Using Locales

An internationalized system is capable of presenting and receiving data understandably
in a number of different formats, cultures, languages, and character sets. An application
running in an internationalized system must indicate how it wants the system to behave.
IRIX uses the concept of a locale to convey that information.

A process can have only one locale at a time. Most internationalization interfaces rely on
the locale of the current process being set properly; the locale governs the behavior of
certain library routines.

This section covers the following topics:

• “Setting the Current Locale” explains categories, locales, strings, location of
locale-specific data, and locale naming conventions.

• “Limitations of the Locale System” describes multilingual support, misuses of
locales, and encoding.

You can find additional information in “Locale-Specific Behavior” on page 353, which
describes native language support, regular expressions, and cultural data.

Setting the Current Locale

Applications begin in the C locale. (C is the name used to indicate the system default
locale; it usually corresponds to American English.) Applications should therefore call
setlocale() as soon as possible to put the process into the desired locale. The syntax for
setlocale() is:

#include <locale.h>
char *setlocale(int category, const char *locale);

The call almost always looks either like this:

if (setlocale(LC_ALL, "") == NULL)
    exit_with_error();
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or like this:

if (setlocale(LC_ALL, "") == NULL)

    setlocale(LC_ALL, "C");

Details of the two parameters are given in the next two sections.

Using Locale Categories

Applications need not perform every aspect of their work in the same locale. Although
this approach is not recommended, an application could (for example) perform most of
its activities in the English locale but use French sorting rules. You can use locale
categories to do this kind of locale-mixing. (Mixing locale categories is not the same as
multilingual support—see “Multilingual Support.”)

The category argument is a symbolic constant that tells setlocale() which items in a locale
to change. Table 16-1 lists the available category choices.

Categories correspond to databases that contain relevant information for each defined
locale. The locations of these databases are given in the “Location of Locale-Specific
Data” on page 337.

Table 16-1 Locale Categories

Category Affects

LC_ALL All categories below

LC_COLLATE Regular expressions, strcoll(), and strxfrm()

LC_CTYPE Regular expressions and ctype routines (such as islower())

LC_MESSAGES gettxt(), pfmt(), and nl_langinfo()

LC_MONETARY localeconv() and strfmon()

LC_NUMERIC Decimal-point character for formatted I/O and nonmonetary formatting
information returned by localeconv()

LC_TIME ascftime(), cftime(), getdate(), and strftime()
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Setting the Locale

The setlocale() function attempts to set the locale of the specified category to the
specified locale. You should almost always pass the empty string as the locale parameter
to conform to user preferences.

On success, setlocale() returns the new value of the category. If setlocale() couldn’t set
the category to the value requested, it returns NULL and does not change locale.

Empty String

An empty string passed as the locale parameter is special. It specifies that the locale
should be chosen based on environment variables. This is the way a user specifies a
preferred locale, and that preference should almost always be honored. The variables are
checked hierarchically, depending on category, as shown in Table 16-2; for instance, if the
category is LC_COLLATE, an empty-string locale parameter indicates that the locale
should be chosen based on the value of the environment variable LC_COLLATE—or, if
that value is undefined, the value of the environment variable LANG, which should
contain the name of the locale that the user wishes to work in.

Specifying the category LC_ALL attempts to set each category individually to the value
of the appropriate environment variable.

If no non-null environment variable is available, setlocale() returns the name of the
current locale.

Table 16-2 Category Environment Variables

Category First Environment Variable Second Environment Variable

LC_COLLATE LC_COLLATE LANG

LC_CTYPE LC_CTYPE LANG

LC_MESSAGES LC_MESSAGES LANG

LC_MONETARY LC_MONETARY LANG

LC_NUMERIC LC_NUMERIC LANG

LC_TIME LC_TIME LANG



Using Locales

337

Nonempty Strings in Calls to setlocale()

Here are the possibilities for specifying the locale parameter:

Location of Locale-Specific Data

Except for XPG/4 message catalogs, locale-specific data (that is, the “compiled” files
containing the collation information, monetary information, and so on) are located in
/usr/lib/locale/<locale>/<category>, where <locale> and <category> are the names of the
locale and category, respectively. For example, the database for the LC_COLLATE
category of the French locale fr would be in /usr/lib/locale/fr/LC_COLLATE.

There will probably be multiple locales symbolically linked to each other, usually in cases
where a specific locale name points to the more general case. For example,
/usr/lib/locale/POSIX might point to /usr/lib/locale/C.

Locale Naming Conventions

A locale string is of the form

language[_territory[.encoding]][@modifier]...

where

• language is the two-letter ISO 639 abbreviation for the language name.

• territory is the two-uppercase-letter ISO 3166 abbreviation for the territory name.
(For a list of these abbreviations, see the table in Appendix A, “ISO 3166 Country
Names and Abbreviations.”)

NULL Specifying a null pointer argument—not the same as the empty
string—causes setlocale() to return the name of the current locale.

“C” Specifying a locale value of the single-character string “C” requests
whatever locale the system uses as a default. (Note that this is a
string and not just a character.)

Other strings Request a particular locale by specifying its name. This overrides
any user preferences and should only be done with good reason.
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• encoding is the name of the character encoding (mapping between numbers and
characters). For western languages, this is typically the codeset, such as 8859-1 or
ASCII. For Asian languages, where an encoding may encode multiple codesets, the
encodings themselves have names, such as UJIS or EUC (these encodings are
described later in this section). “Character Sets, Codesets, and Encodings” on
page 340 discusses codesets and encodings.

• modifiers are not actually part of the locale name definition; they give more specific
information about the desired localized behavior of an application. For example,
under X11R5 or X11R6, a user can select an input method with modifiers. (To use the
xwnmo Input Method server provided by Silicon Graphics, for example, add
@im=_XWNMO to the locale string.) No standards exist for this part of a locale
string.

Language data is implementation specific; databases for the language en (English) might
contain British cultural data in England and American cultural data in the United States.
If other than the default settings are required, the territory field may be used. For
example, the above cases could be more strictly defined by setting LANG to en_GB or
en_US. Full rigor might lead to en_GB.ISO 8859-1 for England and en_US.ISO 8859-1 for
the USA.

ANSI C has defined a special locale value of C. The C locale is guaranteed to work on all
compliant systems and provides the user with the system’s default locale. This default is
typically American English and ASCII, but need not be. POSIX has also defined a special
locale value, POSIX, which is identical to the C locale.

The length of the locale string may not exceed NL_LANGMAX characters
(NL_LANGMAX is defined in /usr/include/limits.h). However, XPG/4 recommends that
this string (not counting modifiers) not exceed 14 characters.
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Limitations of the Locale System

This section explains multilingual support, misuse of locales, and the absence of
filesystem information for encoding types.

Multilingual Support

There can be only one locale at a time associated with any given process in an
internationalized system. Therefore, although multilingual applications—which give the
appearance of using more than one locale at a time—can be created, internationalization
does not provide inherent support for them. Here are two examples of multilingual
programs:

• An application creates and maintains windows on four different displays, operated
by four different users. The program has a single controlling process, which is
associated with only one locale at any given time. However, the application can
switch back and forth between locales as it switches between users, so the four users
may each use a different locale.

• In a sophisticated editing system with a complex user interface, a user may wish to
operate the interface in one language while entering or editing text in another. For
instance, a user whose first language is German may wish to compose a Japanese
document, using Japanese input and text manipulation, but with the user interface
operating in German. (There is no standard interface for such behavior.)

In writing a multilingual application, the first task is identifying the locales for the
program to run in and when they apply. (There is no standard method for performing
this task.) Once the application has chosen the desired locales, it must do one of the
following:

• fork, and then call setlocale() differently in each process

• call setlocale() repeatedly as necessary to change from language to language

Misuse of Locales

The LANG environment variable and the locale variables provide the freedom to
configure a locale, but they do not protect the user from creating a nonsensical
combination of settings. For example, you are allowed to set LANG to fr (French) and
LC_COLLATE to ja_JP.EUC (Japanese). In such a case, string routines would assume text
encoded in 8859-1—except for the sorting routines, which might assume French text and
Japanese sorting rules. This would likely result in arbitrary-seeming behavior.
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No Filesystem Information for Encoding Types

The IRIX filesystem does not contain information about what encoding should be
associated with any given data. Thus, applications must assume that data presented to
an application in some locale is properly encoded for that locale. In other words, a file is
interpreted differently depending on locale; there is no way to ask the file what it thinks
its encoding is.

For example, you may have created a file while in a Japanese locale using EUC. Later, you
might try printing it while in a French locale. The results will likely resemble a random
collection of Latin 1 characters.

This problem applies to almost all stored strings. Most strings are uninterpreted
sequences of nonzero bytes. This includes, for example, filenames. You can, if you want
to, name your files using Chinese characters in a Chinese locale, but the names will look
odd to anyone who runs /bin/ls on the same filesystem using a non-Chinese locale.

Character Sets, Codesets, and Encodings

One major difference between nationalized and internationalized software is the
availability in internationalized software of a wide variety of methods for encoding
characters. Developers of internationalized software no longer have the convenience of
always being able to assume ASCII. Three terms that describe groupings of characters are
the following:

character set An abstract collection of characters.

codeset A character set with exactly one associated numerical encoding for each
character. The English alphabet is a character set; ASCII is a codeset.

encoding A set of characters and associated numbers; however, this term is more
general than “codeset.” A single encoding may include multiple codesets;
Extended UNIX Code (EUC), for instance, is an encoding that provides for
four codesets in one data stream.
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This section describes these topics:

• “Eight-Bit Cleanliness” explains how to make 8-bit clean characters.

• “Character Representation” discuses multibyte and wide characters.

• “Multibyte Characters” covers using and handling multibyte characters,
conversions to constant-size characters, and the number of bytes in a character and
string.

• “Wide Characters” explains wchar strings, support routines, and conversion to
multibyte characters.

• “Reading Input Data” covers nonuser-originated data.

For information on installing and using fonts with an application, refer to Chapter 15,
“Working With Fonts.”

Eight-Bit Cleanliness

A program is 8-bit clean if it does not use the high bit of any data byte to convey special
information. ASCII characters are specified by the low seven bits of a byte, so some
programs use the high bit of a data byte as a flag; such programs are not 8-bit clean.
Internationalized programs must be 8-bit clean, because they cannot expect data to be in
the form of ASCII bytes; non-ASCII character sets usually use all eight bits of each byte
to specify the character. But a program must go out of its way to manipulate bytes based
on the value of the high bit, and since changing data without cause is seldom desirable,
most programs are already 8-bit clean.

The old csh (before this problem was fixed in the IRIX 5.0 release) was a good example of
a program that was not 8-bit clean; it used the high bit in input strings to distinguish
aliases from unaliased commands. An effect of this misuse was that csh stripped the
eighth bit from all characters. For example, the user command

echo I know an architect named Mañosa

Produced the response

I know an architect named Maqosa

Another example is the specification of Internet messages, which calls for 7-bit data.
Thus, if sendmail fails to strip the 8th bit from a character prior to sending it, it violates a
protocol; if it does strip the bit, it could garble a non-ASCII message (this protocol
problem is being addressed).
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One of the simplest things to do to remove the American bias from a program is to
replace the ASCII assumption with the assumption that the Latin 1 codeset will be used.
This approach is not true internationalization, but it can make the application usable in
most of Western Europe. Latin 1 uses only one byte per character, unlike some other
codesets, so 8-bit clean ASCII software should work without modification using the
Latin 1 codeset.

Ensuring that code is 8-bit clean is the single most important aspect of internationalizing
software.

Another caveat about 8-bit characters applies only to a particular set of circumstances: If
you are not using a multibyte character type (see the next section), you should not declare
characters as type signed char. (The default in IRIX C is for char to imply unsigned char.) If
you try to cast a signed char to an int (as you must do to use the ctype() functions) and the
character’s high bit is set (as it may be in an 8-bit character set), the high bit is interpreted
as a sign bit and extends into the full width of the int.

Character Representation

Western languages usually require only one byte for each character. Asian languages,
however, often require two or even four bytes per character, and some Asian encodings
allow a variable number of bytes per character.

The two kinds of encodings that allow more than one byte per character are

• multibyte (MB) characters are of variable size

• wide characters (WC or wchar characters) are a fixed number of bytes long)
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The application developer must decide where to use WC and MB characters and strings:

• Multibyte strings are almost the default: string I/O uses MB, MB code works for
ASCII and ISO 8859, and MB characters use less space than do wide characters.
However, manipulating individual characters within a multibyte string is difficult.

Note: Traditional strings are merely a special case of multibyte strings, where every
character happens to be one byte long and there is only one codeset. All MB code,
including conversion to and from wchars, works for traditional ASCII, or ISO 8859,
strings.

• Applications that do heavy string manipulation typically use WC strings for such
activity, because manipulating individual WC characters in a string is much simpler
than doing the same thing with MB characters. So wide characters are used as
necessary to provide programming ease or runtime speed; however, they take up
more space than MB characters.

Note: WC is system dependent—applications should not use it for I/O strings or
communication.

Multibyte Characters

A multibyte character is a series of bytes. The character itself contains information on
how many bytes long it is. Multibyte characters are referenced as strings (and are
therefore of type char *); before parsing, a string is indistinguishable from a multibyte
character. The zero byte is still used as a string (and MB character) terminator.

A string of MB characters can be considered a null-terminated array of bytes, exactly like
a traditional string. A multibyte string may contain characters from multiple codesets.
Usually, this is done by incorporating special bytes that indicate that the next character
(and only the next character) will be in a different codeset. Very little application code
should ever need to be aware of that, though; you should use the available library
routines to find out information about multibyte strings rather than look at the
underlying byte structure, because that structure varies from one encoding to another.
For one example of an encoding that allows characters from multiple codesets, see
“EUC” on page 406.
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Use of Multibyte Strings

Multibyte strings are very easy to pass around. They efficiently use space (both data and
disk space), since “extra” bytes are used only for characters that require them. MB strings
can be read and written without regard to their contents, as long as the strings remain
intact. Displaying MB strings on a terminal is done with the usual routines: printf(),
puts(), and so on. Many programs (such as cat) need never concern themselves with the
multibyte nature of MB strings, since they operate on bytes rather than on characters; so
MB strings are often used for string I/O.

Manipulation of individual characters in an MB string can be difficult, since finding a
particular character or position in a string is nontrivial (see “Handling Multibyte
Characters,” below). Therefore, it is common to convert to WC strings for that kind of
work.

Handling Multibyte Characters

Usually, multibyte characters are handled just like char strings. Editing such strings,
however, requires some care.

You cannot tell how many bytes are in a particular character until you look at the
character. You cannot look at the nth character in a string without looking at all the
previous n - 1 characters, because you cannot tell where a character starts without
knowing where the previous character ends. Given a byte, you don’t know its position
within a character. Thus, we say the string has state or is context-sensitive; that is, the
interpretation we assign to any given byte depends on where we are in a character.

This analysis of characters is locale-dependent, and therefore must be done by routines
that understand locale.

Conversion to Constant-Size Characters

Multibyte characters and strings are convertible to wchars using mbtowc() for individual
characters and mbstowcs() for strings (see the mbtowc(3) and mbstowcs() reference
pages).

Finding the Number of Bytes in a Character

To find out how many bytes make up a given single MB character, use mblen(), as shown
in Example 16-1 (see also the mblen(3) reference page).
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Example 16-1 Find Number of Bytes in an MB Character

#include <stdlib.h>
. . .
size_t n;
int len;
char *pStr;
. . .
len = mblen(pStr, n); /* examine no more than n bytes */

It is the application’s responsibility to ensure that pStr points to the beginning of a
character, not to the middle of a character.

The maximum number of bytes in a multibyte character is MB_LEN_MAX, which is
defined in limits.h. The maximum number of bytes in a character under the current locale
is given by the macro MB_CUR_MAX, defined in stdlib.h.

How Many Bytes in an MB String?

Since strlen() simply counts bytes before the first NULL, it tells you how many bytes are
in an MB string.

How Many Characters in an MB String?

When mbstowcs() converts MB strings to WC strings, it returns the number of characters
converted. This is the simplest way to count characters in an MB string.

Note: Many code segments that deal with individual characters within a string are better
served by wide character strings. Because counting often involves conversion, such
segments are often better served by working with a WC string, then converting back.

Getting the length without performing the conversion is straightforward, but not as
simple. mbtowc() converts one character and returns the number of bytes used, but
returns the same information without conversion if a NULL is passed as the address of
the WC destination. Thus

len = mblen(pStr, n);

is equivalent to

len = mbtowc((wchar_t *) NULL, pStr, n);
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In fact, mblen() calls mbtowc() to perform its count. Therefore, counting characters in an
MB string without converting would look like the code in Example 16-2.

Example 16-2 Counting MB Characters Without Conversion

int cLen;
char *tStr = pStr;

numChars = 0;
cLen = mbtowc((wchar_t *) NULL, tStr, MB_CUR_MAX);
while (cLen > 0) {

tStr += cLen;
numChars++;
cLen = mbtowc((wchar_t *) NULL, tStr, MB_CUR_MAX);
if (cLen == -1)

numChars = cLen; /* invalid MB character */
}

Wide Characters

A wide character (WC or wchar) is a data object of type wchar_t, which is guaranteed to
be able to hold the system’s largest numerical code for a character. wchar_t is defined in
stdlib.h. Under IRIX 4.0.x, sizeof(wchar_t) was 1. In IRIX 5.1 and above, it is 4. All wchars
on a system are the same size, independent of locale, encoding, or any other factors.

Uses for wchar Strings

The single advantage of WC strings is that all characters are the same size. Thus, a string
can be treated as an array, and a program can simply index into the array in order to
modify its contents. Most applications’ char manipulation routines work with little
modification other than a type change to wchar_t, with appropriate attention to byte
count and sizeof().

So, when applications have significant string editing to perform, they typically keep the
strings in WC format while doing that editing. Those WC strings may or may not be
converted to or from MB strings at other points in the application.

Wide characters are often large and are not as space efficient as multibyte strings.
Applications that do not need to perform string editing probably shouldn’t use wchars.
If an application intends to both maintain and edit large numbers of strings, then the
developer needs to make size and complexity trade-off decisions.
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Support Routines for Wide Characters

Analogs to the routines defined in string.h and stdio.h are supplied in libw.a and defined
in widec.h. This includes routines such as getwchar(), putwchar(), putws(), wscpy(),
wslen(), and wsrchr() (see the wcstring(3) reference page).

Conversion to MB Characters

Wide characters and strings are convertible to MB strings via wctomb() and wcstombs(),
respectively.

Reading Input Data

Input can be divided into two categories: user events and other data. This section deals
with nonuser-originated data, which is assumed to come from file descriptors or streams.
User events are discussed in “Translating User Input” on page 385.

It is generally fair to assume that unless otherwise specified, data read by an application
is encoded suitably for the current locale. Text strings typically are in MB format.

Streams can be read in WC format by using routines defined in widec.h.

Cultural Items

This section discusses several aspects of a locale that may differ between locales. It
includes these topics:

• “Collating Strings” describes string collation.

• “Specifying Numbers and Money” explains some monetary formats, and the
printf() and localeconv() functions.

• “Formatting Dates and Times” covers using strftime() to format of dates and times.

• “Character Classification and ctype” discusses associations between character
codes, and using macros and functions from /usr/lib/ctype.h.

• “Regular Expressions” presents information for developers who do their own
regular expression parsing and matching.
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Also see “Cultural Data” for additional information.

Collating Strings

Different locales can have different rules governing collation of strings, even within
identical encodings.

In English, sorting rules are extremely simple: each character sorts to exactly one unique
place. Under ASCII (C locale), the characters are even in numeric order. However, neither
of those statements is necessarily true for other languages and other codesets. It should
be noted that the sorting in en_US locale is different from sorting in C locale. As a result,
en_US is not equal to C locale. Furthermore:

• Sorting order for a language may be completely unrelated to the (numerical) order
of the characters in a given encoding.

• Even with a correctly sorted list of the characters in a character set, you may not be
able to sort words properly.

• Locales using identically encoded character sets may use very different sorting
rules.

Programs using ASCII can do simple arithmetic on characters and directly calculate
sorting relationships; such programs frequently rely on truisms such as the fact that

’a’ < ’b’

in ASCII. But internationalized programs cannot rely on ASCII and English sorting rules.
Consider some non-English collation rule types:

• One-to-Two mappings collate certain characters as if they were two. For example, the
German ß collates as if it were “ss.”

• Many-to-One mappings collate a string of characters as if they were one. For
example, Spanish sorts “ch” as one character, following “c” and preceding “d.” In
Spanish, the following list is in correct alphabetical order: calle, creo, chocolate, decir.

• Don’t-Care Character rules collate certain characters as if they were not present. For
example, if “-” were a don’t-care character, “co-op” and “coop” would sort
identically.

• First-Vowel rules sort words based first on the first vowel of the word, then by
consonants (which may precede or follow the vowel in question).
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• Primary/Secondary sorts consider some characters as equals until there is a tie. For
example, in French, a, á, à, and â all sort to the same primary location. If two strings
(such as “tache” and “tâche”) collate to the same primary order, then the secondary
sort distinguishes them.

• Special case sorts exist for some Asian languages. For example, Japanese kanji has
no strict sorting rules. Kanji strings can be sorted by the strokes that make up the
characters, by the kana (phonetic) spellings of the characters, or by other
agreed-upon rules.

It should be clear that a programmer cannot hope to collate strings by simple arithmetic
or by traditional methods.

Locale-specific collation should be performed with strcoll() and strxfrm(). These are
table-driven functions; the tables are supplied as part of locale support. The value of
LC_COLLATE determines which ordering table to use. (See the strcoll(3) and strxfrm(3)
reference pages.)

strcoll() has the same interface as strcmp() and can be directly substituted into code that
uses strcmp(). However, strcoll() can consume more CPU time, so where it is used in a
time-critical loop you may have to redesign.

Specifying Numbers and Money

Format of simple numbers differs from locale to locale. Characters used for decimal radix
and group separators vary. Grouping rules may also vary. Even though we assume that
decimal numbers are universal, there are some eighteen varying aspects of numeric
formatting defined by a locale. Many of these are details of monetary formatting.
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For example, Germany uses a comma to denote a decimal radix and a period to denote a
group separator. English reverses these. India groups digits by two except for the last
three digits before the decimal radix. Many locales have particular formats used for
money, some of which are shown in Table 16-3.

Using printf()

printf() function, detailed in the printf(3S) reference page, examines LC_NUMERIC and
chooses the appropriate decimal radix. If none is available, it tries to use ASCII period.
No further locale-specific formatting is done directly by printf(). However, see “Variably
Ordered Referencing of printf() Arguments,” for a way to handle locale-specific ordering
of syntactic elements in messages.

Using localeconv()

The localeconv() function, detailed in the localeconv(3C) reference page, can be called to
find out about numeric formatting data, including the decimal radix (inappropriately
called decimal_point), the grouping separator (inappropriately called thousands_sep), the
grouping rules, and a great deal of monetary formatting information.

The localeconv() function leaves actual use of formatting information other than the
decimal radix to the application.

Table 16-3 Some Monetary Formats

Country Positive Format Negative Format

India Rs1,02,34,567.89 Rs(1,02,34,567.89)

Italy L.10.234.567 -L.10.234.567

Japan ¥10,234,567 -¥10,234,567

Netherlands F10.234.567,89 F-10.234.567,89

Norway Kr10.234.567,89 Kr10.234.567,89-

Switzerland SFr10,234,567.89 SFr10,234,567.89C
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Using strfmon()

The strfmon() function, detailed in the strfmon(3S) reference page, is new with IRIX
version 6.2. Like sprintf(), strfmon() takes an output area, a format string that contains
conversion specifications, and one or more argument values to be converted. It creates an
output string containing fixed data and converted values.

Only two conversion types are supported: %i to convert a double value to international
currency representation, and %n to convert a double value to national currency
representation. You can use strfmon() to format currency values as strings, and then use
printf() or other functions to write the formatted strings.

Formatting Dates and Times

All of these dates can mean the same thing to different people:

92.1.4

4/1/92

1/4/92

All of these can mean the same time to different people:

2:30 PM

14:30

14h30

Dates and times can be easily formatted by using strftime(), which gives a host of options
for displaying locale-specific dates and times. The ascftime() and cftime() functions give
further options, but should be avoided because they do not conform to ANSI and XPG/4
specifications. The old asctime() and ctime() functions are now obsolete; use strftime()
instead. For more information, see the strftime(3C) reference page.

Character Classification and ctype

The ctype.h header file is described in the ctype(3C) reference page and defines macros to
determine various kinds of information about a given character: isalpha(), isupper(),
islower(), isdigit(), isxdigit(), isalnum(), isspace(), ispunct(), isprint(), isgraph(),
iscntrl(), and isascii().
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When programmers knew that a character set was ASCII, some convenient assumptions
could be made about characters and letters. It was common for programmers to do
arithmetic with the ASCII code values in order to perform some simple operations. For
example, raising a character to upper case could be done by subtracting the difference
between the code for a and the code for A. Numeric characters could be identified by
inspection: if they fell between 0 and 9, they were numeric; otherwise, they weren’t. You
could tell if a character was (for instance) printable, a letter, or a symbol by comparing to
known encoding values. Macros for such activity have long been available in ctype.h, but
lots of programs did character arithmetic anyway. Since character encoding and
linguistic semantics are completely independent, such arithmetic in an internationalized
program leads to unpleasant results.

Furthermore, characters exist outside of ASCII that break some non-arithmetic
assumptions. Consider the German character ß which is a lowercase alphabetic character
(letter), yet has no uppercase. Consider also French (as written in France), where the
uppercase of é is E, not É.

Clearly, the programmer of an internationalized application has no way of directly
computing all the character associations that were available in English under ASCII.

Strict avoidance of arithmetic on character values should remove any trouble in this area.
The macros in ctype.h are table-driven and are therefore locale-sensitive. If you think of
characters as abstract characters rather than as the numbers used to represent them, you
can avoid pitfalls in this area.
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Regular Expressions

XPG/4 specifies some extensions to traditional regular expression syntax for
internationalized software. Few application developers do their own regular expression
parsing and matching, however, so we do not include full details here. Briefly, the
extensions provide the ability to specify matches based on:

• character class (such as alpha, digit, punct, or space)

• equivalence class (for instance, a, á, à, â, A, Á, À, and Â may be equivalent)

• collating symbols (allowing you to match the Spanish ch as one element because it is
a single collating token)

• generalization of range specifications of the form [c1-c2] to include the above

If you are processing expressions, see the description of internationalized regular
expression grammar in “Using Regular Expressions.”

Locale-Specific Behavior

You can internationalize an application so it can span a range of language and cultural
environments. This section covers some locale-specific topics you should consider when
internationalizing an application. Topics include

• “Overview of Locale-Specific Behavior”

• “Native Language Support and the NLS Database”

• “Using Regular Expressions”

• “Cultural Data”

Much of the information in this section is from the X/Open Portability Guide. For
additional information on locale-specific behavior, refer to the X/Open Portability Guide,
Volume 3, “XSI Supplementary Definitions.”
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Overview of Locale-Specific Behavior

This section covers

• “Local Customs”

• “Regular Expressions”

• “ANSI X3.159-198X Standard for C”

Local Customs

To meet the requirements of local customs, the X/Open Native Language System (NLS)
interface provides a set of library functions that allow cultural data appropriate to the
user to be determined at run-time.

Regular Expressions

Regular expressions provide pattern-matching facilities for text. A variety of regular
expression support libraries are supplied with IRIX. Most of them parse regular
expressions in terms of machine collating sequences, the English language, and the
ASCII coded character set.

When a program deals with internationalized input text, it is important to extend regular
expression facilities to cover internationalized strings and coded character sets. It is
difficult to write regular expressions that apply to more than one language, or to
languages with accented/multi-character collating elements because of limitations in
syntax.

Application programs can use the wsregexp function library, documented in the
wsregexp(3W) reference page, to support internationalized regular expression behavior.

ANSI X3.159-198X Standard for C

The American National Standards Committee X3J11 standard for the C programming
language includes a number of library functions that are defined to operate
internationally; that is, they modify their operation in a manner appropriate to the user’s
native language and cultural environment.
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The X/Open definition includes the international functions in Table 16-4 as defined in
Draft ANSI X3.159, Programming Language C. ANSI functions that are enhanced by the
X/Open definition are marked with an asterisk.

Draft ANSI X3.159, Programming Language C also defines a number of multi-byte
functions, and an additional function for manipulating monetary values. At this stage,
the X/Open definition is only guaranteed to work correctly for single-byte 8-bit
characters, and thus does not include the multi-byte functions.

Table 16-4 ANSI Compatible Functions

Function Function (continued)

atof() scanf() *

fprintf() * setlocale()

fscanf() * sprintf() *

isalnum() sscanf() *

isalpha() strcoll()

isgraph() sterror()

islower() strftime()

isprint() strtod()

ispunct() strxfrm()

isspace() tolower()

isupper() toupper()

printf() *
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In addition, X/Open defines internationalized regular expression compile and match
functions, native language message-handling functions, and native language versions of
the error-handling functions (see Table 16-5).

Native Language Support and the NLS Database

The X/Open NLS interface defines the functional capabilities of a generic database that
holds various language-dependent entities. This section describes those entities:

• “Configuration Data”

• “Collating Sequence Tables”

• “Character Classification Tables”

• “Shift Tables”

• “Language Information”

Configuration Data

Configuration data identify the languages supported on a system in terms of the
recognized settings of language, territory, and codeset. Each valid combination of these
settings has its own set of collating sequence, character classification and shift tables,
language information data, and message catalogs.

Table 16-5 X/Open Additional Functions

Function Function (continued)

catclose() regexp()

catgets() vfprintf()

catopen() vprintf()

nl_langinfo() vsprintf()

perror()
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Collating Sequence Tables

Collating sequence tables define the collating sequence for each supported language. The
binary values of characters in the associated coded character set are used as indices into
the table, individual entries of which indicate the relative position of that character in the
language collating sequence. The interface definition supports the following capabilities:

• one-to-one character mappings

• one-to-two character mappings, where certain characters require treatment as if
they were two characters

• n-to-one character mappings, where certain character sequences require treatment
as if they represented a single character in the collating sequence. The maximum
value of N is defined separately for each supported language, where N is a number
in the range [1,{NL_NMAX}].

• don’t care characters, where certain characters are ignored by the collating sequence

These capabilities extend to providing support for the relative ordering of collating
elements within an equivalent class (for example, where two characters are first
compared for equality ignoring accents, and if equal, are then ordered by accent
sequence).

Character Classification Tables

These contain the lookup tables for character classification. Each character code from the
defined coded character set is used as an index into the relevant language lookup table.
Each entry language lookup table contains a series of flags identifying the truth or
falsehood of a particular language assertion, such as

• upper-case alphabetic character

• lower-case alphabetic character

• punctuation character

• control character

• space character
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Shift Tables

Shift tables contain the corresponding upper- and lower-case combinations for each
character defined in a coded character set. Thus, the upshifted or downshifted value of a
character can be determined by accessing the relevant character entry in the shift table.

Language Information

Language information (or langinfo) contains message text specific to a particular
localization. The library function nl_langinfo() provides a procedural interface to this
data, allowing applications to discover cultural and language-specific information at
run-time. Individual items of langinfo data are identified by constants in Volume 2, XSI
System Interfaces and Headers, <langinfo.h>.

Information specific to a culture or language includes the following:

• Date and time formats

• Days of the week and months of the year

• Abbreviated names of days and months

• Radix character

• Separator for thousands

• Affirmative and negative responses to yes/no questions

• Currency symbol and its position within a currency value
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Using Regular Expressions

Regular expression are used widely throughout the services and are powerful
mechanisms for locating and manipulating patterns in text. In order to be compatible
with a variety of historic UNIX systems, the IRIX Developer’s Option includes the
unique regular expression library sets listed in Table 16-6. Note that only the last,
wsregexp, supports internationalization.

Table 16-6 Regular Expression Libraries in IRIX

Library
Documentation Type of Support Provided

regcmp(3G) Function regcmp() compiles a pattern string; regex() applies the pattern to a
target string. Syntax is said to be that of ed but “syntax and semantics have been
changed slightly” in unspecified ways.

regcmp(1) Command applies regcmp() against a file of pattern strings, generating C code
for literal strings that can be included in a source program to preclude having
to compile patterns at run-time.

REGEX(3) Function re_comp() compiles a pattern string; re_exec() applies the
last-compiled pattern against a target string. No means of storing compiled
patterns. No documentation of supported syntax, but cross-references ed(1),
with which it may or may not be compatible.

regexp(5) Function compile() compiles a pattern string; step() or advance() applies a
stored pattern against a target string. Unusual interface compiles these
functions directly into your source module, using macro functions you must
define. Pattern syntax clearly documented.

wsregexp(3W) Function wsrecompile() compiles a pattern string; wsrestep() or wsrematch()
applies a pattern against a target. Both pattern and target strings are wide
characters. Expression syntax is that of regexp augmented with
internationalization expressions.
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Internationalized Regular Expressions

A few utilities distributed with IRIX, in particular grep (see the grep(1) reference page)
support internationalized regular expressions, which provide additional syntax for
matching character classes, sequences, or ranges. The internationalized regular
expressions supported by the wsregexp library are as shown in Table 16-7.

Table 16-7 Character Expressions in Internationalized Regular Expressions

Expression Description

c The single character c where c is not a special character.

[[:class:]] A character class expression. Any character of type class, as defined by category
LC_CTYPE in the program’s locale (for example, see isalpha()). For class, substitute
one of the following:

alpha, a letter

upper, an upper-case letter

lower, a lower-case letter

digit, a decimal digit

xdigit, a hexadecimal digit

alnum, an alphanumeric (letter or digit)

space, a character that produces white space in displayed text

punct, a punctuation character

print, a printing character

graph, a character with a visible representation

cntrl, a control character

[[=c=]] An equivalence class. Any collation element defined as having the same relative
order in the current collation sequence as c. As an example, if A and a belong to the
same equivalence class, then both [[=A=]b] and [[=a=]b] are equivalent to [Aab].
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Within square brackets, a period (.) that is not part of a [[.c.]] sequence, a colon (:) that is
not part of a [[:class:]] sequence, and an equals sign (=) that is not part of a [[=c=]]
sequence matches itself.

Table 16-8 shows examples of simple regular expressions.

[[.cc.]] A collating symbol. Multi-character collating elements must be represented as
collating symbols to distinguish them from single-character collating elements. As
an example, if the string ch is a valid collating element, then [[.ch.]] is treated as an
element matching the same string of characters, while ch is treated as a simple list
of c and h. If the string is not a valid collating element in the current collating
sequence definition, the symbol is treated as an invalid expression.

[c-c] Any collation element in the character expression range c-c, where c can identify a
collating symbol or an equivalence class. If the hyphen character, -, appears
immediately after an opening square bracket, or immediately prior to a closing
square bracket, it has no special meaning.

Table 16-8 Examples of Internationalized Regular Expressions

Pattern Definition

[[=a=]]bcd any form of a followed by bcd

[[.ch.]-e] any element that collates between ch and e

[[:lower:]] any lower case letter

Table 16-7 (continued) Character Expressions in Internationalized Regular Expressions

Expression Description
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Cultural Data

The items of cultural data listed in Table 16-9 are defined in the C locale.

Table 16-9 Cultural Data Names, Categories, and Settings

Item Category Setting for the C Locale

D_T_FMT LC_TIME "%a %b %c %H:%M:%S %Y"

D_FMT LC_TIME "%m/%d/%y"

T_FMT LC_TIME "%H:%M:%S"

AM_STR LC_TIME "AM"

PM_STR LC_TIME "PM"

DAY_1 LC_TIME "Sunday"

DAY_2 LC_TIME "Monday"

DAY_3 LC_TIME "Tuesday"

DAY_4 LC_TIME "Wednesday"

DAY_5 LC_TIME "Thursday"

DAY_6 LC_TIME "Friday"

DAY_7 LC_TIME "Saturday"

ABDAY_1 LC_TIME "Sun"

ABDAY_2 LC_TIME "Mon"

ABDAY_3 LC_TIME "Tue"

ABDAY_4 LC_TIME "Wed"

ABDAY_5 LC_TIME "Thu"

ABDAY_6 LC_TIME "Fri"

ABDAY_7 LC_TIME "Sat"

MON_1 LC_TIME "January"

MON_2 LC_TIME "February"
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MON_3 LC_TIME "March"

MON_4 LC_TIME "April"

MON_5 LC_TIME "May"

MON_6 LC_TIME "June"

MON_7 LC_TIME "July"

MON_8 LC_TIME "August"

MON_9 LC_TIME "September"

MON_10 LC_TIME "October"

MON_11 LC_TIME "November"

MON_12 LC_TIME "December"

ABMON_1 LC_TIME "Jan"

ABMON_2 LC_TIME "Feb"

ABMON_3 LC_TIME "Mar"

ABMON_4 LC_TIME "Apr"

ABMON_5 LC_TIME "May"

ABMON_6 LC_TIME "Jun"

ABMON_7 LC_TIME "Jul"

ABMON_8 LC_TIME "Aug"

ABMON_9 LC_TIME "Sep"

ABMON_10 LC_TIME "Oct"

ABMON_11 LC_TIME "Nov"

ABMON_12 LC_TIME "Dec"

RADIXCHAR LC_NUMERIC "."

THOUSEP LC_NUMERIC " "

Table 16-9 (continued) Cultural Data Names, Categories, and Settings

Item Category Setting for the C Locale
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NLS Interfaces

The NLS interfaces listed here are utilities and library functions.

NLS Utilities

The list below identifies the minimum set of utilities that provide 8-bit transparency on
all X/Open compliant systems. The definitions of these commands, in terms of their
syntax and parameters, are not changed by the operation of NLS.

YESSTR LC_ALL "yes"

NOSTR LC_ALL "no"

CRNCYSTR LC_MONENTARY " "

ar date kill pg tail uulog

awk diff lex pr tar uuname

cancel echo ln ps tee uupick

cat ed lp pwd test uustat

cc egrep lpstat red tr uuto

cd expr ls rm true uux

chgrp false mail rmdir tty wait

chmod fgrep mailx sed umask wc

chown find mkdir sh uname who

cmp gencat mv sleep uniq

cp grep pack sort unpack

cpio iconv pcat stty uucp

Table 16-9 (continued) Cultural Data Names, Categories, and Settings

Item Category Setting for the C Locale
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The cc, yacc, and lex commands provide 8-bit transparency for characters contained in
character strings, character constants, and comment strings. An 8-bit character string
enables a programmer to define default messages in languages other than English. The
support of 8-bit characters in identifier names is implementation defined.

The 8-bit operation of commands that communicate with other systems cannot be
guaranteed in all circumstances. For example, intersystem mail may be restricted to 7-bit
data by the underlying network, 8-bit data and filenames may not be portable to
noninternationalized systems, and so forth. Under these circumstances, it is
recommended that you use only characters defined in the ASCII 7-bit range of characters
for data transfer between machines, and you use only characters defined in the Portable
Filename Character Set for naming remote files.

NLS Library Functions

The list below shows library functions usable by internationalized application programs

Also, all functions defined in the X/Open Portability Guide, Volume 2, XSI System Interfaces
and Headers, and X/Open Portability Guide, Volume 3, XSI Curses Interface, provide 8-bit
transparency on X/Open compliant systems.

XSI Curses Interface

The XSI curses interface is internationalized. For more information, see the X/Open
Portability Guide, Volume 3, XSI Curses Interface.

atof() isgraph() scanf() toupper()

catclose() islower() setlocale() vfprintf()

catgets() isprint() sprintf() vprintf()

catopen() ispunct() sscanf() vsprintf()

fprint() isspace() strcoll()

fscanf() isupper() strerror()

gcvt() nl_langinfo() strftime()

isalnum() perror() strtod()

isalpha() printf() strxfrm()

iscntrl() regexp() tolower()
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Strings and Message Catalogs

Message catalogs are compiled databases of strings. While a major role of message
catalogs is to provide communications text in locale-specific natural language, the strings
can be used for any purpose. The idea is that an application uses only strings from a
catalog, thus allowing localizers to supply catalogs suitable for a given locale.

Two different and incompatible interfaces to message catalogs exist in IRIX: MNLS and
XPG/4. Developers working on SVR4 or other AT&T code, or related base-system
utilities, probably use MNLS. Developers working on independent projects probably use
XPG/4. Neither is a solid standard, but XPG/4 is closer to being a standard than MNLS.
Thus applications developers who have to choose between the two interfaces are
encouraged to use XPG/4 to maximize their portability. XPG/4 seems to be popular in
Europe.

This section covers the following topics:

• “XPG/4 Message Catalogs” on page 366

• “SVR4 MNLS Message Catalogs” on page 370

• “Variably Ordered Referencing of printf() Arguments” on page 375

XPG/4 Message Catalogs

The XPG/4 message catalog interface requires that a catalog be opened before it is read,
and requires that catalog references specify a catalog descriptor.

Since catalog references include a default to be used in case of failure, applications will
work normally without a catalog when in the default locale. This means catalog
generation is exclusively the task of localizers. But in order to inform the localizer as to
what strings to translate and how they should comprise a catalog, the application
developer should provide a catalog for the developer’s locale.

Opening and Closing XPG/4 Catalogs

catopen() locates and opens a message catalog file:

#include <nl_types.h>
nl_catd catopen(char *name, int unused);
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The argument name is used to locate the catalog. Usually, this is a simple, relative
pathname that is combined with environment variables to indicate the path to the catalog
(see “XPG/4 Catalog Location” for details). However, the catalog assumes names that
begin with “/ ” are absolute pathnames. Use of a hard-coded pathname like this is
strongly discouraged; it doesn’t allow the user to specify the catalog’s locale through
environment variables.

When an application is finished using a message catalog, it should close the catalog and
free the descriptor using catclose():

int catclose(nl_catd);

Using an XPG/4 Catalog

Catalogs contain sets of numbered messages. The application developer must know the
contents of the catalog in order to specify the set and number of a message to be obtained.

catgets() is used to retrieve strings from a message catalog (see the catopen(3) and
catgets(3) reference pages). Example 16-3 shows a program that reads the first message
from the first message set in the appropriate catalog, and displays the result.

Example 16-3 Reading an XPG/4 Catalog

#include <stdio.h>
#include <locale.h>
#include <nl_types.h>

#define SET1      1
#define WRLD_MSG  1

int main(){
    nl_catd msgd;
    char *message;
    setlocale(LC_ALL, "");

msgd = catopen("hw",0);
    message = catgets(msgd, SET1, WRLD_MSG,"Hello, world\n");
    printf(message);
    catclose(msgd);
}
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The previous example uses printf() instead of puts() in order to make a point: the format
string of printf() came from a catalog. Note the crucial difference between these two
statements:

printf(catgets(msgd, set, num, defaultStr));
printf("%s", catgets(msgd, set, num, defaultStr));

In the first statement, the catalog provides the printf() formatting string, possibly
containing conversion specifications and escape sequences. In the second statement, the
string from the catalog is treated as data and not interpreted for conversion
specifications. For further discussion of issues relating to this important distinction, see
“Variably Ordered Referencing of printf() Arguments.”

XPG/4 Catalog Location

XPG/4 message catalogs are located using the environment variable NLSPATH. The
default NLSPATH is /usr/lib/locale/%L/LC_MESSAGES/%N, where %L is filled in by the
LANG environment variable and %N is filled in by the name argument to catopen().
NLSPATH can specify multiple pathnames in ordered precedence, much like the PATH
variable. The following is a sample NLSPATH assignment:

NLSPATH=/usr/lib/locale/%L/LC_MESSAGES/%N:/usr/local/lib/locale/%L/LC_MESSAGES/
%N:/usr/defaults/%N

Creating XPG/4 Message Catalogs

Message catalogs are of this general form (these forms are detailed in the gencat(1)
reference page):

$set n comment
a message-a\n
b message-b\n
c message-c\n
$quote "
d " message-d "
$this is a comment

Each message is identified by a message number and a set. Sets are often used to separate
messages into more easily usable groups, such as error messages, help messages,
directives, and so on. Alternatively, you could use a different set for each source file,
containing all of that source file’s messages.
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$set n specifies the beginning of set n, where n is a set identifier in the range from 1 to
NL_SETMAX. All messages following the $set statement belong to set n until either a
$delset or another $set is reached. You can skip set numbers (for example, you can have
a set 3 without having a set 2), but the set numbers that you use must be listed in
ascending numerical order (and every set must have a number). Any string following the
set identifier on the same line is considered a comment.

$delset n deletes the set n from a message catalog.

$quote c specifies a quote character, c, which can be used to surround message text so that
trailing spaces or null (empty) messages are visible in a message source line. By default,
there is no quote character and messages are separated by newlines. To continue a
message onto a second line, add a backslash to the end of the first line:

$set 1
1 Hello, world.
2 here is a long \
string.\n
3 Hello again.
n message-text-n

Message #2 in set #1 is “here is a long string.\n”.

Compiling XPG/4 Message Catalogs

After creating the message catalog sources, you need to compile them into binary form
using gencat, which has the following syntax:

gencat catfile msgfile [msgfile ...]

where catfile is the target message catalog and msgfile is the message source file (see the
gencat(1) reference page). If an old catfile exists, gencat attempts to merge new entries
with the old. gencat “resolves” set and message number conflicts with new information
replacing the old.

The catfile then needs to be placed in a location where catopen() can find it; see the
“XPG/4 Catalog Location” on page 368.
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SVR4 MNLS Message Catalogs

There are many ways to use strings from MNLS message catalogs. You can get strings
directly and then use them, or you can use output routines that search catalogs.

Putting MNLS Strings Into a Catalog

An MNLS catalog source file contains a list of strings separated by new lines. For an
empty string, an empty line is used. Strings are referenced by line number in the original
source file.

Applications access the catalog by line number, so it’s very important not to change the
line numbers of existing catalog entries. This means that, when you want to add a new
string to an existing catalog source, you should always append it to the end of the file—
if you put it in the middle of the file, then you change the line number for subsequent
strings.

The following tools can help you compile MNLS message catalogs:

When a file of strings is ready to be compiled, simply run mkmsgs and put the results in
the directory /usr/lib/locale/localename/LC_MESSAGES.

Using MNLS in Shell Scripts

One difference between MNLS and XPG/4 catalog functions is that the MNLS catalog
can be used from commands, and hence it can be used to internationalize a shell script.
The following table summarizes MNLS functions that have both a command line and a
function library version:

exstr(1) Searches a C source file for literal strings and lists them, or replaces
them with MNLS function calls.

mkmsgs(1) Creates a message catalog for a particular locale, converting source text
lines to the form used by exstr.

srchtxt(1) Displays selected strings from a message catalog.

gettxt(1) Retrieve a string from the catalog.

lfmt(1) Retrieve a format string, insert arguments, display to stderr and to
system log or textport.

pfmt(1) Retrieve a format string, insert arguments, display to stderr.
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Specifying MNLS Catalogs

MNLS message catalogs do not need to be specifically opened. The catalog of choice can
be set explicitly once, or it can be specified every time a string is needed.

To specify the default message catalog to be used by subsequent calls to MNLS functions
that reference catalogs, use setcat():

#include <pfmt.h>
char *setcat(const char *catalog);

catalog is limited to 14 characters, and may contain no character equal to zero or to the
ASCII codes for slash (/) or colon (:). (See the setcat(3) reference page.)

setcat() doesn’t check to see if the catalog name is valid; it just stores the string for future
reference. For an example of use, see the following topic. The catalog indicated by the
string must be found in the directory /usr/lib/locale/localename/LC_MESSAGES.

Getting Strings From MNLS Message Catalogs

MNLS message catalogs do not need to be specifically opened. The catalog of choice can
be set explicitly once, or it can be specified in each reference call. Strings are read from a
catalog via gettxt() (see the gettxt(3) reference page):

#include <unistd.h>
char *gettxt(const char *msgid, const char *defaultStr);

msgid is a string containing two fields separated by a colon:

msgfilename:msgnumber

The msgfilename is a catalog name as described previously in the “Specifying MNLS
Catalogs” on page 371. For example, to get message 10 from the MQ catalog, you could
use either:

char *str = gettxt("MQ:10", "Hello, world.\n");

or

setcat("MQ");
str = gettxt(":10", "Hello, world.\n");
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Using pfmt()

pfmt() is one of the most important routines dealing with MNLS catalogs, because it is
used to produce most system diagnostic messages. pfmt() formats like printf() and
produces standard error message formats (see the pfmt(3) reference page for the
function, or pfmt(1) for shell use). It can usually be used in place of perror(). For example,

pfmt(stderr, MM_ERROR, "MQ:64:Permission denied");

would produce, by default (such as when the Mozambique locale is unavailable),

ERROR: Permission denied.

The syntax of pfmt() is

#include <pfmt.h>
int pfmt(FILE *stream, long flags, char *format, ... );

The flags are used to indicate severity, type, or control details to pfmt(). The format string
includes information specifying which message from which catalog to look for. Flag
details are discussed in the following section. The format is discussed in the “Format
Strings for pfmt()” on page 373.

Labels, Severity, and Flags

pfmt() flags are composed of several groups; specify no more than one from each group.
Specify multiple flags by using OR. The groups are as follows:

pfmt() prints messages in the form label:severity:text. Severity is specified in the flags. The
text comes from a message catalog (or a default) as specified in the format, and the label is
specified earlier by the application.

In the example above, if no label has been set, we get only the output:

ERROR: Permission denied.

output format control MM_NOSTD, MM_STD

catalog access control MM_NOGET, MM_GET

severity MM_HALT, MM_ERROR, MM_WARNING, MM_INFO

action message specification MM_ACTION
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Typically, an application sets the label once early in its life; subsequent error messages
have the label prepended. For example

setlabel("UX:myprog");
...
pfmt(stderr, MM_ERROR, "MQ:64:Permission denied");

would produce (by default)

UX:myprog: ERROR: Permission denied.

For details, consult the pfmt(3) and setlabel(3) reference pages.

Format Strings for pfmt()

pfmt() format strings are of this form:

[[catalog:]messagenum:]defaultstring

The catalog field is in the format described in “Specifying MNLS Catalogs” on page 371.
messagenum is the message number in the catalog to use as the format. defaultstring
specifies the string to use if the catalog lookup fails for any reason.

An important feature of pfmt() is its ability to refer to format arguments in
format-specified order just as printf() does. See “Variably Ordered Referencing of printf()
Arguments” for details.

Using fmtmsg()

fmtmsg() is a comprehensive formatter using the MNLS catalogs and “standard”
formats. You probably won’t need to use it; most applications should get by with pfmt(),
gettxt(), and printf(). Consult the fmtmsg(3) reference page for details.
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Internationalizing File Typing Rule Strings With MNLS

You can internationalize the strings defined in the LEGEND and MENUCMD rules in the
File Typing Rule (FTR) file. To internationalize these rules, precede the string with the
following:

:[catalogname:]msgnumber:

catalogname is optional and should be a valid MNLS catalog; msgnumber is the line
number in catalogname. If you omit catalogname, the uxsgidesktop catalog is used by
default.

You can use these rules to create your own FTR catalog. For example, an entry looks like
this:

LEGEND :mycatalog:7:Archive 8mm Tape Drive

This entry uses line 7 from the catalog, mycatalog, as the LEGEND for this FTR. If
mycatalog is not available, or line 7 is not accessible from mycatalog, “Archive 8mm Tape
Drive” is used as the LEGEND.

LEGEND :7:Archive 8mm Tape Drive

This entry uses line 7 from the uxsgidesktop catalog, if available. Otherwise, “Archive
8mm Tape Drive” is used.

The next example,

MENUCMD \‘mycatalog:9:Eject Tape\’ /usr/sbin/eject /dev/tape

displays line 9 from mycatalog, if available. Otherwise “Eject Tape” is displayed on the
menu that pops up when you click an icon that uses this FTR.

You can internationalize strings in the command part of MENUCMD and CMD rules by
using gettxt or any other convenient policy detailed in this section. For example

CMD OPEN xconfirm -t "Tape tool not available"

can be internationalized to

CMD OPEN xconfirm -t "‘gettxt mycatalog:376 ’Tape tool not available’‘"
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In this example, gettxt is invoked to access line 376 from the catalog, mycatalog, and the
string returned by gettxt is passed to xconfirm for display. If line 376 from mycatalog is not
accessible, then gettxt returns the string “Tape tool not available.”

For more information about FTRs, see the IRIX Interactive Desktop Integration Guide.

Variably Ordered Referencing of printf() Arguments

printf() and its variants can now refer to arguments in any specified order. Consider the
following scenario: an application has chosen “house” from a list of objects and “white”
from a list of colors. The application wishes to display this choice. The code might look
like this:

char *obj, *color;
... /* make choices */ ...
printf("%s %s\n", color, obj);

The printf() call produces this:

white house

Even once we make sure that obj and color are localized strings, we are not quite finished.
If our locale is Spanish, the printf() yields:

blanca casa

That is incorrect grammar; in Spanish, it should be:

casa blanca

The solution to this problem is variably ordered referencing of printf() arguments. The
syntax of printf() format strings has been expanded to deal with this.

The original definition of printf() is that each conversion specification %T (where
T represents any of the printf() conversion characters) is implicitly matched to an
argument value by position. In order to deal with variably ordered strings, printf()
allows an argument position index D to appear in the conversion specification following
the %, so that where a format string contains %T, it can now contain %D$T. The value D,
set off by a currency symbol ($), selects the argument from the argument list to be used.
This means you can write

printf("2nd parameter is %2$s; the 1st is %1$s", p1, p2)
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The second parameter is printed first, with the first parameter printed second. For
example:

char *store = "Macy’s";
char *obj = "a cup";

printf("At %1$s, I bought %2$s.\n", store, obj);
printf("I bought %2$s at %1$s.\n", store, obj);

This code displays

At Macy’s, I bought a cup.
I bought a cup at Macy’s.

In English, we are able to come up with strings suitable for either word order; in some
other language, we might not be so lucky. Nor can we predict which order such
languages might prefer. So the developer has no way of knowing how to create
traditional printf() format strings suitable for all languages.

Developers should therefore use message catalogs for their printf() format strings that
take linguistic parameters, and allow localizers to localize the format strings as well as
text strings. This means that the localizer has much greater ability to create intelligible
text. An internationalized version of the above code appears in Example 16-4.

Example 16-4 Internationalized Code

/* internationalized (XPG/4) version */
char *form = catgets(msgd, set, formNum,
                   "At %1$s, I bought %2$s.\n");
char *store = catgets(msgd, set, storeNum, "Macy’s");
char *obj = catgets(msgd, set, objNum, "a cup");

printf(form, store, obj);

The unlocalized (default) version would produce

At Macy’s, I bought a cup.

A localized version might produce

Compré una tasa en Macy’s.

In practice, variably ordered format strings are found only in message catalogs and not
in default strings. The default string usually simply uses the parameters in the order
they’re given, without the new variable-order format strings.
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Internationalization Support in X11R6

X11R6 internationalization support is provided on the X client side; that is, the
application must take care of such support instead of relying on the X server. No server
changes are necessary, and the protocol is unchanged. Full backward compatibility is
preserved, so a new internationalized application can run on an old server.

Note: X11R6 internationalization refers to features in X11R5 and X11R6.

X uses existing internationalization standards to do its internationalization support;
there are no X-specific interfaces to set and change locale. Internationalized
X applications receive no help from X when attempting multilingual support. No locales
or special process states are peculiar to X.

This section covers the following topics:

• “Limitations of X11R6 in Supporting Internationalization” discusses vertical text,
character sets, and Xlib interface changes.

• “Resource Names” covers encoding of resource names.

• “Getting X Internationalization Started” describes initialization of Xlib and toolkit
programming.

• “Fontsets” explains specifying, creating, and using fontsets.

• “Text Rendering Routines” discusses the XmbDrawText(), XmbDrawString(), and
XmbDrawImageString() functions.

• “New Text Extents Functions” describes a few new extents-related functions,
including XFontSetExtents.

Limitations of X11R6 in Supporting Internationalization

Since X is locale-independent, there are some limitations on its ability to support
internationalization. The X protocol and Xlib specification, together with ANSI C and
POSIX restrictions, have led to certain choices being made in X11R6. These are described
in the following paragraphs.
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Vertical Text

There is no built-in support for vertical text. Applications may draw strings vertically
only by laying out the text manually.

Character Sets

In previous releases of X, there was no general support for character sets other than
Latin 1. X11R6, however, does allow other character sets.

X11R6 includes the definition of the X Portable Character Set, which is required to exist in
all locales supported by Xlib. There is no encoding defined for this set; it is only a
character set. The set—which is similar to printable ASCII plus the newline and tab—
consists of these characters:

abcdefghijklmnoqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~
<space> <tab> <newline>

The Host Portable Character Encoding is the encoding of the X Portable Character Set on
the Xlib host. This encoding is part of X, and is thus independent of locale—the coding
remains the same for all locales supported by the host.

Strings used or returned by Xlib routines are either in the Host Portable Character
Encoding or a locale-specific encoding. The Xlib reference pages specify which encodings
are used where. Some string constructs (such as TextProperty) contain information
regarding their own encoding.

Xlib Interface Change

Full use of X11R6’s internationalization features means calling some new routines
supplied in the X11R6 Xlib. While all old Xlib applications work with the new Xlib,
developers should change their code in places. These are described below.
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Resource Names

Resource names are compiled into programs. Because of that, their encoding must be
known independent of locale. Trying to add a level of indirection here results in a
problem: you’re always left with something compiled that can’t be localized. Resource
names therefore use the X Portable Character Set. The names may be anything; at least
they’ll mean something to the application author. (If the names were numbers, for
example, they would be meaningless to everybody.)

Getting X Internationalization Started

Xlib’s internationalization state, like that of libc, needs to be initialized.

Initialization for Toolkit Programming

If you’re using Xt (with a widget set such as IRIS IM, Motif, or XaW), then don’t use
setlocale(). Instead, use

XtSetLanguageProc(NULL, NULL, NULL)

If you’re using a toolkit other than Xt, call setlocale() as early as possible after execution
begins.

Initialization for Xlib Programming

Initialize Xlib’s internationalization state after calling setlocale(). Xlib is being initialized,
not a server or server-specific object, so a server connection is not necessary.

Example 16-5 Initializing Xlib for a Locale

if ( setlocale(LC_ALL, "") == NULL )
    exit_with_error();
if ( ! XSupportsLocale() )
    exit_with_other_error();
if ( XSetLocaleModifiers("") == NULL)
    give_warning();

XSetLocaleModifiers() is required only for input. Just as passing an empty string to
setlocale() honors the user’s environment, so does passing an empty string to
XSetLocaleModifiers().
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Fontsets

In X11R5 and X11R6, unlike previous releases of X, a string may contain characters from
more than one codeset. There are several methods for determining which codeset a given
character is in; which method is appropriate depends on the locale and the encoding
used.

For information on installing and using fontsets with an application, refer to Chapter 15,
“Working With Fonts.”

Such multiple-codeset strings usually cannot be rendered using a single font. A fontset is
a collection of fonts suitable for rendering all codesets represented in a locale’s encoding.
A fontset includes information to indicate which locale it was created in. Applications
create fontsets for their own use; when a program creates a fontset, it is told which of the
requested fonts are unavailable.

Example: EUC in Japanese

To render strings encoded in EUC in Japanese, an application would need fonts encoded
in 8859-1, JIS X 208, and JIS X 201. The application doesn’t need to know which characters
in a string go with which font, since it doesn’t deal with locale specifics. So it creates a
fontset that is made from a list of user-specified fonts (under the assumption that the
localizer has provided an appropriate list). Rendering is then done using that fontset. The
locale-aware rendering system chooses the appropriate fonts for each character being
rendered, from the supplied list. You can find additional information about EUC in
“Asian Languages.”

Specifying a Fontset

A fontset specification is just a string, enumerating XLFD names of fonts. (See X Logical
Font Description Conventions, an MIT X Consortium standard, as well as “Font Names” on
page 307.) This string can include wild card characters. For example, a specification of
16-point “fixed” fonts might be as follows:

char *fontSetSpecString = "*fixed-medium-r-normal*150*";

Based on the fonts available, a particular server might expand this to a string such as:

-jis-fixed-medium-r-normal--16-150-75-75-c-160-jisx0208.1983-0
-sony-fixed-medium-r-normal--16-150-75-75-c-80-iso8859-1
-sony-fixed-medium-r-normal--16-150-75-75-c-80-jisx0201.1976-0
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Specifying the fontset by simply enumerating the fonts is perfectly acceptable:

char *fontSetSpecString =
"-jis-fixed-medium-r-normal*150-75-75*jisx0208.1983-0,\
-sony-fixed-medium-r-normal*150-75-75*iso8859-1,\
-sony-fixed-medium-r-normal*150-75-75*jisx0201.1976-0";

A German locale would work with only the ISO font; a Japanese locale might use all
three; a Chinese locale would have trouble with this fontset.

The developer should specify a default fontset suitable for the default locale.
Furthermore, developers should ensure that the application accepts localized fontset
specifications via resources (or message catalogs) or command line options. Localizers
are responsible for providing default fontset specifications suitable for their locales.

Creating a Fontset

Creating fontsets in X is simply a matter of providing a string that names the fonts, as
described above.

Example 16-6 Creating a Fontset

XFontSet fontset;
char *base_name;  /* should get from resource */
char **missingCharsetList;
int missingCharsetCount;
char *defaultStringForMissingCharsets;

base_name = "*fixed-medium-r*150*"; /* use resources! */

fontset = XCreateFontSet(display, base_name,
                       &missingCharsetList,
                       &missingCharsetCount,
                       &defaultStringForMissingCharsets);

The locale in effect at create time is bound to the fontset. Fontsets are freed with
XFreeFontSet().

Using a Fontset

Fontsets are used when rendering text with X11R6 Xmb or Xwc text rendering routines.
These routines are described in “Text Rendering Routines.”
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Text Rendering Routines

X11R6 includes text rendering routines that understand multibyte and wide-character
strings. These routines are analogous to the X11R4 text rendering routines XDrawText(),
XDrawString(), and XDrawImageString(). The old routines continue to operate, but do
not take fontsets, and don’t know how to handle characters longer than one byte.

• XmbDrawText() and XwcDrawText() take lists of TextItems, each of which contains
(among other things) a string. The strings are rendered using fontsets. These
routines allow complex spacing and fontset shifts between strings.

• XmbDrawString() and XwcDrawString() render a string using a fontset. These
routines render in foreground only and use the raster operation from the current
graphics context.

• XmbDrawImageString() and XwcDrawImageString also render a string using a
fontset. These routines fill the background rectangle of the entire string with the
background, then render the string in the foreground color, ignoring the currently
active raster operation.

Consult the appropriate reference pages for more details on these routines.

New Text Extents Functions

X11R6 provides MB and WC versions of width and extents interrogation routines,
supplying the maximum amount of space required to draw any character in a given
fontset. These routines depend on fontsets to interpret strings and use locale-specific
data.

The XFontSetExtents structure contains the two kinds of extents a string can have:

typedef struct {
    XRectangle max_ink_extent;
    XRectangle max_logical_extent;
} XFontSetExtents;
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max_ink_extent gives the maximum boundaries needed to render the drawable characters
of a fontset. It considers only the parts of glyphs that would be drawn, and gives
distances relative to a constant origin. max_logical_extent gives the maximum extent of
the occupied space of drawable characters of a fontset. The occupied space of a character
is a rectangle specifying the minimum distance from other graphical features; other
graphics generated by a client should not intersect this rectangle. max_logical_extent is
used to compute interline spacing and the minimum amount of space needed for a given
number of characters.

Here are descriptions of a few of the new extents-related functions (consult the
appropriate reference pages for details):

• XExtentsOfFontSet() returns an XFontSetExtents structure for a fontset.

• XmbTextEscapement() and XwcTextEscapement() take a string and return the
distance in pixels (in the current drawing direction) to the origin of the next
character after the string, if the string were drawn. Escapement is always positive,
regardless of direction.

• XmbTextExtents() and XwcTextExtents() take a string and return information
detailing the overall rectangle bounding the string’s image and the space the string
occupies (for spacing purposes).

• XmbTextPerCharExtents() and XwcTextPerCharExtents() take a string and return
ink and logical extents for each character in the string. Use this for redrawing
portions of strings or for word justification. If the fontset might include
context-dependent drawing, the client cannot assume that it can redraw individual
characters and get the same rendering.

• XContextDependentDrawing() returns a Boolean telling whether a fontset might
include context-dependent drawing.
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Internationalization Support in Motif

Your applications can use Motif’s internationalization capabilities. Refer to the chapter
titled “Internationalization” in the OSF/Motif Programmer’s Guide for information about
the following topics:

• issues in internationalized applications

• compound strings, fonts, and text display

• localizing applications

• advanced topics in internationalization

There are some important points to remember when you internationalize and localize
your application:

• At the top of your main program, issue the call

XtSetLanguageProc(NULL, NULL, NULL);

• Translate your app-defaults and install it in /usr/lib/X11/$LANG/app-defaults.

• Motif uses font sets and font lists to display text. Specify a font list in your
application defaults file using the following format:

*fontList: font-list-string:

Be sure to separate elements in the font-list-string as follows:

• Separate single fonts with a comma (,).

• Separate elements within a font set with a semicolon (;).

• End the string with a colon (:).

An example of specifying a Japanese fontList is as follows:

*fontList: 7x14;--mincho-*--14-*;--14-*:
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Translating User Input

This section explains the translation of physical user events into programmatic character
strings or special keyboard data (such as “backspace”). This kind of work should be done
by toolkits. If you can use a toolkit to manage event processing for you, do so, and
blissfully ignore this section. If you are writing a toolkit text object, or are writing a truly
extraordinary application, then this section is for you.

This section on translating user input covers these topics:

• “About User Input and Input Methods” on page 385 presents an overview of user
input and input methods.

• “About X Keyboard Support” on page 386 covers X keyboard support, including
keys, keycodes, keysyms, and composed characters.

• “Input Methods (IMs)” on page 389 describes how input methods are opened and
closed.

• “IM Styles” on page 391 discusses the use and naming of IM styles.

• “Input Contexts (ICs)” on page 394 explains an IM styles, IC values, pre-edit and
status attributes, and creating and using ICs.

• “Events Under IM Control” on page 398 describes differences in processing events
under IM control including XFilterEvent() and LookupString routines.

About User Input and Input Methods

Just as internationalized programs cannot assume that data is in ASCII, they cannot
assume that user input will use any specific keyboard. Keyboards change from country
to country and language to language; internationalized software should never assume
that a certain position on the keyboard is bound to a certain character, or that a given
character will be available as a single keystroke on all keyboards.

No useful physical keyboard—not even one specifically designed for multilingual
work—could possibly contain a key for every character we would ever wish to type.
Certainly there are characters commonly used in other areas of the world that are not
present on most USA keyboards. So methods have been invented that provide for input
of almost any known character on even the most naïve keyboards. These schemes are
referred to as input methods (IMs).
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Input methods vary significantly in design, use, and behavior, but there is a single API
that developers use to access them. The object is for the application simply to ask for an
IM and let the system check the locale and choose the appropriate IM.

Some IMs are complex; others are very simple. The API is designed to be a low-level
interface, like Xlib. Usually, only toolkit text object authors must deal with the IM
interfaces. However, some applications developers are unable to use toolkit objects, so
the concepts are described here.

Reuse Sample Code

A sample program demonstrating some of the concepts in this section is given in
Chapter 11 of the Xlib Programming Manual, Volume One. Looking carefully at that code
may be easier than starting from scratch.

GL Input

The old GL function qdevice() has a hard-coded view of a keyboard (see
/usr/include/gl/device.h for details). Some flexibility, particularly for Europe, is available if
you queue KEYBD instead of individual keys, but the GL has no general solution to
non-ASCII input. There is no supported way to input Chinese (for instance) to the old
GL.

OpenGL does not contain input code but leaves that to the operating environment, which
in IRIX means X.

In short, support for internationalized input means a departure from qread(). Under
IRIX, that means using mixed-model input, all the more reason to use a toolkit.

About X Keyboard Support

This section provides some background that may help make the following sections easier
to understand.
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Keys, Keycodes, and Keysyms

When a client connects to the X server, the server announces its range of keycodes and
exports a table of keysyms. Each key event the client receives has a single byte keycode,
which directly represents a physical key, and a single byte state, which represents
currently engaged modifier keys, such as Shift or Alt.

Note: The mapping of state bits to modifiers is done by another table acquired from the
server.

Keysyms are well defined, and there has been an attempt to have a keysym for every
engraving one might possibly find on any keyboard, anywhere. (An engraving is the
image imprinted on a physical key.) These are contained in /usr/include/X11/keysymdef.h.
Keysyms represent the engravings on the actual keys, but not their meanings. The
server’s idea of the keysym table can be changed by clients, and clients may receive
KeyMap events when this remapping happens, but such events don’t happen often.

When a client receives a Key event, it asks Xlib to use the keycode to index into its
keysym table to find a list of keysyms. (This list is usually very short. Most keys have
only one or two engravings on them.) Using the state byte, Xlib chooses a keysym from
the list to find out what was engraved on the key the user pressed.

At this point, the client can choose to act on the keysym itself (if, for instance, it was a
backspace) or it can ask for a character string represented by the keysym (or both).
Generating such a string is tricky; it is discussed in “Input Methods (IMs),” below.

Details on X keyboard support can be found in X Window System, Third Edition, from
Digital Press. Details on input methods are also available in that book, as well as in the
Xlib Programming Manual, Volume One.

Composed Characters

There are two ways to compose characters that do not exist on a keyboard: explicit and
implicit. It is common for an application to be modal and switch between the two. For
example, Japanese input of kana is often done via implicit composition.

Users switch between a mode where input is interpreted as romaji (Latin characters) and
a mode where input is translated to kana.
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Furthermore, both styles may operate simultaneously. While an application is
supporting implicit composition of certain characters, other characters may be
composable via explicit composition.

Not every keystroke produces a character, even if the associated keysym normally
implies character text. The event-to-string translation routines figure out what result a
given set of keystrokes should produce (see “Using XLookupString(),
XwcLookupString(), and XmbLookupString()” in this section).

Character composition from the user’s aspect is discussed in the compose(5) and
composetable(5) reference pages.

Explicit Composition
Explicit composition is requested when the user presses the Compose
key and then types a key sequence that corresponds to the desired
character. For example, to compose the character ñ under some
keymaps, you might press the Compose key and then type ~n.

Note: The xmodmap(1) reference page tells how to map the
XK_Multi_key keysym onto whatever key you want to use as Compose.

Implicit Composition
Implicit composition mimics many existing European typewriters that
have “dead” keys: keys that type a character but do not advance the
carriage. When a special “dead” key is struck, the system attempts to
compose a character using the next character struck. For example, on a
keyboard that had a diaeresis (¨) and an O, but no Ö, you would strike ¨
and then O to compose Ö.

Implicit composition support usually comes with some specified way
to leave characters uncomposed.

Supported Keyboards

IRIX currently supports 16 keyboard layouts: American, Belgian, Czech, Danish, English,
French, German, Italian, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish,
Swiss and Turkish. The American keyboard needs only ASCII.
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Input Methods (IMs)

Input methods (IMs) are ways to translate keyboard-input events into text strings. You
would use a different input method, for instance, to type on a USA keyboard in Chinese
than to type on the same keyboard in English. Nobody would build a keyboard suitable
for direct input of the tens of thousands of distinct Chinese characters.

IMs come in two flavors, front-end and back-end. Both types can use identical application
programming interfaces, so you lose no generality by using back-end methods for our
examples here.

To use an IM, follow these steps:

1. Open the IM.

2. Find out what the IM can do.

3. Agree upon capabilities to use.

4. Create input contexts with preferences and window(s) specified (see “Input
Contexts (ICs)” on page 394).

5. Set the input context focus.

6. Process events.

Although all applications go through the same setup when establishing input methods,
the results can vary widely. In a Japanese locale, you might end up with networked
communications with an input method server and a kanji translation server, with
circuitous paths for Key events. But in a Swiss locale for example, it is likely that nothing
would occur besides a flag or two being set in Xlib. Since operating in non-Asian locales
ends up bypassing almost all of the things that might make input methods expensive,
Western users are not noticeably penalized for using Asia-ready applications.

Opening an Input Method

XOpenIM() opens an input method appropriate for the locale and modifiers in effect
when it is called (see the XOpenIM(3X11) reference page). The locale is bound to that IM
and cannot be changed. (But you could open another IM if you wanted to switch later.)
Strings returned by XmbLookupString() and XwcLookupString() are encoded in the
locale that was current when the IM was opened, regardless of current input context.
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The syntax is

XIM XOpenIM(Display *dpy, XrmDataBase db, char *res_name,
            char *res_class);

The res_name is the resource name of the application, res_class is the resource class, and
db is the resource database that the input method should use for looking up resources
private to itself. Any of these can be NULL. The fragment in Example 16-7 shows how
easy it is to open an input method.

Example 16-7 Opening an IM

XIM im;
im = XOpenIM(dpy, NULL, NULL, NULL);
if (im == NULL)
    exit_with_error();

XOpenIM() finds the IM appropriate for the current locale. If XSupportsLocale() has
returned good status (see “Initialization for Xlib Programming”) and XOpenIM() fails,
something is amiss with the administration of the system.

XSetLocaleModifiers() determines configure locale modifiers. The local host X locale
modifiers announcer (the XMODIFIERS environment variable) is appended to the
modifier list to provide default values on the locale host. The modifier list argument is a
null-terminated string containing zero or more concatenated expressions of this form:

@category=value

For example, if you want to connect Input Method Server xwnmo, set modifiers
_XWNMO as follows:

XSetLocaleModifiers("@im=_XWNMO");

Or, set environment variable XMODIFIERS to the string @im=_XWNMO and execute

XSetLocaleModifiers("");

Note: The library routines are not prepared for the possibility of XSupportsLocale()
succeeding and XOpenIM() failing, so it’s up to application developers to deal with such
an eventuality. (This circumstance could occur, for example, if the IM died after
XSupportsLocale() was called.) This topic is under some debate in the MIT X
consortium. If XSetLocaleModifiers() is wrong, XOpenIM() will fail.
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Most of the complexity associated with IM use comes from configuring an input context
to work with the IM. Input contexts are discussed in “Input Contexts (ICs)” on page 394.

To close an input method, call XCloseIM().

IM Styles

If the application requests it, an input method can often supply status information about
itself. For example, a Japanese IM may be able to indicate whether it is in Japanese input
mode or romaji input mode. An input method can also supply pre-edit information,
partial feedback about characters in the process of being composed. The way an IM deals
with status and pre-edit information is referred to as an IM style. This section describes
styles and their naming.

Root Window

The Root Window style has a pre-edit area and a status area in a window owned by the
IM as a descendant of the root. The application does not manage the pre-edit data, the
pre-edit area, the status data, or the status area. Everything is left to the input method to
do in its own window, as illustrated in Figure 16-1.

Figure 16-1 Root Window Input

Status Pre-edit information
IM window

Main body of window; text input occurs here.

root window

Application window
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Off-the-Spot

The Off-the-Spot style places a pre-edit area and a status area in the window being used,
usually in reserved space away from the place where input appears. The application
manages the pre-edit area and status area, but allows the IM to update the data there.
(The application provides information regarding foreground and background colors,
fonts, and so on.) A window using Off-the-Spot input style might look like that shown in
Figure 16-2.

Figure 16-2 Off-the-Spot Input

Over-the-Spot

The Over-the-Spot style involves the IM creating a small, pre-edit window over the point
of insertion. The window is owned and managed by the IM as a descendant of the root,
but it gives the user the impression that input is being entered in the right place; in fact,
the pre-edit window often has no borders and is invisible to the user, giving the
appearance of On-the-Spot input. The application manages the status area as in
Off-the-Spot, but specifies the location of the editing so that the IM can place pre-edit
data over that spot.

Pre-edit informationStatus

Main body of window; text input occurs here.

root window

Application window
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On-the-Spot

On-the-Spot input is by far the most complex for the application developer. The IM
delivers all pre-edit data via callbacks to the application, which must perform in-place
editing—complete with insertion and deletion and so on. This approach usually involves
a great deal of string and text rendering support at the input generation level, above and
beyond the effort required for completed input. Since this may mean a lot of updating of
surrounding data or other display management, everything is left to the application.
There is little chance an IM could ever know enough about the application to be able to
help it provide user feedback. The IM therefore provides status and edit information via
callbacks.

Done well, this style can be the most intuitive one for a user.

Setting IM Styles

A style describes how an IM presents its pre-edit and status information to the user. An
IM supplies information detailing its presentation capabilities. The information comes in
the form of flags combined with OR. The flags to use with each style are as follows:

For example, if you wanted a style variable to match an Over-the-Spot IM style, you
could write:

XIMStyle over = XIMPreeditPosition | XIMStatusArea;

If an IM returns XIMStatusNone (not to be confused with XIMStatusNothing), it means the
IM will not supply status information.

Using Styles

An input method supports one or more styles. It’s up to the application to find a style
that is supported by both the IM and the application. If several exist, the application must
choose. If none exist, the application is in trouble.

Root Window XIMPreeditNothing | XIMStatusNothing

Off-the-Spot XIMPreeditArea | XIMStatusArea

Over-the-Spot XIMPreeditPosition | XIMStatusArea

On-the-Spot XIMPreeditCallbacks | XIMStatusCallbacks
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Input Contexts (ICs)

An input method may be serving multiple clients, or one client with multiple windows,
or one client with multiple input styles on one window. The specification of style and
client/IM communication is done via input contexts. An input context is simply a
collection of parameters that together describe how to go about receiving and examining
input under a given set of circumstances.

To set up and use an input context:

1. Decide what styles your application can support.

2. Query the IM to find out what styles it supports.

3. Find a match.

4. Determine information that the IC needs in order to work with your application.

5. Create the IC.

6. Employ the IC.

Find an IM Style

The IM may be able to support multiple styles—for example, both Off-the-Spot and Root
Window. The application may be able to do, in order of preference, Over-the-Spot,
Off-the-Spot, and Root Window. The application should determine that the best match in
this case is Off-the-Spot.

First, discover what the IM can do, then set up a variable describing what the application
can do, as shown in Example 16-8.

Example 16-8 Finding What a Client Can Do

XIMStyles *IMcando;
XIMStyle  clientCanDo; /* note type difference */
XIMStyle  styleWeWillUse = NULL;

XGetImValues(im, XNQueryInputStyle, &IMcando, NULL);

clientCanDo =
/*none*/ XIMPreeditNone | XIMStatusNone |
/*over*/ XIMPreeditPosition | XIMStatusArea |
/*off*/  XIMPreeditArea | XIMStatusArea |
/*root*/ XIMPreeditNothing | XIMStatusNothing;
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A client should always be able to handle the case of
XIMPreeditNone | XIMStatusNone, which is likely in a Western locale. To the
application, this is not very different from a RootWindow style, but it comes with less
overhead.

Once you know what the application can handle, look through the IM styles for a match,
as shown in Example 16-9.

Example 16-9 Setting the Desired IM Style

for(i=0; i < IMcando->count_styles; i++) {
    XIMStyle tmpStyle;
    tmpStyle = IMcando->support_styles[i];

    if ( ((tmpStyle & clientCanDo) == tmpStyle) )
            styleWeWillUse = tmpStyle;
}

if (styleWeWillUse = NULL)
    exit_with_error();
XFree(IMcando);

/* styleWeWillUse is set, which is what we were after */

IC Values

There are several pieces of information an input method may require, depending on the
input context and style chosen by the application. The input method can acquire any
such information it needs from the input context, ignoring any information that does not
affect the style or IM.

A full description of every item of information available to the IM is supplied in X
Window System, Third Edition. The following is a brief list:

XNClientWindow Specifies to the IM which client window it can display data in
or create child windows in. Set once and cannot be changed.

XNFilterEvents An additional event mask for event selection on the client
window.

XNFocusWindow The window to receive processed (composed) Key events.

XNGeometryCallback A geometry handler that is called if the client allows an IM to
change the geometry of the window.

XNInputStyle Specifies the style for this IC.
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Pre-Edit and Status Attributes

When an IM is going to provide state, it needs some simple X information with which to
do its work. For example, if an IM is going to draw status information in a client window
in an Off-the-Spot style, it needs to know where the area is, what color and font to render
text in, and so on. The application gives this data to the IC for use by the IM.

As with the “IC Values” section, full details are available in X Window System,
Third Edition.

XNResourceClass,
XNResourceName

The resource class and name to use when the IM looks up
resources that vary by IC.

XNStatusAttributes,
XNPreeditAttributes

The attributes to be used for any status and pre-edit areas
(nested, variable-length lists).

XNArea A rectangle to be used as a status or pre-edit area.

XNAreaNeeded The rectangle desired by the attribute writer. Either the
application or the IM may provide this information,
depending on circumstances.

XNBackgroundPixmap A pixmap to be used for the background of windows the IM
creates.

XNColormap The colormap to use.

XNCursor The cursor to use.

XNFontSet The fontset to use for rendering text.

XNForeground,
XNBackground

The colors to use for rendering.

XNLineSpacing The line spacing to be used in the pre-edit window if more
than one line is used.

XNSpotLocation Specifies where the next insertion point is, for use by
XIMPreeditPosition styles.

XNStdColormap Specifies that the IM should use XGetRGBColormaps() with
the supplied property (passed as an Atom) in order to find
out which colormap to use.



Translating User Input

397

Creating an Input Context

Creating an input context is a simple matter of calling XCreateIC() with a variable-length
list of parameters specifying IC values. Example 16-10 shows a simple example that
works for the root window.

Example 16-10 Creating an Input Context With XCreateIC()

XVaNestedList arglist;
XIC ic;

arglist = XVaCreateNestedList(0, XNFontSet, fontset,
                           XNForeground,
                           WhitePixel(dpy, screen),
                           XNBackground,
                           BlackPixel(dpy, screen),
                           NULL);

ic = XCreateIC(im, XNInputStyle, styleWeWillUse,
              XNClientWindow, window, XNFocusWindow, window,
              XNStatusAttributes, arglist,
              XNPreeditAttributes, arglist, NULL);
XFree(arglist);

if (ic == NULL)
    exit_with_error();

Using the IC

A multi-window application may choose to use several input contexts. But for simplicity,
assume that the application just wants to get to the internationalized input using one
method in one window.

Using the IC is a matter of making sure you check events the IC wants, and of setting
IC focus. If you are setting up a window for the first time, you know the event mask you
want, and you can use it directly. If you are attaching an IC to a previously configured
window, you should query the window and add in the new event mask.
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Example 16-11 Using the IC

unsigned long imEventMask;

XGetWindowAttributes(dpy, win, &winAtts);
XGetICValues(ic, XNFilterEvents, &imEventMask, NULL);

imEventMask |= winAtts.your_event_mask;
XSelectInput(dpy, window, imEventMask);
XSetICFocus(ic);

At this point, the window is ready to be used.

Events Under IM Control

Processing events under input method control is almost the same in X11R6 as it was
under R4 and before. There are two essential differences: the XFilterEvent() and
X*LookupString() routines.

Using XFilterEvent()

Every event received by your application should be fed to the IM via XFilterEvent(),
which returns a value telling you whether or not to disregard the event. IMs asks you to
disregard the event if they have extracted the data and plan on giving it to you later,
possibly in some other form. All events (not just KeyPress and KeyRelease events) go to
XFilterEvent().

If you compacted the event processing into a single routine, a typical event loop would
look something like the code in Example 16-12.

Example 16-12 Event Loop

Xevent event;

while (TRUE) {
    XNextEvent(dpy, &event);

    if (XFilterEvent(&event, None))
        continue;

    DealWithEvent(&event);
}
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Using XLookupString(), XwcLookupString(), and XmbLookupString()

When using an input method, you should replace calls to XLookupString() with calls to
XwcLookupString() or XmbLookupString(). The MB and WC versions have very
similar interfaces. The examples below arbitrarily use XmbLookupString(), but apply to
both versions.

There are two new situations to deal with:

1. The string returned may be long.

2. There may be an interesting keysym returned, an interesting set of characters
returned, both, or neither.

Dealing with the former is a matter of maintaining an arena, as in Example 16-13.

To tell the application what to pay attention to for a given event, XmbLookupString()
returns a status value in a passed parameter, equal to one of the following:

XmbLookupString() also returns the length of the string in question. Note that
XmbLookupString() returns the length of the string in bytes, while XwcLookupString()
returns the length of the string in characters.

The example below should help show how these functions work. Most event processors
perform a switch on the event type; assume you have done that and have received a
KeyPress event.

XLookupKeysym Indicates that the keysym should be checked.

XLookupChars Indicates that a string has been typed or composed.

XLookupBoth Means both of the above.

XLookupNone Means neither is ready for processing.

XBufferOverflow Means the supplied buffer is too small—call XmbLookupString()
again with a bigger buffer
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Example 16-13 KeyPress Event

case KeyPress:
{

Keysym keysym;
Status status;
int buflength;
static int bufsize = 16;
static char *buf = NULL;

if (buf == NULL) {
buf = malloc(bufsize);
if (buf < 0) StopSequence();

}

buflength = XmbLookupString(ic, &event, buf, bufsize,
&keysym, &status);

/* first, check to see if that worked */
if (status == XBufferOverflow) {

buf = realloc(buf, (bufsize = buflength));
buflength = XmbLookupString(ic, &event, buf, bufsize,

&keysym, &status);
}

/* We have a valid status. Check that */
switch(status) {
case XLookupKeysym:

DealWithKeysym(keysym);
break;

case XLookupBoth:
DealWithKeysym(keysym);
/* **FALL INTO** charcter case */

case XLookupChars:
DealWithString(buf, buflength);

case XLookupNone:
break;

} /* end switch(status) */

} /* end case KeyPress segment */
break; /* we are in a switch(event.type) statement */
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GUI Concerns

It shouldn’t be significantly more difficult to internationalize an application with a
graphical user interface than an application without such an interface, but there are a few
further issues that must be addressed:

• “X Resources for Strings” on page 401 covers labeling objects using X resources.

• “Layout” on page 402 describes creating layouts that are usable after localization.

• “Icons” on page 403 explains some concerns for localizing icons.

X Resources for Strings

Resource lookup mechanisms in Xlib as well as in toolkits monitor locale environment
variables when locating resource files. For string constants that are used within toolkit
objects, resources provide a simpler solution than do message catalogs.

These are some common objects that should definitely get their text from resources:

• Labels

• Buttons

• Menu items

• Dialog notices and questions

Any object that employs some sort of text label should be labeled via resources. Since the
localizer wants to provide strings for the local version of the application, the app-defaults
file for the application should specify every reasonable string resource. Reference pages
should identify all localizable string resources.

Localizers of an application provide a separate resource file for each locale that the
application runs in.
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Layout

Layout management is of special interest when you cannot predict how large a button or
other label might be. The nature of the problem of layout composition and management
does not change, but one must construct the layout management without full knowledge
of the final appearance.

It’s worth noting that localization efforts can be assumed to be “reasonable” in some
sense. For example, X resources have always allowed a user to specify an extremely large
font for buttons, but applications correctly choose to let such users live with the results.
But it’s not always that clear what is reasonable and what isn’t; you don’t always know
what will be difficult to translate succinctly in some locale. So while you need not
provide for all combinations of resource specifications, you must make the application
localizable.

Three main approaches to the layout problem are described below: dynamic layout,
constant layout, and localized layout

Dynamic Layout

Most toolkits provide form, pane, rowcolumn, or other layout objects that calculate layout
depending on the “natural” (localized) size of the objects involved. Most use some hints
provided by the developer that can regulate this layout. For example, some IRIS IM
widgets providing these services are XmForm, XmPanedWindow, and XmRowColumn.

Dynamic layout is probably the simplest way to prevent localization difficulties.

Note: The IRIS IM product is the Silicon Graphics port of the OSF/Motif product, and
should not be confused with IM, the abbreviation for Input Methods.

Constant Layout

Under certain circumstances, an application may insist on having a predefined layout.
When this is so, the application must provide objects that are constructed to allow
localization. A “Quit” button that just barely allows room for the Latin 1 string “Quit” is
not likely to suffice when localizers attempt to fit their translations into that small space.

In order to enforce constant layout, the developer incurs the heavy responsibility of
making sure the objects are localizable. This means a lot of investigation; the “there, that
ought to be enough” approach is chancy at best.
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Localized Layout

Some toolkits provide for layout control by run-time reading of strings or other data files.
Applications that use such toolkits can easily finesse the layout issue by providing the
capability for localization of the layout, as well as localization of the contents of the
layout. This provides each localizer maximum freedom in presenting the application to
the local users. The application developer is responsible for providing localizers with
instructions and the mechanisms necessary to produce layout data.

IRIS IM Localization With editres

IRIX provides an interactive method of laying out widgets for IRIS IM and Xaw (the
Athena Widget Set): a utility called editres. With editres, you can construct and edit
resources and see how your widgets will look on the screen; the program even generates
a usable app-defaults file for you. But note that if you hard-code any resources into your
IRIS IM code, you won’t be able to edit them using this method.

Icons

Icons attempt to be fairly generic representations of their antecedents. Unfortunately, it
is very difficult for a designer to know what is generic or recognizable in other cultures.
Therefore, it is important that any pictographic representations used by an application
be localizable.

Graphic representations can be stored as strings representing X bitmaps, as names of
data files containing pictographs, or in whatever manner the developer thinks best, so
long as the developer provides a way for the localizer to produce and deliver localized
pictographs.

Popular Encodings

This section discusses three encodings that are commonly used:

• “The ISO 8859 Family” explains the ISO 8859 family of encodings.

• “Asian Languages” describes Asian language encodings.

• “Unicode” covers the ISO 10646 and Unicode.



404

Chapter 16: Internationalizing Your Application

The ISO 8859 Family

American English is easily representable in 7-bit ASCII. Most other languages are not.
For example, the character é is not in ASCII.

Most Western European languages are representable in 8-bit ISO 8859-1, which is
commonly known as Latin 1. Latin 1 is a superset of ASCII that includes characters used
by several Western European languages (such as ö, £, ñ, ç, ¿).

ISO 8859 comes in nine parts, many of which overlap; all are supersets of ASCII.

The ISO 8859 Character Sets are shown in Table 16-10.

Table 16-10 ISO 8859 Character Sets

Character Set Common Name Languages Supported

8859-1 Latin 1 Danish, Dutch, English, Faeroese, Finnish, French, German,
Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish,
Swedish

8859-2 Latin 2 Albanian, Czech, English, German, Hungarian, Polish,
Rumanian, Serbo-Croatian, Slovak, Slovene

8859-3 Latin 3 Afrikaans, Catalan, Dutch, English, Esperanto, German,
Italian, Maltese, Spanish, Turkish

8859-4 Latin 4 Danish, English, Estonian, Finnish, German, Greenlandic,
Lapp, Latvian, Lithuanian, Norwegian, Swedish

8859-5 Latin/Cyrillic Bulgarian, Byelorussian, English, Macedonian, Russian,
Serbo-Croatian, Ukrainian

8859-6 Latin/Arabic Arabic, English (see ISO 8859-6 specification)

8859-7 Latin/Greek English, Greek (see ISO 8859-7 specification)

8859-8 Latin/Hebrew English, Hebrew (see ISO 8859-8 specification)

8859-9 Latin 5 Danish, Dutch, English, Finnish, French, German, Irish,
Italian, Norwegian, Portuguese, Spanish, Swedish, Turkish
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IRIX contains over 500 Latin 1 fonts, as well as a few fonts for each of the other
8859-encoded character sets, except 8859-6 and 8859-8. Currently, IRIX contains no fonts
for use with the 8859-6 or 8859-8 character sets.

To get the list of ISO-8859 fonts, enter the following:

xlsfonts

Or you can restrict the amount of output, for example, by typing

xlsfonts ‘*8859-2’

To see the encoding, use the xfd command. For example:

xfd -fn -sgi-screen-medium-r-normal--9-90-72-72-m-60-iso8859-1

For more information on xlsfonts and xfd, and installing and using fonts, refer to
Chapter 15, “Working With Fonts.”

Asian Languages

Asian languages are commonly ideographic and employ large numbers of characters for
their representation. For example, Japanese and Korean can be practically encoded in 16
bits. Daily-use Chinese can be, also, but archives and scholars frequently need more, so
Chinese is often encoded with up to four bytes per character.
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Some Standards

Various Asian character sets have been developed, some of which are considered
standard. Encodings for these sets are less standardized. Asian character sets usually
require larger-than-byte character types like those described in “Multibyte Characters.”
Table 16-11 lists some of these standard character sets. Note that some of these character
sets have multiple associated codesets, usually designated by appending the year the
codeset was adopted to the character set name. (For example, JIS X 208-1983 is different
from JIS X 208-1990.)

EUC

EUC is Extended UNIX Code, an encoding methodology that supports concurrent use of
four codesets in one encoding. It employs two special “shift state” bytes:

ss1 = 0x8e
ss2 = 0x8f

These are used to identify codesets within a string. The EUC encoding scheme uses the
following patterns to indicate which codeset is in use at any given time:

Codeset #0: 0xxxxxxx
Codeset #1: 1xxxxxxx [ 1xxxxxxx ...]
Codeset #2: ss1 1xxxxxxx [ 1xxxxxxx ...]
Codeset #3: ss2 1xxxxxxx [ 1xxxxxxx ...]

Table 16-11 Character Sets for Asian Languages

Language Character Set Standards Support

Japanese JIS X 0201.1976-0

JIS X 0208.1983-0

JIS X 0212.1990-0

Katakana

Kanji, kana, Latin, Greek,
Cyrillic, symbols, others

Supplemental kanji, others

Chinese GB 2312.1980-0

Korean KSC 5601.1987-0 Hangul

Taiwan CNS 11643
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So if ss1 appears in a string, it means that the next character—however many bytes long
it is—should be interpreted as a character from codeset #2. If there are multiple
characters in a row from codeset #2, each one is preceded by ss1. Similarly, ss2 indicates
that the following character belongs to codeset #3. If any other byte whose high bit is 1
appears in the string (without being preceded by ss1 or ss2), it is interpreted as all or part
of a character from codeset #1.

In EUC, codeset #1 is always ASCII. The other codesets are implementation- or
user-defined. This is why EUC cannot support Latin 1 in Asian locales.

EUC implementations exist (but are not standardized) for all ideographic Asian
languages.

Unicode

The Unicode Consortium has developed a character code system called Unicode.
Unicode 2.0 covers most of the modern languages, scripts, CJK (Chinese-Japanese-
Korean) scripts, and scientific and mathematical symbols. Each character is represented
by a fixed width of 16 bits. Unicode 2.0 implements the characters that are coded in the
Basic Multilingual Plane of ISO-10646. For more detailed information, see Unicode
Standard, Version 2.0, published by Addison-Wesley; ISBN 0-201-48345-9.
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A. ISO 3166 Country Names and Abbreviations

Table A-1 lists the ISO 3166 country codes, alphabetized by country name (the table reads
from left to right, and top to bottom).

Table A-1 ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code

Afghanistan AF Albania AL Algeria DZ

American Samoa AS Andorra AD Angola AO

Anguilla AI Antarctica AQ Antigua and
Barbuda

AG

Argentina AR Aruba AW Australia AU

Austria AT Bahamas BS Bahrain BH

Bangladesh BD Barbados BB Belgium BE

Belize BZ Benin BJ Bermuda BM

Bhutan BT Bolivia BO Botswana BW

Bouvet Island BV Brazil BR British Indian
Ocean Territory

IO

Brunei
Darussalam

BN Bulgaria BG Burkina Faso BF

Burma BU Burundi BI Byelorussia BY

Cameroon CM Canada CA Cape Verde CV

Cayman Islands KY Central African
Republic

CF Chad TD

Chile CL China CN Christmas Island CX

Cocos Islands CC Colombia CO Comoros KM
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Congo CG Cook Islands CK Costa Rica CR

Cote D'Ivoire CI Cuba CU Cyprus CY

Czech Republic CS Denmark DK Djibouti DJ

Dominica DM Dominican
Republic

DO East Timor TP

Ecuador EC Egypt EG El Salvador SV

Equatorial
Guinea

GQ Ethiopia ET Falkland Islands FK

Faroe Islands FO Fiji FJ Finland FI

France FR French Guiana GF French Polynesia PF

French Southern
Territories

TF Gabon GA Gambia GM

Germany DE Ghana GH Gibraltar GI

Greece GR Greenland GL Grenada GD

Guadalupe GP Guam GU Guatemala GT

Guinea GN Guinea-Bissau GW Guyana GY

Haiti HT Heard and
McDonald
Islands

HM Honduras HN

Hong Kong HK Hungary HU Iceland IS

India IN Indonesia ID Iran IR

Iraq IQ Ireland IE Israel IL

Italy IT Jamaica JM Japan JP

Jordan JO Kampuchea KH Kenya KE

Kiribati KI Korea KP or
KR

Kuwait KW

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code
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Laos LA Lebanon LB Lesotho LS

Liberia LR Libya LY Liechtenstein LI

Luxembourg LU Macau MO Madagascar MG

Malawi MW Malaysia MY Maldives MV

Mali ML Malta MT Marshall Islands MH

Martinique MQ Mauritania MR Mauritius MU

Mexico MX Micronesia FM Monaco MC

Mongolia MN Montserrat MS Morocco MA

Mozambique MZ Namibia NA Nauru NR

Nepal NP Netherlands NL Netherlands
Antilles

AN

Neutral Zone NT New Caledonia NC New Zealand NZ

Nicaragua NI Niger NE Nigeria NG

Niue NU Norfolk Island NF Northern Mariana
Islands

MP

Norway NO Oman OM Pakistan PK

Palau PW Panama PA Pangaea GE

Papua New
Guinea

PG Paraguay PY Peru PE

Philippines PH Pitcairn PN Poland PL

Portugal PT Puerto Rico PR Qatar QA

Quebec QC Reunion RE Romania RO

Rwanda RW Saint Kitts and
Nevis

KN Saint Lucia LC

Saint Vincent and
the Grenadines

VC Samoa WS San Marino SM

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code
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Sao Tome and
Principe

ST Saudi Arabia SA Senegal SN

Seychelles SC Sierra Leone SL Singapore SG

Solomon Islands SB Somalia SO South Africa ZA

Spain ES Sri Lanka LK St. Helena SH

St. Pierre and
Miquelon

PM Sudan SD Suriname SR

Svalbard and Jan
Mayen Islands

SJ Swaziland SZ Sweden SE

Switzerland CH Syrian Arab
Republic

SY Taiwan TW

Tanzania TZ Thailand TH Togo TG

Tokelau TK Tonga TO Trinidad and
Tobago

TT

Tunisia TN Turkey TR Turks and Caicos
Islands

TC

Tuvalu TV Uganda UG Ukraine UA

United Arab
Emirates

AE United Kingdom GB United States Minor
Outlying Islands

 UM

Uruguay UY Vanuatu VU Vatican City State VA

Venezuela VE Viet Nam VN Virgin Islands
(British)

VG

Virgin Islands
(USA)

VI Wallis and
Futuna Islands

WF Western Sahara EH

Yemen YE or
YD

Yugoslavia
(Former)

YU Zaire ZR

Zambia ZM Zimbabwe ZW

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code
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Numbers

32-bit addressing
address size,  3
page size,  5

64-bit addressing
address size,  3
page size,  5
shared memory,  54

8-bit clean codesets,  341

A

address range,  3
address space,  3-10

cannot undefine,  6
copy-on-write pages,  10
defining addresses,  5
heap segment,  4
interrogating,  11
limits of,  6
low 4 MB reserved,  23
lowest used address,  4
protection,  28
read-only pages,  10
resident set size,  10
segment,  4

segment reserved for user mapping,  23
stack segment,  4
text segment,  4
virtual size of,  6, 16

aio_cancel(),  197
aio_error(),  198
aio_fsync(),  197
aio_read(),  196

implies aio_init(),  194
aio_sgi_init(),  195
aio_suspend(),  198
aio_write(),  196

implies aio_init(),  194
arenas

IRIX IPC,  49
Argentina country code,  409
ASCII strings. See internationalization

codesets, ASCII
asynchronous I/O,  191-222

aiocb structure,  194, 198
aioinit_tstructure,  195
cancelling,  197
file sync,  197
initializing,  194
list I/O,  197
multiple operations to one file,  203
notification methods,  198
POSIX 1003.1b-1993,  193
request priority no longer supported,  194
scheduling operations,  196
signal use,  199

Australia country code,  409

Index
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Austria country code,  409

B

backing store,  6, 9, 13, 28
barrier,  82

IRIX,  92
Belgium country code,  409
Brazil country code,  409
brk(),  6, 7
BSD and IPC,  46

C

calloc(),  9
catalogs. See message catalogs
Challenge/Onyx architecture

PIO error latency,  21
character sets. See internationalization, character sets
Chile country code,  409
China country code,  409
chkconfig command,  9
chmod command,  19
C local value,  338
codes, country,  409
codesets. See internationalization, codesets
Colombia country code,  409
compare-and-swap,  93-95

compiler intrinsic,  95
compiler intrinsic for atomic operations,  95
condition variable,  81, 286-291
conventions, syntax,  xxxv
country codes,  409-412
Courier font,  307
ctype

character classification,  351
cycle counter,  135

D

data segment
locking,  25

deadlocks,  186
Denmark country code,  410
/dev/mem,  20
/dev/mmem,  20
/dev/vme,  20
/dev/zero

and mmap(),  15, 19
direct disk output,  225
disk output

synchronous,  223
synchronous direct,  225

DSO, text segment for,  4

E

editres,  403
Egypt country code,  410
empty strings,  336
encodings. See internationalization, encodings
EUC encoding

Chinese,  381
German,  381
Japanese,  380

exec()
new address space,  5
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F

fcntl()
example code,  233

file, mapping into memory,  15, 26
file access permissions and mmap(),  17
file and record locking,  171-190

across systems,  188
deadlocks,  186
efficiency, comparative,  188
F_GETLK,  183
F_SETLK,  181
F_TEST,  185
F_ULOCK,  183
F_UNLCK,  183
failure,  180
file permissions and,  174
forking,  186
lock information,  183
locking a file,  176
mandatore,  186
multiple read locks,  183
NFS with,  188
opening files,  175
order of lock removal,  183
overview,  172-174
removing locks,  179
setting locks,  179

file descriptor
with asynchronous I/O,  194
with mmap(),  13

file typing rules,  374
LEGEND,  374
MENUCMD,  374

Finland country code,  410
fonts,  303-324

accessing,  308
adding,  313-322

bitmap font,  316-319
font files,  316

font metric file,  322
outline font,  319-322
Utopia Regular font files,  316

aliases,  309
character, defined,  305
display characters,  310
downloading,  323
images,  306
installing,  313-322
missing fonts,  323
names,  307, 309
opening a shell window,  312
path,  312
pixels,  306
point size,  306
PostScript printers,  323
programming access,  308
resolution and size,  306
scaling,  310
Speedo format,  313
Type 1 font,  313, 323-324
typeface, defined,  305
using APIs,  308
Utopia fonts,  323
viewing,  310
virtual memory,  324
xfd command,  310
X Window System,  307, 309-322

fontsets,  380-381
creating,  381
specifying,  380
using,  381

fork()
defines address space,  5
new address space copy-on-write,  10

forking,  186
France country code,  410
fsync(),  192
ftruncate() on memory-mapped file,  18
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G

Germany country code,  410
getpagesize(),  5
getrlimit(),  6
GRIO. See guaranteed-rate I/O
guaranteed-rate I/O,  230-234

creating a real-time file,  232
requesting a guarantee,  233

H

hardware timer,  135
heap segment,  4, 6
Hong Kong country code,  410

I

i18n. See internationalization
input methods. See internationalization, input

methods
internationalization,  327-407

ANSI compatible functions,  355
character classification,  351
character classification tables,  357
character expressions,  360
character sets

and X,  378
defined,  340

codesets
ASCII,  341, 343
defined,  340

collating sequence tables,  357
composing characters,  387
configuration data,  356
ctype,  351
cultural data,  362
customs,  354

date formats,  351
defined,  329
eight-bit cleanliness,  341
encodings

about,  338
and filesystem,  340
Asian languages,  405
defined,  340
EUC,  406
European languages,  404
ISO 10646,  407
ISO 8859,  404
Latin 1,  404
multibyte,  342
Unicode,  407
wchar,  342, 346

file I/O,  347
file typing rules,  374
fmtmsg(),  373
GL input,  386
GUIs,  401-403

composition,  402
editres,  403
icons,  403
layout,  402
localized layout,  403
object labels,  401
text labels,  401

icons,  403
initializing Xlib,  379
input contexts,  394-398

creating,  397
styles,  394
using,  397
values,  395

input methods,  389-400
about,  385
event handling,  398
Off-the-Spot style,  392
On-the-Spot style,  393
opening,  389



417

Index

Over-the-Spot style,  392
root window style,  391
setting styles,  393
status,  391
strings,  399
using styles,  393
XFilterEvent(),  398
XLookupString(),  399

language information,  358
languages

Asian,  405, 406
in locale strings,  337
Japanese,  405
Latin

library functions,  354
localeconv(),  350
locale-specific behavior,  353
locales. See locales
message catalogs,  366
MNLS

fmtmsg(),  373
message catalogs. See message catalogs, MNLS
pfmt(),  372

monetary formats,  349
Motif,  384
multibyte characters

about
converting,  344
size of,  344
string length,  345
using,  343

multilingual support,  339
native language support,  356
numerical formats,  349
pfmt(),  372
printf(),  350, 375
regular expressions,  353, 354, 359
regular expressions, examples,  361
setlocal(),  336
setting locale,  334
shift tables,  358

signed chars,  342
sorting rules,  348
standards,  331
strings,  366
territories,  337
time formats,  351
Unicode,  407
user input,  385

application programming,  385
text objects,  385
toolkit text object,  385

wide characters
about,  342
converting,  347

XFontSetExtents(),  382
XPG/3

message catalogs. See message catalogs
regular expressions,  353

X Window System
about,  377
changes,  377
character sets,  378
EUC encoding,  380
fontsets,  380
keyboard support,  387-388
limitations,  377
resource names,  379
string resources,  401
vertical text,  378
XFontSetExtents,  382
Xlib changes,  378

Inter-Process Communication. See IPC
interrupt

validity fault,  10
IPC

arenas,  49
BSD-style,  46
IRIX arenas,  49
IRIX-style,  46, 49
parallel programming,  49
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portability,  47
POSIX-style,  46, 48
SVR4-style,  46
types,  47

Iran country code,  410
Ireland country code,  410
IRIX and IPC,  46
ISO 3166 Country Codes,  409-412
Israel country code,  410
Italy country code,  410

J

Japan country code,  410

K

Kenya country code,  410
kernel

address space limits in,  6
kernel address space,  3
Korea country code,  410

L

l10n. See localization
languages, ISO. See internationalization, encodings
languages, Latin. See internationalization, encodings
Laos country code,  411
latency of signal,  119
latency of time signal,  128
LC_ALL,  335
LC_COLLATE,  335
LC_CTYPE,  335
LC_MESSAGES,  335

LC_MONETARY,  335
LC_NUMERIC,  335
LC_TIME,  335
LEGEND,  374
lightweight process

and mapped segments,  15
limits command,  6
lio_listio(),  197
Load Linked instruction,  78
locale

Motif,  384
locales,  334-340

categories,  335
C locale value,  338
collation,  349
cultural data,  362
data location,  337
date formats,  351, 362
defined,  329
empty strings,  336
encoding,  338
languages,  337
location of data,  337
modifiers,  338
monetary formats,  349
naming conventions,  337
nonempty strings,  337
numerical formats,  349
setlocale(),  334
setting current,  334
sorting rules,  348
territories,  337
time formats,  351

locale-specific behavior
date,  362
time,  362

localization
defined,  329
empty strings,  336
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nonempty strings,  337
lock,  79

IRIX,  90-91
lockf()

to protect mapped file,  19
lock removal, order,  183
log file warning messages,  324
lp log file warning messages,  324
lseek()

for file size,  16
with asynchronous I/O,  194

M

Macau country code,  411
madvise(),  29
malloc(),  6, 7

use,  9
used to find limit of swap,  7

mandatory file locking,  186
MAP_AUTOGROW flag,  14, 15, 20
MAP_FIXED flag,  17, 21, 22, 23
MAP_LOCAL flag,  15
MAP_PRIVATE flag,  14, 18
MAP_SHARED flag,  14, 18
memory,  3-42

address ranges of,  3
backing store for,  6
interrogating size of,  11
locking pages in,  23-27
page,  5
protection,  28
segment,  4
See also memory mapping, virtual memory,  12

memory, shared. See IPC
memory mapping,  6, 12-23

and file access permissions,  17

at fixed addresses,  22
choosing segment address for,  21
conflicts with normal file access,  18
for I/O,  15-19
locking mapped file,  26
mandatory file locks with,  19
of kernel memory,  20
of NFS-mounted filemsync(),  17
of physical memory,  20
of segment of zeros,  19
of VME device,  20
private copy of file,  18
replacing a mapped segment,  17
to create shared segments,  19
when pages are defined,  15

MENUCMD,  374
message catalogs,  366-376

closing,  367
file typing rules,  374
incompatibilities,  366
locating,  368
MNLS

fmtmsg(),  373
pfmt(),  372
pfmt() flags,  372
pfmt() format strings,  373
strings,  370
using,  370

NLSPATH,  368
opening,  367
reading,  367
specifying, MNLS,  371
XPG/3

about,  366
compiling,  369
creating,  368
using,  367

message queue,  137-168
comparing POSIX, SVR4,  138
overview of,  138-140
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POSIX facilities,  140-153
SVR4 facilities,  153-168
use of,  140

Mexico country code,  411
MIPS ABI

reserved address space,  23
mmap(),  12-23

and file permissions,  17
and NFS-mounted files,  17
in place of lseek(),  17
of /dev/mem,  20
of /dev/mmem,  20
of /dev/vme/*,  20
of zero segment,  19
parameters of,  13, 19
POSIX use,  55
using specified addresses,  22
when swap is allocated,  15

MNLS
Also see message catalogs
message catalogs,  370-375

monitor resolution,  306
Motif

internationalization,  384
MPI,  247

differences from PVM,  298-300
msync(),  15, 29
multibyte characters. See internationalization,

multibyte characters
multilingual support,  339
multithreading. See parallel computation, pthreads
mutex,  79
mutual exclusion,  78-112, 283-293

barrier,  82
condition variable,  81, 286-291
IRIX facilities,  87-96
lock,  79
mutex,  79, 283-286
POSIX facilities,  82-86

read-write locks,  292-293
semaphore,  80
SVR4 facilities,  96-112
test-and-set,  78

N

names, country,  409
nationalized software,  330
New Zealand country code,  411
NFS and file locking,  188
NFS and memory-mapped files,  17
Nigeria country code,  411
NLSPATH,  368

O

Off-the-Spot style,  392
On-the-Spot style,  393
open(),  13

example code,  233
of /dev/zero,  19

Over-the-Spot style,  392

P

page
copy on write,  10
locking,  23
read-only,  10
releasing unneeded,  29

page fault
prevent by locking memory,  23

page size,  5
page validation,  9
parallel computation,  237-247
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hardware support for,  238
models of,  241-247
MPI,  247
process-level,  242, 255-265
PVM,  247
self-dispatching process,  263
SHMEM,  246
statement-level,  245, 249-254
thread-level,  243, 267-293

parallel hardware,  238
parallelism. See parallel computation
parallel programming,  49
path

fonts,  312
plock()

example of,  25
poll(),  88
polled semaphore,  88
Portugal country code,  411
POSIX and IPC,  46
POSIX threads. See pthreads
PostScript printers,  323
printers, PostScript,  323
printf(),  375
printf() message catalogs,  375
process,  255-265

address space,  4
compared to pthread,  268
creation,  256
parallelism,  242
parent,  259
reaping,  259
scheduling,  260-263
self-dispatching,  263
share group,  256

process scheduling
BSD,  260
IRIX,  260

POSIX,  262
process scope threads,  280
programming

fonts,  308
parallel,  49

ps command,  6
pscommand,  10
pthread_mutexattr_setpshared(),  285
pthread_mutexattr_settype(),  286
pthread_setconcurrency(),  280
pthread_setrunon_np(),  280
pthreads,  243, 267-293

cancel,  276
compare to process,  268
compiling,  270
creating,  271
debugging,  271
detach,  272, 277
fork event,  275
priority,  282
scheduling,  273, 280-282
signal action in,  279
signal masks,  279
stack allocation,  273
static initializer,  275
synchronization of,  282-293
termination,  276
termination event,  275
thread ID,  275
thread-unique data,  277-278

pthread scheduling contention,  280
PVM,  247

differences from MPI,  298-300

R

read(),  191
with guaranteed-rate I/O,  234
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reaping child processes,  259
resident set size,  10
rlimit kernel parameter,  6
rpc.lockd daemon,  188

S

Saudi Arabia country code,  412
sched_yield(),  127
segment,  4

heap,  4
locking,  25
lowest address,  4
stack,  4
text,  4

segment address,  21
segments at fixed offsets,  21
sem_destroy(),  83
sem_init(),  83
semaphore,  80

IRIX,  87-90
polled,  88
POSIX named,  84
POSIX unnamed,  83
SVR4,  96-112
using POSIX,  85

setlocal(),  336
setlocale(),  334
setrlimit(),  6

limit,  9
sginap(),  127
shared arena

initializing,  61
shared memory,  53-76

IRIX,  61-70
POSIX,  55-60
SVR4,  71-76

example,  73
shared memory. See IPC
shared memory segment,  19
share group,  256
SHMEM,  246
sigaction(),  123
SIGALRM

from interval timer,  135
SIGBUS

on access to truncated mapped file,  18
on NFS error in mapped file,  18
on PIO access to invalid bus address,  21
on reference past end of mapped segment,  13

sigevent structure,  194
SIGKILL

on reaching limit of virtual swap,  8
possible when locking pages,  24

signal,  113-126
and X intrinsics,  120
asynchronous I/O use,  199
blocking,  117
BSD facilities,  126
catching,  118
compatibility,  116
handling in pthread,  279
handling policy for,  118
ignoring,  118
latency,  119
mask,  117, 122
mask in pthread,  279
multiple received,  117
POSIX facilities,  120-124
SIGALRM,  135
SIGBUS,  13, 18, 21
SIGKILL,  8, 24
signal numbers,  114-116
SIGSEGV,  5, 10, 14, 28
SVR4 facilities,  124-125
synchronous receipt,  119, 122
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SIGSEGV
on access to read-only page,  28
on attempt to change read-only page,  10
on reference to undefined page,  5
on store past end of mapped segment,  14

South Africa country code,  412
Spain country code,  412
Speedo format fonts,  313
sproc()

and mapped segments,  15
stack segment,  4, 6

locking,  25
Store Conditional instruction,  78
SVR4 and IPC,  46
swap,  6, 9
Sweden country code,  412
Switzerland country code,  412
synchronous disk output,  223
syntax, conventions,  xxxv
sysconf(),  11
syssgi()

set flush interval,  230
system scope threads,  280
systune command,  7

T

Taiwan country code,  412
test-and-set,  92-96

compiler intrinsics for,  95
instructions,  78
library functions for,  92

text rendering routines,  382
text segment,  4

loaded from program file,  9
locking,  25
read-only,  10

threads
process scope,  280
system scope,  280

timer,  127-136
BSD facilities,  134-135
data structures,  128
fasthz obsolete,  129
hardware cycle counter,  135
implementation,  129
latency,  128
POSIX facilities,  129-134

Type 1 font. See fonts
typographical conventions,  xxxv
typography. See fonts

U

Uganda country code,  412
uscas(),  93
uscas32,  93
Utopia fonts,  323

V

validity fault,  10
video on demand (VOD). See guaranteed-rate I/O,

video on demand
video resolution,  306
virtual address space. See address space
virtual memory

font loading,  324
loading pages,  9
synchronizing backing store,  28
See also memory

virtual page number,  5
virtual size,  6
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virtual swap,  7-9
SIGKILL from,  8
See also address space

VME PIO,  20
VPN. See virtual page number

W

wait(),  259
wait, timed,  127
warning messages

lp log file,  324
wide characters. See internationalization, wide

characters
write(),  192

direct,  225
synchronous,  223
with guaranteed-rate I/O,  232, 234

X

xfd command,  310
XFilterEvent(),  398
XFontSetExtents,  382
XLFD font names. See internationalization, X

Window System, fontsets
Xlib changes,  378
XLookupString()<Default Para Fon>,  399
XmbLookupString(),  399
XSetLocaleModifiers(),  390
XwcLookupString(),  399
X Window System

fonts. See fonts
installing fonts. See fonts, installing
internationalization changes,  377
limitations,  377

Y

yielding,  127
You,  8

Z

Zambia country code,  412
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