
Daya Bay Offline
Software User Manual

December 17, 2015

1

Contents

Contents 1

1 Introduction 1
1.1 Intended Audience . 1
1.2 Document Organization . 1
1.3 Contributing . 1
1.4 Building Documentation . 1
1.5 Typographical Conventions . 2

2 Quick Start 3
2.1 Offline Infrastructure . 4
2.2 Installation and Working with the Source Code . 5
2.3 Offline Framework . 6
2.4 Data Model . 7
2.5 Detector Description . 8
2.6 Kinematic Generators . 9
2.7 Detector Simulation . 10
2.8 Quick Start with Truth Information . 10
2.9 Electronics Simulation . 12
2.10 Trigger Simulation . 13
2.11 Readout . 14
2.12 Event Display . 15
2.13 Reconstruction . 17
2.14 Database . 18

3 Analysis Basics 21
3.1 Introduction . 21
3.2 Daya Bay Data Files . 21
3.3 NuWa Basics . 34
3.4 NuWa Recipes . 36
3.5 Cheat Sheets . 44
3.6 Hands-on Exercises . 59

4 Offline Infrastructure 61
4.1 Mailing lists . 61
4.2 DocDB . 61
4.3 Wikis . 61
4.4 Trac bug tracker . 61

5 Installation and Working with the Source Code 63

1

2 Contents

5.1 Using pre-installed release . 63
5.2 Instalation of a Release . 64
5.3 Anatomy of a Release . 64
5.4 Version Control Your Code . 65
5.5 Technical Details of the Installation . 65

6 Offline Framework 67
6.1 Introduction . 67
6.2 Framework Components and Interfaces . 67
6.3 Common types of Components . 68
6.4 Writing your own component . 68
6.5 Properties and Configuration . 70

7 Data Model 77
7.1 Overview . 77
7.2 Times . 78
7.3 Examples of using the Data Model objects . 79

8 Data I/O 81
8.1 Goal . 81
8.2 Features . 81
8.3 Packages . 82
8.4 I/O Related Job Configuration . 82
8.5 How the I/O Subsystem Works . 82
8.6 Adding New Data Classes . 83

9 Detector Description 91
9.1 Introduction . 91
9.2 Conventions . 92
9.3 Coordinate System . 93
9.4 XML Files . 94
9.5 Transient Detector Store . 94
9.6 Configuring the Detector Description . 94
9.7 PMT Lookups . 94
9.8 Visualization . 94

10 Kinematic Generators 97
10.1 Introduction . 97
10.2 Generator output . 97
10.3 Generator Tools . 97
10.4 Generator Packages . 97
10.5 Types of GenTools . 97
10.6 Configuration . 98
10.7 MuonProphet . 101

11 Detector Simulation 105
11.1 Introduction . 106
11.2 Configuring DetSim . 106
11.3 Truth Information . 107
11.4 Truth Parameters . 117

12 Electronics Simulation 121

Contents 3

12.1 Introduction . 121
12.2 Algorithms . 121
12.3 Tools . 121
12.4 Simulation Constant . 123

13 Trigger Simulation 127
13.1 Introduction . 127
13.2 Configuration . 127
13.3 Current Triggers . 128
13.4 Adding a new Trigger . 129

14 Readout 131
14.1 Introduction . 131
14.2 ReadoutHeader . 131
14.3 SimReadoutHeader . 132
14.4 Readout Algorithms . 132
14.5 Readout Tools . 133

15 Simulation Processing Models 135
15.1 Introduction . 135
15.2 Fifteen . 135

16 Reconstruction 145

17 Database 147
17.1 Database Interface . 147
17.2 Concepts . 147
17.3 Running . 153
17.4 Accessing Existing Tables . 156
17.5 Creating New Tables . 163
17.6 Filling Tables . 169
17.7 ASCII Flat Files and Catalogues . 176
17.8 MySQL Crib . 178
17.9 Performance . 180

18 Database Maintanence 183
18.1 Introduction . 183
18.2 Building and Running dbmjob . 184

19 Database Tables 187
19.1 AdMass . 188
19.2 AdWpHvMap . 189
19.3 AdWpHvSetting . 190
19.4 AdWpHvToFee . 191
19.5 CableMap . 192
19.6 CableMapFix . 193
19.7 CalibFeeGainConv . 194
19.8 CalibFeeSpec . 195
19.9 CalibFeeSpecCleanup . 196
19.10CalibPmtFineGain . 197
19.11CalibPmtHighGain . 198
19.12CalibPmtHighGainFake . 199

4 Contents

19.13CalibPmtHighGainPariah . 200
19.14CalibPmtLowGain . 201
19.15CalibPmtPedBias . 202
19.16CalibPmtSpec . 203
19.17CalibPmtTimOff . 204
19.18CalibPmtTiming . 205
19.19CalibRpcSpec . 206
19.20CalibSrcEnergy . 207
19.21CoordinateAd . 208
19.22CoordinateReactor . 209
19.23DaqCalibRunInfo . 210
19.24DaqRawDataFileInfo . 211
19.25DaqRunInfo . 212
19.26DataQualityDetector . 213
19.27DataQualityGoodRun . 214
19.28DataQualityPmt . 215
19.29DataQualityRpc . 216
19.30DataQualityTrigger . 217
19.31DcsAdPmtHv . 218
19.32DcsAdTemp . 219
19.33DcsAdWpHv . 220
19.34DcsAdWpHvShunted . 221
19.35DcsMuonCalib . 222
19.36DcsPmtHv . 223
19.37DcsRpcHv . 224
19.38DcsWpPmtHv . 225
19.39Demo . 226
19.40DemoAgg . 227
19.41DemoBit . 228
19.42DqChannel . 229
19.43DqChannelPacked . 230
19.44DqChannelStatus . 231
19.45DqDetector . 232
19.46DqDetectorExt . 233
19.47DqDetectorNew . 234
19.48DqLiveTime . 235
19.49DqPmt . 236
19.50DqPmtNew . 237
19.51DqTriggerCounts . 238
19.52DqWPMonitoring . 239
19.53EnergyPositionCorr . 240
19.54EnergyRecon . 241
19.55FeeCableMap . 242
19.56GoodRunList . 243
19.57HardwareID . 244
19.58HardwareIDFix . 245
19.59McsPos . 246
19.60PhysAd . 247
19.61QSumCalib . 249
19.62SimPmtSpec . 250
19.63SupernovaTrigger . 251

Contents 5

19.64TimeLatency . 252

20 Bibliography 253

Bibliography 255

Chapter 1

Introduction

1.1 Intended Audience

This manual describes how Daya Bay collaborators can run offine software jobs, extend existing functionality
and write novel software components. Despite also being programmers, such individuals are considered
“users” of the software. What is not described are internal details of how the offline software works which
are not directly pertinent to users.

This document covers the software written to work with the Gaudi framework1. Some earlier software
was used during the Daya Bay design stage and is documented elsewhere[1].

1.2 Document Organization

The following chapter contains a one to two page summary or “quick start” for each major element of the
offline. You can try to use this chapter to quickly understand the most important aspects of a major offline
element or refer back to them later to remind you how to do something.

Each subsequent chapter gives advanced details, describes less used aspects or expand on items for which
there is not room in the “quick start” section.

1.3 Contributing

Experts and users are welcome to contribute corrections or additions to this documentation by commiting
.tex or .rst sources. However:

Ensure latex compiles before committing into dybsvn

1.4 Building Documentation

To build the plain latex documentation:
1 cd $SITEROOT/dybgaudi/Documentation/OfflineUserManual/tex
2 make plain ## alternatively: pdflatex main

To build the Sphinx derived latex and html renderings of the documentation some non-standard python
packages must first be installed, as described docs2. After this the Sphinx documentation can be build with:

1 . ˜/v/docs/bin/activate # ~/v/docs path points to where the "docs" virtualpython is created

2 cd $SITEROOT/dybgaudi/Documentation/OfflineUserManual/tex
3 make

1See chapter 6.
2http:///dayabay.bnl.gov/oum/docs

1

http://dayabay.bnl.gov/oum/docs
http:///dayabay.bnl.gov/oum/docs

2 CHAPTER 1. INTRODUCTION

1.5 Typographical Conventions

This is bold text.

Chapter 2

Quick Start

This chapter holds brief “quick start” information about each major offline software element.

3

4 CHAPTER 2. QUICK START

2.1 Offline Infrastructure

2.2. INSTALLATION AND WORKING WITH THE SOURCE CODE 5

2.2 Installation and Working with the Source Code

2.2.1 Installing a Release

1. Download dybinst1.

2. Run it: ./dybinst RELEASE all

The RELEASE string is trunk to get the latest software or X.Y.Z for a numbered release. The wiki topic
Category:Offline Software Releases2 documents avilable releases.

2.2.2 Using an existing release

The easiest way to get started is to use a release of the software that someone else has compiled for you. Each
cluster maintains a prebuilt release that you can just use. See the wiki topic Getting Started With Offline Software3

for details.

2.2.3 Projects

A project is a directory with a cmt/project.cmt file. Projects are located by the CMTPROJECTPATH environ-
ment variable. This variable is initialized to point at a released set of projects by running:

1 shell> cd /path/to/NuWa−RELEASE
2 bash> source setup . sh
3 tcsh> source setup . csh

Any directories holding your own projects should then be prepended to this colon (“:”) separated
CMTPROJECTPATH variable.

2.2.4 Packages

A package is a directory with a cmt/requirements file. Packages are located by the CMTPATH environment
variable which is automatically set for you based on CMTPROJECTPATH. You should not set it by hand.

2.2.5 Environment

Every package has a setup script that will modify your environment as needed. For example:

1 shell> cd /path/to/NuWa−RELEASE/dybgaudi/DybRelease/cmt/
2 shell> cmt config # needed only if no setup.* scripts exist

3 bash> source setup . sh
4 tcsh> source setup . csh

1http://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
2https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
3https://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_Offline_Software

https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_Offline_Software
http://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst
https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Getting_Started_With_Offline_Software

6 CHAPTER 2. QUICK START

2.3 Offline Framework

2.4. DATA MODEL 7

2.4 Data Model

8 CHAPTER 2. QUICK START

2.5 Detector Description

2.6. KINEMATIC GENERATORS 9

2.6 Kinematic Generators

10 CHAPTER 2. QUICK START

2.7 Detector Simulation

2.8 Quick Start with Truth Information

Besides hits, DetSim, through the Historian package can provide detailed truth information in the form
of particle histories and unobservable statistics. These are briefly described next and in detail later in this
chapter.

2.8.1 Particle History

As particles are tracked through the simulation information on where they traveled and what they encoun-
tered can be recorded. The particle history is constructed with tracks (SimTrack objects) and vertices
(SimVertex objects). Conceptually, these may mean slightly different things than what one may expect. A
vertex is a 4-location when something “interesting” happened. This could be an interaction, a scatter or a
boundary crossing. Tracks are then the connection between two vertices.

Because saving all particle history would often produce unmanageably large results rules are applied by
the user to specify some fraction of the total to save. This means the track/vertex hierarchy is, in general,
truncated.

2.8.2 Unobservable Statistics

One can also collect statistics on unobservable values such as number of photons created, number of photon
backscatters, and energy deposited in different ADs. The sum, the square of the sum and the number of
times the value is recorded are stored to allow mean and RMS to be calculated. The same type of rules that
limit the particle histories can be used to control how these statistics are collected.

2.8.3 Configuring Truth Information

The rules that govern how the particle histories and unobservable statistics are collected are simple logical
statements using a C++ like operators and some predefined variables.

Configuring Particle Histories

The hierarchy of the history is built by specifying selection rules for the tracks and the vertices. Only those
that pass the rules will be included. By default, only primary tracks are saved. Here are some examples of
a track selection:

Make tracks for everything that’s not an optical photon:
trackSelection = "pdg != 20022"
Or, make tracks only for things that start
in the GD scintillator and have an energy > 1Mev
trackSelection =
"(MaterialName == ’/dd/Materials/GdDopedLS’) and (E > 1 MeV)"

And, here are some examples of a vertex selection:

Make all vertices.. one vertex per Step.
vertexSelection = "any"
Make vertices only when a particle crosses a volume boundary:
vertexSelection = "VolumeChanged == 1"

2.8. QUICK START WITH TRUTH INFORMATION 11

As an aside, one particular application of the Particle Histories is to draw a graphical representation of the
particles using a package called GraphViz4. To do this, put the DrawHistoryAlg algorithm in your sequence.
This will generate files in your current directory named tracks_N.dot and tracks_and_vertices_N.dot,
where N is the event number. These files can be converted to displayable files with GraphViz’s dot program.

Configuring Unobservable Statistics

What statistics are collected and when they are collected is controlled by a collection of triples:

1. A name for the statistics for later reference.

2. An algebraic formula of predefined variables defining the value to collect.

3. A rule stating what conditions must be true to allow the collection.

An example of some statistic definitions:

stats = [
["PhotonsCreated" , "E" , "StepNumber==1 and pdg==20022"]

,["Photon_bounce_radius" , "r" , "pdg==20022 and dAngle > 90"]
,["edep-ad1" ,"dE" ,"pdg!=20022 and

((MaterialName == ’/dd/Materials/LiquidScintillator’ or
MaterialName == ’/dd/Materials/GdDopedLS’) and AD==1)"]

]

2.8.4 Accessing the resulting truth information

The resulting Truth information is stored in the SimHeader object which is typically found at /Event/Sim/SimHeader
in the event store. It can be retrieved by your algorithm like so:

DayaBay::SimHeader* header = 0;
if (exist<DayaBay::SimHeader>(evtSvc(),m_location)) {

header = get<DayaBay::SimHeader>(m_location);
}
const SimParticleHistory* h = header->particleHistory();
const SimUnobservableStatisticsHeader* h = header->unobservableStatistics();

4http://graphviz.org

http://graphviz.org

12 CHAPTER 2. QUICK START

2.9 Electronics Simulation

2.10. TRIGGER SIMULATION 13

2.10 Trigger Simulation

The main algorithm in TrigSim, TsTriggerAlg has 3 properties which can be specified by the user.

TrigTools Default:“TsMultTriggerTool” List of Tools to run.

TrigName Default:“TriggerAlg” Name of the main trigger algorithm for bookkeeping.

ElecLocation Default: “/Event/Electroincs/ElecHeader” Path of ElecSimHeader in the TES, currently
the default is picked up from ElecSimHeader.h

The user can change the properties through the TrigSimConf module as follows:

import TrigSim
trigsim = TrigSim.Configure()
import TrigSim.TrigSimConf as TsConf
TsConf.TsTriggerAlg().TrigTools = ["TsExternalTriggerTool"]

The TrigTools property takes a list as an argument allowing multiple triggers to be specified. Once
implemented, the user could apply multiple triggers as follows:

import TrigSim
trigsim = TrigSim.Configure()
import TrigSim.TrigSimConf as TsConf
TsConf.TsTriggerAlg().TrigTools = ["TsMultTriggerTool" ,

"TsEsumTriggerTool" ,
"TsCrossTriggerTool"]

14 CHAPTER 2. QUICK START

2.11 Readout

The default setup for Readout Sim used the ROsFecReadoutTool and ROsFeeReadoutTool tools to do the
FEC and FEE readouts respectivly. The default setup is as follows

import ReadoutSim
rosim = ReadoutSim.Configure()
import ReadoutSim.ReadoutSimConf as ROsConf
ROsConf.ROsReadoutAlg().RoTools=["ROsFecReadoutTool","ROsFeeReadoutTool"]
ROsConf.ROsFeeReadoutTool().AdcTool="ROsFeeAdcPeakOnlyTool"
ROsConf.ROsFeeReadoutTool().TdcTool="ROsFeeTdcTool"

where the Fee will be read out using the tools specified via the TdcTool and AdcTool properties. Cur-
rently the only alternate readout tool is the ROsFeeAdcMultiTool which readout the cycles specified in the
ReadoutCycles relative to the readout window start. The selection and configuration of this alternate tool
is

ROsConf.ROsFeeReadoutTool().AdcTool="ROsFeeAdcMultiTool"
ROsConf.ROsFeeAdcMultiTool().ReadoutCycles=[0,4,8]

2.12. EVENT DISPLAY 15

2.12 Event Display

2.12.1 A Plain Event Display: EvtDsp

A plain event display module, EvtDsp, is available for users. It makes use of the basic graphic features of
the ”ROOT” package to show the charge and time distributions of an event within one plot. One example
is shown in Fig. 2.1. A lot of features of ROOT are immediately available, like ”save as” a postscript file.
All PMTs are projected to a 2-D plain. Each PMT is represented by a filled circle. The radii of them
characterize the relative charge differences. The colors of them show the times of them, i.e. the red indicates
the smallest time and the blue indicates the largest time.

Simple Mode

One can use a default simple algorithm to invoke the EvtDsp module. The charge and time of the first hit
of each channel will be shown. Once setting up the nuwa environment, the following commands can be used
to show events.

1 shell> nuwa . py −n −1 −m EvtDsp DayaBayDataFile . data
2 shell> nuwa . py −−dbconf "offline_db" −n −1 −m "EvtDsp -C" DayaBayDataFile . data
3 shell> nuwa . py −n −1 −m "EvtDsp -S" DayaBaySimulatedFile . root

where the first one, by default, will show the raw information, i.e. delta ADC (ADC-preADC) and TDC
distributions from ReadoutHeader, the second one will show calibrated result, CalibReadoutHeader, in PE
and ns, as seen in Fig. 2.1 and the last line is for SimHeader, i.e. information is directly extracted from MC
truth.

A simple readouts grouping was implemented. Readouts with delta trigger times within 2µs are consid-
ered as one event and shown together. But an event only allows one readout for one detector. For example
a very close retrigger after an energetic muon in the same AD will start a new event. This algorithm also
works for calibReadout and simHeader.

Advance Mode

One can also directly call the Gaudi Tool, EvtDsp, and plot the charges and times calculated in a different
manner. In the simple mode, no selection is applied to select hits, however this is not the best choice in some
cases, for example, some hits’ times are out of the physically allowed window, like the blue hit in the inner
water shield in Fig. 2.1 seems like a noise hit. One can also make a selection in an analysis algorithm to show
only a fraction of interesting events or have a different event grouping algorithm. To use this feature one
need to follow the standard Gaudi procedure to locate a tool ”EvtDsp” first, i.e., add use EvtDsp module
in cmt requirements file

1 use EvtDsp v∗ Visualization

then get access to this tool

1 #include "EvtDsp/IEvtDsp.h"

2

3 IEvtDsp∗ m_evtDsp

4 StatusCode sc = toolSvc()−>retrieveTool ("EvtDsp" , "EvtDsp" , m_evtDsp) ;

After this three simple interfaces are available and they can be plugged into anywhere of a user code.

1 /// Plot AD

2 virtual StatusCode plotAD (DayaBay : : Detector det ,
3 double chrg [8] [2 4] , double time [8] [2 4] ,
4 const char∗ chrgunit = 0 , const char∗ timeunit = 0 ,
5 const char∗ info = 0) = 0 ;
6

7 /// Plot pool

8 virtual StatusCode plotPool (DayaBay : : Detector det ,

16 CHAPTER 2. QUICK START

9 double chrg [9] [2 4] [2] , double time [9] [2 4] [2] ,
10 const char∗ chrgunit = 0 , const char∗ timeunit = 0 ,
11 const char∗ info = 0) =0;
12

13 /// A pause method for user. After this all displayed stuff will be flushed.

14 virtual StatusCode pause () = 0 ;

where for AD, chrg and time are arrays indexed by ring-1 and column-1, while for water pool, chrg and time
arrays are indexed by wall-1,spot-1 and inward.

2.13. RECONSTRUCTION 17

2.13 Reconstruction

18 CHAPTER 2. QUICK START

2.14 Database

The content of this quickstart has been migrated to sop/5

5http:///dayabay.bnl.gov/oum/sop/

http://dayabay.bnl.gov/oum/sop/
http:///dayabay.bnl.gov/oum/sop/

2.14. DATABASE 19

Figure 2.1: A snapshot for EvtDsp for a muon event which passed outer and inner water pool and struck
AD No. 2, while AD No. 1 was quiet. The time and charge patterns of the AD and water pool hits are
clearly seen.

Chapter 3

Analysis Basics

3.1 Introduction

This guide will help you analyze Daya Bay data. It contains a short description of the Daya Bay data and
analysis software, called NuWa. It is not a detailed technical manual. In this document you can learn how
to:

• Open a data file and see what it contains [Sec. 3.2.1]

• Draw histograms of the data in the file [Sec. 3.2.2]

• Use NuWa to do more detailed calculations with the data [Sec. 3.3]

• Write your own NuWa analysis module [Sec. 3.4.7]

• Write your own NuWa analysis algorithm [Sec. 3.4.8]

• Select events using tags [Sec. 3.4.2]

• Add your own data variables to the data file [Sec. 3.4.3]

• Filter data based on data path or tag [Sec. 3.4.5]

A set of cheat-sheets are included. These give short descriptions of the data and other NuWa features.

3.2 Daya Bay Data Files

Daya Bay uses ROOT files for data analysis. Basic analysis can be done with these files using only the
ROOT program (http://root.cern.ch). For more complex analysis, see the Section 3.3 on using NuWa.
If you do not have ROOT installed on your computer, you can access it on the computer clusters as part of
the NuWa software (Sec. 3.5.1).

3.2.1 Opening data files

Daya Bay data files can be opened using the ROOT program,

1 shell> root

2 root [0] TFile f ("recon.NoTag .0002049. Physics.DayaBay.SFO -1. _0001.root") ;
3 root [1] TBrowser b ;
4 root [1] b . BrowseObject(&f) ;

21

http://root.cern.ch

22 CHAPTER 3. ANALYSIS BASICS

The ROOT browser window will display the contents of the file, as shown in Fig. 3.1. Event data is
found under the path /Event, as summarized in Table 3.1. A section on each data type is included in
this document. Simulated data files may include additional data paths containing “truth” information. A
complete list of data paths are given in Sec. 3.5.5.

Figure 3.1: Data File Contents

A set of standard data ROOT files will be maintained on the clusters. The file prefix is used to identify
the contents of the file, as shown in Table 3.2. The location of these files on each cluster are listed in
Section 3.5.4.

Each data paths in the ROOT file contains ROOT trees. You can directly access a ROOT tree,

1 root [0] TFile f ("recon.NoTag .0005773. Physics.SAB -AD2.SFO -1. _0001.root") ;
2 root [1] TTree∗ AdSimple = (TTree ∗) f . Get ("/Event/Rec/AdSimple") ;

Table 3.1: Standard paths for Event Data

Real and Simulated Data
/Event/Readout Raw data produced by the experiment Sec. 3.5.8
/Event/CalibReadout Calibrated times and charges of PMT and RPC hits Sec. 3.5.9
/Event/Rec Reconstructed vertex and track data Sec. 3.5.11

Simulated Data Only
/Event/Gen True initial position and momenta of simulated particles
/Event/Sim Simulated track, interactions, and PMT/RPC hits (Geant)
/Event/Elec Simulated signals in the electronics system
/Event/Trig Simulated signals in the trigger system
/Event/SimReadout Simulated raw data

3.2. DAYA BAY DATA FILES 23

Table 3.2: Standard NuWa Event Data files

File Prefix Readout CalibReadout Rec Coinc Spall Simulation Truth (Gen,Sim)
daq. yes optional
calib. optional yes optional
recon. some events some events yes optional
coinc. some events some events some events yes optional
spall. some events some events some events yes optional

The next section gives examples of working with these ROOT Trees. See the ROOT User’s Guide for
more details on working with Trees, http://root.cern.ch/download/doc/12Trees.pdf.

3.2.2 Histogramming data

Data can be histogrammed by selecting items in the TBrowser, or by using the Draw() function of the tree.
For example, Figure 3.2 shows the data contained in a reconstructed event.

Figure 3.2: Example Reconstructed Data

The Draw() function allows the addition of selection cuts. For example, we can draw the reconstructed
energy for all events where the reconstruction was successful by selecting events with energyStatus==1 and
energy < 15 MeV,

1 root [2] AdSimple−>Draw ("energy" , "energyStatus ==1 && energy <15") ;

Two- and three-dimensional histograms can be drawn by separating the variables with a colon. The
third colz argument will use a color scale for a two-dimensional histogram. Fig. 3.3 shows the resulting
histograms.

http://root.cern.ch/download/doc/12Trees.pdf

24 CHAPTER 3. ANALYSIS BASICS

1 root [3] AdSimple−>Draw ("z:sqrt(x*x+y*y)" , "positionStatus ==1" , "colz") ;

Figure 3.3: Example Histograms

A weighting can be added to each entry in histogram by multiplying your selection by the weighting
factor (i.e. weight*(selection). This can be used to draw the calibrated PMT charge distribution in AD2
(Fig. ??.) The charge distribution for a specfic event can be selected using the event number.

1 root [1] TTree∗ CalibReadoutHeader = (TTree ∗) f . Get ("/Event/CalibReadout/CalibReadoutHeader") ;
2 root [2] CalibReadoutHeader−>Draw ("ring:column" ,
3 "chargeAD *(detector ==2)" , "colz")
4 root [3] CalibReadoutHeader−>Draw ("ring:column" ,
5 "chargeAD *(detector ==2 && eventNumber ==12345)" , "colz")

Figure 3.4: The calibrated PMT charge (in photoelectrons) for all events and for an individual event.

The trigger time is divided into two parts; a count of seconds from January 1970 (i.e. unixtime), and a
precise count of nanoseconds from the last second. To draw the absolute trigger time, you must add these
two counts. Figure 3.5 shows a histogram of the calibrated PMT hit charges versus trigger time1. The
ROOT Sum$() function will histogram the sum of a quantity for each event; it can be used to histogram the
sum of charge over all AD PMTs.

1 root [2] CalibReadoutHeader−>Draw ("chargeAD:triggerTimeSec+triggerTimeNanoSec *1e-9" ,
2 "(detector ==2 && ring ==4 && column ==15 && chargeAD >-3 && chargeAD <7)" ,
3 "colz") ;

1The trigger time can be converted to a readable Beijing local time format using the lines described in Sec. 3.5.16

3.2. DAYA BAY DATA FILES 25

4 root [3] CalibReadoutHeader−>Draw ("Sum$(chargeAD): triggerTimeSec+triggerTimeNanoSec *1e-9" ,
5 "detector ==2 && Sum$(chargeAD) <1500" , "colz") ;

Figure 3.5: The calibrated charge (in photoelectrons) for one PMT and for the sum of all PMTs versus
trigger time.

3.2.3 Histogramming Raw DAQ data

To properly histogram raw DAQ data from /Event/Readout, you will need to use part of the Daya Bay
software in addition to ROOT. You must load the NuWa software, as described in Sec. 3.5.1. Running
load.C will allow you to call functions in your Draw() command. For example, you can call the function to
draw the raw fine-range ADC and TDC distributions for PMT electronics board 6, connector 5 (Fig. 3.6.)
The selection on context.mDetId==2 selects the detector AD2; Sec. 3.5.7 lists the allowed detector and site
IDs. If you have a raw .data file produced by the DAQ, see section 3.5.8 to wrap it in a ROOT tree so that
you can directly histogram the raw data.

1 root [0] . x $ROOTIOTESTROOT/share/load . C
2 root [1] TFile f ("daq.NoTag .0005773. Physics.SAB -AD2.SFO -1. _0001.root") ;
3 root [2] TTree∗ ReadoutHeader = (TTree ∗) f . Get ("/Event/Readout/ReadoutHeader") ;
4 root [3] ReadoutHeader−>Draw ("daqPmtCrate (). adcs (6,5,1). value ()" , "context.mDetId ==2") ;
5 root [4] ReadoutHeader−>Draw ("daqPmtCrate (). tdcs (6,5,1). value ()" , "context.mDetId ==2") ;

Figure 3.6: Histograms of Raw fine-range ADC and TDC values from PMT FEE board 6, connector 5.

26 CHAPTER 3. ANALYSIS BASICS

3.2.4 Some ROOT Tree Tricks

A ROOT TChain can be used to combine the trees of the same path from multiple files into one large tree.
For example, if a data run produced two files, you can combine the trees from these files:

1 root [0] TChain AdSimple ("/Event/Rec/AdSimple") ;
2 root [1] AdSimple . Add ("recon.NoTag .0005773. Physics.SAB -AD2.SFO -1. _0001.root") ;
3 root [2] AdSimple . Add ("recon.NoTag .0005773. Physics.SAB -AD2.SFO -1. _0002.root") ;
4 root [3] AdSimple . Draw ("energy" , "energyStatus ==1 && detector ==2") ;

To combine all the variables from trees at different data paths into a single tree, you can use the
TTree::AddFriend() function. This can be used to histogram or select using variables from both trees.
This should only be done for trees that are synchronized. The raw, calibrated, and reconstructed data are
generally synchronized, as long as the data has not been filtered. The simulated truth trees at /Event/Gen
and /Event/Sim are generally not synchronized with the data trees since one simulated event may produce
an arbitary number of triggered readouts.

1 root [1] TTree∗ CalibReadoutHeader = (TTree ∗) f . Get ("/Event/CalibReadout/CalibReadoutHeader") ;
2 root [2] TTree∗ AdSimple = (TTree ∗) f . Get ("/Event/Rec/AdSimple") ;
3 root [3] AdSimple−>AddFriend (CalibReadoutHeader) ;
4 root [4] AdSimple−>Draw ("energy:nHitsAD" , "detector ==2" , "colz") ;

See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/download/
doc/12Trees.pdf.

3.2.5 Analysis Examples (or A Treatise on Cat-skinning)

What is the best / simplest / fastest way for me to examine event data and generate my
histograms?

If this is your question, then please read this section. As discussed in the preceding sections, you can
directly use ROOT to inspect NuWa event data files. Within ROOT, there are a few different methods to
process event data. Alternatively, you can use the full power NuWa to process data. To demonstrate these
different methods, a set of example scripts will be discussed in this section. Each example script generates
the exact same histogram of number of hit PMTs versus reconstructed energy in the AD, but uses a different
methods. Each ROOT script shows how to “chain” trees from multiple files, and how to “friend” data trees
from the same file. All example scripts can be found in the Tutorial/Quickstart2 software package.

• dybTreeDraw.C: ROOT script using TTree::Draw()

• dybTreeGetLeaf.C: ROOT script using TTree::GetLeaf()

• dybTreeSetBranch.C: ROOT script using TTree::SetBranchAddress()

• dybNuWaHist.py: NuWa algorithm using the complete data classes

The example dybTreeDraw.C is the simplest approach; it is recommended that you try this method first
when generating your histograms. If you plan to include your algorithm as part of standard data production,
you will eventually need to use a NuWa algorithm such as dybNuWaHist.py. The other two methods are
only recommended for special circumstances. A detailed description of the advantages and disadvantages of
each approach are provided in the following sections.

2http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

3.2. DAYA BAY DATA FILES 27

dybTreeDraw.C

This is the easiest approach and usually requires the least programming. Please consider using this approach
first if possible.

Advantages:

• Simple to run

• Requires the least programming

• Easy for others to understand and reproduce

• Allows chaining and friending of data files

Disadvantages:

• Slower when you need to make many histograms

• Some cuts or variables cannot be expressed in a draw command

• No access to geometry, database, other external data

• Cannot be integrated with production analysis job

To run this example, use the following approach:

1 root [0] . L dybTreeDraw . C+
2 root [1] dybTreeDraw ("recon*.root")

The key lines from the script are:

1 // Fill histograms

2 // AD#1

3 reconT . Draw ("calibStats.nHit:energy >>nhitVsEnergyAD1H" ,
4 "context.mDetId ==1 && energyStatus ==1") ;
5 // AD#2

6 reconT . Draw ("calibStats.nHit:energy >>nhitVsEnergyAD2H" ,
7 "context.mDetId ==2 && energyStatus ==1") ;

dybGetLeaf.C

There are some cases where the variables and cuts cannot be expressed in a simple TTree::Draw() command.
Is this case, using TTree::GetLeaf() is an alternative. This is also a better alternative for those familiar
with TSelector or TTree::MakeClass, since it allows chaining and friending of data files.

Advantages:

• Fairly simple to run

• Requires some minimal programming

• Allows chaining and friending of data files

Disadvantages:

• No access to geometry, database, other external data

• Cannot be integrated with production analysis job

To run this example, use the following approach:

1 root [0] . L dybTreeGetLeaf . C+
2 root [1] dybTreeGetLeaf ("recon*.root")

28 CHAPTER 3. ANALYSIS BASICS

The key lines from the script are:

1 // Process each event

2 int maxEntries=reconT . GetEntries () ;
3 for (int entry=0;entry<maxEntries ; entry++){
4

5 // Get next event

6 reconT . GetEntry (entry) ;
7

8 // Get event data

9 int detector = (int) reconT . GetLeaf ("context.mDetId")−>GetValue () ;
10 int energyStatus = (int) reconT . GetLeaf ("energyStatus")−>GetValue () ;
11 double energy = reconT . GetLeaf ("energy")−>GetValue () ;
12 int nHit = (int) reconT . GetLeaf ("calibStats.nHit")−>GetValue () ;
13

14 // Fill histograms

15 if (energyStatus==1){ // Reconstruction was successful

16 if (detector==1){
17 // AD#1

18 nhitVsEnergyAD1H−>Fill (energy , nHit) ;
19 }else if (detector==2){
20 // AD#2

21 nhitVsEnergyAD2H−>Fill (energy , nHit) ;
22 }
23 }
24 }

dybTreeSetBranch.C

Use this approach only if you really need the fastest speed for generating your histograms, and cuts cannot be
expressed in a simple TTree::Draw() command. The example script relies on TTree::SetBranchAddress()
to explicitly manage the event data location in memory. By avoiding reading data unnecessary data from
the file, it also demonstrates how to achieve the highest speed.

Advantages:

• Fastest method to histogram data

• Allows chaining and friending of data

Disadvantages:

• Requires some careful programming

• No access to geometry, database, other external data

• Cannot be integrated with production analysis job

To run this example, use the following approach:

1 root [0] . L dybTreeSetBranch . C+
2 root [1] dybTreeSetBranch ("recon*.root")

The key lines from the script are:

1 // Enable only necessary data branches

2 reconT . SetBranchStatus ("*" , 0) ; // Disable all

3 calibStatsT . SetBranchStatus ("*" , 0) ; // Disable all

4

5 // Must reenable execNumber since the tree indexing requires it

6 reconT . SetBranchStatus ("execNumber" , kTRUE) ;
7 reconT . SetBranchStatus ("calibStats.execNumber" , kTRUE) ;
8

9 int detector = 0 ;

3.2. DAYA BAY DATA FILES 29

10 reconT . SetBranchStatus ("context.mDetId" , kTRUE) ;
11 reconT . SetBranchAddress ("context.mDetId" ,&detector) ;
12

13 int energyStatus = 0 ;
14 reconT . SetBranchStatus ("energyStatus" , kTRUE) ;
15 reconT . SetBranchAddress ("energyStatus" ,&energyStatus) ;
16

17 float energy = −1;
18 reconT . SetBranchStatus ("energy" , kTRUE) ;
19 reconT . SetBranchAddress ("energy" ,&energy) ;
20

21 int nHit = −1;
22 reconT . SetBranchStatus ("calibStats.nHit" , kTRUE) ;
23 reconT . SetBranchAddress ("calibStats.nHit" ,&nHit) ;
24

25 // Process each event

26 int maxEntries=reconT . GetEntries () ;
27 for (int entry=0;entry<maxEntries ; entry++){
28

29 // Get next event

30 reconT . GetEntry (entry) ;
31

32 // Fill histograms

33 if (energyStatus==1){ // Reconstruction was successful

34 if (detector==1){
35 // AD#1

36 nhitVsEnergyAD1H−>Fill (energy , nHit) ;
37 }else if (detector==2){
38 // AD#2

39 nhitVsEnergyAD2H−>Fill (energy , nHit) ;
40 }
41 }
42 }

dybNuWaHist.py

This example uses a full NuWa algorithm to generate the histogram. Use this approach when you need
complete access to the event data object, class methods, geometry information, database, and any other
external data. You must also use this approach if you want your algorithm to be included in the standard
production analysis job. It is the most powerful approach to analysis of the data, but it is also the slowest.
Although it is the slowest method, it may still be fast enough for your specific needs.

Advantages:

• Full data classes and methods are available

• Full access to geometry, database, other external data

• Can be integrated with production analysis job

Disadvantages:

• Slowest method to histogram data

• Requires some careful programming

• Requires a NuWa software installation

To run this example, use the following approach:
1 shell> nuwa . py −n −1 −m"Quickstart.dybNuWaHist" recon ∗ . root

The key lines from the script are:

30 CHAPTER 3. ANALYSIS BASICS

1 def execute (self) :
2 """Process each event"""

3 evt = self . evtSvc ()
4

5 # Access the reconstructed data

6 reconHdr = evt ["/Event/Rec/AdSimple"]
7 if reconHdr == None :
8 self . error ("Failed to get current recon header")
9 return FAILURE

10 # Access the calibrated data statistics

11 calibStatsHdr = evt ["/Event/Data/CalibStats"]
12 if reconHdr == None :
13 self . error ("Failed to get current calib stats header")
14 return FAILURE

15

16 # Check for antineutrino detector

17 detector = reconHdr . context () . GetDetId ()
18 if detector == DetectorId . kAD1 or detector == DetectorId . kAD2 :
19

20 # Found an AD . Get reconstructed trigger

21 recTrigger = reconHdr . recTrigger ()
22 if not recTrigger :
23 # No Reconstructed information

24 self . warning ("No reconstructed data for AD event !?")
25 return FAILURE

26

27 # Get reconstructed values

28 energyStatus = recTrigger . energyStatus ()
29 energy = recTrigger . energy ()
30 nHit = calibStatsHdr . getInt ("nHit")
31

32 # Fill the histograms

33 if energyStatus == ReconStatus . kGood :
34 if detector == DetectorId . kAD1 :
35 self . nhitVsEnergyAD1H . Fill (energy/units . MeV , nHit)
36 elif detector == DetectorId . kAD2 :
37 self . nhitVsEnergyAD2H . Fill (energy/units . MeV , nHit)
38

39 return SUCCESS

The next section provides more information on data analysis using NuWa (Sec. 3.3).

3.2.6 Advanced Examples

The following section presents advanced examples of working with Daya Bay data files. All example scripts
can be found in the Tutorial/Quickstart3 software package.

Combining ’Unfriendly’ Trees

The examples in the previous section show how to histogram data by ’friending’ trees. Trees can only be
’friended’ if there is a natural relationship between the trees. The Coincidence and Spallation trees collect
data from multiple triggers into one entry. As a consequence, you cannot ’friend’ these trees with the trees
which contain data with one trigger per entry (e.g. CalibStats, AdSimple, etc.). For example, you may
want to histogram data in the Coincidence tree, but you want to apply a cut on a variable that is only
present in CalibStats.

It is possible to combine data from these ’unfriendly’ trees. The approach is to manually look up the data
for the corresponding entries between the ’unfriendly’ trees. By building on the example dybTreeGetLeaf.C,
the advanced example dybTreeGetLeafUnfriendly.C generates a histogram with data from both the Coincidence

3http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart

3.2. DAYA BAY DATA FILES 31

and CalibStats data. The first step in this process is to create an index to allow a unique look-up of an
entry from the CalibStats tree:

1 // Disable pre -existing index in the calib stats trees

2 // (Another reason ROOT is frustrating; we must manually do this)

3 calibStatsT . GetEntries () ;
4 Long64_t∗ firstEntry = calibStatsT . GetTreeOffset () ;
5 for (int treeIdx=0; treeIdx<calibStatsT . GetNtrees () ; treeIdx++){
6 calibStatsT . LoadTree (firstEntry [treeIdx]) ;
7 calibStatsT . GetTree()−>SetTreeIndex (0) ;
8 }
9

10 // Build a new look -up index for the ’unfriendly ’ tree

11 // (Trigger number and detector id uniquely identify an entry)

12 calibStatsT . BuildIndex ("triggerNumber" , "context.mDetId") ;

Once this index is available, we can manually load a specific CalibStats entry with the call:

1 // Look up corresponding entry in calib stats

2 int status = calibStatsT . GetEntryWithIndex (triggerNumber , detector) ;

Now that we are prepared, we can step through each entry in the Coincidence tree. For each Coincidence
multiplet we can look up all of the corresponding entries from the CalibStats tree. Here is the main loop
over Coincidence entries from the example script, demonstrating how to fill a histogram with data from these
unfriendly trees:

1 // Process each coincidence set

2 int maxEntries=adCoincT . GetEntries () ;
3 for (int entry=0;entry<maxEntries ; entry++){
4

5 // Get next coincidence set

6 adCoincT . GetEntry (entry) ;
7

8 // Get multiplet data

9 int multiplicity = (int) adCoincT . GetLeaf ("multiplicity")−>GetValue () ;
10 int detector = (int) adCoincT . GetLeaf ("context.mDetId")−>GetValue () ;
11 std : : vector<int>& triggerNumberV = getLeafVectorI ("triggerNumber" ,&adCoincT) ;
12 std : : vector<int>& energyStatusV = getLeafVectorI ("energyStatus" ,&adCoincT) ;
13 std : : vector<float>& energyV = getLeafVectorF ("e" ,&adCoincT) ;
14

15 // Loop over AD events in multiplet

16 for (int multIdx=0; multIdx<multiplicity ; multIdx++){
17

18 // Get data for each AD trigger in the multiplet

19 int triggerNumber = triggerNumberV [multIdx] ;
20 int energyStatus = energyStatusV [multIdx] ;
21 float energy = energyV [multIdx] ;
22

23 // Look up corresponding entry in calib stats

24 int status = calibStatsT . GetEntryWithIndex (triggerNumber , detector) ;
25 if (status<=0){
26 std : : cout << "Failed to find calib stats for trigger number "

27 << triggerNumber << " and detector ID " << detector

28 << std : : endl ;
29 continue ;
30 }
31 // Get data from matching calib stats entry

32 double nominalCharge = calibStatsT . GetLeaf ("NominalCharge")−>GetValue () ;
33

34 // Fill histograms

35 if (energyStatus==1 && energy>0){ // Reconstruction was successful

36 if (detector==1){
37 // AD#1

38 chargeVsEnergyAD1H−>Fill (energy , nominalCharge/energy) ;
39 }else if (detector==2){

32 CHAPTER 3. ANALYSIS BASICS

40 // AD#2

41 chargeVsEnergyAD2H−>Fill (energy , nominalCharge/energy) ;
42 }
43 }
44

45 } // End loop over AD triggers in the multiplet

46 } // End loop over AD coincidence multiplets

Using TTree::Draw() with ’Unfriendly’ Trees

The previous example script allowed us to correlate and histogram data between the ’unfriendly’ Coincidence
and CalibStats trees. This example required that we manually loop on the individual entries in the
Coincidence tree, and fill the histograms entry-by-entry. An alternate approach is to reformat the data
from the ’unfriendly’ CalibStats tree into a ’friendly’ format. Once in this ’friendly’ format, we can return
to simple calls to TTree::Draw() to place cuts and histogram data. This approach is more technical to
setup, but can be useful if you want to continue to use TCuts, or if you want to repeatedly histogram the
data to explore the variations of cuts.

As discussed, this approach relies on reformatting the data from an ’unfriendly’ tree into a ’friendly’
format. The example script dybTreeDrawUnfriendly.C generates the same histograms as the previous
example dybTreeGetLeafUnfriendly.C, but uses this alternate approach. The following lines shows this in
practice:

1 // Create ’friendly ’ version of data from CalibStats

2 std : : string mainEntriesName = "multiplicity" ;
3 std : : vector<string> calibVarNames ; // variable names to copy from CalibStats

4 calibVarNames . push_back ("MaxQ") ;
5 calibVarNames . push_back ("NominalCharge") ;
6 std : : string indexMajorName = "triggerNumber" ;
7 std : : string indexMinorName = "context.mDetId" ;
8 TTree∗ calibStatsFriendlyT = makeFriendTree(&adCoincT ,
9 &calibStatsT ,

10 mainEntriesName ,
11 calibVarNames ,
12 indexMajorName ,
13 indexMinorName) ;
14 if (! calibStatsFriendlyT){
15 std : : cout << "Failed to create friendly tree" << std : : endl ;
16 return ;
17 }
18 // Add new friendly tree to coincidence tree

19 adCoincT . AddFriend (calibStatsFriendlyT , "calibStats") ;

Once this ’friendly’ tree has been generated, we can use TTree::Draw() with the CalibStats variables:

1 // Fill histograms

2 // AD#1

3 adCoincT . Draw ("calibStats.NominalCharge/e:e>>chargeVsEnergyAD1H" ,
4 "context.mDetId ==1 && energyStatus ==1 && e>0" , "colz") ;
5 // AD#2

6 adCoincT . Draw ("calibStats.NominalCharge/e:e>>chargeVsEnergyAD2H" ,
7 "context.mDetId ==2 && energyStatus ==1 && e>0" , "colz") ;

The reformatted CalibStats data is available in the newly created tree calibStatsFriendlyT, which is
dynamically created and kept in memory. Once you close your ROOT session, this tree will be deleted. If
you wish to keep this ’friendly’ tree around for later reuse, then you should write it to a file:

1 TFile outputFile ("friendlyCalibStats.root" , "RECREATE") ;
2 calibStatsFriendlyT . SetDirectory(&outputFile) ;
3 calibStatsFriendlyT . Write () ;

The generation of this reformatted ’friendly’ tree relies on the fairly complex helper function makeFriendTree:

3.2. DAYA BAY DATA FILES 33

1 TTree∗ makeFriendTree (TChain∗ mainT ,
2 TChain∗ unfriendlyT ,
3 const string& mainEntriesName ,
4 const std : : vector<string>& friendVarNames ,
5 const string& indexMajorName ,
6 const string& indexMinorName)

One entry in the tree mainT corresponds to multiple entries in the unfriendlyT tree; these are the
Coincidence and CalibStats trees respectively in our example. mainEntriesName is the name of the
branch in mainT that tells us the count of unfriendlyT entries that correspond to the current mainT entry.
This is the variable multiplicity in our example, which tells us how many AD triggers are in the current
coincidence multiplet. The variables names given in friendVarNames are reformatted from single numbers
(i.e. float friendVar) in the unfriendlyT tree to arrays (i.e. float friendVar[multiplicity]) in the
new ’friendly’ tree returned by the function. For our example, these are the CalibStat variables MaxQ and
NominalCharge. The indexMajorName and indexMinorName variables are present in both trees, and are used
to correlate one entry in the mainT with multiple entries in the unfriendlyT tree. These are the variables
triggerNumber and context.mDetId. Note that one or both of these index variables must be an array in
the mainT tree to properly describe the ’unfriendly’ one-to-many relationship between entries in mainT and
unfriendlyT.

This helper function may require some slight modification for your specific case. It assumes that the
branches have the following types:

• mainEntriesName: integer in mainT

• friendVarNames: float in unfriendlyT

• indexMajorName: vector<int> in mainT and int in unfriendlyT

• indexMinorName: int in both mainT and unfriendlyT

This helper function could be extended to dynamically check these variable types (eg. float, int,
vector<float>, vector<int>, etc), and then respond accordingly. This is left as an exercise for the
analyzer.

34 CHAPTER 3. ANALYSIS BASICS

3.3 NuWa Basics

If you wish to do more analysis than histogramming data from files, you must use NuWa. NuWa is the
name given to the analysis software written for the Daya Day experiment. It is installed and available on the
computer clusters. To load the software on one of the clusters, see Sec. 3.5.1. To install NuWa on another
computer, see Sec. 3.5.2.

NuWa analysis allows you to:

• Access all event data

• Relate data at different paths (ie. /Event/Rec to /Event/Readout)

• Access non-event data (ie. PMT positions, cable mapping, etc)

• Do more complex calculations

• Write NuWa data files

This section provides a short description of the nuwa.py program, Job Modules, and analysis algorithms.
This is followed by a series of recipes for common analysis tasks.

3.3.1 The nuwa.py Command

The nuwa.py command is the main command to use the Daya Bay analysis software. A command has a
structure similar to,

1 shell> nuwa . py −n <numberOfEntries> −m"<Module >" <inputFile>

A complete list of options is given in Sec ??. An example is,

1 shell> nuwa . py −n 100 −m"Quickstart.PrintRawData" daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

In this simple example, the first 100 triggered readouts are read from the input file, and their data is
printed to the screen. The -n option specifies the number of entries to process. The -n -1 option will
process all events in the input file(s). The -m option specifies how the job should be configured. Sec. 3.3.2
discusses job configuration using Job Modules.

An arbitrary number of input files can be given, and will be processed in sequence.

1 shell> nuwa . py −n <numberOfEntries> −m"<Module >" <inputFile1> <inputFile2>

The -o option can be used to write the event data to a NuWa output file,

1 shell> nuwa . py −n <numberOfEntries> −m"<Module >" −o <outputFile> <inputFile>

Some other useful options are,

• --no-history: Do not print out job configuration information to the screen

• -l n : Set the minimum level of logging output printed to the screen (1: VERBOSE, 2: DEBUG, 3:
INFO, 4: WARNING, 5: ERROR)

• -A n *s: Keep events for the past n seconds available for correlation studies with the current event.

• --help: Print nuwa.py usage, including descriptions of all options.

3.3. NUWA BASICS 35

3.3.2 NuWa Job Modules

Job modules are used to configure simulation and analysis tasks. Specifically, Job modules are scripts which
do the following:

• Add analysis Algorithms and Tools to the job

• Configure Algorithms, Tools, and Services used by the job

Job Modules are used with the nuwa.py command as follows,

1 shell> nuwa . py −n 100 −m"<Module1 >" −m"<Module2 >" <inputFile>

You can put as many modules as you like on the command line. Some modules can take arguments;
these should be placed inside the quotes immediately after the module name,

1 shell> nuwa . py −n 100 −m"<Module1 > -a argA -b argB" <inputFile>

36 CHAPTER 3. ANALYSIS BASICS

3.4 NuWa Recipes

Many NuWa analysis tasks rely on a standard or familiar approach. This section provides a list of recipes
for common analysis tasks such as,

• See the history of a NuWa file [Sec. 3.4.1]

• Tag a set of events in a NuWa file [Sec. 3.4.2]

• Add your own variables to the NuWa file [Sec. 3.4.3]

• Copy all the data at a path to a new file [Sec. 3.4.5]

• Write tagged data to a new file [Sec. 3.4.6]

• Change the configuration of an existing Job Module [Sec. 3.4.7]

• Write your own analysis Algorithm [Python] [Sec. 3.4.8]

• Write your own analysis Algorithm [C++] [Sec. 3.4.9]

• Modify an existing part of NuWa [C++] [Sec. 3.4.10]

3.4.1 See the history of a NuWa File

Before using a NuWa data file, you may want to see what processing has already been done on the file. The
following command will print the history of all NuWa jobs that have been run to produce this file:

1 shell> nuwa . py −n 0 −−no−history −m"JobInfoSvc.Dump"
2 recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

You will see much information printed to the screen, including the following sections which summarize
the NuWa jobs that have been run on this file:

1 Cached Job Information :
2 { jobId : daf3a684−6190−11e0−82f7−003048c51482
3 cmtConfig : x86_64−slc4−gcc34−opt
4 command : /eliza7/dayabay/scratch/dandwyer/NuWa−trunk−opt/dybgaudi/InstallArea/scripts/nuwa . py
5 −n 0 −−no−history −mJobInfoSvc . Dump
6 recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
7 hostid : 931167014
8 jobTime : Fri , 08 Apr 2011 03 : 32 : 40 +0000
9 nuwaPath : /eliza16/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa−trunk

10 revision : 11307:11331
11 username : dandwyer

12 }
13

14

15 Cached Job Information :
16 { jobId : 6f5c02f4−6190−11e0−897b−003048c51482
17 cmtConfig : x86_64−slc4−gcc34−opt
18 command : /eliza7/dayabay/scratch/dandwyer/NuWa−trunk−opt/dybgaudi/InstallArea/scripts/nuwa . py
19 −A None −n −1 −−no−history −−random=off −mQuickstart . DryRunTables
20 −mQuickstart . Calibrate −mQuickstart . Reconstruct
21 −o recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
22 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
23 hostid : 931167014
24 jobTime : Fri , 08 Apr 2011 03 : 29 : 39 +0000
25 nuwaPath : /eliza16/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa−trunk
26 revision : 11307:11331
27 username : dandwyer

28 }

3.4. NUWA RECIPES 37

29

30

31 Cached Job Information :
32 { jobId : 22c6620e−6190−11e0−84ac−003048c51482
33 cmtConfig : x86_64−slc4−gcc34−opt
34 command : /eliza7/dayabay/scratch/dandwyer/NuWa−trunk−opt/dybgaudi/InstallArea/scripts/nuwa . py
35 −A None −n −1 −−no−history −−random=off −mProcessTools . LoadReadout
36 −o daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
37 /eliza7/dayabay/data/exp/dayabay /2010/ TestDAQ/NoTag /0922/ daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . data
38 hostid : 931167014
39 jobTime : Fri , 08 Apr 2011 03 : 27 : 31 +0000
40 nuwaPath : /eliza16/dayabay/users/dandwyer/installs/trunk_2011_03_30_opt/NuWa−trunk
41 revision : 11307:11331
42 username : dandwyer

43 }

The jobs are displayed in reverse-chronological order. The first job converted the raw daq .data file to a
NuWa .root file. The second job ran an example calibration and reconstruction of the raw data. The final
job (the current running job) is printing the job information to the screen.

3.4.2 Tag Events in a NuWa File

Event tags are used to identify a subset of events. These can be used to separate events into classes such as
muons, inverse-beta decay, noise, etc. In general, tags be used to identify any set of events of interest.

The job module Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py4 is a simple ex-
ample of tagging readouts by detector type. The tag can be applied by adding the module to a NuWa
job:

1 shell> nuwa . py −n −1 −−no−history −m"UserTagging.UserTag.DetectorTag"
2 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

To add your own tag, follow the steps for modifing an existing python module (section 3.4.8.) Use
Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py5 as a starting point. You should add
your own tag in the initTagList function:

1 self . addTag (’MySpecialEvent ’ , ’/Event/UserTag/MySpecialEvent ’)

In the check function, you should retrieve event data and decide if you want to tag it:
1 # Get r e con s t ruc t ed data
2 recHdr = evt ["/Event/Rec/AdSimple"]
3 # Add your c a l c u l a t i o n / d e c i s i o n here
4 # . . .
5 #

6 if tagThisEvent :
7 # Keep track of the reconstructed data you are tagging

8 self . getTag (’MySpecialEvent ’) . setInputHeaders ([recHdr])
9 self . tagIt (’MySpecialEvent ’)

Once a tag has been set, it can be used by later analysis algorithms in the current job, or saved to the
output file and used at a later time. Here is a Python example of checking the tag:

1 # Check tag
2 tag = evt ["/Event/UserTag/MySpecialEvent"]
3 if tag :
4 # This event is tagged . Do something .
5 # . . .

Tags can also be used to produce filtered data sets, as shown in section 3.4.6.

4http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/

UserTag/DetectorTag.py
5http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/

UserTag/DetectorTag.py

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging/python/UserTagging/UserTag/DetectorTag.py

38 CHAPTER 3. ANALYSIS BASICS

3.4.3 Add Variables to a NuWa File

A common task is to add a new user-defined variable for each event. For example, the time since the previous
trigger can be calculated and added to each event. This is a task for UserData.

The example job module Tutorial/Quickstart/python/Quickstart/DtData.py6 shows the example of adding
the time since the previous trigger to each event. This example can be run:

1 shell> nuwa . py −n −1 −−no−history −m"Quickstart.DtData"
2 −o daqPlus . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

After completion, the output file can be opened in ROOT and the new data variables can be viewed and
histogrammed (Fig 3.7.) The file can also be read back into another NuWa job, and the user data will still
be accessible.

Figure 3.7: Example of browsing and histogramming user-defined data in ROOT.

To add your own variables, copy and modify the module Tutorial/Quickstart/python/Quickstart/Dt-
Data.py7. See section 3.4.8 for general advice on modifying an existing job module. Currently single
integers, single floating-point decimal numbers, and arrays of each can be added as user-defined variables.

3.4.4 Adding User-defined Variables to Tagged Events

The Tagging/UserTagging8 package provides some convenient tools for simultaneously applying tags and
adding user data for those tagged events. Following the example described in section 3.4.2, user data can
be added in parallel to an event tag. In the initTagList function, you can define user data associated with
the tag:

1 myTag = self . addTag (’MySpecialEvent ’ , ’/Event/UserTag/MySpecialEvent ’)
2 myData = myTag . addData (’MySpecialData ’ , ’/Event/UserData/MySpecialData ’)
3 myData . addInt (’myInt’)

In the check function, you should set the variable value before calling tagIt:

1 if tagThisEvent :
2 # Keep track of the reconstructed data you are tagging

3 self . getTag (’MySpecialEvent ’) . setInputHeaders ([recHdr])
4 myData = self . getTag (’MySpecialEvent ’) . getData (’MySpecialData ’)

6http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/

DtData.py
7http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/

DtData.py
8http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tutorial/Quickstart/python/Quickstart/DtData.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Tagging/UserTagging

3.4. NUWA RECIPES 39

5 myData . set (’myInt’ ,12345)
6 self . tagIt (’MySpecialEvent ’)

3.4.5 Copy Data Paths to a New File

There may be situations where you would like to filter only some paths of data to a smaller file. The job
module SimpleFilter.Keep can be used for this purpose. The following example shows how to create an
output file which contains only the AdSimple reconstructed data:

1 shell> nuwa . py −n −1 −m"SimpleFilter.Keep /Event/Rec/AdSimple"

2 −o adSimple . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

This module can take multiple arguments to save more paths to the same file:
1 shell> nuwa . py −n −1 −m"SimpleFilter.Keep /Event/Rec/AdSimple /Event/Rec/AdQmlf"

2 −o myRecData . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

3.4.6 Write Tagged Data to a New File

There may be situations where you would like to filter only some events to a smaller data file. The
SmartFilter package provides some tools for this purpose. The first step is to define your own tag for
the events you wish to keep, as discussed in section 3.4.2. The following example shows how to create an
output file which contains only the events you have tagged as MySpecialEvents:

1 shell> nuwa . py −n −1 −m"MySpecialTagger" −m"SmartFilter.Keep /Event/UserTag/MySpecialEvents"

2 −o mySpecialEvents . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

The output file will contain your tag /Event/UserTag/MySpecialEvents, plus any data that your tag
refers to such as /Event/Rec/AdSimple, /Event/Readout/ReadoutHeader, etc.

To create more advanced data filters, copy and modify the job module Filtering/SmartFilter/python/S-
martFilter/Example.py9.

3.4.7 Change an Existing Job Module

This section describes how to change an existing module with name PACKAGE.MODULE. First copy this
Job Module to your local directory. You can locate a module using the environment variable $ PACKAGE

ROOT,
1 shell> mkdir mywork

2 shell> cd mywork

3 shell> cp $<PACKAGE>ROOT/python/<PACKAGE>/<MODULE>.py myModule . py

Once you have a copy of the Job Module, open it with your favorite text editor. The module is written in
the Python language (http://www.python.org); see the Python website for a good tutorial on this language.
Job Modules are composed of two functions: configure() and run(),

1 def configure (argv =[]) :
2 """A description of your module here

3 """

4 # Most job configuration commands here

5 return

6

7 def run (app) :
8 """Specific run -time configuration"""

9http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/

Example.py

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://www.python.org
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Filtering/SmartFilter/python/SmartFilter/Example.py

40 CHAPTER 3. ANALYSIS BASICS

9 # Some specific items must go here (Python algorithms , add libraries , etc .)
10 pass

For advice on what lines to modify in the module, send your request to the offline software mailing list:
theta13-offline@dayabay.lbl.gov.

To run your modified version of the module, call it in the nuwa.py command without the PACKAGE.
prefix in the module name. With no prefix, modules from the current directory will be used.

1 shell> ls

2 myModule . py
3 shell> nuwa . py −n −1 −m"myModule" recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

3.4.8 Write a Python analysis Algorithm

If you wish to add your own algorithm to NuWa, a good place to start is by writing a prototype algorithm in
Python. Writing your algorithm in Python is much easier than C++, and does not require you to compile.

To get started, copy the example template Python algorithm to your local directory:

1 shell> mkdir mywork

2 shell> cd mywork

3 shell> cp $QUICKSTARTROOT/python/Quickstart/Template . py myAlg . py

Alternatively, you can copy PrintRawData.py, PrintCalibData.py, or PrintReconData.py if you want
to specifically process the readout, calibrated, or reconstructed data. Each of these files is a combination of
a Python algorithm and a nuwa Python Job Module. To run this module and algorithm, you can call it in
the following way:

1 shell> nuwa . py −n −1 −m"myAlg" recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

Inside this file, you can find a Python algorithm. It is a Python class that defines three key functions:

• initialize(): Called once at job start

• execute(): Called once for each event

• finalize(): Called once at job end

You should edit these functions so that the algorithm will do the task you want. There are a few common
tasks for algorithms. One is to print to the screen some data from the event:

1 def execute (self) :
2 evt = self . evtSvc ()
3 reconHdr = evt ["/Event/Rec/RecHeader"]
4 print "Energy [MeV] = " , reconHdr . recResult () . energy () / units . MeV

Another common task is to histogram some data from the event:

1 def initialize (self) :
2 # Define the histogram

3 self . stats ["/file1/myhists/energy"] = TH1F ("energy" ,
4 "Reconstructed energy for each trigger" ,
5 100 ,0 ,10)
6

7 def execute (self) :
8 evt = self . evtSvc ()
9 reconHdr = evt ["/Event/Rec/RecHeader"]

10 if reconHdr . recResult () . energyStatus () == ReconStatus . kGood :
11 #Fill the histogram

12 self . stats ["/file1/myhists/energy"] . Fill (reconHdr . recResult () . energy () / units . MeV)

3.4. NUWA RECIPES 41

Although these examples are simple, algorithms can perform complex calculations on the data that are
not possible directly from ROOT. For cheat-sheets of the data available in NuWa, see the following sections:
Readout data [3.5.8], Calibrated hit data [3.5.9], Reconstructed data [3.5.11].

Remember to commit your new algorithm to SVN! The wiki section SVN Repository#Guidelines10 pro-
vides some tips on committing new software to SVN.

3.4.9 Write a C++ analysis Algorithm

A drawback of using Python algorithms is that they will usually run slower than an algorithm written in
C++. If you wish to run your algorithm as part of data production, or if you just want it to run faster, then
you should convert it to C++.

Adding a C++ algorithm to Gaudi is a more complex task. The first step is to create your own Project.
Your own Project allows you to write and run your own C++ analysis software with NuWa. See section
3.5.3 for how to prepare this.

Once you have your own project, you should prepare your own package for your new algorithm. A tool
has been provided to help you with this. The following commands will set up your own package:

1 shell> cd myNuWa

2 shell> svn export http : / /dayabay . ihep . ac . cn/svn/dybsvn/people/wangzhe/Start
3 shell> svn export http : / /dayabay . ihep . ac . cn/svn/dybsvn/people/wangzhe/ProjRename
4 shell> ProjRename Start MyNewAlg

5 shell> ls

6 MyNewAlg ProjRename

7 shell> emacs MyNewAlg/src/components/MyNewAlg . cc &

At this point you should edit the empty algorithm in MyNewAlg/src/components/MyNewAlg.cc. In
particular, you should add your analysis code into the initialize(), execute(), and finalize() functions.

To compile your new algorithm, you should do the following in a new clean shell:
1 shell> pushd NuWa−trunk
2 shell> source setup . sh
3 shell> export CMTPROJECTPATH=/path/to/myProjects : ${CMTPROJECTPATH}
4 shell> popd

5 shell> cd myNuWa/MyNewAlg/cmt
6 shell> cmt config ; cmt make ;

Now you should setup a separate ’running’ shell for you to run and test your new algorithm. Staring
with a clean shell, run the following:

1 shell> pushd NuWa−trunk
2 shell> source setup . sh
3 shell> export CMTPROJECTPATH=/path/to/myProjects : ${CMTPROJECTPATH}
4 shell> cd dybgaudi/DybRelease/cmt
5 shell> source setup . sh
6 shell> popd

7 shell> pushd myNuWa/MyNewAlg/cmt
8 shell> source setup . sh ; source setup . sh ;

Now you should be set up and ready to run your new NuWa algorithm in this shell:
1 shell> nuwa . py −n −1 −m"MyNewAlg.run" recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

Remember to commit your new algorithm to SVN!

3.4.10 Modify Part of NuWa

Sometimes you may want to modify an existing part of NuWa and test the changes you have made. First,
you must setup your own Project as shown in section 3.5.3.

Next, you should checkout the package into your Project:

10https://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines

https://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines
https://wiki.bnl.gov/dayabay/index.php?title=SVN_Repository#Guidelines

42 CHAPTER 3. ANALYSIS BASICS

Table 3.3: Some Common Services

ICableSvc Electronics cable connection maps and hardware serial numbers
ICalibDataSvc PMT and RPC calibration parameters
ISimDataSvc PMT/Electronics input parameters for simulation
IJobInfoSvc NuWa Job History Information (command line, software version, etc)
IRunDataSvc DAQ Run information (run number, configuration, etc.)
IPmtGeomInfoSvc Nominal PMT positions
IStatisticsSvc Saving user-defined histograms, ntuples, trees, etc. to output files

1 shell> cd myNuWa

2 shell> svn checkout http : / /dayabay . ihep . ac . cn/svn/dybsvn/dybgaudi/trunk/Reconstruction/CenterOfChargePos
3 shell> ls

4 CenterOfChargePos

5 shell> emacs CenterOfChargePos/src/components/CenterOfChargePosTool . cc &

After you have made your changes, you should compile and test your modifications. To compile the
modified package, you should run the following commands in a clean shell:

1 shell> pushd NuWa−trunk
2 shell> source setup . sh
3 shell> export CMTPROJECTPATH=/path/to/myProjects : ${CMTPROJECTPATH}
4 shell> popd

5 shell> cd myNuWa/CenterOfChargePos/cmt
6 shell> cmt config ; cmt make ;

To make NuWa use your modified package, run the following commands in a new clean shell:
1 shell> pushd NuWa−trunk
2 shell> source setup . sh
3 shell> export CMTPROJECTPATH=/path/to/myProjects : ${CMTPROJECTPATH}
4 shell> cd dybgaudi/DybRelease/cmt
5 shell> source setup . sh
6 shell> popd

7 shell> pushd myNuWa/CenterOfChargePos/cmt
8 shell> source setup . sh ; source setup . sh ;

This shell will now use your modified code instead of the original version in NuWa:
1 shell> nuwa . py −n −1 −m"Quickstart.Calibrate" −m"Quickstart.Reconstruct"
2 −o recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

After you have verified that your changes are correct, you can commit your changes:
1 shell> cd CenterOfChargePos

2 shell> svn diff

3 (Review the changes you have made .)
4 shell> svn commit −m"I fixed a bug!"

3.4.11 Using Services

Another advantage of using NuWa is that it provides a set of useful Services. Services give you access to other
data in addition to the event data, such as cable mappings, calibration parameters, geometry information,
etc. Services can also provide other useful tasks. Table 3.3 gives lists some common services. Section 3.5.14
gives detailed descriptions of the common services.

Multiple versions of the same service can exists. For example, StaticCalibDataSvc loads the PMT
calibration parameters from a text table, while DbiCalibDataSvc loads the PMT calibration parameters from
the database. To access a Service from a Python algorithm, you should load the service in the initialize()
function:

3.4. NUWA RECIPES 43

1 self . calibDataSvc = self . svc (’ICalibDataSvc ’ , ’StaticCalibDataSvc ’)
2 if self . calibDataSvc == None :
3 self . error ("Failed to get ICalibDataSvc: StaticCalibDataSvc")
4 return FAILURE

When requesting a service, you provide the type of the service (ICalibDataSvc) followed by the specific
version you wish to use (StaticCalibDataSvc).

Loading the service in C++ is similar:

1 ICalibDataSvc∗ calibDataSvc = svc<ICalibDataSvc>("StaticCalibDataSvc" , true) ;
2 if (! calibDataSvc) {
3 error () << "Failed to get ICalibDataSvc: StaticCalibDataSvc" << endreq ;
4 return StatusCode : : FAILURE ;
5 }

44 CHAPTER 3. ANALYSIS BASICS

3.5 Cheat Sheets

3.5.1 Loading the NuWa software

On the computer clusters you must load the software each time you log on. You can load the NuWa software
using the nuwaenv command,

1 shell> nuwaenv −r trunk −O

The nuwaenv command can incorporate both shared releases and personal projects. For more information
on using and configuring nuwaenv see: https://wiki.bnl.gov/dayabay/index.php?title=Environment_
Management_with_nuwaenv.

In the end, nuwaenv is a way of automating the sourcing of the following shell commands. The examples
given are for the pdsf cluster.

1 # bash s h e l l
2 shell> cd /common/dayabay/releases/NuWa/trunk−opt/NuWa−trunk/
3 shell> source setup . sh
4 shell> cd dybgaudi/DybRelease/cmt/
5 shell> source setup . sh

1 # c−s h e l l
2 shell> cd /common/dayabay/releases/NuWa/trunk−opt/NuWa−trunk/
3 shell> source setup . csh
4 shell> cd dybgaudi/DybRelease/cmt/
5 shell> source setup . csh

3.5.2 Installing the NuWa software

For the brave, you can attempt to install NuWa on your own computer. Try the following:

1 shell> mkdir nuwa

2 shell> cd nuwa

3 shell> svn export http : / /dayabay . ihep . ac . cn/svn/dybsvn/installation/trunk/dybinst/dybinst
4 shell> . / dybinst trunk all

If you are very lucky, it will work. Otherwise, send questions to theta13-offline@dayabay.lbl.gov.
Your chance of success will be much greater if your try to install NuWa on a computer running Scientific
Linux or OS X.

3.5.3 Making your own Project

If you want add or modify a part of NuWa, you should create your own Project. This will allow you to
create your own packages to add or replace those in NuWa. The first step is to create a subdirectory for
your packages in some directory /path/to/myProjects:

1 shell> mkdir −p /path/to/myProjects/myNuWa/cmt

Create two files under myNuWa/cmt with the following content:

1 shell> more project . cmt
2 project myNuWa

3

4 use dybgaudi

5

6 build_strategy with_installarea

7 structure_strategy without_version_directory

8 setup_strategy root

1 shell> more version . cmt
2 v0

https://wiki.bnl.gov/dayabay/index.php?title=Environment_Management_with_nuwaenv
https://wiki.bnl.gov/dayabay/index.php?title=Environment_Management_with_nuwaenv

3.5. CHEAT SHEETS 45

Now you can create new packages under the directory myNuWa/, and use them in addition to an existing
NuWa installation. See section 3.4.9 for more details.

You can also replace an existing NuWa package with you own modified version in myNuWa/. See sec-
tion 3.4.10 for more details.

3.5.4 Standard Data Files

A set of standard Daya Bay data files are available on the computer clusters. The following table provides
the location of these files on each cluster:

Type Location
Onsite Farm

daq. (.data) /dyb/spade/rawdata
daq. ??

PDSF
daq. (.data) (In HPSS Archive)
daq. /eliza16/dayabay/nuwaData/exp,sim/dataTag/daq
calib. /eliza16/dayabay/nuwaData/exp,sim/dataTag/calib
recon. /eliza16/dayabay/nuwaData/exp,sim/dataTag/recon
coinc. /eliza16/dayabay/nuwaData/exp,sim/dataTag/coinc
spall. /eliza16/dayabay/nuwaData/exp,sim/dataTag/spall

IHEP
daq. (.data)
daq.
recon.
coinc.
spall.

BNL
daq. (.data)
daq.
recon.
coinc.
spall.

Using the Catalog

A Catalog tool is provided to locate the raw data files. Be sure to load NuWa before running this example
(see section 3.5.1). Here is a simple example to locate the raw data files for a run:

1 shell> python

2 Python 2 .7 (r27 : 82500 , Jan 6 2011 , 0 5 : 0 0 : 1 6)
3 [GCC 3 . 4 . 6 20060404 (Red Hat 3 .4 .6 −8)] on linux2

4 Type "help" , "copyright" , "credits" or "license" for more information .
5>>> import DybPython . Catalog
6>>> DybPython . Catalog . runs [8 0 0 0]
7 [’/eliza16/dayabay/data/exp/dayabay /2011/ TestDAQ/NoTag /0430/ daq.NoTag .0008000. Physics.EH1 -Merged.SFO -1. _0001.data’]
8>>> DybPython . Catalog . runs [8 0 0 1]
9 [’/eliza16/dayabay/data/exp/dayabay /2011/ TestDAQ/NoTag /0430/ daq.NoTag .0008001. Physics.EH1 -Merged.SFO -1. _0001.data’]

10>>> DybPython . Catalog . runs [8 0 0 2]
11 [’/eliza16/dayabay/data/exp/dayabay /2011/ TestDAQ/NoTag /0430/ daq.NoTag .0008002. Pedestal.EH1 -WPI.SFO -1. _0001.data’ , ’/eliza16/dayabay/data/exp/dayabay /2011/ TestDAQ/NoTag /0430/ daq.NoTag .0008002. Pedestal.EH1 -WPO.SFO -1. _0001.data’]

For more information, refer to the Catalog description https://wiki.bnl.gov/dayabay/index.php?title=Accessing Data in a Warehouse11.

11https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_

in_a_Warehouse

https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse
https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse
https://wiki.bnl.gov/dayabay/index.php?title=https://wiki.bnl.gov/dayabay/index.php?title=Accessing_Data_in_a_Warehouse

46 CHAPTER 3. ANALYSIS BASICS

3.5.5 Data File Contents

The table below lists the known data paths and provides a short description of their contents.
Path Name Description

Real and Simulated Data
/Event/Readout ReadoutHeader Raw data produced by the experiment
/Event/CalibReadout CalibReadoutHeader Calibrated times and charges of PMT and RPC hits
/Event/Rec AdSimple Toy AD energy and position reconstruction

AdQmlf AD Maximum-likelihood light model reconstruction
/Event/Tags Standard tags for event identification
/Event/Tags/Coinc ADCoinc Tagged set of AD time-coincident events
/Event/Tags/Muon MuonAny Single muon trigger from any detector

Muon/FirstMuonTrigger First trigger from a prompt set of muon triggers
Retrigger Possible retriggering due to muon event

/Event/Data CalibStats Extra statistics calculated from calibrated data
/Event/Data/Coinc ADCoinc Summary data for sets of AD time-coincident events
/Event/Data/Muon Spallation Summary data for muon events and subsequent AD events
/Event/UserTags User-defined event tags
/Event/UserData User-defined data variables

Simulated Data Only
/Event/Gen GenHeader True initial position and momenta of simulated particles
/Event/Sim SimHeader Simulated track, interactions, and PMT/RPC hits (Geant)
/Event/Elec ElecHeader Simulated signals in the electronics system
/Event/Trig TrigHeader Simulated signals in the trigger system
/Event/SimReadout SimHeader Simulated raw data

3.5.6 Common NuWa Commands

This section provides a list of common nuwa.py commands. You must load the NuWa software before you
can run these commands (see section 3.5.1).

1 # Wrap raw DAQ f i l e s in ROOT t r e e :
2 shell> nuwa . py −n −1 −m"ProcessTools.LoadReadout"
3 −o daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
4 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . data

1 # Generate Ca l i b ra t i on Data
2 shell> nuwa . py −n −1 −m"Quickstart.Calibrate" −m"Tagger.CalibStats"
3 −o calib . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
4 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

1 # Generate Reconstruct ion−only data f i l e s
2 shell> nuwa . py −n −1 −A"0.2s" −m"Quickstart.Calibrate" −m"Tagger.CalibStats"
3 −m"Quickstart.Reconstruct"
4 −m"SmartFilter.Clear" −m"SmartFilter.KeepRecon"
5 −o recon . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
6 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

1 # Generate Spa l l a t i on−only data f i l e s
2 shell> nuwa . py −n −1 −A"0.2s" −m"Quickstart.Calibrate" −m"Tagger.CalibStats"
3 −m"Quickstart.Reconstruct"
4 −m"Tagger.MuonTagger.MuonTag" −m"Tagger.MuonTagger.SpallData"
5 −m"SimpleFilter.Keep /Event/Data/Muon/Spallation"

6 −o spall . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
7 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

3.5. CHEAT SHEETS 47

1 # Generate ADCoincidence−only data f i l e s
2 shell> nuwa . py −n −1 −m"Quickstart.Calibrate" −m"Tagger.CalibStats"
3 −m"Quickstart.Reconstruct"
4 −m"Tagger.CoincTagger.ADCoincTag" −m"Tagger.CoincTagger.ADCoincData"
5 −m"SimpleFilter.Keep /Event/Data/Coinc/AD1CoincData /Event/Data/Coinc/AD2CoincData"

6 −o coinc . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
7 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

1 # Generate ODM f i g u r e s
2 shell> nuwa . py −n −1 −−output−stats="{’file1 ’:’odmHistograms.root ’}"

3 −m"AdBasicFigs.MakeFigs"
4 −m"Quickstart.Calibrate" −m"Tagger.CalibStats"
5 −m"AdBasicFigs.MakeCalibFigs"
6 −m"MuonBasicFigs.MakeCalibFigs"
7 −m"Quickstart.Reconstruct"
8 −m"AdBasicFigs.MakeReconFigs"
9 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root

3.5.7 Conventions and Context

The following sections summarizes the conventions for sites, detectors, and other items used in the analysis
software.

Sites

The site ID identifies the site location within the experiment.
Site C++/Python Name Number Description
Unknown kUnknown 0x00 Undefined Site
Daya Bay kDayaBay 0x01 Daya Bay Near Hall (EH-1)
Ling Ao kLingAo 0x02 Ling Ao Near Hall (EH-2)
Far kFar 0x04 Far Hall (EH-3)
Mid kMid 0x08 Mid Hall (Doesn’t exist)
Aberdeen kAberdeen 0x10 Aberdeen tunnel
SAB kSAB 0x20 Surface Assembly Building
PMT Bench Test kPMTBenchTest 0x40 PMT Bench Test at Dong Guan
All kAll (Logical OR of all sites) All sites

To access the site labels from Python, you can use the commands,

1 from GaudiPython import gbl

2 gbl . DayaBay . Detector # Access any class in library , then ENUMs are available

3 Site = gbl . Site
4 print Site . kDayaBay

For C++, the site labels can be accessed,

1 #include "Conventions/Site.h"

2 std : : cout << Site : : kDayaBay << std : : endl ;

The Site convention is defined in DataModel/Conventions/Conventions/Site.h12.

Detectors

The detector ID identifies the detector location within the site.

12http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/Site.h

48 CHAPTER 3. ANALYSIS BASICS

Detector C++/Python Name Number Description
Unknown kUnknown 0 Undefined Detector
AD stand 1 kAD1 1 Anti-neutrino detector on stand #1
AD stand 2 kAD2 2 Anti-neutrino detector on stand #2
AD stand 3 kAD3 3 Anti-neutrino detector on stand #3
AD stand 4 kAD4 4 Anti-neutrino detector on stand #4
Inner water pool kIWS 5 Inner water pool
Outer water pool kOWS 6 Outer water pool
RPC kRPC 7 Complete RPC assembly
All kAll 8 All detectors

To access the detector labels from Python, you can use the commands,

1 from GaudiPython import gbl

2 gbl . DayaBay . Detector # Access any class in library , then ENUMs are available

3 DetectorId = gbl . DetectorId
4 print DetectorId . kAD1

For C++, the detector labels can be accessed,

1 #include "Conventions/DetectorId.h"

2 std : : cout << DetectorId : : kAD1 << std : : endl ;

The Detector convention is defined in DataModel/Conventions/Conventions/DetectorId.h13.

3.5.8 Raw DAQ Data

Conversion from .data

The raw DAQ file can be wrapped in a ROOT tree. This allows you to histogram the raw data directly
from ROOT, as shown in section 3.2.3. The following command will wrap the data. In addition, ROOT will
compress the raw data by almost half the original size. The file still contains the raw binary data; no event
data conversion is performed.

1 shell> nuwa . py −n −1 −m"ProcessTools.LoadReadout"
2 −o daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . root
3 daq . NoTag . 0 005773 . Physics . SAB−AD2 . SFO−1._0001 . data

Raw data in ROOT

The following table summarizes the raw data that is accessible directly from ROOT. All ROOT variables
must be preceded by daqPmtCrate()..

Item ROOT Variable Description
site detector().site() Site ID number
detector detector().detectorId() Detector ID number
trigger type triggerType() All active triggers, logically OR’d
trigger time triggerTime().GetSeconds() Complete trigger time [seconds]
TDC time tdcs(board,connector,adcGain).values() Channel TDC values
ADC charge adcs(board,connector,adcGain).values() Channel ADC values

gains(board,connector).values() Channel ADC Gain (1: Fine ADC, 2: Coarse ADC)
preAdcRaws(board,connector,adcGain).values() Channel pre-ADC raw values
peaks(board,connector,adcGain).values() Clock cycle (in 25ns) of ADC peak relative to TDC hit

13http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/

DetectorId.h

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/DataModel/Conventions/Conventions/DetectorId.h

3.5. CHEAT SHEETS 49

Readout data in NuWa

Here is a cheat-sheet for processing raw data in Python. These lines can be used in the execute() function
of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Readout Header . This is a container for the readout data

4 readoutHdr = evt ["/Event/Readout/ReadoutHeader"]
5 if readoutHdr == None :
6 self . error ("Failed to get current readout header")
7 return FAILURE

8

9 # Access the Readout . This is the data from one trigger .
10 readout = readoutHdr . daqCrate () . asPmtCrate ()
11 if readout == None :
12 self . info ("No readout this cycle")
13 return SUCCESS

14

15 # Get the detector ID for this trigger

16 detector = readout . detector ()
17 detector . detName ()
18

19 # Trigger Type : This is an integer of the type for this trigger

20 readout . triggerType ()
21 # Event Number : A count of the trigger , according to the DAQ

22 readout . eventNumber ()
23

24 # Trigger Time : Absolute time of trigger for this raw data

25 triggerTime = readout . triggerTime ()
26

27 # Loop over each channel data in this trigger

28 for channel in readout . channelReadouts () :
29 channelId = channel . channelId ()
30

31 # The channel ID contains the detector ID , electronics board number ,
32 # and the connector number on the board .
33 channelId . detName ()
34 channelId . board ()
35 channelId . connector ()
36

37 # Loop over hits for this channel

38 for hitIdx in range (channel . hitCount ()) :
39 # TDC data for this channel

40 #
41 # The TDC is an integer count of the time between the time

42 # the PMT pulse arrived at the channel , and the time the

43 # trigger reads out the data . Therefore , a larger TDC =
44 # earlier time . One TDC count ˜= 1.5625 nanoseconds .
45 #
46 tdc = channel . tdc (hitIdx)
47

48 # ADC data for this channel

49 #
50 # The ADC is an integer count of the charge of the PMT

51 # pulse . It is 12 bits (0 to 4095) . There are two ADCs

52 # for every PMT channel (High gain and Low gain) . Only

53 # the high gain ADC is recorded by default . If the high

54 # gain ADC is saturated (near 4095) , then the low gain ADC

55 # is recorded instead .
56 #
57 # For the Mini Dry Run data , one PMT photoelectron makes

58 # about 20 high gain ADC counts and about 1 low gain ADC

59 # count . There is an offset (Pedestal) for each ADC of

50 CHAPTER 3. ANALYSIS BASICS

60 # ˜70 ADC counts (ie . no signal = ˜70 ADC , 1 photoelectron

61 # = ˜90 ADC , 2 p . e . = ˜110 ADC , etc .)
62 #
63 # The ADC peal cycle is a record of the clock cycle which had

64 # the ’peak’ ADC .
65 #
66 # ADC Gain : Here is a description of ADC gain for these values

67 # Unknown = 0
68 # High = 1
69 # Low = 2
70 #
71 adc = channel . adc (hitIdx)
72 preAdc = channel . preAdcAvg (hitIdx)
73 peakCycle = channel . peakCycle (hitIdx)
74 isHighGain = channel . isHighGainAdc (hitIdx)

3.5.9 Calibrated Data

Calibrated data in ROOT

The following table summarizes the calibrated data visible directly in ROOT. Array items have their length
given in the brackets (i.e. name[length]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

Item ROOT Variable Description
site site Site ID number
detector detector Detector ID number
event number eventNumber Unique ID number for each triggered event in a run
trigger type triggerType All active triggers, logically OR’d
trigger time triggerTimeSec Trigger time: seconds from Jan. 1970 (unixtime)

triggerTimeNanoSec Trigger time: nanoseconds from last second
AD PMT hits nHitsAD Number of AD PMT hits

timeAD[nHitsAD] Calibrated time [ns] of PMT hit relative to trigger time
chargeAD[nHitsAD] Calibrated charge [photoelectrons] of PMT hit
hitCountAD[nHitsAD] Index of this hit for this PMT (0, 1, 2, ...)
ring[nHitsAD] PMT ring in AD (counts 1 to 8 from AD bottom)
column[nHitsAD] PMT column in AD (counts 1 to 24 counterclockwise)

Calib. PMT hits nHitsAD calib Number of AD calibration PMT (2-inch) hits
timeAD calib[nHitsAD calib] Calibrated time [ns] of PMT hit relative to trigger time
chargeAD calib[nHitsAD calib] Calibrated charge [photoelectrons] of PMT hit
hitCountAD calib[nHitsAD calib] Index of this hit for this PMT (0, 1, 2, ...)
topOrBottom[nHitsAD calib] PMT vertical position (1: AD top, 2: AD bottom)
acuColumn[nHitsAD calib] PMT radial position (ACU axis: A=1, B=2, C=3)

Water Pool PMT hits nHitsPool Number of Water Pool PMT hits
timePool[nHitsPool] Calibrated time [ns] of PMT hit relative to trigger time
chargePool[nHitsPool] Calibrated charge [photoelectrons] of PMT hit
hitCountPool[nHitsPool] Index of this hit for this PMT (0, 1, 2, ...)
wallNumber[nHitsPool] PMT wall number
wallSpot[nHitsPool] PMT spot number in wall
inwardFacing[nHitsPool] PMT direction (0: outward, 1: inward)

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

3.5. CHEAT SHEETS 51

Calibrated data in NuWa

Here is a cheat-sheet for processing calibrated data in Python. These lines can be used in the execute()
function of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Calib Readout Header .
4 # This is a container for calibrated data

5 calibHdr = evt ["/Event/CalibReadout/CalibReadoutHeader"]
6 if calibHdr == None :
7 self . error ("Failed to get current calib readout header")
8 return FAILURE

9

10 # Access the Readout . This is the calibrated data from one trigger .
11 calibReadout = calibHdr . calibReadout ()
12 if calibReadout == None :
13 self . error ("Failed to get calibrated readout from header")
14 return FAILURE

15

16 # Get the detector ID for this trigger

17 detector = calibReadout . detector ()
18 detector . detName ()
19

20 # Trigger Type : This is an integer of the type for this trigger

21 calibReadout . triggerType ()
22 # Trigger Number : A count of the trigger , according to the DAQ

23 calibReadout . triggerNumber ()
24

25 # Trigger Time : Absolute time of trigger for this calibrated data

26 triggerTime = calibReadout . triggerTime ()
27

28 # Loop over each channel data in this trigger

29 for channel in calibReadout . channelReadout () :
30 sensorId = channel . pmtSensorId ()
31 if detector . isAD () :
32 pmtId = AdPmtSensor (sensorId . fullPackedData ())
33 pmtId . detName ()
34 pmtId . ring ()
35 pmtId . column ()
36 elif detector . isWaterShield () :
37 pmtId = PoolPmtSensor (sensorId . fullPackedData ())
38 pmtId . detName ()
39 pmtId . wallNumber ()
40 pmtId . wallSpot ()
41 pmtId . inwardFacing ()
42

43 # Calibrated hit data for this channel

44 for hitIdx in range (channel . size ()) :
45 # Hit time is in units of ns , and is relative to trigger time

46 hitTime = channel . time (hitIdx)
47 # Hit charge is in units of photoelectrons

48 hitCharge = channel . charge (hitIdx)

3.5.10 Calibrated Statistics Data

Calibrated statistics data in ROOT

The following table summarizes the calibrated statistics data for each event visible directly in ROOT. Array
items have their length given in the brackets (i.e. name[length]). ROOT will automatically draw all entries
in the array given the array name. See the ROOT User’s Guide for more details on working with Trees,
http://root.cern.ch/download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf

52 CHAPTER 3. ANALYSIS BASICS

ROOT Variable Description
dtLastAD1 ms Time since previous AD1 trigger [ms]
dtLastAD2 ms Time since previous AD2 trigger [ms]
dtLastIWS ms Time since previous Inner water pool trigger [ms]
dtLastOWS ms Time since previous Outer water pool trigger [ms]
dtLast ADMuon ms Time since previous AD event with greater than 20 MeV [ms]
dtLast ADShower ms Time since previous AD event with greater than 1 GeV [ms]
ELast ADShower pe Energy of last AD event with greater than 1 GeV [pe]
nHit Total number of hit 8-inch PMTS
nPEMedian Median charge (number of photoelectrons) on PMTs
nPERMS RMS of charge (number of photoelectrons) on PMTs
nPESum Total sum of charge (number of photoelectrons) on all PMTs
nPulseMedian Median number of hits on PMTs
nPulseRMS Median number of hits on PMTs
nPulseSum Total Sum of number of hits on all PMTs
tEarliest Earliest hit time on all PMTs [ns]
tLatest Latest hit time on all PMTS [ns]
tMean Mean hit time on all PMTS [ns]
tMedian Median hit time on all PMTS [ns]
tRMS RMS of hit time on all PMTS [ns]
charge sum flasher max The maxima total charge collected for one PMT in one readout [PE] (sum over all possible hits)
time PSD For hits in each AD, for time window between -1650 and -1250 ns, Nhit−1650,−1450

Nhit−1650,−1250
.

time PSD1 For hits in each AD, for time window between -1650 and -1250 ns, Nhit−1650,−1500
Nhit−1650,−1250

.
time PSD local RMS The RMS of the time of the first hit (also must be within -1650 and -1250) for 5x5 (or 4x5 for PMTs at the top or bottom) PMTs around flaserh PMT [ns]
Q1 The total charge (within -1650 and -1250) of nearby ± 3 columns PMTs (total 7 columns)
Q2 The total charge (within -1650 and -1250) of 4→ 9 and −4→ −9 columns PMTs (total 12 columns)
Q3 The total charge (within -1650 and -1250) of PMTs for the rest of columns (other than those in Q1 and Q2)
flasher flag “1-time PSD + 1- time PSD1 + Q3/Q2*2 + nPEMax/nPESum + time PSD local RMS/100” A combination to select flaserh. Flashers: flasher flag>2.4
EarlyCharge The charge sum in time window t¡-1650ns
LateCharge The charge sum in time window t¿-1250ns
NominalCharge The charge sum in time window -1650ns¡t¡-1250ns, See Doc6926
MaxQ The largest charge fraction of PMTs
maxqRing The ring number of the MaxQ PMT
maxqCol The column number of the MaxQ PMT
QuadrantQ1 Total charge of PMTs with column number in [maxqCol-2, maxqCol+3]). For the value in this range expression, if columnNumber¡=0, then columnNumber=columnNumber+24; if columnNumber¿24, then columnNumber=columnNumber-24.
QuadrantQ2 Total charge of PMTs with column number in [(maxqCol+6)-2,(maxqCol+6)+3])
QuadrantQ3 Total Charge of PMTs with column number in [(maxq+12)-2, (maxqCol+12)+3])
QuadrantQ4 Total Charge of PMTs with column number in [(maxq+18)-2, (maxqCol+18)+3])
Quadrant The ratio of QuadrantQ3/(QuadrantQ2 + QuadrantQ4)
MainPeakRMS According to the location of MaxQ PMT, divide 24 columns into two clusters. MainPeak cluster: [maxqCol-5, maxqCol+6]. SecondPeak cluster: [(maxqCol+12)-5, (maxqCol+12)+6]. For each cluster: use ring/column number as x and y values, define a 2-D peak RMS = sqrt(RMSx*RMSx + RMSy*RMSy).
SecondPeakRMS See description in MainPeakRMS.
PeakRMS The sum of MainPeakRMS and SecondPeakRMS
RingKurtosis Kurtosis of charge weighted distance in the Ring dimension for the MainPeak cluster, see Doc6956
ColumnKurtosis Kurtosis of charge weighted distance in the Column dimension for the MainPeak cluster
Kurtosis Sum of RingKurtosis and ColumnKurtosis
MiddleTimeRMS RMS of PMT first hit time in the time window (-1650ns, -1250ns). This time window should match the window used in NominalCharge definition.
integralRunTime ms ’DAQ Running time’ from the start of the file up to the current trigger
integralLiveTime buffer full ms ’DAQ Livetime’ from the start of the file up to the current trigger. The ’DAQ Livetime’ is the ’DAQ runtime’ with a per-detector minor correction for electronics ’blocked trigger’ periods.
integralLiveTime blocked trigger ms ’DAQ Livetime’, using an alternate correction for ’blocked trigger’ periods
blocked trigger A count of the ’blocked triggers’ immediately preceding the current trigger. When the electronics/trigger system cannot cope with the current data rates, it will automatically stop issuing new triggers (automatic deadtime). The first trigger issued after the system has recovered includes a count of triggers that should have been issued during the trigger deadtime. When this number is ¿0, then you know that there are some triggers that were missed immediately preceding this trigger.
buffer full flag This flag is true if the electronics memory buffers filled immediately preceding this trigger. If ’blocked trigger’ is not also ¿ 0, then this memory problem did not result in trigger deadtime.

3.5. CHEAT SHEETS 53

Calibrated statistics data in NuWa

Here is a cheat-sheet for processing calibrated statistics data in Python. These lines can be used in the
execute() function of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Calibrated Statistics Data Header .
4 # This is a container for calibrated statistics data

5 calibStats = evt ["/Event/Data/CalibStats"]
6 if calibStats == None :
7 self . debug ("No calibrated statistics!")
8 return FAILURE

9

10 # Access the Calibrated statistics data

11 nPESum = calibStats . get (’nPESum ’) . value ()

3.5.11 Reconstructed Data

Reconstructed data in ROOT

The following table summarizes the reconstructed data visible directly in ROOT. Reconstruction can op-
tionally estimate an energy, a position, and/or a track direction. The status variables should be checked to
determine whether reconstruction has successfully set any of these quantities.

Item ROOT Variable Description
site site Site ID number
detector detector Detector ID number
trigger type triggerType All active triggers, logically added
trigger time triggerTimeSec Trigger time count in seconds from Jan. 1970 (unixtime)

triggerTimeNanoSec Trigger time count of nanoseconds from last second
energy energyStatus Status of energy reconstruction (0: unknown, 1: good, >1: failures)

energy reconstructed energy [MeV]
energyQuality Measure of fit quality (χ2, likelihood, etc.)

position positionStatus Status of position reconstruction (0: unknown, 1: good, >1: failures)
x reconstructed x position [mm] in AD, Water Pool, or RPC coordinates
y reconstructed y position [mm] in AD, Water Pool, or RPC coordinates
z reconstructed z position [mm] in AD, Water Pool, or RPC coordinates
positionQuality Measure of fit quality (χ2, likelihood, etc.)

direction directionStatus Status of track reconstruction (0: unknown, 1: good, >1: failures)
dx reconstructed dx track direction in AD, Water Pool, or RPC coordinates
dy reconstructed dy track direction in AD, Water Pool, or RPC coordinates
dz reconstructed dz track direction in AD, Water Pool, or RPC coordinates
directionQuality Measure of fit quality (χ2, likelihood, etc.)

error matrix errorMatrixDim Dimension of error matrix (0 if not set)
errorMatrix Array of error matrix elements

Reconstructed data in NuWa

Here is a cheat-sheet for processing reconstructed data in Python. These lines can be used in the execute()
function of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Recon Header . This is a container for the reconstructed data

4 reconHdr = evt ["/Event/Rec/AdSimple"]
5 if reconHdr == None :
6 self . error ("Failed to get current recon header")

54 CHAPTER 3. ANALYSIS BASICS

7 return FAILURE

8

9 result = reconHdr . recTrigger ()
10

11 # Get the detector ID for this trigger

12 detector = result . detector ()
13 detector . detName ()
14

15 # Trigger Type : This is an integer of the type for this trigger

16 result . triggerType ()
17 # Trigger Number : A count of the trigger , according to the DAQ

18 result . triggerNumber ()
19

20 # Trigger Time : Absolute time of trigger for this raw data

21 triggerTime = result . triggerTime ()
22

23 # Energy information

24 result . energyStatus ()
25 result . energy ()
26 result . energyQuality ()
27

28 # Position information

29 result . positionStatus ()
30 result . position () . x ()
31 result . position () . y ()
32 result . position () . z ()
33 result . positionQuality ()
34

35 # Direction information , for tracks

36 result . directionStatus ()
37 result . direction () . x ()
38 result . direction () . y ()
39 result . direction () . z ()
40 result . directionQuality ()
41

42 # Covariance Matrix , if one is generated

43 result . errorMatrix ()

3.5.12 Spallation Data

Spallation data in ROOT

The following table summarizes the spallation data visible directly in ROOT. Array items have their length
given in the brackets (i.e. name[length]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

3.5. CHEAT SHEETS 55

ROOT Variable Description
tMu s Timestamp of this muon event (seconds part)
tMu ns Timestamp of this muon event (nanoseconds part)
dtLastMu ms Time since previous muon event [ms]
dtNextMu ms Time to next muon event [ms]
hitAD1 Did AD1 have a prompt trigger for this muon?
hitAD2 Did AD2 have a prompt trigger for this muon?
hitAD3 Did AD3 have a prompt trigger for this muon?
hitAD4 Did AD4 have a prompt trigger for this muon?
hitIWS Did the Inner water pool have a prompt trigger for this muon?
hitOWS Did the Outer water pool have a prompt trigger for this muon?
hitRPC Did the RPC have a prompt trigger for this muon?
triggerNumber AD1 Trigger number of prompt AD1 muon trigger (if exists)
triggerNumber AD2 Trigger number of prompt AD2 muon trigger (if exists)
triggerNumber AD3 Trigger number of prompt AD3 muon trigger (if exists)
triggerNumber AD4 Trigger number of prompt AD4 muon trigger (if exists)
triggerNumber IWS Trigger number of prompt IWS muon trigger (if exists)
triggerNumber OWS Trigger number of prompt OWS muon trigger (if exists)
triggerNumber RPC Trigger number of prompt RPC muon trigger (if exists)
triggerType AD1 Trigger type of prompt AD1 muon trigger (if exists)
triggerType AD2 Trigger type of prompt AD2 muon trigger (if exists)
triggerType AD3 Trigger type of prompt AD3 muon trigger (if exists)
triggerType AD4 Trigger type of prompt AD4 muon trigger (if exists)
triggerType IWS Trigger type of prompt IWS muon trigger (if exists)
triggerType OWS Trigger type of prompt IWS muon trigger (if exists)
triggerType RPC Trigger type of prompt IWS muon trigger (if exists)
dtAD1 ms Time since first prompt muon trigger [ms]
dtAD2 ms Time since first prompt muon trigger [ms]
dtAD3 ms Time since first prompt muon trigger [ms]
dtAD4 ms Time since first prompt muon trigger [ms]
dtIWS ms Time since first prompt muon trigger [ms]
dtOWS ms Time since first prompt muon trigger [ms]
dtRPC ms Time since first prompt muon trigger [ms]
calib nPESum AD1 CalibStats charge sum from prompt muon trigger
calib nPESum AD2 CalibStats charge sum from prompt muon trigger
calib nPESum AD3 CalibStats charge sum from prompt muon trigger
calib nPESum AD4 CalibStats charge sum from prompt muon trigger
calib nPESum IWS CalibStats charge sum from prompt muon trigger
calib nPESum OWS CalibStats charge sum from prompt muon trigger
nRetriggers Total number of possible retriggers
detectorId rt[nRetriggers] Possible retrigger detector ID
dtRetrigger ms[nRetriggers] Time of retrigger relative to first prompt muon trigger
triggerNumber rt[nRetriggers] Trigger number of retrigger
triggerType rt[nRetriggers] Trigger type of retrigger
calib nPESum rt[nRetriggers] Total charge sum of retrigger
nSpall Number of AD triggers between this muon and next muon
detectorId sp[nSpall] Detector ID of AD trigger
triggerNumber sp[nSpall] Trigger number of AD trigger
triggerType sp[nSpall] Trigger type of AD trigger
dtSpall ms[nSpall] Time between AD trigger and first prompt muon trigger [ms]
energyStatus sp[nSpall] AD energy reconstruction status
energy sp[nSpall] AD reconstructed energy [MeV]
positionStatus sp[nSpall] AD position reconstruction status
x sp[nSpall] AD reconstructed X position [mm]
y sp[nSpall] AD reconstructed Y position [mm]
z sp[nSpall] AD reconstructed Z position [mm]

56 CHAPTER 3. ANALYSIS BASICS

Spallation data in NuWa

Here is a cheat-sheet for processing spallation data in Python. These lines can be used in the execute()
function of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Spallation Data Header .
4 # This is a container for muon spallation data

5 spallData = evt ["/Event/Data/Muon/Spallation"]
6 if spallData == None :
7 self . debug ("No spallation data this cycle")
8 return SUCCESS

9

10 # Access the spallation data

11 nSpall = spall . get (’nSpall ’) . value ()

3.5.13 Coincidence Data

Coincidence data in ROOT

The following table summarizes the coincidence data visible directly in ROOT. Array items have their length
given in the brackets (i.e. name[length]). ROOT will automatically draw all entries in the array given the
array name. See the ROOT User’s Guide for more details on working with Trees, http://root.cern.ch/
download/doc/12Trees.pdf.

http://root.cern.ch/download/doc/12Trees.pdf
http://root.cern.ch/download/doc/12Trees.pdf

3.5. CHEAT SHEETS 57

ROOT Variable Description
multiplicity Number of AD events within coincidence window
triggerNumber[multiplicity] Trigger number of event
triggerType[multiplicity] Trigger type of event
t s[multiplicity] Timestamp of event (seconds part)
t ns[multiplicity] Timestamp of event (nanoseconds part)
dt ns[multiplicity] Time relative to first event in multiplet
energyStatus[multiplicity] Status of AD energy reconstruction
e[multiplicity] Reconstructed energy [MeV]
positionStatus[multiplicity] Status of AD position reconstruction
x[multiplicity] AD Reconstructed X position [mm]
y[multiplicity] AD Reconstructed Y position [mm]
z[multiplicity] AD Reconstructed Z position [mm]
I[mult*(mult-1)/2] Prompt helper array for ROOT histogramming
J[mult*(mult-1)/2] Delayed helper array for ROOT histogramming
dtLastAD1 ms[multiplicity] Time since last muon in AD1 [ms]
dtLastAD2 ms[multiplicity] Time since last muon in AD2 [ms]
dtLastIWS ms[multiplicity] Time since last muon in Inner water pool [ms]
dtLastOWS ms[multiplicity] Time since last muon in Outer water pool [ms]

dtLast ADMuon ms Time since previous AD event above 3200 pe (20 MeV) [ms]
dtLast ADShower ms Time since previous AD event above 160000 pe (1 GeV) [ms]
ELast ADShower pe Energy of last AD event with greater than 160000 pe [pe]
calib nHit[multiplicity] CalibStats data
calib nPEMedian[multiplicity] CalibStats data
calib nPERMS[multiplicity] CalibStats data
calib nPESum[multiplicity] CalibStats data
calib nPulseMedian[multiplicity] CalibStats data
calib nPulseRMS[multiplicity] CalibStats data
calib nPulseSum[multiplicity] CalibStats data
calib tEarliest[multiplicity] CalibStats data
calib tLatest[multiplicity] CalibStats data
calib tMean[multiplicity] CalibStats data
calib tMedian[multiplicity] CalibStats data
calib tRMS[multiplicity] CalibStats data
gen count[multiplicity] Monte-Carlo truth generator data
gen e[multiplicity] Monte-Carlo truth generator data
gen execNumber[multiplicity] Monte-Carlo truth generator data
gen lastDaughterPid[multiplicity] Monte-Carlo truth generator data
gen pid[multiplicity] Monte-Carlo truth generator data
gen px[multiplicity] Monte-Carlo truth generator data
gen py[multiplicity] Monte-Carlo truth generator data
gen pz[multiplicity] Monte-Carlo truth generator data
gen type[multiplicity] Monte-Carlo truth generator data

Coincidence data in NuWa

Here is a cheat-sheet for processing coincidence data in Python. These lines can be used in the execute()
function of a Python algorithm.

1 evt = self . evtSvc ()
2

3 # Access the Coincidence Data Header .

58 CHAPTER 3. ANALYSIS BASICS

4 # This is a container for AD coincidence data

5 coincHdr = evt ["/Event/Data/Coinc/AD1Coinc"]
6 if coincHdr == None :
7 self . debug ("No coincidence header this cycle")
8 return SUCCESS

9

10 # Access the Coincidence Data

11 dt_ms = coinc . get (’dt_ms’) . value ()

3.5.14 NuWa Services

(Add documentation for common services here.)

3.5.15 Computer Clusters

(Add details for each computer cluster here.)

3.5.16 Miscellaneous

Time Axes in ROOT

The following lines will display a time axis in a human-readable format using Beijing local time.

1 root [3] htemp−>GetXaxis()−>SetTimeDisplay (1) ;
2 root [4] htemp−>GetXaxis()−>SetTimeFormat ("#splitline {%H:%M:%S}{%d\/%m\/%Y}") ;
3 root [5] htemp−>GetXaxis()−>SetNdivisions (5 0 5) ;
4 root [6] htemp−>GetXaxis()−>SetTimeOffset (8∗60∗60) ;
5 root [7] htemp−>Draw ("colz") ;

3.6. HANDS-ON EXERCISES 59

3.6 Hands-on Exercises

• Find the AD Dry Run data files from run 5773 on PDSF.

• Convert the first file of this run from .data to .root.

• Generate a calibrated data file from this data.

• Plot the AD charge map figures shown in Fig. 3.4

• Generate a reconstructed data file from this data.

• Plot the calibrated AD charge sum vs. the AD reconstructed energy.

• From the first simulation file from run 29000, generate a spallation file and plot the time from each
AD event to the last muon.

• From the first simulation file from run 29000, generate an AD coincidence file and plot the prompt vs.
delayed reconstructed energy.

Chapter 4

Offline Infrastructure

4.1 Mailing lists

• existing lists, their purposes

• offline list - expected topics

• subscribing

• archives

• how to get help

4.2 DocDB

• Content - what should go in DocDB

• how to access

• Major features

• Basic instructions

• how to get help

4.3 Wikis

• Content - what should go in DocDB

• How to access

• Basic markup help

• Conventions, types of topics

• Using categories

4.4 Trac bug tracker

• when to use it

• roles and responsibilities

61

Chapter 5

Installation and Working with the Source
Code

5.1 Using pre-installed release

All major clusters should have existing releases installed and ready to use. Specific information on different
clusters is available in the wiki topic “Cluster Account Setup” 1. The key piece of information to know is
where the release is installed.

Configuring your environment to use an installed release progresses through several steps.

5.1.1 Basic setup

Move to the top level release directory and source the main setup script.

shell> cd /path/to/NuWa-RELEASE
bash> source setup.sh
tcsh> source setup.csh

Replace “RELEASE” with “trunk” or the release label of a frozen release.

5.1.2 Setup the dybgaudi project

Projects are described more below. To set up your environment to use our software project, “dybgaudi”
and the other projects on which it depends to must enter a, so called, “release package” and source its setup
script.

shell> cd /path/to/NuWa-RELEASE
bash> source setup.sh
tcsh> source setup.csh

You are now ready to run some software. Try:

shell> cd $HOME
shell> nuwa.py --help

1https://wiki.bnl.gov/dayabay/index.php?title=Cluster_Account_Setup

63

https://wiki.bnl.gov/dayabay/index.php?title=Cluster_Account_Setup

64 CHAPTER 5. INSTALLATION AND WORKING WITH THE SOURCE CODE

5.2 Instalation of a Release

If you work on a cluster, it is best to use a previously existing release. If you do want to install your own
copy it is time and disk consuming but relatively easy. A script called “dybinst” takes care of everything.

First, you must download the script. It is best to get a fresh copy whenever you start an installation.
The following examples show how to install the “trunk” branch which holds the most recent development.

shell> svn export http://dayabay.ihep.ac.cn/svn/dybsvn/installation/trunk/dybinst/dybinst

Now, let it do its work:

shell> ./dybinst trunk all

Expect it to take about 3-4 hours depending on your computer’s disk, CPU and network speed. It will
also use several GBs of storage, some of which can be reclaimed when the install is over.

5.3 Anatomy of a Release

external/ holds 3rd party binary libraries and header files under PACKAGE/VERSION/ sub directories.

NuWa-RELEASE/ holds the projects and their packages that make up a release.

lcgcmt build information for using 3rd party external packages

gaudi the Gaudi framework

lhcb packages adopted from the LHCb experiment

dybgaudi packages specific to Daya Bay offline software

relax packages providing dictionaries for CLHEP and other HEP libraries.

5.3.1 Release, Projects and Packages

• What is a release. For now see https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_
Software_Releases

• What is a package. For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Packages

• What is a project. For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects.

5.3.2 Personal Projects

• Using a personal project with projects from a NuWa release.

• CMTPROJECTPATH

For now see https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects.

https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=Category:Offline_Software_Releases
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Packages
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects
https://wiki.bnl.gov/dayabay/index.php?title=CMT_Projects

5.4. VERSION CONTROL YOUR CODE 65

5.4 Version Control Your Code

5.4.1 Using SVN to Contribute to a Release

5.4.2 Using GIT with SVN

Advanced developers may consider using git2 to interface with the SVN repository. Reasons to do this
include being able to queue commits, advanced branching and merging, sharing code with other git users
or with yourself on other computers with the need to commit to SVN. In particular, git is used to track
the projects (gaudi, etc) while retaining the changes Daya Bay makes. For more information see https:
//wiki.bnl.gov/dayabay/index.php?title=Synchronizing_Repositories.

5.5 Technical Details of the Installation

5.5.1 LCGCMT

The LCGCMT package is for defining platform tags, basic CMT macros, building external packages and
“glueing” them into CMT.

Builders

The builders are CMT packages that handle downloading, configuring, compiling and installing external
packages in a consistent manner. They are used by dybinst or can be run directly. For details see the
README.org file under lcgcmt/LCG builders/ directory.

Some details are given for specific builders:

data: A select sampling of data files are installed under the “data” external package. These are intended
for input to unit tests or for files that are needed as input but are too large to be conveniently
placed in SVN. For the conventions that must be followed to add new files see the comments in the
data/cmt/requirements/ file under the builder area.

2http://git.or.cz/

https://wiki.bnl.gov/dayabay/index.php?title=Synchronizing_Repositories
https://wiki.bnl.gov/dayabay/index.php?title=Synchronizing_Repositories
http://git.or.cz/

Chapter 6

Offline Framework

6.1 Introduction

When writing software it is important to manage complexity. One way to do that is to organize the software
based on functionality that is generic to many specific, although maybe similar applications. The goal is to
develop software which “does everything” except those specific things that make the application unique. If
done well, this allows unique applications to be implemented quickly, and in a way that is robust against
future development but still flexible to allow the application to be taken in novel directions.

This can be contrasted with the inverted design of a toolkit. Here one focuses on units of functionality
with no initial regards of integration. One builds libraries of functions or objects that solve small parts of
the whole design and, after they are developed, find ways to glue them all together. This is a useful design,
particularly when there are ways to glue disparate toolkits together, but can lead to redundant development
and inter-operational problems.

Finally there is the middle ground where a single, monolithic application is built from the ground up.
When unforeseen requirements are found their solution is bolted on in whatever the most expedient way
can be found. This can be useful for quick initial results but eventually will not be maintainable without
growing levels of effort.

6.2 Framework Components and Interfaces

Gaudi components are special classes that can be used by other code without explicitly compiling against
them. They can do this because they inherit from and implement one or more special classes called “interface
classes” or just interfaces. These are light weight and your code compiles against them. Which actual
implementation that is used is determined at run time by looking them up by name. Gaudi Interfaces are
special for a few reasons:

Pure-virtual: all methods are declared =0 so that implementations are required to provide them. This is
the definition of an “interface class”. Being pure-virtual also allows for an implementation class to
inherit from multiple interfaces without problem.

References counted: all interfaces must implement reference counting memory management.

ID number: all interface implementations must have a unique identifying number.

Fast casting: all interfaces must implement the fast queryInterface() dynamic cast mechanism.

Part of a components implementation involves registering a “factory” class with Gaudi that knows how
to produce instances of the component given the name of the class. This registration happens when the

67

68 CHAPTER 6. OFFLINE FRAMEWORK

component library is linked and this linking can be done dynamically given the class name and the magic of
generated rootmap files.

As a result, C++ (or Python) code can request a component (or Python shadow class) given its class
name. At the same time as the request, the resulting instance is registered with Gaudi using a nick-name1.
This nick-name lets you configure multiple instances of one component class in different ways. For example
one might want to have a job with two competing instances of the same algorithm class run on the same
data but configured with two different sets of properties.

6.3 Common types of Components

The main three types of Gaudi components are Algorithms, Tools and Services.

6.3.1 Algorithms

• Inherit from GaudiAlgorithm or if you will produce data from DybAlgorithm.

• execute(), initialize(), finalize() and associated requirements (eg. calling GaudiAlgorithm::initialize()).

• TES access with get() and put() or getTes() and putTES if implementing DybAlgorithm. There is
also getAES to access the archive event store.

• Logging with info(), etc.

• required boilerplate (entries & load files, cpp macros)

• some special ones: sequencer (others?)

Algorithms contain code that should be run once per execution cycle. They may take input from the
TES and may produce output. They are meant to encapsulate complexity in a way that allows them to be
combined in a high-level manner. They can be combined in a serial chain to run one-by-one or they can
run other algorithms as sub-algorithms. It is also possible to set up high-level branch decisions that govern
whether or not sub-chains run.

6.3.2 Tools

Tools contain utility code or parts of algorithm code that can be shared. Tool instances can be public, in
which case any other code may use it, or they may be private. Multiple instances of a private tool may be
created. A tool may be created at any time during a job and will be deleted once no other code references
it.

6.3.3 Services

Service is very much like a public tool of which there is a single instance created. Services are meant to be
created at the beginning of the job and live for its entire life. They typically manage major parts of the
framework or some external service (such as a database).

6.4 Writing your own component

6.4.1 Algorithms

One of the primary goals of Gaudi is to provide the concept of an Algorithm which is the main entry point
for user code. All other parts of the framework exist to allow users to focus on writing algorithms.

An algorithm provide three places for users to add their own code:
1Nick-names default to the class name.

6.4. WRITING YOUR OWN COMPONENT 69

initialize() This method is called once, at the beginning of the job. It is optional but can be used to
apply any properties that the algorithm supports or to look up and cache pointers to services, tools or
other components or any other initializations that require the Gaudi framework.

execute() This method is called once every execution cycle (“event”). Here is where user code does imple-
ments whatever algorithm the user creates.

finalize() This method is called once, at the end of the job. It is optional but can be used to release()
any cached pointers to services or tools, or do any other cleaning up that requires the Gaudi framework.

When writing an algorithm class the user has three possible classes to use as a basis:

Algorithm is a low level class that does not provide many useful features and is probably best to ignore.

GaudiAlgorithm inherits from Algorithm and provide many useful general features such as access to the
message service via info() and related methods as well as methods providing easy access to the TES
and TDS (eg, get() and getDet()). This is a good choice for many types of algorithms.

DybAlgorithm inherits from GaudiAlgorithm and adds Daya Bay specific features related to producing
objects from the DataModel. It should only be considered for algorithms that need to add new data
to the TES. An algorithm may be based on GaudiAlgorithm and still add data to the TES but some
object bookkeeping will need to be done manually.

Subclasses of DybAlgorithm should provide initialize, execute and finalize methods as they would
if they use the other two algorithm base classes. DybAlgorithm is templated by the DataModel data type
that it will produce and this type is specified when a subclass inherits from it. Instances of the object should
be created using the MakeHeaderObject() method. Any input objects that are needed should be retrieved
from the data store using getTES() or getAES(). Finally, the resulting data object is automatically put
into the TES at the location specified by the “Location” property which defaults to that specified by the
DataModel class being used. This will assure bookkeeping such as the list of input headers, the random
state and other things are properly set.

6.4.2 Tools

• examples

• Implementing existing tool interface,

• writing new interface.

• required boilerplate (entries & load files, cpp macros)

6.4.3 Services

• common ones provided, how to access in C++

• Implementing existing service interface,

• writing new interface.

• Include difference between tools and service.

• required boilerplate (entries & load files, cpp macros)

70 CHAPTER 6. OFFLINE FRAMEWORK

6.4.4 Generalized Components

6.5 Properties and Configuration

Just about every component that Gaudi provides, or those that Daya Bay programmers will write, one or
more properties. A property has a name and a value and is associated with a component. Users can set
properties that will then get applied by the framework to the component.

Gaudi has two main ways of setting such configuration. Initially a text based C++-like language was
used. Daya Bay does not use this but instead uses the more modern Python based configuration. With this,
it is possible to write a main Python program to configure everything and start the Gaudi main loop to run
some number of executions of the top-level algorithm chain.

The configuration mechanism described below was introduced after release 0.5.0.

6.5.1 Overview of configuration mechanism

Figure 6.1: Cartoon of the layers of configuration code.

The configuration mechanism is a layer of Python code. As one goes up the layer one goes from basic
Gaudi configuration up to user interaction. The layers are pictured in Fig. 6.1. The four layers are described
from lowest to highest in the next sections.

6.5.2 Configurables

All higher layers may make use of Configurables. They are Python classes that are automatically generated
for all components (Algorithms, Tools, Services, etc). They hold all the properties that the component
defines and include their default values and any documentation strings. They are named the same as the
component that they represent and are available in Python using this pattern:

1 from PackageName . PackageNameConf import MyComponent
2 mc = MyComponent ()
3 mc . SomeProperty = 42

You can find out what properties any component has using the properties.py script which should be
installed in your PATH.

1 shell> properties . py
2 GtGenerator :

6.5. PROPERTIES AND CONFIGURATION 71

3 GenName : Name of this generator for book keeping purposes .
4 GenTools : Tools to generate HepMC : : GenEvents
5 GlobalTimeOffset : None

6 Location : TES path location for the HeaderObject this algorithm produces .
7 . . .

A special configurable is the ApplicationMgr. Most users will need to use this to include their algorithms
into the “TopAlg” list. Here is an example:

1

2 from Gaudi . Configuration import ApplicationMgr

3 theApp = ApplicationMgr ()
4

5 from MyPackage . MyPackageConf import MyAlgorithm

6 ma = MyAlgorithm ()
7 ma . SomeProperty = "harder , faster , stronger"

8 theApp . TopAlg . append (ma)

Configurables and Their Names

It is important to understand how configurables eventually pass properties to instantiated C++ objects.
Behind the scenes, Gaudi maintains a catalog that maps a key name to a set of properties. Normally, no
special attention need be given to the name. If none is given, the configurable will take a name based on its
class:

1 # gets name ’MyAlgorithm ’

2 generic = MyAlgorithm ()
3 # gets name ’alg1’

4 specific = MyAlgorithm (’alg1’)
5

6 theApp . TopAlg . append (generic)
7 theApp . TopAlg . append (specific)
8 # TopAlg now holds [’MyAlgorithm/MyAlgorithm ’, ’MyAlgorithm/alg1 ’]

Naming Gaudi Tool Configurables

In the case of Gaudi Tools, things become more complex. Tools themselves can (and should) be configured
through configurables. But, there are a few things to be aware of or else one can become easily tricked:

• Tool configurables can be public or private. A public tool configurable is “owned” by ToolSvc and
shared by all parents, a private one is “owned” by a single parent and not shared.

• By default, a tool configurable is public.

• “Ownership” is indicated by prepending the parent’s name, plus a dot (“.”) to the a simple name.

• Ownership is set, either when creating the tool configurable by prepending the parent’s name, or during
assignment of it to the parent configurable.

• During assignment to the parent a copy will be made if the tool configurable name is not consistent
with the parent name plus a dot prepended to a simple name.

What this means is that you may end up with different final configurations depending on:

• the initial name you give the tool configurable

• when you assign it to the parent

• if the parent uses the tool as a private or a public one

72 CHAPTER 6. OFFLINE FRAMEWORK

• when you assign the tool’s properties

To best understand how things work some examples are given. An example of how public tools work:
1 mt = MyTool ("foo")
2 mt . getName () # -> "ToolSvc.foo"

3

4 mt . Cut = 1
5 alg1 . pubtool = mt

6 mt . Cut = 2
7 alg2 . pubtool = mt

8 mt . Cut = 3
9 # alg1 and alg2 will have same tool , both with cut == 3

Here a single “MyTool” configurable is created with a simple name. In the constructor a “ToolSvc.” is
appended (since there was no “.” in the name). Since the tool is public the final value (3) will be used by
both alg1 and alg2.

An example of how private tools work:
1 mt = MyTool ("foo")
2 mt . getName () # -> "ToolSvc.foo"

3

4 mt . Cut = 1
5 alg1 . privtool = mt

6 # alg1 gets "alg1.foo" configured with Cut==1

7 mt . Cut = 2
8 alg2 . privtool = mt

9 # (for now) alg2 gets "alg2.foo" configured with Cut==2

10

11 # after assignment , can get renamed copy

12 from Gaudi . Configuration import Configurable

13 mt2 = Configurable . allConfigurables ["alg2.foo"]
14 mt2 . Cut = 3
15 # (now , really) alg2 gets "alg2.foo" configured with Cut==3

Again, the same tool configurable is created and implicitly renamed. An initial cut of 1 is set and the tool
configurable is given to alg1. Guadi makes a copy and the “ToolSvc.foo” name of the original is changed
to “alg1.foo” in the copy. The original then as the cut changed to 2 and given to alg2. Alg1’s tool’s cut is
still 1. Finally, the copied MyTool configurable is looked up using the name “alg2.foo”. This can be used
if you need to configure the tool after it has been assigned to alg2.

6.5.3 The Package Configure Class and Optional Helper Classes

Every package that needs any but the most trivial configuration should provide a Configure class. By
convention this class should be available from the module named after the package. When it is instantiated
it should:

• Upon construction (in init ()), provide a sensible, if maybe incomplete, default configuration for
the general features the package provides.

• Store any and all configurables it creates in the instance (Python’s self variable) for the user to later
access.

In addition, the package author is encouraged to provide one or more “helper” classes that can be used
to simplify non-default configuration. Helper objects can either operate on the Configure object or can be
passed in to Configure or both.

To see an example of helpers are written look at:
1 $SITEROOT/dybgaudi/InstallArea/python/GenTools/Helpers . py

Package authors should write these classes and all higher layers may make use of these classes.

6.5. PROPERTIES AND CONFIGURATION 73

6.5.4 User Job Option Scripts

The next layer consists of job option scripts. These are short Python scripts that use the lower layers to
provide non-default configuration that makes the user’s job unique. However, these are not “main program”
files and do not execute on their own (see next section).

Users can configure an entire job in one file or spread parts of the configuration among multiple files.
The former case is useful for bookkeeping and the latter is if the user wants to run multiple jobs that differ
in only a small part of their configuration. In this second case, they can separate invariant configuration
from that which changes from run to run.

An example of a job script using the GenTools helpers described above is:

1 from GenTools . He lpers import Gun

2 gunner = Gun ()
3

4 import GaudiKernel . SystemOfUnits as units

5 gunner . timerator . LifeTime = int (60∗ units . second)
6 # ...

7 import GenTools

8 gt = GenTools . Configure ("gun" , "Particle Gun" , helper=gunner)
9 gt . helper . positioner . Position = [0 , 0 , 0]

In the first two lines a “Gun” helper class is imported and constructed with defaults. This helper will
set up the tools needed to implement a particle gun based generator. It chooses a bunch of defaults such as
particle type, momentum, etc, which you probably don’t want so you can change them later. For example
the mean life time is set in line 5. Finally, the package is configured and this helper is passed in. The
configuration creates a GtGenerator algorithm that will drive the GenTools implementing the gun based
kinematics generation. After the Configure object is made, it can be used to make more configuration
changes.

This specific example was for GenTools. Other package will do different things that make sense for them.
To learn what each package does you can read the Configure and/or helper code or you can read its inlined
documentation via the pydoc program. Some related examples of this latter method:

1 shell> pydoc GenTools . Helpers
2 Help on module GenTools . Helpers in GenTools :
3

4 NAME

5 GenTools . Helpers
6

7 FILE

8 /path/to/NuWa−trunk/dybgaudi/InstallArea/python/GenTools/Helpers . py
9

10 DESCRIPTION

11 Several helper classes to assist in configuring GenTools . They

12 assume geometry has already been setup . The helper classes that

13 produce tools need to define a "tools ()" method that returns an

14 ordered list of what tools it created . Users of these helper classes

15 should use them like :
16

17 CLASSES

18 Gun

19 HepEVT

20 . . .
21

22 shell> pydoc GenTools . Helpers . Gun
23 Help on class Gun in GenTools . Helpers :
24

25 GenTools . Helpers . Gun = class Gun

26 | Configure a particle gun based kinematics

27 |
28 | Methods defined here :
29 |

74 CHAPTER 6. OFFLINE FRAMEWORK

30 | __init__ (self , . . .)
31 | Construct the configuration . Coustom configured tools can

32 | be passed in or customization can be done after construction

33 | using the data members :
34 |
35 | . gun
36 | . positioner
37 | . timerator
38 | . transformer
39 |
40 | The GtGenerator alg is available from the . generatorAlg member .
41 |
42 | They can be accessed for additional , direct configuration .
43 . . .

6.5.5 User Job Option Modules

A second, complimentary high-level configuration method is to collect lower level code into a user job module.
These are normal Python modules and as such are defined in a file that exist in the users current working,
in the packages python/ sub directory or otherwise in a location in the user’s PYTHONPATH.

Any top level code will be evaluated as the module is imported in the context of configuration (same
as job option scripts). But, these modules can supply some methods, named by convention, that can allow
additional functionality.

configure(argv=[]) This method can hold all the same type of configuration code that the job option
scripts do. This method will be called just after the module is imported. Any command line options
given to the module will be available in argv list.

run(appMgr) This method can hold code that is to be executed after the configuration stage has finished
and all configuration has been applied to the actual underlying C++ objects. In particular, you can
define pure-Python algorithms and add them to the TopAlg list.

There are many examples Job Option Modules in the code. Here are some specific ones.

GenTools.Test this module2 gives an example of a configure(argv=[]) function that parses command
line options. Following it will allow users to access the command line usage by simply running
nuwa.py -m ’GenTools.Test --help’.

DivingIn.Example this module3 gives an example of a Job Option Module that takes no command line
arguments and configures a Python Algorithm class into the job.

6.5.6 The nuwa.py main script

Finally, there is the layer on top of it all. This is a main Python script called nuwa.py which collects all the
layers below. This script provides the following features:

• A single, main script everyone uses.

• Configures framework level things

– Python, interactive vs. batch

– Logging level and color

– File I/O, specify input or output files on the command line

2Code is at dybgaudi/Simulation/GenTools/python/GenTools/Test.py.
3Code is at tutorial/DivingIn/python/DivingIn/Example.py

6.5. PROPERTIES AND CONFIGURATION 75

– Geometry

– Use or not of the archive event store

– Access to visualization

– Running of user job option scripts and/or loading of modules

After setting up your environment in the usual way the nuwa.py script should be in your execution PATH.
You can get a short help screen by just typing4:

1 shell> nuwa . py −−help
2 Usage :
3 This is the main program to run NuWa offline jobs .
4

5 It provides a job with a minimal , standard setup . Non standard

6 behavior can made using command line options or providing additional

7 configuration in the form of python files or modules to load .
8

9 Usage :
10

11 nuwa . py [options] [−m|−−module "mod.ule --mod -arg ..."] \
12 [config1 . py config2 . py . . .] \
13 [mod . ule1 mod . ule2 . . .] \
14 [input1 . root input2 . root . . .]
15

16 Python modules can be specified with −m|−−module options and may

17 include any per−module arguments by enclosing them in shell quotes

18 as in the above usage . Modules that do not take arguments may

19 also be listed as non−option arguments . Modules may supply the

20 following functions :
21

22 configure (argv =[]) − if exists , executed at configuration time

23

24 run (theApp) − if exists , executed at run time with theApp set to

25 the AppMgr .
26

27 Additionally , python job scripts may be specified .
28

29 Modules and scripts are loaded in the order they are specified on

30 the command line .
31

32 Finally , input ROOT files may be specified . These will be read in

33 the order they are specified and will be assigned to supplying

34 streams not specificially specified in any input−stream map .
35

36 The listing of modules , job scripts and/or ROOT files may be

37 interspersed but must follow all options .
38

39

40

41 Options :
42 −h , −−help show this help message and exit

43 −A , −−no−aes Do not use the Archive Event Store .
44 −l LOG_LEVEL , −−log−level=LOG_LEVEL

45 Set output log level .
46 −C COLOR , −−color=COLOR

47 Use colored logs assuming given background (’ light ’ or

48 ’ dark ’)
49 −i , −−interactive Enter interactive ipython shell after the run

50 completes (def is batch) .
51 −s , −−show−includes Show printout of included files .
52 −m MODULE , −−module=MODULE

4Actual output may differ slightly.

76 CHAPTER 6. OFFLINE FRAMEWORK

53 Load given module and pass optional argument list

54 −n EXECUTIONS , −−executions=EXECUTIONS

55 Number of times to execute list of top level

56 algorithms .
57 −o OUTPUT , −−output=OUTPUT

58 Output filename

59 −O OUTPUT_STREAMS , −−output−streams=OUTPUT_STREAMS

60 Output file map

61 −I INPUT_STREAMS , −−input−streams=INPUT_STREAMS

62 Input file map

63 −H HOSTID , −−hostid=HOSTID

64 Force given hostid

65 −R RUN , −−run=RUN Set run number

66 −N EXECUTION , −−execution=EXECUTION

67 Set the starting execution number

68 −V , −−visualize Run in visualize mode

69 −G DETECTOR , −−detector=DETECTOR

70 Specify a non−default , top−level geometry file

Each job option .py file that you pass on the command line will be evaluated in turn and the list of
.root files will be appended to the “default” input stream. Any non-option argument that does not end in
.py or .root is assumed to be a Python module which will be loaded as described in the previous section.

If you would like to pass command line arguments to your module, instead of simply listing them on the
command line you must -m or --module. The module name and arguments must be surrounded by shell
quotes. For example:

1 shell> nuwa . py −n1 −m "DybPython.TestMod1 -a foo bar" \
2 −m DybPython . TestMod2 \
3 DybPython . TestMod3

In this example, only DybPython.TestMod1 takes arguments. TestMod2 does not but can still be specified
with “-m”. As the help output states, modules and job script files are all loaded in the order in which they
are listed on the command line. All non-option arguments must follow options.

6.5.7 Example: Configuring DetSimValidation

During the move from the legacy G4dyb simulation to the Gaudi based one an extensive validation process
was done. The code to do this is in the package DetSimValidation in the Validation area. It is provides
a full-featured configuration example. Like GenTools, the configuration is split up into modules providing
helper classes. In this case, there is a module for each detector and a class for each type of validation run.
For example, test of uniformly distributed positrons can be configured like:

from DetSimValidation . AD import UniformPositron

up = UniformPositron ()

Chapter 7

Data Model

• Over all structure of data

– One package per processing stage

– Single “header object” as direct TES DataObject

– Providence

• Tour of DataModel packages

7.1 Overview

The “data model” is the suite of classes used to describe almost all of the information used in our analysis
of the experimental results. This includes simulated truth, real and simulated DAQ data, calibrated data,
reconstructed events or other quantities. Just about anything that an algorithm might produce is a candidate
for using existing or requiring new classes in the data model. It does not include some information that will
be stored in a database (reactor power, calibration constants) nor any analysis ntuples. In this last case,
it is important to strive to keep results in the form of data model classes as this will allow interoperability
between different algorithms and a common language that we can use to discuss our analysis.

The classes making up the data model are found in the DataModel area of a release. There is one package
for each related collection of classes that a particular analysis stage produces.

7.1.1 HeaderObject

There is one special class in each package which inherits from HeaderObject. All other objects that a pro-
cessing stage produces will be held, directly or indirectly by the HeaderObject for the stage. HeaderObjects
also hold a some book-keeping items such as:

TimeStamp giving a single reference time for this object and any subobjects it may hold. See below for
details on what kind of times the data model makes use of.

Execution Number counts the number of times the algorithm’s execution method has been called, starting
at 1. This can be thought of as an “event” number in more traditional experiments.

Random State holds the stage of the random number generator engine just before the algorithm that
produced the HeaderObject was run. It can be used to re-run the algorithm in order to reproduce and
arbitrary output.

Input HeaderObjects that were used to produce this one are referenced in order to determine providence.

Time Extent records the time this data spans. It is actually stored in the TemporalDataObject base class.

77

78 CHAPTER 7. DATA MODEL

7.2 Times

There are various times recorded in the data. Some are absolute but imprecise (integral number of ns) and
others are relative but precise (sub ns).

7.2.1 Absolute Time

Absolute time is stored in TimeStamp objects from the Conventions package under DataModel. They store
time as seconds from the Unix Epoch (Jan 1, 1970, UTC) and nanoseconds w/in a second. A 32 bit integer is
currently given to store each time scale1. While providing absolute time, they are not suitable for recording
times to a precision less than 1 ns. TimeStamp objects can be implicitly converted to a double but will suffer
a loss of precision of 100s of µsec when holding modern times.

7.2.2 Relative Time

Relative times simply count seconds from some absolute time and are stored as a double.

7.2.3 Reference times

Each HeaderObject holds an absolute reference time as a TimeStamp. How each is defined depends on the
algorithms that produced the HeaderObject.

Sub-object precision times

Some HeaderObjects, such as SimHeader, hold sub-objects that need precision times (eg SimHits). These
are stored as doubles and are measured from the reference time of the HeaderObject holding the sub-objects.

7.2.4 Time Extents

Each TemporalObject (and thus each HeaderObject) has a time extent represented by an earliest TimeS-
tamp followed by a latest one. These are used by the window-based analysis window implemented by the
Archive Event Store?? to determine when objects fall outside the window and can be purged. How each
earliest/latest pair is defined depends on the algorithm that produced the object but are typically chosen to
just contain the times of all sub-objects held by the HeaderObject.

7.2.5 How Some Times are Defined

This list how some commonly used times are defined. The list is organized by the top-level DataObject
where you may find the times.

GenHeader Generator level information.

Reference Time Defined by the generator output. It is the first or primary signal event interaction
time.

Time Extent Defined to encompass all primary vertices. Will typically be infinitesimally small.

Precision Times Currently, there no precision times in the conventional sense. Each primary vertex
in an event may have a unique time which is absolute and stored as a double.

SimHeader Detector Simulation output.

Reference Time This is identical to the reference time for the GenHeader that was used to as input
to the simulation.

1Before 2038 someone had better increase the size what stores the seconds!

7.3. EXAMPLES OF USING THE DATA MODEL OBJECTS 79

Time Extent Defined to contain the times of all SimHits from all detectors.

Precision Times Each RPC/PMT SimHit has a time measured from the reference time.FIXME:
Need to check on times used in the Historian.

ElecHeader

TrigHeader

Readout

...

7.3 Examples of using the Data Model objects

Please write more about me!

7.3.1 Tutorial examples

Good examples are provided by the tutorial project which is located under NuWa-RELEASE/tutorial/. Each
package shoudl provide a simple, self contained example but note that sometimes they get out of step with
the rest of the code or may show less than ideal (older) ways of doing things.

Some good examples to look at are available in the DivingIn tutorial package. It shows how to do
almost all things one will want to do to write analysis. It includes, accessing the data, making histograms,
reading/writing files. Look at the Python modules under python/DivingIn/. Most provide instructions on
how to run them in comments at the top of the file. There is a companion presentation available as DocDB
#31312.

2http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=3131

http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=3131

Chapter 8

Data I/O

Gaudi clearly separates transient data representations in memory from those that persist on disk. The
transient representations are described in the previous section. Here the persistency mechanism is described
from the point of view of configuring jobs to read and write input/output (I/O) files and how to extend it
to new data.

8.1 Goal

The goal of the I/O subsystem is to persist or preserve the state of the event store memory beyond the life
time of the job that produced it and to allow this state to be restored to memory in subsequent jobs.

As a consequence, any algorithms that operate on any particular state of memory should not depend,
nor even be able to recognize, that this state was restored from persistent files or was generated “on the fly”
by other, upstream algorithms.

Another consequence of this is that users should not need to understand much about the file I/O subsys-
tem except basics such as deciding what to name the files. This is described in the section on configuration
below. Of course, experts who want to add new data types to the subsystem must learn some things which
are described in the section below on adding new data classes.

8.2 Features

The I/O subsystem supports these features:

Streams: Streams are time ordered data of a particular type and are named. In memory this name is the
location in the Transient Event Store (TES) where the data will be accessed. On disk this name is the
directory in the ROOT TFile where the TTree that stores the stream of data is located.

Serial Files: A single stream can be broken up into sequential files. On input an ordered list of files can be
given and they will be navigated in order, transparently. On output, files closed and new ones opened
based on certain criteria. FIXME: This is not yet implemented! But, it is easy to do so, the
hooks are there.

Parallel Files: Different streams from one job need not be stored all together in the same file. Rather, they
can be spread among one or more files. The mapping from stream name to file is user configurable
(more on this below).

Navigation: Input streams can be navigated forward, backward and random access. The key is the “entry”
number which simply counts the objects in the stream, independent of any potential file breaks.1

1Correct filling of the Archive Event Service is only guaranteed when using simple forward navigation.

81

82 CHAPTER 8. DATA I/O

Policy: The I/O subsystem allows for various I/O policies to be enforced by specializing some of its classes
and through the converter classes.

8.3 Packages

The I/O mechanism is provided by the packages in the RootIO area of the repository. The primary package
is RootIOSvc which provides the low level Gaudi classes. In particular it provides an event selector for
navigating input as well as a conversion service to facilitate converting between transient and persistent
representations. It also provides the file and stream manipulation classes and the base classes for the data
converters. The concrete converters and persistent data classes are found in packages with a prefix “Per”
under RootIO/. There is a one-to-one correspondence between these packages and those in DataModel
holding the transient data classes.

The RootIOSvc is generic in the sense that it does not enforce any policy regarding how data is sent
through I/O. In order to support Daya Bay’s unique needs there are additional classes in DybSvc/DybIO. In
particular DybEvtSelector and DybStorageSvc. The first enforces the policy that the “next event” means
to advance to the next RegistrationSequence2 and read in the objects that it references. The second also
enforces this same policy but for the output.

8.4 I/O Related Job Configuration

I/O related configuration is handled by nuwa.py. You can set the input and output files on the command
line. See section 6.5.6 for details.

8.5 How the I/O Subsystem Works

This section describes how the bits flow from memory to file and back again. It isn’t strictly needed but will
help understand the big picture.

8.5.1 Execution Cycle vs. Event

Daya Bay does not have a well defined concept of “event”. Some physics interactions can lead overlapping
collections of hits and others can trigger multiple detectors. To correctly simulate this reality it is required
to allow for multiple results from an algorithm in any given run through the chain of algorithms. This run
is called a “top level execution cycle” which might simplify to an “event” in other experiments.

8.5.2 Registration Sequence

In order to record this additional dimension to our data we use a class called RegistrationSequence (RS).
There is one RS created for each execution cycle. Each time new data is added to the event store it is also
recorded to the current RS along with a unique and monotonically increasing sequence number or index.

The RS also hold flags that can be interpreted later. In particular it holds a flag saying whether or not
any of its data should be saved to file. These flags can be manipulated by algorithms in order to implement
a filtering mechanism.

Finally, the RS, like all data in the analysis time window, has a time span. It is set to encompass the time
spans of all data that it contains. Thus, RS captures the results of one run through the top level algorithms.

2FIXME: This needs to be described in the Data Model chapter and a reference added here

8.6. ADDING NEW DATA CLASSES 83

8.5.3 Writing data out

Data is written out using a DybStorageSvc. The service is given a RS and will write it out through the
converter for the RS. This conversion will also trigger writing out all data that the RS points to.

When to write out

In principle, one can write a simple algorithm that uses DybStorageSvc and is placed at the end of the chain
of top-level algorithms3. As a consequence, data will be forced to be written out at the end of each execution
cycle. This is okay for simple analysis but if one wants to filter out records from the recent past (and still in
the AES) based on the current record it will be too late as they will be already written to file.

Instead, to be completely correct, data must not be written out until every chance to use it (and thus
filter it) has been exhausted. This is done by giving the job of using DybStorageSvc to the agent that is
responsible for clearing out data from the AES after they have fallen outside the analysis window.

8.5.4 Reading data in

Just as with output, input is controlled by the RS objects. In Gaudi it is the jobs of the “event selector”
to navigate input. When the application says “go to the next event” it is the job of the event selector
to interpret that command. In the Daya Bay software this is done by DybIO/DybEvtSelector which is a
specialization of the generic RootIOSvc/RootIOEvtSelector. This selector will interpret “next event” as
“next RegistrationSequence”. Loading the next RS from file to memory triggers loading all the data it
referenced. The TES and thus AES are now back to the state they were in when the RS was written to file
in the first place.

8.6 Adding New Data Classes

For the I/O subsystem to support new data classes one needs to write a persistent version of the transient
class and a converter class that can copy information between the two.

8.6.1 Class Locations and Naming Conventions

The persistent data and converters classes are placed in a package under RootIO/ named with the prefix
“Per” plus the name of the corresponding DataModel package. For example:

DataModel/GenEvent/ ←→ RootIO/PerGenEvent/

Likewise, the persistent class names themselves should be formed by adding “Per” to the their tran-
sient counterparts. For example, GenEvent’s GenVertex transient class has a persistent counterpart in
PerGenEvent with the name PerGenVertex.

Finally, one writes a converter for each top level data class (that is a subclass of DataObject with a unique
Class ID number) and the converters name is formed by the transient class name with “Cnv” appended. For
example the class that converts between GenHeader and PerGenHeader is called GenHeaderCnv.

The “Per” package should produce both a linker library (holding data classes) and a component library
(holding converters). As such the data classes header (.h) files should go in the usual PerXxx/PerXxx/
subdirectory and the implementation (.cc) files should go in PerXxx/src/lib/. All converter files should
go in PerXxx/src/components/. See the PerGenHeader package for example.

8.6.2 Guidelines for Writing Persistent Data Classes

In writing such classes, follow these guidelines which differ from normal best practices:

3This is actually done in RootIOTest/DybStorageAlg

84 CHAPTER 8. DATA I/O

• Do not include any methods beyond constructors/destructors.

• Make a default constructor (no arguments) as well as one that can set the data members to non-default
values

• Use public, and not private, data members.

• Name them with simple, but descriptive names. Don’t decorate them with “m ”, “f” or other prefixes
traditionally used in normal classes.

8.6.3 Steps to Follow

1. Your header class should inherit from PerHeaderObject, all sub-object should, in general, not inherit
from anything special.

2. Must provide a default constructor, convenient to define a constructor that passes in initial values.

3. Must initialize all data members in any constructor.

4. Must add each header file into dict/headers.h file (file name must match what is in requirements
file below.

5. Must add a line in dict/classes.xml for every class and any STL containers or other required instan-
tiated templates of these classes. If the code crashes inside low-level ROOT I/O related “T” classes it
is likely because you forgot to declare a class or template in classes.xml.

6. Run a RootIOTest script to generate trial output.

7. Read the file with bare root + the load.C script.

8. Look for ROOT reporting any undefined objects or missing streamers. This indicates missing entries
in dict/classes.xml.

9. Browse the tree using a TBrowser. You should be able to drill down through the data structure.
Anything missing or causes a crash means missing dict/classes.xml entries or incorrect/incomplete
conversion.

10. Read the file back in using the RootIOTest script.

11. Check for any crash (search for “Break”) or error in the logs.

12. Use the diff out.py script to diff the output and intput logs and check for unexplained differences
(this may require you to improve fillStream() methods in the DataModel classes.

8.6.4 Difficulties with Persistent Data Classes

Due to limitations in serializing transient objects into persistent ones care must be taken in how the persistent
class is designed. The issues of concern are:

Redundancy: Avoid storing redundant transient information that is either immaterial or that can be
reconstructed by other saved information when the object is read back in.

Referencing: One can not directly store pointers to other objects and expect them to be correct when the
data is read back in.

The Referencing problem is particularly difficult. Pointers can refer to other objects across different
“boundaries” in memory. For example:

8.6. ADDING NEW DATA CLASSES 85

• Pointers to subobjects within the same object.

• Pointers to objects within the same HeaderObject hierarchy.

• Pointers to objects in a different HeaderObject hierarchy.

• Pointers to objects in a different execution cycle.

• Pointers to isolated objects or to those stored in a collection.

The PerBaseEvent package provides some persistent classes than can assist the converter in resolving
references:

PerRef Holds a TES/TFile path and an entry number

PerRefInd Same as above but also an array index

In many cases the transient objects form a hierarchy of references. The best strategy to store such a
structure is to collect all the objects into like-class arrays and then store the relationships as indices into
these arrays. The PerGenHeader classes give an example of this in how the hierarchy made up of vertices
and tracks are stored.

8.6.5 Writing Converters

The converter is responsible for copying information between transient and persistent representations. This
copy happens in two steps. The first allows the converter to copy information that does not depend on the
conversion of other top-level objects. The second step lets the converter fill in anything that required the
other objects to be copied such as filling in references.

A Converter operates on a top level DataObject subclass and any subobjects it may contain. In Daya
Bay software, almost all such classes will inherit from HeaderObject. The converter needs to directly copy
only the data in the subclass of HeaderObject and can delegate the copying of parent class to its converter.

The rest of this section walks through writing a converter using the GenHeaderCnv as an example.

Converter Header File

First the header file:

1 #include "RootIOSvc/RootIOTypedCnv.h"

2 #include "PerGenEvent/PerGenHeader.h"

3 #include "Event/GenHeader.h"

4

5 class GenHeaderCnv : public RootIOTypedCnv<PerGenHeader ,
6 DayaBay : : GenHeader>

The converter inherits from a base class that is templated on the persistent and transient class types.
This base class hides away much of Gaudi the machinery. Next, some required Gaudi boilerplate:

1 public :
2 static const CLID& classID () {
3 return DayaBay : : CLID_GenHeader ;
4 }
5

6 GenHeaderCnv (ISvcLocator∗ svc) ;
7 virtual ˜GenHeaderCnv () ;

The transient class ID number is made available and constructors and destructors are defined. Next, the
initial copy methods are defined. Note that they take the same types as given in the templated base class.

86 CHAPTER 8. DATA I/O

1 StatusCode PerToTran (const PerGenHeader& per_obj ,
2 DayaBay : : GenHeader& tran_obj) ;
3

4 StatusCode TranToPer (const DayaBay : : GenHeader& per_obj ,
5 PerGenHeader& tran_obj) ;

Finally, the fill methods can be defined. These are only needed if your classes make reference to objects
that are not subobjects of your header class:

1 // StatusCode fillRepRefs(IOpaqueAddress* addr , DataObject* dobj);

2 // StatusCode fillObjRefs(IOpaqueAddress* addr , DataObject* dobj);

FIXME: This is a low level method. We should clean it up so that, at least, the needed
dynamic cast<> on the DataObject* is done in the base class.

Converter Implementation File

This section describes what boilerplate each converter needs to implement. It doesn’t go through the actual
copying code. Look to the actual code (such as GenHeaderCnv.cc) for examples.

First the initial boilerplate and constructors/destructors.

1 #include "GenHeaderCnv.h"

2 #include "PerBaseEvent/HeaderObjectCnv.h"

3

4 using namespace DayaBay ;
5 using namespace std ;
6

7 GenHeaderCnv : : GenHeaderCnv (ISvcLocator∗ svc)
8 : RootIOTypedCnv<PerGenHeader , GenHeader>("PerGenHeader" ,
9 classID () , svc)

10 { }
11 GenHeaderCnv : : ˜ GenHeaderCnv ()
12 { }

Note that the name of the persistent class, the class ID number and the ISvcLocator all must be passed
to the parent class constructor. One must get the persistent class name correct as it is used by ROOT to
locate this class’s dictionary.

When doing the direct copies, first delegate copying the HeaderObject part to its converter:

1 // From Persistent to Transient

2 StatusCode GenHeaderCnv : : PerToTran (const PerGenHeader& perobj ,
3 DayaBay : : GenHeader& tranobj)
4 {
5 StatusCode sc = HeaderObjectCnv : : toTran (perobj , tranobj) ;
6 if (sc . isFailure ()) return sc ;
7

8 // ... rest of specific p->t copying ...

9

10 return StatusCode : : SUCCESS ;
11 }
12

13 // From Transient to Persistent

14 StatusCode GenHeaderCnv : : TranToPer (const DayaBay : : GenHeader& tranobj ,
15 PerGenHeader& perobj)
16 {
17 StatusCode sc = HeaderObjectCnv : : toPer (tranobj , perobj) ;
18 if (sc . isFailure ()) return sc ;
19

20 // ... rest of specific t->p copying ...

21

22 return StatusCode : : SUCCESS ;
23 }

8.6. ADDING NEW DATA CLASSES 87

For filling references to other object you implement the low level Gaudi methods fillRepRefs to fill
references in the persistent object and fillObjRefs for the transient. Like above, you should first delegate
the filling of the HeaderObject part to HeaderObjectCnv.

1 StatusCode GenHeaderCnv : : f i l l R e p R e f s (IOpaqueAddress ∗ , DataObject∗ dobj)
2 {
3 GenHeader∗ gh = dynamic_cast<GenHeader∗>(dobj) ;
4 StatusCode sc = HeaderObjectCnv : : f i l l P e r (m_rioSvc ,∗ gh ,∗ m_perobj) ;
5 if (sc . isFailure ()) { . . . handle error . . . }
6

7 // ... fill GenHeader references , if there were any , here ...

8

9 return sc ;
10 }
11

12 StatusCode GenHeaderCnv : : f i l l O b j R e f s (IOpaqueAddress ∗ , DataObject∗ dobj)
13 {
14 HeaderObject∗ hobj = dynamic_cast<HeaderObject∗>(dobj) ;
15 StatusCode sc = HeaderObjectCnv : : f i l l T r a n (m_rioSvc ,∗ m_perobj ,∗ hobj) ;
16 if (sc . isFailure ()) { . . . handle error . . . }
17

18 // ... fill GenHeader references , if there were any , here ...

19

20 return sc ;
21 }

Register Converter with Gaudi

One must tell Gaudi about your converter by adding two files. Both are named after the package and with
“ entries.cc” and “ load.cc” suffixes. First the “load” file is very short:

1 #include "GaudiKernel/LoadFactoryEntries.h"

2 LOAD_FACTORY_ENTRIES (PerGenEvent)

Note one must use the package name in the CPP macro. Next the “entries” file has an entry for each
converter (or other Gaudi component) defined in the package:

1 #include "GaudiKernel/DeclareFactoryEntries.h"

2 #include "GenHeaderCnv.h"

3 DECLARE_CONVERTER_FACTORY (GenHeaderCnv) ;

Resolving references

The Data Model allows for object references and the I/O code needs to support persisting and restoring
them. In general the Data Model will reference an object by pointer while the persistent class must reference
an object by an index into some container. To convert pointers to indices and back, the converter must have
access to the transient data and the persistent container.

Converting references can be additionally complicated when an object held by one HeaderObject refer-
ences an object held by another HeaderObject. In this case the converter of the first must be able to look up
the converter of the second and obtain its persistent object. This can be done as illustrated in the following
example:

1 #include "Event/SimHeader.h"

2 #include "PerSimEvent/PerSimHeader.h"

3 StatusCode ElecHeaderCnv : : initialize ()
4 {
5 MsgStream log (msgSvc () , "ElecHeaderCnv :: initialize") ;
6

7 StatusCode sc = RootIOBaseCnv : : initialize () ;
8 if (sc . isFailure ()) return sc ;
9

88 CHAPTER 8. DATA I/O

10 if (m_perSimHeader) return StatusCode : : SUCCESS ;
11

12 RootIOBaseCnv∗ other = this−>otherConverter (SimHeader : : classID ()) ;
13 if (! other) return StatusCode : : FAILURE ;
14

15 const RootIOBaseObject∗ base = other−>getBaseObject () ;
16 if (! base) return StatusCode : : FAILURE ;
17

18 const PerSimHeader∗ pgh = dynamic_cast<const PerSimHeader∗>(base) ;
19 if (! pgh) return StatusCode : : FAILURE ;
20

21 m_perSimHeader = pgh ;
22

23 return StatusCode : : SUCCESS ;
24 }

A few points:

• This done in initialize() as the pointer to the persistent object we get in the end will not change
throughout the life of the job so it can be cached by the converter.

• It is important to call the base class’s initialize() method as on line 7.

• Next, get the other converter is looked up by class ID number on line 12.

• Its persistent object, as a RootIOBaseObj is found and dynamic cast to the concrete class on lines 15
and 18.

• Finally it is stored in a data member for later use during conversion at line 21.

8.6.6 CMT requirements File

The CMT requirements file needs:

• Usual list of use lines

• Define the headers and linker library for the public data classes

• Define the component library

• Define the dictionary for the public data classes

Here is the example for PerGenEvent:

1 package PerGenEvent

2 version v0

3

4 use Context v∗ DataModel

5 use BaseEvent v∗ DataModel

6 use GenEvent v∗ DataModel

7 use ROOT v∗ LCG_Interfaces

8 use CLHEP v∗ LCG_Interfaces

9 use PerBaseEvent v∗ RootIO

10

11 # public code

12 include_dirs $ (PERGENEVENTROOT)
13 apply_pattern install_more_includes more="PerGenEvent"

14 library PerGenEventLib lib /∗ . cc
15 apply_pattern linker_library library=PerGenEventLib

16

17 # component code

18 library PerGenEvent components /∗ . cc

8.6. ADDING NEW DATA CLASSES 89

19 apply_pattern component_library library=PerGenEvent

20

21

22 # dictionary for persistent classes

23 apply_pattern reflex_dictionary dictionary=PerGenEvent \
24 headerfiles=$ (PERGENEVENTROOT)/ dict/headers . h \
25 selectionfile =../ dict/classes . xml

Chapter 9

Detector Description

9.1 Introduction

The Detector Description, or “DetDesc” for short, provides multiple, partially redundant hierarchies of
information about the detectors, reactors and other physical parts of the experiment.

The description has three main sections:

Materials defines the elements, isotopes and materials and their optical properties that make up the de-
tectors and the reactors.

Geometry describes the volumes, along with their solid shape, relative positioning, materials and sensitivity
and any surface properties, making up the detectors and reactors. The geometry, like that of Geant4,
consists of logical volumes containing other placed (or physical) logical volumes. Logical volumes only
know of their children.

Structure describes a hierarchy of distinct, placed “touchable” volumes (Geant4 nomenclature) also known
as Detector Elements (Gaudi nomenclature). Not all volumes are directly referenced in this hiearchy,
only those that are considered important.

The data making up the description exists in a variety of forms:

XML files The definitive source of ideal geometry is stored in XML files following a well defined DTD
schema.

DetDesc TDS objects In memory, the description is accessed as objects from the DetDesc package stored
in the Transient Detector Store. These objects are largely built from the XML files but can have
additional information added, such as offsets from ideal locations.

Geant4 geometry Objects in the Materials and Geometry sections can be converted into Geant4 geometry
objects for simulation purposes.

9.1.1 Volumes

There are three types of volumes in the description. Figure 9.1 describes the objects that store logical,
physical and touchable volume information.

Logical

XML <logvol>

C++ ILVolume

91

92 CHAPTER 9. DETECTOR DESCRIPTION

Description: The logical volume is the basic building block. It combines a shape and a material and zero
or more daughter logical volumes fully contained inside the shape.

Example: The single PMT logical volume placed as a daughter in the AD oil and Pool inner/outer water
shields1.

9.1.2 Physical

XML <physvol>

C++ IPVolume

Description: Daughters are placed inside a mother with a transformation matrix giving the daughters
translation and rotation with respect to the mother’s coordinate system. The combination of a trans-
formation and a logical volume is called a physical volume.

Example: The 192 placed PMTs in the AD oil logical volume.

9.1.3 Touchable

XML <detelem>

C++ DetectorElement

Description: Logical volumes can be reused by placing them multiple times. Any physical daughter volumes
are also reused when their mother is placed multiple times. A touchable volume is the trail from the
top level “world” volume down the logical/physical hiearchy to a specific volume. In Geant4 this trail
is stored as a vector of physical volumes (G4TouchableHistory). On the other hand in Gaudi only
local information is stored. Each DetectorElement holds a pointer to the mother DetectorElement
that “supports” it as well as pointers to all child DetectorElements that it supports.

Example: The 8× 192 = 1536 AD PMTs in the whole experiment

Scope of Detector Description, basics of geometry, structure and materials. Include diagrams showing
geometry containment and structure’s detector element / geometry info relationships.

9.2 Conventions

The numbering conventions reserve 0 to signify an error. PMTs and RPCs are addressed using a single
bit-packed integer that also records the site and detector ID. The packing is completely managed by classes
in Conventions/Detectors.h. The site ID is in Conventions/Site.h and the detector ID (type) is in
Conventions/DetectorId.h. These are all in the DataModel area.

9.2.1 AD PMTs

The primary PMTs in an AD are numbered sequentially as well as by which ring and column they are in.
Rings count from 1 to 8 starting at the bottom and going upwards. Columns count from 1 to 24 starting
at the column just above the X-axis2 and continuing counter clockwise if looking down at the AD. The
sequential ID number can be calculated by:

column# + 24*(ring# - 1)

1We may create a separate PMT logical volume for the AD and one or two for the Pool to handle differences in PMT models
actually in use.

2Here the X-axis points to the exit of the hall.

9.3. COORDINATE SYSTEM 93

Besides the 192 primary PMTs there are 6 calibration PMTs. Their ID numbers are assigned 193 - 198
as 192 +:

1. top, target-viewing

2. bottom, target-viewing

3. top, gamma-catcher-viewing

4. bottom, gamma-catcher-viewing

5. top, mineral-oil-viewing

6. bottom, mineral-oil-viewing

FIXME: Add figures showing PMT row and column counts, orientation of ADs in Pool.
AD numbers. coordinate system w.r.t pool.

9.2.2 Pool PMTs

Pool PMT counting, coordinate system w.r.t hall.

9.2.3 RPC

RPC sensor id convention. Coordinate system w.r.t. hall.

9.3 Coordinate System

As described above, every mother volume provides a coordinate system with which to place daughters. For
human consumption there are three canonical coordinate system conventions. They are:

Global Th global coordinate system has its origin at the mid site with X pointing East, Y pointing North
and Z pointing up. It is this system in which Geant4 works.

Site Each site has a local coordinate system with X pointing towards the exit and Z pointing up. Looking
down, the X-Y origin is at the center of the tank, mid way between the center of the ADs. The Z
origin is at the floor level which is also the nominal water surface. This makes the Pools and ADs at
negative Z, the RPCs at positive Z.

AD Each AD has an even more local coordinate system. The Z origin is mid way between the inside top
and bottom of the Stainless Steal vessel. This ZAD = 0 origin is nominally at ZSite = −(5m−7.5mm).
The Z axis is collinear with the AD cylinder axis and the X and Y are parallel to X and Y of the Site
coordinate system, respectively.

The Site and AD coordinate systems are related to each other by translation alone. Site coordinate
systems are translated and rotated with respect to the Global system.

Given a global point, the local Site or AD coordinate system can be found using the CoordSysSvc service
like:

1 // Assumed in a GaudiAlgorithm:

2 IService∗ isvc = 0 ;
3 StatusCode sc = service ("CoordSysSvc" , isvc , true) ;
4 if (sc . isFailure ()) handle_error () ;
5 ICoordSvc∗ icss = 0 ;
6 sc = isvc−>queryInterface (IID_ICoordSysSvc , (void∗∗)&icss) ;
7 if (sc . isFailure ()) handle_error () ;

94 CHAPTER 9. DETECTOR DESCRIPTION

8

9 Gaudi : : XYZPoint globalPoint = . . . ;
10 IDetectorElement∗ de = icss−>coordSysDE (globalPoint) ;
11 if (! de) handle_error () ;
12 Gaudi : : XYZPoint localPoint = de−>geometry()−>toLocal (globalPoint) ;

9.4 XML Files

Schema, conventions.

9.5 Transient Detector Store

In a subclass of GaudiAlgorithm you can simply access the Transient Detector Store (TDS) using getDet()
templated method or the SmartDataPtr smart pointer.

1

2 // if in a GaudiAlgorithm can use getDet ():

3 DetectorElement∗ de = getDet<DetectorElement>("/dd/Structure/DayaBay") ;
4 LVolume∗ lv = getDet<LVolume>("/dd/Geometry/AD/lvOIL") ;
5

6 // or if not in a GaudiAlgorithm do it more directly:

7 IDataProviderSvc∗ detSvc = 0 ;
8 StatusCode sc = service ("DetectorDataSvc" , detSvc , true) ;
9 if (sc . isFailure ()) handle_error () ;

10

11 SmartDataPtr<IDetectorElement> topDE (detSvc , "/dd/Structure/DayaBay") ;
12 if (! topDE) return handle_error () ;
13

14 // use topDE ...

15

16 detSvc−>release () ;

9.6 Configuring the Detector Description

The detector description is automatically configured for the user in nuwa.py.

9.7 PMT Lookups

Information about PMTs can be looked up using the PmtGeomInfoSvc. You can do the lookup using one of
these types of keys:

Structure path which is the /dd/Structure/... path of the PMT

PMT id the PMT id that encodes what PMT in what detector at what site the PMT is

DetectorElement the pointer to the DetectorElement that embodies the PMT

The resulting PmtGeomInfo object gives access to global and local PMT positions and directions.

9.8 Visualization

Visualization can be done using our version of LHCb’s PANORAMIX display. This display is started by
running:

1 shell> nuwa . py −V

9.8. VISUALIZATION 95

Take this tour:

• First, note that in the tree viewer on the left hand side, if you click on a folder icon it opens but if you
click on a folder name nothing happens. The opposite is true for the leaf nodes. Clicking on a leaf’s
name adds the volume to the viewer.

• Try openning /dd/Geometry/PMT/lvHemiPmt. You may see a tiny dot in the middle of the viewer
or nothing because it is too small.

• Next click on the yellow/blue eyeball icon on the right. This should zoom you to the PMT.

• You can then rotate with a mouse drag or the on-screen rollers. If you have a mouse with a wheel it
will zoom in/out. Cntl-drag or Shift-drag pans.

• Click on the red arrow and you can ”pick” volumes. A Ctrl-pick will delete a volume. A Shift-click
will restore it (note some display artifacts can occur during these delete/restores).

• Go back to the Michael Jackson glove to do 3D moves.

• You can clear the scene with Scene-¿Scene-¿Clear. You will likely want to do this before displaying
any new volumes as each new volume is centered at the same point.

• Scene-¿”Frame m” is useful thing to add.

• Materials can’t be viewed but /dd/Structure can be.

• Another thing to try: Click on /dd/Structure/DayaBay, select the yellow/blue eye, then the red arror
and Ctrl-click away the big cube. This shows the 3 sites. You can drill down them further until you
get to the AD pmt arrays.

• Finally, note that there is still a lot of non-DayaBay ”cruft” that should be cleaned out so many menu
items are not particularly useful.

96 CHAPTER 9. DETECTOR DESCRIPTION

Figure 9.1: Logical, Physical and Touchable volumes.

Chapter 10

Kinematic Generators

10.1 Introduction

Generators provide the initial kinematics of events to be further simulated. They must provide a 4-position,
4-momentum and a particle type for every particle to be tracked through the detector simulation. They may
supply additional “information” particles that are otherwise ignored. The incoming neutrino or radioactive
decay parent are two examples of such particles.

10.2 Generator output

Each generated event is placed in the event store at the default location /Event/Gen/GenHeader but when
multiple generators are active in a single job they will place their data in other locations under /Event/Gen.

The data model for this object is in DataModel/GenEvent. The GenHeader object is simply a thin wrapper
that holds a pointer to a HepMC::GenEvent object. See HepMC documentation for necessary details on using
this and related objects.

10.3 Generator Tools

A GenEvent is built from one or more special Gaudi Tools called GenTools. Each GenTool is responsible
for constructing part of the kinematic information and multiple tools work in concert to produce a fully
described event. This lets the user easily swap in different tools to get different results.

10.4 Generator Packages

There are a number of packages providing GenTools. The primary package is called GenTools and provides
basic tools as well as the GtGenerator algorithm that ties the tools together. Every execution cycle the
algorithm will run through its tools, in order, and place the resulting event in the event data store. A
separate package, GenDecay, provides GenTools that will produce kinematics for various radioactive nuclear
decays.

The GtGenerator is suitable only for “linear” jobs that only simulate a single type of event. In order to
mix multiple events together the, so called, Fifteen suite of packages (see Ch ??) are used. To configure for
this type of job the Gnrt package’s Configure is used.

10.5 Types of GenTools

The available GenTools and a sample of their properties are given. You can query their full properties with
properties.py ToolName.

97

98 CHAPTER 10. KINEMATIC GENERATORS

10.5.1 GenTools package

GtPositionerTool provides a local vertex 3-position. It does it by placing the vertex at its given point or
distributing it about its given volume in various ways.

GtTransformTool provides global vertex 3-position and 3-direction given local ones. This will take existing
an position and direction, interpret them as being defined in the given volume and transform them
into global coordinates (needed for further simulation). It can optionally transform only position or
direction.

GtTimeratorTool provides a vertex time. Based on a given lifetime (rate) it can distribute times exponen-
tially or uniformly. It can also set the time in an “Absolut” (spelling intentional) or Relative manner.
The former will set the time unconditionally and the latter will add the generated time to any existing
value.

GtGunGenTool provides a local 4-momentum. It simulates a virtual particle “gun” that will shoot a given
particle type in various ways. It can be set to point in a given direction or spray particles in a few
patterns. It can select a fixed or distributed momentum.

GtBeamerTool provides a global 3-vertex and a global 4-momentum. It produces a parallel beam of
circular cross section pointed at some detector element and starting from a given direction and distance
away.

GtDiffuserBallTool provides a relative 3-vertex and local 4-momentum. It simulates the diffuser balls
used in calibration. Subsequent positioner and transform tools are needed to place it at some non
origin position relative to an actual volume.

GtHepEvtGenTool provides a local 4-momentum. It is used to read in kinematics in HepEVT format
either from a file or through a pipe from a running executable. Depending on the HepEVT source it
may need to be followed by positioner, timerator or transform tools.

10.5.2 GenDecay Package

The GenDecay package simulation radioactive decay of nuclei. It relies on Evaluated Nuclear Structure
Data File (ENSDF) data sets maintained by National Nuclear Data Center (NNDC) located at BNL. It is
fully data driven in that all information on branching fractions, half lifes and radiation type are taken from
the ENSDF data sets. GenDecay will set up a hierarchy of mothers and daughters connected by a decay
radiation. When it is asked to perform a decay, it does so by walking this hierarchy and randomly selecting
branches to follow. It will apply a correlation time to the lifetime of every daughter state to determine if it
should force that state to decay along with its mother. The abundances of all uncorrelated nuclear states
must be specified by the user.

The GenDecay package provides a single tool called GtDecayerator which provides a local 4-vertex and
4-momentum for all products. It should be followed up by positioner and transformer tools.

10.6 Configuration

General configuration is described in Ch 6. The GenTools and related packages follow these conventions.
This section goes from low level to high level configuration.

10.6.1 Configurables

As described above, a GtGenerator algorithm is used to collect. It is configured with the following properties

10.6. CONFIGURATION 99

TimeStamp sets an absolute starting time in integral number of seconds. Note, the unit is implicit, do not
multiple by seconds from the system of units.

GenTools sets the ordered list of tools to apply.

GenName sets a label for this generator.

Location sets where in the event store to place the results.

Each tool is configured with its own, specific properties. For the most up to date documentation on
them, use the properties.py tool. Common or important properties are described:

Volume names a volume, specifically a Detector Element, in the geometry. The name is of the form
“/dd/Structure/Detector/SomElement”.

Position sets a local position, relative to a volume’s coordinate system.

Spread alone or as a modifier is used to specify some distribution width.

Strategy or Mode alone or as a modifier is used to modify some behavior of the tool.

GenDecay Configurables

The GenDecay package provides a GtDecayerator tool which has the following properties.

ParentNuclide names the nuclide that begins the decay chain of interest. It can use any libmore supported
form such as “U-238” or “238U” and is case insensitive.

ParentAbundance the abundance of this nuclide, that is, the number of nuclides of this type.

AbundanceMap a map of abundances for all nuclides that are found in the chain starting at, and including,
the parent. If the parent is listed and ParentAbundance is set the latter takes precedence.

SecularEquilibrium If true (default), set abundances of uncorrelated daughter nuclides (see Correlation-
Time property) to be in secular equilibrium with the parent. If any values are given by the Abun-
danceMap property, they will take precedence.

CorrelationTime Any nuclide in the chain that has a decay branch with a half life (total nuclide halflife *
branching fraction) shorter than this correlation time will be considered correlated with the parent(s)
that produced it and the resulting kinematics will include both parent and child decays together and
with a time chosen based on the parent abundance. Otherwise, the decay of the nuclide is considered
dependent from its parent and will decay based on its own abundance.

10.6.2 GenTools.Configure

The GenTools package’s Configure object will take care of setting up a GtGenerator and adding it to the
list of “top algorithms”. The Configure object requires a “helper” object to provide the tools.

There are several helpers provided by GenTools and one provided by GenDecay that cover most require-
ments. If a job must be configured in a way that no helper provides, then a new helper can be written using
the existing ones as examples. The only requirement is that a helper object provides a tools() method that
returns a list of the tools to add to a GtGenerator algorithm.

Each helper described below takes a number of arguments in its constructor. They are given default
values so a default helper can be constructed to properly set up the job to do something, but it may not be
what you want. After construction the objects are available as object members taking the same name as the
argument.

Helpers are self documented and the best way to read this is using the pydoc program which takes the
full Python name. For example:

100 CHAPTER 10. KINEMATIC GENERATORS

shell> pydoc GenTools.Helpers.Gun
Help on class Gun in GenTools.Helpers:

GenTools.Helpers.Gun = class Gun
| Configure a particle gun based kinematics
|
| Methods defined here:
|
| __init__(....)
....

Remember that init () is the constructor in Python.
The rest of this section gives the full Python name and a general description of the available helpers.

Again, use pydoc to see the reference information.

GenTools.Helpers.Gun takes a volume and a gun, positioner, timerator and a transformer to set up a
GtGunGenTool based generator.

GenTools.Helpers.DiffuserBall as above but sets up a diffuser ball. It also takes an AutoPositionerTool
to modify the location of the diffuser ball in the geometry.

GenTools.Helpers.HepEVT takes a source of HepEVT formatted data and positioner, timerator and trans-
former tools.

GenDecay.Helpers.Decay takes a volume and decayerator, positioner and timerator tools.

10.6.3 Gnrtr.Configure and its Stages

Currently, the, so called, “pull mode” or “Fifteen style” of mixing of different types of events configuration
mechanisms need work.

10.6.4 GenTools Dumper Algorithm

The GenTools package provides an algorithm to dump the contents of the generator output to the log. It
can be included in the job by creating an instance of the GenTools.Dumper class. The algorithm can be
accessed through the resulting object via its .dumper member. From that you can set the properties:

Location in the event store to find the kinematics to dump.

StandardDumper set to True to use the dumper that HepMC provides. By default it will use one imple-
mented in the algorithm.

10.6.5 GenTools Job Option Modules

The GenTools package provides a GenTools.Test Job Option Module which gives command line access to
some of the helpers. It is used in its unit test “test gentools.py”. It takes various command line options
of its own which can be displayed via:

shell> nuwa.py -m ’GenTools.Test --help’
Importing modules GenTools.Test [--help]
Trying to call configure() on GenTools.Test
Usage:
This module can be used from nuwa.py to run GenTools in a few canned way as a test.

10.7. MUONPROPHET 101

It is run as a unit test in GenTools/tests/test_gentools.py

Options:
-h, --help show this help message and exit
-a HELPER, --helper=HELPER

Define a "helper" to help set up GenTools is gun,
diffuser or hepevt.

-v VOLUME, --volume=VOLUME
Define a volume to focus on.

-s DATA_SOURCE, --data-source=DATA_SOURCE
Define the data source to use for HepEVT helper

10.7 MuonProphet

10.7.1 Motivation

MuonProphet [DocDB 4153, DocDB 4441] is designed to address the simulation of muon which will be a
major background source of Daya Bay neutrino experiment. Spallation neutrons and cosmogenic background,
namely 9Li, 8He etc., are supposed to give the biggest systematic uncertainty.

The vast majority of muons are very easy to identify due to its distinguishable characteristic in reality.
Usually its long trajectory in water pool or AD will leave a huge amount of light and different time pattern
rather than a point source.

The simulation of muon in Geant4 is quite time-consuming. The hugh amount of optical photons’
propargation in detector, usually over a few million, can bring any computer to its knee. One CPU has to
spend 20-30 minutes for a muon track sometimes. The real muon rate requires to simulate is a few hundred
to a thousand per second.

In the end people realized that they only need to know whether a muon has passed the detector and
tagged, while not really care too much about how light are generated and distributed in water pool and AD.

Beside that it is technically impossible to finish all these muon simulation, the physics model of radioative
isotope’s generation in Geant4 is not very reliable. Photon nuclear process triggered by virturl or real
photon, pion-nucleus interaction, nucleon-nucleus interaction, etc. are all possible be responsible to spallation
background generation. They are poorly described in Genat4. Tuning the generation rate of some background
is very difficult, since they are usually very low, then it is very inefficient to do MC study.

Based on these consideration MuonProphet is designed so that the tiresome optical photon simulation
can be skipped and the generation of spallation background can be fully controled and fully simulated by
Geant4.

10.7.2 Generation Mechanism

Firstly it starts from a muon track with initial vertex and momentum. The intersections of the muon track
with each sub-detectors’ surface and track lengths in each segment are calculated. Low energy muon could
stop in detector according to a calculation based on an average dE/dx. According to its track length in
water and whether it crossed RPC and user configuration it will determine whether this track is going to
be triggered. Spallation neutron and cosmogenic background generation rate is usually a function of muon’s
energy, track length and material density. According to a few empirical formulas from early test beam and
neutrino experiments, spallation neutron and/or radioactive isotopes are generated around the muon track.
Because water is not sensitive to radioactive isotopes and their initial momentum is very low, they are only
generated in AD. Muon is always tagged as “don’t need simulation” by a trick in Geant4. However neutron
and radioactive isotope are left for full Geant4 simulation.

102 CHAPTER 10. KINEMATIC GENERATORS

10.7.3 Code Organisation

Besides the big structure determined by the motivation most parts of the codes are loosely bound together.
Under MuonProphet/src/functions, all generation probabity functions, vertex and energy distribution func-
tions are included. They can easily be modified and replaced. Under MuonProphet/src/components, MpGe-
ometry.cc is dedicated to geometry related calculation; MpTrigger.cc is for trigger prediction; MpNeutron.cc
and MpSpallation.cc handle the production of neutron and other isotopes respectively. All of them are
controlled by MuonProphet::mutate like a usual gentool. It will make use of other radioactive background
generators, so no need for extra code development.

10.7.4 Configuration

Here one example is given for 9Li or 8He background configuration. It will create a gentool - prophet.
This tool should be attached after muon GtPositionerTool, GtTimeratorTool and GtTransformTool like
demonstrated in MuonProphet/python/MuonProphet/FastMuon.py . According the formulas in [DocDB
4153, DocDB 4441] a set of four parameters including a gentool for an isotope background, yield, the
energy where the yield is measured and lifetime must supplied. Following is a snippet of python code from
FastMuon.py showing how it is configured.

- muonprophet
prophet=MuonProphet()
prophet.Site= ‘‘DayaBay’’
- spallation background
- The tool to generate 9Li or 8He background
- According to the formula refered in [DocDB 4153, DocDB 4441]
- every isotope need a set of four parameters.
prophet.GenTools= [‘‘Li9He8Decayerator/Li9He8’’]
- There is a measurement of yield 2.2e-7 cm2/g for 260 GeV muon,
- then we can extrapolate the yield to other energy point.
prophet.GenYields= [2.2e-7 *units.cm2/units.g]
prophet.GenYieldMeasuredAt= [260*units.GeV]
- The lifetime of them is set to 0.002 second
prophet.GenLifetimes= [0.002*units.s]
- trigger related configuration
- Any muon track with a track length in water above 20 cm will be tagged as triggered.
prophet.TrkLengthInWaterThres= 20*units.cm
- We can also assign a trigger efficiency even it passed above track length cut.
prophet.WaterPoolTriggerEff = 0.9999

10.7.5 Output

Geant4 will skip the muon simulation and do full simulation for neutron and other isotopes. The rest of the
simulation chain in Fifteen is set up to be able to respond that correctly. Electronic simulation will only
simulate the hits from spallation background and only pass a empty ElecHeader for the muon to the next
simulation stage. If muon is tagged triggered, then trigger simulation will pop out a trigger header for the
muon, otherwise, it will be dropped there like the real system.

In the final output of readout stream, user should expect the following situations: a) Only muon is
triggered. There will be an empty ReadoutHeader for muon. User can trace back to the original GenHeader
to confirm the situaion. b) Only spallation background is triggered. c) Both muon and background induced
by this muon are triggered. There will be a empty ReadoutHeader for muon and another one with hits for
the background. d) No trigger.

10.7. MUONPROPHET 103

In reality if there is something very close to the muon in time, their hits will overlap and their hits are
not distinguishable. For example, some fast background following muon won’t be triggered separately. User
should do the background trigger efficiency calculation based on the understanding of the real Daya Bay
electronics.

10.7.6 Trigger Bits

Although the output got from MuonProphet simulation is empty, i.e. no hit, but the trigger information
is set according to the fast simulation result. According to the geometry input it could have RPC and
waterpool trigger.

10.7.7 Quick Start

There is one example already installed with nuwa. After you get into nuwa environment, you can start with

> nuwa.py -n50 -o fifteen.root -m "MuonProphet.FullChain" > log

It will invoke the FastMuon.py.

Chapter 11

Detector Simulation

105

106 CHAPTER 11. DETECTOR SIMULATION

11.1 Introduction

The detector simulation performs a Monte Carlo integration by tracking particles through the materials of
our detectors and their surroundings until any are registered (hit) sensitive elements (PMTs, RPCs). The
main package that provides this is called DetSim.

DetSim provides the following:

• Glue Geant4 into Gaudi through GiGa

• Takes initial kinematics from a generator, converts them to a format Geant4 understands.

• Takes the resulting collection of hits and, optionally, any unobservable statistics or particle histories,
and saves them to the event data store.

• Modified (improved) Geant4 classes such as those enacting Cherenkov and scintillation processes.

The collection of “unobservable statistics” and “particle histories” is a fairly unique ability and is de-
scribed more below.

11.2 Configuring DetSim

The DetSim package can be extensively configured. A default is set up done like:

1 import DetSim

2 detsim = DetSim . Configure ()

You can provide various options to DetSim’s Configure():

site indicating which site’s geometry should be loaded. This can be “far” (the default) or one of the two
near sites “dayabay” or “lingao” or you can combine them if you wish to load more than one.

physics list gives the list of modules of Physics processes to load. There are two lists provided by the
configure class: physics list basic and physics list nuclear. By default, both are loaded.

You can also configure the particle Historian and the UnObserver (unobservable statistics collector).
Here is a more full example:

1 import DetSim . configure
2 # only load basic physics

3 detsim = DetSim . configure (physics_list=DetSim . configure . physics_list_basic)
4 detsim . historian (trackSelection="..." , vertexSelection="...")
5 detsim . unobserver (stats = [. . .])

Details of how to form trackSelection, vertexSelection and stats are given below.

11.3. TRUTH INFORMATION 107

11.3 Truth Information

Besides hits, information on the “true” simulated quantities is available in the form of a particle history and
a collection of unobservable statistics.

11.3.1 Particle Histories

Geant 4 is good at simulating particles efficiently. To this end, it uses a continually-evolving stack of
particles that require processing. As particles are simulated, they are permanently removed from the stack.
This allows many particles to be simulated in a large event without requiring the entire event to be stored
at one time.

However, users frequently wish to know about more than simply the input (primary particles) and output
(hits) of a simulation, and instead want to know about the intermediate particles. But simply storing all
intermediate particles is problematic for the reason above: too many particles will bring a computer’s virtual
memory to it’s knees.

Particle Histories attempts to give the user tools to investigate event evolution without generating too
much extraneous data. The philosophy here is to generate only what the user requests, up to the granularity
of the simulation, and to deliver the output in a Geant-agnostic way, so that data may be persisted and used
outside the Geant framework.

Particle History Data Objects

Let us briefly review how Geant operates. A particle is taken off the stack, and a G4Track object is initialized
to hold it’s data. The particle is then moved forward a step, with an associated G4Step object to hold the
relevant information. In particular, a G4Step holds two G4StepPoint representing the start and end states
of the that particle.

The Particle Histories package crudely corresponds to these structures. There are two main data objects:
SimTrack which corresponds to G4Track, and SimVertex which corresponds to a G4StepPoint. 1

So, each particle that is simulated in by Geant can create a SimTrack. If the particle takes n steps in
the Geant simulation, then it can create at most n+ 1 SimVertex objects (one at the start, and one for each
step thereafter). If all vertices are saved, then this represents the finest granularity possible for saving the
history of the simulation.

The data saved in a Track or Vertex is shown in Figures 11.3.1 and 11.3.1. Generally speaking, a SimTrack
simply holds the PDG code for the particle, while a SimVertex holds a the state: position, time, volume,
momentum, energy, and the process appropriate for that point in the simulation. Other information may
be derived from these variables. For instance, the properties of a particle may be derived by looking up
the PDG code via the ParticlePropertiesSvc, and the material of a step may be looked up by accessing the
IPVolume pointer. (If there are two vertices with different materials, the material in between is represented
by the first vertex. This is not true if vertices have been pruned.)

Each track contains a list of vertices that correspond to the state of the particle at different locations
in it’s history. Each track contains at least one vertex, the start vertex. Each Vertex has a pointer to it’s
parent Track. The relationship between SimVertices and SimTracks is shown in Figure 11.3.1.

The user may decide which vertices or tracks get saved, as described in Sec 11.3.1. If a SimVertex is
pruned from the output, then any references that should have gone to that SimVertex instead point to the
SimVertex preceeding it on the Track. If a SimTrack is pruned from the output, then any references that
would have pointed to that track in fact point back to that track’s parent. The output is guaranteed to have
at least one SimTrack created for each primary particle that the generator makes, and each SimTrack is

1 Another way to describe this is that a SimTrack corresponds to a single G4Trajectory, and SimVertex corresponds to
a single G4TrajectoryPoint. The G4Trajectory objects, however, are relatively lightweight objects that are used by nothing
other than the Geant visualization. It was decided not to use the G4Trajectory objects as our basis so as to remain Geant-
independent in our output files. The similarity between the Particle Histories output and the G4Trajectories is largely the
product of convergent evolution.

108 CHAPTER 11. DETECTOR SIMULATION

Figure 11.1: SimTrack Accessors. A list of accessible data from the SimTrack object.

1 class SimTrack {
2 . . .
3 /// Geant4 track ID

4 int trackId () const ;
5

6 /// PDG code of this track

7 int particle () const ;
8

9 /// PDG code of the immediate parent to this track

10 int parentParticle () const ;
11

12 /// Reference to the parent or ancestor of this track .
13 const DayaBay : : SimTrackReference& ancestorTrack () const ;
14

15 /// Reference to the parent or ancestor of this track .
16 const DayaBay : : SimVertexReference& ancestorVertex () const ;
17

18 /// Pointer to the ancestor primary kinematics particle

19 const HepMC : : GenParticle∗ primaryParticle () const ;
20

21 /// Pointers to the vertices along this track . Not owned .
22 const vertex_list& vertices () const ;
23

24 /// Get number of unrecordeds for given pdg type

25 unsigned int unrecordedDescendants (int pdg) const ;
26 . . .
27 }

Figure 11.2: SimVertex Accessors. A list of accessible data from the SimVertex object.

1 class SimVertex {
2 . . .
3 const SimTrackReference& track () const ;
4 const SimProcess& process () const ;
5 double time () const ;
6 Gaudi : : XYZPoint position () const ;
7 double totalEnergy () const ;
8 Gaudi : : XYZVector momentum () const ;
9

10 double mass () const ; // Approximate from 4−momentum .
11 double kineticEnergy () const ; // Approximate from 4−momentum .
12

13 const std : : vector<SimTrackReference>& secondaries () const ;
14 . . .
15 }

11.3. TRUTH INFORMATION 109

Figure 11.3: Relationship between SimTrack and SimVertex Track 1 represents a primary SimTrack,
and Track 2 a secondary particle created at the end of Track 1s first step. Thus, the position, time, volume,
and process may be the same for the two highlighted vertices. Track 2 contains a link both to its parent
track (Track 1) and to its parent vertex (Vertex 2 of Track 1). There is also a forward link from Vertex
2 of Track 1 to Track 2. Not shown is that every SimVertex has pointer to its parent SimTrack, and each
SimTrack has a list of its daughter SimVertices.

guaranteed to have at least one vertex, the start vertex for that particle, so all of these references eventually
hand somewhere. An example of this pruning is shown in Figure ??.

To keep track of this indirect parentage, links to a SimTrack or SimVertex actually use lightweight
objects called SimTrackReference and SimVertexReference. These objects record not only a pointer to
the object in question, but also a count of how indirect the reference is.. i.e. how many intervening tracks
were removed during the pruning process.

Because pruning necessarily throws away information, some detail is kept in the parent track about those
daughters that were pruned. This is kept as map by pdg code of “Unrecorded Descendents”. This allows
the user to see, for instance, how many optical photons came from a given track when those photons are
not recorded with their own SimTracks. The only information recorded is the number of tracks pruned - for
more elaborate information, users are advised to try Unobservable Statistics.

To get ahold of Particle Histories, you need to get the SimHeader. Each running of the Geant simulation
creates a single SimHeader object, which contains a pointer to a single SimParticleHistory object. A
SimParticleHistory object contains a list of primary tracks, which act as entrance points to the history for
those who wish to navigate from first causes to final state. Alternatively, you may instead start with SimHit
objects, which each contain a SimTrackReference. The references point back to the particles that created

110 CHAPTER 11. DETECTOR SIMULATION

Figure 11.4: History Pruning The first figure shows a hypothetical case before pruning. The second case
shows the links after pruning Track 2. The dotted lines indicate that the data objects record that the links
are indirect.

11.3. TRUTH INFORMATION 111

the hit (e.g. optical photons in the case of a PMT), or the ancestor of that particle if its been pruned from
the output.

Creation Rules

The Historian module makes use of the BOOST “Spirit” parser to build rules to select whether particles get
saved as tracks and vertices. The user provides two selection strings: one for vertices and one for tracks.
At initialization, these strings are parsed to create a set of fast Rule objects that are used to quickly and
efficiently select whether candidate G4Tracks and G4StepPoints get turned into SimTracks or SimVertices
respectively.

The selection strings describe the criteria neccessary for acceptance, not for rejection. Thus, the default
strings are both “none”, indicating that no tracks or vertices meet the criteria. In fact, the Historian knows
to always record primary SimTracks and the first SimVertex on every track as the minimal set.

Selection strings may be:

“None” Only the default items are selected

“All” All items are created

An expression which is interpreted left-to-right.

Expressions consist of comparisons which are separated by boolean operators, grouped by parentheses.
For example, a valid selection string could be:
"(pdg != 20022 and totalEnergy<10 eV) or (materialName ==’MineralOil’)" Each comparison must
be of the form <PARAMETER OPERATOR CONSTANT [UNIT]>. A list of valid PARAMETERs is given in table 11.4.
Valid OPERATORs consist of >,>=,<,<=,==,!= for numerical parameters, and ==,!= for string parameters.
A few parameters accept custom operators - such as in for the detector element relational parameter. For
numerical operators, CONSTANT is a floating-point number. For string paramters, CONSTANT should be of
the form ’CaseSensitiveString’, using a single quote to delimit the string. For numerical parameters,
the user may (should) use the optional UNIT. Units include all the standard CLHEP-defined constants. All
parameters and unit names are case-insensitive.

Boolean operators must come only in pairs. Use parentheses to limit them. This is a
limitation of the parser. For instance, "a<2 and b>2 and c==1" will fail, but "(a<2 and b>2) and c==1"
will be acceptable. This ensures the user has grouped his ’and’ and ’or’ operators correctly.

Because these selections are applied to every single G4Track and every single G4Step, having efficient
selection improves simulation time. After compilation, selection is evaluated in the same order as provided
by the user, left-to-right. Efficient selection is obtained if the user puts the easiest-to-compute parameters
early in the selection. The slowest parameters to evaluate are those that derive from DetectorElement,
including NicheID, Niche, DetectorId, SiteId, Site, AD, AdNumber, local (xyz), DetectorElementName, etc.
The fastest parameters are those that are already in the G4 data structures, such as particle code IDs,
energy, global position, etc. String comparisons are of medium speed.

11.3.2 Examples, Tips, Tricks

Choosing specific particle types is easy. For instance, the following selects all particles except for optical
photons. (This is an excellent use case for low-energy events like IBD.)

1 historian . TrackSelection = ”(pdg != 20022)”

112 CHAPTER 11. DETECTOR SIMULATION

Here is a brief list of the more important PDG codes. A complete list can be found at the PDG website.

(Antiparticles are denoted by negative numbers.)

e− 11
µ− 13
γ 22

optical photon 20022
neutron 2112
proton 2212

π0 111
π− 211

This example will save all tracks that are not optical photons, plus save one out of every 100 optical
photons. This might be nice for an event viewer:

1 historian . TrackSelection = ”(pdg != 20022) or (prescale by 100)”

This example will select any track created by a neutron capture (likely gamma rays):

1 historian . TrackSelection = ”CreatorProcess == ’ G4NeutronCapture ’ ”

This should be contrasted with this example, which will save vertices with a neutron capture. This
means: the vertex saved will be a neutron capture vertex, and is only valid for neutron tracks:

1 historian . VertexSelection = ”Process == ’ G4NeutronCapture ’ ”

This example is slightly tricksy, but useful for muon-induced showers. It will select muons and particles
that came off the muon, but not sub-particles of those. This lets you see delta rays or muon-induced neutrons,
for example, but not record the entire shower.

1 historian . Track = ”((AncestorTrackPdg = 13 or AncestorTrackPdg = −13)
2 and AncestorIndirection < 2)
3 or (pdg == 13 or pdg == −13)”

This example selects only vertices which are inside the oil volume or sub-volume of the oil at the LingAo
detector 1. i.e. in oil, AVs, or scintillator volumes:

1 historian . VertexSelection = ”DetElem in ’/ dd/Structure/AD/la−oil1 ’ ”

This example selects vertices which are in the oil, not any subvolumes:

1 historian . VertexSelection = ”DetectorElementName == ’/ dd/Structure/AD/la−oil1 ’ ”

This example saves only start and end vertices, as well as vertices that change materials:

1 historian . VertexSelection = ”IsStopping ==1 and MaterialChanged > 0”

This example saves a vertex about every 20 cm, or if the track direction changes by more than 15 degrees:

1 historian . VertexSelection = ”distanceFromLastVertex > 20 cm or AngleFromLastVertex > 15 deg”

Users should fill out more useful examples here.

11.3.3 Unobservable Statistics

Description

Although users may be able to answer nearly any question about the history of an event with the Particle
Histories, it may be awkward or time-consuming to compile certain variables. To this end, users may request
“Unobservable” statistics to be compiled during the running of the code.

11.3. TRUTH INFORMATION 113

Figure 11.5: SimStatistic A Statistic object used for Unobservable Statistics.

1 class SimStatistic {
2 SimStatistic () : m_count (0) ,
3 m_sum (0) ,
4 m_squaredsum (0) {}
5

6 double count () const ; /// Counts of increment () call

7 double sum () const ; /// Total of x over all counts .
8 double squaredsum () const ; /// Total of xˆ2 over all counts .
9 double mean () const ; /// sum ()/ count ()

10 double rms () const ; /// Root mean square

11

12 void increment (double x) ; /// count+=1, sum+=x , sum2+=x∗x
13

14 private :
15 double m_count ; ///< No . of increments

16 double m_sum ; ///< Total of x over all counts .
17 double m_squaredsum ; ///< Total of xˆ2 over all counts .
18 }

For instance, let us say we want to know how many meters of water were traversed by all the muons in
the event. We could do this above by turning on SimTracks for all muons and turning on all the SimVertecies
at which the muon changed material.

historian.TrackSelection = "(pdg == 13 or pdg == -13)"
historian.VertexSelection = "(pdg == 13 or pdg == -13)

and (MaterialChanged >0)"

Then, after the event had been completed, we would need to go through all the saved SimTracks and
look for the tracks that were muons. For each muon SimTrack, we would need to go through each pair of
adjacent SimVertices, and find the distance between each pair, where the first SimVertex was in water. Then
we would need to add up all these distances. This would get us exactly what we wanted, but considerable
code would need to be written, and we’ve cluttered up memory with a lot of SimVertices that we’re only
using for one little task.

To do the same job with the Unobserverable Statistics method, we need only run the “Unobserver”
SteppingTask, and give it the following configuration:

UnObserver.Stats =[["mu_track_length_in_water" , "dx" ,
"(pdg == 13 or pdg == -13) and MaterialName==’Water’"]]

This creates a new statistic with the name mu_track_length_in_water, and fills it with exactly what we
want to know!

This method is very powerful and allows the description of some sophisticated analysis questions at
run-time. However, compiling many of these Statistics can be time-consuming during the execution of the
simulaton. For serious, repeated analyses, using the Particle Histories may yield better results in the long
run.

“Unobservable” Statistic Objects

Unobservable Statistics are stored in a SimStatistic object shown in Figure 11.3.3.
These statistic objects are stored in a map, referenced by name, in the SimUnobservableStatisticsHeader.

This object in turn is stored in the SimHeader, once per simulated event.

114 CHAPTER 11. DETECTOR SIMULATION

Creation Rules

The Unobserver module operates using the same principles as the Particle History selector, above. At
initialization, a selection string and variable string is parsed into a set of Rule objects that can be rapidly
evaluated on the current G4Step. The user supplies a list of Statistics to the module. Each Statistic is
defined as follows:
["STATNAME" , "VARIABLE" , "EXPRESSION"] or

["STATNAME_1" , "VARIABLE_1" ,
"STATNAME_2" , "VARIABLE_2" ,
"STATNAME_3" , "VARIABLE_3" ,
... , "EXPRESSION"]

Here, STATNAME is a string of the user’s choosing that describes the statistic, and is used to name the
statistic in the SimUnobservableStatisticsHeader for later retrieval. VARIABLE is a parameter listed
in Table 11.4 that is the actual value to be filled. Only numeric parameters may be used as variables.
EXPRESSION is a selection string, as described in Sec. 11.3.1. In the second form of listing, several different
variables may be defined using the same selection string, to improve runtime performance (and make the
configuration clearer).

Any number of statistics may be defined, at the cost of run-time during the simulation.
The statistics are filled as follows. At each step of the simulation, the current G4Step is tested against

each EXPRESSION rule to see if the current step is valid for that statistic. If it is, then the VARIABLE is
computed, and the Statistic object is incremented with the value of the variable.

11.3.4 Examples, Tips, Trucks

Statistics are per-step. For example:

UnObserver.Stats =[["x_vertex" , "global_x" ,
"(pdg == 13 or pdg == -13)’"]]

will yield a statistic n entries, where n is the number of steps taken by the muon, with each entry being
that step’s global X coordinate. However, you can do something like the following:

UnObserver.Stats =[["x_vertex" , "global_x" ,
"(pdg == 13 or pdg == -13)’ and IsStarting==1"]]

which will select only the start points for muon tracks. If you know that there will be at most one muon
per event, this will yield a statistic with one entry at the muon start vertex. However, this solution is not
generally useful, because a second muon in the event will confuse the issue - all you will be able to retrieve
is the mean X start position, which is not usually informative. For specific queries of this kind, users are
advised to use Particle Histories.

Users should fill out more useful examples here.

11.3.5 Parameter Reference

The Particle History parser and the Unobservable Statistics parser recognize the parameter names listed in
table 11.4

11.3. TRUTH INFORMATION 115

Figure 11.6: Output of tracks file for a single 1 MeV positron. Circles denote SimTracks - values listed are
starting values. In this example, do hits was set to zero.

11.3.6 The DrawHistoryAlg Algorithm

These lines in your python script will allow you to run the DrawHistoryAlg and the DumpUnobservableStatis-
ticsAlg, which provide a straightforward way of viewing the output of the Particle Histories and Unobserv-
ables, respectively:

1 simseq . Members = [”GiGaInputStream/GGInStream ” ,
2 ”DsPushKine/PushKine ” ,
3 ”DsPullEvent/PullEvent ” ,
4 ”DrawHistoryAlg/DrawHistory ” ,
5 ”DumpUnobservableStatisticsAlg/DumpUnobserved”
6]

The DrawHistoryAlg produces two “dot” files which can be processed by the GraphViz application. (A
very nice, user-friendly version of this exists for the Mac.) The dot files describe the inter-relation of the
output objects so that they can be drawn in tree-like structures. Sample output is shown in Figures 11.3.6
and 11.3.6.

The DrawHistoryAlg can be configured like so:

1 app . algorithm (” DrawHistory ”) . do_hits = 0
2 app . algorithm (” DrawHistory ”) . track_filename = ’ tracks_%d . dot ’
3 app . algorithm (” DrawHistory ”) . trackandvertex_filename = ’ vertices_and_tracks_%d . dot ’

The filename configuration is for two output files. Using ’%d’ indicates that the event number should be
used, to output one file per event. The do_hits option indicates whether SimHits should be shown on the
plot. (For scintillator events, this often generates much too much detail.)

The DumpUnobservableStatisticsAlg algorithm simply prints out the counts, sum, mean, and rms for
each statistic that was declared, for each event. This is useful for simple debugging.

116 CHAPTER 11. DETECTOR SIMULATION

Figure 11.7: Output of tracks-and-vertices file for a single 1 MeV position. Boxes represent SimTracks, and
circles represent SimVertecies.

11.4. TRUTH PARAMETERS 117

11.4 Truth Parameters

Name & Synonyms Type T
ra

ck

V
er

te
x

St
at

s

Description
time
t

double X X X Time of the vertex/track
start/step

x
global x

double X X X Global X position of the vertex/-
track start/step

y
global y

double X X X Global Y position of the vertex/-
track start/step

z
global z

double X X X Global Z position of the vertex/-
track start/step

r
radius
pos r

double X X X Global sqrt(X*X+Y*Y) position
of the vertex/step/start

lx
local x
det x

double X X X X Position relative to the local
physical volume

ly
local y
det y

double X X X Y Position relative to the local
physical volume

lz
local z
det z

double X X X Z Position relative to the local
physical volume

lr
local r
det r

double X X X sqrt(X*X+Y*Y) position relative
to the local physical volume

Volume
VolumeName
LogicalVolume

string X X X Name of the logical volume of ver-
tex/track start/step

Material
MaterialName

string X X X Name of material at vertex/track
start/step

DetectorElementName double X X X Name of best-match Detector El-
ement at vertex/track start/step

Match
DetectorElementMatch

double X X X Level of match for Detector Ele-
ment. 0=perfect
postive = inside

NicheId
Niche

double X X X ID number (4-byte) best associ-
ated with DetElem

DetectorId double X X X Detector ID number (4-byte)
SiteId double X X X Site ID number (4-byte)
Site double X X X Site number (1-16)
AD
AdNumber

double X X X AD number (1-4)

momentum
p

double X X X Momentum at vertex/track
start/step

E
totEnergy
TotalEnergy

double X X X Energy at track start or vertex

118 CHAPTER 11. DETECTOR SIMULATION

Name & Synonyms Type T
ra

ck

V
er

te
x

St
at

s

Description
KE
kineticEnergy

double X X X Kinetic energy at vertex/track
start/step

vx
dir x
u

double X X X X-direction cosine

vy
dir y
v

double X X X Y-direction cosine

vz
dir z
w

double X X X Z-direction cosine

ProcessType double X X X Type of process (see below)
Process
ProcessName

string X X X Name of current process (via
G4VProcess->GetProcessName())

pdg
pdgcode
particle

double X X X PDG code of particle. Note that
opticalphoton=20022

charge
ParticleCharge
q

double X X X Charge of particle

id
trackid

double X X X Geant TrackID of particle. Useful
for debugging

creatorPdg
creator

double X X X PDG code for the immediate par-
ent particle

mass
m

double X X X Mass of the particle

ParticleName string X X X Name of the particle (Geant4
name)

CreatorProcessName
CreatorProcess

string X X X Name of process that created this
particle. (Tracks: same as “Pro-
cessName”)

DetElem in
DetectorElement in

custom X X X Special: matches if the detec-
tor element specified supports the
Track/Vertex volume

Step dE
dE

double X X Energy deposited in current step

Step dE Ion
de ion
ionization

double X X Energy deposited by ionization in
current step

Step qDE
quenched dE
qdE

double X X Quenched energy. Valid only for
scintillator

Step dx
StepLength
dx

double X X Step length

Step dt
StepDuration
dt

double X X Step duration

11.4. TRUTH PARAMETERS 119

Name & Synonyms Type T
ra

ck

V
er

te
x

St
at

s

Description
Step dAngle
dAngle

double X X Change in particle angle be-
fore/after this Step (degrees)

Ex
E weighted x

double X X Energy-weighted global position -
x

Ey
E weighted y

double X X Energy-weighted global position -
y

Ez
E weighted z

double X X Energy-weighted global position -
z

Et
E weighted t

double X X Energy-weighted global time

qEx
qE weighted x
quenched weighted x

double X X Quenched energy-weighted global
position - x

qEy
qE weighted y
quenched weighted y

double X X Quenched energy-weighted global
position - y

qEz
qE weighted z
quenched weighted z

double X X Quenched energy-weighted global
position - z

qEt
qE weighted t
quenched weighted t

double X X Quenched energy-weighted global
time

IsStopping
stop
End

double X X 1 if particle is stopping
0 otherwise

IsStarting
start
begin

double X X 1 if particle is starting (this is the
first step)
0 otherwise

StepNumber double X X Number of steps completed for
this particle

VolumeChanged
NewVolume

double X X 1 if the particle is entering a new
volume
0 otherwise

MaterialChanged
NewMaterial

double X X 1 if the particle is entering a new
material
0 otherwise

ParentPdg
AncestorPdg
Ancestor

double X X PDG code of the last ancestor
where a SimTrack was created

ParentIndirection
AncestorIndirection

double X X Generations passed since the last
ancestor was created

GrandParentPdg
GrandParent

double X X PDG code of the immediate an-
cestor’s ancestor

GrandParentIndirection double X X Indirection to the immediate an-
cestor’s ancestor

distanceFromLastVertex double X Distance from the last created
SimVertex.

120 CHAPTER 11. DETECTOR SIMULATION

Name & Synonyms Type T
ra

ck

V
er

te
x

St
at

s

Description
TimeSinceLastVertex double X Time since the last created

SimVertex.
EnergyLostSinceLastVertex double X Energy difference sine the last

created SimVertex
AngleFromLastVertex double X Change in direction since the last

created SimVertex (degrees)

Chapter 12

Electronics Simulation

12.1 Introduction

The Electronics Simulation is in the ElecSim package. It takes an SimHeader as input and produces an
ElecHeader, which will be read in by the Trigger Simulation package. The position where ElecSim fit in the
full simulation chain is given in figure 12.1. The data model used in ElecSim is summarized in the UML
form in figure 12.2.

12.2 Algorithms

There are two algorithms. They are listed in table 12.1

12.3 Tools

Tools are declared as properties in the algorithms in the previous section. Two kinds of tools are present in
the EleSim package. They are:

• Hit tools: these types of tools take SimHitHeader as input and generate ElecPulseHeader.

• FEE/FEC tools: these tools takes the output from hit tools in ElecPulseHeader and create ElecCrate.
The foundation of these tools are the hardware of FEE for AD and FEC(Front-end Card) for RPC
electronics.

12.3.1 Hit Tools

12.3.2 FEE Tool: EsIdealFeeTool

The properties is summaried in table 12.2.
Pulses(ElecPulse) generated in HitTools are first mapped to channels in each FEE board via CableSvc

service. For each channel, pulses are then converted and time-sequenced to create two analog signals to
simulate real signals in FEE. The two major analog signals are RawSignal and shapedSignal. The following
shows the generation steps.

• pmt Analog Signal (m pmtPulse(nSample) vector<double>): each pulse (ElePulse) is converted
to a pmt analog signal(m pmtPulse(nSample)) according to an ideal pmt waveform parametrization
given in equation 12.1.

• Shaped PMT Signal(m shapedPmtPulse(nSample)): the pmt analog signal (m pmtPulse(nSample)
is convoluted with shaper transfer function to get the shaper output analog singal (shapedPmtPulse(nSample)).

121

122 CHAPTER 12. ELECTRONICS SIMULATION

Figure 12.1: Electronics Simulation Chain

• RawSignal (RawSignal(simSamples) vector<double>): represents the time sequenced pmt signal
with gaussian distributed noises included. This RawSignal is sent to discriminator to form multiplicit
and TDC values. Analogsum is also based on this RawSignal.

• shapedSignal(shapedSignal(SimSample) vector<double>) is composed of time-sequenced shapedPMTsig-
nals(shapedPmtPulse).

V (t) = V oltageScale · (e−t/t0 − e−t/t1)
(t1 − t0)

t0 = 3.6ns
t1 = 5.4ns

(12.1)

Multiplicity Generation and TDC

Multiplicity at hit Clock i for one FEE board is the sum of the hitHold signal(hitHold vector<int>) at
the hit Clock hitHold(i) for all the hitted channels in the FEE channel. Figure 12.3 shows the flow on how
the hitHold signals are generated. One example of two 1 p.e. pulses are shown in figure 12.4.

12.4. SIMULATION CONSTANT 123

Figure 12.2: UML for data model in ElecSim.

ADC Generation

12.4 Simulation Constant

Simulation constants based on electronics hardware is defined in dybgaudi/DataModel/Conventions/Con-
ventions/Electronics.h Table 12.3 summaries the major vaiables defined and their hardwired values.

124 CHAPTER 12. ELECTRONICS SIMULATION

Algorithm Name Property Defualt

EsFrontEndAlg

SimLocation SimHeaderLocationDefault
Detectors DayaBayAD1(2,3,4)
PmtTool EsPmtEffectPulseTool
RpcTool EsIdealPulseTool
FeeTool EsIdealFeeTool
FecTool EsIdealFecTool
MaxSimulationTime 50 us

Table 12.1: Algorithms and their properties.

Property Default
CableSvcName StaticCableSvc

SimDataSvcName StaticSimDataSvc
TriggerWindowCycles Dayabay::TriggerWindowCylces

NoiseBool true
NoiseAmp 0.5mV

Table 12.2: Properties declared in EsIdealFeeTool.

12.4. SIMULATION CONSTANT 125

Figure 12.3: : hitHold signal generation sequence. Analog Signals are shown in the black box. And ditigal
signals are shown in blue boxes. On the right hand side, related functions or comments are listed to specify
the convertion between different signals.

126 CHAPTER 12. ELECTRONICS SIMULATION

Figure 12.4: : An example of convertions from tdcSignal to hitHold Signal. The the label in Y axis is only
for the analog signal tdcSignal and the Threshold line.

Variable Defined Value
BaseFrequency 40 · 1E6 (hz)

TdcCycle 16
AdcCycle 1

EsumCycle 5
NhitCycle 2

preTimeTolerance 300ns
postTimeTolerance 10us

TriggerWindowCycle 8

Table 12.3:

Chapter 13

Trigger Simulation

13.1 Introduction

The Trigger Simulation is implemented in the TrigSim package. TrigSim takes an ElecHeader as input and
produces a SimTrigHeader. See Figure 13.1.

Figure 13.1: SimTrigHeader contains a single SimTrigCommandHeader which in turn potentially con-
tains a SimTrigCommandCollection for each detector. Each SimTrigCommandCollection contains
SimTrigCommands which correspond to an actual trigger.

13.2 Configuration

The main algorithm in TrigSim, TsTriggerAlg has 3 properties which can be specified by the user.

TrigTools Default:“TsMultTriggerTool” List of Tools to run.

127

128 CHAPTER 13. TRIGGER SIMULATION

TrigName Default:“TriggerAlg” Name of the main trigger algorithm for bookkeeping.

ElecLocation Default: “/Event/Electroincs/ElecHeader” Path of ElecSimHeader in the TES, currently
the default is picked up from ElecSimHeader.h

The user can change the properties through the TrigSimConf module as follows:

import TrigSim
trigsim = TrigSim.Configure()
import TrigSim.TrigSimConf as TsConf
TsConf.TsTriggerAlg().TrigTools = ["TsExternalTriggerTool"]

The TrigTools property takes a list as an argument allowing multiple triggers to be specified. The user
can apply multiple triggers as follows:

import TrigSim
trigsim = TrigSim.Configure()
import TrigSim.TrigSimConf as TsConf
TsConf.TsTriggerAlg().TrigTools = ["TsMultTriggerTool" ,

"TsEsumTriggerTool" ,
"TsCrossTriggerTool"]

The mutate method within each tool will be called once per event in the order in which they are listed.

13.3 Current Triggers

This section will describe specific trigger implementations. Most implementations will have properties which
can be set like this:

INSERT EXAMPLE

13.3.1 TsMultTriggerTool

A Multiplicity Trigger implementation. This will issue a local trigger when a specified number of channels
are go over threshold within a given time window. This tool has two properties:

DetectorsToProcess is a list of detectors for this trigger to work on. The default value for this property
is a list containing all pmt based detectors. This tool loops over all detectors within the ElecHeader
and checks it against those in the list. If the detector is in the list the tool issues all applicable triggers
for that detector. If the detector is not found in the DetectorsToProcess list the detector is ignored.

RecoveryTime sets the number of nhit clock cycles to wait after a trigger is issued before potentially
issuing another trigger. The default value is 24 which corresponds to 300ns for the 80MHz clock.

13.3.2 TsExternalTriggerTool

An External Trigger implementation. This will issue a local triggers at a specified frequency. Currently used
with the dark rate module for the MDC08. The properties are:

DetectorsToProcess Same as TsMultTriggerTool in section 13.3.1.

TriggerOffset

Frequency

AutoSet

13.4. ADDING A NEW TRIGGER 129

13.4 Adding a new Trigger

To add a new trigger type, create a new class which inherets from GaudiTool and ITsTriggerTool as shown
here:

class TsMyTriggerTool : public GaudiTool,
virtual public ITsTriggerTool

{
public:

TsMyTriggerTool(const std::string& type,
const std::string& name,
const IInterface* parent);

virtual ~TsMyTriggerTool();

virtual StatusCode mutate(DayaBay::SimTrigHeader* trigHeader,
const DayaBay::ElecHeader& elecHeader);

virtual StatusCode initialize();
virtual StatusCode finalize();

private:
std::vector<std::string> m_detectorsToProcess;

};

Chapter 14

Readout

14.1 Introduction

ReadoutSim is located in Simulation/ReadoutSim within the dybgaudi project. It uses SimTrigCommand’s
and ElecCrate’s to produce readouts. The produced readouts are held within a SimReadoutHeader object.
An addition ReadoutHeader object exists to satify the requirement that only one (1) readout be produced
each execution cycle. The details of the header objects are shown in figures 14.2 and 14.1

14.2 ReadoutHeader

The ReadoutHeader contains a single readout which consists of the following:

detector Detector uniquely identifying the subsystem that was readout to produce this object.

triggerNumber unsigned int enumerating triggers.

triggerTime TimeStamp of trigger issuance.

triggerType TriggerType t enum which constructs a bitmap to define the trigger type.

readoutHeader A pointer back to the ReadoutHeader which contains this object.

Two flavors of Readouts exist, ReadoutPmtCrate and ReadoutRpcCrate. The ReadoutPmtCrate contains
a map of FeeChannelId’s to ReadoutPmtChannel’s and the ReadoutRpcCrate contains a similar map of
FeeChannelId’s to ReadoutRpcChannel’s. The ReadoutPmtChannel Contains

channelId FeeChannelId uniquely identifying the channel that was read out.

tdc a vector of tdc values

adc a map of adc values, keyed with their clock cycle.

adcGain FeeGain t denoting either that the high or low gain was read out.

readout pointer back to the ReadoutPmtCrate which contains this channel readout.

The ReadoutRpcChannel contains

channelId FeeChannelId uniquely identifying the channel that was read out.

hit a boolean value indicating a hit.

readout a pointer back to the ReadoutRpcCrate which contains this channel readout.

131

132 CHAPTER 14. READOUT

Figure 14.1: The ReadoutHeader contains a single Readout. The two flavors of readouts are discussed in
14.2

14.3 SimReadoutHeader

The SimReadoutHeader contains all the readout headers produced during a single execution cycle. This can
include 0..N readouts for each detector.

14.4 Readout Algorithms

ReadoutSim currently has two Algorithms described below:

14.5. READOUT TOOLS 133

Figure 14.2: The SimReadoutHeader holds multiple SimReadout’s which in turn contain a pointer to a single
Readout object. The Readout object pointer points to the same object a SimReadoutHeader points to.

14.4.1 ROsSequencerAlg

ROsSequencerAlg tries to fix the many-to-one, readouts to execution cycle mismatch. The sequencer fill the
ReadoutHeader object with only the first ReadoutEvent produced during each execution cycle.

14.4.2 ROsReadoutAlg

ROsReadoutAlg is the driving algorithm for ReadoutSim. This algorithm applies each tool specified in the
RoTools property for each trigger event. It is up to the tool to decide if it should act or not. The default
setup is as follows:

import ReadoutSim
rosim = ReadoutSim.Configure()
import ReadoutSim.ReadoutSimConf as ROsConf
ROsConf.ROsReadoutAlg().RoTools=["ROsFecReadoutTool","ROsFeeReadoutTool"]
ROsConf.ROsReadoutAlg().RoName="ReadoutAlg"
ROsConf.ROsReadoutAlg().TrigLocation="/Event/SimTrig/SimTrigHeader"
ROsConf.ROsReadoutAlg().ElecLocation="Event/Elec/ElecHeader"

14.5 Readout Tools

ReadoutSim currently has 5 tools described below which can be used to customize readout.

14.5.1 ROsFeeReadoutTool

ROsFeeReadoutTool handles reading out pmt based detectors. By default this tool acts on all trigger
commands associated with a pmt based detector. To specify different parameters for specific pmt based
detectors create multiple instances of this tool and specify DetectorsToProcess appropriately in each. The
default configuration is shown below.

import ReadoutSim.ReadoutSimConf as ROsConf
ROsConf.ROsFeeReadoutTool().DetectorsToProcess=["DayaBayAD1","DayaBayAD2",\

"DayaBayIWS","DayaBayOWS","LingAoAD1","LingAoAD2",\
"LingAoIWS","LingAoOWS","FarAD1", "FarAD2",\

134 CHAPTER 14. READOUT

"FarAD3","FarAD4", "FarIWS","FarOWS"]
ROsConf.ROsFeeReadoutTool().AdcTool="ROsFeeAdcPeakOnlyTool"
ROsConf.ROsFeeReadoutTool().TdcTool="ROsFeeTdcTool"
ROsConf.ROsFeeReadoutTool().ReadoutLength=12
ROsConf.ROsFeeReadoutTool().TriggerOffset=2

14.5.2 ROsFecReadoutTool

ROsFecReadoutTool handles reading out the rpc based detectors. By default this acts on all rpc based
detectors. This is the only property currently available as seen below in the default setup.

import ReadoutSim.ReadoutSimConf as ROsConf
ROsConf.ROsFeeReadoutTool()=detectorsToProcess=["DayaBayRPC" ,\

"LingAoRPC" , "FarRPC"]

14.5.3 ROsFeeAdcMultiTool

ROsFeeAdcMultiTool reads out samples the adc values in the readout window based on the readout window
start. The user specifies the ReadoutCycles with 0 corresponding the adc value at the beginning of the
readout window.

ROsConf.ROsFeeReadoutTool().AdcTool="ROsFeeAdcMultiTool"
ROsConf.ROsFeeAdcMultiTool().ReadoutCycles=[0 , 2 , 3 , 4 , 8]

14.5.4 ROsFeeAdcPeakOnlyTool

ROsFeeAdcPeakOnlyTool reads out the peak adc value in the readout window.

ROsConf.ROsFeeReadoutTool().AdcTool="ROsFeeAdcPeakOnlyTool"

14.5.5 ROsFeeTdcTool

ROsFeeTdcTool readout the tdc values during the readout window. The user has the option to readout
multiple tdc values but changing the UseMultiHitTdc property.

ROsConf.ROsFeeReadoutTool().TdcTool="ROsFeeTdcTool"
ROsConf.ROsFeeTdcTool().UseMultiHitTdc=False
ROsConf.ROsFeeTdcTool().TdcResetCycles=True

Chapter 15

Simulation Processing Models

15.1 Introduction

To properly simulate Daya Bay experiment, events from different event classifications must be properly
mixed with any overlapping in space and time properly handled. To do this is complex and so a simpler
simulation that only considers a single event type at a time is also desired. The former model goes by the
name of “pull mode” or “Fifteen minutes style” simulation. The latter is known as “push mode” or “linear
style” simulation.

15.2 Fifteen

Fifteen package successfully extends gaudi frame work to another level. It makes use of many advance
features of dybgaudi, like AES, inputHeaders and using Stage tool to handle data transfer. Fifteen package
is designed to handle the max complexity in simulation. It has sophisticated consideration on all kinds of
possible physics scenario, event time information handling and data management. After two years’ usage and
the feedback from users, it’s already absorbed a lot of ideas, like mixing pre-simulated events and reusing,
and has gone into a mature stage.

15.2.1 Quick Start

After you get into nuwa environment, you are ready to start to generate your own simulation sample. In
/NuWa-trunk-dbg/NuWa-trunk/dybgaudi/Tutorial/Sim15/aileron, after type in nuwa.py -n50 -o fifteen.root
-m ”FullChainSimple -T SingleLoader” > log it will generate 50 readouts from IBD and K40 events.

15.2.2 Simulation Stage

Simulation is separated into a few stages: Kinematic, Detector, Electronic, TrigRead and SingleLoader.
Kinematic stage generates kinematic information, including time, position, particle and its momentum, etc.
Detector stage is to geant4 to do detector response simulation, like scattering, cerenkov and scintillation
light. At the end it will generate hit number (P.E.) in each PMT and hit information on RPC. Electronic
simulation convert these physics hit into electronic signal. For example, hits on PMT are converted to pulses.
TrigRead will do trigger judgement based on user setting, like NHit¿10, which means number of fired PMTs
must be above 10. When an event is triggered, it also produces readout. That means it will output ADC
and TDC instead of a raw PMT pulse. The real data acquisition system works like a pipe line, it outputs
its result one by one in time order. SingleLoader is designed for this purpose. The above description can be
summarized in Fig. 15.1

135

136 CHAPTER 15. SIMULATION PROCESSING MODELS

Figure 15.1: Simulation stages.

15.2.3 Stage Tool

Stage as explained in previous sections is an abstract concept in dividing all simulation components. For
Fifteen package, stage tool physically separates each simulation tools, but also is a media in data transfer.

While synchronizing many generation sources, they generate many data in the same time – same execution
cycle. For dybgaudi they are held by AES and inputHeaders. The time sequence in which they are generated
is disordered. Stage tool is put in charge of managing all the processors in one simulation stage. it manages
the execution of them, i.e. only run them when data is needed, and it caches the data from all processors,
sorts them and output them in time order. A bad metaphor might be stage tool works like a central train
station. It controls the incoming stream of all the trains to avoid possible crushing. It has some ability to
let train stop for some period, then let them leave on time.

15.2.4 Gnrtr

Gnrtr stands for Generator. For one type of events one generator needs to be specified. The type here is
not limited to its physics generation mechanism. The same type of event in different volume or geometry
structure may have different event rates, so they should be specified as two different Gnrtr. For example a
type of radioactive background have different abundance in two types of material, then it will have different

15.2. FIFTEEN 137

event rate.
While running Gnrtr will invoke each GenTools it owns, i.e. a real generator, timrator positioner, etc.

User needs to specify all these tools for it.

15.2.5 DetSimProc

One of DetSimProc’s main functions is to call the real simulation tool Geant4 through its Gaudi interface
GiGa. The other important feature is to output each simheader in time order.

Imagine two GenHeaders’ times are very close: the first one in time is far away to any PMTs, while the
second one is close to one PMT, it is possible that because of the time of light propagation, light from the
second event will generate a PMT hit first. The chance of this to happen is small, but it is serious enough
to cause whole simulation process to crush and all the following electronic and trigger logic to fail.

DetSimProc asks data input from simulation stage ”Kinematic”. As promised by stage tool, all the
kinematic information out of stage ”Kinematic” are in time order, earliest to latest, no violation. Then
DetSimProc take this advantage to ensure its output is also in time order. After DetSimProc got a GenHeader
to simulate, it finished the detector simulation for that GenHeader first. That is it can know the earliest hit
time of this SimHeader. DetSimProc keeps asking GenHeader from its lower stage and doing their detector
simulation, until a time comparison test is success. DetSimProc caches all the information of processed
GenHeaders and SimHeaders. It compares the earliest time of all SimHeaders and the time of the last
GenHeader. When the time of a SimHeader is less than the last GenHeader, it claims safe for output for
that SimHeader. Because the causality of event development, since the last GenHeader time is already
bigger than the time of a previous SimHeader, any new simulated result SimHeader won’t go before this
GenHeader, i.e. the previous SimHeader.

15.2.6 ElecSimProc

ElecSimProc maintains a pipeline of SimHits which are sorted by time. Normal geant4 simulated PMT and
RPC hits from all kinds of sources are kept in this pipeline.

The first thing to do every time execute ElecSimProc is to find a time gap between two successive hits in
this hit pipeline. The size of the gap is determined by DayaBay::preTimeTolerance + DayaBay::postTimeTolerance
which should be actually corresponding to the time period where a prepulse or a afterpulse exist. Then in the
real electronics simulation, prepulses and afterpulse can be inserted into these places. Certainly as explained
in previous sections, when a time gap is found, the time of the gap stop must be less the current time of
detector simulation stage. This is the only way to know there won’t be any hits from later simulation will
fool into this gap.

The chunk of hits before the gap start are packed together and made a new hit collection, then sent to
electronic simulation. So hits of all kinds of sources have a chance to mix and overlap. Electronics simulation
tools will take over the job and each sub detector will process its part separately.

For each fast simualted MuonProphet muon, a fake hit is created and put into this pipeline. Instead of
going into a full eletronics simulation, they are pushed into a fast electronics simulation. They are always
100 percent accepted even they didn’t passed trigger. Since they are also in the pipeline, their time is
synchronized to the other geant4 simulated hits. User won’t obeserve a big delay between fast simulated
muon and other events.

15.2.7 TrigReadProc

Trigger simulation and Readout simulation are combined together into one simulation stage, because they
all needs input from electronic simulation, i.e. pulses information. In electronic simulation there is no such
requirement that only some detector can join the simulation, so in the same way, trigger will work for all
required detectors.

In principle the different delay from different electronic channel can flip the time order between different
events, however the time gap requirement is at the scale of 10µs. It is believed that the possible time flip

138 CHAPTER 15. SIMULATION PROCESSING MODELS

caused by electronic simulation will never go beyond that and there is no physics concern in simulating such
a effect, so there is no complex time comparison in TrigReadProc.

15.2.8 SingleLoader

Triggers and readouts found in ElecHeader are packed into one SimReadoutHeader. Certainly it is also
possible that no trigger is found, since there are many low energy background events. SingleLoader caches
all the triggers and readouts and output them one by one. When its own buffer is empty it will automatically
ask data from lower stage.

15.2.9 LoadingProc

The only chance that events of different type can overlap and produce some impact is in electronic simulation.
Hits from different events which are close in time may not be distinguished in electronics. A correct mixing
approaching with pre-simulated sample should happen before it goes into electronic simulation.

Another idea is to re-use some geant4 pre-simulated sample. Like for muon events, it has a high frequency
and is extremely time-consuming. We care a lot more about its influence on its adjacent events than its own
topology.

LoadingProc is created on this background. It accepts a pre-simulated file, which must contain SimHead-
ers, as an input stream and output them to Stage Detector tool.

At the same time it can be configured to reset the event rate, i.e. time of the generated events. It also
simplify the process if any trigger or electronic simulation parameter needs to be adjusted, since don’t have
to waste time to redo the longest geant4 simulation.

15.2.10 Algorithm Sim15

Algorithm Sim15 is a simple Gaudi algorithm which is inserted into Gaudi top algorithm list. It runs once
every execution cycle. It sends out the initial request for generating MC events.

15.2.11 Customize Your Simulation Job

A General Example

This part will explain how exactly to write your own simulation script with Fifteen package. The example
is from dybgaudi/Tutorial/Sim15/aileron/FullChainSimple.py which implements all the basic elements.

1 #!/usr/bin/env python

2 ’’’

3 Configure the full chain of simulation from kinematics to readouts and

4 with multiple kinematics types mixed together.

5

6 usage:

7 nuwa.py -n50 -o fifteen.root -m "FullChainSimple -T SingleLoader" > log

8

9 -T: Optional stages are: Kinematic , Detector , Electronic , TrigRead or SingleLoader.

10

11 More options are available like -w: wall clock starting time

12 -F: time format

13 -s: seed for IBD generator

14

15 //////

16 Aside:

17 This is a copy of MDC09b.runIBD15.FullChain , however with less options ,

18 less generators configured and less truth info saved.

19 //////

20 ’’’

15.2. FIFTEEN 139

This is the first part of this script. In the first line it declares the running environment. What follows,
quoted by ”’, are a brief introduction of this script and usage of this script. It tells that this script will
configure a full chain of simulation. It also includes a command line which can be used right away to start.
Before looking into the script it also explains what arguments can be set and what are their options. These
arguments will explained later.

Next I will follow the order of how this script is going to be executed in nuwa. Then it will bring us to
the end of the script.

1 def configure (argv = []) :
2 cfc = ConfigureFullChain (argv)
3 cfc . configure ()
4 return

5

6 if __name__ == "__main__" :
7 configure ()
8 pass

A python script is executable in a shell environment when it has

if __name__ == "__main__":

Like this FullChainSimple.py, you can directly type FullChainSimple.py in a tcsh or bash see what happens.
It is often used to test the configuration needed before running nuwa.

When nuwa is loading a python module it will check whether it has a configure() method. User’s gaudi
algorithms, services and tools’ should go into there. Here an object about Fifteen is created and some
parameters ”argv” are passed to it. Next we will see some details in Fifteen package configuration.

1 class ConfigureFullChain :
2 def __init__ (self , argv) :
3 . . .
4 def parse_args (self , argv) :
5 . . .
6 def configureKinematic (self) :
7 . . .
8 def configureDetector (self) :
9 . . .

10 def configureElectronic (self) :
11 . . .
12 def configureTrigRead (self) :
13 . . .
14 def configureSingleLoader (self) :
15 . . .
16 def configureSim15 (self) :
17 . . .
18 def configure (self) :
19 . . .

Now all the details are stripped out, and only the skeleton are left. ”...” indicates the real working code
are omitted for a second. A class ConfigureFullChain is defined.

__init__(self,argv)

is always called when a data object is created. The useful interface invoked by nuwa will be configure(self).
Note don’t confuse with the configure(argv = []) mentioned previously.

Apparently it has configure functions for Kinematic, Detector, Electronic, TrigRead, SingleLoader simu-
lation stages. It also can handle some parameters to be more user friendly in parseargs. The configureSim15
will create an algorithm called Sim15 which is the diver of the simulation job. Algorithm Sim15 sits on the
top of all the simulation stages asking output.

Stage tools are firstly set up in the following.

140 CHAPTER 15. SIMULATION PROCESSING MODELS

1 def configure (self) :
2

3 from Stage import Configure as StageConfigure

4 self . stage_cfg = StageConfigure ()
5

6 stagedic={’Kinematic ’ : 1 , ’Detector ’ : 2 , ’Electronic ’ : 3 , ’TrigRead ’ : 4 , ’SingleLoader ’ : 5}
7 . . .
8

9 if stagedic [self . opts . top_stage]>=1:
10 self . configureKinematic ()
11 if stagedic [self . opts . top_stage]>=2:
12 self . configureDetector ()
13 if stagedic [self . opts . top_stage]>=3:
14 self . configureElectronic ()
15 if stagedic [self . opts . top_stage]>=4:
16 self . configureTrigRead ()
17 if stagedic [self . opts . top_stage]>=5:
18 self . configureSingleLoader ()
19

20 self . configureSim15 ()

According to the top simulation stage all required lower stage tools are created. For example if top stage
is set to be Detector, then only stage tool Kinematic and Detector will be added. In the end the algorithm
Sim15 is configured. Correspondingly Sim15 will ask data from stage tool Detector.

Next we will see the configuration of Gnrtr. In this example two generators, IBD and K40 are added to
work at the same time.

1 def configureKinematic (self) :
2 #IBD

3 from Gnrtr . IBD import EvtGenerator

4 # from IBD import EvtGenerator

5 ibd_gds = EvtGenerator (name = ’IBD_gds ’ ,
6 seed = self . opts . seed ,
7 volume = ’/dd/Structure/AD/db -oil1’ ,
8 strategy = ’Material ’ ,
9 material = ’GdDopedLS ’ ,

10 mode = ’Uniform ’ ,
11 lifetime = 78.4∗ units . second , #daya bay site

12 wallTime = self . start_time_seconds)
13

14 ibd_gds . ThisStageName = "Kinematic"

15 self . stage_cfg . KinematicSequence . Members . append (ibd_gds)
16

17 from Gnrtr . Radioact import Radioact

18 #K40

19 k40_gds = Radioact (name = ’K40_gds ’ ,
20 volume = ’/dd/Structure/AD/db -oil1’ ,
21 nuclide = ’K40’ ,
22 abundance = 3.01 e17 ,
23 strategy = ’Material ’ ,
24 material = ’GdDopedLS ’ ,
25 start_time = self . start_time_seconds)
26

27 k40_gds . ThisStageName = "Kinematic"

28 self . stage_cfg . KinematicSequence . Members . append (k40_gds)

Basically only one line command is needed to specify one type of event. In the end their stage names are
all assigned to be ”Kinematic” and it generator algorithms are also added to stage tool Kinematic. i.e. the
connection between stage tool and processors are built up. For details about generators’ configuration user
can refer to previous sections, and they also need to have the knowledge of detector geometry and material.

1 def configureDetector (self) :
2 ’’’Configure the Detector stage ’’’

3

15.2. FIFTEEN 141

4 import DetSim

5 ds = DetSim . Configure (physlist=DetSim . physics_list_basic+DetSim . physics_list_nuclear ,
6 site="dayabay" ,
7 use_push_algs = False)
8

9 # QuantumEfficiency*CollectionEfficiency*QEScale = 0.24*1/0.9

10 from DetSim . DetSimConf import DsPhysConsOptical

11 optical = DsPhysConsOptical ()
12 #optical.UseScintillation = False

13 optical . CerenPhotonScaleWeight = 3.5
14 #optical.UseCerenkov = False

15 optical . ScintPhotonScaleWeight = 3.5
16

17 from DetSimProc . DetSimProcConf import DetSimProc

18 dsp = DetSimProc ()
19 dsp . ThisStageName = "Detector"

20 dsp . LowerStageName = "Kinematic"

21 #dsp.OutputLevel = 2

22 self . stage_cfg . DetectorSequence . Members . append (dsp)
23

24 ds . historian (trackSelection="(pdg == 2112)" , vertexSelection="(pdg == 2112)")
25 return

The above example shows how detector simulation part is configured. Usually DetSim works in a normal
gaudi manner, here the option usepushalgs = False will stop adding its to top algorithm list. The lines
assigning stage names, lower stage and this stage, tells where the input data is from, and what the current
stage is. Then this DetSimProc algorithm was added to the stage tool Detector.

In the rest the physics list is customized and both cerenkov and scintillation light are pre-scaled. From
this example and the above one for generator it is already very obvious that Fifteen package just uses the
simulation tools as others. It doesn’t create another set of tools. All setting of them can be directly moved
to here.

Next we will see how electronic simulation is set up.
1 def configureElectronic (self) :
2 ’’’Configure the Electronics stage’’’

3

4 import ElecSim

5 es = ElecSim . Configure (use_push_algs = False)
6

7 from ElecSimProc . ElecSimProcConf import ElecSimProc

8 esp = ElecSimProc ()
9 esp . ThisStageName = "Electronic"

10 esp . LowerStageName = "Detector"

11 #esp.OutputLevel = 2

12 self . stage_cfg . ElectronicSequence . Members . append (esp)
13

14 from ElecSim . ElecSimConf import EsIdealFeeTool

15 feetool = EsIdealFeeTool ()
16 feetool . EnableNonlinearity=False

17

18 return

There is nothing new here regarding about Fifteen package configuration, except that name of this stage is
”Electronic” and lower stage is ”Detector”. The simulation chain is setup in this way.

Here a non-linearity option is turn off to demonstrate how to configure the real working tool.
For completeness the configuration of TrigReadProc and SingleLoader are included.

1 def configureTrigRead (self) :
2 ’’’Configure the Trigger and Readout stage ’’’

3 from TrigReadProc . TrigReadProcConf import TrigReadProc

4 tsp = TrigReadProc ()
5 tsp . ThisStageName = "TrigRead"

6 tsp . LowerStageName = "Electronic"

142 CHAPTER 15. SIMULATION PROCESSING MODELS

7 #tsp.TrigTools = [...]

8 #tsp.RoTools = [...]

9 #tsp.OutputLevel = 2

10 self . stage_cfg . TrigReadSequence . Members . append (tsp)
11 return

12

13 def configureSingleLoader (self) :
14 ’’’Configure the SingleLoader stage’’’

15 from SingleLoader . SingleLoaderConf import SingleLoader

16 sll = SingleLoader ()
17 sll . ThisStageName = "SingleLoader"

18 sll . LowerStageName = "TrigRead"

19 #sll.OutputLevel = 2

20 self . stage_cfg . SingleLoaderSequence . Members . append (sll)

In the end the top pulling algorithm Sim15 is added to gaudi top algorithm list. Its only job is to bring
up the initial request from top stage tool.

1 def configureSim15 (self) :
2 from Stage . StageConf import Sim15

3 sim15=Sim15 ()
4 sim15 . TopStage=self . opts . top_stage
5

6 from Gaudi . Configuration import ApplicationMgr

7 theApp = ApplicationMgr ()
8 theApp . TopAlg . append (sim15)

Example for LoadingProc

LoadingProc is another input stream for SimHeader. So the configuration of LoadingProc should be a
replacement for configureDetector in the above example. A working example can be found in Fifteen/Load-
ingProc/aileron/testAll.py

Here the configuration after stage Detector will not be repeated. Only the part for LoadingProc is shown.
In that example two input files are specified. Each one is set to a new start time and a new event rate.
Details are shown below. As usual the chain of simulation line are set up and input file are specified as
expected.

1 def configureLoadingProc (self) :
2 from LoadingProc . LoadingProcConf import LoadingProc

3 load = LoadingProc ("LoadingProc.Oxygen18")
4 load . StartSec = 0
5 load . StartNano = 0
6 #load.Distribution = "Exponential"

7 load . Distribution = "Periodic"

8 load . Rate = 1.0
9 assembler_name = "Ox18Assem"

10 load . HsAssembler = assembler_name

11 load . OutputLevel = 2
12 assem = Assembler (toolname = assembler_name ,
13 filename = "input.root")
14

15 # This and lower stage

16 load . ThisStageName = "Detector"

17 load . LowerStageName = ""

18 # Add this processor to Gaudi sequencer

19 self . stage_cfg . DetectorSequence . Members . append (load)
20 return

15.2. FIFTEEN 143

15.2.12 Reminders and Some Common Errors

AES must be used to use Fifteen to generate simulation sample. The number of events specified on the
command line is the number of execution cycles. If asking readout as the final output, then the initial
number of GenHeader varies depending on trigger efficiency.

Chapter 16

Reconstruction

145

Chapter 17

Database

17.1 Database Interface

This chapter is organized into the following sections.

Concepts is an introduction to the basic concepts behind the DatabaseInterface. You can skip this section
if you are in a hurry, but reading it will help you understand the package.

Installing and Running provides a few tips on building running programs that use the DatabaseInterface.

Accessing Existing Tables tells you how you write code to retrieve data from existing tables.

Creating New Tables describes how new tables are added to the database and the corresponding classes,
that serve the data, are designed.

Filling Tables explains how new data is added to existing tables in the database.

MySQL Crib gives the bare minimum necessary to use MySQL to manage a database. The DatabaseIn-
terface runs directly on top ROOT under which MySql and flat ASCII files are used to implement a
hierarchical database.

17.2 Concepts

17.2.1 Types of Data

Besides the data from the detector itself, off-line software requires additional types of data. Some possible
examples:

Detector Description i.e. data that describes the construction of the detector and how it responds to
the passage of particles through it. The geometry, the cabling map and calibration constants are all
examples of this type of data.

Reactor Data i.e. reactor power, fuel makeup, or extrapolated neutrino spectra

Physics Data i.e. cross-section tables, optical constants, etc.

It is the purpose of the DatabaseInterface to provide simple and efficient access to such data and to
provide a framework in which new types of data can be added with minimal effort.

147

148 CHAPTER 17. DATABASE

17.2.2 Simple, Compound and Aggregated

Within the database, data is organised into tables. When the user requests data from a table, the Databa-
seInterface collect rows of data from the appropriate table. From the perspective of the interface, there are
3 types of organisation:-

Simple A single row is retrieved. Algorithm Configuration data is always simple; even if multiple configu-
rations are possible, only one can be selected at a time. Detector Description, on the other hand, is
almost never Simple.

Compound Multiple rows are retrieved. Each row represents a single sub-system and the request retrieves
data for a complete set of sub-systems. For example a request for PMT positions will produce a set of
rows, one for each PMT.

Aggregated A special form of Compound depending on the way new data is added to the database:-

• If data for the entire detector is written as a single logical block, then it is Compound. A table
that describes the way PMTs to electronics channels might be compound: a complete description
is written as a single unit

• If it is written in smaller chunks (called aggregates) then it is Aggregated. For example, it might
be possible to calibrate individual electronics cards independently of the rest of the detectors at
on sit. When calibrated, you will want to update only a subset of the calibrations in the database.
One of the jobs of the interface is to reassemble these aggregates so that the user only ever sees
a complete set.

There are two types of aggregation:-

Complete In this type the number of aggregates present at any time is constant, with the possible
exception of detector construction periods during which the number increases with time. This is
the normal form and is used to describe a set of sub-systems that are permanently present e.g.
the set of steel planes.

Sparse In this type the number of aggregates present at any time is variable, there could even be
none. This form is used to describe abnormal conditions such as alarms.

17.2.3 Tables of Data

The DatabaseInterface provides a simple, uniform concept regardless of the data being accessed. Each
request for data produces a pointer giving read access to a results table, which is effectively a slice of the
underlying database table. Each row of the results table is an object, the type of which is table-specific.
These table row objects give access to the data from one row but can hide the way the database table is
organised. So changes to the physical layout of a database table should only effect its table row object, not
the end users of the data. Note that a single request only ever accesses a single table; the interface does not
support retrieval of data from multiple database tables simultaneously.

If the request for data fails for some reason, then the resulting table will be empty, otherwise it will have
a single row for Simple organisation and more than one row for Compound and Aggregated. The user can
ask how many rows the table has and can directly access any of them. The physical ordering of the rows
in the table reflects the way the data was originally written, so for Aggregated data, the ordering is not
optimised for retrieval. To deal with this, each table row object can declare a natural index, independent of
its physical position, and this natural index can be used to retrieve data.

17.2. CONCEPTS 149

17.2.4 A Cascade of Databases

The DatabaseInterface can access data for more than one database. During initialisation it is given a list of
database URLs. The list order reflects priority; the interface first looks for data in the first database in the
list, but if that fails, tries the others in turn until all have been tried or data is found. This scheme allows
a user to override parts of the official database by creating a mini-database with their own data and then
placing it in the list ahead of the official database. The concept of a set of overlaying databases is called a
cascade.

17.2.5 Context Sensitive

In principle, any of the data retrieved by the interface could depend on the the current event being processed.
Clearly Detector Descriptions, such as calibration constants, will change with time and the interface has to
retrieve the right ones for the current event. For this reason, all requests for data through the interface must
supply information about the:-

• The type of data: real or Monte Carlo.

• The site of the detector: Daya Bay, Ling Ao, Mid, Far, or Aberdeen

• The date and times of the event.

Collectively this information is called the Context and is represented by the Context class of the Context
package. Note that in common with event data and times

All Database date and times are in UTC.
In the database all data is tagged by a Context Range which identifies the types of data and detector and

the ranges of date times for which it is valid. This is represented by the ContextRange class of the Context
package. Some data is universal; the same database data can be used for any event. Others may be very
specific to a single type of data and detector and a limited date time range.

Note that the Context Range of the data defines the context at for which the data will be accessed, NOT
where data is generated. For example, reactor data will be associated with all detector sites, not assigned
to a reactor site.

Physically, the way to associate the Context Range metadata with the actual data is to have a pair of
tables:-

Context Range Table This table consists of rows of ContextRange objects, each with a unique sequence
number which is used as a key into the Main Data Table.

Main Data Table Each row has a sequence number corresponding to an entry in the Context Range Table.

The interface first finds a match in the Context Range Table for the current context and then retrieves
all rows in the Main Data Table that match its sequence number. The reasons for this two step approach
are:-

• To simplify the task of Context Management.

• To avoid repeated data. For Compound and Aggregated data, many rows can share a single Context
Range. So this range only appears once and only a simple sequence number has to be repeated in the
main table.

150 CHAPTER 17. DATABASE

17.2.6 Extended Context

The primary function of DatabaseInterface is to provide the best information for a specific context, but it
can also retrieve information for much more general queries. The query is still broken into two parts: the
“context” which is matched to the Context Range Table and then the data from the main table is taken
for the selected sequence number(s). However the user can supply a context such as “All ranges that start
between this time and that time” hence the term “Extended Context”. Further, during the retrieval of data
from the main table addition restrictions can be imposed. The result of an Extended Context query is a
collection of rows that will not normally represent the state of the detector at a single moment in time and
it is up to the user to interpret the results meaningfully. However, it does allow the user the power of raw
SQL queries.

17.2.7 SimFlag Association

As explained in the preceding section, the interface finds the database data that best matches the context
of the data. There are occasions when this matching needs to be changed, for example there can be times
when Monte Carlo data needs to be treated exactly as if it were event data and this includes the way it
retrieves from the database. To support this the user can specify, for any type of data, an associated list
of data types. If this is done then, instead of using the current type, each of the alternative types are tried
until a match is found. This matching takes precedence over the cascade i.e. all associated types are tried
on the first database in the cascade before moving on to the second and subsequent cascade members. This
ensures that higher members, which might even refer back to the ORACLE database at FNAL, are only
tried as a last resort.

17.2.8 Authorising Databases and Global Sequence Numbers

As explained in the previous section, sequence numbers in the Context Range Table are unique. However
this can present a problem if the same type of data is being entered into several different databases. For
example calibration constants will be created in the Near, Far and Calibration detectors. Eventually the
tables will be merged but it is essential that there is no conflict in the sequence numbers. To solve this
problem, certain databases are special: they are able to produce globally unique sequences numbers. They
do this as each is allocated a unique block of 10,000,000 sequence numbers (which is enough to allow a new
entry to be made every minute for 20 years!). These blocks are recorded in a special table: GLOBALSEQNO
that holds the last used sequence number for each table. The block 1..9,999,999 is used for local sequence
numbers i.e. ones that are only guaranteed unique within the current database table.

By default permanent data written to an authorising database will be written with global sequence
numbers. For temporary data, or if writing to a non-authorising database, local sequence numbers are used
and in this case a LOCALSEQNO table is generated automatically if required.

Important:-
Merging database tables that have local sequence numbers will require a special procedure to avoid con-

flicts.
GLOBALSEQNO and LOCALSEQNO tables must never be propagated between databases.

17.2.9 Validity Management

For constants that change with time (if that is not a contradiction in terms!) it makes sense to have
overlapping Context Ranges. For example, suppose we know that a certain sort of calibration constants
drifts with time and that, once determined, is only satisfactory for the next week’s worth of data. A sensible
procedure would be to limit its validity to a week when writing to the database but to determine new
constants every few days to ensure that the constants are always “fresh” and that there is no danger that
there will be a gap. However, this means that the interface has to perform two types of Validity Management:-

17.2. CONCEPTS 151

Ambiguity Resolution When faced with two or more sets of data the interface has to pick the best. It
does this simply by picking the one with the latest creation date time.

Context Range Trimming Having found the best set, the interface wants to know how long it will remain
the best. Any set whose creation date is later will be better according to the above rule and so the
retrieved data has its range trimmed so as not to overlap it. This reduced Context Range is called
the Effective Context Range. This only happens in memory; the database itself is not modified, but
it does mean that the interface does not need to check the database again for this set of data until
the Effective Context Ranges has expired. This trimming also applies between databases in a cascade,
with sets in higher priority databases trimming those in lower ones.

Overlay Version Dates As explained above, creation dates play a crucial role in resolving which set of data
to use; later creation dates take priority over earlier ones. This scheme assumes that constants from
earlier runs are created before constants from later runs, but this isn’t always true. When improving
e.g. calibration constants, it’s quite normal to recalibrate recent runs before going back and fixing
earlier ones and then, simply to use the date when the constants were created would mean that the
constants from earlier runs would take priority over any later runs they overlapped. To allow constants
to be created in any order the interface provides a system for deducing the best creation dates for any
constants as follows:-

• A query is made using as the context, the start of the validity for the new constants.
• If the query finds no data, the creation date of the new constants is set to its validity start date.
• If the query finds data, the creation date of the new data is set to be 1 minute greater than the

creation date of the found data i.e. just late enough to replace it.

The scheme means that creation dates always follow that dates of the runs that they correspond to
rather than the dates when their constants were created. When using the scheme its probably better
to consider the “dates” to be version numbers.

17.2.10 Rollback

The database changes almost constantly to reflect the state of the detector, particularly with regard to the
calibration constants. However this can mean that running the same job twice can produce different results
if database updates that have occurred between the two runs. For certain tasks, e.g. validation, its necessary
to decouple jobs from recent updates and this requires database rollback i.e. restoring the database to a
previous state. Rollback works by exploiting the fact that data is not, in general, ever deleted from the
database. Instead new data is added and, by the rules of Ambiguity Resolution (see the previous section)
supersede the old data. All data is tagged by the date it was inserted into the local database, so rollback
is implemented by imposing an upper limit on the insertion date, effectively masking out all updates made
after this limit.

17.2.11 Lightweight Pointers to Heavyweight Data

One of the interface’s responsibilities is to minimise I/O. Some requests, particularly for Detector Configu-
ration, can pull in large amounts of data but users must not load it once at the start of the job and then use
it repeatedly; it may not be valid for all the data they process. Also multiple users may want access to the
same data and it would be wasteful for each to have their own copy.

To deal with both of the above, the interface reuses the concept of a handle, or proxy, that appears in
other packages such as Candidate. The system works as follows:-

1. When the user wants to access a particular table they construct a table-specific pointer object. This
object is very small and is suitable to be stack based and passed by value, thus reducing the risk of a
memory leak.

152 CHAPTER 17. DATABASE

2. During construction of the pointer, a request for data is passed down through the interface and the
results table, which could be large, is created on the heap. The interface places the table in its cache
and the user’s pointer is attached to the table, but the table is owned by the interface, not the user.

3. Each request for data is first sent to the cache and if already present then the table is reused.

4. Each table knows how many user pointers are connected to it. As each pointer is discarded by its
owner, it disconnects itself from the table it points to.

5. Once a table has no pointers left it is a candidate for being dropped by its cache. However this is not
done at once as, between events, there are likely to be no user pointers, so just because a table is not
currently being pointed to, it doesn’t mean that it won’t be needed again.

17.2.12 Natural Table Index

For Detector Description data, tables can be large and the user will require direct access to every row.
However, the way the table is arranged in memory reflects the way the data was originally written to the
database. For Simple and Compound data the table designer can control this organisation as complete sets
are written as a single unit. For Aggregated data, the layout reflects the way aggregates are written. This
allows the interface to replace individual aggregates as their validity expires. However this means that the
physical layout may not be convenient for access. To deal with this table row objects, which all inherit from
DbiTableRow are obliged to return a Natural Table Index, if the physical ordering is not a natural one for
access. Tables can then be accessed by this index.

17.2.13 Task

Task will provide a way to further select the type of data retrieved. For example:-

• There might be nominal set of geometry offsets, or a jittered geometry to test for systematic effects.

• Detector Configuration data could have two tasks, one for raw calibration and another for refined
calibration.

The aim is that Task will allow a particular database table to be sub-divided according to the mode of
use. Currently Task is a data type defined in Dbi i.e. Dbi::Task and is implemented as an integer. The
default value is zero.

17.2.14 Sub-Site

Sub-Site can be used like the Task to disambiguate things at a single site. For example, this can be used to
distinguish between antineutrino detector modules, between electronics crates, etc.

Currently SubSite is a data type defined in Dbi i.e. Dbi::SubSite and is implemented as an integer.
The default value is zero.

17.2.15 Level 2 (disk) Cache

Loading a large table from the database is a lot of work:-

1. The query has to be applied and the raw data loaded.

2. The row objects have to be individually allocated on the heap.

3. Each data word of each row object has to be individually converted through several layers of the
support database software from the raw data.

17.3. RUNNING 153

Now as the detector configuration changes slowly with time identically the same process outlined above
is repeated many times, in many jobs that process the data, so the obvious solution is to cache the results
to disk in some way that can be reloaded rapidly when required. The technique essentially involves making
an image copy of the table to disk. It can only be applied to some tables, but these include the Calibration
tables which represent the largest database I/O load, and for these tables loading times can be reduced by
an order of magnitude.

17.3 Running

17.3.1 Setting up the Environment

The interface needs a list of Database URLs, a user name and a password. This was previously done using
envvars ENV TSQL URL, ENV TSQL USER, ENV TSQL PSWD that directly contained this configuration information.
As this approach resulted in the configuration information being duplicated many times a new DBCONF
approach has now been adopted.

The DBCONF approach is based on the standard mysql configuration file HOME/.my.cnf which has the
form :

[testdb]

host = dybdb1.ihep.ac.cn

user = dayabay

password = youknowit

database = testdb

[dyb_cascade]

host = dybdb1.ihep.ac.cn

user = dayabay

password = youknowit

database =

db1 = offline_db

db2 = dyb_temp

Typical configurations can be communicated via the setting of a single environment variable DBCONF that
points to a named section in the configuration file. Other envvars can also be used to change the default
behaviour allowing more complex configurations such as cascades of multiple databases to be configured.

envvar default notes
DBCONF name of section in config file
DBCONF URL mysql://%(host)s/%(database)s

DBCONF USER %(user)s

DBCONF PSWD %(password)s

DBCONF HOST %(host)s

DBCONF DB %(database)s

DBCONF PATH /etc/my.cnf:$SITEROOT/../.my.cnf: /.my.cnf list of config file paths

The defaults are python patterns that are filled in using the context variables obtained from the section
of the config

The meanings are as follows.

DBCONF PATH Colon delimited list of paths (which can include envvars such as $SITEROOT and the
home directory tilde symbol). Non-existing paths are silently ignored and sections from the later config
files override sections from prior files. Using the default paths shown in the table allows the system
administrator to manage config in /etc/my.cnf which is overridden by the dybinst administrator
managed $SITEROOT/../.my.cnf.

154 CHAPTER 17. DATABASE

Users only need to create their own config file in HOME/.my.cnf if they need to override the standard
configuration.

DBCONF URL This is a semi-colon separated list of URLs. Each URL takes the form:-

protocol://host[:port]/[database][?options]

where:

protocol - DBMS type , e.g. mysql etc.

host - host name or IP address of database server

port - port number

database - name of database

options - string key=value’s separated by ’;’ or ’&’

Example:

"mysql://myhost:3306/test?Trace=Yes;TraceFile=qq.log"

DBCONF USER Pattern that yields database user name. Only needs to be set if you require different
names for different databases in the cascade then this can be a semi-colon separated list in the same
order as DBCONF URL. If the list is shorter than that list, then the first entry is used for the missing
entries.

DBCONF PSWD Pattern that yields database password. As with DBCONF USER it can be a semi-colon
separated list with the first entry providing the default if the list is shorter than DBCONF URL. It only
needs to be set if you require different passwords for the different databases in a cascade. Security
risks are avoided by never using actual passwords in this envvar but rather using a pattern such as
%(pass1)s;%(pass2)s that will be filled in using the parameters from the config file section identified
by DBCONF. Setting it to null will mean that it will be prompted for when the interface initializes.

These variable should be set for the standard read-only configuration. These variables can be trivially
overridden for specific jobs by resetting the environment variables in the python script:

Note that using setdefault allows the config to be overridded without editing the file :

import os

os.environ.setdefault(’DBCONF’,’dyb_offline’)

print ’Using Database Config %s ’ % os.environ[’DBCONF’]

For framework jobs when write-access to the database is required, or other special configuration is desired
a less flexible approach is preferred. With a comment pointing out that some special configuration in /.my.cnf
is required. Be careful not to disclose real passwords; passwords do not belong in repositories.

"""

NB requires section of ~/.my.cnf

[dyb_offline]

host = dybdb1.ihep.ac.cn

user = dayabay

password = youknowit

db1 = dyb_offline

db2 = dyb_other

"""

import os

os.environ[’DBCONF’] = ’dyb_offline’

os.environ[’DBCONF_URL’] = ’mysql://%(host)s/%(db1)s;mysql://%(host)s/%(db2)s’

print ’Using Database Config %s ’ % os.environ[’DBCONF’]

17.3. RUNNING 155

17.3.2 Configuring

The database can be configured through a Gaudi Service before starting your job.
Once the job is running you can configure the DatabaseInterface via the DbiSvc:

from gaudimodule import *

theApp = AppMgr()

theApp.Dlls += [’Conventions’]

theApp.Dlls += [’Context’]

theApp.Dlls += [’DatabaseInterface’]

theApp.createSvc(’DbiSvc’)

dbisvc = theApp.service(’DbiSvc’)

dbisvc.<property>=<newvalue>

dbisvc.<property>=<newvalue>

...

Rollback

To impose a global rollback date to say September 27th 2002:-

theApp.service(’DbiSvc’).RollbacDates =’* = 2002-09-27 00:00:00’

This will ensure that the interface ignores data inserted after this date for all future queries. The hours,
minutes and seconds can be omitted and default to 00:00:00.

Rollback can be more selective, specifying either a single table or a group of tables with a common prefix.
For example:-

theApp.service(’DbiSvc’).RollbackDates =’* = 2002-09-01’;

theApp.service(’DbiSvc’).RollbackDates =’Cal* = 2002-08-01’

theApp.service(’DbiSvc’).RollbackDates =’CalPmtGain = 2002-07-01’

Now the table CalPmtGain is frozen at July 2002, other Cal tables at August and all other tables at
September. The ordering of the commands is not important; the interface always picks the most specific one
to apply to each table.

Rollback only applies to future queries, it does not invalidate any existing query result in the cache
which are still available to satisfy future requests. So impose rollback conditions at the start of
the program to ensure they apply consistently.

MakeConnectionsPermanent

By default the DatabaseInterface closes connection to the database between queries, to minimise use of
resources - see section 17.9.1. If the job is doing a lot of database I/O, for example creating calibration
constants then this may degrade performance in which case all connections can be made permanent by:-

theApp.service(’DbiSvc’).MakeConnectionsPermanent=’true’

Ordering Context Query Results

By default when the DatabaseInterface retrieves the data for a Context Query, it does not impose an order
on the data beyond requiring that it be in sequence number order. When an ordering is not imposed, the
database server is under no obligation to return data in a particular order. This means that the same job
running twice connected to the same database could end up with result sets that contain the same data
but with different ordering. Normally this doesn’t matter, the ordering of rows is not significant. However,
results from two such jobs may not be identical as floating point calculations can change at machine level
precision if their ordering is changed. There are situations where it is required that the results be identical.
For example:-

156 CHAPTER 17. DATABASE

• When bug hunting.

• When checking compatibility between two databases that should be identical.

and for such occasions it is possible to completely specify the ordering of rows within a sequence number
by forcing sub-ordering by ROW COUNTER, a column that should be present in all Main Data tables:-

theApp.service(’DbiSvc’).OrderContextQuery=’true’

Level 2 Cache

Enabling the Level 2 Cache allows certain large tables query results to be written to disk from which they
can be reloaded by subsequent jobs saving as much as an order of magnitude in load time. Data in the
cache will not prevent changes in the database from taking affect for the DatabaseInterface does an initial
(lightweight) query of the database to confirm that the data in the cache is not stale. To enable the cache,
the user specifies a directory to which they have read/write access. For example, to make the current working
directory the cache:-

theApp.service(’DbiSvc’).Level2Cache=’./’

Cache files all have the extension .dbi cache. Not all tables are suitable for Level 2 caching; the Databa-
seInterface will only cache the ones that are.

Cache files can be shared between users at a site to maximise the benefit. In this case the local Database
Manager must set up a directory to which the group has read/write access. Management is trivial, should
the cache become too large, it can simply be erased and then the next few jobs that run will re-populate it
with the currently hot queries.

Note that Cache performance is achieved by doing raw binary I/O so the cache files are platform specific,
so if running in a heterogeneous cluster the Database Manager should designate a platform specific directory.
To simplify this, the name of the directory used by the cache can include environmental variables e.g.:-

theApp.service(’DbiSvc’).Level2Cache=’$DBI_L2CACHE’

Output Level

The verbosity of the error log from the DatabaseInterface can be controlled by:

theApp.service(’DbiSvc’).OutputLevel = 3

The output levels are standard Gaudi levels.

17.4 Accessing Existing Tables

17.4.1 Introduction

To access database data, the user specifies the database table to be accessed and supplies a “context” for
the query. The context describes the type and date time of the current event. This is stored in a Context
package Context object.

FIXME: Need a description here of how to get a Context from a Data Model object.
It should be something like:

Context GetContext() const

methods to get their context. The DatabaseInterface uses the context to extract all the rows from the
database table that are valid for this event. It forms the result into a table in memory and returns a object
that acts like a pointer to it.

17.4. ACCESSING EXISTING TABLES 157

You are NOT responsible for deleting the table; the Database Interface will do that when the table
is no longer needed

You have random access to any row of the results table. Each row is an object which is specific to that
table. The key to understanding how to get data from a database table is study the class that represent a
row of it results table.

17.4.2 Accessing Detector Descriptions

Making the Query

As explained above, the key to getting data is to locate the class that represents one row in a database
table. To understand how this all works look at one of the sample tables included in the DbiTest package
and imaginatively called DbiDemoData1, DbiDemoData2 and DbiDemodata3. For purposes of illustration we
will pick the first of these. Its header can be found in:-

DbiTest/DbiDemoData1.h

To make a query you create a DbiResultPtr object. Its header can be found in:-

DatabaseInterface/DatabaseInterface/DbiResultPtr.h

This is a class that is templated on the table row class, so in this case the instantiated class is:-

DbiResultPtr<DbiDemoData1>

and to instantiate an object of this class you just need a Context object. Suppose vc is such an object,
then this creates the pointer:-

DbiResultPtr<DbiDemoData1> myResPtr(vc);

This statement creates a DbiResultPtr for DbiDemoData1 class. First it searches through the database
for all DbiDemoData1 objects that are valid for vc, then it assembles them into a table and finally passes
back a pointer to it. Not bad for one statement! The constructor can take a second argument:-

DbiResultPtr(Context vc,Dbi::SubSite subsite=0,Dbi::Task task=0);

Dbi::SubSite is an optional parameter that sub-divides a table to select a specific component at a given
detector Site, e.g. an antineutrino detector.

Dbi::Task offers a way to sub-divided a table according to the mode of operation. For example a Detector
Configuration data could have two modes, one for raw calibration and another for refined calibration.

If the concept of a subsite or task is not relevant for a particular database table, then the parameter
should be left at its default value of 0. Otherwise data should be allocated a unique positive number and
then selection will only pick rows with the required value of task.

The constructor can take further arguments which can normally be left at their default values - a
Dbi::AbortTest see section 17.4.4 and a Bool t findFullTimeWindow see section 17.9.2.

Accessing the Results Table

Having got a pointer to the table the first thing you will want to know is how many rows it has. Do this
using the method:-

UInt_t GetNumRows() const;

158 CHAPTER 17. DATABASE

If the query failed then the number of rows returned will be zero. This could either be the result of some
catastrophic failure, for example the database could not be opened, or simply that no appropriate data exists
for the current event. If you want to know which of these it is you can use the:-

const DbiValidityRec* GetValidityRec() const;

If this returns a null pointer, then the failure was a major one, see 17.4.4. If not then the DbiValidityRec
tells you about the validity of the gap. Its method:-

const ContextRange& GetContextRange() const;

returns a Context package ContextRange object that can yield the start and end times of the gap. Due
to the way the DatabaseInterface forms the query, this may be an underestimate, but never an overestimate.

If the table has rows then the GetContextRange() will give you an object that tells you the range of the
data. Again, the range may be an underestimate. To get to the data itself, use the method:-

const T* GetRow(UInt_t i) const;

where T = DbiDemoData1 in this case. This gives you a const pointer to the ith row where i is in the
range 0 <= i < GetNumRows().

FIXME Need complete example here including DataModel object.
Putting this all together, suppose you have a CandDigitListHandle object cdlh, and you want to loop

over all DbiDemoData1 objects that are valid for it, the code is:-

DbiTest/DbiDemoData1.h

DatabaseInterface/DbiResultPtr.h

...

DbiResultPtr<DbiDemoData1> myResPtr(cdlh.GetContext());

for (UInt_t irow = 0; irow < myResPtr.GetNumRows(); ++ires) {

const DbiDemoData1* ddd1 = myResPtr.GetRow(irow);

// Process row.

}

GetRow is guaranteed to return a non-zero pointer if the row number is within range, otherwise it returns
zero. The ordering of rows reflects the way the data was written to the database. For some types of data
this layout is not well suited for access. For example, for pulser data, all the strip ends illuminated by an
LED will appear together in the table. To deal with this table row object are obliged to return a Natural
Table Index, if the physical ordering is not a natural one for access. You get rows from a table according to
their index using the method:-

const T* GetRowByIndex(UInt_t index) const;

You should always check the return to ensure that its non-zero when using this method unless you are
absolutely certain that the entry must be present.

Getting Data from a Row

Having got to the table row you want, the last job is to get its data. Its up to the table row objects
themselves to determine how they will present the database table row they represent. In our example, the
DbiDemoData1 is particularly dumb. Its internal state is:-

17.4. ACCESSING EXISTING TABLES 159

Int_t fSubSystem;

Float_t fPedestal;

Float_t fGain1;

Float_t fGain2;

which it is content to expose fully:-

Int_t GetSubSystem() const { return fSubSystem; }

Float_t GetPedestal() const { return fPedestal; }

Float_t GetGain1() const { return fGain1; }

Float_t GetGain2() const { return fGain2; }

Its worth pointing out though that it is the job of the table row object to hide the physical layout of the
database table and so shield its clients from changes to the underlying database. Its just another example
of data encapsulation.

Making Further Queries

Even though a DbiResultPtr is lightweight it is also reusable; you can make a fresh query using the NewQuery
method:-

UInt_t NewQuery(Context vc, Dbi::Task task=0);

which returns the number of rows found in the new query. For example:-

DbiResultPtr<DbiDemoData1> myResPtr(vc);

...

Context newVc;

...

myResPtr.NewQuery(newVc);

...

Having made a query you can also step forwards or backwards to the adjacent validity range using the
method:-

UInt_t NextQuery(Bool_t forwards = kTRUE);

supply a false value to step backwards. This method can be used to “scan” through a database table, for
example to study calibration constants changes as a function of time. To use this efficiently you need to
request accurate validity ranges for your initial query, although this is the default see section 17.9.2. For
aggregated data stepping to a neighbouring range will almost certainly contain some rows in common unless
all component aggregates have context ranges that end on the boundary you are crossing. See the next
section for a way to detect changes to data using the DbiResult::GetID() method.

Simple Optimisation

The first, and most important, level of optimisation is done within the DatabaseInterface itself. Each time
it retrieves data from the database it places the data in an internal cache. This is then checked during
subsequent queries and reused as appropriate. So the first request for a large table of calibration constants
may require a lot of I/O. However the constants may remain valid for an entire job and in which case there
is no further I/O for this table.

Although satisfying repeat requests for the same data is quick it still requires the location of the appro-
priate cache and then a search through it looking for a result that it is suitable for the current event. There
are situations when even this overhead can be a burden: when processing many rows in a single event. Take
for example the procedure of applying calibration. Here every digitization needs to be calibrated using its
corresponding row in the database. The naive way to do this would be to loop over the digits, instantiating
a DbiResultPtr for each, extracting the appropriate row and applying the calibration. However it would be
far more efficient to create a little calibration object something like this:-

160 CHAPTER 17. DATABASE

class MyCalibrator {

public:

MyCalibrator(const Context vc): fResPtr(vc) {}

Float_t Calibrate(DataObject& thing) {

/* Use fResPtr to calibrate thing */

}

private

DbiResultPtr<DbiDemoData1> fResPtr;

};

MyCalibrator is a lightweight object holding only a pointer to a results table. It is created with a
Context object which it uses to prime its pointer. After that it can be passed DataObject objects for which
it returns calibrated results using its Calibrate method. Now the loop over all digitizations can use this
object without any calls to the DatabaseInterface at all. Being lightweight MyCalibrator is fine as a stack
object, staying in scope just long enough to do its job.

Another optimisation strategy involves caching results derived from a query. In this case it is important
to identify changes in the query results so that the cached data can be refreshed. To aid this, each DbiResult
is given an key which uniquely identifies it. This key can be obtained and stored as follows:-

DbiResultKey MyResultKey(myResPtr.GetKey());

This should be stored by value (the DbiResultKey pointed to by GetKey will be deleted when the results
expire) as part of the cache and checked each time a change is possible:-

if (! MyResultKey.IsEqualTo(myResPtr.GetKey())) {

// recreate the cache data ...

MyResultKey = *myResPtr.GetKey();

}

Caution: This tests to see that the current DbiResult has exactly the same data as that used when
the cached was filled, but not that it is physically the same object. If there have been intervening queries
the original object may have been deleted but this should not matter unless the cache holds pointers back
to the DbiResult. In this case the result ID should be used. Initialise with:-

Int_t MyResultID(myResPtr.GetResultID());

and then check as follows:-

if (MyResultID != (myResPtr.GetResultID())) {

// recreate the cache data ...

MyResultID = myResPtr.GetResultID();

}

17.4.3 Extended Context Queries

Making the Query

The constructor of a DbiResultPtr for an Extended Context Query is:-

DbiResultPtr(const string& tableName,

const DbiSqlContext& context,

const Dbi::SubSite& subsite = Dbi::kAnySubSite,

const Dbi::Task& task = Dbi::kAnyTask,

const string& data = "",

const string& fillOpts = "",

17.4. ACCESSING EXISTING TABLES 161

Dealing with each of these arguments in turn:-

const string& tableName The name of the table that is to be accessed. This allows any type of DbiTableRow
to be loaded from any type of table, but see section 17.6 on filling if you are going to play tricks!

const DbiSqlContext& context This argument provides the extended context through the utility class
DbiSqlContext. Consider the following code:-

// Construct the extended context: FarDet data that starts on Sept 1 2003.

// (note: then end time stamp is exclusive)

TimeStamp tsStart(2003,9,1,0,0,0);

TimeStamp tsEnd(2003,9,2,0,0,0);

DbiSqlContext context(DbiSqlContext::kStarts,tsStart,

tsEnd,Site::kFar,SimFlag::kData);

You supply the type of context (in this case DbiSqlContext::kStarts), the date range and the detector
type and sim flag. Other types of context are kEnds and kThroughout. See

DatabaseInterface/DbiSqlContext.h

for the complete list.

You are not limited to the contexts that DbiSqlContext provides. If you know the SQL string you
want to apply then you can create a DbiSqlContext with the WHERE clause you require e.g.:-

DbiSqlContext myContext("SITEMASK & 4")

which would access every row that is suitable for the CalDet detector.

const Dbi::Task& task The task is as for other queries but with the default value of:-

Dbi::kAnyTask

which results in the task being omitted from the context query and also allows for more general queries:
anything that is is valid after the where is permitted. For example:-

DbiSqlContext myContext("versiondate > ’2004-01-01 00:00:00’ "

" order by versiondate limit 1");

The SQL must have a where condition, but if you don’t need one, create a dummy that is always true
e.g.:-

DbiSqlContext myContext("1 = 1 order by timeend desc limit 1 ")

const string& data This is an SQL fragment, that if not empty (the default value) is used to extend the
WHERE clause that is applied when querying the main table. For example consider:-

DbiSqlContext context(DbiSqlContext::kStarts,tsStart,tsEnd,

Site::kFar,SimFlag::kData);

DbiResultPtr<DbuSubRunSummary>

runs("DBUSUBRUNSUMMARY",context,

Dbi::kAnyTask,"RUNTYPENAME = ’NormalData’");

This query reads the DBUSUBRUNSUMMARY table, and besides imposing the context query also
demands that the data rows satisfies a constraint on RUNTYPENAME.

162 CHAPTER 17. DATABASE

const string& fillOpts This is a string that can be retrieved from DbiResultSet when filling each row
so could be used to program the way an object fills itself e.g. by only filling certain columns. The
DatabaseInterface plays no part here; it merely provides this way to communicate between the query
maker and the the author of the class that is being filled.

Accessing the Results Table

Accessing the results of an Extended Context query are essentially the same as for a standard query but
with following caveats:-

• If the method:-

const DbiValidityRec* GetValidityRec(const DbiTableRow* row=0) const;

is used with the default argument then the “global validity” of the set i.e. the overlap of all the rows
is returned. Given the nature of Extended Queries there may be no overlap at all. In general it is far
better to call this method and pass a pointer to a specific row for in this case you will get that validity
of that particular row.

• The method:-

const T* GetRowByIndex(UInt_t index) const;

will not be able to access all the data in the table if two or more rows have the same Natural Index.
This is prohibited in a standard query but extended ones break all the rules and have to pay a price!

17.4.4 Error Handling

Response to Errors

All DbiResultPtr constructors, except the default constructor, have a optional argument:-

Dbi::AbortTest abortTest = Dbi::kTableMissing

Left at its default value any query that attempts to access a non-existent table will abort the job. The
other values that can be supplied are:-

kDisabled Never abort. This value is used for the default constructor.

kDataMissing Abort if the query returns no data. Use this option with care and only if further processing
is impossible.

Currently aborting means just that; there is no graceful shut down and saving of existing results. You
have been warned!

Error Logging

Errors from the database are recorded in a DbiExceptionLog. There is a global version of that records all
errors. The contents can be printed as follows:-

#include "DatabaseInterface/DbiExceptionLog.h"

...

LOGINFO(mylog) << "Contents of the Global Exception Log: \n"

<< DbiExceptionLog::GetGELog();

17.5. CREATING NEW TABLES 163

Query results are held in a DbiResult and each of these also holds a DbiExceptionLog of the errors (if
any) recorded when the query was made. If myResPtr is a DbiResultPtr, then to check and print associated
errors:-

const DbiExceptionLog& el(myResPtr.GetResult()->GetExceptionLog());

if (el.Size() == 0) LOGINFO(mylog) << "No errors found" << endl;

else LOGINFO(mylog) << "Following errors found" << el << endl;

17.5 Creating New Tables

17.5.1 Choosing Table Names

The general rule is that a table name should match the DbiTableRow subclass object that it is used to fill.
For example the table CalPmtGain corresponds to the class CalPmtGain. The rules are

• Use only upper and lower case characters

• Avoid common names such as VIEW and MODE are used by ORACLE. A good list of names to avoid
can be found at:-

http://home.fnal.gov/%7Edbox/SQL API Portability.html

These restrictions also apply to column names. Moreover, column names should be all capital letters.

17.5.2 Creating Detector Descriptions

A Simple Example

Creating new Detector Descriptions involves the creation of a database table and the corresponding table
row Class. The main features can be illustrated using the example we have already studied: DbiDemoData1.
Recall that its state data is:-

Int_t fSubSystem;

Float_t fPedestal;

Float_t fGain1;

Float_t fGain2;

Its database table, which bears the same name, is defined, in MySQL, as:-

CREATE TABLE DBIDEMODATA1(

SEQNO INTEGER not null,

ROW_COUNTER INTEGER not null,

SUBSYSTEM INT,

PEDESTAL FLOAT,

GAIN1 FLOAT,

GAIN2 FLOAT,

primary key(SEQNO,ROW_COUNTER));

as you can see there is a simple 1:1 correspondence between them except that the database table has two
additional leading entries:-

SEQNO INTEGER not null,

ROW_COUNTER INTEGER not null,

and a trailing entry:-

primary key(SEQNO,ROW_COUNTER));

http://home.fnal.gov/%7Edbox/SQL_API_Portability.html

164 CHAPTER 17. DATABASE

ROW COUNTER is a column whose value is generated by the interface, it isn’t part of table row class. Its
sole purpose is to ensure that every row in the table is unique; an import design constraint for any database.
This is achieved by ensuring that, for a given SEQNO, each row has a different value of ROW COUNTER.
This allows the combination of these two values to form a primary (unique) key, which is declared in the
trailing entry.

All database tables supported by the DatabaseInterface have an auxiliary Context Range Tables that
defines validity ranges for them. Each validity range is given a unique sequence number that acts as a key
and corresponds to SeqNo. In our case, indeed every case apart from the table name, the definition is:-

create table DbiDemoData1Vld(

SEQNO integer not null primary key,

TIMESTART datetime not null,

TIMEEND datetime not null,

SITEMASK tinyint(4),

SIMMASK tinyint(4),

TASK integer,

AGGREGATENO integer,

VERSIONDATE datetime not null,

INSERTDATE datetime not null,

key TIMESTART (TIMESTART),

key TIMEEND (TIMEEND));

When the DatabaseInterface looks for data that is acceptable for a give validity it:-

1. Matches the validity to an entry in the appropriate Context Range Table and gets its SeqNo.

2. Uses SeqNo as a key into the main table to get all the rows that match that key.

So, as a designer, you need to be aware of the sequence number, and the row counter must be the first
two columns in the database table, but are not reflected in the table row class.

Filling a table row object from the database is done using the class’s Fill method. For our example:-

void DbiDemoData1::Fill(DbiResultSet& rs,

const DbiValidityRec* vrec) {

rs >> fSubSystem >> fPedestal >> fGain1 >> fGain2;

}

the table row object is passed a DbiResultSet which acts rather like an input stream. The sequence
number has already been stripped off; the class just has to fill its own data member. The DatabaseInterface
does type checking (see the next section) but does not fail if there is a conflict; it just produces a warning
message and puts default data into the variable to be filled.

The second argument is a DbiValidityRec which can, if required, be interrogated to find out the validity
of the row. For example:-

const ContextRange& range = vrec->GetContextRange();

vrec may be zero, but only when filling DbiValidityRec objects themselves. On all other occasions vrec
should be set.

Creating a Database Table

The previous section gave a simple MySQL example of how a database table is defined. There is a bit more
about MySql in section 17.8. The table name normally must match the name of the table row class that
it corresponds to. There is a strict mapping between database column types and table row data members,
although in a few cases one column type can be used to load more than one type of table row member. The
table 17.1 gives the recommended mapping between table row, and MySQL column type.

Notes

17.5. CREATING NEW TABLES 165

Table Row Type MySQL Type Comments
Bool t CHAR
Char t CHAR
Char t* CHAR(n) n<4 n <4
Char t* TEXT n >3
string TEXT
Short t TINYINT 8 bit capacity
Short t SMALLINT 16 bit capacity
Int t TINYINT 8 bit capacity
Int t SMALLINT 16 bit capacity
Int t INT or INTEGER 32 bit capacity
Float t FLOAT
Double t DOUBLE
TimeStamp DATETIME

Table 17.1: Recommended table row and database column type mappings

1. To save table space, select CHAR(n) for characters strings with 3 or less characters and select the
smallest capacity for integers.

2. The long (64 bit) integer forms are not supported as on (some?) Intel processors they are only 4 bytes
long.

3. Although MySQL supports unsigned values we banned them when attempting to get a previous inter-
face to work with ORACLE, so unsigned in database column type should be avoided. It is allowed to
have unsigned in the table row when a signed value is not appropriate and the interface will correctly
handle I/O to the signed value in the database even if the most significant bit is set i.e. the signed
value in the database is negative. It is unfortunate that the signed value in the database will look odd
in such cases.

Designing a Table Row Class

Here is a list of the requirements for a table row class.

Must inherit from DbiTableRow All table row objects must publicly inherit from the abstract classDbiTableRow.
DbiTableRow does provide some default methods even though it is abstract.

Must provide a public default constructor e.g.:-

DbiDemoData1::DbiDemoData1() { }

The DatabaseInterface needs to keep a object of every type of table row class.

Must implement CreateTableRow method e.g.:-

virtual DbiTableRow* CreateTableRow() const {

return new DbiDemoData1; }

The DatabaseInterface uses this method to populate results tables.

May overload the GetIndex method As explained in section 17.4.2 the ordering of rows in a table is
determined by the way data is written to the database. Where that does not form a natural way to
access it, table row objects can declare their own index using:-

166 CHAPTER 17. DATABASE

UInt_t GetIndex(UInt_t defIndex) const

DbiDemoData2 provides a rather artificial example:-

UInt_t GetIndex(UInt_t defIndex) const { return fSubSystem/10; }

and is just meant to demonstrate how a unique index could be extracted from some packed identification
word.

The following is required of an index:-

• The number must be unique within the set.

• It must fit within 4 bytes.

GetIndex returns an unsigned integer as the sign bit has no special significance, but its O.K. to derive
the index from a signed value, for example:-

Int_t PlexStripEndId::GetEncoded() const

would be a suitable index for tables indexed by strip end.

Must implement Fill method This is the way table row objects get filled from a DbiResultSet that acts
like an input stream. We have seen a simple example in DbiDemoData1:-

void DbiDemoData1::Fill(DbiResultSet& rs,

const DbiValidityRec* vrec) {

rs >> fSubSystem >> fPedestal >> fGain1 >> fGain2;

}

However, filling can be more sophisticated. DbiResultSet provides the following services:-

string DbiResultSet::CurColName() const;

UInt_t DbiResultSet::CurColNum() const;

UInt_t DbiResultSet::NumCols() const;

DbiFieldType DbiResultSet::CurColFieldType() const;

The first 3 give you the name of the current column, its number (numbering starts at one), and the
total number of columns in the row. DbiFieldType can give you information about the type, concept
and size of the data in this column. In particular you can see if two are compatible i.e. of the same
type:-

Bool_t DbiFieldType::IsCompatible(DbiFieldType& other) const;

and if they are of the same capacity i.e. size:-

Bool_t DbiFieldType::IsSmaller(DbiFieldType& other) const;

You can create DbiFieldType objects e.g:-

DbiFieldType myFldType(Dbi::kInt)

17.5. CREATING NEW TABLES 167

see enum Dbi::DataTypes for a full list, to compare with the one obtained from the current row.

In this way filling can be controlled by the names, numbers and types of the columns. The Fill method
of DbiDemoData1 contains both a “dumb” (take the data as it comes) and a “smart” (look at the
column name) code. Here is the latter:-

Int_t numCol = rs.NumCols();

// The first column (SeqNo) has already been processed.

for (Int_t curCol = 2; curCol <= numCol; ++curCol) {

string colName = rs.CurColName();

if (colName == "SubSystem") rs >> fSubSystem;

else if (colName == "Pedestal") rs >> fPedestal;

else if (colName == "Gain1") rs >> fGain1;

else if (colName == "Gain2") rs >> fGain2;

else {

LOGDEBUG1(dbi) << "Ignoring column " << curCol

<< "(" << colName << ")"

<< "; not part of DbiDemoData1" << endl;

rs.IncrementCurCol();

}

}

Being “smart” comes at a price; if your table has many rows valid at at time, defensive
programming like this can cost performance!

In such cases, and if the table only exists is a few variants, its better to determine the variant and then
branch to code that hardwires that form

Other services that DbiResultSet offers are:-

UInt_t DbiResultSet::CurRowNum() const;

Bool_t DbiResultSet::IsExhausted() const;

string DbiResultSet::TableName();

These tell you the current row number, whether there is no data left and the name of the table.

Also note that it is not a rule that database columns and class data members have to be in a 1:1
correspondence. So long as the table row can satisfy its clients (see below) it can store information
derived from the database table rather than the data itself.

Must impliment the Store method Similar to the Fill method, a row must know how to store itself in
the database. Again, this is usually simple; you simply stream out the row elements to the stream
provided:

void DbiDemoData1::Store((DbiOutRowStream& ors,

const DbiValidityRec* /* vrec */) const {

ors << fSubSystem << fPedestal << fGain1 << fGain2;

}

must impliment the GetDatabaseLayout method This method is used by a user wanting to do first-
time creation of the databases from within the code. Doing this simplifies the table creation process
slightly: simply list the columns that this class requires.

168 CHAPTER 17. DATABASE

std::string DbiDemoData1::GetDatabaseLayout()

{

std::string table_format =

"SUBSYSTEM int, "

"PEDESTAL float, "

"GAIN1 float, "

"GAIN2 float ";

return table_format;

}

May overload the CanL2Cache method As explained in section 17.2 the Level 2 cache allows table
loading to be speeded up by caching the query results as disk files. Only certain tables support this
option which by default is disabled. To enable it the table row object overrides this method as follows:-

Bool_t CanL2Cache() const { return kTRUE; }

Only table row classes who data members are built-in data types (ints, floats and chars) should do
this. Table rows having objects or dynamic data e.g. string or pointers must not claim to support
L2 caching. Note the table row doesn’t need code to save/restore to the cache, this is handled by the
DbiTableProxy

Must Provide Services to its Clients There would not be much point in its existence otherwise would
there? However its not necessarily the case that all its does is to provide direct access to all the data
that came from the table. This subject is explored in the next section.

The Dictionary files

FIXME: Need to include instructions for properly doing dict.h and dict.xml files describing
table rows, DbiResultPtr and DbiWriter, if I ever figure out how.

Data Encapsulation

A table row object is the gateway between a database table and the end users who want to use the data
it contains. Like any good OO design, the aim should be to hide implementation and only expose the
abstraction. There is nothing wrong in effectively giving a 1:1 mapping between the columns of the database
table and the getters in the table row object if that is appropriate. For example, a table that gives the
position of each PMT in a detector is going to have an X, Y and Z both in the database and in the getter.
However at the other extreme there is calibration. Its going to be well into detector operation before the best
form of calibration has been found, but it would be bad design to constantly change the table row getters.
Its far better to keep the data in the database table very generic, for example:-

SeqNo int,

SubSystem int,

CalibForm int,

parm0 float,

parm1 float,

parm2 float,

...

The significance of parm0,... depends on CalibForm. The table row object could then provide a calibration
service:-

Float_t Calibrate(Float_t rawValue) const;

17.6. FILLING TABLES 169

rather than expose parm0,.. Calibrate() would have code that tests the value of CalibForm and then uses
the appropriate formula involving parm0... Of course some validation code will want to look at the quality
of the calibration by looking at the calibration constants themselves, but this too could be abstracted into
a set of values that hide the details of the form of the calibration.

However, it is strongly advised to make the raw table values available to the user.

17.6 Filling Tables

17.6.1 Overview

DatabaseInterface can be used to write back into any table from which it can read. To do this you need the
services of a DbiWriter which is a templated class like DbiResultPtr. For example, to write DbiDemoData1
rows you need an object of the class:-

DbiWriter<DbiDemoData1>

DbiWriter only fills tables, it does not create them

Always create new tables with mysql before attempting to fill them

If you want to create the tables within the same job as the one that fills it then you can do so as follows:-

// Create a single instance of the database row, and use

// it to prime the database. This needs only be done once.

// It will do nothing if the tables already exist.

MyRowClass dummy; // Inherits from DbiTableRow.

int db = 0; // DB number. If 0, this data is put into the first

// database in the cascade;

// i.e. the first database in the ENV_TSQL_URL

dummy.CreateDatabaseTables(db);

In outline the filling procedure is as follows:-

1. Decide the validity range of the data to be written and store it in a ContextRange object.

2. Instantiate a DbiWriter object using this ContextRange object together with an aggregate number
and task. Aggregate numbers are discussed below.

3. Pass filled DbiTableRow sub-class objects (e.g. DbiDemoData1) to the DbiWriter. It in turn will send
these objects their Store message that performs the inverse of the Fill message. DbiWriter caches the
data but performs no database I/O at this stage.

4. Finally send the DbiWriter its Close message which triggers the output of the data to the database.

The fact that I/O does not occur until all data has been collected has a couple of consequences:-

• It minimises the chances of writing bad data. If you discover a problem with the data while DbiWriter
is assembling it you use DbiWriter’s Abort method to cancel the I/O. Likewise if DbiWriter detects
an error it will not perform output when Close is invoked. Destroying a DbiWriter before using Close
also aborts the output.

• Although DbiWriter starts life as very lightweight, it grows as the table rows are cached.

Be very sure that you delete the DbiWriter once you have finished with it or you will have
a serious memory leak!

To cut down the risk of a memory leak, you cannot copy construct or assign to DbiWriter objects.

170 CHAPTER 17. DATABASE

17.6.2 Aggregate Numbers

As explained in Concepts (see section 17.2) some types of data are written for the entire detector as a single
logical block. For example the way PMT pixels map to electronics channels might be written this way. On
the other hand if it is written in smaller, sub-detector, chunks then it is Aggregated. For example light
injection constants come from pulser data and it is quite possible that a calibration run will only pulse some
LEDs and so only part of a full detector set of constants gets written to the database for the run. Each
chunk is called an aggregate and given an aggregate number which defines the sub-section of the detector
it represents. For pulser data, the aggregate number will probably be the logical (positional) LED number
A single DbiWriter can only write a single aggregate at a time, for every aggregate can in principle have
a different validity range. For unaggregated data, the aggregate number is -1, for aggregated data numbers
start at 0,1,2...

The way that the DatabaseInterface assembles all valid data for a given context is as follows:-

• First if finds all aggregate records that are currently valid.

• For each aggregate number it finds the best (most recently created) record and loads all data associated
with it.

This has two consequences:-

• For a given table, the regime whereby the data is organised into aggregates should remain constant
throughout all records in the table. If absolutely necessary the regime can be changed, but no records
must have validities that span the boundary between one regime and another. Were that to be the
case the same entry could appear in two valid records with different aggregates numbers and end up
appearing in the table multiple times. The system checks to see that this does not happen by asking
each row to confirm it’s aggregate number on input.

• For any given context it is not necessary for all detector elements to be present; just the ones that are
really in the detector at that time. For example, the Far detector will grow steadily over more than a
year and this will be reflected in some database tables with the number of valid aggregates similarly
growing with time. What aggregates are present can appear in any order in the database tables, the
interface will assemble them into the proper order as it loads them.

Its perfectly possible that a calibration procedure might produce database data for multiple aggregates
at a single pass. If you are faced with this situation and want to write all aggregates in parallel, then simply
have a vector of DbiWriter’s indexed by aggregate number and pass rows to the appropriate one. See
DbiValidate::Test 6() for an example of this type of parallel processing.

17.6.3 Simple Example

We will use the class DbiDemoData1 to illustrate each of the above steps.

1. Set up ContextRange object.
Typically the ContextRange will be based on the Context for the event data that was used to generate
the database data that is to be stored. For our example we will assume that DbiDemoData1 represents
calibration data derived from event data. It will be valid for 1 week from the date of the current event
and be suitable for the same type of data.

Context now; // Event context e.g. CandHandle::GetContext()

TimeStamp start = now.GetTimeStamp();

// Add 7 days (in secs) to get end date.

time_t vcSec = start.GetSec() + 7*24*60*60;

17.6. FILLING TABLES 171

TimeStamp end(vcSec,0);

// Construct the ContextRange.

ContextRange range(now.GetDetector(),

now.GetSimFlag(),

start,

end,

"Demo");

2. Instantiate a DbiWriter.
Create a DbiDemoData1 writer for unaggregated data task 0.

Int_t aggNo = -1;

Dbi::SubSite subsite = 0;

Dbi::Task task = 0;

// Decide a creation date (default value is now)

TimeStamp create;

DbiWriter<DbiDemoData1> writer(range,aggNo,subsite,task,create);

3. Pass filled DbiDemoData1 objects.

// Create some silly data.

DbiDemoData1 row0(0,10.,20.,30.);

DbiDemoData1 row1(0,11.,21.,31.);

DbiDemoData1 row2(0,12.,22.,32.);

// Store the silly data.

writer << row0;

writer << row1;

writer << row2;

The DbiWriter will call DbiDemoData1’s Store method.

Again notice that the SeqNo, which is part of the table row, but not part of the class data, is silently
handled by the system.

4. Send the DbiWriter its Close message.

writer.Close();

17.6.4 Using DbiWriter

• The DbiWriter’s constructor is:-

DbiWriter(const ContextRange& vr,

Int_t aggNo,

Dbi::SubSite subsite= 0,

Dbi::Task task = 0,

TimeStamp versiondate = TimeStamp(0,0),

UInt_t dbNo = 0,

const std::string& LogComment = "",

const std::string& tableName = ""

);

– The first argument determines the validity range of the data to be written, i.e. what set of
Contexts it is suitable for. You can control the date range as well as the type(s) of data and
detector.

172 CHAPTER 17. DATABASE

– The second argument is the aggregate number. For unaggregated data it is -1, for aggregated
data its a number in the range 0..n-1 where n is the number of aggregates.

– The third argument is the SubSite of the data. It has a default of 0.

– The third argument is the Task of the data. It has a default of 0.

– The fourth argument supplies the data’s version date. The default is a special date and time
which signifies that DbiWriter is to use Overlay Version Dates (see Concepts section 17.2.9.)
Alternatively, at any time before writing data, use the method:-

void SetOverlayVersionDate();

to ensure that DbiWriter uses Overlay Version Dates.

– The fifth argument defines which entry in the database cascade the data is destined for. By
default it is entry 0 i.e. the highest priority one.
Caution: Supplying the entry number assumes that at execution time the cascade is defined in
a way that is consistent with the code that is using the DbiWriter. As an alternative, you can
supply the database name (e.g. offline) if you know it and are certain it will appear in the cascade.

– The sixth argument supplies a comment for the update. Alternatively, at any time before writing
data, use the method:-

void SetLogComment(const std::string& LogComment)

Update comments are ignored unless writing to a Master database (i.e. one used as a source
database e,g. the database at FNAL), and in this case a non-blank comment is mandatory unless
the table is exempt. Currently only DBI, DCS and PULSER tables are exempt.
If the first character on the string is the ’@’ character then the rest of the string will be treated
as the name of a file that contains the comment. If using DbiWriter to write multiple records to
the same table as part of a single update then only create a single DbiWriter and use the Open
method to initialise for the second and subsequent records. That way a single database log entry
will be written to cover all updates.

– The last argument supplies the name of the table to be written to. Leaving it blank will mean
that the default table will be used i.e. the one whose name matches, apart from case, the name
of object being stored. Only use this feature if the same object can be used to fill more than one
table.

• Having instantiated a DbiWriter, filled table row objects must be passed using the operator:-

DbiWriter<T>& operator<<(const T& row);

for example:-

writer << row0;

writer << row1;

writer << row2;

DbiWriter calls the table row’s Store method, see the next section. It also performs some basic sanity
checks:-

– The row’s aggregate number matches its own.

– The type of the data written is compatible with database table.

If either check fails then an error message is output and the data marked as bad and the subsequent
Close method will not produce any output.

17.6. FILLING TABLES 173

• Once all rows for the current aggregate have been passed to DbiWriter the data can be output using:-

Bool_t Close();

which returns true if the data is successfully output.

Alternatively, you can write out the data as a DBMauto update file by passing the name of the file to
the Close command:-

Close("my_dbmauto_update_file.dbm");

• On output a new sequence number is chosen automatically. By default, if writing permanent data to
an authorising database or if writing to a file, a global sequence number will be allocated. In all other
cases a local sequence number will be be used. For database I/O, as opposed to file I/O, you can
change this behaviour with

void SetRequireGlobalSeqno(Int_t requireGlobal)

Where requireGlobal

> 0 Must be global

= 0 Must be global if writing permanent data to an authorising database

< 0 Must be local

• At any time before issuing the Close command you can cancel the I/O by either:-

– Destroying the DbiWriter.

– Using the method:-

void Abort();

• If you want to, you can reuse a DbiWriter by using:-

Bool_t Open(const ContextRange& vr,

Int_t aggNo,

Dbi::Task task = 0,

TimeStamp versionDate = TimeStamp(),

UInt_t dbNo = 0);

The arguments have the same meaning as for the constructor. An alternative form of the Open
statement allows the database name to be supplied instead of its number. If the DbiWriter is already
assembling data then the Close method is called internally to complete the I/O. The method returns
true if successful. As explained above, the Open method must be used if writing multiple records to
the same table as part of a single update for then a single database log entry will be written to cover
all updates.

17.6.5 Table Row Responsibilities

All DbiTableRow sub-class objects must support the input interface accessed through DbiResultPtr. The
responsibilities that this implies are itemised in section 17.5.2. The output interface is optional; the respon-
sibilities listed here apply only if you want to write data to the database using this interface.

Must override GetAggregateNo method if aggregated DbiTableRow supplies a default that returns
-1. The GetAggregateNo method is used to check that table row objects passed to a particular
DbiWriter have the right aggregate number.

174 CHAPTER 17. DATABASE

Must override Store Method The Store method is the inverse to Fill although it is passed a DbiOutRowStream
reference:-

void Store(DbiOutRowStream& ors) const;

rather than a DbiResultSet reference. Both these classes inherit from DbiRowStream so the same set
of methods:-

string DbiResultSet::CurColName() const;

UInt_t DbiResultSet::CurColNum() const;

UInt_t DbiResultSet::NumCols() const;

DbiFieldType DbiResultSet::CurColFieldType() const;

UInt_t DbiResultSet::CurRowNum() const;

string DbiResultSet::TableName();

are available. So, as with the Fill method, there is scope for Store to be “smart”. The quotes are there
because it often does not pay to be too clever! Also like the Fill method its passed a DbiValidityRec
pointer (which is only zero when filling DbiValidityRec objects) so that the validity of the row can
be accessed if required.

17.6.6 Creating and Writing Temporary Tables

It is possible to create and write temporary tables during execution. Temporary tables have the following
properties:-

• For the remainder of the job they look like any other database table, but they are deleted when the
job ends.

• They completely obscure all data from any permanent table with the same name in the same database.
Contrast this with the cascade, which only obscures data with the same validity.

• They are local to the process that creates them. Even the same user running another job using the
same executable will not see these tables.

Temporary tables are a good way to try out new types of table, or different types of data for an existing
table, without modifying the database. Writing data is as normal, by means of a DbiWriter, however before
you write data you must locate a database in the cascade that will accept temporary tables and pass it a
description of the table. This is done using the DbiCascader method CreateTemporaryTable. You can
access the cascader by first locating the singleton DbiTableProxyRegister which is in overall charge of the
DatabaseInterface. The following code fragment shows how you can define a new table for DbiDemoData1:-

#include "DatabaseInterface/DbiCascader.h"

#include "DatabaseInterface/DbiTableProxyRegistry.h"

...

// Ask the singleton DbiTableProxyRegistry for the DbiCascader.

const DbiCascader& cascader

= DbiTableProxyRegistry::Instance().GetCascader();

// Define the table.

string tableDescr = "(SEQNO INT, SUBSYSTEM INT, PEDESTAL FLOAT,"

" GAIN1 FLOAT, GAIN2 FLOAT)";

// Ask the cascader to find a database that will accept it.

Int_t dbNoTemp = cascader.CreateTemporaryTable("DbiDemoData1",

tableDescr);

17.6. FILLING TABLES 175

if (dbNoTemp < 0) {

cout << "No database to will accept temporary tables. " << endl;

}

You pass CreateTemporaryTable the name of the table and its description. The description is a paren-
thesised comma separated list. It follows the syntax of the MYSQL CREATE TABLE command, see section
17.8.

In principle not every database in the cascade will accept temporary tables so the cascader starts with
the highest priority one and works done until it finds one, returning its number in the cascade. It returns -1
if it fails. For this to work properly the first entry in the cascade must accept it so that it will be taken in
preference to the true database. It is recommended that the first entry be the temp database, for everyone
has write-access to that and write-access is needed to create even temporary tables. So a suitable cascade
might be:-

setenv ENV_TSQL_URL "mysql://pplx2.physics.ox.ac.uk/temp;\

mysql://pplx2.physics.ox.ac.uk/offline"

Having found a database and defined the new or replacement table, you can now create a DbiWriter and
start writing data as describe in section 17.6. You have to make sure that the DbiWriter will output to the
correct database which you can either do by specifying it using the 5th arg of its constructor:-

DbiWriter(const ContextRange& vr,

Int_t aggNo,

Dbi::Task task = 0,

TimeStamp versionDate = TimeStamp(),

UInt_t dbNo = 0);

or alternatively you can set it after construction:-

DbiWriter<DbiDemoData1> writer(range,aggNo);

writer.SetDbNo(dbNoTemp);

As soon as the table has been defined it will, as explained above, completely replace any permanent table
in the same database with the same name. However, if there is already data in the cache for the permanent
table then it may satisfy further requests for data. To prevent this from happening you can clear the cache
as described in the next section.

Do NOT write permanent data to any temporary database for it could end up being used by anyone
who includes the database for temporary tables. Database managers may delete any permanent
tables in temporary databases without warning in order to prevent such problems.

17.6.7 Clearing the Cache

Normally you would not want to clear the cache, after all its there to improve performance. However if you
have just created a temporary table as described above, and it replaces an existing table, then clearing the
cache is necessary to ensure that future requests for data are not satisfied from the now out of date cache.
Another reason why you may want to clear the cache is to study database I/O performance.

Although this section is entitled Clearing the Cache, you cannot actually do that as the data in the
cache may already be in use and must not be erased until its clients have gone away. Instead the data is
marked as stale, which is to say that it will ignored for all future requests. Further, you don’t clear the
entire cache, just the cache associated with the table that you want to refresh. Each table is managed by a
DbiTableProxy that owns a DbiCache. Both DbiWriter and DbiResultPtr have a TableProxy method to
access the associated DbiTableProxy. The following code fragment shows how to set up a writer and mark
its associated cache as stale:-

DbiWriter<DbiDemoData1> writer(range,aggNo);

writer.SetDbNo(dbNoTemp);

writer.TableProxy().GetCache()->SetStale();

176 CHAPTER 17. DATABASE

17.7 ASCII Flat Files and Catalogues

17.7.1 Overview

ASCII flat files and catalogues provide a convenient way to temporarily augment a database with additional
tables under your control. A flat file is a file that contains, in human readable form, the definition of a
table and its data. It can be made an entry in a cascade and, by placing before other entries allows you to
effectively modify the database just for the duration of a single job. As has already been explained, for each
Main Data Table there is also an auxiliary Context Range Table, so you need 2 entries in the cascade for
each table you want to introduce. The problem with this scheme is that, if introducing a number of tables,
the cascade could get rather large. To avoid this catalogues are used. A catalogue is actually nothing more
that a special ASCII flat file, but each row of its data is a URLs for another ASCII flat file that becomes
part of the same cascade entry. In this way a single cascade entry can consist of an arbitrary number of files.

17.7.2 Flat Files

An ASCII flat file defines a single database table.

Format

The format is sometimes referred to as Comma Separated Value (CSV). Each line in the file corresponds to
a row in the table. As you might suspect, values are separated by commas, although you can add additional
white space (tabs and spaces) to improve readability (but heed the caution in section 17.7.4). The first row
is special, it contains the column names and types. The types must valid MySQL types, see table 17.1 for
some examples. If the special row is omitted or is invalid then the column names are set to C1, C2, ... etc.
and all types are set to string (TEXT). Here is a simple example of a CSV file:-

SeqNo int, Pedestal float, SubSystem int, Gain1 float, Gain2 float

1, 1.0, 0, 10., 100.

1, 1.1, 1, 11., 110.

1, 1.2, 2, 12., 120.

1, 1.3, 3, 13., 130.

Its in a convention to use the file extension .csv, but it is not compulsory.
If any value is a string or a date, it must be delimited by double quotes.

URL

The database URL is based on the standard one extended by adding the suffix

#absolute-path-to-file

For example:-

mysql://coop.phy.bnl.gov/temp#/path/to/MyTable.csv

The table name is derived from the file name after stripping off the extension. In this example, the table
name will be MyTable

17.7.3 Catalogues

These are special types of ASCII Flat File. Their data are URLs to other flat files. You cannot nest them
i.e. one catalogue cannot contain a URL that is itself catalogue.

17.7. ASCII FLAT FILES AND CATALOGUES 177

Format

The first line of the file just contains the column name “name”. The remaining lines are URLs of the flat
files. Here is a simple example:-

name

file:/home/dyb/work/MyData.csv

file:/home/dyb/work/MyDataVld.csv

file:$MY_ENV/MyDataToo.csv

file:$MY_ENV/MyDataTooVld.csv

This catalogue defines two tables MyData and MyDataToo each with its associated auxiliary validity
range table. Note that files names must be absolute but can begin with an environmental variable.

URL

The URL is identical to any other flat file with one additional constraint: the extension must be .cat or .db.
For example:

mysql://coop.phy.bnl.gov/dyb_offline#/home/dyb/work/MyCatalogue.db

17.7.4 Example

The stand-alone testing of the Database Interface includes an example of an ASCII Catalogue. The URL of
the cascade entry is:-

mysql://coop.phy.bnl.gov/dyb_test#\$DATABASEINTERFACE_ROOT/DbiTest/scriptsDemoASCIICatalogue.db

If you look at the file:-

\$DATABASEINTERFACE_ROOT/DbiTest/scripts/DemoASCIICatalogue.db

you will see it contains 4 lines, defining the tables DEMOASCIIDATA (a Detector Descriptions table) and
DEMOASCIICONFIG (Algorithm Configurations table):-

file:$DBITESTROOT/scripts/DEMOASCIIDATA.csv

file:$DBITESTROOT/scripts/DEMOASCIIDATAVld.csv

file:$DBITESTROOT/scripts/DEMOASCIICONFIG.csv

file:$DBITESTROOT/scripts/DEMOASCIICONFIGVld.csv

In both cases, the auxiliary validity range table defines a single validity range, although there is no reason
why it could not have defined any number. For the DEMOASCIIDATA, there are 5 rows, a header row followed
by 4 rows of data:-

SEQNO INT, UNWANTED INT, PEDESTAL FLOAT, SUBSYSTEM INT, GAIN1 FLOAT, GAIN2 FLOAT

1,99,1.0,0,10.,100.

1,99,1.1,1,11.,110.

1,99,1.2,2,12.,120.

1,99,1.3,3,13.,130.

For the DEMOASCIICONFIG table, there are only two rows:-

SEQNO INT, CONFIGSTRING TEXT

1,"mybool=1 mydouble=1.23456789012345678e+200 mystring=’This is a string’ myint=12345"

Caution: Note, don’t have any white space between the comma and the leading double quote of the
configuration string.

178 CHAPTER 17. DATABASE

17.8 MySQL Crib

This provides the absolute bare minimum to install, manage and use a MySQL database in the context of
the DatabaseInterface.

17.8.1 Introduction

The following are useful URLs:-

• MySQL home page:-

http://www.mysql.com/

• from which you can reach a documentation page:-

http://www.mysql.com/documentation/index.html

• and the downloads for 3.23:-

http://www.mysql.com/downloads/mysql-3.23.html

A good book on MySQL is:-

MySQL by Paul DuBois, Michael Widenius. New Riders Publishing; ISBN: 0-7357-0921-1

17.8.2 Installing

See:-

https://wiki.bnl.gov/dayabay/index.php?title=Database
https://wiki.bnl.gov/dayabay/index.php?title=MySQL Installation

17.8.3 Running mysql

mysql is a utility, used both by system administrators and users to interact with MySQL database. The
command syntax is:-

mysql [-h host_name] [-u user_name] [-pyour_pass]

if you are running on the server machine, with you Unix login name and no password then:-

mysql

is sufficient. To exit type:-

\q

Note: most mysql commands are terminated with a semi-colon. If nothing happens when you type a
command, the chances are that mysql is still waiting for it, so type it and press return again.

http://www.mysql.com/
http://www.mysql.com/documentation/index.html
http://www.mysql.com/downloads/mysql-3.23.html
https://wiki.bnl.gov/dayabay/index.php?title=Database
https://wiki.bnl.gov/dayabay/index.php?title=MySQL_Installation

17.8. MYSQL CRIB 179

17.8.4 System Administration

This also has to be done as root. As system administrator, MySQL allows you to control access, on a user
by user basis, to databases. Here are some example commands:-

create database dyb_offline;

grant all on dyb_offline.* to smart@coop.bnl.phy.gov

grant all on dyb_offline.* to smart@"%"

grant select dyb_offline.Boring to dumb@coop.bnl.phy.gov

\q

• The first lines creates a new database called dyb offline. With MySQL you can have multiple databases.

• The next two lines grants user smart, either logged in locally to the server, or remotely from anywhere
on the network all privileges to all tables in that database.

• The next line grants user dumb, who has to be logged in locally, select (i.e. read) access to the table
Boring in the same database.

17.8.5 Selecting a Database

Before you can use mysql to create, fill or examine a database table you have to tell it what database to use.
For example:-

use dyb_offline

‘use’ is one of the few commands that does not have a trailing semi-colon.

17.8.6 Creating Tables

The following commands create, or recreate, a table and display a description of it:-

drop table if exists DbiDemoData1;

create table DbiDemoData1(

SeqNo int,

SubSystem int,

Pedestal float,

Gain1 float,

Gain2 float

);

describe DbiDemoData1;

See table 17.1 for a list of MySQL types that the DatabaseInterface currently supports.

17.8.7 Filling Tables

The following commands add data from the file DemoData1.dat to an existing table:-

load data local infile ’DemoData1.dat’ into table DbiDemoData1;

Each line of the file corresponds to a row in the table. Columns should be separated with tabs. Table
17.2 shows typical formats of the various data types.

180 CHAPTER 17. DATABASE

MySQL Type Table Row Type
CHAR a
TINYINT -128
SMALLINT -32768
INT or INTEGER -2147483647
FLOAT -1.234567e-20
DOUBLE 1.23456789012345e+200
TEXT ’This is a string’
DATETIME ’2001-12-31 04:05:06’

Table 17.2: Example data formats.

17.8.8 Making Queries

Here is a sample query:-

select * from DbiDemoData2Validity where

TimeStart <= ’2001-01-11 12:00:00’

and TimeEnd > ’2000-12-22 12:00:00’

and SiteMask & 4

order by TimeStart desc

;

17.9 Performance

17.9.1 Holding Open Connections

Connections to the database are either permanent i.e. open all the time or temporary i.e. they are closed as
soon as a I/O operation is complete. A connection is made permanent if:-

• Connecting to a ASCII flat file database as re-opening such a database would involve re-loading all the
data.

• Temporary data is written to the database for such data would be lost if the connection were closed.

In all other cases the connection is temporary so as to minimise resources (and in the case ORACLE
resources that have to be paid for!). For normal operations this adds little overhead as typically there are
several major database reads at the start of a production job after which little or no further database I/O
occurs. However if you require the connection to remain open throughout the job then you can force any
entry in the cascade to be permanent. The following code sets entry 0 in the cascade to have a permanent
connection:-

#include "DatabaseInterface/DbiCascader.h"

#include "DatabaseInterface/DbiTableProxyRegistry.h"

// Ask the singleton DbiTableProxyRegistry for the DbiCascader.

const DbiCascader& cascader

= DbiTableProxyRegistry::Instance().GetCascader();

// Request that entry 0 is permanently open.

cascader.SetPermanent(0);

Note that this won’t open the connection but will prevent it from closing after its next use.
If you want all connections to remain open this can be set through the configuration parameter Make-

ConnectionsPermanent. See section 17.3.2.

17.9. PERFORMANCE 181

17.9.2 Truncated Validity Ranges

Standard context specific queries are first trimmed to a time window to limit the number of Vld records
that have to be analysed. Having established the best data, a further 4 calls to query the Vld table is made
to determine the full validity. For data with long validities, these extra calls are worthwhile as they can
significantly increase the lifetime of the results. However there are two cases where these should not be use:-

• For data that changes at high frequency (minutes or hours rather than days) it may waste time doing
the extra searches, although the results would be valid.

• For sparse aggregation - see 17.2.2. The algorithm opens up the window on the basis of the aggregates
present at the supplied context so won’t take account of aggregates not present and might over-estimate
the time window.

The following DbiResultPtr methods support this request:-

DbiResultPtr(const Context& vc,

Dbi::Task task = Dbi::kDefaultTask,

Dbi::AbortTest abortTest = Dbi::kTableMissing,

Bool_t findFullTimeWindow = true);

DbiResultPtr(const string& tableName,

const Context& vc = Dbi::fgDefaultContext,

Dbi::Task task = Dbi::kDefaultTask,

Dbi::AbortTest abortTest = Dbi::kTableMissing,

Bool_t findFullTimeWindow = true);

UInt_t NewQuery(Context vc,

Dbi::Task task=0,

Bool_t findFullTimeWindow = true);

It is selected by passing in the value false for findFullTimeWindow.

17.9.3 Timing

DbiTimerManager is a static object that provides performance printout when enabled. By default it is
enabled but can be disabled by:-

DbiTimerManager::gTimerManager.Enable(false);

Chapter 18

Database Maintanence

18.1 Introduction

The DatabaseMaintenance package produces a single binary application: dbmjob that provides very basic
database maintenance support. Specifically its current function is only as a tool to distribute data between
databases.

Figure 18.1:

The flow of data is shown schematically in diagram 18.1. At the heart of the system is the Master
Database at Soudan. Most database updates enter the database realm here. At regular intervals dbmjob is
used to export all recently updated data and these export files are distributed to all other databases where
the data is imported if not already present. This is done by the local database manager again using dbmjob.
These primary data flows are shown in red.

Smaller amounts of data come from secondary databases e.g. at CalDet and these are exported up to
the Master Database where they join other updates for distribution.

This system relies on the ability to:-

183

184 CHAPTER 18. DATABASE MAINTANENCE

• Record the insertion date so that updates can be incremental.

• Uniquely identify data so that it is not accidentally duplicated if attempting import more than once.
For example updates to a secondary database might be reflected back if exporting all recent changes.
However such data is ignored as duplicated data when resubmitted to the Master.

dbmjob exploits the fact that all Dbi compliant database tables come in pairs, the main data table and an
auxiliary validity range table. The auxiliary table records insertion dates and have globally unique SeqNos
(Sequence Numbers). The diagram shows how globally unique numbers are assigned. Every database that
is a source of data has a GlobalSeqNo table that is used to generate sequence numbers. Each time one is
allocated the count is incremented in the table. For each database the table operates in a different range
of numbers hence ensuring that all are unique. dbmjob moves data in “Validity Packets” i.e. a single row
in the auxiliary table and all its associated data rows. The insertion date and SeqNo on the auxiliary row
allow dbmjob to support incremental updates and avoid data duplication.

All this implies a very important restriction on dbmjob:-

dbmjob can only distribute Dbi compliant database tables i.e. ones that come in pairs, the main
data table and an auxiliary validity range table.

18.2 Building and Running dbmjob

18.2.1 Building

The DatabaseMaintenance package is a standard Framework package and the dbmjob application is build
in the standard way:-

cd $SRT_PUBLIC_CONTEXT %$

gmake DatabaseMaintenance.all

18.2.2 Running

Before running, a Database cascade must be defined using the ENV TSQL * variables as described in ??.
Alternatively use the -d, -u and -p switches that are also described there or use the ENV TSQL UPDATE * (e.g.
ENV TSQL UPDATE USER) set of variables. Where they exist, they will take precedence over the equivalent
ENV TSQL * variable. This allows for a safe read-only setting of the ENV TSQL * variables that can be shared
by a group, with just the local database manager also having the ENV TSQL UPDATE * set for write-access.
Note that the job switches take priority over everything else.

To run, just type:-

dbmjob

dbmjob enters interactive mode. For help type Help and to quit type Quit. The following illustrate simple
exporting and importing. For more detail consult the Help command.

Exporting Data

dbmjob always exports data from the first database in the cascade.
To export data use the Export command. The syntax is:-

Export {--Since <date>} <table> <file>

This exports the contents of <table> into <file> which can subsequently be imported into another
database using the Import command. <table> can be a specific table e.g. PlexPixelSpotToStripEnd or *
for all tables. For example:-

18.2. BUILDING AND RUNNING DBMJOB 185

Export * full_backup.dat

Export -since "2001-09-27 12:00:00" PlexPixelSpotToStripEnd update.dat

The first updates the entire database whilst the second just records updates to PlexPixelSpotToStripEnd
since midday on the 27 September 2001.

Importing Data

By default dbmjob always imports into the first database in the cascade but this can be overridden.
To Import data use the Import command. The syntax is:-

Import {--Test } {--DatabaseNumber <no>} <file>

This imports the contents <file> into the database. The insertion dates in the file’s validity records are
replaced by the current date and time so that the insertion dates in the database reflect the local insertion
date. Any SeqNo already present will be skipped but the associated data is compared to the corresponding
entries in the database to confirm that they are identical, neglecting differences in insertion dates. For
example:-

Import full_backup.dat

Export --DatabaseNumber 1 update.dat

Import --Test full_backup.dat

The first updates the first database (Cascade number 0) whilst the second updates the second database
in the cascade. The last does not import at all but still does comparisons so is a convenient way to compare
a database to an import file.

Chapter 19

Database Tables

187

188 CHAPTER 19. DATABASE TABLES

19.1 AdMass

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GAdMass.spec1

Masses of detector liquids as measured from filling data

name dbtype codetype description code2db
AdNo int(11) int AD Number (1-8)
GdMass double double GdLS mass in AD in kg
GdUnct double double GdLS mass uncertainty in kg
GdBlind tinyint int Indicate whether GdLS mass is blind (1) or not (0)
LsMass double double LS mass in AD in kg
LsUnct double double LS mass uncertainty in kg
MoMass double double MO mass in AD in kg
MoUnct double double Mo mass uncertainty in kg

Table 19.1: DBI Table specification for class GAdMass which corresponds to table AdMass

1http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdMass.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdMass.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdMass.spec

19.2. ADWPHVMAP 189

19.2 AdWpHvMap

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvMap.spec2

High voltage cable map table:

mysql> describe AdWpHvMap;
+-------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
LocationId	char(6)	YES		NULL	
HvChannelId	int(11)	YES		NULL	
DcBoard	tinyint(1)	YES		NULL	
DcChannel	tinyint(2)	YES		NULL	
+-------------+------------+------+-----+---------+-------+
6 rows in set (0.00 sec)

name dbtype codetype description code2db
LocationId char(6) string PMT Location ID
HvChannelId int(11) DayaBay::HvChannelId Packed HV Channel ID .fullPackedData()
DcBoard tinyint(1) int Decoupler Board #
DcChannel tinyint(2) int Decoupler Channel #

Table 19.2: DBI Table specification for class GAdWpHvMap which corresponds to table AdWpHvMap

2http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvMap.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvMap.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvMap.spec

190 CHAPTER 19. DATABASE TABLES

19.3 AdWpHvSetting

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvSetting.spec3

Table of high voltage requested values:

mysql> describe AdWpHvSetting;
+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
HvChannelId	int(11)	YES		NULL	
HvSetting	float	YES		NULL	
+-------------+---------+------+-----+---------+-------+
4 rows in set (0.00 sec)

name dbtype codetype description code2db
HvChannelId int(11) DayaBay::HvChannelId Packed HV Channel ID .fullPackedData()
HvSetting float float Requested HV Value

Table 19.3: DBI Table specification for class GAdWpHvSetting which corresponds to table AdWpHvSetting

3http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvSetting.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvSetting.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvSetting.spec

19.4. ADWPHVTOFEE 191

19.4 AdWpHvToFee

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvToFee.spec4

Map from HV board/channel to FEE channel ID

mysql> describe AdWpHvToFee;
+--------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
HvChannelId	int(11)	YES		NULL	
FeeChannelId	int(11)	YES		NULL	
+--------------+---------+------+-----+---------+-------+
4 rows in set (0.00 sec)

name dbtype codetype description code2db
HvChannelId int(11) DayaBay::HvChannelId Packed HV Channel ID .fullPackedData()
FeeChannelId int(11) DayaBay::FeeChannelId Packed FEE Channel ID .fullPackedData()

Table 19.4: DBI Table specification for class GAdWpHvToFee which corresponds to table AdWpHvToFee

4http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvToFee.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvToFee.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GAdWpHvToFee.spec

192 CHAPTER 19. DATABASE TABLES

19.5 CableMap

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCableMap.spec5

The Cable Map provides the data for lookups between a sensorID and a
channelID. The ID numbers are packed integers ready for consumption
by the sensor classes from Detectors.h and channel classes from
Electronics.h from the Conventions package. This table handles
sensors and electronics for PMTs (AD and Pool) and RPCs.

Read context must explicitly give: Site, SimFlag and DetectorId/SubSite
Write context must explicitly give: SiteMask, SimMask and SubSite

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor Packed Sensor ID .fullPackedData()
ChannelId int(11) DayaBay::ElecChannelId Packed Channel ID .fullPackedData()

Table 19.5: DBI Table specification for class GCableMap which corresponds to table CableMap

5http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMap.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMap.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMap.spec

19.6. CABLEMAPFIX 193

19.6 CableMapFix

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCableMapFix.spec6

Testing fix for :dybsvn:‘ticket:948‘

The Cable Map provides the data for lookups between a sensorID and a
channelID. The ID numbers are packed integers ready for consumption
by the sensor classes from Detectors.h and channel classes from
Electronics.h from the Conventions package. This table handles
sensors and electronics for PMTs (AD and Pool) and RPCs.

Read context must explicitly give: Site, SimFlag and DetectorId/SubSite
Write context must explicitly give: SiteMask, SimMask and SubSite

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor Packed Sensor ID .fullPackedData()
ChannelId int(11) DayaBay::ElecChannelId Packed Channel ID .fullPackedData()

Table 19.6: DBI Table specification for class GCableMapFix which corresponds to table CableMap

6http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMapFix.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMapFix.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCableMapFix.spec

194 CHAPTER 19. DATABASE TABLES

19.7 CalibFeeGainConv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeGainConv.spec7

docstring

name dbtype codetype description code2db
ChannelId int(11) DayaBay::FeeChannelId unique id of this fee channel .fullPackedData()
Status tinyint(4) int status of this gain ratio
FineCoarseRatio float double gain ratio of fine over coarse adc
FineCoarseRatioErr float double error of gain ratio
FRLineSlope float double slope of partial linear fit to fine range
FRLineErr float double error of fine range slope
CRLineSlope float double slope of partial linear fit to coarse range
CRLineErr float double error of coarse range slope

Table 19.7: DBI Table specification for class GCalibFeeGainConv which corresponds to table CalibFeeGain-
Conv

7http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeGainConv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeGainConv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeGainConv.spec

19.8. CALIBFEESPEC 195

19.8 CalibFeeSpec

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpec.spec8

docstring

name dbtype codetype description code2db
ChannelId int(10) unsigned DayaBay::FeeChannelId Electronics channel ID number .fullPackedData()
Status int(10) unsigned int Channel status
AdcPedestalHigh double double Measured high-gain Pedestal ADC value
AdcPedestalHighSigma double double high-gain Pedestal ADC sigma
AdcPedestalLow double double Measured low-gain Pedestal ADC value
AdcPedestalLowSigma double double low-gain Pedestal ADC sigma
AdcThresholdHigh double double Channel threshold, as measured in ~ADC counts
AdcThresholdLow double double Channel threshold, as measured in ~ADC counts

Table 19.8: DBI Table specification for class GCalibFeeSpec which corresponds to table CalibFeeSpec

8http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpec.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpec.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpec.spec

196 CHAPTER 19. DATABASE TABLES

19.9 CalibFeeSpecCleanup

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpecCleanup.spec9

docstring

name dbtype codetype description code2db
ChannelId int(10) unsigned DayaBay::FeeChannelId Electronics channel ID number .fullPackedData()
Status int(10) unsigned int Channel status
AdcPedestalHigh double double Measured high-gain Pedestal ADC value
AdcPedestalHighSigma double double high-gain Pedestal ADC sigma
AdcPedestalLow double double Measured low-gain Pedestal ADC value
AdcPedestalLowSigma double double low-gain Pedestal ADC sigma
AdcThresholdHigh double double Channel threshold, as measured in ~ADC counts
AdcThresholdLow double double Channel threshold, as measured in ~ADC counts

Table 19.9: DBI Table specification for class GCalibFeeSpecCleanup which corresponds to table Cal-
ibFeeSpecCleanup

9http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpecCleanup.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpecCleanup.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpecCleanup.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibFeeSpecCleanup.spec

19.10. CALIBPMTFINEGAIN 197

19.10 CalibPmtFineGain

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtFineGain.spec10

docstring

name dbtype codetype description code2db
ChannelId int(11) DayaBay::FeeChannelId unique id of the channel connected to a pmt .fullPackedData()
SpeHigh float double SPE mean ADC value (high gain)
SpeHighError float double error in SPE Mean ADC value (high gain)
SigmaSpeHigh float double SPE 1-sigma peak width (high gain)
SpeHighFitQual float double SPE fit quality in chi2/ndf (high gain)

Table 19.10: DBI Table specification for class GCalibPmtFineGain which corresponds to table Cal-
ibPmtFineGain

10http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtFineGain.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtFineGain.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtFineGain.spec

198 CHAPTER 19. DATABASE TABLES

19.11 CalibPmtHighGain

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGain.spec11

docstring

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor unique id of this pmt .fullPackedData()
SpeHigh float double SPE mean ADC value (high gain)
SpeHighError float double error in SPE Mean ADC value (high gain)
SigmaSpeHigh float double SPE 1-sigma peak width (high gain)
SpeHighFitQual float double SPE fit quality in chi2/ndf (high gain)

Table 19.11: DBI Table specification for class GCalibPmtHighGain which corresponds to table Cal-
ibPmtHighGain

11http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGain.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGain.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGain.spec

19.12. CALIBPMTHIGHGAINFAKE 199

19.12 CalibPmtHighGainFake

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainFake.spec12

Expediant table/class used to fake the old table, see :dybsvn:‘ticket:1228

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor unique id of this pmt .fullPackedData()
SpeHigh float double SPE mean ADC value (high gain)
SpeHighError float double error in SPE Mean ADC value (high gain)
SigmaSpeHigh float double SPE 1-sigma peak width (high gain)
SpeHighFitQual float double SPE fit quality in chi2/ndf (high gain)

Table 19.12: DBI Table specification for class GCalibPmtHighGainFake which corresponds to table Cal-
ibPmtHighGainFake

12http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainFake.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainFake.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainFake.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainFake.spec

200 CHAPTER 19. DATABASE TABLES

19.13 CalibPmtHighGainPariah

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainPariah.spec13

Handling of input table not conforming to SOP norms, see :dybsvn:‘ticket:1228

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor unique id of this pmt .fullPackedData()
SpeHigh float double SPE mean ADC value (high gain)
SpeHighError float double error in SPE Mean ADC value (high gain)
SigmaSpeHigh float double SPE 1-sigma peak width (high gain)
SpeHighFitQual float double SPE fit quality in chi2/ndf (high gain)

Table 19.13: DBI Table specification for class GCalibPmtHighGainPariah which corresponds to table Cal-
ibPmtHighGainPariah

13http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/

GCalibPmtHighGainPariah.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainPariah.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainPariah.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtHighGainPariah.spec

19.14. CALIBPMTLOWGAIN 201

19.14 CalibPmtLowGain

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtLowGain.spec14

docstring

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor unique id of this pmt .fullPackedData()
SpeLow float double SPE mean ADC value (low gain)
SpeLowError float double error in SPE Mean ADC value (low gain)

Table 19.14: DBI Table specification for class GCalibPmtLowGain which corresponds to table CalibPmt-
LowGain

14http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtLowGain.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtLowGain.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtLowGain.spec

202 CHAPTER 19. DATABASE TABLES

19.15 CalibPmtPedBias

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtPedBias.spec15

docstring

name dbtype codetype description code2db
SensorId int(11) DayaBay::DetectorSensor packed sensor ID of this PMT .fullPackedData()
Amp_b double double y-intercept of ADC dependence of Gaussian amplitude
Amp_m double double slope of ADC dependence of Gaussian amplitude
Mean_amp double double amplitude of Gaussian portion of GausLine for pulses's Gaussian mean
Mean_mean double double mean of Gaussian portion of GausLine for pulse's Gaussian mean
Mean_sigma double double sigma of Gaussian portion of GausLine for pulses's Gaussian mean
Mean_offset double double offset of Gaussian portion of GausLine for pulses's Gaussian mean
Mean_b double double y-intercept of linear portion of GausLine for pulses's Gaussian mean
Mean_m double double slope of linear portion of GausLine for the pulses's Gaussian mean
Sigma_amp double double amplitude of Gaussian portion of GausLine for pulses's Gaussian sigma
Sigma_mean double double mean of Gaussian portion of GausLine for pulse's Gaussian sigma
Sigma_sigma double double sigma of Gaussian portion of GausLine for pulses's Gaussian sigma
Sigma_offset double double offset of Gaussian portion of GausLine for pulses's Gaussian sigma
Sigma_b double double y-intercept of linear portion of GausLine for pulses's Gaussian sigma
Sigma_m double double slope of linear portion of GausLine for the pulses's Gaussian sigma
A0_b double double y-intercept of line used to model ADC dependence of constant term in pulse's cubic
A0_m double double slope of line used to model ADC dependence of constant term in pulse's cubic
A1_b double double y-intercept of line used to model ADC dependence of linear term in pulse's cubic
A1_m double double slope of line used to model ADC dependence of linear term in pulse's cubic
A2_b double double y-intercept of line used to model ADC dependence of quadratic term in pulse's cubic
A2_m double double slope of line used to model ADC dependence of linear quadratic in pulse's cubic
A3_b double double y-intercept of line used to model ADC dependence of cubic term in pulse's cubic
A3_m double double slope of line used to model ADC dependence of linear cubic in pulse's cubic

Table 19.15: DBI Table specification for class GCalibPmtPedBias which corresponds to table CalibPmtPed-
Bias

15http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtPedBias.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtPedBias.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtPedBias.spec

19.16. CALIBPMTSPEC 203

19.16 CalibPmtSpec

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtSpec.spec16

docstring

name dbtype codetype description code2db
PmtId int(11) int -
Describ varchar(27) string String of decribing PMT position
Status tinyint(4) int Status check on the PMT
SpeHigh float double Single photoelectron mean ADC value (high gain)
SigmaSpeHigh float double Single p.e. 1-sigma peak width (high gain)
SpeLow float double ADC per P.E. ratio for low gain ADC channel
TimeOffset float double Relative transit time offset
TimeSpread float double Transit time spread
Efficiency float double Absolute efficiency
PrePulseProb float double Probability of prepulsing
AfterPulseProb float double Probability of afterpulsing
DarkRate float double Dark Rate

Table 19.16: DBI Table specification for class GCalibPmtSpec which corresponds to table CalibPmtSpec

16http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtSpec.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtSpec.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtSpec.spec

204 CHAPTER 19. DATABASE TABLES

19.17 CalibPmtTimOff

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTimOff.spec17

docstring

name dbtype codetype description code2db
ChannelId int(11) DayaBay::FeeChannelId unique id of the channel connected to this pmt .fullPackedData()
Offset float double Time offset (ns)
OffsetError float double Time offset error (ns)

Table 19.17: DBI Table specification for class GCalibPmtTimOff which corresponds to table CalibPmtTi-
mOff

17http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTimOff.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTimOff.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTimOff.spec

19.18. CALIBPMTTIMING 205

19.18 CalibPmtTiming

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTiming.spec18

docstring

name dbtype codetype description code2db
ChannelId int(11) DayaBay::FeeChannelId unique id of the channel connected to this pmt .fullPackedData()
Status tinyint(4) int Status of this entry
Par0 float double Parameter #0 for time correction
Par1 float double Parameter #1 for time correction
Par2 float double Parameter #2 for time correction
Par3 float double Parameter #3 for time correction
Par4 float double Parameter #4 for time correction
Par5 float double Parameter #5 for time correction
FitQual float double Fit quality (could be chi2/ndf, for instance)

Table 19.18: DBI Table specification for class GCalibPmtTiming which corresponds to table CalibPmtTim-
ing

18http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTiming.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTiming.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibPmtTiming.spec

206 CHAPTER 19. DATABASE TABLES

19.19 CalibRpcSpec

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibRpcSpec.spec19

Calibration data for RPC layers

.. warning:: the attributes ‘PanelRow‘, ‘PanelColumn‘ and ‘Layer‘ duplicate information within ‘RpcSensorId‘ **redundant columns should be eliminated**

name dbtype codetype description code2db
RpcSensorId int DayaBay::RpcSensor ID of RPC sensor for layer .fullPackedData()
Efficiency float double Efficiency of one RPC layer
EfficiencyError float double Efficiency error of one RPC layer
NoiseRate float double Noise rate of one RPC layer
NoiseRateError float double Noise rate error of one RPC layer

Table 19.19: DBI Table specification for class GCalibRpcSpec which corresponds to table CalibRpcSpec

19http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibRpcSpec.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibRpcSpec.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibRpcSpec.spec

19.20. CALIBSRCENERGY 207

19.20 CalibSrcEnergy

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCalibSrcEnergy.spec20

docstring

This is for energy scale calibration constants from calibration sources.

name dbtype codetype description code2db
SourcePeakType int(11) int source:dybgaudi/trunk/DataModel/Conventions/Conventions/Calibration.h
XSrcPosition float double X position of calibration source
YSrcPosition float double Y position of calibration source
ZSrcPosition float double Z position of calibration source
PEPeak float double peak PE value of Ge source
PEPeakUnc float double uncertainty in peak value (%)
PEPeakFitQuality float double quality of peak fit

Table 19.20: DBI Table specification for class GCalibSrcEnergy which corresponds to table CalibSrcEnergy

20http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibSrcEnergy.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibSrcEnergy.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCalibSrcEnergy.spec

208 CHAPTER 19. DATABASE TABLES

19.21 CoordinateAd

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCoordinateAd.spec21

Coordinates for AD support platforms in meters, see :docdb:‘6375‘ TABLE II.

.. rubric:: Detector convention in Offline and :docdb:‘6375‘

========== ============== ======
AD name fullPackedData AdNo
========== ============== ======
DayaBayAD1 16842752 1
DayaBayAD2 16908288 2
LingAoAD1 33619968 3
LingAoAD2 33685504 4
FarAD1 67174400 5
FarAD2 67239936 7
FarAD3 67305472 8
FarAD4 67371008 6
========== ============== ======

name dbtype codetype description code2db
AdNo tinyint int AdNo defined in :docdb:‘6375‘ Figure. 1
Detector int DayaBay::Detector source:dybgaudi/trunk/DataModel/Conventions/Conventions/Detectors.h .fullPackedData()
X double double coordinate X in meters
Y double double coordinate Y in meters
Z double double coordinate Z in meters

Table 19.21: DBI Table specification for class GCoordinateAd which corresponds to table CoordinateAd

21http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateAd.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateAd.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateAd.spec

19.22. COORDINATEREACTOR 209

19.22 CoordinateReactor

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GCoordinateReactor.spec22

Coordinates for reactors, see :docdb:‘6375‘ TABLE II.

.. rubric:: convention in Offline and :docdb:‘6375‘

========= ========== ======
name ReactorId :docdb:‘6375‘
========= ========== ======
DayaBayA 0x01 D1
DayaBayB 0x02 D2
LingAoIA 0x04 L1
LingAoIB 0x08 L2
LingAoIIA 0x10 L3
LingAoIIB 0x20 L4
========= ========== ======

name dbtype codetype description code2db
ReactorId int int source:dybgaudi/trunk/DataModel/Conventions/Conventions/Reactor.h
X double double coordinate X in meters
Y double double coordinate Y in meters
Z double double coordinate Z in meters

Table 19.22: DBI Table specification for class GCoordinateReactor which corresponds to table Coordi-
nateReactor

22http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateReactor.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateReactor.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GCoordinateReactor.spec

210 CHAPTER 19. DATABASE TABLES

19.23 DaqCalibRunInfo

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDaqCalibRunInfo.spec23

Calibration run information recorded in DAQ database from IS/ACU
This information can also be accessed from raw data file recorded as

* :dybgaudi:‘DaqFormat/FileReadoutFormat/FileTraits.h‘

References:

* :docdb:‘3442‘
* :docdb:‘3603‘

name dbtype codetype description code2db
RunNo int(11) int Run number
DetectorId int(11) int 0xPQ, P:site, Q:pit number
AdNo int(11) int AD Number: 1-8
SourceIdA int(11) int source:dybgaudi/trunk/DataModel/Conventions/Conventions/Calibration.h
ZPositionA int(11) int Z position in mm of ACU A relative to target center
SourceIdB int(11) int source in ACU B
ZPositionB int(11) int Z position in ACU B
SourceIdC int(11) int source in ACU C
ZPositionC int(11) int Z position in ACU C
Duration int(11) int Duration of DAQ run in seconds
LedNumber1 int(11) int ID number of the first LED being pulsed (1-6)
LedNumber2 int(11) int ID number of the second LED being pulsed (1-6)
LedVoltage1 int(11) int Voltage in mV for first LED
LedVoltage2 int(11) int Voltage in mV for second LED
LedFreq int(11) int LED pulsing frequency in Hz
LedPulseSep int(11) int Seperation time in ns for double LED run
LtbMode int(11) int LTB trigger mode (True = Forced)
HomeA int(11) int True if the selected source in ACU A is at home
HomeB int(11) int True if the selected source in ACU B is at home
HomeC int(11) int True if the selected source in ACU C is at home

Table 19.23: DBI Table specification for class GDaqCalibRunInfo which corresponds to table DaqCalibRun-
Info

23http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqCalibRunInfo.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqCalibRunInfo.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqCalibRunInfo.spec

19.24. DAQRAWDATAFILEINFO 211

19.24 DaqRawDataFileInfo

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDaqRawDataFileInfo.spec24

docstring

name dbtype codetype description code2db
RunNo int(10) unsigned int -
FileNo int(10) unsigned int -
FileName tinytext string -
StreamType varchar(32) string -
Stream varchar(32) string -
FileState varchar(32) string -
FileSize int(11) int -
CheckSum varchar(64) string -
TransferState varchar(32) string -

Table 19.24: DBI Table specification for class GDaqRawDataFileInfo which corresponds to table DaqRaw-
DataFileInfo

24http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRawDataFileInfo.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRawDataFileInfo.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRawDataFileInfo.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRawDataFileInfo.spec

212 CHAPTER 19. DATABASE TABLES

19.25 DaqRunInfo

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDaqRunInfo.spec25

docstring

name dbtype codetype description code2db
RunNo int(11) int -
TriggerType bigint(20) int -
RunType varchar(32) string -
DetectorMask int(11) int -
PartitionName varchar(255) string -
SchemaVersion int(11) int -
DataVersion int(11) int -
BaseVersion int(11) int -

Table 19.25: DBI Table specification for class GDaqRunInfo which corresponds to table DaqRunInfo

25http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRunInfo.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRunInfo.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDaqRunInfo.spec

19.26. DATAQUALITYDETECTOR 213

19.26 DataQualityDetector

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDataQualityDetector.spec26

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
DetectorId int(11) int Detector ID
SinglesRate float double Singles Rate
IBDRate float double IBD rate (number)
SPNRate float double Spallation neutron rate
MuonRate float double Muon Rate

Table 19.26: DBI Table specification for class GDataQualityDetector which corresponds to table DataQual-
ityDetector

26http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityDetector.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityDetector.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityDetector.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityDetector.spec

214 CHAPTER 19. DATABASE TABLES

19.27 DataQualityGoodRun

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDataQualityGoodRun.spec27

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
PmtHealth tinyint int PMT condition of this file
RpcHealth tinyint int RPC condition of this file
TriggerHealth tinyint int Trigger condition of this file
Singles tinyint int Singles Rate normal or not
IBD tinyint int IBD rate (number) normal or not
SPN tinyint int Spallation neutron rate normal or not
Reactor tinyint int Reactor normal or not
GOOD tinyint int Indicate whether a good run for physics analysis or not

Table 19.27: DBI Table specification for class GDataQualityGoodRun which corresponds to table DataQual-
ityGoodRun

27http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityGoodRun.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityGoodRun.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityGoodRun.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityGoodRun.spec

19.28. DATAQUALITYPMT 215

19.28 DataQualityPmt

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDataQualityPmt.spec28

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
PmtId int(11) DayaBay::DetectorSensor Packed PMT ID .fullPackedData()
Status tinyint int Fitting Resutls Status
Chi2ndf float double Chi2/ndf for gain fitting
Gain float double Single photoelectron mean ADC value (high gain)
GainErr float double Gain Error
DarkRate float double Dark Rate
DarkRateErr float double Dark Rate Error
ElecNoiseRate float double Electronics Noise Rate
ElecNoiseRateErr float double Electronics Noise Rate Error
PreAdc float double Pre Adc
PreAdcErr float double Pre Adc Error

Table 19.28: DBI Table specification for class GDataQualityPmt which corresponds to table DataQuali-
tyPmt

28http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityPmt.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityPmt.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityPmt.spec

216 CHAPTER 19. DATABASE TABLES

19.29 DataQualityRpc

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDataQualityRpc.spec29

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
RpcSensorId int DayaBay::RpcSensor ID of RPC sensor for layer .fullPackedData()
Efficiency float double Efficiency of one RPC layer
EfficiencyErr float double Efficiency error of one RPC layer
NoiseRate float double Noise rate of one RPC layer
NoiseRateErr float double Noise rate error of one RPC layer

Table 19.29: DBI Table specification for class GDataQualityRpc which corresponds to table DataQualityRpc

29http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityRpc.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityRpc.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityRpc.spec

19.30. DATAQUALITYTRIGGER 217

19.30 DataQualityTrigger

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDataQualityTrigger.spec30

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
TrigRate float double Trigger Rate
FlasherRate float double Flasher Rate
BlockTrigFrac float double Blocked Trigger Fraction

Table 19.30: DBI Table specification for class GDataQualityTrigger which corresponds to table DataQual-
ityTrigger

30http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityTrigger.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityTrigger.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityTrigger.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDataQualityTrigger.spec

218 CHAPTER 19. DATABASE TABLES

19.31 DcsAdPmtHv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsAdPmtHv.spec31

PMT High Voltage monitoring table for AD::

mysql> describe DcsAdPmtHv ;
+-------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+----------------+
SEQNO	int(11)	NO	PRI		
ROW_COUNTER	int(11)	NO	PRI	NULL	auto_increment
ladder	tinyint(4)	YES		NULL	
col	tinyint(4)	YES		NULL	
ring	tinyint(4)	YES		NULL	
voltage	float	YES		NULL	
pw	tinyint(4)	YES		NULL	
+-------------+--------------+------+-----+---------+----------------+
7 rows in set (0.07 sec)

name dbtype codetype description code2db
Ladder tinyint(4) int PMT ladder
Column tinyint(4) int PMT column
Ring tinyint(4) int PMT ring
Voltage float float PMT Voltage
Pw tinyint(4) int PMT Power ON/OFF

Table 19.31: DBI Table specification for class GDcsAdPmtHv which corresponds to table DcsAdPmtHv

31http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdPmtHv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdPmtHv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdPmtHv.spec

19.32. DCSADTEMP 219

19.32 DcsAdTemp

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsAdTemp.spec32

AD Temperature monitoring table::

mysql> describe DcsAdTemp ;
+-------------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+----------------+
SEQNO	int(11)	NO	PRI		
ROW_COUNTER	int(11)	NO	PRI	NULL	auto_increment
Temp_PT1	float	YES		NULL	
Temp_PT2	float	YES		NULL	
Temp_PT3	float	YES		NULL	
Temp_PT4	float	YES		NULL	
+-------------+---------+------+-----+---------+----------------+
6 rows in set (0.08 sec)

DBI read must explicitly give: Site, SubSite/DetectoId
DBI write must explicitly give: SiteMask, SubSite

name dbtype codetype description code2db
Temp1 float float AD?_temp_pt1
Temp2 float float AD?_temp_pt2
Temp3 float float AD?_temp_pt3
Temp4 float float AD?_temp_pt4

Table 19.32: DBI Table specification for class GDcsAdTemp which corresponds to table DcsAdTemp

32http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdTemp.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdTemp.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdTemp.spec

220 CHAPTER 19. DATABASE TABLES

19.33 DcsAdWpHv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHv.spec33

PMT High Voltage monitoring table::

mysql> describe DcsAdWpHv;
+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
LocationId	char(6)	YES		NULL	
Voltage	float	YES		NULL	
+-------------+---------+------+-----+---------+-------+

name dbtype codetype description code2db
LocationId char(6) string PMT Location ID
Voltage float float PMT Voltage

Table 19.33: DBI Table specification for class GDcsAdWpHv which corresponds to table DcsAdWpHv

33http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHv.spec

19.34. DCSADWPHVSHUNTED 221

19.34 DcsAdWpHvShunted

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHvShunted.spec34

PMT High Voltage monitoring table::

mysql> describe DcsAdWpHv;
+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
LocationId	char(6)	YES		NULL	
Voltage	float	YES		NULL	
+-------------+---------+------+-----+---------+-------+

name dbtype codetype description code2db
LocationId char(6) string PMT Location ID
Voltage float float PMT Voltage

Table 19.34: DBI Table specification for class GDcsAdWpHvShunted which corresponds to table DcsAdW-
pHvShunted

34http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHvShunted.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHvShunted.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsAdWpHvShunted.spec

222 CHAPTER 19. DATABASE TABLES

19.35 DcsMuonCalib

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsMuonCalib.spec35

+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
LedId	int(11)	YES		NULL	
Voltage	float	YES		NULL	
Frequency	float	YES		NULL	
ChannelId	int(11)	YES		NULL	
ErrorCode	int(11)	YES		NULL	
+-------------+---------+------+-----+---------+-------+
7 rows in set (0.02 sec)

name dbtype codetype description code2db
LedId int int IOW_CAL_LED_ID
Voltage float float IOW_CAL_LED_ID_Voltage
Frequency float float IOW_CAL_LED_ID_Frequency
ChannelId int int IOW_CAL_Channel_ID
ErrorCode int int IOW_CAL_ErrorCode

Table 19.35: DBI Table specification for class GDcsMuonCalib which corresponds to table DcsMuonCalib

35http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsMuonCalib.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsMuonCalib.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsMuonCalib.spec

19.36. DCSPMTHV 223

19.36 DcsPmtHv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsPmtHv.spec36

PMT High Voltage monitoring table::

mysql> describe DcsPmtHv ;
+-------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+----------------+
SEQNO	int(11)	NO	PRI		
ROW_COUNTER	int(11)	NO	PRI	NULL	auto_increment
ladder	tinyint(4)	YES		NULL	
col	tinyint(4)	YES		NULL	
ring	tinyint(4)	YES		NULL	
voltage	decimal(6,2)	YES		NULL	
pw	tinyint(4)	YES		NULL	
+-------------+--------------+------+-----+---------+----------------+
7 rows in set (0.07 sec)

name dbtype codetype description code2db
Ladder tinyint(4) int PMT ladder
Column tinyint(4) int PMT column
Ring tinyint(4) int PMT ring
Voltage float float PMT Voltage
Pw tinyint(4) int PMT Power ON/OFF

Table 19.36: DBI Table specification for class GDcsPmtHv which corresponds to table DcsPmtHv

36http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsPmtHv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsPmtHv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsPmtHv.spec

224 CHAPTER 19. DATABASE TABLES

19.37 DcsRpcHv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsRpcHv.spec37

PMT High Voltage monitoring table::

mysql> describe DcsRpcHv;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
LocationId	char(3)	YES		NULL	
VoltagePos	float	YES		NULL	
VoltageNeg	float	YES		NULL	
+-------------+---------+------+-----+---------+-------+

name dbtype codetype description code2db
LocationId char(3) string Location ID
VoltagePos float float Positive RPC Voltage
VoltageNeg float float Negative RPC Voltage

Table 19.37: DBI Table specification for class GDcsRpcHv which corresponds to table DcsRpcHv

37http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsRpcHv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsRpcHv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsRpcHv.spec

19.38. DCSWPPMTHV 225

19.38 DcsWpPmtHv

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDcsWpPmtHv.spec38

PMT High Voltage monitoring table for water pool
PMT naming in water pool::

XXXXNN (4 letters + (number or letter) + number)

Where:

* 1st letter: experiment site (D, L, F).
* 2nd letter: water pool (V: outer pool, C: inner pool).
* 3rd letter: PMT direction (I: facing toward the center of the pool, O: facing away from the center of the pool).
* 4th letter: wall (A, B, C, D, E, F, G, H), floor treated like another wall, U.
* 1st number/letter: row number counting from bottom up or F for floor PMT within the wall.
* 2nd number: column number counting from left to right when facing the wall standing in the middle of water pool.

name dbtype codetype description code2db
Direction char(1) char PMT facing direction
Wall char(1) char PMT wall
PmtRow tinyint(4) int PMT row
PmtColumn tinyint(4) int PMT column
Voltage float float PMT Voltage
Pw tinyint(4) int PMT Power ON/OFF

Table 19.38: DBI Table specification for class GDcsWpPmtHv which corresponds to table DcsWpPmtHv

38http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsWpPmtHv.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsWpPmtHv.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDcsWpPmtHv.spec

226 CHAPTER 19. DATABASE TABLES

19.39 Demo

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDemo.spec39

Simple Class/Table for demonstration of DybDbi/DBI features

name dbtype codetype description code2db
Gain double double demonstration double
Id int(11) int demonstration identity

Table 19.39: DBI Table specification for class GDemo which corresponds to table Demo

39http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemo.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemo.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemo.spec

19.40. DEMOAGG 227

19.40 DemoAgg

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDemoAgg.spec40

Simple Class/Table for demonstration of DybDbi/DBI features, modified to be an aggregate type with some special
template handling for meta key ‘‘aggrow‘‘.
Adding meta key ‘‘aggrow=Id‘‘ to add the ‘‘GetAggregateNo‘‘ method which returns ‘‘m_Id‘‘ to provide the aggregate number
which must be ‘‘0,1,2,3,4,...‘‘

name dbtype codetype description code2db
Gain double double demonstration double
Id int(11) int demonstration identity

Table 19.40: DBI Table specification for class GDemoAgg which corresponds to table DemoAgg

40http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoAgg.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoAgg.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoAgg.spec

228 CHAPTER 19. DATABASE TABLES

19.41 DemoBit

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDemoBit.spec41

GDemoBit

See :dybgaudi:‘Database/DybDbi/tests/test_demo_bitfield.py‘

.. warning:: Due to a DBI/ROOT reading limitation restrict the bit fields to avoid the most significant bit, ie only 31 bits to play with

name dbtype codetype description code2db
Gain double double demonstration double
Id int(11) int demonstration identity
Mask0 int(11) Int_t demonstration BitField
Mask1 int(11) Int_t demonstration BitField
Mask2 int(11) Int_t demonstration BitField
Mask3 int(11) Int_t demonstration BitField
Mask4 int(11) Int_t demonstration BitField
Mask5 int(11) Int_t demonstration BitField

Table 19.41: DBI Table specification for class GDemoBit which corresponds to table DemoBit

41http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoBit.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoBit.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDemoBit.spec

19.42. DQCHANNEL 229

19.42 DqChannel

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqChannel.spec42

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
ChannelId int(11) DayaBay::FeeChannelId Unique id of the channel connected to a pmt .fullPackedData()
Occupancy float double Channel Occupancy
DAdcMean float double Delta Adc Mean
DAdcRMS float double Delta Adc RMS
HvMean float double HV mean value within the file
HvRMS float double HV RMS value within the file

Table 19.42: DBI Table specification for class GDqChannel which corresponds to table DqChannel

42http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannel.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannel.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannel.spec

230 CHAPTER 19. DATABASE TABLES

19.43 DqChannelPacked

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqChannelPacked.spec43

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
Mask0 int(11) Int_t Mask0, bit packing of channel status
Mask1 int(11) Int_t Mask1, bit packing of channel status
Mask2 int(11) Int_t Mask2, bit packing of channel status
Mask3 int(11) Int_t Mask3, bit packing of channel status
Mask4 int(11) Int_t Mask4, bit packing of channel status
Mask5 int(11) Int_t Mask5, bit packing of channel status
Mask6 int(11) Int_t Mask6, bit packing of channel status

Table 19.43: DBI Table specification for class GDqChannelPacked which corresponds to table DqChannel-
Packed

43http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelPacked.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelPacked.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelPacked.spec

19.44. DQCHANNELSTATUS 231

19.44 DqChannelStatus

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqChannelStatus.spec44

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
ChannelId int(11) DayaBay::FeeChannelId Unique id of the channel connected to a pmt .fullPackedData()
Status tinyint int Channel status (good/bad)

Table 19.44: DBI Table specification for class GDqChannelStatus which corresponds to table DqChannel-
Status

44http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelStatus.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelStatus.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqChannelStatus.spec

232 CHAPTER 19. DATABASE TABLES

19.45 DqDetector

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqDetector.spec45

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
TriggerCounts int(11) int Trigger Counts
FlasherCounts int(11) int Flasher Counts
MuonCounts int(11) int Muon Counts
IbdCounts int(11) int IBD Number
SpnCounts int(11) int Spallation Neutron Number
BlockTrigCounts int(11) int Blocked Trigger Number
SpnEnergy float double Spallation Neutron Energy
SpnEnergySigma float double Sigma of Spallation Neutron Energy

Table 19.45: DBI Table specification for class GDqDetector which corresponds to table DqDetector

45http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetector.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetector.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetector.spec

19.46. DQDETECTOREXT 233

19.46 DqDetectorExt

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorExt.spec46

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
ADMuonCounts int(11) int AD Muon Counts
IWSTaggedCounts int(11) int IWS Tagged AD Muon Counts
OWSTaggedCounts int(11) int OWS Tagged AD Muon Counts
WSTaggedCounts int(11) int WS Combined Tagged AD Muon Counts
Var1 float double Place Holder
Var2 float double Place Holder
Var3 float double Place Holder
Var4 float double Place Holder
Var5 float double Place Holder
Var6 float double Place Holder
Var7 float double Place Holder
Var8 float double Place Holder
Var9 float double Place Holder
Var10 float double Place Holder

Table 19.46: DBI Table specification for class GDqDetectorExt which corresponds to table DqDetectorExt

46http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorExt.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorExt.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorExt.spec

234 CHAPTER 19. DATABASE TABLES

19.47 DqDetectorNew

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorNew.spec47

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
TriggerCounts int(11) int Trigger Counts
FlasherCounts int(11) int Flasher Counts
MuonCounts int(11) int Muon Counts
IbdCounts int(11) int IBD Number
SpnCounts int(11) int Spallation Neutron Number
BlockTrigCounts int(11) int Blocked Trigger Number
SpnEnergy float double Spallation Neutron Energy
SpnEnergySigma float double Sigma of Spallation Neutron Energy
K40Energy float double K40 Peak Energy
K40EnergyErr float double Error of K40 Peak Energy
Tl208Energy float double Tl208 Peak Energy
Tl208EnergyErr float double Error of Tl208 Peak Energy
PLikeCounts int(11) int Positron Like Event Number
NLikeCounts int(11) int Neutron Like Event Number
DtNegCounts int(11) int Number of Events with Dt_trigger<-12.5ns
DtLargeGapCounts int(11) int Large Dt Gap Event Number
NHitCountsGt int(11) int NHit Trigger Counts With Energy>0.7MeV
ESumCountsGt int(11) int ESum Trigger Counts With Energy>0.7MeV

Table 19.47: DBI Table specification for class GDqDetectorNew which corresponds to table DqDetectorNew

47http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorNew.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorNew.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqDetectorNew.spec

19.48. DQLIVETIME 235

19.48 DqLiveTime

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqLiveTime.spec48

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
IntegralRunTime double double DAQ Running Time (ms)
IntegralLiveTimeBlocked double double DAQ runtime with blocked trigger correction (ms)
IntegralLiveTimeBuffer double double DAQ runtime with buffer full correction (ms)

Table 19.48: DBI Table specification for class GDqLiveTime which corresponds to table DqLiveTime

48http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqLiveTime.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqLiveTime.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqLiveTime.spec

236 CHAPTER 19. DATABASE TABLES

19.49 DqPmt

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqPmt.spec49

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
PmtId int(11) DayaBay::DetectorSensor Packed PMT ID .fullPackedData()
Status tinyint int Fitting Resutls Status
Chi2ndf float double Chi2/ndf for gain fitting
Gain float double Single photoelectron mean ADC value (high gain)
GainErr float double Gain Error
DarkRate float double Dark Rate
DarkRateErr float double Dark Rate Error
ElecNoiseRate float double Electronics Noise Rate
ElecNoiseRateErr float double Electronics Noise Rate Error
PreAdc float double Pre Adc
PreAdcErr float double Pre Adc Error
AdcMean float double Adc Mean
AdcRMS float double Adc RMS
TdcMean float double Tdc Mean
TdcRMS float double Tdc RMS
FlashingCounts int(11) int Flashing Counts
DNCountsForced int(11) int Dark Noise Counts Calculated from Forced Trigger
Quality tinyint int Quality Flag for a Pmt Channel

Table 19.49: DBI Table specification for class GDqPmt which corresponds to table DqPmt

49http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmt.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmt.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmt.spec

19.50. DQPMTNEW 237

19.50 DqPmtNew

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqPmtNew.spec50

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
ChannelId int(11) DayaBay::FeeChannelId Unique id of the channel connected to a pmt .fullPackedData()
Status tinyint int Fitting Resutls Status
Chi2ndf float double Chi2/ndf for gain fitting
Gain float double Single photoelectron mean ADC value (high gain)
GainErr float double Gain Error
DarkRate float double Dark Rate
DarkRateErr float double Dark Rate Error
ElecNoiseRate float double Electronics Noise Rate
ElecNoiseRateErr float double Electronics Noise Rate Error
PreAdc float double Pre Adc
PreAdcErr float double Pre Adc Error
AdcMean float double Adc Mean
AdcRMS float double Adc RMS
TdcMean float double Tdc Mean
TdcRMS float double Tdc RMS
FlashingCounts int(11) int Flashing Counts
DNCountsForced int(11) int Dark Noise Counts Calculated from Forced Trigger
Quality tinyint int Quality Flag for a Pmt Channel

Table 19.50: DBI Table specification for class GDqPmtNew which corresponds to table DqPmtNew

50http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmtNew.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmtNew.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqPmtNew.spec

238 CHAPTER 19. DATABASE TABLES

19.51 DqTriggerCounts

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqTriggerCounts.spec51

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
CrossInCounts int(11) int Cross In Trigger Type Events Counts
PeriodicCounts int(11) int Periodic Trigger Type Events Counts
CalibCounts int(11) int Calib Trigger Type Events Counts
RandomCounts int(11) int Random Trigger Type Events Counts
NhitCounts int(11) int NHit Trigger Type Events Counts
EsumCounts int(11) int ESum Trigger Type Events Counts
Rpc2of4Counts int(11) int RPC (2 out of 4) Trigger Type Events Counts
Rpc3of4Counts int(11) int RPC (3 out of 4) Trigger Type Events Counts

Table 19.51: DBI Table specification for class GDqTriggerCounts which corresponds to table DqTrigger-
Counts

51http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqTriggerCounts.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqTriggerCounts.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqTriggerCounts.spec

19.52. DQWPMONITORING 239

19.52 DqWPMonitoring

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GDqWPMonitoring.spec52

docstring

name dbtype codetype description code2db
RunNo int(11) int Run Number
FileNo int(11) int File Number
DetectorId int(11) int Detector ID
MuonNhit float double Muon Pmt Nhit
MuonNhitErr float double Muon Pmt Nhit Error
MuonPESum float double Muon Pmt PE Sum
MuonPESumErr float double Muon Pmt PE Sum Error

Table 19.52: DBI Table specification for class GDqWPMonitoring which corresponds to table DqWPMoni-
toring

52http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqWPMonitoring.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqWPMonitoring.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GDqWPMonitoring.spec

240 CHAPTER 19. DATABASE TABLES

19.53 EnergyPositionCorr

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GEnergyPositionCorr.spec53

docstring

name dbtype codetype description code2db
NonUniformCorr1 float double nonuniformity parameter 1
NonUniformCorr2 float double nonuniformity parameter 2
NonUniformCorr3 float double nonuniformity parameter 3
NonUniformCorr4 float double nonuniformity parameter 4

Table 19.53: DBI Table specification for class GEnergyPositionCorr which corresponds to table EnergyPo-
sitionCorr

53http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyPositionCorr.

spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyPositionCorr.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyPositionCorr.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyPositionCorr.spec

19.54. ENERGYRECON 241

19.54 EnergyRecon

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GEnergyRecon.spec54

docstring

name dbtype codetype description code2db
PeEvis float double pe per mev value
PeEvisUnc float double pe per mev uncertainty

Table 19.54: DBI Table specification for class GEnergyRecon which corresponds to table EnergyRecon

54http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyRecon.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyRecon.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GEnergyRecon.spec

242 CHAPTER 19. DATABASE TABLES

19.55 FeeCableMap

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GFeeCableMap.spec55

Data members of instances of the generated class use specialized types, which are specified for each
field by the ‘‘codetype‘‘ column.

============================== ====================================== ================================ ========================
codetype API ref defined code2db

============================== ====================================== ================================ ========================
‘‘DayaBay::FeeChannelId‘‘ :py:class:‘DybDbi.FeeChannelId‘ :conventions:‘Electronics.h‘ .fullPackedData()
‘‘DayaBay::FeeHardwareId‘‘ :py:class:‘DybDbi.FeeHardwareId‘ :conventions:‘Hardware.h‘ .id()
‘‘DayaBay::DetectorSensor‘‘ :py:class:‘DybDbi.DetectorSensor‘ :conventions:‘Detectors.h‘ .fullPackedData()
‘‘DayaBay::PmtHardwareId‘‘ :py:class:‘DybDbi.PmtHardwareId‘ :conventions:‘Hardware.h‘ .id()
============================== ====================================== ================================ ========================

This usage is mirrored in the ctor/getters/setters of the generated class.
As these cannot be directly stored into the DB, conversions are performed on writing and reading.

On writing to DB the ‘‘code2db‘‘ defined call is used to convert the specialized type into integers
that can be persisted in the DB. On reading from the DB the one argument ‘‘codetype‘‘ ctors are used
to convert the persisted integer back into the specialized types.

name dbtype codetype description code2db
FeeChannelId int(11) DayaBay::FeeChannelId Front-end electronics channel .fullPackedData()
FeeChannelDesc varchar(30) string String of decribing FEE channel
FeeHardwareId int(11) DayaBay::FeeHardwareId Identify a physical FEE board .id()
ChanHrdwDesc varchar(30) string String of decribing FEE board position
SensorId int(11) DayaBay::DetectorSensor PMT Sensor ID in detector .fullPackedData()
SensorDesc varchar(30) string String of decribing PMT sensor id
PmtHardwareId int(11) DayaBay::PmtHardwareId Identify a physical PMT position .id()
PmtHrdwDesc varchar(30) string String of decribing PMT position

Table 19.55: DBI Table specification for class GFeeCableMap which corresponds to table FeeCableMap

55http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GFeeCableMap.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GFeeCableMap.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GFeeCableMap.spec

19.56. GOODRUNLIST 243

19.56 GoodRunList

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GGoodRunList.spec56

List of runs/files suitable for analysis

name dbtype codetype description code2db
RunNo int int Run number
FileNo int int File sequence number
StreamId int int Output stream

Table 19.56: DBI Table specification for class GGoodRunList which corresponds to table GoodRunList

56http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GGoodRunList.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GGoodRunList.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GGoodRunList.spec

244 CHAPTER 19. DATABASE TABLES

19.57 HardwareID

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GHardwareID.spec57

The Hardware ID table maps a HardwareId (from Conventions/Hardware.h)
to either a DetectorSensor (Conventions/Detectors.h) or an
ElecChannelId (Conventions/Electronics.h) depending on the harddware
type.

For the code, note the DetectorSensor and ElecChannelId are stored in
the form of the base class DayaBay::Detector

name dbtype codetype description code2db
ChanOrSens int(11) DayaBay::Detector Packed Channel/Sensor ID .fullPackedData()
HardwareId int(11) DayaBay::HardwareId Packed Hardware ID .fullPackedData()

Table 19.57: DBI Table specification for class GHardwareID which corresponds to table HardwareID

57http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareID.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareID.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareID.spec

19.58. HARDWAREIDFIX 245

19.58 HardwareIDFix

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GHardwareIDFix.spec58

Testing fix for :dybsvn:‘ticket:948‘

The Hardware ID table maps a HardwareId (from Conventions/Hardware.h)
to either a DetectorSensor (Conventions/Detectors.h) or an
ElecChannelId (Conventions/Electronics.h) depending on the harddware
type.

For the code, note the DetectorSensor and ElecChannelId are stored in
the form of the base class DayaBay::Detector

name dbtype codetype description code2db
ChanOrSens int(11) DayaBay::Detector Packed Channel/Sensor ID .fullPackedData()
HardwareId int(11) DayaBay::HardwareId Packed Hardware ID .fullPackedData()

Table 19.58: DBI Table specification for class GHardwareIDFix which corresponds to table HardwareID

58http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareIDFix.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareIDFix.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GHardwareIDFix.spec

246 CHAPTER 19. DATABASE TABLES

19.59 McsPos

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GMcsPos.spec59

Source position for MCS.

mysql> describe McsPos;
+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
SEQNO	int(11)	NO	PRI	NULL	
ROW_COUNTER	int(11)	NO	PRI	NULL	
PositionR	float	YES		NULL	
PositionZ	float	YES		NULL	
PositionPhi	float	YES		NULL	
RunNo	int(11)	YES		NULL	
+-------------+---------+------+-----+---------+-------+
6 rows in set (0.02 sec)

name dbtype codetype description code2db
PositionR float float r position of source (mm)
PositionZ float float z position of source (mm)
PositionPhi float float phi position of source (degrees)
RunNo int(11) int run number associated with this position

Table 19.59: DBI Table specification for class GMcsPos which corresponds to table McsPos

59http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GMcsPos.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GMcsPos.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GMcsPos.spec

19.60. PHYSAD 247

19.60 PhysAd

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GPhysAd.spec60

This table can be read/written using :py:class:‘DybDbi.AdLogicalPhysical‘

(adapted from Dan/Zhimin email 2011-01-17)

There are two ways to identify an AD in the experiment:

#. Location: SAB-AD1, ..., FAR-AD4
#. Physical ID: AD1, AD2, ..., AD8

.. rubric:: Convention references

============ ==
Convention Reference
============ ==
DCS :docdb:‘3198‘
DAQ :docdb:‘3442‘ page 6
============ ==

The Offline convention can be found from:
* :dybgaudi:‘DataModel/Conventions/Conventions/Site.h‘
* :dybgaudi:‘DataModel/Conventions/Conventions/DetectorId.h‘

Here is a summary of the Location names/IDs that each system uses:

.. rubric:: Site (Name and ID)

==== ==== ============ ====== ==========
DCS DAQ Offline DAQ_ID Offline_ID
==== ==== ============ ====== ==========
DBNS DBN DayaBay 0x10 0x01
LANS LAN LingAo 0x20 0x02
FARS FAR Far 0x30 0x04
MIDS MID Mid . 0x08
. . Aberdeen . 0x10
SAB SAB SAB 0x60 0x20
. . PMTBenchTest . 0x40
LSH
==== ==== ============ ====== ==========

.. rubric:: Detector/MainSys (Name and ID)

60http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GPhysAd.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GPhysAd.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GPhysAd.spec

248 CHAPTER 19. DATABASE TABLES

==== ==== ============ ====== ==========
DCS DAQ Offline DAQ_ID Offline_ID
==== ==== ============ ====== ==========
AD1 AD1 AD1 0x01 0x01
AD2 AD2 AD2 0x02 0x02
AD3 AD3 AD3 0x03 0x03
AD4 AD4 AD4 0x04 0x04
IWP WPI IWS 0x05 0x05
OWP WPO OWS 0x06 0x06
RPC RPC RPC 0x07 0x07
Muon
GAS
PMT
FEE
SIS
==== ==== ============ ====== ==========

name dbtype codetype description code2db
PhysAdId tinyint int ID of physical AD, counts 1 to 8

Table 19.60: DBI Table specification for class GPhysAd which corresponds to table PhysAd

19.61. QSUMCALIB 249

19.61 QSumCalib

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GQSumCalib.spec61

Calibration constant for QSum Reconstruction.

name dbtype codetype description code2db
PeYield float double PE yield per MeV
Uncertainty float double uncertainty of PE yield

Table 19.61: DBI Table specification for class GQSumCalib which corresponds to table QSumCalib

61http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GQSumCalib.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GQSumCalib.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GQSumCalib.spec

250 CHAPTER 19. DATABASE TABLES

19.62 SimPmtSpec

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GSimPmtSpec.spec62

docstring

name dbtype codetype description code2db
PmtId int(11) DayaBay::DetectorSensor PMT sensor ID .sensorId()
Describ varchar(27) string String of decribing PMT position
Gain float double Relative gain for pmt, mean = 1
SigmaGain float double 1-sigma spread of S.P.E. response
TimeOffset float double Relative transit time offset
TimeSpread float double Transit time spread
Efficiency float double Absolute efficiency
PrePulseProb float double Probability of prepulsing
AfterPulseProb float double Probability of afterpulsing
DarkRate float double Dark Rate

Table 19.62: DBI Table specification for class GSimPmtSpec which corresponds to table SimPmtSpec

62http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSimPmtSpec.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSimPmtSpec.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSimPmtSpec.spec

19.63. SUPERNOVATRIGGER 251

19.63 SupernovaTrigger

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GSupernovaTrigger.spec63

Supernova Trigger Table DocDB:8854

.. rubric:: Detector convention in Offline and AdNo we define

========== ============== ======
AD name fullPackedData AdNo
========== ============== ======
DayaBayAD1 16842752 1
DayaBayAD2 16908288 2
LingAoAD1 33619968 3
LingAoAD2 33685504 4
FarAD1 67174400 5
FarAD2 67239936 6
FarAD3 67305472 7
FarAD4 67371008 8
========== ============== ======

name dbtype codetype description code2db
detector int(11) DayaBay::Detector source:dybgaudi/trunk/DataModel/Conventions/Conventions/Detectors.h .fullPackedData()
runNo int(11) int physics run number
fileNo int(11) int raw data file number of a certain physics run
pTriggerNo int(11) int prompt signal trigger number
pEnergy double double prompt signal energy (MeV) after a simple recon
pTime_s int(11) int prompt signal time stamp sec
pTime_nano int(11) int prompt signal time stamp nano
pVertex_x double double prompt signal vertex x position(mm) after a simple recon
pVertex_y double double prompt signal vertex y position(mm) after a simple recon
pVertex_z double double prompt signal vertex z position(mm) after a simple recon
dTriggerNo int(11) int delayed signal trigger number
dEnergy double double delayed signal energy (MeV) after a simple recon
dTime_s int(11) int delayed signal time stamp sec
dTime_nano int(11) int delayed signal time stamp nano
dVertex_x double double delayed signal vertex x position(mm) after a simple recon
dVertex_y double double delayed signal vertex y position(mm) after a simple recon
dVertex_z double double delayed signal vertex z position(mm) after a simple recon

Table 19.63: DBI Table specification for class GSupernovaTrigger which corresponds to table Supernova-
Trigger

63http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSupernovaTrigger.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSupernovaTrigger.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GSupernovaTrigger.spec

252 CHAPTER 19. DATABASE TABLES

19.64 TimeLatency

Table specification source dybgaudi/trunk/Database/DybDbi/spec/GTimeLatency.spec64

docstring

name dbtype codetype description code2db
Latency float double time latency relative to a specific detector in one EH

Table 19.64: DBI Table specification for class GTimeLatency which corresponds to table TimeLatency

64http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GTimeLatency.spec

http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GTimeLatency.spec
http://dayabay.ihep.ac.cn/tracs/dybsvn/browser/dybgaudi/trunk/Database/DybDbi/spec/GTimeLatency.spec

Chapter 20

Bibliography

253

Bibliography

[1] Reference target needed for g4dyb

255

	Contents
	Introduction
	Intended Audience
	Document Organization
	Contributing
	Building Documentation
	Typographical Conventions

	Quick Start
	Offline Infrastructure
	Installation and Working with the Source Code
	Offline Framework
	Data Model
	Detector Description
	Kinematic Generators
	Detector Simulation
	Quick Start with Truth Information
	Electronics Simulation
	Trigger Simulation
	Readout
	Event Display
	Reconstruction
	Database

	Analysis Basics
	Introduction
	Daya Bay Data Files
	NuWa Basics
	NuWa Recipes
	Cheat Sheets
	Hands-on Exercises

	Offline Infrastructure
	Mailing lists
	DocDB
	Wikis
	Trac bug tracker

	Installation and Working with the Source Code
	Using pre-installed release
	Instalation of a Release
	Anatomy of a Release
	Version Control Your Code
	Technical Details of the Installation

	Offline Framework
	Introduction
	Framework Components and Interfaces
	Common types of Components
	Writing your own component
	Properties and Configuration

	Data Model
	Overview
	Times
	Examples of using the Data Model objects

	Data I/O
	Goal
	Features
	Packages
	I/O Related Job Configuration
	How the I/O Subsystem Works
	Adding New Data Classes

	Detector Description
	Introduction
	Conventions
	Coordinate System
	XML Files
	Transient Detector Store
	Configuring the Detector Description
	PMT Lookups
	Visualization

	Kinematic Generators
	Introduction
	Generator output
	Generator Tools
	Generator Packages
	Types of GenTools
	Configuration
	MuonProphet

	Detector Simulation
	Introduction
	Configuring DetSim
	Truth Information
	Truth Parameters

	Electronics Simulation
	Introduction
	Algorithms
	Tools
	Simulation Constant

	Trigger Simulation
	Introduction
	Configuration
	Current Triggers
	Adding a new Trigger

	Readout
	Introduction
	ReadoutHeader
	SimReadoutHeader
	Readout Algorithms
	Readout Tools

	Simulation Processing Models
	Introduction
	Fifteen

	Reconstruction
	Database
	Database Interface
	Concepts
	Running
	Accessing Existing Tables
	Creating New Tables
	Filling Tables
	ASCII Flat Files and Catalogues
	MySQL Crib
	Performance

	Database Maintanence
	Introduction
	Building and Running dbmjob

	Database Tables
	AdMass
	AdWpHvMap
	AdWpHvSetting
	AdWpHvToFee
	CableMap
	CableMapFix
	CalibFeeGainConv
	CalibFeeSpec
	CalibFeeSpecCleanup
	CalibPmtFineGain
	CalibPmtHighGain
	CalibPmtHighGainFake
	CalibPmtHighGainPariah
	CalibPmtLowGain
	CalibPmtPedBias
	CalibPmtSpec
	CalibPmtTimOff
	CalibPmtTiming
	CalibRpcSpec
	CalibSrcEnergy
	CoordinateAd
	CoordinateReactor
	DaqCalibRunInfo
	DaqRawDataFileInfo
	DaqRunInfo
	DataQualityDetector
	DataQualityGoodRun
	DataQualityPmt
	DataQualityRpc
	DataQualityTrigger
	DcsAdPmtHv
	DcsAdTemp
	DcsAdWpHv
	DcsAdWpHvShunted
	DcsMuonCalib
	DcsPmtHv
	DcsRpcHv
	DcsWpPmtHv
	Demo
	DemoAgg
	DemoBit
	DqChannel
	DqChannelPacked
	DqChannelStatus
	DqDetector
	DqDetectorExt
	DqDetectorNew
	DqLiveTime
	DqPmt
	DqPmtNew
	DqTriggerCounts
	DqWPMonitoring
	EnergyPositionCorr
	EnergyRecon
	FeeCableMap
	GoodRunList
	HardwareID
	HardwareIDFix
	McsPos
	PhysAd
	QSumCalib
	SimPmtSpec
	SupernovaTrigger
	TimeLatency

	Bibliography
	Bibliography

