
VTB – Visual Tool Basic
IDE User Manual

Rev. 1.0.0 © Promax srl

1 INTRODUCTION
VTB is an integrated development environment for OBJECT oriented programming on PROMAX platforms.
This environment contains inside all tools needed to development of application in simple and intuitive way.
The VTB philosophy is based on latest technologies R.A.D. (RAPID APPLICATION DEVELOPMENT) which
allow a fast development of application writing a reduced amount of source code. A large library of OBJECTS
and TECNHOLOGIC FUNCTIONS allow to create applications for all sector area of industrial automation.
VTB integrates a high level language like enhanced BASIC MOTION. It's also possible to manage in clear
and simple way FIELD BUS such as:

CAN OPEN

ETHERCAT

MODBUS

Powerful functions of AXIS MOVING allow to manage any type of machine using LINEAR, CIRCULAR, FAST
LINEAR INTERPOLATION or ELECTRIC GEAR, CAM PROFILES, etc.

VTB is predisposed for MULTI-LANGUAGE APPLICATIONS simply selecting the USING LANGUAGE.

2 NOTES ON PROGRAMMING LANGUAGE
VTB programming language is defined as BASIC MOTION.
Its syntax is very similar as enhanced BASIC with some terminologies derived from C language.
Management of the functions is very similar as VISUAL BASIC also for DATA STRUCTURES.
Some INSTRUCTIONS are VTB PROPRIETARY but following the same philosophy.
VTB is a language CASE INSENSITIVE that is it make no differences between UPPER CASE and LOWER
CASE regarding instructions, functions, variables etc. VTB converts internally all characters in UPPER
CASE. The only one exception is the management of DEFINE where characters are not converted in upper
case but they remain so in all compilation passes.
Because VTB is a language addressed to MOTION, some features, considered of secondary importance,
remained at PRIMITIVE level. For example the STRING management is made like C language using
function such as STRCPY, STRCAT, STRCMP etc.

3 DEVELOPMENT ENVIRONMENT
The development environment of VTB has an common intuitive interface like all Windows applications. It isn't
necessary to have a great experience of programming. In the environment is included an EDITOR optimized
for VTB programming.

3.1 Toolbar

Graphic window

(only for controls with integrated console)

GRAPHIC/TEXT window
switching button

TREE VIEW
PROJECT
MANAGER

TOOLBAR

New Project - From menu File → New project

It creates a new application. The previous one is closed requesting a confirm for saving.

Open Project - From menu File → Open project

It opens an existing project.

Save Project - From menu File → Save project

It saves the current project

Copy Selected Object/s - From menu Edit → Copy (Ctrl+C)

The selected objects are copied in the clipboard. All property are copied, also the object position
inside the page. The name of the new object will be automatically set with the first name avalaible
for that class. It works as common copy/paste of Windows applications. The source code added to
the object events isn't copied.

Paste Copied Object/s - From menu Edit → Paste (Ctrl+V)

The objects copied in the clipboard are pase. All property of original objects are unchanged, also the
position. The function Cpy/Paste is very useful to create pages with the same objects.

Duplicate Selected Object/s - From menu Edit → Duplicate (Ctrl+D)

This works exactly the same as Copy/Paste but on one command. All property are copied, also the
object position inside the page. The name of the new object will be automatically set with the first
name avalaible for that class. It works as common copy/paste of Windows applications. The source
code added to the object events isn't copied.

Delete Selected Object/s - From menu Edit → Delete

The selected objects is deleted. Also the source code included in the object events is removed.

Find - From menu Edit → Find

Searching for a text string in the project source code.

Print

It prints the text code in the current window.

Snap to Grid

If this button is activated the OBJECTS position is hooked to GRID step. It is useful to align the
object quick and easy. The GRID STEP can be changed in PIXEL units from menu Options -> Grid
Step.

Foreground

The selected objects is brought to the foreground of the page making it completely visible.

Background

The selected objects is brought to the background of the page. It can be covered by other objects
making it invisible.

Align left

The selected objects are aligned to left margin. The reference object will be the last selected.

Align right

The selected objects are aligned to right margin. The reference object will be the last selected.

Align top

The selected objects are aligned to top margin. The reference object will be the last selected.

Align bottom

The selected objects are aligned to bottom margin. The reference object will be the last selected.

Align horizontal

The selected objects are aligned at the horizontal center of the last selected object.

Align vertical

The selected objects are aligned at the vertical center of the last selected object.

Program compiling

The entire application is compiled to create the binary file in the format of the platform selected. The
compiling results are showed in the MESSAGE WINDOW and if there are some compiling errors the
binary file will not be created.

Transfer Program

The binary file created by compiler is transferred to the control by RS232 or ETHERNET line. The
program will be saved in the permanent memory of the control and then it will be executed.

CanOpen Configurator

It launches the CanOpen configuration tool (see chapter CANOPEN CONFIGURATOR).

EtherCAT Configurator

It launches the EtherCAT configuration tool (see chapter ETHERCAT CONFIGURATOR).

DEBUG

It launches the DEBUG tool (see chapter DEBUG APPLICATION).

3.2 Project Manager
The PROJECT MANAGER allows a fast selection and navigation in all the PAGES of the PROJECT. From
this AREA we have the entire control of the application: viewing pages, managing of variables, writing code,
etc.

New Page - From menu Pages → New

It adds a new page to the project. The page is automatically numbered. A page can contain
GRAPHIC OBJECTS and source code. Both will work only when the page will be loaded and only a
page at time can be loaded. To switch from a page to another can be used the system function:

Pagina(NrPag)

Delete Page - From menu Pages → Delete

It deletes the showed PAGE. The entire content will be lost and all the page after this will be
renumbered. Attention: all reference to these pages (button of function) will have to be
modified.

View Graphic of the Page

It shows the graphic window of the page.

View Code of the Page

It shows the source code editor window of the page.

View Variables of the Page

It shows the table of private variable of the page.

View GLOBAL Variables and STRUCTURE definitions

View source code editor of TASK PLC

View source code editor of TASK MAIN or TASK TIME

View source code editor of a page

3.3 Objects manager
The OBJECTS MANAGER allows a fast selection of the objects to insert in the current page.
Inside it there are both base-objects and enhanced-objects. For a detailed description of a single object there
is a separated user manual.
To insert an object it have to be selected and then dragged to the desired position.

The CARICA button allows to browse the CUSTOM OBJECT which are not included in the standard library.

3.4 Functions Manager
In this Tree View are showed all the STRUCTURE and FUNCTIONS grouped per page. Just open the nodes
to view informations.
In STRUCTURE section there is the possibility to add a new one by add-element button, it is also possible
to remove the selected structure by delete-element button.
Opening an existent structure the fields of it are showed. By a click on the single field it is possible to modify
its type, while the buttons add-element and remove-element can be used to add o remove a field from the
structure.
The section FUNCTIONS groups the functions per page, selecting a single function the editor window is
opened showing the relative source code.

3.5 Objects Property
In the area OBJECTS PROPERTY it's possible to set all the working properties of an OBJECT. Properties
are proprietary of the single object, refer to relative user manual for details.
To set a property click with the left button of the mouse on the desired item and put the new value. To show
the properties the object has to be selected before.

LIST OF THE PAGE'S OBJECTS
To simplify the selection of the OBJECT INCLUDED IN THE PAGE can be useful the COMBO-MENU
clicking on the name of the desired object.

3.6 Text Table Manager
This section is described in detail in the section Text Tables of the chapter VARIABLES TYPE.

4 CONFIGURATION OF VTB

From Menu Strumentià Opzioni

This command is used to configure some options of the VTB environment and the target hardware.

4.1 General Options
This table contains the general options of VTB

View Grid
When this check-box is activated the grid on the page windows is displayed. The grid is useful as referenc to
position the graphic objects.

Snap to Grid
Activating this check-box the snap to grid is enabled. The objects will be positioned to the grid simplifying the
manual alignment of them.

Grid Step
It sets the number of pixel of the grid step.

Pagina Start
It selects the number of the first page to be loaded at start-up.

Sampling
It selects the scan time of the TASK PLC (see chapter 5) in milliseconds. It can be changed with the
resolution of 0.1 millisecond being careful at low value because they can cause crash of the program.
Always examine the elapsed time of TASK PLC by the DEBUG.

Task time
It is the scan time of the TASK TIME in multiples of TASK PLC scans, the resultant time (in milliseconds) is
displayed on the right. Changing the time of TASK PLC this time changes too.

Savescreen
Time in seconds for the activation of display light reducing. Only for target with this function implemented (ex.
PEC70).

Standard Mode (OBSOLETE)
It excludes the debugging code in the binary file. Only for compatibility with the older 16 bit target.

Debug Mode (OBSOLETE)
It includes in the binary file the code for the use of DEBUG APPLICATION. In this case RS232 protocols on
the first chanel can not be enabled. Only for compatibility with the older 16 bit target.

Debug Standard (OBSOLETE)
It forces the use of DEBUG STANDARD of VTB. Only for compatibility with the older versions.

Debug.NET
It forces the use of the new DEBUG.NET application. On PC must be installed the Framework 2.0 or major.
This is the debug option recommended.

Warning Level
Level 0 Compiler doesn't display any warning messages.
Level 1 Compiler displays warning messages when improper or dubious operations on

variables are found. Anyway the binary file is created.

4.2 RS232 Protocol (OBSOLETE)
These options select the type of protocol on the first RS232 channel.

Only for compatibility with the older versions

4.3 Field-Bus Protocol
These options allow to select the Field-Bus protocols used by the target hardware.
For the moment the protocols implemented are two:

CanOpen Standard DS301 DS4xxx
Ethercat CoE (Can Over Ethercat)

Protocol CanOpen
It enables the CanOpen protocol.

BaudRate
It selects the BaudRate of CanOpen line.

Sync
It enables or disables the SYNC message on CanOpen line.
The message Sync is sent cyclically at the time of TASK PLC (set in General Options). SYNC is essential
for applications with AXIS INTERPOLATED

Chek Errori CAN
It selects the display mode of the eventual errors during the CanOpen configuration (see CanOpen
configurator), there are three option:

None On systems with display the result of configuration of each node is showed then the
application continue indipendently there have been error or not.
On systemes without display there isn't any indication of eventual errors of CanOpen
configuration.

Standard This option is valid only on systems with human interface.
A specific object (CanErr) is added on MAIN page wich displays the list of node with
the result of configuration. If there have been any errors program stops waiting for
the press of a specific button to continue.

Custom With this option the system doesn't perform any action but it calls some functions to
allow the customization of the managing of CanOpen configuration errors.
The functions called by the system are three and they have to be defined by the
application:

function open_cancfgerr(nodes as char) as void
nodes = Total number of nodes in the CanOpen configuration.
This function is called by the system before starting the CanOpen configuration. The

total number of the nodes in the configuration is written in the parameter nodes.

function cancfgerr(nodo as int, err as uchar) as void
nodo=Number of configured node.
err=Result of configuration.

0 = Node correctly configured.
<>0 = Error code. See relative chapter of CanOpen functions.

This is called at the end of configuration of each node writing the result in the
parameter err.

function close_cancfgerr() as void
This function is called after the end of the last node configured.

Slow Px
By default this option is set to one but for compatibility with all systems we recommend to keep it always at
ZERO. It will be used for future expansions.

Ethercat Protocol
It enables the the Ethercat protocol in system which can manage it.
Ethercat can work also with CanOpen protocol enabled.

4.4 Configuring the target hardware
An application must always refer to the target hardware. That allows VTB to preconfigure for the selected
hardware so it can use the relative function-call, use the appropriate memory addresses, signal the specific
errors, use the correct debug, etc.
Normally it is set before starting the application but we can change it ever after to adapt the same application
at another hardware.

Target Hardware
This Combo allows to choose the code of target hardware. To facilitate the programming, in the list, beyond
the single products, are also some preconfigured combinations such as:
NGM13/LPC20 – NG35/LPC40 etc.
They refer to a combination of a NGM13 or NG35 CPU coupled with a Promax serial terminal LPC20,
LPC40.

Saving memory reserved area
This option selects the amount of internal memory reserved (called IMS) to the application data saving (ex.
Parameters, recipes, etc.). This memory is organized in blocks of 256 bytes therefore it must select the
number of blocks to reserve for each recipes and the max number of recipes. For example if the memory
needed for one recipe is 300 byte, we must set 2 blocks (512 byte). Normally the IMS memory is removed
from the flash memory reserved to the application, keep in mind that when you set this option. This option

isn't valid for the hardware in which the CODE FLASH isn't shared with the data saving memory (ex.
NGM13).

Create framework component
VTB can create a DLL Component Model to integrate in a Framework .NET application.
That allows a direct control of the Hardware resource from external Host such as PC equipped with operative
system like Windows XP, Vista, 7, CE or other supporting Framework (see Framework Component chapter).
If create framework component is checked the component type must be choose (Windows Xp or Windows
CE) and also the DLL component name. A component framework file will be create in the same directory of
VTB project.

5 TASKS MANAGED BY VTB
VTB provides the programmer for TASKS wich can be combined to create an application. Two of these are
interrupt tasks, that means they are executed, interrupting the other tasks, at fixed and constant time; the
other two task in cooperative mode: they are executed one after another. The TASK PLC is the
DETERMINISTIC task at highest level witch interrupts all the other tasks, the TASK TIME works like TASK
PLC but with a lower level, finally the PAGE TASK and MAIN TASK run in cooperative mode between them
and can be interrupted by the other two.
.

5.1 Task Plc
This task is the higest priority one: it is deterministic and run at fixed time making it suitable to manage
situation that need a fast and precise response time. This task can not be interrupted by no other tasks but it
can instead interrupt any other. Normally it is used by AXIS CONTROL OBJECTS or fast PLC cycles, but it
can contain every type of code sequence exluding some IFS functions like:
GRAPHICS FUNCTIONS
AXIS INTERPOLATION (xxx.MOVETO, xxx.LINE_TO)
MANAGE OF CANOPEN SDO.
STATIC CYCLES
(see the single functions for details)
The typical sample time is 2 milliseconds wich is an enough time to manage a lot of application (for example
6 AXIS interpolation), however it can go down also under 1 millisecond when the charge of work is less
stressful and for CPU with high computing power. In this task is also managed the CAN OPEN and
ETHERCAT protocol in DETERMINISTIC mode. However it is advisable that its elapsed time doesn't exceed
60% of sample time, else we risk to slow or even to stop the other tasks. The TASK PLC HASN'T A
SECTION TO INSERT ANY OBJECT, therefore if there is some code wich have to run inside, it must be
written at the moment of object design. IF THE CODE INSIDE TASK PLC BLOCKS IT ALL SYSTEM GO IN
CRASH.
To verify the elapsed time of TASK PLC there are two field in DEBUG.NET application:
PLC TP and PLC TM never must exceed the sample time.
VTB defines some

VTB
KERNEL

Task Cooperativi

MAIN
1st

PAGE
2nd

TASK PLC
INTERRUPT HIGH PRIORITY

TASK TIME
INTERRUPT LOW PRIORITY

Gestione servizi

5.1.1 NOTE ON CONCURRENT PROGRAMMING
The use of CONCURRENT programming requires particular attention as in all MULTITASK systems. To
avoid unexpected operation it's recommended do not call the same function from INTERRUPT TASKS and
COOPERATIVE TASK in the same application. In other words the functions managed by MAIN TASK can be
called without problems from PAGE TASK, but NOT ALSO from TASK TIME e TASK PLC and vice versa.
That is because if an INTERRUPT TASK using a function occurs exactly while a COOPERATIVE TASK is
running in the same function, that could lead to abnormal operations in the application.

SHARING OF VARIABLES
Again in CONCURRENT programming can also occur some problem when variables are shared between
INTERRUPT TASKS and COOPERATIVE TASK. Practically if managing of the variable don't provide an
ATOMIC ASSEMBLER INSTRUCTION, this can cause false reading value when it is written by a TASK and
read by another. According to the CPU type of the system these problems can occur in the following type of
variables:

Sistem Variable type
16 bit LONG, FLOAT

32 bit FLOAT

To overcome this problem VTB offers the possibility of a SECURE SHARING OF VARIABLES. Indeed in the
variables declaration dialog there is an apposite field to enable the secure sharing. However, because a lot
of use of this facility can generate jitter problem we recommend to use the enable of secure sharing of
variables only when ABSOLUTELY NECESSARY.
The same problem could also occur when using data array shared by more process. A simple example can
be the use of array to data exchange in MODBUS protocol. These problems can arise when, for example,
the writing process of data and the reading one are asynchronous. It can happen indeed that a reading
process starts when the writing one has filled the array only partially. In this case the reading process will
read a lot of new data and some from the old scan. It's evident in this situation false value readings can
occur. System isn't able to understand these situations therefore to solve it there is the needs of
semaphores at application level.
Task plc has also an INIT section. All code insert here will run only one time at system reset.

5.2 Task Time
TASK TIME, like TASK PLC, works at fixed time. It deffers from that for two features:
a) it has a lower priprity and it can be INTERRUPTED by TASK PLC;
b) it hasn't limit to managing of the IFS functions of VTB.
The scan time of this task is programmable at multiple of the sampling time of TASK PLC. TASK TIME is
useful for the managing of timed cycles and with medium response time, furthermore the possibility of calling
all IFS functions makes it of great utility, ensuring constant time to software. Typical sample time can be
about 5 or 10 milliseconds, with witch it's possible to manage a complex PLC cycle with a lot of I/O
channels. If the elapsed time of this task overcomes its sample time the system will continue to work
stopping the cooperative tasks but task plc will continue to run.
TASK TIME HAS A SECTION TO INSERT THE OBJECT, therefore all the object inserted inside will run in
this task at the programmed SAMPLING TIME.

5.3 Task Main
TASK MAIN is called continuously by VTB cycle running in COOPERATIVE mode with PAGE TASK.
Therefore a static cycle on TASK MAIN will stop the PAGE TASK and vice versa. Its scanning time depends
by the code contained in all the other TASKS. Usually this TASK manages repetitive cycles as control of
emergency or alarm states, graphic control etc. where there isn't the need for constant time. However its
scanning time can be very fast, also in the order of few microseconds, when the code inside the task is very
short.
TASK MAIN HAS A SECTION TO INSERT THE OBJECTS, therefore all the object inserted inside will run in
COOPERATIVE mode and regardless of which page is displayed.

TASK MAIN provides three sections to insert the CODE:

INIT PAGE

MASTER CYCLE

PAGE FUNCTIONS

Also there is a section MASTER EVENT but it has been left only for compatibility with older versions and
therefore it must not be used.

INIT PAGE
The code in this section runs only one time at the start of the program and usually it handles the initialization
of the global variables in the application. In this section we can write any type of code as long as it isn't
STATIC CODE which can block the program.

MASTER CYCLE
This is the cyclic section called by system in cooperative mode with PAGE TASK.

PAGE FUNCTIONS
This section is the container for all the functions used by the application. They will be visible GLOBALLY from
all TASKS

5.4 Page Task
PAGE TASK works like TASK MAIN, with which shares the scanning time in COOPERATIVE mode. The
peculiarity of this task is its code will be loaded only when the page is running. The IFS function pagina(n)
allows to run the page, written before with VTB environment, destroying the previous one. PAGES have to
be seen as a set of code-graphics managed at convenience. Commonly PAGE TASKS are useful in systems
equipped with HMI pages where they are both graphics part and associated code. In systems without HMI,
pages are only part of code which runs when commended by pagina(n) function. As for TASK MAIN the
scan time depends by the length of code inside all the other tasks. Usually the PAGE TASK manages cycles
of setting, preparing and display of data application, with control of the graphics and data input.
PAGE TASK HAS A SECTION TO INSERT THE OBJECTS, therefore all the object inserted inside will run
in COOPERATIVE mode and regardless of which page is displayed.
PAGE TASK provides three sections to insert the CODE:

INIT PAGE

MASTER CYCLE

PAGE FUNCTIONS

Also there is a section MASTER EVENT but it has been left only for compatibility with older versions and
therefore it must not be used.

INIT PAGE
The code in this section runs only one time at the start of the program and usually it handles the initialization
of the global variables in the application. In this section we can write any type of code as long as it isn't
STATIC CODE which can block the program.

MASTER CYCLE
This is the cyclic section called by system in cooperative mode with PAGE TASK.

PAGE FUNCTIONS
This section is the container for all the functions used by the application. They will not be visible from all
TASKS.

6 VARIABLES TYPE
VTB can manage several types of variables which can be used in programming phase.
Commonly all VARIABLES will be allocated in the VOLATILE MEMORY (RAM) of the system and they are
zeroed at reset. In systems equipped with NON-VOLATILE RAM (as NG35 or PEC70) it's also possible to
allocate them in this area, they are defined as STATIC VAR and they will retain its value also after turn-off.
VARIABLES follow the STANDARD terminology similar to common programming languages.
Furthermore it can be declared VARIABLES referred to external component like CANOPEN or ETHERCAT
configurator. These are managed automatically from the system in transparent mode.

6.1 Numeric Values
VTB manages numeric values in conventional mode as other compilators. A numeric value can be written in
DECIMAL NOTATION as well as in HEXADECIMAL NOTATION by preceding the number with the prefix 0x
(ZERO X). For example the decimal number 65535 is transalated with the hexadecimal 0xFFFF.
FLOATING-POINT values must be written with decimal point and it can not written in hexadecimal format.

Example:
A=1236 ‘ assigning 1236 to variable A
A=0x4d ‘ assigning hexadecimal value 0x4d to variable A

‘ corresponding at decimal value 77
B=1.236 ‘ assigning floating-point value 1.236 to variable B

6.2 Internal Variable
These variables are allocated in the VOLATILE MEMORY (RAM) of the system and are zeroed at reset.
The possible types managed by VTB reflects the main types defined in a lot of programming languages and
they are the following:

TYPE DIMENSION RANGE
BIT 1 bit From 0 to 1

CHAR 8 bit signed From –128 to +127

UCHAR 8 bit unsigned From 0 to 255

INT 16 bit signed From –32.768 to +32.767

UINT 16 bit unsigned From 0 to 65.535

LONG 32 bit signed From –2.147.483.648
to +2.147.483.647

FLOAT (16 bit systems) 48 bit (proprietary format) 29 bit mantissa
15 bit exponent

FLOAT (32 bit systems) 64 bit (standard DOUBLE format IEEE
75)

From -1,79769313486232e308
to +1,79769313486232e308

STRING Supported only as constant

VETTORE Single dimension for all variable types
except BIT type

STRUCTURE Standard declaration

POINTER Char, Uchar, Int, Uint, Long, Float
32 bit

DELEGATE Pointer to FUNCTIONS
32 bit

It's appropriate using variables according to the minimum an maximum value they have to contain choosing
the best appropriate. INTERNAL VARIABLES can be declared PAGE LOCAL or GLOBAL.

PAGE LOCAL VARIABLES declared inside the PAGE TASK and visible only to it

GLOBAL VARIABLES declare in MAIN TASK and visible to all the others

VTB doesn't make any control on dimension of the variables and on its assigned value.

6.3 Pointers
VTB is able to manage the pointers to variables too. Pointers defines the address of allocation memory of the
variables, not its content. Some VTB functions need of pointers as parameter particularly when the function
manage arrays or strings. To define the address of a variable it's enough insert the postfix () except for the
funcions.

Example:
var as long
array(20) as uint

var() refers to the address of variable var
array() refers to the address of the first element of array

Pointers can be declared only to following types:
Char, Uchar, Int, Uint, Long, Float, Functions

Declaring of a pointer

To assign an address to the pointer it's need:
refer to the name of pointer (without brakes)
assign the desired address to pointer

To assign the value to a pointed field it's need:
refer to the pointer with square brackets
put the right index inside the brackets
assign the value

Examples
Used variables:
pnt as *long
val as long
pointer as *uint
array(10) as uint
var as long

Writing/reading variables by pointer:
pnt=val() 'assign to pnt the address of variable val
pnt[0]=2000 ′ pnt[0] points to variable val which will take the value 2000
var=punt[0] 'assign to var the content of val by the pointer pnt

Writing/reading array by pointer:
pointer=array() ′ assign to pointer the address of array
pointer[0]=13
pointer[1]=27
pointer[9]=55 ′ assign to array some value by pointer
var=pointer[7] ′ assign to var the content of array[7]

It's also possible to declare pointers to data STRUCTURES.

Example

This structure is been declared

Used variables:
pointer as *Example ′ pointer to structure Example
struct as Example ′ struct is a structure type variable

pointer=struct() ′ pointer points to structure
pointer->str1=300 ′ writing of both fields of structure by pointer
pointer->str2=200

As we have seen, to use pointer with the structures we need the token →

ATTENTION: VTB doesn't make any control on the index of pointer therefore with pointers it's possible to
write anywhere in memory with consequent risks to crash the system.

Example:
pnt as *long
value as long

pnt=value()
pnt[10]=1234
The inscrution punt[10] = 1234 doesn't generate any compiling or run-time error, but it can cause unexpected
operations. The correct use is:

pnt[0]=1234

To get the address of a function to assign to a variable we have to refer at the function simply with its name
(without brackets):

Example
VarPnt=MyFunction
Where MyFunction is a declared function

6.4 Bits
This type of variable can have only two values: 0 or 1, normally associated to a state OFF/ON or
FALSE/TRUE. The variable BIT must always refer to an original variable which will can contain more bits.
This variables are very useful to manage FLAGS, digital I/O lines and in all cases where we need to read or
write a single bit directly.
The bit variables can be both GLOBAL or PAGE LOCAL and they can be used like normal variables.
For example declaring an INTERNAL variable named STATE of type INT (16 bit) it's possible to associate it
up to 16 bit variables.

VARBIT1 STATE.0 (first bit of STATE)
VARBIT2 STATE.1 (second bit of STATE)
.
VARBIT16 STATE.15 (16th bit of STATE)

If VARBIT1 = 1 ' test if first bit of STATE is set
VARBIT2=1 ' set second bit of STATE
VARBIT3=0 'reset third bit of STATE

endif

A common use of these variables is the manage of the digital INPUT and OUTPUT lines of the system, as

they are equipped inside system (ex. NGIO) or they are remote channels in a CANOPEN or ETHERCAT net.
In the first case the bits will be associated to internal normal variables, while in the second one they will be
contained in variables of type VCB. That means declaring the bit variables we shell control physically the
state of these I/O lines simply reading or writing the relative bit variable.

DECLARING a BIT VARIABLE

FIELDS OF BIT VARIABLE

Name It identify the UNIVOCAL name of the bit variable
Original Variable Name of the variable associated to the bit one. It must be of type CHAR, UCHAR,

INT, UINT, LONG (also ARRAYS)
Nbit Number of the bit in the associated original variable

ATTENTION: the first bit is always the number 0 (zero)

The maximum number of bits depends by the type of the original variable:
CHAR/UCHAR 0-7 (8 bits)
INT/UINT 0-15 (16 bits)
LONG 0-31 (32 bits)

6.5 Arrays
The arrays can be declared in the INTERNAL or STATIC variables and they can be defined as any type
except the BIT one. The arrays managed by VTB are SINGLE-DIMENSION and the maximum limit depends
on the free memory available. To declare an array we have to do as for a normal variable putting after the
name, between parenthesis, the desired dimension.
If there was the need to use a TWO-DIMENSION array (matrix) we have to work with STRUCTURES.
Simply we have to declare a structure with a field of type array then to declare an array of type structure.

ARRAY(10) Array of 10 elements

The first element of the array always start from 0 (zero) then:

ARRAY(0) first element
ARRAY(9) last element

Some VTB functions need the address of the array, that is specified writing the name of array
followed by parenthesis with no index inside (see also pointer).

ARRAY() refers to the memory address of ARRAY

DECLARING AN ARRAY

ATTENTION: VTB doesn't make any control on the index of array therefore with it's possible to write over
the array's dimension with consequent risks of unexpected operations.

6.6 VCB Variables (CanOpen or EtherCAT)
The variables of type VCB are common variables which reflect the state of variables allocated in remote
device connected at the central unit by field-bus like CANOPEN or ETHERCAT. These variables aren't
defined directly by VTB environment but come from an external configurator which defines the field-bus
typology and the connected devices. Practically the declaration is made automatically by the configurator
and compiler application making them available to OBJECT or to WRITTEN SOURCE CODE. Refer to the
chapters CANOPEN CONFIGURATOR and ETHERCAT CONFIGURATOR.
In other words variables VCB are the shared resources of an external device connected by field-bus. For
example a brushless motor driver will make available a lot of variables referred to MOTION, while an I/O
device will make available variables referred to management of INPUT and OUTPUT channels.
Unlike other types of variables, the VCB ones are ever GLOBAL and then visible from all the page and all the
tasks.
Variables VCB declared by configurator can be used in the SOURCE CODE as well in the property of the
OBJECTS that make use.
There isn't a list of these variables, to use them we have to refer simply writing its name.

USE OF A VARIABLE VCB IN THE SOURCE CODE
To use a variable VCD we have to refer simply writing its name.

If encoderx >=10000 ‘ encoderx is a variable VCB

……………
endif

6.7 System Variables
Variables of type System are variables already defined by operative system, therefore we must not to declare
them but they can be used as commen variables. This is the list of the SYSTEM VARIABLES available.
There are more system variables but reserved to the system.

NAME TYPE R/W DESCRIPTION
_SYSTEM_PXC LONG R/W

They are used in systems with NGM13 and contain . Contengono the double
value of the number of steps generated by the four axis step controller.

_SYSTEM_PYC LONG R/W
_SYSTEM_PZC LONG R/W
_SYSTEM_PAC LONG R/W
_SYSTEM_ACT_PAGE INT R It contains the page number currently loaded/displayed.
_SYSTEM_OLD_PAGE INT R It contains the page number previously loaded/displayed.

_SYSTEM_STRING(128) CHAR R Array of 128 elements containing the string read by the function
Get_TabStr(…..)

_SYSTEM_LINGUA CHAR R/W It contains the number of LANGUAGE currently used by application. It is a
number from 0 to 127 which select the messages from the relative table.

_SYSTEM_EMCY(8) CHAR R It contains the data frame of Emergency Object of CanOpen. It is updated
calling the function read_emcy().

_SYSTEM_SDOAC0 LONG R These variables form the 8 byte of the eventual SDO ABORT CODE sended by
a slave CANOPEN as a result of a call to the functions pxco_sdodl(...) or
pxco_sdoul(...). If the retur value is 2, the variables _SYSTEM_SDOAC0 and
_SYSTEM_SDOAC1 represent the error code._SYSTEM_SDOAC1 LONG R

_SYSTEM_TLUCE LONG R/W It contains the response time in milliseconds of the automatic turn off of the
background light in devices with HMI.

_SYSTEM_PLC_ACT_TIME UINT R

It is the actual elapsed time of TASK PLC in CPU units. DEBUG application
displays it in milliseconds. It useful for test to understand the stress of CPUin
TASK PLC. This time should be less than 30% of the sample time (set in
general options) to avoid the other tasks run slowly.

_SYSTEM_PLC_MAX_TIME UINT R It's similar to the previous but it contains the maximum value latched.

_SYSTEM_CARD_TYPE INT R If there is present an internal SSD this variable contains its dimension in Mbyte
(8, 16, 32, 64, 128, etc.).

_SYSTEM_VER INT R It is the firmware version. Ex. 10317 → Vers. 1.03.17

_SYSTEM_CANERR_CNT0 LONG R/W Error counter of the Canopen channel 1. It is updated each sample of TASK
PLC testing the hardware interface.

_SYSTEM_CANERR_CNT1 LONG R/W It's tha same as the previous one but it refers to channel 2.

_SYSTEM_ECERR_CNT LONG R/W Error counter of the ETHERCAT line.
_SYSTEM_STDINP_DN INT R It contains the code of a key when it is pressed.
_SYSTEM_STDINP_UP INT R It contains the code of a key when it is released.

6.8 Static Variables
The variables of type STATIC are declared in NON-VOLATILE RAM: they aren't zeroed at reset and
maintain their value also after turn off. They are very useful to retain data which change frequently (as
encoders, counters, etc.), and which could not be saved in flash memory (IMS). Besides they are common
variables.
STATIC variables are always GLOBAL that is visible in all page and in all tasks.

TYPE DIMENSION RANGE
BIT 1 bit From 0 to 1

CHAR 8 bit signed From –128 to +127

UCHAR 8 bit unsigned From 0 to 255

INT 16 bit signed From –32.768 to +32.767

UINT 16 bit unsigned From 0 to 65.535

LONG 32 bit signed From –2.147.483.648
to +2.147.483.647

FLOAT (16 bit systems) 48 bit (proprietary format) 29 bit mantissa
15 bit exponent

FLOAT (32 bit systems) 64 bit (standard DOUBLE format IEEE
75)

From -1,79769313486232e308
to +1,79769313486232e308

ARRAY Single dimension for all variable types
except BIT type

DELEGATE Pointer to FUNCTIONS
32 bit

ATTENZIONE: Not all systems support the STATIC variables, then refer to hardware manual.

6.9 Fixed Variables
The variables of type FIXED are allocated at a fixed address in the internal memory of the device which,
unlike common variables, doesn't change modifying the program. This type of variable simplifies the use of
systems connected to an external HOST (ex. PC). In fact using FIXED variables there will be no need to
recompile the HOST application at each change in VTB program.
FIXED variables are always GLOBAL that is visible in all page and in all tasks.

TIPO DIMENSIONE RANGE
BIT 1 bit From 0 to 1

CHAR 8 bit signed From –128 to +127

UCHAR 8 bit unsigned From 0 to 255

INT 16 bit signed From –32.768 to +32.767

UINT 16 bit unsigned From 0 to 65.535

LONG 32 bit signed From –2.147.483.648
to +2.147.483.647

FLOAT (16 bit systems) 48 bit (proprietary format) 29 bit mantissa
15 bit exponent

FLOAT (32 bit systems) 64 bit (standard DOUBLE format IEEE
75)

From -1,79769313486232e308
to +1,79769313486232e308

The START address of FIXED area is:

NGM13 Addr= 536874496
NG35 Addr= 1051648

6.10 Delegates
This type of variables is used to call a function by a variable. First of all the address of the function to call
must be written in the DELEGATE variable. Then we can use this variable to call the function with the
instruction call_delegate. It can also be created an array of DELEGATE variables and then call a function
according to the index of the delegate.
Using of DELEGATES is very powerful because it allows the access to the functions in the fastest way
without writing a long series of conditional cycles.

ATTENTION: The function called by CALL_DELEGATE must be VOID both for arguments and return
parameter.
VTB doesn't make any control to the initialization of the DELEGATE. Calling a delegate not initialized can
go the system in CRASH

Example:
Used variables:
var(2) as delegate

Page Init of Main task (delegates initialization):
Var(0)=fun1 ′ assign to var(0) the address of function fun1
Var(1)=fun2 ′ assign to var(1) the address of function fun2

Page Function of Main task (functions declaration):
Function fun1() as void
.
Endfunction

Function fun2() as void
.
Endfunction

Master Ciclo of Main task (calling of functions by delegates):
Call_delegate var(0) ‘ fun1 will run
Call_delegate var(1) ‘ fun2 will run

6.11 Define
DEFINES are complex equivalences. They are composed by the NAME and the VALUE. The name identifies
the DEFINE, the VALUE can contain any alfa-numeric expression. The compiler each time a NAME of
DEFINE is found, replaces it with its VALUE. They are very useful to simplify the use of complex expressions
or to Parametersze part of code. Also they can be combined between self.

Declaring of a DEFINE

Using of a DEFINE in the code
To use a DEFINE in text code just we have to write the NAME. DEFINES can be used in a lot of situations
making the program more flexible because it's sufficient to change the VALUE of a DEFINE to obtain an
immediate variation on all the project.

Example:

If Define1>=10000
……………
……………

endif

6.12 Text Tables
The TEXT TABLES are essentials to realize MULTILANGUAGE applications and to use the OBJECT of the
class CBROWSER. TEXT TABLES are container of text lists divided in languages. Obviously it's necessary
to use text objects which refer to TEXT TABLES. For example the object TabText of the CLASS CLABEL
uses tables to display text, therefore it is predisposed for MULTILANGUAGE applications. Instead the simple
object TEXT of the CLASS BASE OBJECT doesn't use TABLES making it not suitable to manage
multilanguage applications. Before using a TEXT TABLE must be created. An apposite browser allows the
writing of the text in the tables. To start the browser there is an apposite section in Project Manager.
The tables will be automatically numbered with an INDEX to which refer for their use.

Near these buttons there is a spin-box to select the total number of languages in the project. The number of
languages is unique in all the project and it is associated at all the tables.

In the tree-view it's possible to see all the tables of the project, doing the double-click on a table we can enter
to the modify window.

Browser of TEXT TABLES

TITLE
It's a description of the table only as a comment. It isn't a reference for the table.

LANGUAGE
For each table there is a page for each language. With the two buttons at the right allow to scroll between
these pages. The number indicates the index of the language currently displayed. We can also write a

Add a new table

Delete selected table

message associated to each language for better understanding.

LENGHT MAX
It's the dimension of each single message in the table. All strings of a table will have the same dimension.

FILL WITH SPACES
If enabled, the text of length less than LENGTH MAX will be filled with space in order to reach that length.

INDEX
Index of the text in the table. This value together the index of the table are the reference to print the text with
get_tabstr(...).

TEXT
It's the message contained in a row of the table.

DELETE ROW
Delete the selected row.

USE OF THE TABLE IN TEXT CODE
To manage the rows of the tables there is a single function: Get_TabStr

Example:
Print a message indexed with NMES of the table indexed with TAB
function draw_message(tab as int, nmes as int) as void
 get_tabstr(tab, nmes, _SYSTEM_LINGUA)
 draw_str(_system_string())
endfunction

6.13 Structures
The STRUCTURES can be declared only as INTERNAL variables. The fields of a structure can be of any
type except BIT and pointer.
To declare a STRUCTURE open the STRUCTURE TABLES and define the NAME of the structure and all
single elements we need.

When a structure is declared, in the list of the variable types the NAME of the STRUCTURE will be showed,
allowing to define a new variable of all types declared as structure.

To use the elements of the structure it's necessary to write the NAME of the STRUCTURE followed by dot
character (.) and by the name of the field at which we want to refer.
It's also possible manage the structures with pointers (see POINTERS chapter).

Example:
Used Variables:
val1 as long
val2 as long
val3 as long
Tool as ToolSTRUCT ’ declaration of a structure variable

Tool.wide=13
val1=Tool.wide
Tool.length=23
Tool.high=54
val2=Tool.length
val3=Tool.high

7 OPERATORS
The operators of VTB are common to other compilers.

7.1 Logic and Mathematical Operators
These are all the logic and mathematical operators available in VTB:

OPERATOR DESCRIPTION EXAMPLE

(Parenthesis It identifies the begin of a group of calculation or function a=(c+b)/(x+y)
fun(10,20)

+ Addition Mathematical addition a=b+c
- Subtraction Mathematical subtraction a=b-c
* Multiplication Mathematical multiplication a=b*c
/ Division Mathematical division a=b/c

) Parenthesis It identifies the end of a group of calculation or function a=(c+b)/(x+y)
fun(10,20)

> Greater Greater than condition if a>b
< Less Less than condition if a= Greater Equal Greater or equal than condition if a>=b
<= Less Equal Less or equal than condition if a<=b
<> Not equal Not equal condition if a<>b
= Equal Equal condition if a=b or assignment a=b

|| Logic OR OR logic condition if (a=b) || (b=c)
condition it's true if at least one expression is true

&& Logic AND AND logic condition if (a=b) && (b=c)
condition it's true if both expressions are true

| OR bit Execute the OR between two value a=a|3
Bits 1 and 2 of variable a are set leaving unchanged the others

& AND bit Execute the AND between two value a=a&3
All bit of variable a are reset except the bits 1 and 2

! Logic NOT Negation of an expression if !(a<>b)
The expression is true if a is equal to b

~ NOT bit

Execute a not on all the bits of a value, all bits will change its state
a=85 a=~a
After NOT instruction the variable a will take the value 170
85 → 01010101
170 → 10101010

>> Shift to right The bits of the variable are shifted to left n times
a=8 a=a>>3 After shift the variable a will take the value 1

<< Shift to left The bits of the variable are shifted to right n times
a=1 a=a<<3 After shift the variable a will take the value 8

7.2 Notes on Expressions
VTB manages the mathematical expressions completely. Anyway we have to make attention when in the
expression there are INTEGER variables together FLOAT variables. We have to remind these rules:

1) If in the expression there is at least one variable of type FLOAT all the expression is calculated in
FLOAT;

2) If the result of an expression must be FLOAT at least one variable in the expression must be FLOAT;

Look at this example:

A=10
B=4
R=A/B

According to the type of the variables VTB calculates the following results:

A B R

LONG LONG FLOAT 2

FLOAT LONG FLOAT 2,5

FLOAT FLOAT LONG 2

Enabling the Warning level of the compiler, some messages will be displayed in coincidence with the
possibility of data truncation.

8 MATH FUNCTIONS
VTB manages a wide SET of mathematical functions.

8.1 SIN
Return the sinus of an angle in a FLOAT value.
Hardware NG35,NGM13,PEC70

Syntax
Sin (angle) as float

The argument angle can be a FLOAT value or any numeric expression which represents the angle in
radians.

Example:
Used variables:
angle float
Cosec float
angle = 1.3 ‘ Define the angle in radians.
cosec = 1 / Sin (angle) ‘ Calculate the cosecant.

8.2 COS
Return the cosinus of an angle in a FLOAT value.
Hardware NG35,NGM13,PEC70

Syntax
Cos (angle) as float

The argument angle can be a FLOAT value or any numeric expression which represents the angle in
radians.

Example:
Used variables:
angle float
sec float
angle = 1.3 ‘ Define the angle in radians.
sec = 1 / Cos (angle) ‘ Calculate the secant.

8.3 SQR
Return the square root of a number.
Hardware NG35,NGM13,PEC70

Syntax
Sqr (number) as float

The argument number can be a FLOAT value or any numeric expression greater or equal than zero.

Example
Used variables:
vsqr float
vsqr = sqr (4) ‘ return the value 2

8.4 TAN
Return the tangent of an angle in a FLOAT value.
Hardware NG35,NGM13,PEC70

Syntax
Tan (angle) as float

The argument angle can be a FLOAT value or any numeric expression which represents the angle in
radiant.

Example:
Used variables:
angle float
ctan float

angle = 1.3 ‘ Define the angle in radians.
ctan = 1 / Tan (angle) ‘ Calculate the cotangent.

8.5 ATAN
Return the arctangent of a number in a FLOAT value between -π/2 and +π/2.
Hardware NG35,NGM13,PEC70

Syntax
Atan (number) as float

The argument number can be a FLOAT value or any numeric expression.

8.6 ASIN
Return the arcsin of a number in a FLOAT value.
Hardware NG35,NGM13,PEC70

Syntax
Asin (number) as float

The argument number can be a FLOAT value or any numeric expression between 1 and -1.

Example
Used variables:
angle float
var float

angle = 1.3
var = asin (angle)

8.7 ACOS
Return the arccos of a number in a FLOAT value.
Hardware NG35,NGM13,PEC70

Syntax
Acos (number) as float

The argument number can be a FLOAT value or any numeric expression between 1 and -1.

Example
Used variables:
angle float
var float

angle = 1.3
var = acos (angle)

8.8 ATAN2
It's similar to atan but it returns a value from -π and +π .
Hardware NG35,NGM13,PEC70

Syntax
Atan2 (y, x) as float

The arguments y and x are of type FLOAT.

Return Value
The return value coincides with the angle whose tangent is y / x.

Example
Used variables:
x float
y float
angle float
radians float
result float
PI float
PI= 3.141592
x=1.0
y=2.0
angle = 30
radians = angle * (PI/180)
result = Tan(radians) ' Calculate the tangent of 30 degree
radians = Atan(result) ' Calculate the Arctangent of the result
angle = radians * (180/PI)
radians = Atan2(y, x) ' Calculate the Atan2
angle = radians * (180/PI);

8.9 ABS
Return the absolute INTEGER value
Hardware NG35,NGM13,PEC70

Syntax
Abs (number) as long

The argument number can be a LONG value or any numeric expression.

Example
Used variables:
Num long

Num = -3250
Num = Abs(Num) ‘ return the value 3250

8.10 FABS
Return the absolute FLOAT value
Hardware NG35,NGM13,PEC70

Syntax
FAbs (numero) as float

The argument number can be a FLOAT value or any numeric expression.

Example
Used variables:
Num float

Num = -3.250
Num = Abs(Num) ‘ return the value 3.250

9 INSTRUCTIONS TO CONTROL THE PROGRAM FLOW
In VTB there are a lot of instruction to control the program flow. They are similar to other compiler and THEY
ARE AVAILABLE IN ALL THE HARDWARE TYPES.

9.1 IF-ELSE-ENDIF
Allow the conditional execution of a group of instruction according to the result of an expression.

Syntax
If condition

[instruction]
Else

[instructionelse]
endif

The syntax of instruction if... else is composed by the following elements:

condition Mandatory. Any expression with the result True (value not zero) or False (value zero).
instruction List of the instruction to execute if the condition IF is TRUE.
instructionelse Optional. List of the instruction to execute if the condition IF is FALSE.
endif End of cycle IF ELSE

Notes
The instruction Select Case can be more useful when there are a lot of continuous cycles IF because it
creates a source code more readable.

Example
Used variables:
var1 int
var2 int
if var1*var2 > 120

var1=0
else
 var1=120
endif

9.2 LABEL
Identifies a reference point for the GOSUB or GOTO jumps.

Syntax
Label labelname

labelname name of the reference of the LABEL.
In each PAGE or MAIN task it can not exist more LABEL with the same name.

ATTENTION: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.

Example
if condiition

goto label1
else

goto label2
endif
.
Label Label1
.
Label Label2

9.3 GOSUB-RETURN
Allow to pass the control to a SOUBRUTINE and to return at the next program instruction.

Syntax
GoSub labelname

The argument labelname can be any LABEL inside the current PAGE or inside the MAIN task.

Notes
GoSub and Return can be used everywhere in the code, but they must be both included in the same PAGE
or in MAIN task. A subroutine can be composed by more than one Return instructions, but the first Return
founded by the program flow will act the return of the program to the first instruction after the last GoSub..

ATTENTION: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.

Example
if condition

gosub label1
else

gosub label2
endif

Label Label1
.
Return
Label Label2
.
Return

9.4 GOTO
Allows to jump to a LABEL.

Syntax
Goto labelname

The argument labelname can be any LABEL inside the current PAGE or inside the MAIN task.

Notes
Goto passes the control to a point of the program referenced by a LABEL. Unlike GOSUB the instruction
RETURN isn't necessary.

ATTENTION: The LABEL instruction is OBSOLETE. It is preferred to use the FUNCTIONS.

Example
if condition

goto label1
else

goto label2
endif

Label Label1
.
Label Label2
.

9.5 INC
Increments a variable of any type.

Syntax
Inc varname
The argument varname can be any variable declared in the program.

Description
Inc is the same as VAR=VAR+1 but it is executed more quickly.

Example
INC var1 ‘var1 is incremented by 1

9.6 DEC
Decrements a variable of any type.

Syntax
Dec varname
The argument varname può essere una qualsiasi variabile dichiarata nel programma.

Description
Dec is the same as VAR=VAR-1 but it is executed more quickly.

Example
DEC var1 ‘ var1 is incremented by 1

9.7 SELECT-CASE-ENDSELECT
Allow to execute blocks of instructions according the result of an expression.

Syntax
Select expression

[Case condition_1
 [instruction_1]] ...

[Case condition_2
 [instruction_n]] …

…
[Case Else

[instructionelse]]
EndSelect

The syntax of the instruction Select Case is composed by the following elements:

expression Mandatory. Any expression.
condition_n Mandatory. It can be in two forms: expression, expression To expression.

The keyword To specifies a range of value.
instruction_n Optional. Instructions executed if the expression matches the condition_n.
instructionelse Optional. Instructions executed if no condition_n is matched.

Notes
If the result of expression equals a condition_n, the following instructions will be executed until the next
instruction Case or Case Else or EndSelect.
If more than one condition_n is matched, only the first encountered will be execute. Case Else is used to
execute a block of instruction if no condition are verified. Although it isn't mandatory, it is recommended the
use of Case Else statement in each Select to manage also unexpected value of expression.
More instruction Select Case can be nested. At each instruction Select Case there must be an associated
EndSelect.

Example
Used variables:
var1 int

var2 int
var3 int

Select var1
case 10 ‘ if var1=10

...
case var2+var3 ‘ if var1=var2+var3

...
case 5 TO 20 ‘ if var1 is between 5 and 20

...
case 1,6,8 ‘ if var1=1 or var1=6 or var1=8

...
case else ‘ all other value of var1

...
Endselect

9.8 FOR-NEXT-STEP-EXITFOR
Allow the iteration of a block of instructions for a number of times according to a variable. It is a mix between
BASIC and C languages.

Syntax
For counter = init To condition [Step increment]

[intructions]
…
ExitFor
…

Next [counter]

The syntax of the instruction For...Next is composed by the following elements:

counter Mandatory. Numeric variable used as counter of iteration. It can be a BIT variable.
init Mandatory. Initial value of the counter.
condition Mandatory. Iteration will continue until condition is true.
increment Optional. Value added to the counter at the end of each iteration. If it isn't specified it will

assume the value 1. It can be any numeric expression and can assume any value positive as
well as negative.

instructions Optional. Block of instructions to execute during the iteration.

ExitFor It is used to force the stop of the iterations, the program will continue from the line
immediately after the instruction Next.

Notes
It is possible to nest more cycles For...Next Assigning to each cycle a different counter:

Examples

For I = 1 To I<10
For J = 1 To J<10
 For K = 1 To K<10

...
Next K

Next J
Next I

For var1=0 to var1<8 ‘ Repeat 8 times
...

Next var1

For var1=1 to var1<var4 step var3
...

Next var1

For var2=1 to var2<=10
...

Next var2

For var1=10 to var1<var3*var4 step –1
...

Next var1

9.9 WHILE-LOOP-EXITWHILE
Allow the execution of a block of instructions until a condition is true.

Syntax
While condition

[instructions]
…
ExitWhile
…

Loop

The syntax of the instruction While...loop is composed by the following elements:

condition Mandatory. Any expression with the result True (value not zero) or False (value zero).
instructions Optional. Block of instructions executed until condition is true.

ExitWhile It is used to force the stop of the cycle, the program will continue from the line immediately
after the instruction Loop.

Notes
If the condition is True, the block of instruction will be executed then yhe cycle will be repeated.
More cycles While...loop can be nested at any level. Each instruction loop will correspond to the more
recent instruction While.

Example
Used variables:
Var1 int

while var1<10
...
loop

10 FUNZIONI
VTB manages functions with the same syntax as VISUAL BASIC. It exist a limitation in the declaration of
internal variables: they can not be ARRAYS, STRUCTURES or BITS.

10.1 Declaration of a function

Syntax
function function_name(par_1 as int, par_2 as char, ….., par_n as *long) as function_type

dim var as int ‘local variables
....
.... ‘body of the function
....
function_name = return_value

endfunction

The syntax of a function is composed by the following elements:

function Mandatory. Keyword identifying the begin of a function.
function_name Mandatory. Unambiguous name of the function chosen by programmer.
par_1...par_n Optional. They are the parameter passed to the function. If no parameter have to be

passed (VOID) there must be nothing inside the parenthesis.
function_type Mandatory. It defines the data type returned from the function. If no data have to be

returned write as void.
local variables Optional. Local variables are allocate at the moment when function is called and

then destroyed when it returns.
They can be of any types except ARRAYS, STRUCTURES or BITS.

body of the function Optional. Block of instruction execute by the function.
function_name=… Optional. It assigns the value returned from the function.
endfunction Mandatory. Keyword to identifying the end of the function.

Notes
A function can be called simply writing its name passing to it the eventual parameters declared.
To return from the function in any moment it can be used the instruction return.
The assignment nome_funzione = …. doesn't cause the return from the function but only the assignment of
the return value.

Example:
Used variables:
result as int
number_a as int
number_b as int

Page Function of Main task (functions declaration):
function int_average(number_1 as int, number_2 as int) as int

dim temp as int
temp=(number_1+number_2)/2
int_average=temp

endfunction

Anywhere in the source code (function calling):
number_a=13
number_b=33
result=int_average(number_a, number_b)

10.2 Declaration of the function internal variables

Syntax
Dim varname as type

The syntax of instruction dim is composed by the following elements:

varname Mandatory. Name of the variable.
type Mandatory. Type of the variable. It can be of any types except ARRAYS, STRUCTURES or

BITS.

Example
dim var as long
dim var1 as uint
dim var2 as float

11 SYSTEM FUNCTIONS
VTB provides a wide LIBRERY to a complete management of the hardware devices. Some function can be
available only for some type of hardware
.

11.1 FUNCTION FOR THE GRAPHIC CONTROL
This group of function are available in systems equipped with an HMI.

11.1.1 CLEAR_LCD
Clears display with a background color.
Hardware PEC70,NG35+...,NGM13+....

Syntax
CLEAR_LCD(int Background)

Parameters
Background Any number or expression in the range of the colours supported by the hardware.

Example:
clear_lcd(7) ‘ clear display with the white color

11.1.2 SETBRIGHT
Sets the DISPLAY backligth.
Hardware PEC70

Syntax
SetBright (char fun, long val)

Parameters
fun=0

val Cambia momentaneamente la luminosità del display (da 0 a 100)
fun=1

val Imposta la luminosità bassa (da 0 a 100, default 40) attivata dal save-screen
fun=2

val Imposta la luminosità alta (da 0 a 100, default 100) attivata dal save-screen

11.1.3 DRAW_HLINE
Draws an horizontal line. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_HLINE(int X0, int Y0, int Len)

Parameters
X0 Any number or expression corresponding to the coordinate X of starting point
Y0 Any number or expression corresponding to the coordinate Y of starting point
Len Any number or expression corresponding to the length of the line

Example
draw_hline(0,100,50) ‘ draw an horizontal line of 50 pixel

11.1.4 DRAW_VLINE
Draws a vertical line. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_VLINE(int X0, int Y0, int Len)

Parameters
X0 Any number or expression corresponding to the coordinate X of starting point
Y0 Any number or expression corresponding to the coordinate Y of starting point
Len Any number or expression corresponding to the high of the line

Example
draw_vline(0,100,50) ‘ draw a vertical line of 50 pixel

11.1.5 DRAW_LINE
Draws a generic line. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_LINE(int X0, int Y0, int X1, int Y1)

Parameters
X0 Any number or expression corresponding to the coordinate X of starting point
Y0 Any number or expression corresponding to the coordinate Y of starting point
X1 Any number or expression corresponding to the coordinate X of ending point
Y1 Any number or expression corresponding to the coordinate Y of ending point

Example
draw_line(0,150,100,250) ‘ draw a generic line

11.1.6 DRAW_BOX
Draws the outline of a box (rectangle). The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_BOX(int X0, int Y0, int X1, int Y1)

Parameters
X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle

Example
draw_box(0,150,100,250) ‘ draw a box

11.1.7 DRAW_FBOX
Draws a filled box. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_FBOX(int X0, int Y0, int X1, int Y1)

Parameters
X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle

Example
draw_fbox(0,150,100,250) ‘ draw a filled box

11.1.8 DRAW_PIXEL
Draws a single pixel. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_PIXEL(int X0, int Y0)

Parameters
X0 Any number or expression corresponding to the coordinate X
Y0 Any number or expression corresponding to the coordinate Y

Example
draw_pixel(100,150) ‘ draw a pixel

11.1.9 SETFONT
Sets the current font to use in the drawing text functions. The font reference is a number which is declared by
VTB when a new font is loaded. It is formed as: FT_font_name. Only fonts loaded in a graphics page can be
used except the default one (FT_DEFAULT).
Hardware PEC70,NG35+...,NGM13+....

Syntax
SETFONT(char font)

Parameters
font Any number or expression corresponding to the font type.

Example
setfont(FT_DEFAULT) ‘ select the font DEFAULT

setfont(FT_LCD) ‘ select the font LCD

11.1.10 SETCOLOR
This function sets the current colour using in all graphics functions.
Hardware PEC70,NG35+...,NGM13+....

Syntax
SETCOLOR(int Pen, int Background)

Parameters
Pen Any number or expression corresponding to the pen colour
Background Any number or expression corresponding to the background colour

11.1.11 POS_TEXT
This function sets the cursor position X, Y used by the text drawing functions.
Hardware PEC70,NG35+...,NGM13+....

Syntax
POS_TEXT(int X, int Y)

Parameters
X Any number or expression corresponding to the coordinate X
Y Any number or expression corresponding to the coordinate Y

11.1.12 PUTCHAR
Printing of a character. Position, colour and font have to be set respectively by pos_text, setfont and
setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
Putchar(char Chr)

Parameters
Chr ASCII code of the character to be printed

11.1.13 DRAW_STR
Printing of a string. Position, colour and font have to be set respectively by pos_text, setfont and setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
Draw_str(char *str)

Parameters
*str Pointer to the string to be printed

Example:
Used variables:
vect(20) as char

draw_str(“Message1”) ’ print the string Message1
Strcpy(Vect(),“Message2”)
draw_str(Vect()) ’ print the string Message2

11.1.14 DRAW_NSTR
Printing of a string limiting the lenght. Position, colour and font have to be set respectively by pos_text,
setfont and setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
Draw_nstr(char *str, int Ncar)

Parameters
*str Pointer to the string to be printed
Ncar Maximum number of characters to be printed

Example
draw_nstr(_system_string(),10) ' print the first 10 characters contained in

' _system_string

11.1.15 DRAW_BITMAP
Drawing of a bitmap at desired position. VTB can import file in bmp format. The BITMAP reference is a
number which is declared by VTB when a new bitmap is loaded. It is formed as: BM_bitmap_name. Only
bitmaps loaded in a graphics page can be used.
Hardware PEC70
Syntax

Draw_bitmap(int Bmp, int X, int Y)

Parameters
Bmp Reference number of the BIT MAP: BM_bitmap_name
X Any number or expression corresponding to the coordinate X
Y Any number or expression corresponding to the coordinate Y

Example

draw_bitmap(BM_MYBITMAP,100,100)‘ draw the BITMAP named MYBITMAP

11.1.16 DRAW_SBITMAP
It is the same as draw_bitmap but STRECHING the image to adapt it in the set rectangle.
Hardware PEC70

Syntax
Draw_sbitmap(int Bmp, int X, int Y, int X1, int Y1)

Parameters
Bmp Reference number of the BIT MAP: BM_bitmap_name
X Any number or expression corresponding to the coordinate X of the upper left angle
Y Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle

11.1.17 SAVE_AREA
Saving of an area of display identified by the rectangle (X0,Y0,X1,Y1). The saved area can be restored by
the function restore_area.
Hardware PEC70

Syntax
Save_area(int X0, int Y0, int X1, int Y1)

Parameters
X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle

Example
Save_area(10,10,100,100) ‘ Save the display area contained in the square

'10,10 100,100

11.1.18 RESTORE_AREA
Restoring of the area previously saved with save_area.
Hardware PEC70

Syntax
Restore_area(,int X0,int Y0,int X1,int Y1)

Parameters
X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle

11.1.19 PRINT
Formatting print of an INTEGER value.
Hardware PEC70,NG35+...,NGM13+....

Syntax
PRINT (const char *format, long val)

Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

Avalaible formats
Print a fixed number of characters 23456
###.### Force the print of decimal point 123.456
+#### Force the print of the sign +1234
#0.## Force the print of a ZERO 0.12
X#### Print in HEXADECIMAL format F1A3
B#### Print in BINARY format 1011

Example
var=12345
Print(“###.##”,var) ‘ It will be printed: “123.45”
var=2
Print(“###.##”,var) ‘ It will be printed: “ . 2”
Print(“###.00”,var) ‘ It will be printed: “ .02”
Print(“##0.00”,var) ‘ It will be printed: “ 0.02”

11.1.20 PRINTFF
Formatting print of a FLOAT value. It is the same as printf.
Hardware PEC70,NG35+...,NGM13+....

Syntax
PRINTFF (const char *format, float val)

Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

11.1.21 PAGINA
Sets the page to be loaded and displayed. Pages are numbered starting from 1. The new page will be loaded
not immediately but at the next cycle of the cooperative task.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
PAGINA (int Page)

Parameters
Page Number of the page to be loaded

11.1.22 DRAW_ELLIPSE
Draws the outline of an ellipse. If Rx=Ry it will be drawn a circle. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_ELLIPSE (int Cx, int Cy, int Rx, int Ry)

Parameters
Cx Coordinate X of the center
Cy Coordinate Y of the center
RX Radius X
RY Radius Y

11.1.23 DRAW_FELLIPSE
Draws a filled ellipse. If Rx=Ry it will be drawn a circle. The colour has to be set with setcolor.
Hardware PEC70,NG35+...,NGM13+....

Syntax
DRAW_FELLIPSE (int Cx, int Cy, int Rx, int Ry)

Parameters
Cx Coordinate X of the center
Cy Coordinate Y of the center
RX Radius X
RY Radius Y

11.1.24 DRAW_FRAME
Draws a rectangle with the shadow effect.
Hardware PEC70

Syntax
DRAW_FRAME (int X0, int Y0, int X1, int Y1, int tck, int col_up, int col_down)

Parameters

X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the lower right angle
Y1 Any number or expression corresponding to the coordinate Y of the lower right angle
tck Any number or expression corresponding to the thickness of the shadow
col_up Any number or expression corresponding to the colour of the upper shadow
col_down Any number or expression corresponding to the colour of the lower shadow

11.2 FUNCTIONS FOR THE SERIAL PORT CONTROL
All Promax hardware devices have 1 or 2 serial channel available to the application.
In VTB there are some object to manage the common serial protocol, for example MODBUS protocol both
MASTER and SLAVE. However it's possible to use one serial channel to customize the protocol.
To do that there are some API function which always refer to the SECOND SERIAL PORT of the
hardware.

11.2.1 SER_SETBAUD
Programming the BaudRate of the second SERIALE PORT.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
SER_SETBAUD (long Baud)

Parameters
Baud Value of Baud Rate. The standard value are:

1200-2400-4800-9600-19200-38400-57600-115200

11.2.2 SER_MODE
Programming the mode of the second SERIAL PORT. If this function is never called, by default the port is
programmed with: No parity, 8 bits per character, 1 stop bit.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
SER_MODE(char par, char nbit, char nstop)

Parameters
par Parity (0=no parity, 1=odd parity, 2=even parity)
nbit Number of bits per character (7 or 8)
nstop Number of stop bits (1 or 2)

Example
ser_mode(1,8,2) ‘ Program the 2nd serial port with:

‘ ODD-PARITY, 8 BIT/CHAR 2 STOP-BIT

11.2.3 SER_GETCHAR
Reads the receive buffer of the serial port. It doesn't wait for the presence of a character.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
SER_GETCHAR () as int

Return value:
-1 No character is in the buffer
>=0 Code of the character read from the buffer

11.2.4 SER_PUTCHAR
Sends a character to the serial port.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
SER_PUTCHAR (int Car)

Parameters
Car Code of the character to send

11.2.5 SER_PUTS
Sends a string of characters to the serial port. The string must be ended with the character 0 (NULL).
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

ATTENTION: This function can not be used in a BINARY transmision but only with ASCII transmision.

Syntax
SER_PUTS (char *str)

Parameters
*str Pointer to the string

Example
Ser_puts("TEXT MESSAGE") ‘ Send the string TEXT MESSAGE
Strcpy(Vect(),"MESSAGE1") ‘ Copy the string MESSAGE1 to Vect
Ser_puts(Vect()) ‘ Send again the string TEXT MESSAGE

11.2.6 SER_PRINTL
Formatting print of an INTEGER value.
Hardware PEC70,NG35+...,NGM13+....

Syntax
SER_PRINT (const char *format, long val)

Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

Avalaible formats
Print a fixed number of characters 23456
###.### Force the print of decimal point 123.456
+#### Force the print of the sign +1234
#0.## Force the print of a ZERO 0.12
X#### Print in HEXADECIMAL format F1A3
B#### Print in BINARY format 1011

Example
var=12345
ser_printl(“###.##”,var) ‘ It will be printed: “123.45”
var=2
ser_printl(“###.##”,var) ‘ It will be printed: “ . 2”
ser_printl(“###.00”,var) ‘ It will be printed: “ .02”
ser_printl(“##0.00”,var) ‘ It will be printed: “ 0.02”

11.2.7 SER_PRINTFF
Formatting print of a FLOAT value. It is the same as ser_printf.
Hardware PEC70,NG35+...,NGM13+....

Syntax
SER_PRINTF (const char *format, float val)

Parameters
Format String corresponding to the format to be printed
Val Any integer value or expression

11.2.8 SER_PUTBLK
Sends a precise number of characters to the serial port. Unlike the function ser_puts it allows to send also
the character with 0 code enabling the managing of binary protocols, furthermore it starts the background
transmission setting in appropriate mode the RTS signal useful to work with RS485 lines.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

ATTENTION: This function allows to manage BINARY and RS485 protocols.

Syntax

SER_PUTBLK (char *Buffer, int Len)

Parameters
*Buffer Pointer to the data buffer to send
Len Number of bytes to send

Example
Ser_putblk(Vect(),11) ‘ Send 11 bytes of array vect

11.2.9 SER_PUTST
Reads the state of background transmission started by ser_putblk.
Hardware PEC70,NG35+...,NGM13+....,NG35,NGM13

Syntax
SER_PUTST () as uint

Return value:
-1 Transmit error
>=0 Number of characters to be transmitted

Example
Ser_putblk(Vect(),11) ‘ Send 11 bytes
while Ser_putst() ‘ Wait for the complete transmission
loop

11.3 FUNCTION FOR TOUCH AND KEYBOARD CONTROL
In this chapter the primitive function for the management of data input are described, for both the control of
TOUCH SCREEN and KEYBOARD.

11.3.1 KEY INPUT
To control the input of KEYS (TOUCH or KEYBOARD keys), two system variables are made available.
Hardware PEC70,NG35+...,NGM13+....,

Int _key_stdinp_dn It contains the code of the pressed key
Int _key_stdinp_dn It contains the code of the realised key

Working with TOUCH systems the code is defined by the set_key function. For systems with KEYBOARD
the code corresponds to the physical one of the key (refer to HARDWARE manual).

Example
if _key_stdinp_dn = keycode

…. ‘ key pressed
endif
if _key_stdinp_up = keycode

...‘ key released
endif

11.3.2 SET_KEY
Draws a touch-key at the specified coordinate making it operative to the use. Usually the touch-keys are
drawn in VISUAL MODE by IDE environment.
Hardware PEC70

Syntax
SET_KEY (int X0, int Y0, int X1, int Y1, int Cod, int form)

Parameters
X0 Any number or expression corresponding to the coordinate X of the upper left angle
Y0 Any number or expression corresponding to the coordinate Y of the upper left angle
X1 Any number or expression corresponding to the coordinate X of the upper right angle
Y1 Any number or expression corresponding to the coordinate Y of the upper right angle
Cod Any number or expression corresponding to code assigned to the key (from 1 to 255)
Form Any number or expression corresponding to the form of the key:

Form = 0 Enable the press effect
Form = 1 Disable the press effect

Example
Set_key(10,10,30,30,1,0) ‘ Draw a key at 10,10,30,30, Code 1

11.3.3 CLEAR_KEY
Disables the touch-key with the specified code. It isn't deleted from the screen but remaining displayed .
Hardware PEC70

Syntax
CLEAR_KEY (int Code)

Parameters
Code Code of the key to be disabled

11.4 MISCELLANEOUS API FUNCTIONS

11.4.1 GET_TIMER
Reads the system timer in units of TASK PLC (scan time).
Hardware All

Syntax
Long GET_TIMER ()

Return value:
Value of the system timer in sampling units

Some defines are automatically generated by VTB to adapt the application at the scan time:
TAU Scan time of TASK PLC in milliseconds (INTEGER value)

TAUFLOAT Scan time of TASK PLC in milliseconds (FLOAT value)

TAUMICRO Scan time of TASK PLC in 0.1 milliseconds

Example
Used variables:
Tick long
Var char
Tick=Get_timer() ‘ Get initial value of timer
while Test_timer(Tick,1000/TAU) ‘ Waiting for 1 second
Loop

11.4.2 TEST_TIMER
Compares the system timer with a value. It is used together the function get_timer to make timing.
Hardware All

Syntax
char TEST_TIMER (long Timer, long Tempo)

Parameters
Timer Initial value of system timer
Tempo Time to compare

Return value:
1= time elapsed
0=time not elapsed

Example
Used variables:
Tick long
Var char
Tick=Get_timer() ‘ Get initial value of timer
while Test_timer(Tick,1000/TAU) ‘ Waiting for 1 second
Loop

11.4.3 ALLOC
Dynamic allocating of memory area.
Hardware PEC70,NG35+...,NG35

Syntax
ALLOC (Long Mem) as long

Parameters
Mem Total amount of memory to be allacated

Return value:
<>0 Pointer to the allocated memory

0 Allocation error

Example
Pnt As *Char
N as Long
Pnt=Alloc(3000) ‘ Alloc 3000 byte of memory
FOR N=0 to N<3000

PUNT[N]=N
NEXT N

11.4.4 FREE
Frees the a memory area previously allocated with alloc.
Hardware PEC70,NG35+...,NG35

Syntax
Free (Char *Punt)

Parameters
Pnt Pointer to the memory to free

Example
Pnt As *Char

Pnt=Alloc(3000) ‘ Alloc 3000 byte of memory
....
....
Free(pnt) ‘ Free the memory

11.4.5 SYSTEM_RESET
Executes a software RESET on the hardware.
Hardware All

Syntax
SYSTEM_RESET (Char mode)

Parameters
mode =0 Executes a normal RESET running the application

=1 Executes a RESET putting device in BOOT state

11.5 API FUNCTIONS FOR MANAGING OF STRINGS
VTB doesn't use STRING variables, to manage them there are some apposite functions similar to the “C”
language.

11.5.1 GET_TABSTR
Gets a string from a text table and put it in the system variable _SYSTEM_STRING.
Hardware All

Syntax
GET_TABSTR (Char Table, Char Msg, Char Lng)

Parameters
Table Index of the table
Msg Index of the string inside the table
Lng Index of the language to be used

Example
Get_tabstr(0,1,_SYSTEM_LINGUA) ‘ Read the second message (idx 1) from the

‘ first (odx 0) table using the current
‘ language

Draw_str(_system_string()) ‘ Print _system_string

11.5.2 STRCPY
Copies the string pointed by SOURCE into the array pointed by DEST. The string must terminate with the
character 0 (NULL).
Hardware All

Syntax
STRCPY (Char *Dest, Char *Source)

Parameters
Dest Pointer to destination
Source Pointer to source

Example
Used variables:
Dest(10) char
Dest1(10) char
strcpy(Dest(),”prova testo”) ‘ copy the string “prova testo” in dest
strcpy(Dest1(),Dest()) ‘copy the string “prova testo” in dest1

11.5.3 STRLEN
Returns the length of a string.
Hardware All

Syntax
STRLEN(Char *Str) as int

Parameters
Str Pointer to the string

Return value:
Length of the string.

Example
Used variables:
Len int
Len=StrLen(”prova testo”) ‘ ritorna il value 11

11.5.4 STRCMP
Comparing of two strings.
Hardware All

Syntax
STRCMP(Char *Str1, Char *Str2) as char

Parameters
Str1 Pointer to the first string
Str2 Pointer to the second string

Return value:
0 Equal strings
< String Str1 less than Str2
>0 String Str1 greater than Str2

11.5.5 STRCAT
Appends a copy of the source string to the destination string.
Hardware All

Syntax
STRCMP(Char *Dest, Char *Source)

Parameters
Dest Pointer to destination
Source Pointer to source

Example
Used variables:
Str(30) Char
Strcpy(Str(),”PROVA “)
StrCat(Str(),”TESTO”) ‘ str1 will contain “PROVA TESTO”

11.5.6 STR_PRINTL
Converts an INTEGER variable to a characters STRING.
Hardware All

Syntax
STR_PRINTL(Char *Dest, Char *Format, Long Var)

Parameters
Dest Pointer to the destination string
Format String corresponding to the format to be printed
Val Any integer value or expression

Avalaible formats
Print a fixed number of characters 23456
###.### Force the print of decimal point 123.456
+#### Force the print of the sign +1234
#0.## Force the print of a ZERO 0.12
X#### Print in HEXADECIMAL format F1A3
B#### Print in BINARY format 1011

For the example see the function print.

11.5.7 STR_PRINTF
Converts a FLOAT variable to a characters STRING.
Hardware All

Syntax
STR_PRINTF(Char *Dest, Char *Format, Float Var)

Parameters
Dest Pointer to the destination string
Format String corresponding to the format to be printed
Val Any float value or expression

Avalaible formats
Print a fixed number of characters 23456
###.### Force the print of decimal point 123.456
+#### Force the print of the sign +1234
#0.## Force the print of a ZERO 0.12
X#### Print in HEXADECIMAL format F1A3
B#### Print in BINARY format 1011

For the example see the function print.

11.6 FUNCTIONS FOR AXIS INTERPOLATION
The axis interpolation functions are contained in an OBJECT in the CLASS COBJINTERPOLA. In this
chapter are descriped this function with the primitive name. Remember to put the prefix of the OBJECT
NAME. If, for example the object is named obj the function moveto will must be called as obj.moveto.

11.6.1 PROPERTY
This is the list of the common properties of the OBJECT COBJINTERPOLA.

N.assi Number of axis to be interpolate. It can be changed only at VTB environment.
N.assi Number of elements in the movement buffer. It can be changed only at VTB environment

and must have a value as power of 2 (4, 8, 16, etc.). A DEFINE named NASSI is
automatically generated with this value.

.vper Value for the changing of the speed “on-fly”. Together Div.vper form a ratio: when it is 1 the
speed corresponds to the set one.

Div.vper Divisor of vper. It can be changed only at VTB environment.
Abilita arcto Usually it is set to 1, if 0 the circular interpolation functions will be not avalaible. It is used to

short the code size. It can be changed only at VTB environment.
.acc Acceleration and deceleration. During the execution of ramps, at each sample (TASK PLC)
the speed, as unit/sample is incremented (o decremented) of this value. Default value 10.
.sglr Threshold of the radius error. Default value 10.
.sglp Threshold edge 2D as tenth of degree. It is used by moveto and lineto to calculate the

presence of an edge on the working plane. Default value 10.(20 degrees).
.sgl3d(NASSI) Threshold edge 3D. Default value 0.2 (for all axis).
.pc(NASSI) Actual calculated value of the axis position.
.cmd Output of virtual axis managed by setcmd.

11.6.2 MOVETO
Movement with linear interpolation. The interpolation is executed at speed vel. The parameter mode defines
if the axis have to stop in the position or continue with the next movement. To do that there is a apposite
BUFFER where movement are latched.
Hardware All

Syntax
.MOVETO(Long Vel, Char mode, Long *PntAx) as char

Parameters
Vel Velocity of interpolation as unit/sample
mode Flag to control the stop before the next movement

mode=0 never stop
mode=1 always stop at the end of movement
mode=2 stop only on edge 3D (sgl3d)
mode=3 stop only on edge 3D (sglp)

PntAx Pointer to the array of the axis position as unit

Return value
Char 0 Command not written in the buffer (buffer full)

1 Command written in the buffer

Notes
Moveto is usually used to interpolate more than 2 axis. The speed vector is distributed on all axis to be
interpolated. When mode=2 it is calculated the presence of a multidimensional edge according to the values
in sgl3d. When mode=2 the test of edge is made only on the axis of the working plane and according to
the value in sglp. If the comand isn't written in the BUFFER, we have to wait and repeat otherwise it will be
lost.

Approximative reference values of parameter SGL3D

THRESHOLD in DEGREE VALUE OF SGL3D (min-max)
5 60-90

10 125-175
20 250-350
30 300-500
45 400-700

Example (object name = OBJ)
Used variables:
VectAssi(4) long
Vel long
Test char
'***
'Fast interpolation of several segments on axis X,Y holding Z and A stopped
'***
vel=1000
VectAssi(0)=1000 'X
VectAssi(1)=2000 'Y
VectAssi(2)=OBJ.pc(2) 'Z remain stopped
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()
VectAssi(0)=4000 'X
VectAssi(1)=6000 'Y
VectAssi(2)=OBJ.pc(2) 'Z remain stopped
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()
VectAssi(0)=5000 'X
VectAssi(1)=2000 'Y
VectAssi(2)=OBJ.pc(2) 'Z remain stopped
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()
.
.
‘ ***
‘ Movement function waiting if the buffer is full
‘ ***
Function muovi() as Void
Dim test as Char
Label Move
test=Obj.moveto(vel,3,VectAssi())
if test=0

goto Move
endif
EndFunction

11.6.3 LINETO
Lineto interpolates the axis distributing the vector speed ONLY ON THE AXIS OF THE CURRENT
WORKING PLANE. The other axis will be TRANSPORTED.
The function is useful to manage TANGENTIAL AXIS such as cutting machine, where the blade have to be
transported to increasing the fluidity of the movement. The eventual stop of axis is calculated according to
the threshold value in sglp. If the resultant edge is less or equal than this threshold axis don't stop in the
position but continue filleting the two segments.
Hardware All

Syntax
.LINETO(Long Vel, Long *PntAx) as char

Parameters
Vel Velocity of interpolation as unit/sample
PntAx Pointer to the array of the axis position as unit

Return value
Char 0 Command not written in the buffer (buffer full)

1 Command written in the buffer

Notes
Lineto, unlike Moveto, doesn't distribute the velocity on all enables axis, but only on the working plane
making this function not able to tridimensional interpolation.

If the edge is less or equal than SGLP axis don't stop

Example (object name = OBJ)
Used variables:
VectAssi(4) long
Vel long
Test char
‘ Fast interpolation with tansported third axis
vel=1000
VectAssi(0)=1000 'X
VectAssi(1)=2000 'Y
VectAssi(2)=100 'Z transported
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()
VectAssi(0)=4000 'X
VectAssi(1)=6000 'Y
VectAssi(2)=200 'Z transported
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()
VectAssi(0)=5000 'X
VectAssi(1)=2000 'Y
VectAssi(2)=300 'Z transported
VectAssi(3)=OBJ.pc(3) 'A remain stopped
muovi()

‘ ***
‘ Movement function waiting if the buffer is full
‘ ***
Function muovi() as Void
Dim test as Char
Label Move

test=Obj.lineto(vel,VectAssi())
if test=0

goto Move
endif
EndFunction

11.6.4 ARCTO
Movement with CIRCULAR interpolation on the axis of the current WORKING PLANE. Two axis execute a
CIRCULAR interpolation while the others are interpolated in LINEAR mode. As function LINETO, the
property sglp defines the edge threshold for axis stopping. The direction of rotation is determined by the
parameter mode.
Hardware All

Syntax
.ARCTO(Long Vel, Char mode, Long *PntAx, Long CX, Long CY) as char

Parameters
Vel Velocity of interpolation as unit/sample
mode Direction of rotation

mode=2 CW interpolation
mode=3 CCW interpolation

PntAx Pointer to the array of the axis position as unit
Cx,CY Coordinate X,Y (axis of the working plane) of the CENTER

Return value
Char 0 Command not written in the buffer (buffer full)

1 Command written in the buffer
-1 Radius error (dipends by sglr)

Note
Arcto executes a CIRCULAR interpolation ON WORKING PLANE while the other axis are interpolated in
LINEAR MODE.

Example (object name = OBJ)
Used variables:
VectAssi(4) long
Cx long
Cy long
Vel long
'**
'Circular interpolation CW on X,Y Z and A
'to realize the programmed arc the axis X and Y must be
'in precise positions, for Example at 0,2000
‘**
vel=1000
VectAssi(4) long
VectAssi(0)=1000 ‘ final position X
VectAssi(1)=2000 ‘ final position Y
VectAssi(2)=5000 ‘ final position Z
VectAssi(3)=1000 ‘ final position A
Cx=500 ‘center X
Cy=500 ‘center Y
muovi()
.
.
Function muovi() as Void
Dim test as Char
Label Move
test=px_arcto(vel,2,VectAssi(), Cx, Cy)
if test = 0

goto Move
endif
EndFunction

11.6.5 SETCMD
This function allows the synchronization of commands with the axis movement. In fact because of BUFFER
OF AXIS MOVEMENT the interpolation functions don't wait the execution of the command but write it in the
buffer. This implies the impossibility to command, for example, the digital output in a precise point of the path
if axis don't stop in each position. This function enables the writing of a command value in the buffer when a
interpolation function is called (moveto, lineto, arcto), it will be written in cmd at the instant the movement
starts.
Hardware All

Syntax
.SETCMD(Long CMD)

Parameters
CMD Value of the command

Example
muovi()
OBJ.setcmd(10)
muovi()
OBJ.setcmd (20)

Nel TASK PLC
if OBJ.CMD=10

…
endif
if OBJ.CMD=20

…
endif

11.6.6 SETPIANO
Selects the current working plane on desired axis. By default the plane is set on the first two axis X, Y
(ax1=0, ax2=1). Ax1 can not be equal to ax2.
Hardware All

Syntax
.SETPIANO(Char Ax1, Char Ax2)

Parameters
Ax1 Index of the first axis of the plane
Ax2 Index of the second axis of the plane

Note
The WORKING PLANE selects the axis for the CIRCULAR interpolation, for calculation of the edge 2D
(sglp) and for calculation of the SPEED VECTOR in the function LINETO.

Example
Obj.setpiano(0,1) 'select the plane on axis X and Y
Obj.setpiano(1,2) 'select the plane on axis Y and Z

11.6.7 STOP
Stops axis with the programmed deceleration (acc) waiting for the complete execution (axis stopped).
STOP is used to stop the axis before the TARGET point, programmed with MOVETO, LINETO or ARCTO, is
reached. The movement buffer will be emptied.

Hardware All

Syntax
.STOP()

Notes
STOP, unlike FSTOP, waits the axis are stopped, for this IT MUST NOT BE CALLED IN TASK PLC.

11.6.8 FSTOP
Stops axis with the programmed deceleration (acc) without waiting for the complete execution (axis
stopped).
FSTOP is used to stop the axis before the TARGET point, programmed with MOVETO, LINETO or ARCTO,
is reached. The movement buffer will be emptied.

Hardware All

Syntax
FSTOP()

Note
FSTOP, unlike STOP, doesn't wait the axis are stopped, for this IT CAN BE CALLED IN TASK PLC.

11.6.9 MOVE
Riturns the state of the interpolation.
Hardware All

Syntax
.MOVE() as char

Return value
char 0 No interpolation is running

1 Interpolation is running

Note
MOVE retunrs 0 only the axis are stopped and the movement buffer is empty.
ATTENZIONE: MOVE tests only the DEMAND POSITION of AXIS.

Example
Muovi() ‘start interpolation
while Obj.move() ‘wait for complete execution
endif

11.6.10 PRESET
Presets the AXIS position without move them. Axis will assume the position as passed by parameters.
Hardware All

Syntax
.PRESET(long *Pos)

Parameters
Pos Pointer to the array of the position value to preset

Note
Keep in mind these rules:

– AXIS MUST BE STOPPED
– CHANGING INSTANTLY THE POSITION IT OCCURS A PARTICULAR SEQUENCE TO AVOID

THE PHISICAL AXIS MOVES ROUGHLY

For example WHEN USING THE CANOPEN AXIS IT NEEDS:
– REMOVING THE CANOPEN FROM THE INTERPOLATION MODE
– PRESETTING THE CANOPEN AXIS BY METHOD .HOME
– PRESETTIN THE INTERPOLATOR WITH FUNCTION PRESET(pos())
– SETTING AGAIN THE CANOPEN AXIS IN INTERPOLATION MODE

Example with the axis X as CanOpen

Used variables:
Quote(3) as long

ASSECAN.start=0 ' remove the start condition
ASSECAN.modo=0 ' set the position mode (remove from interpolation mode)
ASSECAN.home=1000 ' preset of axis at 1000
Quote(0)=1000 ' set the preset value in the position array for X
Quote(1)=OBJ.pc(1) ' value to not modify the Y position
Quote(2)=OBJ.pc(2) ' value to not modify the Z position
OBJ.PRESET(Quote()) ' preset of the interpolator
ASSECAN.modo=2 ' set the Interpolation Mode
ASSECAN.start=1 ' start

In similar way the same problem can occur using the STEP/DIR axis. Refer to the chapter of STEP/DIR
channels for a correct preset of them.

11.7 CANOPEN FUNCTIONS
This group of functions allow the management of CANOPEN line at application level. A lot of library
OBJECTS use these functions to make it more simple but in some cases it is necessary using the primitive
functions directly.

11.7.1 PXCO_SDODL
This function allows to send data to a node of the canopen net using the protocol SDO. It is supported only
the SDO EXPEDITED mode allowing to send up to 4byte of data length.
Hardware All

Syntax
PXCO_SDODL(char node, unsigned index,unsigned char subidx,long len,char *data) as char

Parameters
Node Node ID of the SLAVE to whch send data
Index, subindex Address in the Object-Dictionary of the data to be written
Len Number of bytes to send
*data Pointer to the data to send

Return value
char 0 No error

<>0 Communication error
=2 The node responded with a SDO ABORT CODE, calling the function read_sdoac in the

system variables _SYSTEM_SDOAC0 e _SYSTEM_SDOAC0 will be available the relative
error code.

ATTENTION: Cause the different allocation of bytes inside variables be careful to set the length
corresponding to the variable type passed by pointer.

Example
Used variables:
value int
Ret char
value=100
Ret=pxco_sdodl(1,2000,0,2,value()) 'node=1, index=2000, subidx=0,

'len=2 byte, value=100
if Ret<>0 ‘test if error occurs

if Ret=2
read_sdoac()‘read eventual SDO ABORT CODE
...

endif
...

endif

11.7.2 PXCO_SDOUL
This function allows to read data from a node of the canopen net using the protocol SDO. It is supported only
the SDO EXPEDITED mode allowing to read up to 4byte of data length.
Hardware All

Syntax
PXCO_SDOUL(char node, unsigned index,unsigned char subidx,char *dati) as char

Parameters
Node Node ID of the SLAVE to whch send data
Index, subindex Address in the Object-Dictionary of the data to be written
*data Pointer to the data to send

Return value
char 0 No error

<>0 Communication error
=2 The node responded with a SDO ABORT CODE, calling the function read_sdoac int the

system variables _SYSTEM_SDOAC0 e _SYSTEM_SDOAC0 will be available the relative
error code.

ATTENTION: Cause the different allocation of bytes inside variables be careful to use the variable
passed by pointer of the type corresponding to the length of the data to be read.

Example
Used variables:
value int
Ret char
Ret=pxco_sdoul(1,2000,0,value()) 'node=1, index=2000, subidx=0,

'value=data read
if Ret<>0 ‘test if error occurs

if Ret=2
read_sdoac()‘read eventual SDO ABORT CODE
...

endif
...

endif

11.7.3 READ_SDOAC
Reading of the SDO ABORT CODE sended by a node in the canopen net as answer to a request done with
the function PXCO_SDODL or PXCO_SDOUL. The read code will be written in the system variables
_SYSTEM_SDOAC0 e _SYSTEM_SDOAC1.
Refer to the DS301 specific of the CAN OPEN for the code error values.
Hardware All

Syntax
READ_SDOAC()

11.7.4 PXCO_SEND
Sending of a CAN frame at low level. This function allows to send in the net a CAN frame with a desired
COB-ID and DATS. For example it's possible to send manually PDO frames, HEART-BEAT frames, etc.
Should be specified the manage of PDO is managed AUTOMATICALLY by the CANOPEN
CONFIGURATOR.
Hardware All

Syntax
PXCO_SEND(int id, char Len,char Dati) as char

Parameters
Id COB-ID value
Len Number of data to send
*Dati Pointer to the data buffer

Return value
char 0 No error

<>0 Communication error

Example
Used variables:
value int
Ret char
value=100
Ret=pxco_send(0x201,2,value) ‘Send a PDO (cob-id=0x201) with 2 byte
if Ret<>0 ‘test if error occurs

...
endif

11.7.5 PXCO_NMT
Sending of a NMT frame of the CAN OPEN. NMT protocol allows to set the state of the nodes in the net.
Remind that all the nodes correctly configured (canopen configurator) are automatically set in START state.

Hardware All

Syntax
PXCO_NMT(char state, char node) as char

Parameters
state State to set:

1 = START NODE
2 = STOP NODE
128 = PRE-OPERATIONAL
129 = RESET NODE
130 = RESET COMUNICATION

node Number of the node

Return value
char 0 No error

<>0 Communication error

Example
Used variables:
pxco_nmt(2,1) ‘Set in STOP the node 1

11.7.6 READ_EMCY
Reads the last EMERGENCY OBJECT frame sended by a CAN OPEN node.
The emergency code is written in the system array _SYSTEM_EMCY(8) and it will contain all the 8 bytes of
the EMERGENCY OBJECT frame as from the DS301 specific of the CAN OPEN. Usually it is called
cyclically. The emergency code depends by type of connected device, therefore refer to its manual.
Hardware All

Syntax
READ_EMCY() as char

Return value
char 0 No error

<>0 Node that generated the emergency object.

 _SYSTEM_EMCY
0 1 2 3 4 5 6 7
Emergency Error
Code

Error
Register

Manufacturer specific Error Code

ATTENZIONE
The system doesn't buffer more than one message, then if more EMERGENCY OBJECT are sended
along a single task plc, only the last will be read.
An EMERGENCY OBJECT non significa che effettivamente ci sia un nodo in emergenza. The DS301
specific provide that an EMERGENCY OBJECT are send also on alarm reset. Furthermore some
devices can be send this frame at start up.

Example
Used variables:
Err Long
NodeErr Char
function Alarm() as void

NodeErr=read_emcy()
if NodeErr=0 ' no error

return
endif
err=(_SYSTEM_EMCY(7)&0xff) ' Read 4 byte of Manufactured specific
err=err<<8 ' field masking eventual bit not
err=err|(_SYSTEM_EMCY(6)&0xff)' interested

err=err<<8
err=err|(_SYSTEM_EMCY(5)&0xff)
err=err<<8
err=err|(_SYSTEM_EMCY(4)&0xff)

endfunction

11.8 DATA SAVING FUNCTIONS
All hardware are equipped with several type of memory usable for DATA SAVING. According to the type of
memory (Fash, Fram, etc.) some rules are to be implemented.
For example a FLASH memory has a maximum number of writing, block erase, etc.

11.8.1 IMS_WRITE
Writes in the internal FLASH at the address contained in ADDR, the data pointed by PNT for a total of
NBYTE of data.
The FLASH memory is managed in BLOCKS of 256 bytes, for this it's recommended to write multiple of 256
bytes. That because also writing less than 256 bytes the entire BLOCK is erased, therefore to avoid the loss
of data it needs at beginning to read all the block, save the interested data and overwrite again all the block.
The systems NG35 or PEC70 have enough FLASH memory to be used without problems in blocks of 256
bytes also there is the need of less data.
Using the NGM13, this function works on a FRAM memory which can be managed at single BYTE.
Hardware All

Syntax
IMS_WRITE(char *Pnt, long Addr, long Nbyte) as char

Parameters
Pnt Pointer to data buffer to be written
Addr Start address in the reserved area of the device
Nbyte Number of bytes to be written

Return value:
Char 0 No error

<>0 Writing error

Example
Used variables:
Vett(10) long
Ims_Write(Vett(),0,40) ‘ write 40 bytes (10 long * 4) to ADDR 0

ATTENTION: In this case the entire block of 256 byte is written if we are working with FLASH (NG35,
PEC70).

11.8.2 IMS_READ
Reads from the internal memory at address ADDR a number of byte as in NBYTE and writes them in the
array pointed by PNT.
Hardware All

Syntax
IMS_READ(char *Punt, long Addr, long Nbyte) as char

Parameters
Pnt Pointer to data buffer where read data will be saved
Addr Start address in the reserved area of the device
Nbyte Number of bytes to be read

Return value:
Char 0 No error

<>0 Writing error

Example
Used variables:
Vett(10) long
Ims_Read(Vett(),0,40) ‘ read 40 bytes (10 Long) from Addr 0

11.9 ETHERNET FUNCTIONS
Systems equipped with ETHERNET manage AUTOMATICALLY the STACK TCP/IP. To work with protocols
at upper level than TCP/IP it must be written some source code in the application. For example to process
the MODBUS-TCP protocol there is a specific object in library which uses the functions of this group. In the
same way it's possible to create customized protocols.

11.9.1 SET_IP
Sets the parameters of TCP/IP protocol.
Hardware PEC70,NG35+....,NG35

Syntax
SET_IP(ip as *char, sm as *char, gw as *char)

Parameters
ip IP address of the device
sm subnet mask
gw gateway

Example
Set_ip(“10,0,0,15”,”255,255,255,0”,0) 'IP = 10,0,0,15

'SUBNET = 255,255,255,0
'GATEWAY = nothing

ATTENTION: This function must be called in the INIT section of the MAIN or PLC TASK.

11.9.2 PXETH_ADD_PROT
Adds a custom protocol to a specific port of TCP/IP. A custom function to process the new protocol must be
written and its pointer must be pass to this function.
Hardware PEC70,NG35+....,NG35

Syntax
PXETH_ADD_PROT(port as long, fun as delegate)

Parameters
port TCP port on which the new protocol is added
fun Pointer to the custom process function

Example
Used variables:
fun delegate

Init section of main:
Set_ip(“10,0,0,15”,0,0) 'set IP = 10,0,0,15
fun=my_protocol
pxeth_add_prot(502,fun) 'Add the protocol my_protocol on port 502

'protocol process function
function my_protocol(len as long, buftx as *char) as long
...
endfunction

11.9.3 PROTOCOL PROCESS FUNCTION
This function isn't defined by system but it must be written in the application. The system will call this
function, by the pointer passed with pxeth_add_prot, each time a data packet is received from the port
associated to this protocol. To read the received data the function pxeth_rx have to be call while to send the
response data they must be written in the transmit buffer (buftx) and return from the function the number of
bytes we want to send.
Hardware PEC70,NG35+....,NG35

Syntax
PROCESS_MY_PROTOCOL(len as long, buftx as *char) as long

Parameters
len Length of data packet received
buftx Pointer to the transmit buffer

Return value
long Number of bytes to be send

Example
Used variables:
bufrx(100) char

'protocol process function
function my_protocol(len as long, buftx as *char) as long
dim i as int

for i=0 to i<len 'Read all received data
bufrx(i)=pxeth_rx()

next i
... 'Process the data
buftx(0)=12
buftx(1)=34
my_protocol=2 '2 will be sent as response
endfunction

11.9.4 PXETH_RX
Read a single byte from the TCP/IP receive buffer. It is called by the protocol process function to read the
received data.
Hardware PEC70,NG35+....,NG35

Syntax
PXETH_RX() as char

Return value
Char Data read from the receive buffer

11.10 DISK DRIVER FUNCTIONS
Some devices, such as NG35 and PEC70, can manage files by the standard fyle system FAT16 (or FAT32)
on optional memory as FLASH DISK or USB KEY. The library functions are contained in the object FATLIB
which will be loaded before using. In this chapter are described all the GENERIC function of the object.
Remember to put the prefix of the OBJECT NAME. If, for example the object is named disk the function
OpenRead will must be called as disk.OpenRead.
Hardware NG35,PEC70

11.10.1 PROPERTY
Numero files Maximum number of opened files. The HANDLE of the files will must be a number from 0 to

this value minus one. It can be changed only at VTB environment.
FAT Monitor Enables the command monitor on the second serial port. It can be changed only at VTB

environment.

11.10.2 DRIVER
The system can manage mor drivers if they are equipped on hardware. The reference in the path is in the
standard mode (A:, B:, etc.) but for some functions it needs to pass the index of the driver. According to used
hardware these are the reference of the driver:

A: B:
NG35 Optional internal disk Not present

PEC70 Optional internal disk USB Key

11.10.3 ERROR CODE
All function of this object, except TestDrv, RTC.Read and RTC.Write, return a value representing the error
code.

Return value
Char 0 OK No error

1 DISK ERROR
2 INTERNAL ERROR
3 NOT READY
4 NO FILE
5 NO PATH
6 INVALID NAME
7 ACCESS DENIED
8 FILE/DIR EXIST
9 INVALID OBJECT
10 WRITE PROTECTED
11 INVALID DRIVE
12 NOT ENABLED
13 NO FILESYSTEM
14 FORMAT ERROR
15 TIMEOUT
100 HANDLE OVERFLOW

11.10.4 OPENREAD, OPENWRITE, OPENCREATE
These function open a file assigning an HANDLE to use as reference for the next functions.

Syntax
.OpenRead(handle as int, path as *char) as char
Opens a file in read mode and return error if it doesn't exist.

.OpenWrite(handle as int, path as *char) as char
Opens a file in write mode and return error if it doesn't exist.

.OpenCreate(handle as int, path as *char) as char

Creates a new file opening it in write mode, if it already exists it is overwritten.

Parameters
handle Number to assign to file for any reference
path Name of the file, it can contain also the complete path

Example
Used variables:
err char

err=disk.OpenRead(1,”\data\table.dat”) ‘ open table.dat in the directory data
if err

...
endif

11.10.5 CLOSE
Closes the file with the selected HANDLE freeing it to successive use.

Syntax
.Close(handle as int) as char

Parameters
handle Reference number of the file

Example
Used variables:
err char

err=disk.OpenRead(1,”\data\table.dat”) ‘ open table.dat in the directory data
if err

...
endif

...
disk.Close(1) ‘ close the file

11.10.6 READ
Reads data from the file with the selected HANDLE. LEN bytes will be read but if the end of file will be found
before reading will be stopped. In NB will be written the effective number of bytes read.

Syntax
.Read(handle as int, dati as *char, len as long, nb as *long) as char

Parameters
handle Reference number of the file
dati Pointer to buffer in which data will be written
len Number of bytes to read
nb Pointer to the variable in which the effective number of bytes read will be written

Example
Used variables:
err char
dati(100) char
nbyte long

err=disk.OpenRead(1,”\data\table.dat”) ‘ open table.dat in the directory data
if err

...
endif
while 1

err=disk.Read(1,dati(),10,nbyte()) ‘read blocks of 10 bytes ...

if err
...

endif
if nbyte<10 ‘ .. to the end of file

exitwhile
endif

loop
disk.Close(1) ‘ close the file

11.10.7 WRITE
Writes LEN bytes in the file with the HANDLE reference.

Syntax
.Write(handle as int, dati as *char, len as long, nb as *long) as char

Parameters
handle Reference number of the file
dati Pointer to data buffer to be written in the file
len Number of bytes to be written
nb Pointer to the variable in which the effective number of bytes written will be saved

Example
Used variables:
err char
dati(100) char
nbyte long

err=disk.OpenCreate(1,”\data\table.dat”) ‘create table.dat in the directory data
if err

...
endif

... ‘prepare data to be written
err=disk.Write(1,dati(),50,nbyte())‘write 50 bytes
if err

...
endif
disk.Close(1) ‘ close the file

11.10.8 SEEK, SEEKEOF, SEEKREL
Sets the current pointer in the file.

Syntax
.Seek(handle as int, offset as long) as char
Sets the offset from the beginning of the file.

.SeekEof(handle as int, offset as long) as char
Sets the offset from the end of the file.

.SeekRel(handle as int, offs as long) as char
Sets the offset from the current position of the file.

Parameters
handle Reference number of the file
offset Value of the offset in number of bytes

Example
err=disk.OpenRead(1,”\data\table.dat”) ‘ open the file
...
err=disk.Seek(1,200) ‘ set current position at 200 bytes

11.10.9 CHDIR
Changing of current directory. All successive functions without a complete path will refer to the current one.

Syntax
.Chdir(path as *char) as char

Parameters
path Name of the directory, it can contain also the complete path

Example
err=disk.Chdir(”programs”)
err=disk.OpenCreate(1,”file.txt”) ' create the file file.txt in the directory
 ' programs

11.10.10 MKDIR
Creates a new directory and returns error if it already exists.

Syntax
.Mkdir(path as *char) as char

Parameters
path Name of the directory, it can contain also the complete path

Example
err=disk.Mkdir(”\test\text”) ' create the directory text in \test

11.10.11 DELETE, ERASE, KILL
Delete a file or a directory. The same function can be called with three different names.

Syntax
.Delete(path as *char) as char
.Erase(path as *char) as char
.Kill(path as *char) as char

Parameters
path Name of the directory, it can contain also the complete path

Example
err=disk.kill(”\test\text”) ' delete the directory/file text in \test

11.10.12 RENAME
Renames a file or a directory. It returns error if the new name already exists.

Syntax
.Rename(oldpath as *char, newpath as *char) as char

Parameters
oldpath Name of file/directory to be renamed
newpath Name of the new file/directory to be renamed

Example
err=disk.Rename(”text.txt”,”data.dat”) ' rename the file text.txt with

' data.dat in the current directory

11.10.13 COPY
Duplicates a file. If a file with the destination name exists this is overwritten.

Syntax
.Copy(srcpath as *char, dstpath as *char) as char

Parameters
srcpath Name of the file to be duplicated, it can contain also the complete path
dstpath Name of the duplicated file, it can contain also the complete path

ATTENTION: The destination path must contain the name of the file. It can not refer only to the
directory.

Example
err=disk.Copy(”text.txt”,”B:data.dat”) ' copy the file text.txt in driver B:
...
err=disk.Copy(”text.txt”,”\test\data.dat”) ' copy the file text.txt in the
... ' directory test

11.10.14 OPENDIR
Apre una cartella. E' il punto di partenza per una ricerca dei file presenti nel disco. Usata insieme a ReadDir.

Syntax
.OpenDir(path as *char) as char

Parameters
path Nome della cartella. Se la stringa è vuota viene presa la cartella corrente.

11.10.15 READDIR
Reads the informations of the first file/directory found in the FAT. The informations are saved in the structure
ObjectName_finfo.

Syntax
.ReadDir() as char

Structure ObjectName_finfo
.size File dimension
.date File date bit 0-4 day (1-31)

bit 5-8 month (1-12)
bit 9-15 year (0-99)

.time File time bit 5-10 minutes (0-59)
bit 11-15 hour (0-23)

.attrib Attribute bit 0 read-only
bit 1 hidden
bit 2 system
bit 3 volume
bit 4 directory
bit 5 arch.

.name(13) Short name ex. “nomefile.ext”

.lname Pointer to long name (max 255 characters)

Example
' Function to print on the serial port of the file list in the current
' directory
function list_dir() as void
dim res as char
dim pname as *char
dim flbyte as long

res=disk.OpenDir(“”)
if res

ser_puts("No file")
ser_putchar(10)
ser_putchar(13)

return
endif
while 1

res = disk.ReadDir()
if res || disk_finfo.name(0)=0

return
endif
ser_printl("00",disk_finfo.date & 31)
ser_printl("/00",(disk_finfo.date >> 5) & 15)
ser_printl("/####",(disk_finfo.date >> 9) + 1980)
ser_printl(" 00",disk_finfo.time >> 11)
ser_printl(":00",(disk_finfo.time >> 5) & 63)
if disk_finfo.attrib & ?p1?.ATTR_DIR

ser_puts(" <DIR> ")
else

ser_printl(" ######### bytes ",disk_finfo.size)
endif
ser_puts(" - ")
ser_puts(disk_finfo.name())
ser_puts(" - ")
ser_puts(disk_finfo.lname)
ser_putchar(10)
ser_putchar(13)

loop
endfunction

11.10.16 GETFREE
Reads the property of a driver: total dimension and number of free bytes. The informations are written in the
structure ObjectName_dinfo

Syntax
.GetFree(drv as char) as char

Parameters
drv Index of the driver:

0 = A:
1 = B:

Structure ObjectName_dinfo
.btot Disk dimension in bytes
.bfree Number of available bytes

Example
err=disk.GetFree(0)
ser_puts("bytes free: ")
ser_printl("#.###.###.### ",disk_dinfo.bfree)
ser_puts("su ")
ser_printl("#.###.###.### ",disk_dinfo.btot)

11.10.17 CHDRV
Sets the current driver. All successive functions without the name of driver in the path will refer to the current
one.

Syntax
.ChDrv(drv as char) as char

Parameters
drv Index of the driver:

0 = A:
1 = B:

Example
err=disk.ChDrv(”B:”)
err=disk.OpenCreate(1,”file.txt”) ' create file.txt in driver B:

11.10.18 TESTDRV
Tests the presence of a driver. This is the only function wich doesn't return the code error as the others.

Syntax
.TestDrv(drv as char) as char

Parameters
drv Index of the driver:

0 = A:
1 = B:

Return value
Char 0 No driver found

1 Driver found

ATTENTION: This function tests only the presence of the disk but not the presence of a FAT.

11.10.19 REAL TIME CLOCK (RTC)
When files are created in the relative fields of the FAT the actual date and time are written. For this in the
same object there are the reading and writing functions of the real time clock. All the information pass in a
defined structure names RTC.

Syntax
RTC.Read() as void
Read the Real Time Clock

RTC.Write() as void
Write in the Real Time Clock

Structure RTC
RTC.year Year (0-99)
RTC.month Month (1-12)
RTC.day Day (1-31)
RTC.dweek Day of week (0-6)
RTC.hour Hour (0-23)
RTC.min Minute (0-59)
RTC.sec Second (0-59)

11.11 INTERFACE FUNCTIONS FOR NG35
This group of functions allows the interfacing to the hardware resource of NG35 systems.
Hardware NG35

11.11.1 NG_DI - DIGITAL INPUTS
This function allows to read the digital input of the expansion cards of NG35: NG-IO and NG-PP.
The expansion cards are identified with a progressive number starting from 0. The first card near the NG35
has the index 0.

Syntax
Uint NG_DI(Char Card)

Parameters
Card Index of the expansion card (from 0 to 7)

Return value:
Uint Value of 16 BITS of the input, if Bit is 1 the input is ACTIVE

Input 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example
Used variables:
input UINT

input = ng_di(0) ‘ read the digital inputs from the first card
input = ng_di(2) ‘ read the digital inputs from the second card

11.11.2 NG_DO – DIGITAL OUTPUTS
This function allows to updates the digital output of the expansion cards of NG35: NGIO and NGPP.
The expansion cards are identified with a progressive number starting from 0. The first card near the NG35
has the index 0.

Syntax
NG_DO(Char Card, Uint Out)

Parameters
Card Index of the expansion card (from 0 to 7)
Out State of the outputs, if Bit is 1 the output is ACTIVE

Output 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example
ng_Do(0,0x7) ‘ Activate the outputs 1, 2 and 3 of the Card 0
ng_Do(1,0x31) ‘ Activate the outputs 1, 9 and 10 of the Card 1

ATTENTION: Bits 8 and 15 aren't used.

11.11.3 NOTES FOR PROGRAMMING WITH DIGITAL I/O
To obtain an application program more clear and stable we suggest to call the I/O function only from TASK
PLC. Therefore, in this task, read the inputs writing them in a GLOBAL variable (ex. Input) and write the
outputs reading them from another GLOBAL variable (ex. Output). On these variables can be defined the
single bits associated to the digital channels and then using them at occurrence.

Example
Used variables:

Input1 UINT
Input2 UINT
Output1 UINT
Output2 UINT
StartButton BIT Input1.3
StopButton BIT Input1.6
WaterPump BIT Output2.12

In TASK PLC:
Input1=Ng_Di(0)
Input2=Ng_Di(1)
Ng_Do(0,Out1)
Ng_Do(1,Out2)

EVERYWHERE:
if StartButton

WaterPump=1
endif
if StopButton

WaterPump=0
endif

11.11.4 NG_ADC – ANALOG INPUTS
The NG35 is equipped with 8 analog input channels at 10 Bit, these can be read by the function ng_adc.

Syntax
Uint NG_ADC(Char Chan)

Parameters
Chan Number of the channel (from 0 to 7)

Return value:
Returns the analog value (from 0 to 1023).

11.11.5 NG_DAC – ANALOG OUTPUTS
This function allows to update the analog outputs of each channel equipped in the NG35 expansions NG-IO
and NG-PP (as option).
These expansions have a digital to analog converter at 12 bit, with a range of +/-10V. Therefore a value of
+2047 corresponds to 10V in output, a value of -2047 corresponds to -10V.
The selection of the channel is made by an index from 0 to 7, each expansion manages two channels:

Channel Index Expansion
0

Card 0 (nearest NG35)
1
2

Card 1
3
4

Card 2
5
6

Card 3
7

Syntax
NG_DAC(Char Chan, Long Val)

Parameters
Chan Number of channel (from 0 to 7)
val Value of the output

Example
Used variables:
val LONG
channel CHAR

channel = 0
val = 1024
ng_Dac(channel, val) ' write 1024 (~5V) to analog channel 0
ng_Dac(1,512) ‘ write 512 (~2,5V) to analog channel 1

11.11.6 NG_DAC_CAL – CALIBRATION OF THE ANALOG OUTPUT OFFSET
This function allows to calibrate the OFFSET of the analog outputs. Usually it can be occur that the analog
output has a little value of voltage (OFFSET) in the order of mV also if zero has been set. With ng_dac_cal
we can null this voltage setting a value opposite to the offset one. Remind that for each unit the output value
will be about 4mV.

Syntax
NG_DAC_CAL(Char Ch,Long Offset)

Parameters
Chan Number of channel (from 0 to 7)
Offset OFFSET value

ATTENTION: THE OFFSET VALUE ISN'T SAVED AND IT MUST BE SET AT EACH TURN-ON.

11.11.7 NG_ENC - ENCODER INPUTS
This function allows to read the quadrature encoder input of each channel equipped on the expansion card
NG-IO. The resolution is 32 bits. This function read only the increment which will be added to a variable
passed by its pointer. Therefore the real encoder counter will be contained in a variable defined in the
application and it will can be zeroed in any time. For a correct processing of the encoders we recommend to
use this function only in TASK PLC and then use it at the occurrence.
The selection of the channel is made by an index from 0 to 15, each expansion manages two channels:

Channel Index Expansion
0

Card 0 (nearest NG35)
1
2

Card 1
3
...

...
...
14

Card 7
15

Syntax
NG_ENC(Char Chan, Long *Quota)

Parameters
Chan Number of channel (from 0 to 15)
val Pointer to a long variable where will be contained the counter

Example
Used variables:
posx LONG ' Counter encoder channel 0
posy LONG ' Counter encoder channel 1

In TASK PLC:
ng_enc(0,posx)
ng_enc(1,posy)

EVERYWHERE:
if posx>25000 ' Read encoder channel 0

. . .
posx=0 ' Reset counter channel 0

endif
if posy>200000 ' Read encoder channel 1

. . .
posy=1000 ' Preset counter channel 1

endif

11.11.8 NG_T0 – ZERO INDEX OF ENCODER
This function allows to read the state of the zero index input of each encoder channel equipped in the
expansion card NG-IO. The channel selection is made as for the reading of encoders.

Syntax
NG_T0(Char Chan) as char

Parameters
Chan Number of channel (from 0 to 15)

Return value:
State of the index input:

0 OFF
1 ON

ATTENTION: THE INDEX INPUT IS DIFFERENZIAL, THE ON STATE ON OCCURS WHEN ON CH+
THERE IS A VOLTAGE GREATER THAN THE VOLTAGE ON CH- .

Example
if ng_t0(0)

. . .
endif

11.11.9 NG_RELE
This function allows to update the two RELAIS equipped in each expansion card NG-IO.
Usually these RELAIS are connected to the input ENABLE of the SERVO DRIVER but they can be
managed for any applications. The channel selection is made as for the reading of encoders.

Syntax
NG_RELE(Char Chan, char State)

Parameters
Chan Number of channel (from 0 to 15)
Stato State of the relay:

0 OFF (contact opened)
1 ON (contact closed)

Example
Used variables:
channel UINT
stato UINT

channel = 1
stato = 1
ng_rele(channel,stato) 'active the relay of the second channel
channel = 2
stato = 0
ng_rele(channel,stato) ‘disactive the relay of the third channel
ng_rele(0,1) ‘active the relay of the first channel

11.11.10 TEMPERATURE READING ON NG35
The NG35 is equipped with a TEMPERATURE SENSOR which can be useful to monitor the internal
temperature. The sensor is connected to the Nr. 9 internal ANALOG CHANNEL and it can be read with the
system function ng_adc as for the other analog inputs. To convert the value in degrees Celsius we have to
do a calculation (see example).

Example

Function Read_Temp() as Long
Dim Degrees as Long
Degrees=NG_ADC(8) ' Read the temperature sensor
Degree= Degrees*3300/1024-600 ' Convert the value in 0.1 degrees
Read_Temp= Degrees
EndFunction

11.12 INTERFACE FUNCTIONS FOR NGM13
This group of functions allows the interfacing to the hardware resource of NGM13 systems. When this target
is selected the OBJECT NGM13_INIT is automatically loaded. It defines the hardware configuration of the
device.
Hardware NGM13

11.12.1 NGM13_INIT PROPERTY
The object provides a complete vision of all the software option to be set for the correct use of NGM13.
In detali it allows to set:

● Enabling of the communication protocol RPC (PROMAX proprietary), with relative baudrate
● Which and how many analog inputs are configured
● The step/dir axis to be used and which are in interpolation mode
● Number of expansion cards

Obviously, for each single project there will be only an object NGM init.

Property
Link RPC port Serial port RS232 on which enable the RPC protocol to manage an HOST PC

connection. These are the available options:
0 No RPC Link
1 RPC on serial port SER1/PROG (the DEBUG facilities will be disable and the
 application download must be done by manual keys BOOT/RESET of the NGM13.
2 RPC on serial port SER2

Link RPC baud Baud rate to be used for RPC communication
ADC enable mask Enabling mask of analog inputs. It is processed at bit.

Bit 0 Enables analog input 1 (digital input 9 is disabled)
Bit 1 Enables analog input 2 (digital input 10 is disabled)
. . .
Bit 7 Enables analog input 8 (digital input 16 is disabled)

P-P enable mask Enabling mask of step/dir channels. It is processed at bit.
Bit 0 Enables channel 0
Bit 1 Enables channel 1 (digital outputs 9 and 12 are disabled)
Bit 2 Enables channel 2 (digital outputs 10 and 13 are disabled)
Bit 3 Enables channel 3 (digital outputs 11 and 14 are disabled)

P-P Interp. Mask Enabling mask of step/dir channel in interpolation mode. It is processed at bit.
Bit 0 Channel 0 in interpolation mode
Bit 1 Channel 1 in interpolation mode
Bit 2 Channel 2 in interpolation mode
Bit 3 Channel 3 in interpolation mode

Num. NGM-IO Number of expansion cards NGM-IO or NGM-PS. Remember that 16 inputs and 14
output are available with the NGM13 without any expansion. It must not be
considered.

L-Sync enable mask Enabling mask of L-SYNC channels
Bit 0 Enables channel 0 (digital output 1 is disabled)
Bit 1 Enables channel 1 (digital output 2 is disabled)
Bit 2 Enables channel 2 (digital output 3 is disabled)
Bit 3 Enables channel 3 (digital output 4 is disabled)

L-Sync Prescaler Prescaler Value of L-SYNC channels

11.12.2 NG_DI - DIGITAL INPUTS
This function allows to read the digital input of the NGM13 and its expansion cards: NGM-IO and NGM-PS.
The expansion cards are identified with a progressive number starting from 0. The first card is to consider the
NGM13 (index 0), the nearest expansion at that will have the index 1, and to follow the others.

Syntax
NG_DI(Char Card) as uint

Parameters
Card Index of the expansion card (from 0 to 7)

Return value:

Uint Value of 16 BITS of the input, if Bit is 1 the input is ACTIVE

Input 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example
Used variables:
input UINT

input = ng_di(0) ‘ read the digital inputs from the first card
input = ng_di(2) ‘ read the digital inputs from the second card

11.12.3 NG_DO – DIGITAL OUTPUTS
This function updates the digital output of the NGM13 and its expansion cards: NGM-IO and NGM-PS.
The expansion cards are identified with a progressive number starting from 0. The first card is to consider the
NGM13 (index 0), the nearest expansion at that will have the index 1, and to follow the others.

Syntax
NG_DO(Char Card, Uint Out)

Parameters
Card Index of the expansion card (from 0 to 7)
Out State of the outputs, if Bit is 1 the output is ACTIVE

Output 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example
ng_Do(0,0x7) ‘ Activate the outputs 1, 2 and 3 of the NGM13
ng_Do(1,0x31) ‘ Activate the outputs 1, 8 and 9 of the first expansion card

ATTENTION: Bits 8 and 15 aren't used.
 Outputs from 9 to 14 of the NGM13 are shared with the STEP/DIR channels 1, 2 and 3.

11.12.4 NOTES FOR PROGRAMMING WITH DIGITAL I/O
To obtain an application program more clear and stable we suggest to call the I/O function only from TASK
PLC. Therefore, in this task, read the inputs writing them in a GLOBAL variable (ex. Input) and write the
outputs reading them from another GLOBAL variable (ex. Output). On these variables can be defined the
single bits associated to the digital channels and then using them at occurrence.

Example
Used variables:
Input1 UINT
Input2 UINT
Output1 UINT
Output2 UINT
StartButton BIT Input1.3
StopButton BIT Input1.6
WaterPump BIT Output2.12

In TASK PLC:
Input1=Ng_Di(0)
Input2=Ng_Di(1)
Ng_Do(0,Out1)
Ng_Do(1,Out2)

EVERYWHERE:
if StartButton

WaterPump=1
endif
if StopButton

WaterPump=0
endif

11.12.5 NG_ADC – ANALOG INPUTS
The NGM13 is equipped with 8 analog input channels at 12 Bit. These inputs are shared with the digital
inputs. The NGM13 must be hardware and software configured for the enable of the analog input channels,
each activated channel excludes a correspondent digital input.
This is the relationship (first input is the number 1):

Analog input Digital input

1 9

2 10

3 11

4 12

5 13

6 14

7 15

8 16

Syntax
NG_ADC(Char Ch) as uint

Parameters
Chan Number of the channel (from 0 to 7)

Return value:
Returns the analog value (from 0 to 1023).

11.13 STEP/DIR CHANNELS
The system NGM13 and the expansion card NG-PP for the system NG35 are equipped with 4 STEP/DIR
channels which allows to work with axis with linear, circular or helical interpolation.
Normally for their use it is associated to a library object according to the type of application. For example we
can use them with INTERPOLATOR, POSITIONER, CAM, GEAR, etc.
In this chapter will be described the need functions to interface these objects to the STEP/DIR output. At last
there are some example to better clear how to create an application using this hardware resource.

11.13.1 PP_STEP – STEP/DIR SIGNAL GENERATION
The function PP_STEP allows the STEP signal generation on the selected channel. It is the function to
connect a general object for motion application to a STEP/DIR channel.
Hardware NGM13,NG35+NG-PP

Syntax
PP_STEP(Char Chan, Long Pos)

Parameters
Chan Number of the STEP/DIR channel (NGM13 from 0 to 3, NG-PP form 0 to 15)
Pos Absolute value of the position of the step/dir axis

ATTENTION: THE FUNCTION PP_STEP MUST BE CALLED IN TASK PLC.

11.13.2 PP_PRESET – PRESET OF STEP/DIR POSITION
This function updates the current position of a step/dir channel.
Hardware NGM13,NG35+NG-PP

Syntax
PP_PRESET(Char Chan, Long Pos)

Parameters
Chan Number of the STEP/DIR channel (NGM13 from 0 to 3, NG-PP form 0 to 15)
Pos Value of the preset position

ATTENTION: TO A CORRECT PRESET OF THE AXIS FOLLOW THE INSTRUCTION DESCRIBED
FARTHER ON

11.13.3 PP_GETPOS – READING OF ACTUAL POSITION (ONLY FOR NG-PP)
This function reads the actual position of a step/dir channel. The value will correspond to the DOUBLE of
the real position. This function isn't present in NGM13 where to read the actual positions there are 4
system variables.
Hardware NG35+NG-PP

Syntax
PP_GETPOS(Char Chan) as long

Parameters
Chan Number of the STEP/DIR channel (from 0 to 15)

Return value
Long Actual position x 2

11.13.4 READING OF ACTUAL POSITION
There are 4 system variables containing the actual position of the first 4 step/dir channels. The value will
correspond to the DOUBLE of the real position. To read the position of the other channels of NG-PP we
have to use pp_getpos.

Hardware NGM13,NG35+NG-PP

_SYSTEM_PXC as long Actual position channel 0

_SYSTEM_PYC as long Actual position channel 1
_SYSTEM_PZC as long Actual position channel 2
_SYSTEM_PAC as long Actual position channel 3

11.13.5 EXAMPLE OF USING WITH THE OBJECT MONOAX
The object MONOAX is a SINGLE AXIS POSITIONER very sophisticated able to generate ACCELERATION
and DECELERATION ramps, to control the axis position and velocity, etc.
To make the object independent of the using hardware it acts on a generic VARIABLE which finally will
contain the axis position.
It will be required to write some row of code to interface the object to the hardware we want use redirecting
the above variable to a PID filter to works with analog axis, a PDO to manage CANOPEN axis, or to function
pp_step to interface a STEP/DIR axis.

Step to execute:

1) In the object NGM13_INIT enable the interpolation mode on the step/dir channel used

2) Load an object MONOAX from MOTORCONTROL → CINTERPPOS in the MAIN PAGE

3) Name it for example ASSEX

4) Declare the following GLOBAL VARIABLES:
Pos_Asse Long – position of the axis
RappX Float – ratio between generated steps and effective movement

5) Initialize in the section INIT of the MAIN task the variable RAPPX at the desired value (however not
equal to 0). A negative value will be able to change the direction of the axis.

6) Set the following PROPERTY of the OBJECT MONAX (example):

7) Write in TASK PLC the following CODE:
 pp_step(0, pos_asse * RappX)

8) Write in MAIN TASK the test code to execute a movement (example):

if START_CONDITION
AsseX.Vel=1000
AsseX.quota=100000
AsseX.start=true
START_CONDITION=false ' To avoid recursive starts

endif

With this example the variable pos_asse will reach the value 100000 following the programmed RAMP in the
object. In TASK PLC the value is sent by the function PP_STEP to the STEP/DIR channal 0 obtaining a
movement of the axis controlled in position and velocity. The function pp_step generate the STEPS by the
value difference of the position variable between two sample. Then, according to the sampling time of TASK
PLC, we have different speed. A typical sampling time for the STEP/DIR axis can be from 2 milliseconds to 5
milliseconds.

11.13.6 EXAMPLE OF USING WITH THE OBJECT INTERPOLATOR
The object INTERPOLATOR generates trajectories on more AXIS at the same time according to the type of
interpolation executed. Similarly to the object MONAX, it works with a support variable which, opportunely
sent to function pp_step, will be able to execute interpolation on STEP/DIR axis.

Step to execute:

1) In the object NGM13_INIT enable the interpolation mode on the step/dir channel used

2) Load an object INTERPOLATORE from MOTORCONTROL--> COBJINTERPOLA in the MAIN

3) Name it for example INTERPOLA1

4) Declare the following GLOBAL VARIABLES:
PosAssi(2) long - position of the axis
Rapp(2) Float - ratio between generated steps and effective movement

5) Initialize in the section INIT of the MAIN task the variable RAPP(0) and RAPP(1) at the desired value
(however not equal to 0). A negative value will be able to change the direction of the axis.

6) Set the following PROPERTY of the OBJECT INTERPOLA1 (example)

7) Write in TASK PLC the following CODE:
 pp_step(0, Interpola1.pc(0) * Rapp(0)) ' Asse X

pp_step(1, Interpola1.pc(1) * Rapp(1)) ' Axxe Y

8) Write in MAIN TASK the test code to execute a movement (example):
function MuoviAssi(Qx as Long, Qy as Long, Vel as Long)
PosAssi(0)=Qx
PosAssi(1)=Qy
Interpola1.moveto(Vel, 1, PosAssi())
endfunction

9) Call the declared function with desired parameters.

11.13.7 NOTES FOR A CORRECT PRESET OF STEP/DIR CHANNELS
Be careful when working with STEP/DIR or CAN OPEN axis in interpolation mode. In the chapter on
interpolation functions it is already described an eample to manage the preset with CAN OPEN axis. Below
will be treated the problem connected to the STEP/DIR axis.
The function PP_STEP works asynchronously to the function generating the trajectories as MONOAX or
INTERPOLATOR. It is necessary that the positions of these objects are in agreement with the internal
position of the steps generator. The number of generated steps by the function PP_STEP will correspond to
the value difference of the position variable between two sample (TASK PLC). Resetting immediately the
value of this variable, the function PP_STEP will generate a number of steps equal to the old value of the
variable, and all in a single sample.
For example assuming the variable has a value of 10000, in the instant it is zeroed will be generate 10000
STEPS in a sample. Considering a sample of 2 mSec we have a frequency of 5MHz !

To avoid that happen it needs at each PRESET of the axis (changing of the support variable) to stop the
generator of STEPS and re-enable it when the position will agree.
Then it is always better put under condition the calling of step generating function PP_STEP in the following
mode:

if DisableStep=false
pp_step(0,Iterpola1.pc(0) * Rapp(0)) ' ASSE X
pp_step(1,Iterpola1.pc(1) * Rapp(1)) ' ASSE Y

endif

The flag DisableStep allows the stop of steps generation. Then at the moment we need to execute an axis
preset, referring to the previous examples, call this code:

PRESET AXIS WITH INTERPOLATOR:
DisableStep=true
pos_vect(0)=qpresetX ' preset position X
pos_vect(1)=qpresetY ' preset position Y
obj.preset(pos_vect()) ' preset interpolator
pp_preset(0,qpresetX*Rapp(0)) ' preset step/dir channel 0
pp_preset(1,qpresetY*Rapp(1)) ' preset step/dir channel 1
DisableStep=false

PRESET ASSE WITH MONOAX:
DisableStep=true
MONOAX.HOME= qpresetX ' preset position
pp_preset(0,qpresetX*RappX) ' preset step/dir channel 0
DisableStep=false

12 COMPONENT FOR FRAMEWORK
VTB compiler can create a DLL COMPONENT MODEL which can be imported in .NET (dot net) projects.
That allows the full control of hardware resource directly by a PC: READ/WRITE VARIABLES, CALL
FUNCTION IN REMOTE PROCEDURE CALL.
For details refer to the NG Framework manual.

12.1 Enabling the creation of the COMPONENT NGFRAMEWORK
To use the component we must enable from the VTB Options the compiling of the .NET DLL.

The component can be created for system with Windows XP/VISTA,/7 or with Windows CE.
The name of the created DLL must be indicated in the object name.
So, after the end of compiling it will be created the DLL OBJECTNAME:DLL which can be imported as a
component in the .NET project.

12.2 Exporting VARIABLES
We can export the desired variable to FRAMEWORK and then, on PC, write or read them as normal
variables of the project.

To export a variable, when we declare it, enable the CHECK EXP and write the name of the exporting class
(default Generic). The class serves only to group the exporting variables so to make more simple the
research of them in the PC application.
In the example the variables will be contained in Generic.VAR1EXP and it can be read or written on the PC
project as a common variable.
We remember the time of execute th READ or WRITE operation depends by the enabled LINK: serial port
RS232 or ETHERNET. Obviously the second one will be more fast.
Only the INTERNAL VARIABLES can be exported, also if the it is refer to a structure.
In the last case (structures) exporting class isn't considered, but we can get it by the name of the variable
(because a structure is similar to a class).

12.3 Exporting FUNCTIONS
In a similar way as for variables it can be exported also functions.
That must be declared with a specific POSTFIX :

function FunctionName(...Parameters...) as Type $_EXPORT_$ CLASS
. . .
endfunction

$_EXPORT_$ Keyword to enable function exporting
CLASSE Name of the exporting class where the function will be found

Example:
function MyFunction(Val1 As Long,Val2 As Long) as Long $_EXPORT_$ FunzSistem
. . .
endfunction

13 APPLICATION DEBUG
The DEBUG utility allows to control, both read and write, of all the application variables, to insert BREAK
POINT and to execute the code STEP by STEP. That makes more simple the development of the
application. The application DEBUG can be execute by RS232 port as well as ETHERNET.
When the serial port is used, the PC must be connected to the first port of the target hardware (SER-1/
PROG).
ATTENTION: If application uses the first serial port, (ex. MODBUS, etc.) DEBUG will not work.

13.1 Button bar

Add a variable to the WATCH window.
It allow to insert a variable which will be update in REAL time and it will be also written.

Writing in the field Nome VARIABILE the alphabetical list of the variables of the project will appear making
the searching very simple. Variables can be added also in the following ways:

Drag&Drop. Select the desired variable in the code window and drag it in the WATCH window.

Right button. Click with the right button on the selected variable and then Send to Debug.

Pagina
It selects the page of the VARIABLE (if it is a local variable of a page), PAGINA 0 refer to the GLOBAL
variables.

Contesto
If the watching VARIABLE is local of a FUNCTION (defined with dim) we can select the contest (function) of
this variable.
These types of variables are visible only if a BREAK POINT in the relative contest is reached.

Remove the selected variable.
The selected variable will be removed from the WATCH window.

Remove all variables from the WATCH window.

Remove all Break-Points in the project.

Information about DEBUG.NET
With this button we can display some informations about DEBUG.NET and the target hardware. Also it is
possible to update the FIRMWARE of the target. (See section Firmware Update).

Stop array reading.
When arrays of BIG DIMENSION are read can happen a TIME OUT of the system, with this button we can
stop the read.

Reset
It simulates a RESET of the HARDWARE.
ATTENTION: The application will be restarted.

Save the list of variables on file
It is possible to create a file with the list of the variables in the WATCH windows to reload it afterword.

Load a variables list file
It allow to reload a list of variables previously saved.

The content of the variables WILL NOT BE INIZIALIZED.

Load a variables list file with value
It allow to reload a list of variables previously saved.
The content of the variables WILL BE INIZIALIZED with the saved value.

Load the last variables list
DEBUG.NET always saves the list when it is closed. With this button we can reload the last variables.

Display the LOG of HARDWARE ERRORS
All run-time errors are saved in this list. It is very useful particularly with CanOpen applications to test if in the
CANBUS net there are some errors or it works correctly.

Errors are sampled by directly by the target hardware in REAL TIME and they are displaied in TEMPORAL
order. It is also possible to save the logging list in a file to analyse them afterword.

Scope
Enable the digital scope (see relative section)

DEBUG.NET options
It allows to set some DEBUG options.

Block Read Delay (Ms)
If this option is greater than ZERO a delay is added after the read of a block. If DEBUG uses the
serial port RS232 IT ISN'T NECESSARY.
It can be useful in ETHERNET because the high speed of the protocol could create some problem to
the VTB application (slowdowns).
We recommend to set the delay, when using ETHERNET to debug the application, with a value of at
least one Ms.

HEXADECIMAL/DECIMAL display
If activated the numeric value of the variables will be displayed in HEXADECIMAL format.

ASCII display
If activated, the ASCII character corresponding to the value of the variable will be displayed (it is useful for
array of alphanumeric STRINGS).

It shows the elapsed time (in Milliseconds) of the TASK PLC and the relative percentage of CPU using. If the
system read a value near the CRITICAL one it will be signal by RED BLINKS af the value.

Run after BreakPoint (or F5 key)
When a Break-Point is reached, it allow to resume the normal running of the program.

Execute Intruction/Routine (or F10 key)
When a Break-Point is reached, with this button it is possible to execute a single line of source code.
Eventual functions will be execute completely without enter inside them.

Execute Intruction (or F11 key)
When a Break-Point is reached, with this button it is possible to execute a single line of source code.
If a function is encountered, program will stop inside it.

Find text
Find a text in the source code windows.

Display the content of TASK PLC
ATTENTION: in TASK PLC it isn't possible to set a Break-Point.

13.2 Writing of a variable
It is possible to change the value of all the variables in the WATCH list. Double click on the value and then
write the desired value.

If the variable is a type BIT the double click switches from TRUE to FALSE and vice versa.

13.3 Insert/Remove a Break-Point
The insert of a Break-Point allows to break the program in a specified point. When a Break-Point is reached
it is possible to execute STEP by STEP the program checking the correctness.
ATTENTION: Break-Points can not be inserted in the hardware NGM13.

By Select File select the desired page of code.
Click with the left button of the mouse on the left of the source code window.

 Click here

When the program passes from that line, the bar, from BROWN, will turn YELLOW and the execution will be
BROKEN. At this point it will be possible re-run the program with Run after BreakPoint (F5) or execute it
Step by Step.

To remove a Break-Point click again on the Break-Point

ATTENTION: When a Break-Point is reached and the program is stopped, the TASK PLC continues to
run. Anyway breaking the program in CRITICAL points we can create unsafe situation operating on
machine. BE CAREFUL !

13.4 Firmware update
With DEBUG application it is possible to update the FIRMWARE of the hardware in use.

ATTENTION: FIRMWARE update can be executed only by serial port RS232.

With the INFO button this window is showed:

From Menu Gestione Firmware we can chose between two options:

Update from Server
In this case an INTERNET connection is necessary. The application checks if on SERVER PROMAX there is
a newer version of the FIRMWARE proposing the updating.

Update from file
It allows to update the hardware FIRMWARE with a file .SREC.
ATTENTION: Updating from file, no control of the firmware revision and compatibility with the
hardware is made.

ATTENTION: During the phase of updating the application are stopped but it WILL NOT BE LOST.

13.5 Digital Scope
DEBUG.NET provides a SCOPE application to further support of debugging. DIGITAL SCOPE is able to
monitor the variables in the WATCH window.
The scope can display up to 3 CHANNEL.

Selects the variable to connect to a channel.
The variable must be in the WATCH window.

Enables or disables the TRACK of a channel.

Sets an OFFSET on the TRACK.

Enabling LATCH, when the variable overcomes the Latch value, the TRACK will be FROZEN.

Set the BASE-TIME for all the tracks.

When scope is in OFF state, it aloows to scroll the track in the sampled memory.

Scope ON/OFF.

Positioning the mouse on a point of the track, the value of the variable will be showed.

Indice generale
1 INTRODUCTION.. 2
2 NOTES ON PROGRAMMING LANGUAGE...2
3 DEVELOPMENT ENVIRONMENT...3

3.1 Toolbar ... 3
3.2 Project Manager... 6
3.3 Objects manager.. 7
3.4 Functions Manager ... 8
3.5 Objects Property ... 8
3.6 Text Table Manager ... 8

4 CONFIGURATION OF VTB.. 9
4.1 General Options ... 9
4.2 RS232 Protocol (OBSOLETE)..10
4.3 Field-Bus Protocol ... 11
4.4 Configuring the target hardware ...12

5 TASKS MANAGED BY VTB.. 14
5.1 Task Plc ... 14

5.1.1 NOTE ON CONCURRENT PROGRAMMING ...15
5.2 Task Time .. 15
5.3 Task Main .. 15
5.4 Page Task .. 16

6 VARIABLES TYPE... 17
6.1 Numeric Values ... 17
6.2 Internal Variable .. 17
6.3 Pointers ... 18
6.4 Bits... 19
6.5 Arrays .. 20
6.6 VCB Variables (CanOpen or EtherCAT)...21
6.7 System Variables.. 21
6.8 Static Variables... 22
6.9 Fixed Variables... 22
6.10 Delegates... 23
6.11 Define... 23
6.12 Text Tables... 24
6.13 Structures... 26

7 OPERATORS... 27
7.1 Logic and Mathematical Operators...27
7.2 Notes on Expressions... 27

8 MATH FUNCTIONS.. 28
8.1 SIN... 28
8.2 COS.. 28
8.3 SQR.. 28
8.4 TAN.. 29
8.5 ATAN.. 29
8.6 ASIN... 29
8.7 ACOS... 29
8.8 ATAN2.. 30
8.9 ABS.. 30
8.10 FABS.. 30

9 INSTRUCTIONS TO CONTROL THE PROGRAM FLOW...31
9.1 IF-ELSE-ENDIF.. 31
9.2 LABEL.. 31
9.3 GOSUB-RETURN.. 32
9.4 GOTO... 32
9.5 INC... 33
9.6 DEC.. 33
9.7 SELECT-CASE-ENDSELECT..33
9.8 FOR-NEXT-STEP-EXITFOR..34
9.9 WHILE-LOOP-EXITWHILE..35

10 FUNZIONI... 36
10.1 Declaration of a function... 36

10.2 Declaration of the function internal variables..36
11 SYSTEM FUNCTIONS... 38

11.1 FUNCTION FOR THE GRAPHIC CONTROL...38
11.1.1 CLEAR_LCD... 38
11.1.2 SETBRIGHT... 39
11.1.3 DRAW_HLINE..39
11.1.4 DRAW_VLINE..39
11.1.5 DRAW_LINE... 39
11.1.6 DRAW_BOX... 40
11.1.7 DRAW_FBOX... 40
11.1.8 DRAW_PIXEL... 40
11.1.9 SETFONT... 40
11.1.10 SETCOLOR.. 41
11.1.11 POS_TEXT... 41
11.1.12 PUTCHAR.. 41
11.1.13 DRAW_STR..41
11.1.14 DRAW_NSTR...42
11.1.15 DRAW_BITMAP...42
11.1.16 DRAW_SBITMAP... 42
11.1.17 SAVE_AREA... 42
11.1.18 RESTORE_AREA...43
11.1.19 PRINT... 43
11.1.20 PRINTFF... 43
11.1.21 PAGINA.. 44
11.1.22 DRAW_ELLIPSE.. 44
11.1.23 DRAW_FELLIPSE..44
11.1.24 DRAW_FRAME..44

11.2 FUNCTIONS FOR THE SERIAL PORT CONTROL...45
11.2.1 SER_SETBAUD... 45
11.2.2 SER_MODE.. 45
11.2.3 SER_GETCHAR...45
11.2.4 SER_PUTCHAR... 45
11.2.5 SER_PUTS... 45
11.2.6 SER_PRINTL.. 46
11.2.7 SER_PRINTFF... 46
11.2.8 SER_PUTBLK..46
11.2.9 SER_PUTST... 47

11.3 FUNCTION FOR TOUCH AND KEYBOARD CONTROL...48
11.3.1 KEY INPUT .. 48
11.3.2 SET_KEY... 48
11.3.3 CLEAR_KEY... 48

11.4 MISCELLANEOUS API FUNCTIONS...49
11.4.1 GET_TIMER... 49
11.4.2 TEST_TIMER...49
11.4.3 ALLOC.. 49
11.4.4 FREE.. 50
11.4.5 SYSTEM_RESET...50

11.5 API FUNCTIONS FOR MANAGING OF STRINGS..51
11.5.1 GET_TABSTR..51
11.5.2 STRCPY... 51
11.5.3 STRLEN... 51
11.5.4 STRCMP.. 52
11.5.5 STRCAT.. 52
11.5.6 STR_PRINTL..52
11.5.7 STR_PRINTF.. 52

11.6 FUNCTIONS FOR AXIS INTERPOLATION..54
11.6.1 PROPERTY.. 54
11.6.2 MOVETO.. 54
11.6.3 LINETO... 56
11.6.4 ARCTO... 57
11.6.5 SETCMD.. 58
11.6.6 SETPIANO.. 58
11.6.7 STOP.. 58

11.6.8 FSTOP.. 59
11.6.9 MOVE... 59
11.6.10 PRESET... 59

11.7 CANOPEN FUNCTIONS..61
11.7.1 PXCO_SDODL... 61
11.7.2 PXCO_SDOUL... 61
11.7.3 READ_SDOAC...62
11.7.4 PXCO_SEND.. 62
11.7.5 PXCO_NMT.. 62
11.7.6 READ_EMCY... 63

11.8 DATA SAVING FUNCTIONS...65
11.8.1 IMS_WRITE.. 65
11.8.2 IMS_READ... 65

11.9 ETHERNET FUNCTIONS...66
11.9.1 SET_IP... 66
11.9.2 PXETH_ADD_PROT..66
11.9.3 PROTOCOL PROCESS FUNCTION..66
11.9.4 PXETH_RX... 67

11.10 DISK DRIVER FUNCTIONS...68
11.10.1 PROPERTY.. 68
11.10.2 DRIVER.. 68
11.10.3 ERROR CODE... 68
11.10.4 OPENREAD, OPENWRITE, OPENCREATE..68
11.10.5 CLOSE... 69
11.10.6 READ.. 69
11.10.7 WRITE.. 70
11.10.8 SEEK, SEEKEOF, SEEKREL...70
11.10.9 CHDIR.. 71
11.10.10 MKDIR.. 71
11.10.11 DELETE, ERASE, KILL...71
11.10.12 RENAME.. 71
11.10.13 COPY... 71
11.10.14 OPENDIR... 72
11.10.15 READDIR.. 72
11.10.16 GETFREE... 73
11.10.17 CHDRV... 73
11.10.18 TESTDRV... 74
11.10.19 REAL TIME CLOCK (RTC)...74

11.11 INTERFACE FUNCTIONS FOR NG35..75
11.11.1 NG_DI - DIGITAL INPUTS..75
11.11.2 NG_DO – DIGITAL OUTPUTS..75
11.11.3 NOTES FOR PROGRAMMING WITH DIGITAL I/O..75
11.11.4 NG_ADC – ANALOG INPUTS..76
11.11.5 NG_DAC – ANALOG OUTPUTS..76
11.11.6 NG_DAC_CAL – CALIBRATION OF THE ANALOG OUTPUT OFFSET..............................77
11.11.7 NG_ENC - ENCODER INPUTS..77
11.11.8 NG_T0 – ZERO INDEX OF ENCODER..78
11.11.9 NG_RELE .. 79
11.11.10 TEMPERATURE READING ON NG35...79

11.12 INTERFACE FUNCTIONS FOR NGM13...80
11.12.1 NGM13_INIT PROPERTY..80
11.12.2 NG_DI - DIGITAL INPUTS..80
11.12.3 NG_DO – DIGITAL OUTPUTS...81
11.12.4 NOTES FOR PROGRAMMING WITH DIGITAL I/O..81
11.12.5 NG_ADC – ANALOG INPUTS..82

11.13 STEP/DIR CHANNELS..83
11.13.1 PP_STEP – STEP/DIR SIGNAL GENERATION...83
11.13.2 PP_PRESET – PRESET OF STEP/DIR POSITION...83
11.13.3 PP_GETPOS – READING OF ACTUAL POSITION (ONLY FOR NG-PP)...........................83
11.13.4 READING OF ACTUAL POSITION..83
11.13.5 EXAMPLE OF USING WITH THE OBJECT MONOAX..84
11.13.6 EXAMPLE OF USING WITH THE OBJECT INTERPOLATOR...85
11.13.7 NOTES FOR A CORRECT PRESET OF STEP/DIR CHANNELS..86

12 COMPONENT FOR FRAMEWORK...87
12.1 Enabling the creation of the COMPONENT NGFRAMEWORK..87
12.2 Exporting VARIABLES.. 87
12.3 Exporting FUNCTIONS..88

13 APPLICATION DEBUG.. 89
13.1 Button bar... 89
13.2 Writing of a variable..93
13.3 Insert/Remove a Break-Point...93
13.4 Firmware update... 94
13.5 Digital Scope.. 95

	1 INTRODUCTION
	2 NOTES ON PROGRAMMING LANGUAGE
	3 DEVELOPMENT ENVIRONMENT
	3.1 Toolbar	
	3.2 Project Manager
	3.3 Objects manager
	3.4 Functions Manager		
	3.5 Objects Property		
	3.6 Text Table Manager	

	4 CONFIGURATION OF VTB
	4.1 General Options		
	4.2 RS232 Protocol (OBSOLETE)
	4.3 Field-Bus Protocol	
	4.4 Configuring the target hardware		

	5 TASKS MANAGED BY VTB
	5.1 Task Plc	
	5.1.1 NOTE ON CONCURRENT PROGRAMMING

	5.2 Task Time	
	5.3 Task Main	
	5.4 Page Task	

	6 VARIABLES TYPE
	6.1 Numeric Values	
	6.2 Internal Variable	
	6.3 Pointers	
	6.4 Bits
	6.5 Arrays	
	6.6 VCB Variables (CanOpen or EtherCAT)
	6.7 System Variables
	6.8 Static Variables
	6.9 Fixed Variables
	6.10 Delegates
	6.11 Define
	6.12 Text Tables
	6.13 Structures

	7 OPERATORS
	7.1 Logic and Mathematical Operators
	7.2 Notes on Expressions

	8 MATH FUNCTIONS
	8.1 SIN
	8.2 COS
	8.3 SQR
	8.4 TAN
	8.5 ATAN
	8.6 ASIN
	8.7 ACOS
	8.8 ATAN2
	8.9 ABS
	8.10 FABS

	9 INSTRUCTIONS TO CONTROL THE PROGRAM FLOW
	9.1 IF-ELSE-ENDIF
	9.2 LABEL
	9.3 GOSUB-RETURN
	9.4 GOTO
	9.5 INC
	9.6 DEC
	9.7 SELECT-CASE-ENDSELECT
	9.8 FOR-NEXT-STEP-EXITFOR
	9.9 WHILE-LOOP-EXITWHILE

	10 FUNZIONI
	10.1 Declaration of a function
	10.2 Declaration of the function internal variables

	11 SYSTEM FUNCTIONS
	11.1 FUNCTION FOR THE GRAPHIC CONTROL
	11.1.1 CLEAR_LCD
	11.1.2 SETBRIGHT
	11.1.3 DRAW_HLINE
	11.1.4 DRAW_VLINE
	11.1.5 DRAW_LINE
	11.1.6 DRAW_BOX
	11.1.7 DRAW_FBOX
	11.1.8 DRAW_PIXEL
	11.1.9 SETFONT
	11.1.10 SETCOLOR
	11.1.11 POS_TEXT
	11.1.12 PUTCHAR
	11.1.13 DRAW_STR
	11.1.14 DRAW_NSTR
	11.1.15 DRAW_BITMAP
	11.1.16 DRAW_SBITMAP
	11.1.17 SAVE_AREA
	11.1.18 RESTORE_AREA
	11.1.19 PRINT
	11.1.20 PRINTFF
	11.1.21 PAGINA
	11.1.22 DRAW_ELLIPSE
	11.1.23 DRAW_FELLIPSE
	11.1.24 DRAW_FRAME

	11.2 FUNCTIONS FOR THE SERIAL PORT CONTROL
	11.2.1 SER_SETBAUD
	11.2.2 SER_MODE
	11.2.3 SER_GETCHAR
	11.2.4 SER_PUTCHAR
	11.2.5 SER_PUTS
	11.2.6 SER_PRINTL
	11.2.7 SER_PRINTFF
	11.2.8 SER_PUTBLK
	11.2.9 SER_PUTST

	11.3 FUNCTION FOR TOUCH AND KEYBOARD CONTROL
	11.3.1 KEY INPUT
	11.3.2 SET_KEY
	11.3.3 CLEAR_KEY

	11.4 MISCELLANEOUS API FUNCTIONS
	11.4.1 GET_TIMER
	11.4.2 TEST_TIMER
	11.4.3 ALLOC
	11.4.4 FREE
	11.4.5 SYSTEM_RESET

	11.5 API FUNCTIONS FOR MANAGING OF STRINGS
	11.5.1 GET_TABSTR
	11.5.2 STRCPY
	11.5.3 STRLEN
	11.5.4 STRCMP
	11.5.5 STRCAT
	11.5.6 STR_PRINTL
	11.5.7 STR_PRINTF

	11.6 FUNCTIONS FOR AXIS INTERPOLATION
	11.6.1 PROPERTY
	11.6.2 MOVETO
	11.6.3 LINETO
	11.6.4 ARCTO
	11.6.5 SETCMD
	11.6.6 SETPIANO
	11.6.7 STOP
	11.6.8 FSTOP
	11.6.9 MOVE
	11.6.10 PRESET

	11.7 CANOPEN FUNCTIONS
	11.7.1 PXCO_SDODL
	11.7.2 PXCO_SDOUL
	11.7.3 READ_SDOAC
	11.7.4 PXCO_SEND
	11.7.5 PXCO_NMT
	11.7.6 READ_EMCY

	11.8 DATA SAVING FUNCTIONS
	11.8.1 IMS_WRITE
	11.8.2 IMS_READ

	11.9 ETHERNET FUNCTIONS
	11.9.1 SET_IP
	11.9.2 PXETH_ADD_PROT
	11.9.3 PROTOCOL PROCESS FUNCTION
	11.9.4 PXETH_RX

	11.10 DISK DRIVER FUNCTIONS
	11.10.1 PROPERTY
	11.10.2 DRIVER
	11.10.3 ERROR CODE
	11.10.4 OPENREAD, OPENWRITE, OPENCREATE
	11.10.5 CLOSE
	11.10.6 READ
	11.10.7 WRITE
	11.10.8 SEEK, SEEKEOF, SEEKREL
	11.10.9 CHDIR
	11.10.10 MKDIR
	11.10.11 DELETE, ERASE, KILL
	11.10.12 RENAME
	11.10.13 COPY
	11.10.14 OPENDIR
	11.10.15 READDIR
	11.10.16 GETFREE
	11.10.17 CHDRV
	11.10.18 TESTDRV
	11.10.19 REAL TIME CLOCK (RTC)

	11.11 INTERFACE FUNCTIONS FOR NG35
	11.11.1 NG_DI - DIGITAL INPUTS
	11.11.2 NG_DO – DIGITAL OUTPUTS
	11.11.3 NOTES FOR PROGRAMMING WITH DIGITAL I/O
	11.11.4 NG_ADC – ANALOG INPUTS
	11.11.5 NG_DAC – ANALOG OUTPUTS
	11.11.6 NG_DAC_CAL – CALIBRATION OF THE ANALOG OUTPUT OFFSET
	11.11.7 NG_ENC - ENCODER INPUTS
	11.11.8 NG_T0 – ZERO INDEX OF ENCODER
	11.11.9 NG_RELE
	11.11.10 TEMPERATURE READING ON NG35

	11.12 INTERFACE FUNCTIONS FOR NGM13
	11.12.1 NGM13_INIT PROPERTY
	11.12.2 NG_DI - DIGITAL INPUTS
	11.12.3 NG_DO – DIGITAL OUTPUTS
	11.12.4 NOTES FOR PROGRAMMING WITH DIGITAL I/O
	11.12.5 NG_ADC – ANALOG INPUTS

	11.13 STEP/DIR CHANNELS
	11.13.1 PP_STEP – STEP/DIR SIGNAL GENERATION
	11.13.2 PP_PRESET – PRESET OF STEP/DIR POSITION
	11.13.3 PP_GETPOS – READING OF ACTUAL POSITION (ONLY FOR NG-PP)
	11.13.4 READING OF ACTUAL POSITION
	11.13.5 EXAMPLE OF USING WITH THE OBJECT MONOAX
	11.13.6 EXAMPLE OF USING WITH THE OBJECT INTERPOLATOR
	11.13.7 NOTES FOR A CORRECT PRESET OF STEP/DIR CHANNELS

	12 COMPONENT FOR FRAMEWORK
	12.1 Enabling the creation of the COMPONENT NGFRAMEWORK
	12.2 Exporting VARIABLES
	12.3 Exporting FUNCTIONS

	13 APPLICATION DEBUG
	13.1 Button bar
	13.2 Writing of a variable
	13.3 Insert/Remove a Break-Point
	13.4 Firmware update
	13.5 Digital Scope

