
UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Matematica

MCMT v2.0 - User Manual



MCMT v2.0 - User Manual

Silvio Ghilardi

September 30, 2012

Abstract

This document is addressed to MCMT users: it explains how to write MCMT input

specifications, illustrates some common settings and heuristics and gives useful advices.

This document is an enlargement of the previous MCMT v.1.1 User Manual (by

S.Ghilardi and S.Ranise); an Appendix summarizing some novelties of version 2.1 has

been also added.

1



Contents

1 Introduction 4

2 Basic syntax 5

2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Index variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Array variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 MCMT specifications 8

3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Unsafe states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Universal quantifiers in guards . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 System axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Running MCMT 17

4.1 Parsing facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Invariant search options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Displayed information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Abstraction/Refinement Mode 23

6 Acceleration 25

6.1 Integer Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Array Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 User-Defined Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Advanced Settings 28

7.1 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.3 Bounded Resources in Invariant Search . . . . . . . . . . . . . . . . . . . . . . 29

7.4 Global Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.5 Signature Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.6 Elimination of quantified variables . . . . . . . . . . . . . . . . . . . . . . . . 31

7.7 Cardinality bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.8 Key search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.9 Variable redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



7.10 Restricted Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.11 Memory reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 How to deal with ... 34

8.1 Strictly numerical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 Appendix A: a guided example 37

10 Appendix B: version 2.1 43

3



1 Introduction

MCMT is a model checker for testing reachability in a large class of formal systems, called

array-based systems; array-based systems, introduced in [12], comprise parametrized systems

and sequential programs manipulating both arrays and arithmetical data. MCMT has been

sucessfully used for verification of distributed systems [6, 5], timed systems [10, 11] and

imperative programs [7]. This document is a brief guide on how to write input files and to

run MCMT.

The input language is rather low level and input files in such a language should be auto-

matically generated from high-level user interfaces or other verification tools. However, the

knowledge of the low level input language is important for advanced use and for heuristics.

It should be noticed that MCMT performances (even convergence!) might crucially depend

on user defined settings and often these settings can be worked out only by slight editing of

the MCMT specification files.

Roughly, our language is composed of two sub-languages: one for describing a safety prob-

lem (all keywords of this sub-language starts with ”:”) and one for describing (conjunctions

of) literals to be passed to the background SMT solver, which is Yices. Some familiarity with

the theoretical framework of array-based systems (see the papers [15],[13], [12], [16], [14])

could be useful (though not indispensable) when reading the rest of this document.

Remark. The main difference with respect to the previous 1.1 version is that in the

actual release MCMT is able to perform abstraction/refinement cycles, according to the

interpolation-based CEGAR paradigm [19], as adapted to array-based systems in [3]. In

addition, a specific form of acceleration for arrays [7] has been partially implemented. To

help the reader with the complexity of the MCMT syntax and of its options, we added an

appendix with a guided example: we recommend the reader to get familiar with it, before

writing his own specification files.

Warning. The parser of MCMT in its actual release should be able to catch the most

frequent errors. Since running the tool on syntactically incorrect files may cause an impre-

dictible behavior, the reader is invited to read carefully the instructions in Subsection 4.1

below concerning the use of MCMT parser.

4



2 Basic syntax

The basic MCMT syntax include types, index variables and array variables.

2.1 Types

Types that can be accepted by MCMT include nat, int, real, bool, i.e. natural, integer,

real numbers and booleans. New types can be declared by the user; for instance the line

:smt (define-type locations (subrange 1 8))

declares the type locations consisting of {1, 2, . . . , 8}. These finite interval types are partic-

ularly useful for defining program counter locations.1

2.2 Index variables

A specification file for MCMT defines an array based system: this is a formal model comprising

a set of indices INDEX and arrays defined on this set. INDEX typically represents the processes

of a distributed system or the cells of an array manipulated by a sequential program. Since

it is natural to associate with each element of INDEX a natural number (which is its identifier

/ its address), we identify INDEX with a subset of the natural numbers2 (typically INDEX is

finite, however nothing prevents INDEX from being the whole set of natural numbers).

MCMT uses the names

z1, z2, z3, . . .

for index variables;3 in addition there are three special index variables

x, y, j

whose use will be illustrated in the next section.

Since we identify INDEX with a subset of the natural numbers, we can use arithmetical

operations (like +) and predicates (like <,<=, 0) to write terms and literals concerning in-

dices. These should be valid Yices expressions, hence prefix notation is required; examples of

indices literals are

(= z2 z3), (not (= (+ z1 2) z2)), (< z1 z2).

1When defining these finite sets of locations as finite intervals of naturals, it is better to avoid the number

0 to be in the range of the interval (this might cause MCMT to be slightly slower - but still correct - because

0 plays a special role in the heuristics of the system).
2It is possible (although rather innatural) to define INDEX as a subset of another type by inserting in the

input file a line like :index <type-id>, where <type-id> is any valid type.
3There is a bound to 10 for the maximum number of index variables that may occur in a syntactic expression

(terms, atom, literal, and the like).

5



Notice that such literals concern not the indices themselves, but their correponding identifiers.

Thus e.g. (< z1 z2) means that the identifier of z1 is strictly smaller than the identifier of

z2 (and not that z1 is by itself smaller than z2 - the latter would not make sense).4

Remark. Subtraction as a binary operation is not allowed : you can use subtraction as

a unary operator in front of digits only. Thus (- z1 z2) is not correct, (+ z1 (* -1 z2))

should be used instead.

2.3 Array variables

Arrays are the most important data in array based systems, We distinguish between local

and global array variables. Local array variables are introduced by the declaration

:local <arrayvar-id> <type-id>

This line declares an array variable with identifier <arrayvar-id> whose elements are of

type <type-id> (the domain of the array variable is the implicitly declared type INDEX);

<arrayvar-id> must be a single character.

When an array is declared to be local, for different values of the indexes, the corresponding

elements of the array may be different. On the contrary, global array variables stand for

constant arrays and are introduced by the declaration

:global <arrayvar-id> <type-id>

Now for different values of the indexes, the corresponding elements of the array are constrained

to be identical.

Examples of array declarations are:

: local a locations

: local s int

: local w bool

: global v bool

Functional application in arrays is denoted by [-]; more precisely, if zi is an index

variable and a is an array variable identifier, a[zi] is a valid term of the codomain type of a.

Similarly, a[x], a[y], a[j] are valid terms too (recall that x, y, j are the three special

4For the sake of clarity, if you like, you can explicitly introduce a local array, call it say i, and think of it

as the array of the identifiers; in this way, you can write

(< i[z1] i[z2])

instead of (< z1 z2). Notice that different processes must have different identifiers, hence if you explicitly

introduce the array of identifiers, you must constrain it by a system axiom (see Subsection 3.5) explicitly

stating this injectivity condition.

6



index variables). These terms can be combined to form complex terms and literals according

to the standard operation/relations defined on the various types (see the documentation on

the Yices input language http://yices.csl.sri.com/language.shtml for more details).

With the above declarations, one can for instance write the following literals

(> s[z2] 3), (= (and w[z1] v[z4]) true), (not (= a[z1] 2)), (= s[z1] z2)

Other valid terms (of types int and bool, respectively) are for instance (+ s[x] 2) and (or

v[y], w[j]); the subtraction simbol must be used as a unary function symbol, thus e.g.

(- s[x] s[y]) is illegal and (+ s[x] (* (- 1) s[y])) must be used instead. Expressions

like s[1], s[2], . . . are not valid: instead of the atom (< s[9] 0), one must write the

conjunction of

(= z1 9) (< s[z1] 0)

which is syntactically correct (notice that the variables zi are always implicitly existentially

quantified, see next section).

REMARK. The limitation to one character in the array variables names is quite uncon-

fortable; however, if you type e.g.

: local w bool

: map back flag

then mcmt will use ‘flag’ instead of ‘w‘ in messages it displays to the user (instead of ‘flag’,

any string can be used). This can be very helpful for instance in understanding the meaning

of the invariants found by the tool, as well as in reading from report files the formulae

representing backward reachable states (see Section 4).

7

http://yices.csl.sri.com/language.shtml


3 MCMT specifications

Each line in an input specification file for MCMT must begin by a keyword preceded by a

colon. For instance, a line like

:comment <string>

represents a user comment about the array-based system and the safety problem being spec-

ified. The <string> is ignored by MCMT. On the contrary, when reading the line

:smt <string>

MCMT passes verbatim <string> to the SMT solver. Indeed, <string> is passed to the solver

with no syntactic check and hence <string> must be a valid Yices command. Impredictible

results are to be expected if this is not the case.

We already met an example of the use of the :smt command in the last section, when

speaking about user defined types. The :smt directive can be used to define function and

predicate symbols (these symbols can be either free or constrained by system axioms, see

below): to do that in the proper way, just respect Yices input syntax. The following line for

instance

:smt (define S::(-> nat nat bool))

defines a binary predicate S on natural numbers. After this declarations, literals like (S 2

z2), (not (S (+ z1 z2) 3)) will be valid.

3.1 Initialization

An array-based system must be initialized. In our specification files, initialization is con-

strained by a universally quantified formula. This is a compound command with the following

format:

: initial

: var <indexvar-id>

: cnj <list-of-quantifier-free-formulae>

There may be one or two occurrences of the keyword :var; <indexvar-id> must be the

special index variable x or the special index variable y.

The string <list-of-quantifier-free-formulae> is a finite list of quantifier-free formulae

(intended conjunctively, cf. the keyword :cnj), where only the variables declared by :var

should occur (although the parser, in the current release of the system, does not check this).

Such variables are implicitly universally quantified, so, for example, the logical reading of

8



: initial

: var x

: cnj (= a[x] 1) (= s[x] false) (= w[x] false)

is the formula (in Yices format)

(forall (x::INDEX)

(and (= a[x] 1) (= s[x] false) (= w[x] false)))

3.2 Unsafe states

∃I-formulae [12] are obtained by prefixing a string ∃z1 · · · ∃zn of index existential quantifiers

to a quantifier-free matrix φ (in φ only the variables z1, . . . , zn can occur free). An ∃I -formula

is primitive iff its matrix is a conjunction of literals and is primitive differentiated [13] iff it

is primitive and the matrix contains all disequations zi 6= zj for i, j = 1, . . . , n and i 6= j.

MCMT uses primitive differentiated formulae to represent (backward) reachable sets of states.

In such formulae, the disequations zi 6= zj are left implicit, in the sense that are always added

by the tool to the formulae introduced by the user or worked out by the tool itself during its

computations. Similarly, the external existential quantifiers are left as understood.

The first primitive differentiated formula that we meet in our input specification files is

the formula describing the set of unsafe states, i.e. the states we desire the system not to be

able to reach. Such a formula is introduced with a compound command as follows:

: unsafe

: var <indexvar-id>

: cnj <list-of-literals>

Here :var and <list-of-literals> is a list of literals that should obey the same constraints

as for the case of the :initial command (see above). However, here you must declare and

use the standard index variables z1, z2, z3, z4 instead of the special ones.5 Notice that

at most the first four index variables are allowed in the unsafe formula.

So, for example, the logical reading of

5 To keep compatibility with old MCMT 0.1 files, the use of x, y (but not of j) is tolerated. However you

can never mix standard and special index variables in the same formula.

9



: unsafe

: var z1

: var z2

: cnj (= a[z1] 7) (= a[z2] 5)

is the formula (in Yices format)

(exists (z1::INDEX z2::INDEX)

(and (not (= z1 z2)) (= a[z1] 7) (= a[z2] 5)))

If the set of unsafe states can be described by an ∃I -formula which is not primitive differ-

entiated, it is possible to rewrite such ∃I -formula as a disjunction of primitive differentiated

ones. In such a case, there is a special syntax for the second, third, etc. disjuncts: these can

all be introduced by single commands

:u cnj <list-of-literals>

For these formulae, there is no need of previous :var declarations and the index variables z1,

z2, z3, . . . can be used without any numbering restriction (but remind that MCMT cannot

manipulate more than 10 index variables at all). In case you use only :u cnj declarations and

omit the unsafe formula (i.e. if you omit the :unsafe declaration), MCMT works correctly:

it just adds false as a first unsafe formula.

REMARK. Notice that for unsafe formulae only lists of literals can be employed after a

:cnj or a :u cnj declaration; for initial formulae on the contrary, lists of arbitrary quantifier-

free formulae can be employed after the :cnj declaration. The reader should be careful with

such restrictions (violating them might cause troubles at runtime).

3.3 Transitions

Transitions describe how a system evolves: at each evolution step, one transition is non

deterministically chosen and executed, if possible.6

In an array-based system transition are composed by a guard and an update function.7

The guard is an existentially quantified primitive differentiated formula: MCMT accepts

6In order to avoid possible complaints by the MCMT parser, please insert transitions after all initial, unsafe,

system axioms, and suggested invariants declarations.
7 This is the format adopted in [13] and [16]; the format of [12] is more general, however examples that

can be formalized in the format of [12] can usually be formalized also in the [13]-[16] format if existentially

quantified variables for data are allowed (this topic will be covered in Section 7).

10



guards with at most two existentially quantified variables, which can be either x or y. The

update function is a case-defined function which is given in lambda-abstraction notation (the

lambda-abstracted variable must be j).

The format for a transition declaration is the following:

: transition

: var x

: var y

: var j

: guard <list-of-literals>

: uguard <list-of-literals>

· · ·

: uguard <list-of-literals>

: numcases <pos-int>

: case (= x j)

: val <term1-1>

: val <term1-2>

· · ·

: case <list-of-literals>

: val <term2-1>

: val <term2-2>

· · ·

· · ·

where

• :var y is optional (it is needed only for two-variables transitions), while :var x and

:var j are mandatory;

• the <list-of-literals> following :guard is the lists of literals that forms the body

of the guard of the transition;

• the lines starting with :uguard are optional and will be discussed in the next subsection;

• <pos-int> is a positive integer giving the number of cases of the case-definable function

specifying the update of the transition;

11



• the :cases specify, through suitable conjunctions of literals, the case-partition used in

the definition of the update function;

• each keyword :val is followed by a well-formed Yices term of appropriate type:8 this

term gives the updated value of corresponding array in the given case; the number of

:val keywords must be equal to the number of array declarations (thus, if e.g. 5 local

or global variables have been declared at the beginning of the file, we must have 5 :val

lines for each case of the partition).9

The <list-of-literals> following the :case keywords should represent all together

a partition, in the sense that the disjunction of such lists should be valid and all pairwise

conjunctions should be inconsistent. If the latter condition is violated, MCMT works correctly

(but may do redundant work); if the former condition does not hold, MCMT implicitly adopts

the stopping failures model (see below) and assumes all processes not satisfying any of the

specified cases to get crashed.

The first occurrence of the :case keyword must be followed by the single literal (= x j);

in case (= x j) is omitted in the first :case declaration, the system automatically makes the

correction (this means in particular that the first :case declaration can be followed by the

empty list of literals in the specification files). Similarly, in the second, third, etc. :case, the

system always adds implicitly the literal (not (= x j)) to the list of literals following the

:case keyword (in other words, the variable j always refers to a process different from x).

If the variables x, y have been declared both, the system assumes that they refers to

distinct processes, so you need not write (not (= x y)) in the guard (the guard is primitive

differentiated by default). However, no specific case is reserved to the update of y: if you

want to make a distinguished update for y, you must insert either (= y j) or (not (= y

j)) in all the :case distinctions (except of course in the first one, because (not (= y x)) is

assumed by default).

To summarize, let us give an example. The logical reading of

8In the term, only the declared variables can occur (i.e. we can have occurrences of x, j and also of y, in

case the transition has two existentially quantified index variables).
9 The MCMT parser checks that and gives an error message if case of a numbering mismatch. Notice that

global arrays must be consistently updated in all the cases of the case-distinction: this is left to the user’s

responsibility (mutually inconsistent updates would make the application of the transition inconsistent, but

MCMT can realize this only at runtime).

12



: transition

: var x

: var y

: var j

: guard (= a[x] 1)

: numcases 3

: case

: val 2

: val s[j]

: val w[j]

: case (= s[j] 1)

: val a[j]

: val s[j]

: val w[j]

: case (not (= s[j] 1))

: val 8

: val s[j]

: val w[j]

is the following

(exists (x::INDEX) (and

(= a[x] 1)

(= (a’ s’ w’) (lambda (j::INDEX)

(case of

(= x j) : (2, s[j], w[j])

(and (not (= (x j)) (= s[j] 1)) : (a[j], s[j], w[j])

(and (not (= (x j)) (not (= s[j] 1))) : (8, s[j], w[j])

)))))

where we indicated with a’, s’, w’ the updated arrays.

REMARK: Version 1.1 gives the possibility of declaring transitions with zero variables

in the guard: this is particularly useful when formalizing time elapsing transitions in timed

13



systems.To specify a zero variables transition just omit the :var x declaration (i.e. insert

only the :var j declaration before the guard). Notice that in a zero variable transition, the

first :case declaration of course is not reserved anymore to (= x j) and universal quantifiers

in the :uguard (see below) are not anymore relativized to (not (= x j)).

3.4 Universal quantifiers in guards

It is often useful to have a limited form of universal quantification in the guards. The kind

of universal quantification we are considering leads to guards of the kind

∃x (φ(x) ∧ ∀j ψ(x, j)) (1)

where φ, ψ are quantifier-free formulae (in φ only x occurs and in ψ both x and j can occur).

These guards lead outside the formalism of array-based systems, but there is a well known

(and good) way of circumventing the problem.

The solution is that of adopting the so-called stopping failures model:10. in the stopping

failures model, processes can crash at any time without any warning (see [18]). Adopting this

model in our setting [16], basically means to introduce an extra ‘crashed/non crashed’ flag and

an extra ‘crashing’ transition (the remaining transitions are modified so that crashed processes

cannot be active in the guards and can never be repaired). One can show that universal

quantifiers in guards like (1) can be removed if the stopping failures model is adopted. Since

all the above transformations are purely syntactic, MCMT performs them automatically, after

informing the user that the stopping failures model has been adopted (for details on these

trasformations and their implementation in MCMT, see [5]). Notice that a safety proof for

the stopping failures model implies a safety certification for the standard model too, because

the latter has fewer runs. In case an unsafe trace is discovered, however, the trace might be

spurious (and MCMT displays a further warning in this sense).

Now we show how to insert universal quantifiers in the guards of the transitions of our

specification files. The formula ψ(x, j) in (1) can be rewritten as a disjunction of conjunctions

of literals: these conjunctions of literals can be introduced one after the other by using the

keyword :uguard. Version 1.1.1 of MCMT had an important limitation: it did not support

universal guards in case of transitions with two existentially quantified index variables. This

limitation is dropped in the current version 2.0.

As an example, if you add (just right after the :guard entry) to the example transition of

10 This is quite close to the approximated model method employed in [2], [1].

14



Subsection 3.3 above the two lines

: uguard (= a[j] 1)

: uguard (= s[j] 3) (= a[j] 2)

the Yices formula representing the transition becomes

(exists (x::INDEX) (and

(= a[x] 1)

(forall (j::INDEX) (or (= x j) (= a[j] 1) (and (= s[j] 3) (= a[j] 2))))

(= (a’ s’ w’) (lambda (j::INDEX)

(case of

(= x j) : (2, s[j], w[j])

(and (not (= (x j)) (= s[j] 1)) : (a[j], s[j], w[j])

(and (not (= (x j)) (not (= s[j] 1))) : (8, s[j], w[j])

)))))

Notice that the extra disjunct (= x j) has been added because the tool always implicitly

assumes that x and j are distinct (it does not assume however that y and j are distinct, in

case there are two existentially quantified variables).

3.5 System axioms

An important feature of MCMT is the capability of exploiting user suggestions in order to

help or to speed up the verification process. We leave for Section 7 a thorough analysis of

these MCMT functionalities and we just show here how to insert universal axioms in the

specification files. The related format is

: system axiom

: var x

: var y

: var j

: cnj <quantifier-free-formula>

The limitation to at most 3 universally quantified variables (named x, y, j) is strict (you

can declare and use only the first one or the first two special index variables in case of system

axioms comprising just one or just two variables, respectively).

15



System axioms can be used to specify conditions on the system topology (e.g. that pro-

cesses are arranged as a partial order, as a forest, as a symmetric graph, etc.)11 or to specify

invariants which are aready known to the user.12 In case system axioms are not used to

describe system topology or to express known invariants of the system, they represent uni-

versal condition whatsoever imposed on the whole system, i.e. invariants which are forced

by the user. This way of imposing constraints on traces is however not entierely appropriate,

because MCMT uses such constraints just in satisfiability tests and the formulae passing the

tests are considered consistent as such: in other words, these formulae are not conjoined with

the instances of the constraints used in the satisfiability tests themselves (the consequence is

that spurious unsafety traces might be occasionally produced).

REMARK: in a system axiom, there is no implicit assumption that the quantified variables

x, y, j represent distinct indices, so MCMT is allowed to identify them in instantiations; this

is different to the policy used for the format of primitive differentiated formulae (transition

guards and unsafe formulae), where the variables z1, z2, ... are assumed to represent

distinct indices.

REMARK: it is not correct to use a system axiom to put a cardinality bound the sort

INDEX, see Subsection 7.7 for how to do this. The reason is that MCMT uses freely the index

variables z1, z2, ... and as soon as he feels he could need a new one, he permanently

assert that it is different from the previous ones.13

11 Formally, a system topology condition is a universal sentence where only symbols that are never subject

to update occur.
12For instance, if the user knows about a crucial property of the system but does not have yet a proof of

it, a good idea is to ask MCMT to check it. If MCMT (or another tool) succeeds, the property can then be

used as a system axioms in future verification tasks. When doing the negation conversion from checked unsafe

formulae to system axioms, keep in mind the remark below on variable differentiatedness.
13Technically, this means that the theory underlying the sort INDEX must be stably infinite. This restriction

is not due to the theoretical framework undelying MCMT, it is just an implementation simplification.

16



4 Running MCMT

The distribution of MCMT v.2.0 comprises two executable files (called mcmt and mcmtparser)

and a script (called mcmt strict). To run an MCMT specification file, type (from commend

line)

./bin/mcmt strict [options] <filename>

or

./bin/mcmt [options] <filename>

The arguments [options] are not mandatory.

4.1 Parsing facilities

The mcmtparser executable (supplied by R. Bruttomesso) just checks syntactic correctedness

of the input specification file; the script mcmt strict invoques first the mcmtparser and

then the core executable mcmt. It is strongly recommended to run the script mcmt strict on

input specification files whose syntactic correctedness has not been already certified (mcmt

can behave in an impredictible way if the input specification file is not correct). In addition

to the MCMT parser, two options are supplied for debugging:

-P activates a (slow but rather accurate) debugging procedure:suitable formulae are generated

and collected into a file named .yices-log; this file is submitted through system calls to

the type-check Yices routine. As soon as a parsing error is found, MCMT tells the user

where it is located and saves the related information into a file named .p error. The

option -P requires the installation of Yices executable in the path of your shell (Yices

executable can be dowloaded from Yices website http://yices.csl.sri.com/).

-y produces an executable file for Yices named .yices-log; if you have Yices installed, you

can run

yices -tc .yices-log

to detect syntax errors from your input file that should be located in the strings to be

passed to Yices.

4.2 Options

Each option has a short and an extended format, which are equivalent. We show here the

short format (type ./mcmt -h to see both formats).

-s disables most of the messages printed out by MCMT during the exploration of the search

space of the array-based system. It only outputs the final statistics (depth, number of

nodes, number of calls to the SMT solver, and number of invariants found - if any).

17

http://yices.csl.sri.com/


-b0 tells MCMT to apply a pure breadth first expansion of the tree nodes. According to the

framework explained in [12], [16], [13], MCMT applies backward search by computing

successive preimages of the unsafe configurations; in this way, it produces a search tree,

whose nodes are labelled by primitive differentiated formulae. We call ‘expansion’ of a

node the operation of computing its preimage, i.e. the successors of the node itself in

the search tree. In the default setting, MCMT first expands nodes labelled by primitive

differentiated formulae with one, then with two, then with three variables, etc. With -b0

option instead, nodes are expanded in the same order in which they are produced. We

point out that option -b0 might be much less efficient, but it produces a fair exploration

of the states space (the default option might be unfair in case termination is not ensured,

so it may occasionally cause the tool to run forever even when the system is unsafe).

-b2 With this option, nodes with n + 1 variables are not only not expanded but not even

produced at all before the tool has completed a full exploration of the nodes with n

variables. A further option -b3 is available (-b1 gives the default setting): this is the

same as the -b2 option but additional backward node subsumptions are tried.

-pN gives the reader the opportunity of setting to N the increment in fix-point tests (fix-point

tests are incremental so as to reduce the size calls to Yices whenever inconsistency can

be detected by analyzing just few initial nodes). The default value is 3.

-wN enables an incomplete ’convex’ heuristics for fixpoint tests after N nodes (expert use

only).

-f enables a flexible instantiation in fix-point tests (expert use only, see Section 7 for more

details).

-dN stops state space exploration after N nodes (N is a positive integer, default is 50000).

-DN stops state space exploration after having examined all traces of length at most N (this

is a bounded model checking option).

-e resumes previous state space exploration.

-F<filename> [to be used in combination with -dN, -DN - and subsequently with -e options]

when options -dN, -DN are used, MCMT produces a log file called status.txt:14 this

option gives the user the opportunity of giving the name <filename> to this file.

14This log file gives relevant information about the search space already explored, as well as about the

invariants found and the candidate invariants to be examined. Do not edit this file if you plan to resume the

search with the -e option.

18



-v0 asks the tool to produce anyway the log file status.txt before exiting; it also causes the

tool to print on the screen the undeleted primitive differentiated formulae representing

backward reachable states on exit.

-vN (with N > 2) activates the interactive printing of node expansions; -v2 prints some more

information concerning abstraction/refinement loop.

-E this option helps debugging for developers, but it is supplied to normal users too. Its

usage is the following: run the file with option -v0; then, if you get a SAFE answer,

you can double-check the correctedness of the answer by re-running the same file with

option -E.

-SN sets the simplification level (N=0 : none , N=1 : lazy, N=2 : eager, N=3 : eager with

eager real quantifier elimination whenever needed). From 1.1 version, a further option

N=4 is available: with this option, the tool tries aggressive semantic redundancy tests

in order to eliminate subsumed literals in primitive differentiated formulae.

-r <filename> makes MCMT produce two output-files:

• <filename>.report.tex containing a description (in latex format) of how the

symbolic search space has been traversed to solve the safety problem. This file is

ready for latex compilation (however, recall that latex may complain if identifiers

containing special characters like ’ ’ or ’$’ are used in specification files, even in

the lucky case that such identifiers do not cause problems to MCMT).

• <filename>.report.dot containing a figure (in dot format)15 of the symbolic

search space traversed by MCMT to solve the safety problem.

REMARK (about pictures from .dot file). It may be the case that the arcs connecting

two distinct nodes n1 and n2 with a father node n0 have the same label L: the meaning

is that the formula labelling n1 has been obtained by applying the same transition (on

the same variable) as that applied to obtain n1; the only difference is that cases of the

update-by-cases function have been applied in a different way.16 This situation can be

disambiguated by looking at how the nodes are created in the .report.tex file.

15 The dot format can be read by the GraphViz tool, which is available free for many platforms at the address

http://www.graphviz.org/. Using this tool you can export the graphs produced by MCMT in various format

(e.g. pdf) so that they can be included in latex documents.
16Notice that this is well possible, because MCMT makes a backward search analysis (if read from backward,

the update function is not deterministic because it is the converse of a function).

19

http://www.graphviz.org/


Nodes in gray (that should only occurr as leaves) have been deleted by the backward

redundancy elimination heuristics which has been implemented in version 0.2.1 (and

superior) of the tool.

4.3 Invariant search options

In this subsection, we list command line options that are related to a powerful MCMT func-

tionality, namely invariant search. An important remark is in order here. By invariant we

mean in this document just trace invariant, i.e. any property which is enjoyed by all reachable

states. Full invariants (also called inductive invariants and sometimes simply ’invariants’ in

the literature) are properties which are enjoyed by the initial states and preserved by the

system evolution. When trying to prove a trace invariant, MCMT in fact completes it to a

stronger statement (which will be a full invariant) by disjoining it with further properties it

finds during its computations.

-i1 enable a minimal heuristic for invariant search. MCMT tries to find invariants consisting

of one universal quantifier followed by a disjunction of literals. In particular, it tries

to find invariants modelling the relationships between the values stored in the program

counter and the other local variables.

-i2 same as above, but invariants with two variables are searched for.

-i3 now both invariants with one and two variables are searched for.

-c enables abstraction of numeric constants arising in backward reachability search.

-a similar to -i3, but invariant search is now more aggressive, involves quantifier elimination

and abstracted indexes are projected away; this option may be combined with signature

abstraction (see Section 7).

-I same as “-i3 plus -c plus -a” (the latter with dynamic signature abstraction). It is the

most aggressive setting for invariant search: it gives MCMT more chances to find useful

invariants but at the same time it might considerably slow down the tool.

More information about invariant search will be supplied in Section 7.

4.4 Displayed information

If not run in silent mode, mcmt displays some information about heuristics, reachable states

formulae, trace invariants found, and statistics. We give here few explanations about node

20



representation. The meaning of the displayed line

node19 = [t5 2 3][t6 2][t7 2][t6 1][t7 1][0] (2)

is that mcmt is considering a formula describing a set of states that can reach an unsafe

state by executing transitions t5, t6, t7, t6, t7 in this order. This formula is primitive

differentiated and has three quantified variables, that is it is of the kind ∃z1,∃z2∃z3ψ (to see

the formula, you must inspect either the Yices file produce by the option -y or compile the

Latex file produced by the option -r). It is possible to realize that the formula has three

quantified variables by the fact that 3 is the maximum number occurring in (2) following

an underscore. More precisely, to get an unsafe state from a state satisfying our formula

∃z1, ∃z2∃z3ψ one first applies transition 5 to z2, z3, then transition 6 to z2, etc. (when we say

that transition 5 is applied to z2, z3, we mean that transition 5 has two exitentially quantified

variables x, y in its guard and that x is mapped to z2 whereas y is mapped to z3). Notation

(2) is rather informative, but it is slightly incomplete because it does not mention which

case in the case-defined update functions applies to each variable: displaying this information

too would result in a rather cumbersome outcome, so in case of ambiguity it is necessary to

consult the full information supplied by files produced by the options -y, -r.

The remaining messages displayed by mcmt should be self-explaining. We just point

out that mcmt supplies warnings for the only two cases where un unsafe outcome might be

spurious:17

• the stopping failure model has been adopted (because of universal quantifiers in transi-

tion guards), hence the unsafety trace can in principle be good for the stopping failures

model but not good for the intended model;

• due to incomplete implementation, quantifier elimination of integer data variables occur-

ring in the guards have been done imprecisely by overapproximating the set of backward

reachable states.

In particular, if neither universally quantified index variables (see Subsection 3.4) nor exis-

tentially quantified data variables (see Subsection 7.6) occur in the guards, unsafety traces

are not spurious.

In case an unsafe trace has been found, this means that the last displayed formula (2) is

consistent with the initial formula. To get an assignment describing a state that can reach an

unsafe configuration, run Yices with the option -e on the file .yices-log produced by the

17Keep in mind that there might be a third case, due to syntax errors in the strings forwarded to the SMT-

solver. These can only be caused by syntax errors in the input file. To avoid this misbehaviour, use the script

mcmt strict (see also Subsection 4.1 for debugging facilities).

21



mcmt option -y and take the last assignment displayed by Yices. In case a spuriousness risk

have been warned, it is possible to check spuriousness of the trace, but this can only be done

manually in the present release of the tool.

22



5 Abstraction/Refinement Mode

The main novelty of version 2.0 is the support for abstraction/refinement loops. This is

based on predicate discovery via interpolation [19], as adapted to array-based systems in [3].

In particular, interpolants are computed via abstraction over lists of terms (according to

the so-called term abstraction heuristics implemented also in SAFARI [4]); for the lack of

interpolants support in the background SMT-solver Yices, interpolants are computed via

some ad hoc form of quantifier elimination applied to fresh variables replacing the terms to

be abstracted away.

From the point of view of the user, to activate abstraction/refinement one needs to operate

on the command line and (optionally) also on the specification file. For command line, we

have three options.

-AN (where N is a natural number): this is the basic option, the number N puts a bound on

the number of times a node is refined (with N set to 0, a practically unlimited number of

refinements is applied, but refinement is applied in a lazy way). In practice, values like

N = 5, 6, . . . , 10 are recommended. Nodes are abstracted by eliminating terms in the

abstraction lists one after the other, until trace unsatisfiability persists. In presence of

an unsafe trace discovered during backward search, the abstraction operation is repeated

with more information, yieldying lighter abstractions: in this way a node can be refined

more and more.

-BN (where N is a natural number): this option is similar to the previous one; the difference

is that the covering test is here less aggressive (this option does not seem to give real

benefits).

-CN (where N is a natural number): this option produces an overhead aiming at making a

preliminary investigation about soundness of a proposed abstraction. If the proposed

abstraction is found to lead to a spurious unsafety trace, it is disregarded; if it leads to an

invariant, the tool adds it to its list of known invariants. If the preliminary investigation

about soundness of the proposed abstraction is inconclusive, the tool proceeds as with

option -AN. To explore soundness of proposed abstractions, the tool makes a copy of

itself with bounded resources, using the same resource parameter bounds as for invariant

search.

mcmt has its own default heuristics to generate term abstraction lists; this default heuris-

tics (that basically includes symbolic parameters and global variables used as iterators) is

sufficient to solve basic problems, but for more difficult problems a human intervention is

23



desirable.18 The human intervention consists in introducing appropriate term abstraction

lists in the specification file. In case this happens, the default heuristics for generating such

lists is disabled automatically.

Term abstraction lists can be relative or absolute (the list generated by the default heuris-

tics is always absolute). Absolute lists are introduced in the specification file through the

instruction

:term abstraction list <term1> · · · <termk>

where <term1>,...,<termk> are terms. For instance

:term abstraction list a length, b[z1], c[z1]

tells MCMT to abstract out, in the order, a length, b[z1] and c[z1] (here a length

could be a constant of type int introduced via a definition passed to the SMT solver). It is

advisable (although not mandatory) not to include in the list terms like a[z1] if a has been

declared to be local; index variables like z1 should also preferably not included.

The instruction for relative lists is

:term abstraction list N <term1> · · · <termk>

where N is a natural number bigger than 0. The meaning of the above relative term abstraction

list is that it guides abstraction only for formulae that are obtained as preimages along the

transition number N (transitions are numbered as they are introduced in the specification file,

starting from 1). An absolute term abstraction list might coexist with some relative ones:

in that case, the abslute list applies to preimages along transitions for which there are no

relative lists.

It is possible to introduce in the specification file just one absolute empty term abstraction

list: this has some effect in combination with array acceleration (see below).

18 It should be pointed out that appropriate terms for term abstraction lists are usually terms already present

in the specification file and quite often the good combination is a relative combination of symbolic parameters

(like array lengths, etc.) and iterators. Thus, some parallel execution of different combinations obtained by

suitable heuristics is likely to get the right setting automatically, if such setting exists.

24



6 Acceleration

Acceleration, in the model checking terminology, is the computation of the transitive closure

of a transition. MCMT supports two limited forms of acceleration: the former applies to

integer variables, the latter to array variables. The former is a very weak version of well-

known formats for acceleration, the latter is peculiar to MCMT. Acceleration is activated as

follows. If you write

:accelerate transition n. k

the system tries to accelerate the k-th transition. Integer acceleration is tried first and, in

case it fails, array acceleration is tried too. Writing

:accelerate all transitions you can

causes MCMT to try to accelerate all transitions; the same effect can be obtained through

the command line option -Z. The directive

:display accelerated transitions

forces MCMT to print on the screen the accelerated transitions it finds.

In case acceleration succeeds, the original transition is replaced by the accelerated one in

the integer acceleration case, whereas in the array acceleration case the accelerated transition

is just added to the set of the current transitions. The user is informed about the success

of the acceleration operation (nothing is said in case of failure). It is important to know

that MCMT can only accelerate single transitions in the present release: to accelerate cycles,

the user must manually compute the composite transition of the cycle, insert it as a further

transition in the specification file, and finally ask MCMT to accelerate it.

Another severe limitation comes from the fact that acceleration - as implemented in the

current release of MCMT - is quite rigid from the syntactic point of view: if the formats

described below are not strictly matched, the tool does not recognize acceleratability and

consequently ignores the acceleration suggestions.

6.1 Integer Acceleration

This form of acceleration can be useful for instance when analyzing Petri nets reachability:

the framework implemented in MCMT is roughly the same as that described in [8] (for good

updated information on acceleration in linear integer arithmetic, see [9]).

Integer acceleration succeeds in case: (i) the transition has an existentially quantified

guard containing only one existentially quantified index variable (that must be x, according

to our conventions from Subsection 3.3); (ii) only literals of the kind (>= a[x] N) and (<=

a[x] M), where M, N are integers and a is an array variable occur in the guard; (ii) all

local array variables a[j] are incremented/decremented by a constant value in the (= x j)

25



case and left unchanged in the (not (j = x)) cases; (iii) all global variables are similarly

incremented/decremented.

6.2 Array Acceleration

Array acceleration applies to local simple ground assignments in the terminology of [7]. How-

ever, one must keep in mind that the peculiarity of MCMT input language determines a

syntactic revisitation of the notion of a local simple ground assignment: the main problem

is due to the fact that MCMT language is dereference flat, i.e. it does not accept terms like

a[t] in case a is an array variable and t is a term different from an index variable zi. To

cope with this problem, we give a careful description of what transitions MCMT considers

local simple ground assignments. The conditions are the following ones:

• the transition must have two update cases (corresponding to (= x j) and to (not (=

x j)));

• the guard must contain a literal like (= x I[x]), where I (the ‘iterator’) must be a

global variable of type int;

• in the (not (= x j)) case, all arrays must be updated identically, except I;19

• the update of the counter must be an increment (or a decrement) by one.

The acceleration of a local simple ground assignment contains universal guards [7], hence

by default it is treated according to the stopping failure model. However, accelerated transi-

tions are in principle not needed to discover unsafety and MCMT, when it runs in abstraction

mode, knows it and consequently treats the preimages computed via array accelerated transi-

tions as abstractions (to be refined to false) in case spurious traces arise. However, in normal

mode, MCMT does not distinguish between accelerated transitions and non-accelerated ones:

thus, if it exits with an unsafe outcome, it invites the user to repeat the experiment in ab-

straction mode, to see whether the unsafety trace is persistent or not. When repeating the

experiment, it is sufficient to use empty term abstraction lists: the mere fact that it is run

in abstraction mode causes MCMT to build the data structures for refinement, so that it

is ready to react properly if spurious traces arise in consequence of accelerated transitions.

Notice however that, the overhead caused by the extra data structures for refinement may

slow down the tool, so that it is not a bad idea - as a first approximation - to run the tool

in normal mode even when transition accelerations are planned (one should simply keep in

mind that an unsafe outcome is not conclusive within this setting).

19 When we say ‘identically’, we means ‘syntactically identically’, i.e. the update of the array, say a, must

be the string :val a[j].

26



Besides universal guards, there is another reason why computing preimages along array

accelerated transitions may lead to overapproximations: in fact, array accelerated transitioons

introduce an extra existentially quantified index variable [7]. Since MCMT dereference flat

language already uses more existentially quantified index variables than strictly needed,20

the tool tries to eliminate these extra variables via quantifier elimination. The algorithm for

elimination of such variables is very rough (see Subsection 7.6 below) and might frequently

cause overapproximations. Again, this is not a problem in abstraction mode (because the

tool knows how to make refinements); it is a problem in normal mode, where the tool exits

just informing the user that it was not able to perform a precise quantifier elimination. In the

latter case, the obvious suggestion is to re-run the tool in abstraction mode (possibly with an

empty term abstraction list).

6.3 User-Defined Accelerations

Non-simple local ground assignments cannot be handled by MCMT in the present release,

because their accelerations yields not only transitions with universal guards, but also transi-

tions that cannot be translated into a dereference flat language.21 However, this is not always

the case. If the user realizes that a transition can be accelerated and that the accelerated

transition fits MCMT language - independently on the fact whether the tool is able to realize

it or not, it can include the accelerated transition in the specification file using the keyword

:a transition

instead of :transition). In normal mode, the transitions introduced with the keyword

:a transition will be treated as the standard ones; in abstraction mode, the tool considers

them just a machinery to introduce abstractions, hence their applications are canceled every

time they originate spurious unsafety traces.

20 Such variables are indeed used in a pervasive way to flatten undesired terms like a[t].
21 On the other hand, preimages along such transitions can be expressed in the dereference flat language, so

additional implementation effort might overcome the actual limitation to local simple ground assignments.

27



7 Advanced Settings

In this section we explain some important settings of MCMT that can be obtained by includ-

ing special instructions in the input specification file (sometimes such instructions must be

combined with appropriate command line options).

7.1 Bounds

Quite often, in sequential programs, iterators are used to scan the content of an array. In

these cases, some obvious invariants holds: for instance, the value of an iterator I is always

smaller than a symbolic parameter N expressing the size of the array, or it is bigger than

another iterator J , etc. These iterators are modeled via global array declarations; symbolic

parameters are introduced via :smt commands. The instruction

:determine bounds

causes MCMT to investigate whether such obvious invariants hold, via a bounded resource

invariants investigation. In case they hold, they are used in satisfiability tests and they are

also added to the guards of the relevant transitions to improve the quality of refinements (if

the tool is working in abstraction/refinement mode).

7.2 Interaction

MCMT allows some form of interaction. If you write in the input file

: suggested negated invariants

: var z1

: var z2

: cnj <list-of-literals>

· · ·

: cnj <list-of-literals>

: end of suggested negated invariants

MCMT tries to prove the suggested invariants. In case it succeeds, it will use them later on

in all consistency tests. The lists of literals can contain at most the variables z1, z2.

Notice that if you want to check the universally quantified invariant ∀z1∀z2C (where C is a

clause) you must enter the literals corresponding to the negation of C. The universal closures

of the negations of the formulae you enter need not be inductive invariants: MCMT will try by

itself to complete them to inductive invariants (e.g. if you enter a property which refers to a

28



precise location, MCMT will propagate it automatically to other locations, if needed). Hence

the :suggested negated invariant block of instructions is particularly useful to insert code

annotations in the specification files. To this aim, notice however that there is an alternative

choice, namely that of using multiple unsafe states descriptions (see the :u cnj keyword,

Section 3): the two choices are declaratively but not procedurally equivalent. In the case

of suggested negated invariants, MCMT tries to check the suggested invariants one after

the other, with bounded resources: in case it does not succeed or it only partially succeed,

it will nevertheless proceed to the task of verifying the unreachability of the main unsafe

configuration. On the contrary, in case of multiple unsafe states descriptions, it will check

unreachability of the declared unsafe configurations all together (and will report unsafety in

case at least one of them is reachable).

7.3 Bounded Resources in Invariant Search

When trying to check that a candidate invariant is indeed a true (trace) invariant, MCMT

has only bounded resources at its disposal. This is because invariant synthesis can be ex-

pensive and can easily fail. The user can modify these resources by specifying his preferred

bounds in the input file (these user defined bounds will be used in all the command line

options involving invariant search, namely -i1, -i2, -i3, -c, -a, -I, -CN as well as in

the :suggested negated invariant block of instructions above). The following table sum-

marizes the directives about resource bounds in invariant search that can be introduced in

the input MCMT specification files:

Directive Def. Value Explanation

: inv search start N [def N=0] begin invariant search

after node N

: inv search max index var N [def N=5] no more than N variables

can arise in invariant search

: inv search max num nodes N [def N=150] no more than N nodes

can arise in invariant search

: inv search max num invariants N [def N=200] find at most N invariants

: inv search max num cand invariants N [def N=500] try at most N candidate

invariants

Notice that if the preassigned bounds are not sufficient, search is interrupted and the

candidate invariant is discarded.

The directive

: inv search only candidates

29



asks MCMT to generate candidate invariants without checking (and hence without using)

them. This can be useful (in combination with the command line options -dN, -e) in shell

scripts running many copies of MCMT in parallel.

7.4 Global Transitions

A transition is said to be global iff its update does not modify the values of the local array

variables and in its guard the only terms that occur are of the kind b[z1], where b is global.

Knowing that a transition is global simplifies MCMT backward search. In the present release,

the tool does not check whether a transition is global or not, however the user can tell it to

the tool by using the keyword :g transition (instead of :transition) when introducing

a global transition. It should be underlined that the correctedness of such information is

entierely left to the user’s responsibility (the tool does not check it). However, it is possible

to run with option -v0 and, in case of a safety certification, to re-run with option -E: since

the latter disregards global transitions specifications, a mistake in such specifications might

be discovered.

7.5 Signature Abstraction

Predicate abstraction is a powerful technique in model checking. The current release of MCMT

implements it in full CEGAR style. A more primitive (but still useful) abstraction technique

inherited from older versions of the tool is still available and works as follows. MCMT can

project (during invariant search) the candidate invariants it finds and their preimages over a

subsignature indicated by the user. This restricts the search and enhance the possibility of

finding good invariants.

To specify the abstract signature, type

: abstract signature

: subsignature k

: subsignature l

: subsignature m

· · ·

: end of abstract signature

in the input file. Here k, l, m, ... are either 1 or 0 depending on the fact you want or

you do not want the corresponding array to be abstracted away (you have one line per array,

following the array variables declaration order). Writing just

30



:dynamic signature abstraction

you leave MCMT to find automatically the closest signature for abstraction when examining

each candidate invariant.

Notice that all the above directives about signature abstraction are effective only when

combined with the command line otions -a, -I.

7.6 Elimination of quantified variables

To model real-time systems in the timed automata style, existentially quantified (real, integer)

variables for data may be used in guards. These variables are not envisaged in primitive

differentiated formulae, hence they must be eliminated.

Existential variables to be eliminated are introduced in MCMT as follows. First, before

writing any transition, you must declare such variables as

:eevar <char> <type-id>

where <char> is a single character (the name of the existentially quantified variable) and

<type-id> is either real or int (in case the type specification is missed, the variable is

assumed to be real).

The name of the existentially quantified (integer, real) variable is thus fixed for all the

transitions; you can declare both an integer and a real variable, but they should have different

names and cannot be used in the same transition together. Existentially quantified integer

or real variables must occur only in atoms written in the language of linear arithmetic and

they are not allowed in negative literals.22

Once the preimage of the formula representing a set of states is computed, the real variable

is eliminated by using Fourier Motzkin quantifier elimination. As to the integer variable,

the situation is more complex because MCMT does not support yet full integer quantifier

elimination. The procedure applied instead is the following. First, integer literals like (< t

u) are replaced by (<= (+ t 1) u). After that, Fourier Motzkin is used: the user is informed

that the set of backward reachable states obtained in this way is overapproximated and, in

case an unsafe trace is found, he is warned once again about the fact the trace could be

spurious because of overapproximation. Notice however that in some trivial cases, Fourier

Motzkin and integer quantifier elimination agree: in such cases, there is no overapproximation

at all and no overapproximation warning is displayed.

Overapproximations of integer quantifier elimination are employed during invariant search

too: however, no warning is displayed there because invariants are fully checked before being

used (in other words, the overapproximation may cause the failure of the synthesis of some

22This is not a real expressivity limitation, because instead of a guard containing, say (not (= e a[x])),

you can write two transitions containing only <=, <, >=, > in their guards.

31



invariant, but does not affect the correctedness of the final MCMT outcome). Similarly,

quantifier elimination due to accelerated transitions may cause overapproximation; again, this

does not cause troubles in abstraction/refinement mode (where spurious traces are detected

and eliminated); it may cause problems in plain mode, but then a warning is displayed to

the user, which is invited - in case of an UNSAFE verdict - to re-run the same problem in

abstraction/refinement mode.

7.7 Cardinality bounds

If a parametrized problem looks too difficult, one can try to verify it in special cases by

imposing a cardinality bound on the sort INDEX. This cannot be done by a system axiom (by

internal implementation reasons), but there is the possibility of specifying such a bound in

the input file by typing

:max domain cardinality N

where N is a number like 3, 4, 5, etc. (do not use values greater or equal to 10, because

the tool exits automatically when he realizes he needs more than 10 variables to solve the

problem, hence a value bigger than 10 would have no practical effect).

7.8 Key search

We made little experiments on using MCMT in planning problems. It seems that there are a

couple of options that could be useful in such contexts (but it is rather obvious that MCMT

would need substantial enrichment to perform well on such problems). First of all, one can

disactivate forward redundancy tests for formulae describing backward reachable sets of states

by typing

:no backward simplification

in the input file. A much more useful option seems to be the possibility of classifying the

formulae describing backward reachable sets of states (whenever possible) according to the

value of a global variable. This can be achieved by typing

:key search g

in the specification file (here g should be a previously declared global array variable). If the

list of the formulae describing backward reachable sets of states is quite big, this strategy

alllows a more efficient access to that list during fixpoint tests.

7.9 Variable redundancy

Despite the fact that MCMT is quite optimized in this sense, it is sometimes possible that

redundant existential variables are produced during backward search: such variables could be

32



easily eliminated in case they have an explicit definition of the kind ∃zi (zi = t∧· · · ). MCMT

can be forced to look for the possibility of such elimination by the directive

:variable redundancy test

Notice that this variable elimination procedure is always precise (it does not cause overap-

proximations), but may occasionally have undesired consequences on heuristics for invariant

search, especially in presence of global array variables.

In abstraction/refinement mode it might happen that variables previously eliminated can-

not be eliminated anymore after a refinement: in such cases, MCMT adopts the drastic

solution of rebuilding from skratch the search tree below the node that caused the problem.

7.10 Restricted Instantiation

One of the key features of MCMT is full quantifier handling; this requires full instantiation,

in the sense that quantified variables are instantiated in all possible ways during satisfiability

tests (instantiations are optimized by powerful but nevertheless complete heuristics). Full

instantiation prunes search space dramatically, but can be expensive. For this reason, the

user is given the possibility of limiting it, especially in the final phases of the backward search

computation. Typing in the input file

:flex fix point fixed index var N

:flex fix point active node number M

and using the option -f from the command line, the standard algorithm of MCMT is modified

as follows. After node M has been reached, the first N variables are always instantiated iden-

tically in satisfiability tests for fixpoints. If values for M, N are not given in the specification

file and the command line -f is used, MCMT employs the default values M=2 and N=50.

7.11 Memory reset

For difficult problems, it empirically turns out to be useful to reset the SMT solver from time

to time, in order to prevent out of memory runs. This is achieved by the following directives:

Directive Def. Value Explanation

: start reset N [def. N=375] after N nodes the SMT solver is

periodically reset ...

: reset ratio M [def. M=75] ... with ratio M

: intensive reset P [def. P=30000] after P nodes the ratio becomes 1

33



8 How to deal with ...

In this section, we give a couple of suggestions for formalizing some important subclasses of

problems.

8.1 Strictly numerical systems

We call strictly numerical systems the array based systems in which all array variables are

global. These systems correspond for instance to programs manipulating pure arithmetical

variables and no array at all. We must say that MCMT is not structurally tailored to handle

such problems and is far from being optimized for them; however it can accept such specifi-

cations too. In order to relatively improve its performances on such kind of problems, it is

better to avoid case distinctions at all when writing the update functions.

If all array variables are global, MCMT models runs where N identical processes execute

the same updates; however if case distinctions in the update functions are abolished, MCMT

models runs where actually one process is working and the other ones are all crashed (see

the stopping failures model of Subsection 3.4). There is no real difference between the two

models (they are trivially bisimilar because all array variables are constant), however the

second model is computationally better behaved because adopting it MCMT does waste time

in continuously adding the second quantified index variable and then realizing it was not

needed.

In practice, we suggest the following format for transitions in case all array variables have

been declared to be global:

: transition

: var x

: var j

: guard <list-of-literals>

: numcases 1

: case

: val <term-1>

: val <term-2>

· · ·

In addition, we suggest to keep into consideration the possibility of indicating an abstract

signature and of accelerating some transitions in order to avoid trivial divergency sources.

34



8.2 Channels

In many distributed system specifications, communication channels arise: in these specifica-

tions, one can express for instance the fact that process p has sent an ack to process q by

saying that ack is the location of the channel with source p and target q. If it is implicitly

assumed that there is a communication channel between any two processes whatsoever, the

most natural modeling of this setting would employ 2-dimensional arrays, but unfortunately

MCMT does not support 2-dimensional arrays in the present release. We explain here the for-

malization we used in some examples of the distribution: this formalization produces models

which are slightly more general than the intended ones, however they seem to behave properly

in the applications.

The idea is that the type INDEX is reserved to channels; channels have a source and a

target and processes are identified with channels whose source and target coincide. To get

this, it is sufficient to introduce two free function symbols23

:smt (define S::(-> nat nat))

:smt (define T::(-> nat nat))

We need to know whether an index variable refers to a process or to a channel. To this

aim, we introduce a unary predicate P (for “being a process”) and leave the system axiom

: smt (define P::(-> nat bool))

: system axiom

: var x

: cnj (= (P x) (= (S x) (T x)))

to define it appropriately. Another system axiom says that targets and sources are processes

and not channels

: system axiom

: var x

: cnj (and ((P (S x)) (P (T x)))

A further system axiom might be used in case we want to ensure that channels having

the same source and target are identical:

23Alternatively, one could introduce two local arrays with values in the type nat and never update them in

the transitions.

35



: system axiom

: var x

: var y

: cnj (=> (and (= (S x) (S y)) (= (T x) (T y))) (= x y) )

As claimed above, this setting represents an approximation of 2-dimensional arrays which

should be sufficient to address safety problems in specifications involving channels. We expect

that a future direct implementation of 2-dimensional arrays will produce considerable gain

both in expressivity and in efficiency.

36



9 Appendix A: a guided example

The following ‘initialize-and-test’ example is quoted as problematic for CEGAR techniques

in [17] (we show how we can handle it with MCMT):

for(I=0; I!= a length; I++) a[I]=0;

for(J=0; J!= a length; J++) assert(a[J]==0);

We first translate the above pseudo-code into a high level formalism speaking of transitions

(this is, roughly speaking, into the formalism of array-based systems). We need two integer

variables I, J , a program counter p and an array variable a. We have five transitions:

τ1 =

 p = 1 ∧ I < a length ∧ p′ = 1 ∧

I ′ = I + 1 ∧ J ′ = J ∧ a′ = wr(a, I, 0);


τ2 =

 p = 1 ∧ I ≥ a length ∧ p′ = 2 ∧

I ′ = I ∧ J ′ = 0 ∧ a′ = a;


τ3 =

 p = 2 ∧ J < a length ∧ a[J ] = 0

p′ = 2 ∧ I ′ = I ∧ J ′ = J + 1 ∧ a′ = a;


τ4 =

 p = 2 ∧ J < a length ∧ a[J ] 6= 0

p′ = 4 ∧ I ′ = I ∧ J ′ = J ∧ a′ = a;


τ5 =

 p = 2 ∧ J ≥ a length ∧ p′ = 3 ∧

I ′ = I ∧ J ′ = J ∧ a′ = a;


The system is initilized by p = 1∧I = 0 and the unsafe condition is unreachability of location

3, namely it is represented by the formula p = 4.

To produce a MCMT specification file, we define the subtype of locations, we introduce

the symbolic parameter a length and we declare the array variables (it is a good practice and

important for some heuristics to declare the program counter as the first variable):

:smt (define-type locations ( subrange 1 4))

:smt (define a length::int)

:global p locations

:local a int

:global I int

:global J int

The array a cannot be empty, hence its length is not 0; we express this via a system axiom:

:system axiom

:var x

37



:cnj (< 0 a length)

We now introduce initial and unsafe formulae:

:initial

:var z1

:cnj (= I[x] 0) (= p[x] 1)

:unsafe

:var z1

:cnj (= l[z1] 4)

For transitions, we must keep in mind that MCMT language is dereference flat, hence we are

not allowed to write use terms like a[I]; we can however flatten such terms by introducing

existentially quantified variables. Thus, our transitions are written as follows:

: comment Tau1

: transition

: var x

: var j

: guard (= p[x] 1) (< I[x] a length) (= I[x] x)

: numcases 2

: case (= x j)

: val p[j]

: val 0

: val (+ I[j] 1)

: val J[j]

: case (not (= x j))

: val p[j]

: val a[j]

: val (+ I[j] 1)

: val J[j]

38



: comment Tau2

: transition

: var x

: var j

: guard (= p[x] 1) (>= I[x] a length) (= I[x] x)

: numcases 2

: case (= x j)

: val 2

: val a[j]

: val I[j]

: val 0

: case (not (= x j))

: val 2

: val a[j]

: val I[j]

: val 0

: comment Tau3

: transition

: var x

: var j

: guard (= p[x] 2) (< J[x] a length) (= J[x] x) (= a[x] 0)

: numcases 2

: case (= x j)

: val p[j]

: val a[j]

: val I[j]

: val (+ J[j] 1)

: case (not (= x j))

: val p[j]

: val a[j]

: val I[j]

: val (+ J[j] 1)

39



: comment Tau4

: transition

: var x

: var j

: guard (= p[x] 2) (< J[x] a length) (= J[x] x) (not (= a[x] 0))

: numcases 2

: case (= x j)

: val 4

: val a[j]

: val I[j]

: val J[j]

: case (not (= x j))

: val 4

: val a[j]

: val I[j]

: val J[j]

: comment Tau5

: transition

: var x

: var j

: guard (= p[x] 2) (>= J[x] a length)

: numcases 2

: case (= x j)

: val 3

: val a[j]

: val I[j]

: val J[j]

: case (not (= x j))

: val 3

: val a[j]

: val I[j]

: val J[j]

40



Finally, for specification files formalizing imperative programs using iterators to scan arrays,

it is advisable to use the heuristics

:variable redundancy test

in order to avoid the introduction of redundant existentialy quantified variables.

Our specification file is now ready. If we run MCMT without options, the tool clearly

diverges; static invariant generation or static abstraction options (like -I, -a) seem not to

help. Thus, we must use abstraction mode and/or acceleration.

Let us try first with abstraction mode; the options -A5, -B5 (or similar) seem inconclusive;

option -C5 solves the problem and certifies safety, but it takes a while to conclude (about

15-20 sec. on a standard laptop). We’ll see how to get good performances with acceleration

below. For the moment, let us point out that if we want more information from the tool, we

can use options

-C5 -v0 -S4

together. Thanks to option -v0, we get a file status.txt reporting exit data and MCMT

prints on the screen (the negation of) the invariant it found. Such invariant is logically

equivalent to the expected one, namely

p 6= 4 ∧ (p = 1→ ∀z (z < I → a[z] = 0)) ∧ (p = 2→ ∀z (z < a length→ a[z] = 0)) (3)

(notice that such invariant contains a universally quantified variable). The option -S4 makes

the formulae written by the tool much more readable (it is an aggressive semantic redundancy

test for literals), but it might produce a considerable overhead, like in our case.

Let’s now consider aceleration. To make aceleration effective, one usually has to compute

compound cycles and insert them in the specification file as further transitions (such procedure

can be automatized, but it is not even partially implemented in the current release). Our

case is lucky, because transitions 1 and 3 are already a cycle that can be accelerated.24 If

we run MCMT with option -Z, the tool certifies safety in negligible time (much less than

one second).25 To get the (negation of the) safety invariant displayed on the screen and to

produce the status file, we can use the options

-Z -v0 -S4

24It is important that the syntactic conditions mentioned in Subsection 6.2 are matched literally. For

instance, the tool realizes that the program counter does not change because it finds the string :val p[j]

(such string can be, say, :val l[j] if the program counter is called l, but cannot be just a number, even if it

is the same number occuring in the guard).
25 Occasionally, troubles might arise (spurious traces, impossibility of making quantifier elimination) if

acceleration is used without abstraction. The reasons for this are explained in Subsection 6.2. The tool

displays in such cases a message on the screen inviting the user to repeat the experiment in abstraction mode

(possibly with an empty term abstraction list).

41



together (since the problem is solved instantaneously, the time overhed caused by the option

-S4 is negligible in this case). The invariant displayed on the screen in our case is an involved

formulation of a condition that turns out to be just a slight variant of (3) above.

To complete the picture, one can also try the combined options:

-Z -A5

-Z -C5

They are both able to solve the problem, although the former takes some tenths of a second.

As a final remark, notice that if we add the instruction

:determine bounds

in the sepecification file, the tool correctly realizes that in location 1 the iterator I must not

exceed a length and in in location 2 the iterator J must not exceed a length; this information

is used during backward search, but the problem is too easy for this to give a real benefit.

To conclude: in this example, it seems that acceleration is the winning strategy. However

this is only due to the fact that the default abstraction list produced automatically by MCMT

is not the good one: if one reverses it (via the option :inverse term abstraction synthesis

available from version 2.1), one gets immediate success with abstraction too! It should be

pointed out that sometimes, a combination of acceleration and abstraction is the best way to

handle problems where divergence is the main source of troubles (see [7] for an experimental

discussion).

42



10 Appendix B: version 2.1

Version 2.1 has some useful novelties (some of them have not been extensively tested yet).

We list them below.

- The limitation of Subsection 2.3 that <arrayvar-id> must consist of a single character has

been removed.

- There is still a static limitation on the maximum number of array variables (raised to

100 in version 2.1), however the user can now set by himself the maximum number of

transitions by including the instruction

:max transitions number N

in the specification file. Notice that the upper bound N (set to 50 by default) should

include also accelerated transitions that might be produced by the tool itself. In case

more than N transitions are specified or generated by acceleration, an error message is

displayed.

- When the tool automatically builds term abstraction lists, it firsts includes in such lists

symbolic parameters (like array length, etc.) and then global array id’s. In some ex-

amples, it is more useful to use the reverse ordering; the user can tell MCMT to apply

the reverse ordering by the instruction

:inverse term abstraction synthesis

Such istruction is used in some specifications from the distribution.

- A node is subcovered [19] when it has an ascendant node which has been deleted. In the

abstraction/refinement mode (options -AN,-BN, -CN) such nodes do not contribute to

the safety invariant and are basically considered as deleted themselves. In version 2.1,

subcovered nodes are taken into consideration in the stsistics (and in the report.tex file

too) when MCMT is running in abstraction/refinement mode.

- Resume option -E now applies only to files produced in abstraction/refinement mode (and

option -e only to files produced in normal mode). This limitation was implicitly needed

also in version 2.0 (due to the different role played in the two cases by subcovered

nodes); now the use of the wrong option is not allowed anymore and an error message

is displayed in case it is tried.

- Contrary to what happens in version 2.0, whenever a node is refined it is not duplicated, i.e.

the refined node keeps the same number as the old node it refines. This novelty makes

clearer the information in the screen messages, in the status.txt and in the report.tex

files.

43



References

[1] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model checking

without transducers. In TACAS, volume 4424 of LNCS, pages 721–736, 2007.

[2] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-state

processes with global conditions. In CAV, volume 4590 of LNCS, pages 145–157, 2007.

[3] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Abstraction

with Interpolants for Arrays. In LPAR-18, pages 46–61, 2012.

[4] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI: SMT-

based Abstraction For Arrays with Interpolants. In CAV, 2012.

[5] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Universal guards, rela-

tivization of quantifiers, and failure models in model checking modulo theories. To appear

in Journal on Satisfiability, Boolean Modeling and Computation (JSAT). Available at

http://homes.dsi.unimi.it/~ghilardi/allegati/AGPRR_JSAT.pdf.

[6] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Brief announcement:

Automated support for the design and validation of fault tolerant parameterized systems

- a case study. In DISC 10, LNCS, 2010.

[7] F. Alberti, S. Ghilardi, and N. Sharygina. Definability of Accelerated Relations in a

Theory of Arrays and its Applications. In FroCoS, 2013. Also available as Technical

Report, Università della Svizzera Italiana.

[8] B. Bérard and L. Fribourg. Reachability Analysis of (Timed) Petri Nets Using Real

Arithmetic. In CONCUR’99, LNCS, pages 178–193, 1999.

[9] M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic relations.

In CAV, LNCS, 2010.

[10] A. Carioni, S. Ghilardi, and S. Ranise. MCMT in the Land of Parametrized Timed

Automata. In Proc. of VERIFY 10, 2010.

[11] A. Carioni, S. Ghilardi, and S. Ranise. Automated Analysis of Parametric Timing-Based

Mutual Exclusion Algorithms. In NASA Formal Methods, LNCS, 2012.

[12] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model-Checking of

Array-based Systems. In Proc. of IJCAR, LNCS, 2008.

44

http://homes.dsi.unimi.it/~ghilardi/allegati/AGPRR_JSAT.pdf


[13] S. Ghilardi and S. Ranise. Goal-directed Invariant Synthesis for Model Checking Modulo

Theories. In TABLEAUX’09, LNCS, 2009.

[14] S. Ghilardi and S. Ranise. Model Checking Modulo Theory at work: the intergration of

Yices in MCMT. In Proc. of AFM’09, ACM Digital Library, 2009.

[15] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT-solving:

termination and invariant synthesis. Logical Methods in Computer Science, 6(4), 2010.

[16] S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight SMT-based Model-Checking. In

Proc. of AVOCS 07-08, ENTCS, 2008.

[17] R. Jhala and K.L. McMillan. Array Abstractions from Proofs. In CAV, 2007.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[19] K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.

45


	Introduction
	Basic syntax
	Types
	Index variables
	Array variables

	 MCMT specifications
	Initialization
	Unsafe states
	Transitions
	Universal quantifiers in guards
	System axioms

	Running MCMT
	Parsing facilities
	Options
	Invariant search options
	Displayed information

	Abstraction/Refinement Mode
	Acceleration
	Integer Acceleration
	Array Acceleration
	User-Defined Accelerations

	Advanced Settings
	Bounds
	Interaction
	Bounded Resources in Invariant Search
	Global Transitions
	 Signature Abstraction
	Elimination of quantified variables
	Cardinality bounds
	Key search
	Variable redundancy
	 Restricted Instantiation
	Memory reset

	How to deal with ...
	Strictly numerical systems
	Channels

	Appendix A: a guided example
	Appendix B: version 2.1

