intal AP-720

APPLICATION
NOTE

Programming Flash Memory
through the Intel386™ EX Embedded
Microprocessor JTAG Port

Daniel Hays- Applications Engineer Intel Corporation
5000 West Chandler Boulevard

Dmitrii Loukianov - Field Applications Engineer
Chandler, AZ 85226

August 8, 1995

I Order Number: 272753-001

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel's Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683
© INTEL CORPORATION 1995

[]
I ntel Contents

Programming Flash Memory through the Intel386™ EX
Embedded Microprocessor JTAG Port

1.0 INTRODUGCTION ..ottt iteteiiet ettt ettt et bt ebe et et bt b et e ehe e ehe e ehe e ebe e eb et ekt es e e es et e b ene e 1
1.1 DESIGN MOLIVALIONieieiitieie ettt ettt ettt e bttt e e aee e ek bt es she e ekt e e e an she e e et b e e e eaebe e sbbbe e e abebeen saneeas 1

2.0 BACKGROUND INFORMATION ...ttt ittt sttt ettt et etttk e eb s e n et e en s e nn e 1
2.1 IEEE 1149.1 - The JTAG SPEeCIfICALIONccuuiiiitiiie ettt ettt ean e 1
2.1.1 TAP Signal DESCHIPHIONS ..cueiiii ittt ie ettt et bt st e st b e e as sbee e e eb b e e e aasbee s e et be e e eanaeeseneaas 2

2.1.2 JTAG State MACKINEccouiiiiiiii e e et e e 2

2.2 Intel386 EX Embedded Processor JTAG TeSt-LOGIC UNItooiiiiiiiiiiiie it 3
2.2.1 BOUNArY SCAN REGISIEIciiiiiiiiitiieieitiee ettt ettt et bee e e rte e e sas e e s e abe e e saneeesebeae e sane e snbeeean 4

2.2.2 1dentification COUE REGISIETcieuiii ittt ettt e et e et e et b e s b e enne e e senaas 6

2.3 Intel 4 Mbit BOOt BIOCK FIASHoouiiiiiiiic e s 6

3.0 SAMPLE DESIGN ...ttt ettt etttk e bt bt e ehe et £ e e eh e b et ehe e ea etk e en e e s e ene e 6

3.1 TAP Hardware Interface
3.2 JTAG Software Interface

3.2.1 Hardware CONSIAEratiONSccccoiiiiiiiiiiie sttt et st e 8
3.2.2 Assembly Language ROULINESooiiiiiiiii ettt e it et e s e ebe e e e sae e e eee e e e 8
3.2.3 “C"ROULINES ..ottt e e e e et e 9
3.2.4 Program Operation and Options10
4.0 PERFORMANCE ANALYSIS AND CONSIDERATIONS .. .ottt e 11
5.0 CONCLUSION .. oottt ettt ettt ettt et ettt et ekt eh e ekt e e eh et e s ekt es e eae ettt bt e nne e eeeenrens 12
6.0 RELATED INFORMATION ...ocutiitiiiiaitiitt it ettt sttt et ettt e bt a1t ettt bt e e sttt nn e e s et nn e 12
APPENDIX A
PROGRAM SOURCE CODE
APPENDIX B

Intel386 ™ EX Embedded Processor BSDL File

FIGURES

Figure 1. TAP Controller (Finite State Maching)cocoiiiiiii e e e 3
Figure 2. TAP Parallel Port INTEIFACE.ccuueii ittt et e e b e ebee s 7
TABLES

Table 1. TeSt-LOGIC UNit INSIIUCHIONS ... eeiiiitiiis ettt ettt ettt e ettt e st b e ensaee e sabeeaaneee 4
Table 2. Boundary-scan Register Bit ASSIGNMENTSeeiiiuiiiiiiie ettt et rae e e e e ree e e e e 5
Table 3. Device 1dentification COUES.......c.ccuiiiiiitiiiii e e 6
Table 4. TAPLOADER.EXE Order 0f EXECULIONooiiiiiiiiiiiii i
Table 5. TAP Flash Programming Sample Timings ..

Table 6. Related INtel DOCUMENTSottt e
Table A-1. Program SOUIMCE COOE.......cooiuiiii ittt ettt ettt et e s e sh e e et e e e e sbe e e sanbeeseaneaeen s
Table B-1. BSDL FlB ..ttt ettt ettt et

n
I nu@ AP-720

1.0 INTRODUCTION space required by the hardware. Additionally, Just-In-Time
. o . . manufacturing requiremés make it desirable to solder
This application note describes a simpteethod for ,nnrogrammed devices, such as flash memory, onto printed
programming data into flasmemory using a standardgycyit poards. This allows designers to customize the
JTAG (Joint Test Action Group) pospecified by IEEE pnarqs in their final stage, while reducing the amount of

1149.1.T’\;|I'he JTAG devicaused in this case is the jnyentory that is required by the use of preprogrammed
Intel386 ™ EX embedded processor; however, the scope ffices.

this application is easily extended to many other JTAG

compliant devices. Using the features of the Intel386 Ephese constraints makéhe programming of bootstrap
embedded processor in conjunction with agdérhardware software and other firmware an even more formidable task
interface, a standard set of software routines can be usegh#® in the pst. It is now desirable to download these
program data into flash memory. By controlling the CPUjategral pieces of the product into initially ungrammed
JTAG port, these routines manage the data that nigmories orthe board in order to have the microprocessor
programmed into flash memory as well as the processarfs and running when it coméine to develop, test, and

control lines. manufacture systems which take advantage of the latest

))) advanced technologies. A good solution is to use a simple
This document contains a geal overview of: flash memory programming device that uses the Test
« The basic functions specified HFJEE 1149.1 AccessPort (TAP) found on JAG-compliant devices.

« The operation of the JTAG port of the Intel386 EX
processor 2.0 BACKGROUND INFORMATION

e« The features of the Intel 28F400BV-T 4-Mbit Boo

Block device flash device be5|gners unfamiliar with the features of the IEEE 1149.1

specification, the Intel386 EX emibded processor, or the
tel 28F400BV-T Boot Block flastwill benefit from a

This application note also provides a functional desi%:r_ -))
which can be used in conjunction with Revision 2.1 of tisi€f Overview of the features that these piqueside. The

EV386EX Intel388M EX Embedded MicroprocessordeSign for programming flash memory shown in Figure 2
Evaluation Board. The design consists of: takes advantage of these features. The design uses:

The five-wire interface of the TAP, which simplifies

« Asimple low-cost parallel port host interface design * .
the hardware requirements

¢ A standard set of JTAG C++ in-liressembly source

code functions The unique configuration of the Intel386 EX eedbed

processor in the embeddesystem to control flash
+ Source codethat implements the programming, memory programming

validation, and erasure of the contents of the Boot) .
Block flash device « The advanced programming algorithm of theel

28F400BV-TBoot Block flash device

The compiled and executable coalee available through

Intel's America’s Application Support BBS, at (916) 356]’his application notéocuses on the 101-pin JTAG imple-
3600. They are contained in tfile TAPLOADR.ZIP. mentation found on the Intel386 EX embedded processor.

Sections 2.1 and 2.2 describe this implementation, while
the features of the Boot Block flash device are described in

11 Design Motivation section 2.3.

As more packagedilicon devices populate printed circuit

boards, the connection td#st andprogramming equipment 2.1 IEEE 1149.1 - The JTAG Specifi-
to the fine-pitch IC packages replacing socketed, broader- cation

pitch parts becomes less feasible. Furthermore, the desﬂﬂ
of mobile equipment witlevensmaller form factors and .) : .

. . rovide an easy way to verify the functionality and correct
more stringent shock tolerance requirements does not allow) : .

} .. Interconnection of both compliant and non-compliant
the designer to use sa@tk at all. Theanponents in this

case must be soldered directly onto the board to redqggices in a printed circuit board design. However, without
. : P the presence of any firmware, the JTAG-compliant Intel386
manufacturing costs, improwveliability, and decrease the .)
EX embedded processor cantaté most of the bus signals

n
e |[EEE 1149.1 specification was originally intended to

1

n
AP-720 I num

by controlling the TAP. This powerful feature can be used4o TMS - Test Mode Select - this signal, used in
access all of the peripherals as if an emulator or conjunctionwith TDI, controls the state machine which
programmer were connected instead of the CPU. determines the state of the TAP-related circuitry and

the direction of data streams within the device under

The IEEE’s official publication, theEEE Standard Test test.

Access Port andBoundary-Scan Architectureontains a
complete description of the JTAG standard and the
operation of JTAG-compliant devices.

TRST# - Test Port Reset - an optional signal,
implemented in the Intel386 EX processor, that resets
the TAP statemachine to the predetermined initial
state.

2.1.1 TAP Signal Descriptions

The TAP uses a seriaynchronous data exchange protocd-1.2 JTAG State Machine

and consists of five signals:

The movenent of data through the TAP can be controlled
TDI - Test Data Input - a serial bit stream that goes ingg suppying the proper Igic level to the TMS pin at the
either the JTAG control/ecomand registers or rising edge of ensecutive TCK cyclesthe TAP controller
Boundary Scan Regasts (BSR) that control the pinjtself is a finite-state machine thatdap#le of 16 states.
drivers register on the Intel386 EX processor. Each state contains a link in the operation sequence

TDO - Test Data Output - a serial bit stream whichecessary to manipulate the data moving through the TAP.
goes to the tester and contains information shifted diftis ircludes applying stimuli to the pins, capturing

of either the ideiifier register or the Pin Data Capturdncoming data, loading instructions, and shifting data into
register of the JTAG unit. and out of the Boundary-Scan Register. Figure 1 shows the

TAP state machine flowelt, and demmstrates the
i d ’ h h th sequence of puts on TMS necessary to progress from any
accompaies any data transfers through the JTAG po he state to another. Asserting the TRST# pin at any time

Data on input lines isampled on the rising edge of th9vi|| cause the TAP to reset to the Test-leBeset home
TCK signal. Data on the output line is sampled on tlg?ate

falling edge of the TCK signal.

TCK - Test Port Clock - a sghronous clock which

n
I ntely AP-720

1 Test - Logic -«
- Reset
0
Y
0 Run-Test/ | 1 | select- | 1 o | Select- 1
Idle A 7| DR-Scan “1 IR-scan
A
0 0
Y Y
1| capture - 1| capture -
DR IR
0 0 0 0
Y Y
| Shift - | Shift -
= O O
1 1
Y Y
5| Bxtt- [|l5) Exn- [1
DR IR
0 0 0 0
Y Y
Pause - Pause -
DR IR
1 1
Y Y
0 Exit2 - 0 Exit2 -
DR IR
1 1
Y Y
Update - | Update - |
DR | IR I
1] 0 1] 0
A2356-01

Figure 1. TAP Controller (Finite State Machine)

2.2 Intel386 EX Embedded Processor shown in Table 1, reqegs a total of 202 (101 bits x 2 cells)
JTAG Test-Logic Unit shifts of data into the TAP.

The JTAG Test-Logic Unit of the Intel386 EX embeddeg addition to the boundary-scan (BOUND) register, the
processor can contralll device plnsexcgpt those of the |ntel386 EX processor has an instruction segi (IR)
clock, power, ground, and TAP control sigs A boundary- whose instructions are shown in Table 1. These instructions
scan cell resides at each of the 101 controlledcdepins. zre used in programming flash memory throtigh JTAG

The cells are connected serially to form the 101 Bjprt. The bypass register (BYPASS) is also featured on the
boundary-scan register. Each bit has both a com®l] processor, but is only used in systems with two or more
which controls the I/O status of the pin, and a data CQ"'FAG-compIiant devices. The identificationcode
which' ho]ds the logical high or low value tp be as.serted(ﬂy(;ODE) register is the last one implemented in the
the pin itself. An EXTEST or INTEST instruction, asntel386 EX processor, and is discussed further in Section

2.2.2.

n
AP-720 I num

Table 1. Test-Logic Unit Instructions

Mnemonic |Opcode 12 Description

Bypass on-chip system logic (mandatory instruction).

BYPASS 1111 w el gic (y .)
Used for those components that are not being tested.
Off-chip circuitry test (mandatory instruction).

EXTEST 0000) o .
Used for testing device interconnections on a board.
Sample pins/preload data (mandatory instruction).

SAMPRE 0001 Used for controlling (preload) or observing (sample) the signals at
device pins. This test has no effect on system operation.
ID code test (optional instruction).

IDCODE 0010 . ! .
Used to identify devices on a board.
On-chip system test (optional instruction).

INTEST 1001 Used for static testing of the internal device logic in a single-step
mode.

High-impedance/ONCE mode test (optional instruction).

HIGHZ 1000 Used to place device pins into their inactive drive states. Allows
external components to drive signals onto connections that the
processor normally drives.

NOTES:

1 The opcode is the sequence of data bits shifted serially into the instruction register (IR) from
the TDI input. The opcodes for EXTEST and BYPASS are mandated by IEEE 1149.1, so
they should be the same for all JTAG-compliant devices. The remaining opcodes are
defined for use on the Intel386 EX embedded processor, so they may vary among devices.

2 All unlisted opcodes are reserved. Use of reserved opcodes could cause the device to enter
reserved factory-test modes.

2.2.1 Boundary Scan Register located on Intel's America’s Application Support BBS, at
(916) 356-3600. This file lists:

The order of the bits contained in the Boundary Scan

Register (BSR) is shown in Table 2. The direction, or

control, bits follow their correspaling databits in the

chain sequence. For ewple, Bit 0, M/IO# would be * The valid and reserved JTAG unit opcodes

followed in the chain byts directional bit, which in turn , e expected contents of the IDOE registe(shown

would be followed by Bit 1, D/C#. It is important t0 550 in Section 2.2.2) for the Intel386 EX ezdbled
rememberthat the boundary scan register is shifted in processor

serially; when shifting data out onto the pins, the first bit o

shifted into the BSR must be the directional bit of D1% A description of the BSR contents
(entry number 100 in Table 2). This method ensures thatﬁ—l,le
data is laded onto the correpins at theconclwsion of the
202-bit serial data shift.

The physical pin layout of all pins in the Boundary-
Scan Register

BSDL file may bdncorporated into software which
uses the JTAG port for testing or programming functions.
BSDL is a de-facto standard recently approved by the IEEE
Although it is not used in the software examples includedfff describing essential features of IEEE 1149.1(b)
Appendix A, a copy of the BSDL (Boundary-Scaﬁomp“am devu:(.es.‘A copy qf the Intgl386 EX exdbed
Description Laguageile for the A and B steppings of theProcessor BSDLIle is shown inrAppendix B.

Intel386 EX embedded processor (JTAGBSDP) is

n
I ntely AP-720

Table 2. Boundary-scan Register Bit Assignments

Bit Pin Bit Pin Bit Pin Bit Pin
0 M/10# 25 | A15 50 | TMROUT2 75 | P22
1 D/C# 26 | A16/CASO 51 | TMRGATE2 76 | P23
2 WIR# 27 | A17/CAS1 52 | INT4/TMRCLKO |77 |P24
3 READY# | 28 | A18/CAS2 53 | INTS/TMRGATEO | 78 | DACKO#
4 BS8# 29 | A19 54 | INT6/TMRCLK1 |79 | P2.5/RXD0O
5 RD# 30 | A20 55 | INT7/TMRGATEL | 80 | P2.6/TXDO0O
6 WR# 31 | A21 56 | STXCLK 81 | P27
7 BLE# 32 | A22 57 | FLT# 82 | UCS#
8 BHE# 33 | A23 58 | P1.0 83 | CS6#/REFRESH#
9 ADS# 34 | A24 59 | P1.1 84 | LBA#
10 | NA# 35 | A25 60 | P1.2 85 | DO
1 | Al 36 | SMi# 61 | P1.3 86 | D1
12 | A2 37 | P3.0/TMROUTO 62 | P14 87 | D2
13 | A3 38 | P3.1/TMROUT1 63 | P15 88 | D3
14 | A4 39 | SRXCLK 64 | P1.6/HOLD 89 | D4
15 | A5 40 | SSIORX 65 | RESET 90 | D5
16 | A6 41 | SSIOTX 66 | P1.7/HLDA 91 | D6
17 | A7 42 | P3.2/INTO 67 | DACK1#/TXD1 92 | D7
18 | A8 43 | P3.3/INT1 68 | EOP# 93 | D8
19 | A9 44 | P3.4/INT2 69 | WDTOUT 94 | D9
20 | Al0 45 | P3.5/INT3 70 | DRQO 95 | D10
21 | ALl 46 | P3.6/PWRDOWN | 71 | DRQ1/RXD1 96 | D11
22 | A12 47 | P3.7/SERCLK 72 | SMIACT# 97 | D12
23 | A13 48 | PEREQ/TMRCLK2 | 73 | P2.0 98 | D13
24 | Al4 49 | NMI 74 | P21 99 | D14
100 | D15
NOTES:

1 Bit0is closest to TDI; bit 100 is closest to TDO.

2 The boundary-scan chain consists of 101 bits; however, each bit has both a control cell and
a data cell, so an EXTEST or INTEST instruction requires 202 shifts (101 bits X 2 cells).

n
AP-720 I num

2.2.2 Identification Code Register At this point, the WSM takes over, writing thesults of the
verification into the status register. Since data access is
The IDCODE instruction allows the user to determine thguch slower than the typical programming time, the
contents of the device’s identification code register. For thentents of the SReed not be checked after each write.
Intel386 EX embedded processor this command showdtead, writes areepeated sequentially fail locations to
return one of the values shown in Table 3. be programmed, with the SR verified when the block
programming is completed. After the uie is
programmed, the data may be rdmtk segentially with

Table 3. Device Identification Codes RD# held constantly low, and the contents may be verified

Step Vee IDCODE by comparisoragainst the source code.
A 5V 0027 0013H The static nature of the Intel386 EEXnbedded processor’s
B 5V 0027 0013H Boundary Scan Rgster outputs combinedith the high
C 5V 2027 0013H speed of the flash device ensures that timing issues are a
C 3V 2827 0013H minimal problem. In fact, a 16-bit word may be written to

the flash device in only a single cycle of the boundary scan
register. This iseacomplished by using armditional output

For more information about identification codes, see tR# of the controlling PC's parallel pocbnrected to WE#

Intel386™ EX Embedded Microprocessor User's Manual to clock the data and address into the chip. By doing so, as
is discussed in Section 4.0, PERFORMANCE ANALYSIS

AND CONSIDERATIONS, even a simple design can
2.3 Intel 4 Mbit Boot Block Flash achieve throughpuevels of more than 1 Kbyte pezcond

. . tr}qough the serigBSR of the TesAccess Port.
The number of instructions necessary to program flas

devices is significantly reduced by using bBrel Boot
Block device. In the sample design described in the ngxp SAMPLE DESIGN
section, the automated Write State Machine (WSM) of the
28F400BV-T flash unit ensurethat all algorithms and
timings necessarfor erasing and programming the devica-1
are executed automatically, freeing the TAP contrply e 2 jllustrates a straightforward design that uses a
software of additional busthsomel/O cycles and iterative standard parallel port to monunicate with the TAP of the
code. The devicalso performs its own program aethse Intel386M EX Embedded Neroprocessor Evaluation
verifications, updating the Status Register (SR) to indicgis g This interface is typical of any design based on the
the successful copetion of operations. These features alftel386 EX embedded processor, andunes only a
standard with Intel's Boot Block, FIashFHBT", and cpMos buffer to protect the TAP pins and translate the
EmbeddedFlash RAM families, which are available in gyinter port signals to the CMOS levels required for the
variety of sizes and configurations. TAP. This assembly can be built onto a simple cable or card
that plugs into the Intel386 EX Emtided Microprocessor
Evaluation Board Option Header. It receives power and
ground signals from the Evaluation Board, which must be
1. The write setup comand (40H) is issued to flashPowered on during operation of the TAP programmer. The
memory. majority of the signal control is done by software routines
which read and write data to and from the BSR.

TAP Hardware Interface

Writing data to Intel's secondereration flashmemories
consists of these steps:

2. This is followed by asecondwrite specifying the
address and data for the location to be written.

3. The data and address are latched internally on the rising
edge of the WE# strobe, which may be issued by one of
a variety of sources.

AP-720

T 0 T 193ys S66T ‘TE AIne -9led
01 v
A3d JaquinN juswnooq|azis

advOod JIOV4HILINI OVLC - X398EAT

92258 ZV "YATANVHO
AdvA3TTNOg d3TANVHD "M 0005
NOILYHOdHOD 131NI

SPLL

*80110u INoyIM ubisap siyi Ajpow 01 1yBu syl seaiasal [siu| “ubissp

ay} ul yeadde Aew yeyl sious Aue Joy Ajiqisuodsal ou sawnsse
[91u] ‘freuonduny aq 0} ubIsap syl payLIdA sey [3iu] ybnoyyy

‘pasadwn(are #3M dIAC J0 -€ suid Ji preog uonenfeas

ay1 Jo uopesado ays 1984e 10U [|IM SIUYL “(SJ1ABP YSB} BYI U0 #JM) EF Uld ‘€SN 01 paaim

3q pnoys 2N 10 ¥ uid *(Q1d 8y uo #3IM_HSTd PaJled) 0Z Uld ‘9TN O} Paiim 39 pnoys

2dr 10 0T uid “(39300S INVHQ 3UY) U0 #3M) L Uld ‘v'SN 0} PaIIm 8¢ PINOYS /dr 40 8 uld

‘Allreuonippy "921Aap ysej} ay) pue g1d ay) Usamiad N ag Ishw pJeog uolyenfen ayx
uo @1d 9TN 8yl Jo oz uid uo ade.y Indino ayl ‘A|INJssaans a1a|dwod o) Buiwwelboid Jo4 (g

“uod OvIC

s, diya ayr ybnolyy ysey 320|g 1009 ay3 jo Bujwwrelboid ay ajel|ioe} o} preog uonenieas
X3 4, 98€121UI BY} JO UONIBUUOD L[dY} Ul padeld aq pinoys pieod yndud feuomppe siyL (T

AN

‘S310N

¢X<¢€ 43avaH

2

A9T aNo v9 €9 DNy

)

4ny L
dN dvO
ONITdN023a)\

29 19 371
09 6S P—T
8§ /S
9§ §S

|

I

1al

¥S €S

¢S TS oL

jeRene)

G29d JOLO3INNOD
]

#39041S T

0S 67 #1Sd1

8y Lv
o Sv
vy €V
v v
o 6€
8¢ L€
9€ G€
Ve €€
[ASNA
0€ 6¢
8¢ L¢

O0A

T
V MOl ¢
ST

V SNL €

VYVZ1OHYL

4 O|m._” 1
o1 OH|

VAC VVC [+
EAC EVC o+

#v 13S34_9T
14 |

LT
S

8T
9

6T

L

(74

#39041S CAC ¢Ve

™
—
3
L]
o
¢
x|
=
o)

#IAM #390Y1S = 9-G
#3IM Ad =€
#AMNVHA =2 T

9¢ S¢
Ve €¢

TAT TVZ
T9d 1aL 11 Odl
SOL 7] VAL PV1

#ISdal v EAT EVT

(4%
0cC 61
8T LT

¢X€ ¥3avaH 9T ST

SNI GT|2AT VI

vidd odal 8

114

aL 8T TAT 1TVT
ISEEETREE]

MHO WD 6

44

0T

€¢

vT €T
5 O% 7Fgouls <l 11

v € #aM aid o1

Z T #3aMm Wvad w

L
S
qv €
T
o}

VLI LLLLLLLL

l

TTTTTTTTTTTTTTTTTTTTTTTT

#IAM dINC

|

#AM HSd

!

4
HO1O03NNO

~
o
S

WHO 0g€ ¥ dIS
"W a1

O+
O
0
O
o)
[¢;
(o
o)
o}
(o
o)

Aldd 14l TT

ve

€ #3904dl1S

8
AAAAY
9 S V SIWL
7 VWY
N)>>>J Vv1idd 0dL

0 dNT1ind NY

O0A

0
0

0

IO

IO
10
IO

0

)

Io

0

0

MHO WD ZT

14

0
T

uuo 1od |9|fesed

Figure 2. TAP Parallel Port Interface

n
AP-720 I num

3.2 JTAG Software Interface Evaluation Board requires that aaclye be made to

))))) temporarily disconnect the output of Pin 20 of the U16 PLD
This section details the operation of the various softwat[g_SH WE#) so that the flash's WE# signal may be
routines that use the Test AccéBsrt toprogam data into ontrolled by an external, static, and &dndependent
the Boot Block flash. The source code for the executalgce. Examples are shown in Figure 2 for Parallel Port
program TAPLOADREXE, which contains both inline 5n4 Tap control of the WE# signal. Making the changes
assembly routines as well as C language functionbpisrs jescribed in the figure notemables the etect operation

in Appendix A. Thesoftware demonstrates how to: of the programming functions andliminates any
« Configure and modify the status of pins for data inpaentention for control of the devices and their signals.
and output

Future steppings of the Intel386 EXnlkeedded processor
» Shiftin the values necessary to perform I/O to the flaghinove the need for PLD control of the flash’s WE# signal
device by correcting errata #29 of the Intel386 EX emibed
« Perform operations such as status checks and data If@ocessoerrata list. This allows a glueless flash interface to
be used in some designs and eliminates the need for modifi-
cations to the PLD when implementing the programming of
3.2.1 Hardware Considerations the flash memory tlough the TAP. When cuittinipe trace
) .)) on the FLSH_WE# signal, however, care mustadden to
The high-level routines used in programming data thmuﬂﬂnper pins 3-4 on the JTAG interface card so that correct

the _TAP are. device-.deper.ldent because they assum&p@ration of the EV386EX evaluationdrd is retained.
particular device configuration on the board as well as a

predetermined system interface. In th@mplethe JTAG Although two examples are given for resetting the JTAG
chain contains only a single IEEE 1149.1 compliant devigit of the Intel386 EX ebedded processor, it is only
the Intel386 EX embedded processor. If the JTAG chajBcessary to use one of the provided means to return the
consisted of several devicesonnected inseries, the TAP state machine to Test-Logic-Reset. If theosen
routines would need to control the whole chain and plaggplementation uses the Restore_ldle function rather than
any other devices into the BYPASS mode. The routinestffz Reset_JTAG routine, it is advisableti® an inverted
the example assume only a single device with separate Rf#J Reset signal to the TRST# input of the processor. This
and WR# strobes generated by the CPU. The WR# sig§ahrantees that the TAP relinquishes control of all the
may be enabled externally to improve performance; thisgigntrolled CPU pins upon a system reset. If the
discussed in Section 4.0, PERFORMANCE ANALYSIReset JTAG function is used, carmist be taken to reset
AND CONSIDERATIONS. the system immediately after TRST# is asserted.

Several preparations must be made before the ifi@shory
can be programmed. On the Evaluation BodRil2 must 3.2.2 Assembly Language Routines
be installed and R12 removegumpering pins 1 and 2 of
JP12 enables the PWD signal (pin 44) of the 28F400BVFhe heart of the software that allows you to program flash
flash device, which provides programming voltage féhrough the JTAG port is contained in the assembly routines
block erases andrites. When programming the flash, it igvhich control the JTAG unit of the Intel386 EX eealdled
also critical toenable \p (pin 1) by setting Port 1.5 (pinprocessor via the parallebg of a PC. These routines have
107) of the Intel386 EX embedded processor on theen implemented as inline assembly code to simplify the
Evaluation Board used in the example. development process and ttlarity of the software. They
use a set of bitmasks and variables shown in the first
In the example, UCS# is used the chip select (CS#) forsection of Appendix A under the heading “Assembly
the flash device; it is LOW for any address that is accessedinguage Wriables.” A description of each function is
The example alsamplies static behavior of the bus;shown below:
therefore, the connection of flash chips to the CPU should
be independent of arglocks. If any buffers on the busses
are required in the design, their direction and enable signals
should bestatic. Take care tensure thaall flash control
signals are clock-oependent. Revision 2.1 of the
EV386EX Intel388M EX Embedded Microprocessor

Reset_JTAG- Resets the TAP to the Test-Logic-Reset
state by toggling the TRST# signal. This signal is
optional in IEEE 1149.1, but has been provided on the
Intel386 EX embedded processalternately, the same

8

intal

3.2.3

function is provided byive consecutive TCK periods ¢
with TMS held high. See Restore_ldle (below) for
more details.

Restore_ldle- Resets the TAP to the Test-Logic-Reset
state by transitioning through the state machine. TMS
is held high for five consecutive TCK clock periods.
This is in acordance with the IEEE 1149.1 specifi-,
cation.

TMS_High - Provides a vehicle fomprogression
through the statenachine with TMS &ld high for a
single TCK clock period. Used when shifting data into
and out of the TAP.

TMS_Low - Provides a vehicle fomprogression
through the statenachine vith TMS held low for a ¢
single TCK clock period. Used when shifting data into
and out of the TAP.

Shift_Data_Array - Shifts a data string into the TAPe
while copying the data in the TAP into the place of the
incoming dita. This function is called when the TAP
state machine is in the Select_DR_Scan state.

Shift_Data_Array_IN - Shifts a data string into the
TAP and does not copy any data from the TAP in the
place of the incoming datalhis function is called
when the TAPstate machine is in the Select. DR_Scan
state.

Strobe_Data_In - Pulses the STROBE# line of the
PC’s parallel port. This function is used onkhen
STROBE# is conected to the WE# line of the flash.

“C” Routines

Appendix A contains aumber of “C” language functions®

that make the programming of flash modular and easy to

implement. Many of them are called from the “Main”
function of TAPLOADR.EXE, but others atesed to move ,
data back and forth into the TAP byeans that would be

complicated by using assembly language programming.

The program was compiled under Microsoft* Visual C++
1.50. A list of the functions, theirgendencies, and a brief
description of their operation is given below.

Send_Instruction - Sends a JTAG instruction as a
string into the TAP. Replaces the original string with
the data that is shifted out on TDO.

Send_Instruction_IN - Sends a JTAG instruction as a
string into the TAP. Does not replace the original string
with the data that is shifted out on TDO.

AP-720

Send_Data- Sends a JTAG data string into the TAP.
Replaces the original string with the data that is shifted
out on TDO.

Send_Daa_IN - Sends a JTAG data string into the
TAP. Does not replace the original string with the data
that is shifted out on TDO.

Flip_ID_String - Flips the JTAG unit ID string within

its ownarray. This needs to be done in order to reverse
the string which is read in backmis, least significant

bit first. This allows for verification of the data that is
read against the value shown in theel386™™ EX
Embedded Microprocessor User's Manuamost
significant bit first.

Get_JTAG_Device_ID - Retrieves the JTAG device
ID from the processor. Displays thiesults and the
expected value.

Fill_JTAG - Initializes the values in the 202 bit JTAG
BSR array for a standard configuration. Sets up input
and output pins and valuésr the control pins in the
BSR. Sets the direction bits of thaused pins to a
value of “0” which makes them input8his routine is
unique to the Intel386 EX embedded processor and
must be configured differently for other devices.

Set_Data- Decodes a 16-bitata word onto the DO
through D15 data lines in the BSR array. Sets the data
line directional bits to a value of “1” which makes
them into outputs. Used wheniting data to the flash.

Get_Data - Configures the data lines as inputs,
allowing data to be output from the flash and read into
the BSR array. Used when reading data back from the
flash.

Parse_Data- Reads the data from the data lines in the
BSR array and parses it into a 16-bit data word. Used
when reading data back from the flash.

Set_Address - Decodes an address onto the Al
through A25 data lines in the BSR array. Sets the
directional bits for the address lines to a value of “1”
which makes them into ouifs. Used for both reads
and writes to and from the flash.

Flash_Read- Reads a 16-bit data word from the flash
device at the specified address. Used for verification of
data and status checks.

Flash_Write - Writes a 16-bit data word to the flash

device at the specified address. Used for data
programming and status checks. Optional section
within this preedure may be chosen depending on

AP-720

chosen method of WE# hardware control. Only one
type of WE# signal enabling procedure may be used at
atime.

Input_File_Name_OK - Verifies that the input file is a
file that can be read. When this function does not return
a value of TRIE, the mpgram displays an error
message and prompts the usertp executing the
program again. If the file igalid, the program executes
normally.

Get_Flash_Device_ID- Retrieves the flash device D’
from the Intel Boot Block flash Device. Displays the
results and the expected value.

Check_Flash_Status Clears the flash status registers
and sends a Readafus conmand tothe device. The
results are readhack and displayed along with the
expected values for a properly functioning device.

2.4

Erase_Flash- Erases each block within the Intel Boo

intal

Program_Flash_Data - Outputs data from the
specified binary input file to the flash device. Data is
read in as 8-bit characters and is merged into 16-bit
words which are then written tbe Flash device. Status
checks are not performed after eastite, beause
doing so slows performance. The function displays the
status of a successfyrogramming operation and
notifies the user if the input file hasedn closed
successfully.

Read_Flash_Data- Reads back the data that hesn
written to the flash into the file VERIFY.BIN. A file
comparison may be done to check the correct
programming of flash data. This isnetesary in most
real applications, but is marginally faster thanaklireg
status after each word is programmed.

Program Operation and Options

Block flash device. An address withgach block i tAp| OADR.EXE operations are controlled from the

stored in an array in thifunction, and the function

program’s“Main” function. The program does noxecute

loops for a specified number of blocks, seven in thigi| it is given a valid input file name. Table #ts the
case. The function may be altered to erase only fif3 1ions which verifywrite, and themead back the data in

Boot Block or selected blocks within the device.

the file that is written to the flash device.

Table 4. TAPLOADER.EXE Order of Execution

Input_File_Name_OK (input_file)
Fil_JTAG(PinState);
Reset_JTAG();

Restore_ldle();
Get_JTAG_Device_ID();
Get_Flash_Device_ID();
Check_Flash_Status();
Erase_Flash();

i = Program_Flash_Data();
Check_Flash_Status();

Read_FLASH_Data(“verify.bin”,
data_start_address, i);

/I Checks input file name
// Initialization string
/I Reset the JTAG unit
/I Used to reset JTAG state machine
I/ GetID -
/I Get ID - see flash manual
/I Check status register example
/I Erases the entire flash chip
/I Opens file and programs flash data
/I Checks status before continuing

/I Copy contents to file

see 386EX manual for code

n
I nu@ AP-720

The program displays statuseck messages throughout itthe JTAG port. Among these, the most critical are the
operation. It is important to recognize that some operationgthods used to write the data into the flash device and
especally when programming large amounts of data, magrify that it has been successfully stored at the correct
take from a fewseconds to #ew minutes to complete. Alocation.
block erase operation normally requires approximately 0.5
seconds per block, or about 4 seconds per flash deve. was mentioned earlier, reducing the number of status
Writing data may take from just a feseconds to over 30checks performed whilerogramming can greatly reduce
minutes, depending on the size of theut file and the the timerequired to program data into $la The relatively
methods used for verifyingathprogramming and enablingS!ow operation of the parallel port and TABmbination
WE# on the flash chip. These issues are discussed in&Rgures that read and write operations do not interfere with
next section. those thaprecede them. Checking status bits only at the end
of blocks of wrtes can reduce programming time by as
much as one half. Table 5 shows a comparison of typical
4.0 PERFORMANCE ANALYSIS AND timings measured while loading data into the flash device
CONSIDERATIONS found on the Intel388" EX Embedded Microprocessor

A number of factors can affect the performance, specificaﬁ)\/aluanon Board.

the throughput levels, of any programming devfcs uses

Table 5. TAP Flash Programming Sample Timings

Size of Operation Type of Access Status Check FLSH_WE# Type Seconds Seconds/Kbyte
32 Kbyte Write Yes WE# 180 5.62
32 Kbyte Read N/A WE# 40 1.25
32 Kbyte Write No WE# 100 3.12
32 Kbyte Read N/A WE# 40 1.25
32 Kbyte Write No STROBE# 45 1.41
32 Kbyte Read N/A STROBE# 40 1.25
512 Kbyte Write Yes WE# 2940 5.74
512 Kbyte Read N/A WE# 660 1.28
512 Kbyte Write No WE# 1620 3.16
512 Kbyte Read N/A WE# 660 1.28
512 Kbyte Write No STROBE# 555 1.08
512 Kbyte Read N/A STROBE# 590 1.15

Table 5 also illustrates how the use of a WE# generatedalnyl address and simultaneously toggle the Wis#in a

the STROBE# line of a typical parallel port may expeditmilar high-low-high patternReductions inwrite cycle

the delivery of data through the TAP. Using this methdiine of close to two thirds are expected when using the first
allows writes to complete in a single cycle of the TARjethod. The unused data sidm of the parallel port may
rather than the normal three cycles that are required wiladso be used to control other useful signals such as RD#, or
strobing the WE# signal from the TAP. As shown ito monitor the status of control lines on the system under
Appendix A, the data and address are placed on the bustiesa

single cycle when usingTROBE# as WE#. They are then

clocked into the flash device by togglitt,e STROBE# line It is worth mentioning that severabmpanies currently
externa”y. In the latter caseo\hever’ thre@omp|ete shifts offer JTAG port interface cards that use a standard ISA bus

of the BSR data must be performed in order to send the datrface to ommuniate with one omore Test Access

1

n
AP-720 I r‘lblaw

Ports. These cards can vastly improve the data transfer raf#isout the loss of valuable time or inventory. Accessing
of about 0.5 Kbytes per secotitht are typical of a parallelthese devices via the chip’s IEEE 1149.1-compliant Test
port programmer. Although this rate iswparable to that of Access Port provides an kpersive, versatile, and reliable

a typical EPROM mpgrammer, TMS periods on the order dfool that functiondar beyondthe realms of debug and test.
a few microseconds are less than ideal. Typical data ratelf shock-tolerance and reduction of form-factor are primary
8 Mbits per second may be achieved by a simple card whilgsign concerns, using the JTAG port is sure to be an
uses RAM tosend and read data patterns frive JTAG important tool for in-circuit device reprogramming and
port. Since the bus signal emulation requires only theconfiguration. The parallebpt of a standard PGebomes
toggling of a few signals out of all that are within the BSR, flexible tool in this case, and mayused to generate TAP
the card stores the data towetten and transfers it to thesignals for either lab or low-volumergauction. With a
TAP in a rapid manner. Most hardware vendoravide a high-performance solution based on a simple TAP
library of software to assist the programmer in writing cod®ntroller card in a PC, programming perf@ance signifi-

to interface with such card&ven the simplest combinationcantly improves without the purchase of costly test
of hardware and software can be a valuable tool @gquipment.

programming and testing new code in flash.

6.0 RELATED INFORMATION

5.0 CONCLUSION) L)
This application note is one of the many sources of

The Intel386 EX processor provides a powerful meansioformation available regarding designing with the Intel386
programming onboard flash devices to meet the needsEdf embedded processor. Table 6 shows other useful
Just-In-Time manufacturing systems. Unprogrammeldcuments and theintel order numbers.

devices may now be soldered directly onto PCB's, allowing

for concurrent software andhardware development

processes as well as last minute changes in BIOS code

Table 6. Related Intel Documents

Publication Title \order
Intel386™ EX Embedded Microprocessor datasheet 272420
Intel386™ EX Embedded Microprocessor User’s Manual 272485
Intel386™ SX Embedded Microprocessor datasheet 240187
Intel386™ SX Embedded Microprocessor Programmer’s Reference Manual | 240331
Intel386™ SX Embedded Microprocessor Hardware Reference Manual 240332
186 Development Tools Handbook 272326
Intel386™ EX Embedded Microprocessor Evaluation Board Manual 272525
Buyer’s Guide for the Intel386™ EX Embedded Processor Family 272520
Packaging 240800
1995 Flash Memory Databook 210830

12

n
I nu@ AP-720

To receive these documents or any other available Intel Additional information on the IEEE 1149.1/1a specification

literature, contact: may be found in the official IEEE Staards document

IEEE Standard Test Access Port and Boundary-Scan Archi-
Intel Corporation tecture This publication is smseed by the Test
Literature Sales Technology Standards Committee of tti#EE Computer
P.O. Box 7641

Society and is available from:
Mt. Prospect IL 60056-7641

1-800-879-4683 Institute of Electrical and Electronics Engineers, Inc.

345 East 47th Street

To receive files that contain the source codecetable New York NY 10017

programs, and schmatics for this application of flash
programming through the TAP, contact:

Intel Corporation
America’s Application Support BBS
916-356-3600

13

I n o AP-720

APPENDIX A
PROGRAM SOURCE CODE

The following source code wagitten in Microsoft Visual C++ version 1.5 and has been tested using thenafaiened
hardware interface on a Intel386 EX Embedded Paessor Evaluation Board. It was compiled and linked intdiline
TAPLOADR.EXE, which is available on Intel’s America’s Application Support BBS in the zipped file TAPLOABR

Table A-1. Program Source Code (Sheet 1 of 15)

Rt T APLOADR.CPP
*

* Program Name: TAPLOADR.CPP

* Version: 1.0

* Date: July 18, 1995

* Author: Daniel S. Hays
* 386 Applications Engineer

* References: Excerpts of code taken from modules of the article
* "Beyond the Myth of JTAG Boundary Scan Port" by Dmitrii
* Loukianov, Intel Corp., 1995.

* Program Spec: This program will take an input flash file residing on a PC

* and program it into the boot block flash of the 386EX

* Evaluation Board utilizing the JTAG unit onboard the 386EX
* embedded processor. It will also erase the entire FLASH

* chip beforehand, including the boot block area, if

* enabled as described in the requirements section below.

* Requirements: In addition to the eval board itself, it is required that

* the user has a JTAG interface board plugged into both the

* evaluation board's expansion bus slot and the host PC's

* parallel port. The U16 PLD chip must be updated in order to

* disable the FLASH_WE# signal, and a jumper must be installed
* on pins 1-2 of Jumper J12, which is not normally populated

* on the standard eval board.

*

* *** Note: The power supply for the 386EX eval board must be
* ON in order for successful programming of the flash to take

* place. The program implies that UCS is the CS# pin for flash

* memory being programmed. UCS is set LOW for any address!
*

* The user must also know the location and name of the input

* data file in .BIN format, as well as the starting location

* in FLASH memory that the file is to be located at.

* Disclaimer: Information in this document is provided ‘as is' solely to

* enable use of Intel products. Intel assumes no liability

* whatsoever, including infringement of any patent or

* copyright, concerning the included software. Intel

* Corporation makes no warranty for the use of this software
* and assumes no responsibility for any errors which may

* appear in this document nor does it make a commitment to
* update the information contained herein.

*

* Copyright (C) Intel Corporation 1995

* All Rights Reserved.

A-1

AP-720

Table A-1. Program Source Code

(Sheet 2 of 15)

*

Fkkmk kR Rk skrk GLOBAL DECLARATIONS #tittiitkskihiksioksions |

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>

/**** Definitions of JTAG BSR pins for sequence for Intel 386 EX CPU ****/
[+ Note: MIO shifted out LAST, D15 - first! itk |

#define D15 0
#define D14 1
#define D13 2
#define D12 3
#define D11 4
#define D10 5
#define D9 6
#define D8 7
#define D7 8
#define D6 9
#define D5 10
#define D4 11
#define D3 12
#define D2 13
#define D1 14
#define DO 15
#define LBA 16
#define CS6 17
#define UCS 18
#define P27 19
#define P26 20
#define P25 21
#define DACKO 22
#define P24 23
#define P23 24
#define P22 25
#define P21 26
#define P20 27
#define SMIACT 28
#define DRQ1 29
#define DRQO 30
#define WDTOUT 31
#define EOP 32
#define DACK1 33
#define P17 34
#define RESET 35
#define P16 36
#define P15 37
#define P14 38
#define P13 39
#define P12 40
#define P11 41
#define P10 42
#define FLT 43
#define STXCLK 44
#define INT7 45
#define INT6 46
#define INT5 47
#define INT4 48
#define TMRGATE2 49
#define TMROUT2 50

A-2

N

Table A-1. Program Source Code

(Sheet 3 of 15)

AP-720

#define NMI 51

#define PEREQ 52

#define P37 53

#define P36 54

#define P35 55

#define P34 56

#define P33 57

#define P32 58

#define SSIOTX 59

#define SSIORX 60

#define SRXCLK 61

#define P31 62

#define P30 63

#define SMI 64

#define A25 65

#define A24 66

#define A23 67

#define A22 68

#define A21 69

#define A20 70

#define Al19 71

#define Al18 72

#define Al7 73

#define Al6 74

#define Al5 75

#define Al4 76

#define Al3 7

#define Al2 78

#define All 79

#define Al10 80

#define A9 81

#define A8 82

#define A7 83

#define A6 84

#define A5 85

#define A4 86

#define A3 87

#define A2 88

#define Al 89

#define NA 90

#define ADS 91

#define BHE 92

#define BLE 93

#define WR 94

#define RD 95

#define BS8 96

#define READY 97

#define WRD 98

#define DC 99

#define MIO 100

#define TRUE 1

#define FALSE 0

typedef unsigned int word; /1 16 Bit word
typedef unsigned char byte; /I 8 Bit Byte
typedef char *Pchar;

typedef Pchar PJTAGdata; // JTAG Data array / null term string
const word BSR_Length=202; /I # bits in JTAG BSR string 101x2
const word ID_String_Length=32; // # bits in JTAG CPU ID String
unsigned long int A; /I Stores address data

A-3

(Sheet 4 of 15)

AP-720
Table A-1. Program Source Code
unsigned long int i; /I Stores index value
unsigned long int data_start_address; // Holds starting address of program
word RX; /I Stores register data
word new_word; /I Holds word to be written to FLASH
word high_part; /I Temp Holder for upper part of word
char PinState[BSR_Length]; /I Holds Pin Data to move in and out
char input_file[80]; /I Holds name of input file
int c; /I Holds character being worked with
FILE *in; /I Points to input file location

[Hxrx JTAG1149 Commands for Intel386EX Embedded Processor ¥k]

char *BYPASS ="1111"; /I Use BYPASS register in data path
char *EXTEST ="0000"; I/ External Test Mode

char *SAMPLE ="1000"; /I Sample/Preload Instruction

char *IDCODE ="0100"; /I Read ID CODE from the chip

char *INTEST ="1001"; /I On-chip System Test

char *HIGHZ ="0001"; /I Place device into Hi-Z mode

[remcssass. Assembly language variables **#skirti |

#define TCK 1; /I Bit 0 is TCK output
#define TMS 2; /I Bit 1 is TMS output
#define TCKTMS 3; /1 Bit 0+1

#define TDI 0x40; /I Bit 6 is TDI output
#define notTCKTMS OxFC; /1 Bit 0+1

#define TDITMS 0x42; /] Bit TDI+TMS

#define TRST 4; 11 JITAG+2

#define TDO 0x80; /I JITAG+1, bit is inverted!
static word JTAG=0x378; // LPT1 Data Address Default
const word JTAGI=JTAG+1; /I Contains circuit input
const word JTAGR=JTAG+2; // Reset bit is here

/ 1
[ersescesienies INLINE ASSEMBLER FUNCTIONS FOR JTAG I/ *rmissicniinies]

/ !

[rrssrkicakiiaik Assembly function to reset the JTAG unit *sxkiiikiok

void far Reset_JTAG() /** Reset TAP logic by optional TRST# signal **/
{

_asm
{
mov dx,JTAG
mov al,0 /I +TDI
out dx,al
mov dx,JTAGR
mov al,0 /I TRST# LOW
out dx,al
mov dx,JTAGR
mov al,TRST /I TRST# HIGH
out dx,al
}

}

/*** Assembly function to go into Run_Test_Idle state from unknown state **/

void far Restore_Idle () /** Restore Test_Logic_Reset state by 5 TCK's **/
{ /** Goes into TLR state from any **/
/** unknown state of the JTAG controller **/
_asm

~

A-4

INtal

Table A-1. Program Source Code

(Sheet 5 of 15)

AP-720

mov cX,5
mov dx,JTAG

FiveTimes:
mov al,TMS /I TMS HIGH
out dx,al /I Set TMS/TDI
or al,TCK
out dx,al /I TCK High
xor al,TCK /I TCK Low
out dx,al

loop FiveTimes
}
}

[rexxkiix Assembly function to do one transition with TMS High *#xsiix/

void near TMS_High () /** One transition with TMS High **/

{
_asm
{
mov dx,JTAG
mov al,TMS /I Sets TMS high
out dx,al /I Set TMS/TDI
or al,TCK
out dx,al /I TCK High
xor al,TCK /I TCK Low
out dx,al
}
}

[rrxxiiix Assembly function to do one transition with TMS Lowy #xksskicks

void near TMS_Low () /** One transition with TMS Low **/

{

__asm

{
mov dx,JTAG
mov al,0 I Set TMS Low
out dx,al /I Set TMS/TDI
or al,TCK
out dx,al /I TCK High
xor al,TCK /I TCK Low
out dx,al

}

[¥**x Assembly function to shift data into JTAG port while reading *****/

void near Shift_Data_Array(unsigned S, char far *D)
{
/** Shifts data String into JTAG port while reading data **/
/** from JTAG port back into D, **/
/** The procedure should be called when JTAG controller **/
/** is in the SelectDRScan state **/

_asm
{

mov dx,JTAG

push es

push di

les di,D /I Get array pointer

cld

Xor ax,ax

mov ax, S /I Get Size

dec ax

A-5

AP-720

Table A-1. Program Source Code

(Sheet 6 of 15)

mov cx,ax
jz LastClock3

I_Shift3:

mov al, byte ptr es:[di]

shl al,6

and al, notTCKTMS // Clear TCK and TMS bits
out dx,al /I Put first data bit

or al,TCK /I Set TCK high

out dx,al /I Shift in first data bit

inc dx
/I Sample first data bit

in al,dx

and al,80h

mov al,'1l'

je Ex1

mov al,'0’
ex_1:

stosb

dec dx

loop |_Shift3

LastClock3:

mov al, byte ptr es:[di]

shl al,6
and al, notTCKTMS
or ax, TMS /I Set TMS bit
out dx,al /I Put last data bit
or al,TCK /I Set TCK high
out dx,al /I Shift in first data bit
inc dx
/I Sample first data bit
in al,dx
and al,80h
mov al,'1l'
je Ex2
mov al,'0’
ex_2:
stosb
dec dx

mov al,TDITMS /I Leave TCK pin Low

out dx,al
pop di
pop es

}
}

/*** Assembly function to shift data into JTAG port while not reading ***/

void near Shift_Data_Array_IN(unsigned S, char far *D)
{
/** Shifts data String into JTAG port WITHOUT reading data **/
/** from JTAG port back into D. **/
/** The procedure should be called when JTAG controller is in the **/
/** SelectDRScan state. **/

A-6

Table A-1. Program Source Code

(Sheet 7 of 15)

AP-720

_asm
{
mov dx,JTAG
push es
push di
les di, D /I Get string
cld
Xor ax,ax
mov ax, S ; Get Size
dec ax
mov cx,ax
jz LastClock4
1_Shift4:
mov al, byte ptr es:[di]
shl al,6
and al, notTCKTMS
out dx,al /I Put first data bit
or al,TCK /I Set TCK high
out dx,al /I Shift in first data bit
inc di /I Update pointer
loop |_Shift4
LastClock4:

mov al, byte ptr es:[di]

shl al,6

and al, notTCKTMS

or al, TMS

out dx,al // Put last data bit

or al,TCK /I Set TCK high

out dx,al /I Shift in last data bit
mov al,TDITMS /I Leave TCK pin Low!
out dx,al

pop di

pop es

}

}

[rxxxiiix Assembly function to pulse STROBE line on parallel ports ****+/

void far Strobe_Data_lIn ()

{
_asm
{
push dx
mov dx,JTAGR
mov al,1+TRST /I Sets STROBE# bit low for WE# use
out dx,al
mov al,TRST // Returns STROBE# without RESET#
out dx,al
pop dx
}
}

/ /
Jrrmsrkrksisiireres C4+ EUNCTIONS FOR JTAG PROGRAMMING *#xkicsiskssoninion|

/ !

[riwmmsrnskskx EUNction to send INStruction to JTAG #ttsitritkkksion|

void Send_Instruction (unsigned S, char far *D)
/* Send instruction string into JTAG port, replace */

A-7

AP-720

Table A-1. Program Source Code

(Sheet 8 of 15)

/* the original string with the data that comes out TDO */

{
TMS_Low; /I Go to Run_Test_Idle
TMS_Low; /I Go to Run_Test_Idle
TMS_High; /I Go to Select_DR_Scan
TMS_High; /I Go to Select_IR_Scan
TMS_Low; /I Go to Capture_IR
TMS_Low; /I Go to Shift_IR
Shift_Data_Array(S,D);
TMS_High; /I Update_IR, new instr. in effect
TMS_Low; /I Run_Test_lIdle

}

[rexxkik Eynction to send instruction into JTAG port, do not read TDO ***/

void Send_Instruction_IN (unsigned S, char far *D)

TMS_Low(); /I Go to Run_Test_lIdle
TMS_Low(); /I Go to Run_Test_lIdle
TMS_High(); /I Go To Select_DR_Scan
TMS_High(); /I Go To Select_IR_Scan
TMS_Low(); /I Go to Capture_IR
TMS_Low(); /I Go to Shift_IR }
Shift_Data_Array_IN(S,D);//

TMS_High(); /I Update_IR, new instr. in effect
TMS_Low(); /I Run_Test_Idle

}

/*** Function to send data string into JTAG port + replace original *****/

void Send_Data (unsigned S, char far *D)
/* Send data string into JTAG port */
* replace the original string with the data that comes out TDO */

{
TMS_Low(); /I Go to Run_Test_lIdle
TMS_Low(); /I Go to Run_Test_lIdle
TMS_High(); /I Go To Select_DR_Scan
TMS_Low(); /I Go to Capture_DR
TMS_Low(); /I Go to Shift_ DR
Shift_Data_Array(S,D);
TMS_High(); /I Update_IR, new data is in effect
TMS_Low(); /I Run_Test_Idle

}

/**** Function to send data string into JTAG port w/o replacing orig. ****/

void far Send_Data_IN (unsigned S, char far *D)
/* Send data string into JTAG port, */
/* The original data is not overwritten */

{
TMS_Low(); /I Go to Run_Test_lIdle
TMS_Low(); /I Go to Run_Test_lIdle
TMS_High(); /I Go To Select_DR_Scan
TMS_Low(); /I Go to Capture_DR
TMS_Low(); /I Go to Shift_ DR
Shift_Data_Array_IN(S,D);
TMS_High(); /I Update_IR, new data is in effect
TMS_Low(); /I Run_Test_Idle

}

[rrsRrkickk Eynction to invert a data string S0 MSB is first *xks/

void Flip_ID_String (int length, char Input[ID_String_Length])
{ /* Flips the JTAG Unit ID string */
/* since it is read in backwards */

A-8

INtal

Table A-1. Program Source Code

(Sheet 9 of 15)

AP-720

intiJ;
char Temp[ID_String_Length];

j=0; /I Initialize Temporary place holder
for (i=length; i >=1; --i)

{

Temp[j] = Inputfi-1];

+H;

for (i=0; i <= (length-1); ++i)

Input(i] = Templi]; /I Copy Temp string to perm. one
}
[rxrixiik Eynction to get ID string from the Intel(tm)386EX Chip ***xixx/

void Get_JTAG_Device_ID ()
{
const char *p="01010101010101010101010101010101";
/I Dummy string, will change value
/I after Send_Data executes
char ID[ID_String_Length];

strepy(ID,p); /I Fill with dummy string
Send_Instruction_IN(strlen(IDCODE),IDCODE); // Do NOT overwrite Instr.
/I Because it resides in the
/I Fixed string area!
Send_Data(strlen(ID),ID);

Flip_ID_String(strlen(ID),ID); /I Makes MSB first in array
printf("\nThe JTAG CPU Chip Identifier is: %s\n",ID);
printf

("For Intel386(tm)EX it should be: 00000000001001110000000000010011\n");
}

/*** Function to fill the JTAG array with zeros and set all as inputs **/

void Fill_JTAG(PJTAGdata P)

/
Configures pins for typical configuration:

P15: Out, Low

ADS: Out, Low

BHE: Out, Low

BLE: Out, Low

WR : Out, Don't Care

RD : Out, Don't Care

WRD: Out, Low

DC : Out, High

MIO: Out, High

UCS: Out, Don't Care

LBA: Out, Low

All other entries configured as inputs

Dir Bit Output = i*2
Data Bit =i 2+1

{
unsigned i;

for (i=0;i<=BSR_Length-1;i++)
Pl =0

P[P15*2]
P[P15*2+1]
P[ADS*2]
PIADS*2+1]

/I Make Vpp active to program FLASH

A-9

AP-720

Table A-1. Program Source Code

(Sheet 10 of 15)

P[BHE?2] =1
P[BHE*2+1]
P[BLE*2] =
P[BLE*2+1]
P[WR*2] ='1% /I Not necessary to initialize value
P[RD*2] ='1} /I Not necessary to initialize value
P[WRD*2]
P[WRD*2+1]
P[DC*2] =
P[DC*2+1]
P[MIO*2] =
P[MIO*2+1] =1’

P[UCS*2?] ='1% /I Not necessary to initialize value
P[LBA*2] ='1%

P[LBA*2+1] ='0% // Enables U8 by fooling PLD

/I BHE and BLE active for 16 Bit

/I WRD is Read by default

[rexxkik Eynction to Set Data Pins given 16 Bit Data ***¥#tkiitiikikiok

void Set_Data (PJTAGdata P, word D) /* Sets data onto pins and makes them */
{ /* into outputs */

int i

word M;

M=1;

for (i=DO ; i>=D15; --i)
{
if (D & M) = FALSE)
P[i*2+1] =1,
else
P[i*2+1] ='0";
P[i*2] ='1 // Data pins are Outputs now
M<<=1;
}
}

[rexrxkk Eynction to set data DIR bits to 0 on 16 bit data bus ***x¥kik/

void Get_Data(PJTAGdata P) /** Configures data lines as inputs **/
{

inti;

for (i=DO0; i>=D15; --i)
P[i*2] ='0"; /I Configure as inputs
}

[**** Function to convert JTAG output string into byte **¥kikiiiioix]

word Parse_Data(PJTAGdata P) /** Reads data lines and returns data word **/
{

inti;

word M=1,D=0;

for (i=DO; i>=(D15); --i) /I Reads data lines
{
if (P[i*2+1] =='1")
D=D|M;
M<<=1;
}
return(D);
}

[rrsxkiiakk Eynction to set the address on the address pings **xxwiikk]

void Set_Address(PJTAGdata P, unsigned long int Address)

A-10

INtal

Table A-1. Program Source Code (Sheet 11 of 15)

AP-720

{ [* Sets address lines and makes them into outputs */
inti;
long int M=1;

for (i=A1; i>=A25; --i)
{
if ((Address & M) = 0)
P[i*2+1]="1";
else
P[i*2+1]='0";
M<<=1;
P[i*2]="1";
}
P[UCS*2+1] = '0';
}

Jrismsrsiesk EUnction to read data from FLASH #ttkkssiskitink |

word Flash_Read(PJTAGdata P, unsigned long int Address)

Get_Data(P); /I Configure Data Bus as inputs
Set_Address(P,Address); /I Set addr on bus
P[UCS*2+1] ='0 /I Selects Flash chip
P[RD*2+1] ='0" /I RD#=Low Data

P[WR*2+1] ='1"; /I WR#=High Data
P[WRD*2+1] ='0"; /I For Read

Send_Data_IN(BSR_Length,P);
/I sets data on the Address bus, Data bus in the input mode
Send_Data(BSR_Length,P);
I Latches Data bus into BSR and then shifts it out into P
return(Parse_Data(P)); /I Convert result into binary
}

Jriwmkrnsaskskesk EUnction to Write Data to Flash *ssksksiskisiasik]

void Flash_Write(PJTAGdata P, unsigned long int A, word D)

Set_Data(P,D); /I Output data on bus
Set_Address(P,A); /I Output address
P[UCS*2+1] ='0 /I Selects Flash Chip
P[RD*2+1] ='1} /I RD#=High Data

/I ONLY ONE OF SECTIONS 1 or 2 MAY BE USED - COMMENT OUT THE OTHER !!!
/I SECTION 1 - USE IF STROBE# IS CONNECTED DIRECTLY TO FLASH_WE# - FASTEST

Send_Data_IN(BSR_Length,P);
Strobe_Data_lIn(); /I Clocks the Par. Port STROBE line

/I SECTION 2 - USE IF DRAM WE# IS CONNECTED DIRECTLY TO FLASH_WE# - SLOWER

"

/I P[WR*2+1] =1} /I WR#=High Data

/I P[WRD*2+1] ='0"; /I For Read

/I Send_Data_IN(BSR_Length,P); /I Can skip if WE# is already High!
/I P[WR*2+1] ='0"; /I WR#=Low Data

/I P[WRD*2+1] ='1"; /I For Write access

/I Send_Data_IN(BSR_Length,P);

/I P[WR*2+1] ='1"; /I WR#=High Data again

/I P[WRD*2+1] ='0"; /I Read access again */

/I Send_Data_IN(BSR_Length,P);

}

[rrssxkiakix Eynction to read input file name and data ** ki |

int Input_File_Name_OK (char input_file_name[80])
{

A-11

AP-720

Table A-1. Program Source Code

(Sheet 12 of 15)

FILE *in; /I Points to the input file

printf ("\nEnter name of input file: ");
scanf ("%80s", input_file_name);

if ((in = fopen (input_file_name, "rb")) == (FILE *) NULL)
{ printf ("Could not open %s for input data.\n", input_file_name);

fclose (in);
return (FALSE); /I File not loaded into memory
}
else
{
printf ("File name is good continuing..... \n");
fclose (in);
return (TRUE); /I File is loaded in memory
}

}

/% Eunction to retrieve info about FLASH manufacturer and Device ****/

void Get_Flash_Device_ID ()
{
Send_Instruction_IN(strlen(SAMPLE),SAMPLE);
/I Sample/Preload to initialize BSR
Send_Instruction_IN(strlen(EXTEST),EXTEST);
/I Configure for External Test

A=0x0; /I Initializer
Flash_Write(PinState,A,0x90); /I Send command to flash: read ID
RX = Flash_Read(PinState,A); /I Rd 1 word Flash Device ID

printf("\nFlash Chip Intelligent ID reads: %4.4xH",RX);// Print first word
RX = Flash_Read(PinState, A+1);

printf(" * %4.4xH\n",RX); /I Print second word

printf("Flash 1D for 28F400-T should be: 0089H * 4470H\n");

/*** Function checks FLASH status register and displays the contents *****/

void Check_Flash_Status ()
{
Flash_Write(PinState,A,0x50); /I Clears Status Registers
Flash_Write(PinState,A,0x70); /I Send command to flash: RD Status
RX = Flash_Read(PinState, A);
printf("\nStatus of the FLASH part is: %4.4xH\n",RX);
printf("FLASH status should be read: 0080H\n");

[rexxkik Eynction to erase the contents of the entire FLASH chip **xxksx/

void Erase_Flash ()
{
int index;
unsigned long int blocks[] =
{0x0000,0x10000,0x20000,0x30000,0x3C000,0x3D000,0x3E000};
/I Above = Starting *word* address of
/I each of the blocks in a 28F400BV-T

printf("\nNow Erasing FLASH......Please be patient.....\n");
for (index=0; index<=6; index++)
{
A=blocks[index];
Flash_Write(PinState,A,0x20);
Flash_Write(PinState,A,0xDO0);
/I Wait until Erase Complete
do
{

A-12

INtal

Table A-1. Program Source Code

(Sheet 13 of 15)

AP-720

Flash_Write(PinState,A,0x70); /7 Check Status Register
RX = Flash_Read(PinState,A);

while ((RX & 0x80) == FALSE); // Wait Until Ready again

printf("Status of FLASH block #%x is: %4.4xH\n", index+1,RX);
Flash_Write(PinState,A,0x50); // Clears Status Registers for next
I/ block erase
printf("FLASH status should be read: 0080H\n");
printf("FLASH has been erased.....Ready to write data.... \n");
}

[¥**xx Eunction to program the data in the file into the FLASH **#iitkf

unsigned long int Program_Flash_Data () /* Code below outputs data from */
{ /* binary file to the FLASH. Outputs words. */

A = data_start_address >> 1; /I So that starting point can be remembered
in = fopen (input_file, "rb");

printf("\nWriting input file data into FLASH... \n");

printf("Please be patient.... May take 2-10 seconds per kilobyte.\n");

while ((c = fgetc(in)) != EOF)

/I Code to make a word from two chars

new_word = 0; /I Initializes the two byte word
new_word = (new_word | c); /I Puts first byte into low 8 bits
¢ = fgetc(in); /I Gets second bytes

high_part = 0; /I Initializes temporary space

high_part = (high_part | ¢); /I Puts second byte into low 8 bits
high_part = high_part << 8; /I Shifts second byte up 8 bits to top
new_word = (new_word | high_part); // Combines low 8 and high

Flash_Write(PinState,A,0x40); /I Program set-up command
Flash_Write(PinState,A,new_word); // Writes 16 bit word

/I May add the following section to do status checks for each write
/I Not necessary for the very slow speed of parallel port.
/I Will severely inhibit performance.

/I do

" {

I Flash_Write(PinState,A,0x70); // Check Status Register
I RX = Flash_Read(PinState,A); // for each word

" }

I while ((RX & 0x80) == FALSE); // Wait Until Ready again

++A; /I Increments address in word mode

printf("File has been sucessfully read from disk.\n");
printf("Data programmed at hex byte location %IxH\n", data_start_address);

if (fclose (in))

printf ("The file %s was not closed successfully.\n", input_file);
else

printf ("The file %s was closed successfully.\n", input_file);
return (A - (data_start_address >> 1));

}
[rmssxkiakik Eynction to read the upper 32k of FLASH for Debug ***#iix/

void Read_FLASH_Data (char *FileName,
unsigned long int AStart,
unsigned long int Size)
/* Reads 16 bit words from FLASH chip into binary file starting @ AStart */
{

AP-720

Table A-1. Program Source Code

(Sheet 14 of 15)

FILE *DataFile;
unsigned long int Address;
word Data;

printf("\nNow reading back data for verification of program success...\n");
printf("Please be patient. May take up to 2 seconds per kilobyte.....\n");

printf("\nFile starting location in FLASH is %IxH\n", AStart);
printf("File ending location in FLASH is %lIxH\n", AStart+(Size<<1));

Flash_Write(PinState,A,0xFF); /I Sets up to read back data
DataFile = fopen(FileName, "w+b");
AStart = AStart >> 1; /I For word access addressing
for (Address = AStart; Address < AStart+Size; Address++)

{

Data=Flash_Read(PinState,Address);

if (fwrite(&Data, sizeof(Data),1,DataFile) != 1)

printf("problem writing to file");

fclose(DataFile);

printf

("\nFile verification image has been written to file ""VERIFY.BIN"...\n");
printf

("WARNING: Verification file will contain one extra byte for\n");

printf

(“input files with odd byte counts.\n");

}

/

/
xRk BEGIN MAIN itttk |

/ /

void main ()

if (Input_File_Name_OK (input_file))

{

printf /I On next line...

(M\nFErrkkikk INTEL i386EX PROGRAMS FLASH VIA THE JTAG PORT **#xikai\n'),
Fill_JTAG(PinState); /I Initialization string

Reset_JTAG(); /I Reset the JTAG unit

/I Reset board while TRST# is low
/I to insure proper startup
printf("\nWARNING: Reset Evaluation Board now and press any key.\n");

while (!_kbhit()); /I Waits until a key is hit

_getch(); /I Throws away character

Restore_ldle(); /I Used to reset JTAG state machine
Get_JTAG_Device_ID(); /I Get ID - see 386EX manual for code
Get_Flash_Device_ID(); /I Get ID - see flash manual
Check_Flash_Status(); /I Check status register example
Erase_Flash(); /I Erases the entire Flash chip

printf("\nEnter starting address of program data in hex bytes: ");
scanf("%lx",&data_start_address); // Scans starting address in hex

/I Uses word mode below
i = Program_Flash_Data(); /I Opens file and programs FLASH data

Check_Flash_Status(); /I Checks status before continuing
Read_FLASH_Data("verify.bin", data_start_address, i); // Copy contents to
/I file to verify OK

printf("\nThe board must now be reset to return to normal operation.");

/I Reset board while TRST# is low

/I to insure proper startup
printf("\nWARNING: Reset Evaluation Board now and press any key.\n");
while (!_kbhit()); /I Waits until a key is hit

A-14

INtal

Table A-1. Program Source Code

(Sheet 15 of 15)

AP-720

_getch(); /T Throws away character
Reset_JTAG(); /I Reset TAP to release BSR control
printf("\n<<<<<<<<<<<<<<<< The end... >>>>>>>>>>>>>>>>>\n\n");

Hit any key to return to DOS.\n");

printf("

while (!_kbhit()); /I Waits until a key is hit
_getch(); /I Throws away character
}

else

{

printf("File transmission unsuccessful.\n");
printf("Please check input file and physical connections.\n");

}
}

[rirrkr xRk kkk ks END MAIN

I n o AP-720

APPENDIX B
Intel386 ™ EX Embedded Processor BSDL File

The following BSDL file for the A and B steppings of the Intel386 EXbedded processor is located on Intalserica’s
Application Support BBS, af916) 356-3600. It is contained the zippedile called JTAGBSDLZIP located in the
Intel386™ EX embedded processor area.

Table B-1. BSDL File (Sheet 1 of 10)

-- Copyright Intel Corporation 1994

-- Intel Corporation makes no warranty for the use of its products

-- and assumes no responsibility for any errors which may appear in

-- this document nor does it make a commitment to update the information
-- contained herein.

-- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto

-- standard means of describing essential features of ANSI/IEEE 1149.1-1993
-- compliant devices. This language is under consideration by the IEEE for

-- formal inclusion within a supplement to the 1149.1-1990 standard. The

-- generation of the supplement entails an extensive IEEE review and a formal
-- acceptance balloting procedure which may change the resultant form of the
-- language. Be aware that this process may extend well into 1993, and at

-- this time the IEEE does not endorse or hold an opinion on the language.

-- Intel386 (TM) EX Processor BSDL Model
-- File **NOT** verified electrically

--Rev 0.4 14 Sep 1994

--The following list describes all of the pins that are contained in the E3D

entity i386_EX_Processor is
generic(PHYSICAL_PIN_MAP : string := “PQFP_132");

port(

D15 : inout bit;
D14 : inout bit;
D13 : inout bit;
D12 : inout bit;
D11 : inout bit;
D10 : inout bit;
D9 : inout bit;
D8 : inout bit;
D7 : inout bit;
D6 : inout bit;
D5 : inout bit;
D4 : inout bit;
D3 : inout bit;
D2 : inout bit;
D1 : inout bit;
DO : inout bit;

B-1

AP-720

Table B-1. BSDL File (Sheet 2 of 10)
LBAbar inout bit;
LCSbar inout bit;
UCSbar inout bit;
P27XCTSO0 inout bit;
P26XTXDO inout bit;
P25XRXD0 inout bit;
DACKObarXGCS5bar inout bit;
P24XGCS4bar inout bit;
P23XGCS3bar inout bit;
P22XGCS2bar inout bit;
P21XGCS1bar inout bit;
P20XGCS0bar inout bit;
SMIACTbarXEXCSIG inout bit;
DRQ1XRXD1 inout bit;
DRQOXDCD1bar inout bit;
WDTOUT inout bit;
EOPbarXCTS1bar inout bit;
DACK1barXTXD1 inout bit;
P17XHLDA inout bit;
RESET inout bit;
P16XHOLD inout bit;
P15XLOCKbar inout bit;
P14XRIObar inout bit;
P13XDSRO0bar inout bit;
P12XDTRObar inout bit;
P11XRTSObar inout bit;
P10XDCDObar inout bit;
FLTbar inout bit;
DSR1barXSTXCLK inout bit;
INT7ZXTMRGATE1 inout bit;
INTEXTMRCLK1 inout bit;
INTSXTMRGATEO inout bit;
INTAXTMRCLKO inout bit;
BUSYbarXTMRGATE2 inout bit;
ERRORbarXTMROUT2 inout bit;
NMI inout bit;
PEREQXTMRCLK2 inout bit;
P37XCOMCLK inout bit;
P36XPWRDOWN inout bit;
P35XINT3 inout bit;
P34XINT2 inout bit;
P33XINT1 inout bit;
P32XINTO inout bit;
RTS1barXSSIOTX inout bit;
RI1barXSSIORX inout bit;
DTR1barXSRXCLK inout bit;
P31XTMROUT1 inout bit;
P30XTMROUTO inout bit;
SMlbar inout bit;
A25 inout bit;
A24 inout bit;
A23 inout bit;
A22 inout bit;
A21 inout bit;
A20 inout bit;

B-2

INtal

Table B-1. BSDL File (Sheet 3 of 10)

AP-720

Al19
A18XCAS2
A17XCAS1
A16XCASO
Al15

Al4

Al13

Al12

All

A10

A9

A8

A7

A6

A5

A4

A3

A2

Al

NAbar
ADSbar
BHEbar
BLEbar
WRbar
RDbar
BS8bar
READYbar
WXRbar
DXCbar
MXIObar
TCK

TDI

™S
TRSTbar
TDO

vCcC

VSS

use STD_1149 1_1990.all;

inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
inout bit;
in bit;
in bit;
in bit;
in bit;
out bit;
linkage bit_vector(0 to 10);
linkage bit_vector(0 to 12));

--This list describes the physical pin layout of all signals

attribute PIN_MAP of i386_EX_Processor : entity is PHYSICAL_PIN_MAP;

constant PQFP_132

: PIN_MAP_STRING := -- Define PinOut of PQFP
“D15 1 23"&
‘D14 1 22)&
“D13 :21)7&
“D12 1 20,"&
‘D11 : 19&
“D10 : 18,"&
“D9 1 16,"&
“D8 1 147&
“D7 1 13"&

B-3

AP-720

Table B-1. BSDL File (Sheet 4 of 10)

“D6

“D5

‘D4

“D3

“D2

‘D1

“DO

“LBAbar

“LCSbar

“UCSbar
“P27XCTS0O
“P26XTXDO
“P25XRXD0O
“DACKObarXGCS5bar
“P24XGCS4bar
“P23XGCS3bar
“P22XGCS2bar
“P21XGCS1bar
“P20XGCSObar
“SMIACTbarXEXCSIG
“DRQ1XRXD1
“DRQOXDCD1bar
“WDTOUT
“EOPbarXCTS1bar
“DACK1barXTXD1
“P17XHLDA
“RESET
“P16XHOLD
“P15XLOCKbar
“P14XRIObar
“P13XDSRObar
“P12XDTRObar
“P11XRTSObar
“P10XDCDObar
“FLTbar
“DSR1barXSTXCLK
“INT7XTMRGATE1
“INTEXTMRCLK1
“INTSXTMRGATEO
“INTAXTMRCLKO
“BUSYbarXTMRGATE2
“ERRORbarXTMROUT2
“NMI
“PEREQXTMRCLK2
“P37XCOMCLK
“P36XPWRDOWN
“P35XINT3
“P34XINT2
“P33XINT1
“P32XINTO
“RTS1barXSSIOTX
“RI1barXSSIORX
“DTR1barXSRXCLK
“P31XTMROUT1
“P30XTMROUTO

1 12)7&
D 117&
1 10,7&
1 8,"&
T 7&
1 6,"&
1 5"&

L 47&

1 2)&
c1)&
1 132&
1 131&
0 129,"&
1 128,"&
1 126,"&
1 1257&
1 1247&
1 1237&
1 1227&
: 120,"&

: 118,"&
0 117,7&
:114°&

1 1137&
1 112°&
©1117&
: 110,"&

1 108,"&

1 107,"&
: 106,"&
1 105,"&
1 104,"&
1 102,"&
0 101,"&
1 997&
: 98,"&

1 96,"&

: 957&

1 947&

1 93"&

1 927&
©91&

: 90,"&

: 89,"&
1 87,&
1 86,"&

1 85,"&
1 84,7&
1 82,"&
1 80,"&
1 797&
1 787&

L T77)&
1 757&
T T74)&

B-4

Table B-1. BSDL File (Sheet5 of 10)

AP-720

attribute Tap_Scan_|
attribute Tap_Scan_|
attribute Tap_Scan_

“SMibar
“A25
“A24
“A23
“A22
“A21
“A20
“Al19

1 737&

“A18XCAS2
“AL7XCAS1
“A16XCASO

“Al5
“Al4
“Al3
“Al2
“All
“Al10
“A9

“A8

“A7

“A6

“A5

“Ad

“A3

“A2

“Al
“NAbar
“ADSbar
“BHEbar
“BLEbar
“WRbar
“RDbar
“BS8bar

1 72°&
1 70,"&
1 68,"&
: 67,"&
1 66,"&
1 65"&
1 63,"&
1 62,"&
© 61,&
: 59,"&
1 58,"&
: 57,7&
: 56,"&
: 55"&
: 547&
1 53"&
1 52,"&
: 51&
: 50,"&
: 497&
1 48"&
: 457&
D 4478
1 43"&
T 427&

©41&

1 40,"&
1 39,"&

1 377&

: 35"&
1 347&

1 33&

“READYbar

“WXRbar
“DXCbar
“MXIObar
“TRSTbar
“TDO
“TDI
“TMS
“TCK
“VCC
“VSS

1 327&
1 30,"&
1 29&

1 27)&
: 119,"&

1 247&

1 25&

In of TDI :signalis true;

Mode of TMS
Out of TDO

: signal is true;
: signal is true;

1 26,"&

1 76,"&

: (15,28,38,47,60,71,81,88,109,121,127),"&

:(3,17,31,36,46,64,69,83,97,100,103,116,130)";

attribute Tap_Scan_Reset of TRSTBAR : signal is true;
attribute Tap_Scan_Clock of TCK : signal is (33.0e6, BOTH);

attribute Instruction_Length of i386_EX_Processor: entity is 4;

attribute Instruction_Opcode of i386_EX_Processor: entity is

“BYPASS

(1111), &

B-5

(Sheet 6 of 10)

AP-720
Table B-1. BSDL File
“EXTEST (0000),” &
“SAMPLE (0001),” &
“IDCODE (0010),” &
“HIGHZ (1000),” &
“Reserved (1100, 1011)";

-- Private instructions DO NOT belong in BSDL

attribute Instruction_Capture of i386_EX_Processor: entity is “0001";
-- there is no Instruction_Disable attribute for i386_EX_Processor

attribute Instruction_Private of i386_EX_Processor: entity is “Reserved” ;

attribute Idcode_Register of i386_EX_Processor: entity is
“0000"” & --version,
“0000001001110000" & --part number ??
“00000001001" & --manufacturers identity
“1; --required by the standard

attribute Register_Access of i386_EX_Processor: entity is

“Bypass
-1 H
--{ The first cell, cell 0, is closest to TDO }
-1 H

attribute Boundary_Cells of i386_EX_Processor: entity is “BC_6, BC_2";

attribute Boundary_Length of i386_EX_Processor: entity is 202;
attribute Boundary_Register of i386_EX_Processor: entity is

0 (BC_2, *, control, 0),” &

1 (BC_6, D15, bidir, X, 0, 0, 2),” &
2 (BC_2, *, control, 0),” &

3 (BC_6, D14, bidir, X, 2,0, 2),” &
“4 (BC_2, *, control, 0),” &

5 (BC_6, D13, bidir, X, 4,0, 2),” &
6 (BC_2, *, control, 0),” &

7 (BC_6, D12, bidir, X, 6,0, Z),” &
8 (BC_2, *, control, 0),” &

9 (BC_6, D11, bidir, X, 8,0, 2),” &
“10 (BC_2, *, control, 0),” &

“11 (BC_6, D10, bidir, X, 10, 0, 2),” &
“12 (BC_2, *, control, 0),” &

“13 (BC_6, D9, bidir, X, 12,0, Z),” &
“14 (BC_2, *, control, 0),” &

“15 (BC_6, D8, bidir, X, 14,0, Z),” &
“16 (BC_2, *, control, 0),” &

“17 (BC_6, D7, bidir, X, 16, 0, Z),” &
“18 (BC_2, *, control, 0),” &

“19 (BC_6, D6, bidir, X, 18, 0, Z),” &
“20 (BC_2, *, control, 0),” &

“21 (BC_6, D5, bidir, X, 20, 0, Z),” &
“22 (BC_2, *, control, 0),” &

“23 (BC_6, D4, bidir, X, 22,0, Z),” &
“24 (BC_2, *, control, 0),” &

“25 (BC_6, D3, bidir, X, 24,0, Z),” &

[y

(HIGHZ)";

B-6

Table B-1. BSDL File (Sheet 7 of 10)

AP-720

(BC_2, *, control, 0),” &

(BC_6, D2, bidir, X, 26, 0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, D1, bidir, X, 28,0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, DO, bidir, X, 30, 0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, LBAbar, bidir, X, 32, 0, 2),” &
(BC_2, *, control, 0),” &

(BC_6, LCSbar, bidir, X, 34,0, 2),” &
(BC_2, *, control, 0),” &

(BC_6, UCSbar, bidir, X, 36, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, P27XCTSO, bidir, X, 38, 0, 2),” &
(BC_2, *, control, 0),” &

(BC_6, P26XTXDO, bidir, X, 40, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, P25XRXDO, bidir, X, 42, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, DACKObarXGCS5bar, bidir, X, 44, 0, Z),” &

(BC_2, *, control, 0),” &
(BC_6, P24XGCS4bar, bidir, X, 46, 0, Z),”
(BC_2, *, control, 0),” &
(BC_6, P23XGCS3bar, bidir, X, 48, 0, Z),”
(BC_2, *, control, 0),” &
(BC_6, P22XGCS2bar, bidir, X, 50, 0, Z),”
(BC_2, *, control, 0),” &
(BC_6, P21XGCS1bar, bidir, X, 52, 0, Z),”
(BC_2, *, control, 0),” &
(BC_6, P20XGCSO0bar, bidir, X, 54, 0, Z),”
(BC_2, *, control, 0),” &

(BC_6, SMIACTbarXEXCSIG, bidir, X, 56, 0, Z),” &

(BC_2, *, control, 0),” &

&

&

&

&

(BC_6, DRQ1XRXD1, bidir, X, 58, 0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, DRQOXDCD1bar, bidir, X, 60, 0, Z),” &

(BC_2, *, control, 0),” &
(BC_6, WDTOUT, bidir, X, 62, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, EOPbarXCTS1bar, bidir, X, 64, 0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, DACK1barXTXD1, bidir, X, 66, 0, Z),” &

(BC_2, *, control, 0),” &

(BC_6, P17XHLDA, bidir, X, 68, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, RESET, bidir, X, 70, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, P16XHOLD, bidir, X, 72, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, P15XLOCKbar, bidir, X, 74, 0, Z),”
(BC_2, *, control, 0),” &

(BC_6, P14XRIObar, bidir, X, 76, 0, Z),” &
(BC_2, *, control, 0),” &

(BC_6, P13XDSRObar, bidir, X, 78, 0, Z),”
(BC_2, *, control, 0),” &

(BC_6, P12XDTRObar, bidir, X, 80, 0, Z),”

&

&

&

B-7

AP-720

Table B-1. BSDL File (Sheet 8 of 10)

“82 (BC_2, *, control, 0),” &

“83 (BC_6, P11XRTSObar, bidir, X, 82, 0, 2),” &

“84 (BC_2, *, control, 0),” &

“85 (BC_6, P10XDCDObar, bidir, X, 84, 0, Z),” &

“86 (BC_2, *, control, 0),” &

“87 (BC_6, FLTbar, bidir, X, 86, 0, Z),” &

“88 (BC_2, *, control, 0),” &

“89 (BC_6, DSR1barXSTXCLK, bidir, X, 88, 0, Z),” &
“90 (BC_2, *, control, 0),” &

“91 (BC_6, INT7XTMRGATEL, bidir, X, 90, 0, Z),” &
“92 (BC_2, *, control, 0),” &

“93 (BC_6, INT6XTMRCLK1, bidir, X, 92, 0, Z),” &
“94 (BC_2, *, control, 0),” &

“95 (BC_6, INTSXTMRGATEQ, bidir, X, 94, 0, Z),” &
“96 (BC_2, *, control, 0),” &

“97 (BC_6, INTAXTMRCLKO, bidir, X, 96, 0, Z),” &
“98 (BC_2, *, control, 0),” &

“99 (BC_6, BUSYbarXTMRGATEZ2, bidir, X, 98, 0, Z),” &
“100 (BC_2, *, control, 0),” &

“101 (BC_6, ERRORbarXTMROUT2, bidir, X, 100, 0, Z),” &
“102 (BC_2, *, control, 0),” &

“103 (BC_6, NMI, bidir, X, 102, 0, Z),” &

“104 (BC_2, *, control, 0),” &

“105 (BC_6, PEREQXTMRCLK?2, bidir, X, 104, 0, Z),” &
“106 (BC_2, *, control, 0),” &

“107 (BC_6, P37XCOMCLK, bidir, X, 106, 0, Z),” &
“108 (BC_2, *, control, 0),” &

“109 (BC_6, P36XPWRDOWN, bidir, X, 108, 0, Z),” &
“110 (BC_2, *, control, 0),” &

“111 (BC_6, P35XINT3, bidir, X, 110, 0, Z),” &

“112 (BC_2, *, control, 0),” &

“113 (BC_6, P34XINT2, bidir, X, 112, 0, Z),” &

“114 (BC_2, *, control, 0),” &

“115 (BC_6, P33XINT1, bidir, X, 114, 0, Z),” &

“116 (BC_2, *, control, 0),” &

“117 (BC_6, P32XINTO, bidir, X, 116, 0, Z),” &

“118 (BC_2, *, control, 0),” &

“119 (BC_6, RTS1barXSSIOTX, bidir, X, 118, 0, Z),” &
“120 (BC_2, *, control, 0),” &

“121 (BC_6, RI1barXSSIORX, bidir, X, 120, 0, Z),” &
“122 (BC_2, *, control, 0),” &

“123 (BC_6, DTR1barXSRXCLK, bidir, X, 122, 0, Z),” &
“124 (BC_2, *, control, 0),” &

“125 (BC_6, P31XTMROUTL, bidir, X, 124, 0, Z),” &
“126 (BC_2, *, control, 0),” &

“127 (BC_6, P3OXTMROUTO, bidir, X, 126, 0, Z),” &
“128 (BC_2, *, control, 0),” &

“129 (BC_6, SMIbar, bidir, X, 128, 0, Z),” &

“130 (BC_2, *, control, 0),” &

“131 (BC_6, A25, bidir, X, 130, 0, 2),” &

“132 (BC_2, *, control, 0),” &

“133 (BC_6, A24, bidir, X, 132, 0, 2),” &

“134 (BC_2, *, control, 0),” &

“135 (BC_6, A23, bidir, X, 134, 0, 2)," &

“136 (BC_2, *, control, 0),” &

B-8

Table B-1. BSDL File

(Sheet 9 of 10)

AP-720

“137 (BC_6, A22, bidir, X, 136, 0, 2),” &
“138 (BC_2, *, control, 0),” &

“139 (BC_6, A21, bidir, X, 138, 0, 2),” &
“140 (BC_2, *, control, 0),” &

“141 (BC_6, A20, bidir, X, 140, 0, 2),” &
“142 (BC_2, *, control, 0),” &

“143 (BC_6, A19, bidir, X, 142, 0, 2),” &
“144 (BC_2, *, control, 0),” &

“145 (BC_6, A18XCAS2, bidir, X, 144, 0, Z),” &
“146 (BC_2, *, control, 0),” &

“147 (BC_6, A17XCASL1, bidir, X, 146, 0, Z),” &
“148 (BC_2, *, control, 0),” &

“149 (BC_6, A16XCASQO, bidir, X, 148, 0, Z),” &
“150 (BC_2, *, control, 0),” &

“151 (BC_6, A15, bidir, X, 150, 0, 2),” &
“152 (BC_2, *, control, 0),” &

“153 (BC_6, Al4, bidir, X, 152, 0, 2),” &
“154 (BC_2, *, control, 0),” &

“155 (BC_6, A13, bidir, X, 154, 0, 2),” &
“156 (BC_2, *, control, 0),” &

“157 (BC_6, A12, bidir, X, 156, 0, Z),” &
“158 (BC_2, *, control, 0),” &

“159 (BC_6, Al1, bidir, X, 158, 0, 2),” &
“160 (BC_2, *, control, 0),” &

“161 (BC_6, A10, bidir, X, 160, 0, Z),” &
“162 (BC_2, *, control, 0),” &

“163 (BC_6, A9, bidir, X, 162, 0, Z),” &
“164 (BC_2, *, control, 0),” &

“165 (BC_6, A8, bidir, X, 164, 0, Z),” &
“166 (BC_2, *, control, 0),” &

“167 (BC_6, A7, bidir, X, 166, 0, Z),” &
“168 (BC_2, *, control, 0),” &

“169 (BC_6, A6, bidir, X, 168, 0, Z),” &
“170 (BC_2, *, control, 0),” &

“171 (BC_6, A5, bidir, X, 170, 0, Z2),” &
“172 (BC_2, *, control, 0),” &

“173 (BC_6, A4, bidir, X, 172, 0, Z2),” &
“174 (BC_2, *, control, 0),” &

“175 (BC_6, A3, bidir, X, 174, 0, 2),” &
“176 (BC_2, *, control, 0),” &

“177 (BC_6, A2, bidir, X, 176, 0, Z),” &
“178 (BC_2, *, control, 0),” &

“179 (BC_6, A1, bidir, X, 178, 0, Z2),” &
“180 (BC_2, *, control, 0),” &

“181 (BC_6, NAbar, bidir, X, 180, 0, 2),” &
“182 (BC_2, *, control, 0),” &

“183 (BC_6, ADShar, bidir, X, 182, 0, Z),” &
“184 (BC_2, *, control, 0),” &

“185 (BC_6, BHEDbar, bidir, X, 184, 0, Z2),” &
“186 (BC_2, *, control, 0),” &

“187 (BC_6, BLEbar, bidir, X, 186, 0, 2),” &
“188 (BC_2, *, control, 0),” &

“189 (BC_6, WRbar, bidir, X, 188, 0, 2),” &
“190 (BC_2, *, control, 0),” &

“191 (BC_6, RDbar, bidir, X, 190, 0, Z),” &
“192 (BC_2, *, control, 0),” &

B-9

AP-720

Table B-1. BSDL File (Sheet 10 of 10)

end i386_EX_Processor;

“193 (BC_6, BS8bar, bidir, X, 192, 0, 2),” &
“194 (BC_2, *, control, 0),” &

“195 (BC_6, READYbar, bidir, X, 194, 0, Z),” &
“196 (BC_2, *, control, 0),” &

“197 (BC_6, WXRbar, bidir, X, 196, 0, Z),” &
“198 (BC_2, *, control, 0),” &

“199 (BC_6, DXCbar, bidir, X, 198, 0, Z),” &
“200 (BC_2, *, control, 0),” &

“201 (BC_6, MXIObar, bidir, X, 200, 0, Z)";

B-10

	Programming Flash Memory through the Intel386™ EX Embedded Microprocessor JTAG Port
	Contents
	1.0 INTRODUCTION
	1.1 Design Motivation

	2.0 BACKGROUND INFORMATION
	2.1 IEEE 1149.1 - The JTAG Specification
	2.1.1 TAP Signal Descriptions
	2.1.2 JTAG State Machine

	2.2 Intel386 EX Embedded Processor JTAG Test-Logic Unit
	2.2.1 Boundary Scan Register
	2.2.2 Identification Code Register

	2.3 Intel 4 Mbit Boot Block Flash

	3.0 SAMPLE DESIGN
	3.1 TAP Hardware Interface
	3.2 JTAG Software Interface
	3.2.1 Hardware Considerations
	3.2.2 Assembly Language Routines
	3.2.3 “C” Routines
	3.2.4 Program Operation and Options

	4.0 PERFORMANCE ANALYSIS AND CONSIDERATIONS
	5.0 CONCLUSION
	6.0 RELATED INFORMATION
	APPENDIX A PROGRAM SOURCE CODE
	APPENDIX B Intel386™ EX Embedded Processor BSDL File
	Figures
	Figure 1. TAP Controller (Finite State Machine)
	Figure 2. TAP Parallel Port Interface

	Tables
	Table 1. Test-Logic Unit Instructions
	Table 2. Boundary-scan Register Bit Assignments
	Table 3. Device Identification Codes
	Table 4. TAPLOADER.EXE Order of Execution
	Table 5. TAP Flash Programming Sample Timings
	Table 6. Related Intel Documents
	Table A-1. Program Source Code
	Table B-1. BSDL File

