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with help from

Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Marc A. Martı-Renom,

Narayanan Eswar, Frank Alber, Baldomero Oliva, András Fiser,

Roberto Sánchez, Bozidar Yerkovich, Azat Badretdinov,

Francisco Melo, John P. Overington, and Eric Feyfant

email sali@salilab.org

URL http://salilab.org/modeller/

September 2004



ii



Contents

Copyright notice xiii

Acknowledgments xv

1 Introduction 1

1.1 What is Modeller? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modeller bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Method for comparative protein structure modeling by Modeller . . . . . . . . . . . . . . . . . . . 8

1.7 Tutorial on using Modeller for comparative modeling . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.1 Preparing input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.2 Running Modeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.3 Automated alignment and comparative modeling . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Frequently asked questions (FAQ) and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Modeller updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9.1 Changes since release 6v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9.2 Changes between releases 4 and 6v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Modeller commands 27

2.1 Miscellaneous rules and features of Modeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Modeller system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Running Modeller scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Controlling breakpoints and the amount of output . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.4 File naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.5 File types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.6 Format of the command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Stereochemical parameters and molecular topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Modeling residues with non-existing or incomplete entries in the topology and parameter
libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 READ RESTYP LIB — read residue type library . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 READ TOPOLOGY — read residue topology library . . . . . . . . . . . . . . . . . . . . . . 33

2.2.4 READ PARAMETERS — read parameters library . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 READ ATOM CLASSES — read classification of atom types . . . . . . . . . . . . . . . . . . 34

iii



iv CONTENTS

2.2.6 GENERATE TOPOLOGY — generate MODEL topology . . . . . . . . . . . . . . . . . . . . 34

2.2.7 PATCH — patch MODEL topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.8 PATCH SS TEMPLATES — guess MODEL disulfides from templates . . . . . . . . . . . . . 36

2.2.9 PATCH SS MODEL — guess MODEL disulfides from model structure . . . . . . . . . . . . . 38

2.2.10 MUTATE MODEL — mutate selected MODEL residues . . . . . . . . . . . . . . . . . . . . . 38

2.2.11 MAKE TOPOLOGY MODEL — make a subset topology library . . . . . . . . . . . . . . . . 39

2.2.12 WRITE TOPOLOGY MODEL — write residue topology library . . . . . . . . . . . . . . . . 40

2.3 Handling of atomic coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 READ MODEL — read coordinates for MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 READ MODEL2 — read coordinates for MODEL2 . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 WRITE MODEL — write MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.4 WRITE MODEL2 — write MODEL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5 BUILD MODEL — build MODEL coordinates from topology . . . . . . . . . . . . . . . . . . 43

2.3.6 UNBUILD MODEL — undefine MODEL coordinates . . . . . . . . . . . . . . . . . . . . . . 44

2.3.7 TRANSFER XYZ — copy templates’ coordinates to MODEL . . . . . . . . . . . . . . . . . . 44

2.3.8 TRANSFER RES NUMB — residue numbers from MODEL2 to MODEL . . . . . . . . . . . 46

2.3.9 RENAME SEGMENTS — rename MODEL segments . . . . . . . . . . . . . . . . . . . . . . 47

2.3.10 PICK ATOMS — select atoms in MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.11 PICK HOT ATOMS — pick atoms violating restraints . . . . . . . . . . . . . . . . . . . . . 50

2.3.12 RANDOMIZE XYZ — randomize MODEL coordinates . . . . . . . . . . . . . . . . . . . . . 51

2.3.13 IUPAC MODEL — standardize certain dihedral angles . . . . . . . . . . . . . . . . . . . . . 52

2.3.14 REORDER ATOMS — standardize order of MODEL atoms . . . . . . . . . . . . . . . . . . 52

2.3.15 ROTATE DIHEDRALS — change dihedral angles . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.16 ORIENT MODEL — center and orient MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.17 ROTATE MODEL — rotate and translate MODEL . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.18 WRITE DATA — write derivative MODEL data . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.19 WRITE PDB XREF — write residue number/index correspondence . . . . . . . . . . . . . . 57

2.3.20 MAKE REGION — define a random surface patch of atoms . . . . . . . . . . . . . . . . . . 58

2.4 Comparison and searching of sequences and structures . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Alignment file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2 READ ALIGNMENT — read sequences and/or their alignment . . . . . . . . . . . . . . . . 62

2.4.3 READ ALIGNMENT2 — read 2nd alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.4 CHECK ALIGNMENT — check alignment for modeling . . . . . . . . . . . . . . . . . . . . . 64

2.4.5 COLOR ALN MODEL — color MODEL according to alignment . . . . . . . . . . . . . . . . 64

2.4.6 COMPARE ALIGNMENTS — compare two alignments . . . . . . . . . . . . . . . . . . . . . 65

2.4.7 SEQUENCE TO ALI — copy MODEL sequence and coordinates to alignment . . . . . . . . 66

2.4.8 WRITE ALIGNMENT — write sequences and/or their alignment . . . . . . . . . . . . . . . 67

2.4.9 EDIT ALIGNMENT — edit overhangs in alignment . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.10 DESCRIBE — describe proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.11 ID TABLE — calculate percentage sequence identities . . . . . . . . . . . . . . . . . . . . . . 69

2.4.12 SEQUENCE COMPARISON — compare sequences in alignment . . . . . . . . . . . . . . . . 70

2.4.13 DENDROGRAM — clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4.14 PRINCIPAL COMPONENTS — clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS v

2.4.15 ALIGN — align two (blocks of) sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4.16 ALIGN2D — align sequences with structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.17 MALIGN — align two or more sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4.18 ALIGN CONSENSUS — consensus sequence alignment . . . . . . . . . . . . . . . . . . . . . 76

2.4.19 SUPERPOSE — superpose MODEL2 on MODEL given alignment . . . . . . . . . . . . . . . 77

2.4.20 COMPARE — compare 3D structures given alignment . . . . . . . . . . . . . . . . . . . . . . 80

2.4.21 ALIGN3D — align two structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.22 MALIGN3D — align two or more structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.23 ALN TO PROF — convert alignment to profile format . . . . . . . . . . . . . . . . . . . . . 84

2.4.24 PROF TO ALN — profile to alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.4.25 READ PROFILE — read a profile of a sequence . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.4.26 WRITE PROFILE — write a profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.4.27 BUILD PROFILE — Build a profile for a given sequence or alignment . . . . . . . . . . . . . 87

2.4.28 READ SEQUENCE DB — read a database of sequences . . . . . . . . . . . . . . . . . . . . 90

2.4.29 WRITE SEQUENCE DB — write a database of sequences . . . . . . . . . . . . . . . . . . . 90

2.4.30 EXPAND ALIGNMENT — put all models into alignment . . . . . . . . . . . . . . . . . . . . 91

2.4.31 SEQUENCE SEARCH — search for similar sequences . . . . . . . . . . . . . . . . . . . . . . 91

2.4.32 SEQFILTER — cluster sequences by sequence-identity . . . . . . . . . . . . . . . . . . . . . . 93

2.4.33 DELETE ALIGNMENT — delete alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4.34 SEGMENT MATCHING — align segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 Calculation of spatial restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.5.1 Specification of restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.5.2 Specification of pseudo atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.5.3 MAKE RESTRAINTS — make restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.5.4 DEFINE SYMMETRY — define similar segments . . . . . . . . . . . . . . . . . . . . . . . . 107

2.5.5 PICK RESTRAINTS — pick restraints for selected atoms . . . . . . . . . . . . . . . . . . . . 109

2.5.6 CONDENSE RESTRAINTS — remove unselected restraints . . . . . . . . . . . . . . . . . . 110

2.5.7 ADD RESTRAINT — add restraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.5.8 DELETE RESTRAINT — unselect restraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

2.5.9 REINDEX RESTRAINTS — renumber MODEL2 restraints for MODEL . . . . . . . . . . . 112

2.5.10 SPLINE RESTRAINTS — approximate restraints by splines . . . . . . . . . . . . . . . . . . 113

2.5.11 READ RESTRAINTS — read spatial restraints . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.5.12 WRITE RESTRAINTS — write spatial restraints . . . . . . . . . . . . . . . . . . . . . . . . 114

2.6 Optimization of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.6.1 MAKE SCHEDULE — create optimization schedule . . . . . . . . . . . . . . . . . . . . . . . 115

2.6.2 READ SCHEDULE — read optimization schedule . . . . . . . . . . . . . . . . . . . . . . . . 116

2.6.3 WRITE SCHEDULE — write optimization schedule . . . . . . . . . . . . . . . . . . . . . . . 116

2.6.4 ENERGY — evaluate MODEL given restraints . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.6.5 OPTIMIZE — optimize MODEL given restraints . . . . . . . . . . . . . . . . . . . . . . . . 120

2.6.6 SWITCH TRACE — open new optimization trace file . . . . . . . . . . . . . . . . . . . . . . 124

2.6.7 DEBUG FUNCTION — test code self-consistency . . . . . . . . . . . . . . . . . . . . . . . . 124

3 Modeller scripts 127

3.1 Flowchart of comparative modeling by Modeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



vi CONTENTS

3.2 Script for comparative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3 Script for modeling of loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Top, Modeller scripting language 135

4.1 The source file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Top Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.1 DEFINE INTEGER — define integer variables . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.2 DEFINE LOGICAL — define logical variables . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.3 DEFINE REAL — define real variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.4 DEFINE STRING — define string variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.5 SET — set variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.6 OPERATE — perform mathematic operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.7 STRING OPERATE — perform string operation . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.8 RESET — reset Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.9 OPEN — open input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.10 TIME MARK — print current date, time, and CPU time . . . . . . . . . . . . . . . . . . . . 139

4.2.11 WRITE — write Top objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.12 READ — read record from input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.13 CLOSE — close an input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.14 DELETE FILE — delete a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.15 WRITE TOP — write the Top program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.16 SYSTEM — execute system command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.17 INQUIRE — check if file exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.18 GO TO — jump to label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.19 LABEL — place jump label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2.20 INCLUDE — include Top file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.21 CALL — call Top subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.22 SUBROUTINE — define Top subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.23 RETURN — return from Top subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.24 END SUBROUTINE — end definition of Top subroutine . . . . . . . . . . . . . . . . . . . . 141

4.2.25 DO — DO loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.26 IF — conditional statement for numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.27 STRING IF — conditional statement for strings . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.28 STOP — exit Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3 Predefined Top variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Methods 145

5.1 Dynamic programming for sequence and structure comparison and searching . . . . . . . . . . . . . 145

5.1.1 Pairwise comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.1.2 Variable gap penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1.3 Local versus global alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1.4 Similarity versus distance scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.5 Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Optimization of the objective function by Modeller . . . . . . . . . . . . . . . . . . . . . . . . . . 147



CONTENTS vii

5.2.1 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.2 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Equations used in the derivation of the molecular pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Features and their derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.2 Restraints and their derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 List of commands, arguments, and default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



viii CONTENTS



List of Figures

1.1 Comparative protein modeling by satisfaction of spatial restraints. . . . . . . . . . . . . . . . . . . . . 8

1.2 Sample spatial restraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Optimization of the objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ix



x LIST OF FIGURES



List of Tables

2.1 List of file types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 List of mathematical forms of restraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.3 List of feature types that can be restrained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.4 List of “physical” restraint types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5 Columns in an optimization trace file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.1 List of Modeller scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1 List of variable types in Top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Predefined Top variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xi



xii LIST OF TABLES



Copyright notice

Modeller, a protein structure modeling program.

Copyright c© 1989–2004 Andrej Šali.
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Chapter 1

Introduction

1.1 What is Modeller?

Modeller is a computer program that models three-dimensional structures of proteins and their assemblies by
satisfaction of spatial restraints.

Modeller is most frequently used for homology or comparative protein structure modeling: The user provides
an alignment of a sequence to be modeled with known related structures and Modeller will automatically calculate
a model with all non-hydrogen atoms.

More generally, the input to the program are restraints on the spatial structure of the amino acid sequence(s) and
ligands to be modeled. The output is a 3D structure that satisfies these restraints as well as possible. Restraints can
in principle be derived from a number of different sources. These include related protein structures (comparative
modeling), NMR experiments (NMR refinement), rules of secondary structure packing (combinatorial modeling),
cross-linking experiments, fluorescence spectroscopy, image reconstruction in electron microscopy, site-directed
mutagenesis, intuition, residue–residue and atom–atom potentials of mean force, etc. The restraints can operate
on distances, angles, dihedral angles, pairs of dihedral angles and some other spatial features defined by atoms or
pseudo atoms. Presently, Modeller automatically derives the restraints only from the known related structures
and their alignment with the target sequence.

A 3D model is obtained by optimization of a molecular probability density function (pdf). The molecular pdf
for comparative modeling is optimized with the variable target function procedure in Cartesian space that employs
methods of conjugate gradients and molecular dynamics with simulated annealing.

Modeller can also perform multiple comparison of protein sequences and/or structures, clustering of proteins,
and searching of sequence databases. The program is used with a scripting language and does not include any
graphics. It is written in standard Fortran 90 and is meant to run on a Unix or Windows computer.

1
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1.2 Modeller bibliography

In your publications using Modeller, please quote

A. Šali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234,
779–815, 1993.

More information about the methods implemented in Modeller, their use, applications, and limitations can be
found in the papers listed on our web site at http://salilab.org/publications/. Here is a subset of these
publications:

1. A. Šali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.

234, 779–815, 1993.

2. A. Šali, A. and J. P. Overington. Derivation of rules for comparative protein modeling from a database of
protein structure alignments. Protein Science 3, 1582–1596, 1994.

3. R. Sánchez and A. Šali. Comparative protein structure modeling: Introduction and practical examples with
Modeller. In Protein Structure Prediction: Methods and Protocols, D.M. Webster, editor, 97–129. Humana
Press, 2000.

4. M. A. Mart́ı-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo and A. Šali. Comparative protein structure
modeling of genes and genomes. Ann. Rev. Biophys. Biomolec. Struct. 29, 291–325, 2000.

5. A. Fiser, R. K. G. Do and A. Šali. Modeling of loops in protein structures. Protein Science 9, 1753–1773,
2000.

6. F. Melo, R. Sánchez, A. Sali. Statistical potentials for fold assessment. Protein Science 11, 430–448, 2002.

7. M. A. Mart́ı-Renom, B. Yerkovich, and A. Sali. Comparative protein structure prediction. John Wiley &
Sons, Inc. Current Protocols in Protein Science 1, 2.9.1 – 2.9.22, 2002.

8. U. Pieper, N. Eswar, A. C. Stuart, V. A. Ilyin and A. Sali. MODBASE, a database of annotated comparative
protein structure models. Nucleic Acids Research 30, 255–259, 2002.

9. A. Fiser and A. Sali. MODELLER: generation and refinement of homology models. In Methods in Enzymol-

ogy, C.W. Carter and R.M. Sweet, eds. Academic Press, San Diego, in press.

10. N. Eswar, B. John, N. Mirkovic, A. Fiser, V. A. Ilyin, U. Pieper, A. C. Stuart, M. A. Mart́ı-Renom, M.
S. Madhusudhan, B. Yerkovich and A. Sali. Tools for comparative protein structure modeling and analysis,
submitted.
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1.3 Distribution

Modeller is available free of charge to academic non-profit institutions.

First, please download the Modeller distribution file from the Modeller home page at
http://salilab.org/modeller/. Next, please obtain the Modeller key from the academic license server, also
accessible from the Modeller home page. This key is required to run Modeller, and you should provide
it to the Windows or Unix install program when prompted to do so. (If installing manually, the key needs to
be assigned to the environment variable KEY MODELLER7v7 in your login or Modeller startup script.) See file
INSTALLATION for further installation instructions.

There is a Modeller users email list. You can access it from the Modeller home page or subscribe to it directly
by sending an email message with the word “subscribe” in its body to modeller usage-request@salilab.org.

A graphical interface to Modeller is available as part of Quanta, InsightII, and Discovery Studio, interactive
molecular modeling programs from Accelrys Inc., San Diego, with many tools for protein modeling and structural
analysis. These programs facilitate preparation of input files for Modeller (e.g., an alignment file) as well as an
analysis of results (e.g., an evaluation of the models). If you are interested in these programs, please contact

Dr. Dana Haley-Vicente
Accelrys Inc.
9685 Scranton Road
San Diego, CA 92121-3752, USA
tel +1-858-799-5322; fax +1-858-799-5100
email dhv@accelrys.com; URL http://www.accelrys.com/
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1.4 Installation

The following installation instructions are from the INSTALLATION file in the root directory of the Modeller

distribution. See Section 1.3 for how to obtain Modeller.

INSTALLATION

M O D E L L E R 7v7

Copyright(c) 1989-2004 Andrej Sali

All Rights Reserved

** PLATFORMS

MODELLER is written in Fortran 90 and runs on Pentium PC’s (Linux and

Windows XP), Apple Macintosh (OS X 10.2), Linux Itanium 2 systems, and

workstations from Silicon Graphics (IRIX), Sun (Solaris), IBM (AIX),

and DEC Alpha (OSF/1).

** INSTALLATION

See file README for information about how to get MODELLER. The source code

is not generally available. Hence, most users are limited to the compiled

versions of MODELLER. The program is distributed as a single install file

that contains scripts, libraries, examples, documentation (in PDF and

HTML formats) and executables for the supported platforms and operating

systems. Please refer to the relevant section below for your platform:

** WINDOWS INSTALLATION

1) If using Windows NT/2000/XP, log on as a Computer Administrator.

(For older systems, e.g. Windows 98, just log on as normal.)

2) Download the Windows installer modeller7v7.exe and save it to your

Desktop.

3) Double-click on the modeller7v7 file to start the installer.

4) Tell the installer where to install Modeller, and enter your Modeller

license key when prompted.

5) Once the install is complete, use the Modeller link from the Start

Menu to start a Command Prompt from where you can run Modeller

scripts. You can then delete the original installer file from

your Desktop.

6) Examples can be found in the ’examples’ subdirectory. Note, however,

that if you use NT/2000/XP, and are NOT an Administrator user, you

will need to make a copy of this directory elsewhere, as Windows
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will not allow Modeller to write output files into this directory.

** MAC OS X INSTALLATION

1) Download the Modeller.dmg file to your Desktop.

2) Double-click on the Modeller.dmg file to open the disk image.

3) Double-click on the Install.command file within this image.

Tell the installer where to install Modeller, and enter your Modeller

license key when prompted.

4) Once the install is complete, you can run the Modeller script

from a Terminal window. You can then drag both the ’Modeller 7v7’

disk image and the Modeller.dmg file to your trash.

** LINUX INSTALLATION (USING RPM)

1) Download the modeller-7v7-1.i386.rpm file.

2) Install the RPM file with the following command, replacing XXXX with

your Modeller license key:

env KEY_MODELLER7v7=XXXX rpm -ivh modeller-7v7-1.i386.rpm

3) Documentation and examples can be found in the /usr/lib/modeller7v7/

directory. Note that if you are not root, you will need to make a

copy of the examples directory in order to run them.

** GENERIC UNIX INSTALLATION

1) Download the modeller7v7.tar.gz file into a temporary directory on your

computer.

2) Open a console or terminal (e.g. xterm, Konsole, GNOME terminal)

and change to the directory where you downloaded the .tar.gz file.

Unpack the file with the following commands:

gunzip modeller7v7.tar.gz

tar -xvf modeller7v7.tar

The result of unpacking will be the directory ./modeller7v7, containing

the following uncompressed files and directories:

doc/ MODELLER documentation directory

examples/ directory containing examples and tutorials

Install installation script

INSTALLATION this file

README file describing distribution and registration

modlib/ libraries and data files for the program

bin/ .top script files and MODELLER executables
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3) Go to the ./modeller7v7 directory and run the installation script:

./Install

Answer several questions as prompted. If you make a mistake,

you can re-run the script.

For additional information visit our web site:

http://salilab.org/modeller/

Sincerely,

MODELLER Team

September 2004
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1.5 Bug reports

Please report Modeller bugs by e-mail to the Modeller users list at modeller usage@salilab.org. It is best
if you attach all of your input and output files to your e-mail.
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1.6 Method for comparative protein structure modeling by Modeller

Modeller implements an automated approach to comparative protein structure modeling by satisfaction of spatial
restraints (Figure 1.1) [Šali & Blundell, 1993]. The method and its applications to biological problems are described
in detail in references listed in Section 1.2. Briefly, the core modeling procedure begins with an alignment of the
sequence to be modeled (target) with related known 3D structures (templates). This alignment is usually the input
to the program. The output is a 3D model for the target sequence containing all mainchain and sidechain non-
hydrogen atoms. Given an alignment, the model is obtained without any user intervention. First, many distance
and dihedral angle restraints on the target sequence are calculated from its alignment with template 3D structures
(Figure 1.2). The form of these restraints was obtained from a statistical analysis of the relationships between
many pairs of homologous structures. This analysis relied on a database of 105 family alignments that included
416 proteins with known 3D structure [Šali & Overington, 1994]. By scanning the database, tables quantifying
various correlations were obtained, such as the correlations between two equivalent Cα – Cα distances, or between
equivalent mainchain dihedral angles from two related proteins. These relationships were expressed as conditional
probability density functions (pdf’s) and can be used directly as spatial restraints. For example, probabilities
for different values of the mainchain dihedral angles are calculated from the type of a residue considered, from
mainchain conformation of an equivalent residue, and from sequence similarity between the two proteins. Another
example is the pdf for a certain Cα–Cα distance given equivalent distances in two related protein structures
(Figure 1.2). An important feature of the method is that the spatial restraints are obtained empirically, from a
database of protein structure alignments. Next, the spatial restraints and Charmm energy terms enforcing proper
stereochemistry [MacKerell et al., 1998] are combined into an objective function. Finally, the model is obtained
by optimizing the objective function in Cartesian space. The optimization is carried out by the use of the variable
target function method [Braun & Gõ, 1985] employing methods of conjugate gradients and molecular dynamics
with simulated annealing (Figure 1.3). Several slightly different models can be calculated by varying the initial
structure. The variability among these models can be used to estimate the errors in the corresponding regions of
the fold.

There are additional specialized modeling protocols, such as that for the modeling of loops (Section 3.3).
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3D     GRISFFEDAGF-GHCYECSSDC-NLQP

SEQ    GKITFYEDRG---RCYECSSDCPNLQP� �

1. ALIGN SEQUENCE
    WITH STRUCTURES:

2. EXTRACT SPATIAL
    RESTRAINTS:

3. SATISFY SPATIAL
    RESTRAINTS:

Figure 1.1: Comparative protein modeling by satisfaction of spatial restraints. First, the known, template 3D structures

(‘3D’) are aligned with the target sequence to be modeled (‘SEQ’) Second, spatial features, such as Cα–Cα distances, hydrogen

bonds, and mainchain and sidechain dihedral angles, are transferred from the templates to the target. Thus, a number of

spatial restraints on its structure are obtained. Third, the 3D model is obtained by satisfying all the restraints as well as

possible.
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Figure 1.2: Sample spatial restraint. A restraint on a given Cα–Cα distance, d, is expressed as a conditional probability

density function that depends on two other equivalent distances (d′ = 17.0 and d′′ = 23.5): p(d/d′, d′′). The restraint

(continuous line) is obtained by least-squares fitting a sum of two Gaussian functions to the histogram, which in turn is

derived from the database of alignments of protein structures. In practice, more complicated restraints are used that depend

on additional information, such as similarity between the proteins, solvent accessibility, and distance from a gap in the

alignment [Šali & Blundell, 1993].
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Figure 1.3: Optimization of the objective function. Optimization of the objective function (curve) starts with a distorted

average of template structures (not with an extended structure as shown here). The iteration number is indicated below

each sample structure. In this run, the first ∼ 2, 000 iterations correspond to the variable target function method relying

on the conjugate gradients technique. This approach first satisfies sequentially local restraints and slowly introduces longer

range restraints until the complete objective function is optimized. In the last 4,750 iterations for this model, molecular

dynamics with simulated annealing is used to refine the model. Typically, a model is calculated in the order of minutes on

a PC workstation.
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1.7 Tutorial on using Modeller for comparative modeling

Simple demonstrations of Modeller in all steps of comparative protein structure modeling, including fold assign-
ment, sequence-structure alignment, model building, and model assessment, can be found in references listed at
http://salilab.org/modeller/user manual.shtml. A number of additional tools useful in comparative mod-
eling are listed at http://salilab.org/bioinformatics resources.shtml. Specifically, users have access to
ModBase, a comprehensive database of comparative models for all known protein sequences detectably related
to at least one known protein structure; ModWeb, a web server for automated comparative protein structure
modeling; and ModLoop, a web server for automated modeling of loops in protein structures. For “frequently-
asked-questions” (FAQ), see Section 1.8.

The rest of this section is a ‘hands on’ description of the most basic use of Modeller in comparative modeling,
in which the input are Protein Data Bank (PDB) atom files of known protein structures, their alignment with the
target sequence to be modeled, and the output is a model for the target that includes all non-hydrogen atoms.
Although Modeller can find template structures as well as calculate sequence and structure alignments, it is
better in the difficult cases to identify the templates and prepare the alignment carefully by other means. The
alignment can also contain very short segments such as loops, secondary structure motifs, etc.

This tutorial assumes that Modeller is already installed on your computer and that appropriate changes have
been made to your login script to install you as a Modeller user. See Section 1.4 for more details on installation
(also in the INSTALLATION file in the Modeller distribution directory).

1.7.1 Preparing input files

The sample input files in this tutorial can be found in the examples/tutorial-model directory of the Modeller

distribution.

There are three kinds of input files: Protein Data Bank atom files with coordinates for the template structures,
the alignment file with the alignment of the template structures with the target sequence, and Modeller commands
in a script file that instruct Modeller what to do.

Atom files

Each atom file is named code.atm where code is a short protein code, preferably the PDB code; for example,
Peptococcus aerogenes ferredoxin would be in a file 1fdx.atm. If you wish, you can also use file extensions .pdb

and .ent instead of .atm. The code must be used as that protein’s identifier throughout the modeling. The atom
sets do not have to be superposed by the user before comparative modeling is done.

Alignment file

One of the formats for the alignment file is related to the PIR database format; this is the preferred format for
comparative modeling:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 : :106 : :ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

See Section 2.4.1 for a detailed description of the alignment file format. Influence of the alignment on the
quality of the model cannot be overemphasized. To obtain the best possible model, it is important to understand
how the alignment is used by Modeller [Šali & Blundell, 1993]. In outline, for the aligned regions, Modeller

tries to derive a 3D model for the target sequence that is as close to one or the other of the template structures as
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possible while also satisfying stereochemical restraints (e.g., bond lengths, angles, non-bonded atom contacts, . . . );
the inserted regions, which do not have any equivalent segments in any of the templates, are modeled in the context
of the whole molecule, but using their sequence alone. This way of deriving a model means that whenever a user
aligns a target residue with a template residue, he tells Modeller to treat the aligned residues as structurally
equivalent. Command CHECK ALIGNMENT can be used to find some trivial alignment mistakes.

Script file

The script file contains commands for Modeller, in the Top language (Chapter 4). A sample script file
model-default.top to produce one model of sequence 1fdx from the known structure of 5fd1 and from the
alignment between the two sequences is

# Homology modelling by the MODELLER TOP routine ’model’.

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL = 1 1 1 1 1 # uncomment to produce a large log file

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

SET STARTING_MODEL= 1 # index of the first model

SET ENDING_MODEL = 1 # index of the last model

# (determines how many models to calculate)

CALL ROUTINE = ’model’ # do homology modelling

See Section 3.2 for information about the model script and its arguments.

1.7.2 Running Modeller

To run Modeller with the script file model-default.top, execute the following command at your command-line
prompt (e.g. a Unix console or xterm, the Mac Terminal application, or a Windows Command Prompt)

mod7v7 model-default

A number of intermediary files are created as the program proceeds. After about 30 seconds on a Pentium IV
workstation, the final 1fdx model is written to file 1fdx.B99990001.pdb. Examine the model-default.log file for
information about the run. In particular, one should always check the output of the CHECK ALIGNMENT
command, which you can find by searching for ‘chkaln’. Also, check for warning and error messages by searching
for ‘W>’ and ‘E>’, respectively. There should be no error messages; most often, there are some warning messages
that can usually be ignored.

1.7.3 Automated alignment and comparative modeling

Automated alignment and comparative modeling requires only the target sequence and the coordinates of the
templates. The structural alignment of the known 3D structures and their alignment with the target sequence
are derived automatically. However, the single most important factor that determines the quality of a model is
the quality of the alignment. If the alignment is incorrect, the model will also be incorrect. For this reason,
automated alignment for comparative modeling should not be used unless the sequences are so
similar that the calculated alignment is likely to be correct, which usually requires more than 50%
sequence identity. Instead, the alignment should be carefully inspected, optimized by hand, and checked by
the CHECK ALIGNMENT command before used in modeling. Moreover, several iterations of alignment and
modeling may be necessary in general.

The sample input files for automated alignment and comparative modeling are located in directory
examples/align-model-steps. The sample Top file is

# A sample TOP file for fully automated comparative modeling
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INCLUDE # include MODELLER routines

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directory with input atom files

SET SEGFILE = ’alignment.seg’ # input file w/ templates and target

SET KNOWNS = ’5fd1’ ’1fdn’ ’1fxd’ ’2fxb’ # templates’ PDB codes

SET SEQUENCE = ’1fdx’ # target code

SET OUTPUT_CONTROL = 1 1 1 1 2

CALL ROUTINE = ’full_homol’ # get alignment and a model

The alignment.seg file is

>P1;1fdx

structureX:1fdx:FIRST:@:54:@:ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSCIACGACKPECPVNIIQGSIYAIDADSCIDCGSCASVCPVGAPNPED*

>P1;1fdn

structureX:1fdn:FIRST:@:55:@:ferredoxin:Clostrodium acidiurici: 1.84:-1.0

*

>P1;5fd1

structureX:5fd1:FIRST:@:60:@:ferredoxin:Azotobacter vinelandii: 1.90:0.192

*

>P1;1fxd

structureX:1fxd:FIRST:@:58:@:ferredoxin:Desolfovibrio gigas: 1.70:-1.0

*

>P1;2fxb

structureX:2fxb:FIRST:@:60:@:ferredoxin:Bacillus thermoproteolyticus: 2.30:-1.0

*
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1.8 Frequently asked questions (FAQ) and examples

Please also check the archive of the Users Mail List at http://salilab.org/archives/modeller usage/.

1. I do not care about the details of a model, I only want to calculate it very fast to get a quick idea
about how it looks or to confirm that my alignment is clearly unreasonable in the structural
sense.

Only one model can be calculated by this routine because the starting structure is not randomized before op-
timization. Only a very limited amount of the variable target function optimization with conjugate gradients
is done. This is usually for a factor of 3 faster than the default procedure. For example, it takes about 17
seconds of CPU time to model a 60-residue protein on an SGI workstation with a R10000-195 processor.

# Very fast homology modelling by the MODELLER TOP routine ’model’.

INCLUDE # Include the predefined TOP routines

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

SET STARTING_MODEL = 2

SET ENDING_MODEL = 2

SET OUTPUT_CONTROL = 1 1 1 1 1

# SET OUTPUT = ’LONG’

SET FINAL_MALIGN3D = 1

CALL ROUTINE = ’very_fast’ # prepare for extremely fast optimization

CALL ROUTINE = ’model’ # do homology modelling

2. How can I refine the model in successive steps?

There is a pre-defined routine ’select atoms’ which selects the atoms to be moved during optimization.
By default, the routine selects all atoms, but you can redefine it to select any subset of atoms and then
only those atoms will be refined. They will “feel” the presence of other atoms via all the static and possibly
dynamic restraints that include both selected and un-selected atoms. For example, the script below would
refine only atoms in residues 1 and 2 (file ’examples/tutorial-model/model-segment.top’). The difference
between this script and the one for loop modeling is that here the selected regions are optimized with the
default optimization protocol and the default restraints, which generally include template-derived restraints.
In contrast, the loop modeling routine does not use template-dependent restraints, but does a much more
thorough optimization.

# Homology modelling by the MODELLER TOP routine ’model’.

# Demonstrates how to refine only a part of the model.

#

# You may want to use the more exhaustive "loop" modeling routines instead.

#

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL = 1 1 1 1 0

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

SET STARTING_MODEL= 3 # index of the first model
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SET ENDING_MODEL = 3 # index of the last model

# (determines how many models to calculate)

SET NONBONDED_SEL_ATOMS = 2 # selected atoms do not feel the neighbourhood

CALL ROUTINE = ’model’ # do homology modelling

SUBROUTINE ROUTINE = ’select_atoms’

PICK_ATOMS SELECTION_SEGMENT=’1:’ ’2:’, SELECTION_SEARCH=’segment’, ;

PICK_ATOMS_SET=1, RES_TYPES=’all’, ATOM_TYPES=’all’, ;

SELECTION_FROM=’all’, SELECTION_STATUS=’initialize’

RETURN

END_SUBROUTINE

3. I want to model one or more loops very thoroughly (meaning spending a lot of CPU time, not
necessarily modeling more accurately).

Note that loops and insertions are already modeled by the default modeling routine, so you do not have to do
anything special to get a model for the insertions. However, if you really want to focus on loops, you can use
the new loop modeling routine ’loop’ (Section 3.3). The selected regions are optimized independently many
times by a thorough molecular dynamics/simulated annealing procedure, using sequence-dependent restraints
only, no homology-derived restraints.

# Homology modelling by the MODELLER TOP routine ’model’.

# Demonstrates how to refine only a part of the model.

#

# This can be ran with run_clustor model-loop.top, too.

#

# The difference with model-segment is that the loop is

# refined on the basis of sequence alone, in the context

# of the rest of the structure.

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL = 1 1 1 1 1

SET SEQUENCE = ’1fdx’ # code of the target

SET LOOP_MODEL = ’1fdx.B99990001’ # initial model of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

# index of the first loop model:

SET LOOP_STARTING_MODEL = 20

# index of the last loop model:

SET LOOP_ENDING_MODEL = 23

SET LOOP_MD_LEVEL = ’refine_1’ # the loop refinement method (1 fast / 3 slow)

CALL ROUTINE = ’loop’

# This routine picks model residues that need to be refined (necessary):

SUBROUTINE ROUTINE = ’select_loop_atoms’

# Uncomment if you also want to optimize the loop environment:

# SET SELECTION_SEARCH = ’SPHERE_SEGMENT’, SPHERE_RADIUS = 6

# 4 residue insertion (1st loop):

PICK_ATOMS SELECTION_SEGMENT = ’19:’ ’28:’, SELECTION_STATUS = ’initialize’
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# 2 residue insertion (2nd loop):

# PICK_ATOMS SELECTION_SEGMENT = ’46:’ ’55:’, SELECTION_STATUS = ’add’

RETURN

END_SUBROUTINE

# This routine adds any special restraints (optional):

#

# SUBROUTINE ROUTINE = ’special_restraints’

# MAKE_RESTRAINTS RESTRAINT_TYPE = ’ALPHA’, RESIDUE_IDS = ’46:’ ’55:’

# RETURN

# END_SUBROUTINE

4. I want to build a model of a chimeric protein based on two known structures. Alternatively,
I want to build a multi-domain protein model using templates corresponding only to the indi-
vidual domains.

This can be accomplished using the standard modeling routine. The alignment should be as follows when the
chimera is a combination of proteins A and B:

proteinA aaaaaaaaaaaaaaaaaaaaaaaaaaaa----------------------------------

proteinB ----------------------------bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

chimera aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

In the PIR format the alignment file is:

>P1;proteinA

structureX:proteinA

aaaaaaaaaaaaaaaaaaaaaaaaaaaa----------------------------------*

>P1;proteinB

structureX:proteinB

----------------------------bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb*

>P1;chimera

sequence:chimera

aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb*

If no additional information is available about the relative orientation of the two domains the resulting model
will probably have an incorrect relative orientation of the two domains when the overlap between A and B
is non-existing or short. To obtain satisfactory relative orientation of modeled domains in such cases, orient
the two template structures appropriately before the modeling.

5. I don’t want to use one region of a template for construction of my model.

The easiest way to achieve this is to not align that region of the template with the target sequence. If region
’bbbbbbbb’ of the template should not be used as a template for region ’eeeee’ of the target sequence the
alignment should be like this:

template aaaaaaaaaaaaaaaaaaaaaaaa-----bbbbbbbbcccccccccccccccccccccccccccccc

target ddddddddddddddddddddddddeeeee--------ffffffffffffffffffffffffffffff

The effect of this alignment is that no homology-derived restraints will be produced for region ’eeeee’.
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6. I want to define (additional) disulfide bonds in the target sequence because no equivalent
disulfide bonds exist in any of the templates (in which case PATCH SS TEMPLATES cannot
define them automatically).

Modeller can restrain disulfides in two ways: automatically (PATCH SS TEMPLATES or
PATCH SS MODEL) and manually (PATCH).

If there is an equivalent disulfide bridge in any of the templates aligned with the target, the
PATCH SS TEMPLATES command will generate appropriate disulfide bond restraints without any other
input from the user. This command is run automatically by the ’model’ script used for comparative model-
ing. The restraints include bond, angle and dihedral angle restraints. The SG — SG atom pair also becomes
an excluded atom pair that is not checked for an atom–atom overlap. The χi dihedral angle restraints will
depend on the conformation of the equivalent disulfides in the template structure, as described in [Šali &
Overington, 1994]. The command PATCH SS MODEL is similar, except that the current structure of
MODEL, not templates, is used to guess the disulfide bonded CYS – CYS pairs.

Explicit manual restraints can be added by the PATCH command relying on the PRES DISU patching
residue in the Charmm topology file. This command is used by the ’special patches’ routine that is
called automatically by the ’model’ script. In comparative modeling by ’model’, the ‘manual’ disulfides
should be defined in the ’special patches’ routine. The PATCH command will establish the correct
stereochemistry by relying on the Charmm topology file and parameters to restrain the disulfide bond.

It is better to use PATCH SS TEMPLATES than PATCH where possible because the dihedral angles
are restrained more precisely by using the templates than the general rules of stereochemistry.

Some Charmm parameter files have a multiple dihedral entry for the disulfide dihedral angle χ3 that consists
of three individual entries with periodicities of 1, 2 and 3. This is why you see three feature restraints for a
single disulfide in the output of the ENERGY command.

# This is as usual:

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

CALL ROUTINE = ’model’

STOP

# Redefine the special_patches routine to include the additional disulfides

# (this routine is empty by default):

SUBROUTINE ROUTINE = ’special_patches’

# A disulfide between residues 1 and 85 in chain A:

PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’1:A’ ’85:A’

# A disulfide between residues 41 and 45 in chain B:

PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’41:B’ ’45:B’

RETURN

END_SUBROUTINE

7. I want to explicitly force certain Pro residues to the cis ω conformation.

Modeller should usually be allowed to handle this automatically via the omega dihedral angle restraints,
which are calculated by default.

# This is as usual:

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

CALL ROUTINE = ’model’

STOP

# Redefine the special_patches routine to force Pro to cis conformation:

# (this routine is empty by default):

SUBROUTINE ROUTINE = ’special_restraints’

CALL ROUTINE = ’cispeptide’, ATOM_IDS1 = ’O:4’ ’C:4’ ’N:5’ ’CA:5’, ;

ATOM_IDS2 = ’CA:4’ ’C:4’ ’N:5’ ’CA:5’

RETURN

END_SUBROUTINE
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8. How can I select/remove/add a set of restraints?

Restraints can be read from a file by READ RESTRAINTS, calculated by MAKE RESTRAINTS, or
added “manually” by ADD RESTRAINT. PICK RESTRAINTS picks those restraints for objective
function calculation that restrain the selected atoms only, as specified in the selected atoms set 1. Initially,
all atoms are selected; this can be changed by the PICK ATOMS command. MAKE RESTRAINTS
command for some restraint types (e.g., distance) constructs restraints of the selected type between the atoms
in the selected atoms sets 2 and 3. Script ’scripts/ homcsr.top’ contains examples of the PICK ATOMS
command when generating restraints by MAKE RESTRAINTS. There are also commands for adding and
deleting single restraints, ADD RESTRAINT and DELETE RESTRAINT, respectively. If you do
CONDENSE RESTRAINTS, the unselected restraints will be deleted. This is useful for getting rid of
the unwanted restraints completely.

9. I want to add my own restraints for optimization of the model.

You can read your restraints whenever the default restraints are read.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

CALL ROUTINE = ’model’

STOP

# Redefine the rd_restraints routine:

SUBROUTINE ROUTINE = ’rd_restraints’

# This is the default homology-derived restraints:

READ_RESTRAINTS FILE = CSRFILE, ADD_RESTRAINTS = off

# This is two additional user provided files:

READ_RESTRAINTS FILE = ’my_rsrs1.rsr’, ADD_RESTRAINTS = on

READ_RESTRAINTS FILE = ’my_rsrs2.rsr’, ADD_RESTRAINTS = on

SET ADD_RESTRAINTS = off

RETURN

END_SUBROUTINE

10. I want to add my own restraints to the file with the automatically derived homology restraints,
immediately after the default calculation of the homology-derived restraints.

This is achieved by redefining the ’special restraints’ routine, which is empty by default.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

CALL ROUTINE = ’model’

# Redefine the special_restraints routine:

SUBROUTINE ROUTINE = ’special_restraints’

# Add some restraints from a file to existing homology-derived restraints:

READ_RESTRAINTS FILE = ’my_rsrs1.rsr’, ADD_RESTRAINTS = on

# Restrain the specified CA-CA distance to 10 angstroms (st.dev.=0.1).

# Use a harmonic potential and X-Y distance group.

SET ATOM_IDS ’CA:35:A’ ’CA:40:A’

ADD_RESTRAINT RESTRAINT_PARAMETERS = 3 1 1 27 2 2 0 10.0 0.1

SET ADD_RESTRAINTS = off

RETURN

END_SUBROUTINE

11. I have my own restraints file to be used exclusively for optimization by the default comparative
modeling routine.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

SET CSRFILE = ’targ1.rsr’, CREATE_RESTRAINTS = 0

CALL ROUTINE = ’model’
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12. I have my own initial structure to be used for optimization by the default comparative modeling
routine.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

# Specify the initial structure filename, and tell the program to

read the initial file, not construct it from the templates:

SET MODEL = ’targ1.ini’, GENERATE_METHOD = ’read_xyz’

CALL ROUTINE = ’model’

13. What are the different refinement levels really doing?

There are two different optimization approaches available within Modeller: variable target function method
(VTFM) with conjugate gradients (CG) [Šali & Blundell, 1993] and molecular dynamics (MD) with simulated
annealing (SA) [Šali & Blundell, 1993]. They can both be done to a different degree (with more or less
cycles of CG and MD, faster or slower schedule for VTFM and SA). The exact details are best obtained
from the scripts themselves because a detailed description would probably be longer than the scripts. For
example, the Quanta and InsightII implementations of Modeller have these three levels of optimization:
no optimization (only copying coordinates from templates and building the undefined atoms using internal
geometry information from the RTF entries); only VTFM with CG; also MD with SA. Most of the time
(70%) is spent on the MD&SA part. Our experience is that when MD&SA are used, if there are violations
in the best of the 10 models, they probably come from an alignment error, not an optimizer failure (if there
are no insertions longer than approximately 15 residues).

14. I want to change the default optimization schedule.

See file ’scripts/ defs.top’ for the variables that could be changed and for their possible values.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

# Very thorough VTFM optimization:

SET LIBRARY_SCHEDULE = 1, MAX_VAR_ITERATIONS = 300

# Very thorough MD optimization:

SET MD_LEVEL = ’refine1’

# Repeat the whole cycle 3-times and do not stop unless obj.func. > 1E6

SET REPEAT_OPTIMIZATION = 3, MAX_MOLPDF = 1E6

CALL ROUTINE = ’model’

15. I want to build an all hydrogen atom model with water molecules and other non-protein atoms
(atoms in the HETATM records in the PDB file).

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

SET TOPOLOGY_MODEL = 1, HYDROGEN_IO = on, HETATM_IO = on, WATER_IO = on

SET TOPLIB = ’$(LIB)/top.lib’

SET PARLIB = ’$(LIB)/par.lib’

CALL ROUTINE = ’model’

16. How do I build a model with water molecules or residues that do not have an entry in the
topology and/or parameter files?

Water molecules are indicated by ’w’ in the alignment file and the special block residue (’BLK’) that does
not have entries in the residue topology and parameter libraries is indicated by ’.’

See Section 2.2.1 for information about block residues.

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

SET HETATM_IO = on, WATER_IO = on

CALL ROUTINE = ’model’
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The alignment file:

>P1;templ1

structureX:templ1:1::10::

FAYVI/.wwww*

>P1;targ1

sequence:targ1:1::8::

-GWIV/.ww-w*

17. How do I define my own residue types, such as D-amino acids, special ligands, and unnatural
amino-acids?

This is a painful area in all molecular modeling programs. However, Charmm and X-PLOR provide a rea-
sonably straightforward solution via the residue topology and parameter libraries. Modeller uses Charmm

topology and parameter library format and also extends the options by allowing for a generic “BLK” residue
type (Section 2.2.1). This BLK residue type circumvents the need for editing any library files, but it is not
always possible to use it. Due to its conformational rigidity, it is also not as accurate as a normal residue
type. In order to define a new residue type in the Modeller libraries, you have to follow the series of steps
described below. As an example, we will define the ALA residue without any hydrogen atoms. You can add
an entry to the Modeller topology or parameter file; you can also use your own topology or parameter files.
For more information, please see the Charmm manual.

(a) Define the new residue entry in the residue topology file (RTF), say ’top heav.lib’.

RESI ALA 0.00000

ATOM N NH1 -0.29792

ATOM CA CT1 0.09563

ATOM CB CT3 -0.17115

ATOM C C 0.69672

ATOM O O -0.32328

BOND CB CA N CA O C C CA C +N

IMPR C CA +N O CA N C CB

IC -C N CA C 1.3551 126.4900 180.0000 114.4400 1.5390

IC N CA C +N 1.4592 114.4400 180.0000 116.8400 1.3558

IC +N CA *C O 1.3558 116.8400 180.0000 122.5200 1.2297

IC CA C +N +CA 1.5390 116.8400 180.0000 126.7700 1.4613

IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461

IC N CA C O 1.4300 107.0000 0.0000 122.5200 1.2297

PATC FIRS NTER LAST CTER

You can obtain an initial approximation to this entry by defining the new residue type using the residue
type editor in Quanta and then writing it to a file.

The RESI record specifies the Charmm residue name, which can be up to four characters long and
is usually the same as the PDB residue name (exceptions are the potentially charged residues where
the different charge states correspond to different Charmm residue types). The number gives the total
residue charge.

The ATOM records specify the IUPAC (i.e., PDB) atom names and the Charmm atom types for all
the atoms in the residue. The number at the end of each ATOM record gives the partial atomic charge.

The BOND records specify all the covalent bonds between the atoms in the residue (e.g., there are bonds
CB–CA, N–CA, O–C, etc.). In addition, symbol ’+’ is used to indicate the bonds to the subsequent
residue in the chain (e.g., C – +N). The covalent angles and dihedral angles are calculated automatically
from the list of chemical bonds.

The IMPR records specify the improper dihedral angles, generally used to restrain the planarity of
various groups (e.g., peptide bonds and sidechain rings). See also below.

The IC (internal coordinate) records are used for constructing the initial Cartesian coordinates of a
residue. An entry
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IC a b c d dab αabc Θabcd αbcd dcd

specifies distances d, angles α, and either dihedral angles or improper dihedral angles Θ between atoms
a, b, c and d, given by their IUPAC names. The improper dihedral angle is specified when the third
atom, c, is preceded by a star, ’*’. As before, the ’-’ and ’+’ pre-fixes for the atom names select
the corresponding atom from the preceding and subsequent residues, respectively. The distances are
in angstroms, angles in degrees. The distinction between the dihedral angles and improper dihedral
angles is unfortunate since they are the same mathematically, except that by convention when using the
equations, the order of the atoms for a dihedral angle is abcd and for an improper dihedral angle it is
acbd.

The PATC record specifies the default patching residue type when the current residue type is the first
or the last residue in a chain.

(b) You have to make sure that all the Charmm atom types of the new residue type occur in the MASS
records at the beginning of the topology library: Add your entry at the end of the MASS list if nec-
essary. If you added any new Charmm atom types, you also have to add them to the radii libraries,
’modlib/radii.lib’ and ’modlib/radii14.lib’. These libraries list the atomic radii for the different
topology models, for the long range and 1–4 non-bonded soft-sphere terms, respectively. The full names
of the files that are used during calculation are given by the environment variables $RADII LIB and
$RADII14 LIB.

(c) Optionally, you can add the residue entry to the library of Modeller topology models,
’modlib/models.lib’. The runtime version of this library is specified by the environment variable
$MODELS LIB. This library specifies which subsets of atoms in the residue are used for each of the possi-
ble topologies. Currently, there are 10 topologies selected by TOPOLOGY MODEL (3 is default):

1 ALLH all atoms
2 POL polar hydrogens only
3 HEAV non-hydrogen atoms only
4 MCCB non-hydrogen mainchain (N, C, CA, O) and CB atoms
5 MNCH non-hydrogen mainchain atoms only
6 MCWO non-hydrogen mainchain atoms without carbonyl O
7 CA CA atoms only
8 MNSS non-hydrogen mainchain atoms and disulfide bonds
9 CA3H reduced model with a small number of sidechain interaction centers
10 CACB CA and CB atoms only

The Ala entry is:

#

ALLH POLH HEAV MCCB MNCH MCWO CA MNSS CA3H CACB

*

RESI ALA

ATOM NH1 NH1 NH1 NH1 NH1 NH1 #### NH1 #### ####

ATOM H HN #### #### #### #### #### #### #### ####

ATOM CT1 CT1 CT1 CT1 CT1 CT1 CT1 CT1 CAH CT1

ATOM HB #### #### #### #### #### #### #### CH3E ####

ATOM CT3 CT3 CT3 CT3 #### #### #### #### #### CT2

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM C C C C C C #### C #### ####

ATOM O O O O O #### #### O #### ####

The residue entries in this library are separated by stars. The ’####’ string indicates a missing atom.
The atom names for the present atoms are arbitrary. The order of the atoms must be the same as in
the Charmm residue topology library. If a residue type does not have an entry in this library, all atoms
are used for all topologies.
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(d) You have to add the new residue type to the residue type library, ’modlib/restyp.lib’. The execution
version of this file is specified by the environment variable $RESTYP LIB. For the ALA residue,

1 | ALA | A | ALA | alanine

You would generally add the new residue type at the end of the file. There are 5 fields in each line,
separated by the ’|’ characters. The first field is an integer index corresponding to the integer residue
type. The standard residue types have their indices smaller than 24. These are also the indices corre-
sponding to the residue–residue substitution matrices. The second field contains the list of equivalent
PDB or IUPAC 3-character residue names, used in the PDB files. A list rather than a single name is
allowed because PDB can unfortunately use different names for the same residue type (e.g., water can be
HOH, WAT, etc.). The third field gives a single character code for the residue type, which is used in the
alignment file. This does not have to be unique, but if it is not unique you cannot use it in the alignment
file. Any ASCII character is fine, it does not have to be a letter. If you run out of characters you can
re-define the existing ones that you do not need. The fourth field gives the four-character Charmm

residue name, as specified in the RESI record of the topology library. The last field contains an optional
comment.

Every residue in the Charmm topology file has to have an entry in the $RESTYP LIB library, but not
every residue entry in the $RESTYP LIB library needs an entry in the residue topology file.

When you are adding a new residue type, you have to hope that the maximal number of residue types
is not over-reached. If it is, a fatal error is reported at the beginning of the execution. To solve this
problem, you could delete some of the un-needed existing residue types in the $RESTYP LIB file, rather
than re-compile the program with larger array sizes. You can also read your own residue type library
by the READ RESTYP LIB command.

(e) In general, when you add a new residue type, you also add new chemical bonds, angles, dihedral angles,
improper dihedral angles, and non-bonded interactions, new in the sense that a unique combination of
Charmm atoms types is involved whose interaction parameters are not yet specified in the parameter
library (see also Section 2.2.1). In such a case, you will get a number of warning and/or error messages
when you generate the stereochemical restraints by the MAKE RESTRAINTS command. These
messages can sometimes be ignored because Modeller will guess the values for the missing parameters
from the current Cartesian coordinates of the model. When this is not accurate enough or if the necessary
coordinates are undefined you have to specify the parameters explicitly in the parameter library. Search
for BOND, ANGL, DIHE, and IMPR sections in the parameters library file and use the existing entries to
guess your new entries. Note that you can use dummy atom types ’X’ to create general dihedral (i.e., X
A A X) and improper dihedral angle (i.e., A X X A) entries, where A stands for any of the real Charmm

atom types. For the dihedral angle cosine terms, the Charmm convention for the phase is different for
180◦ from Modeller’s (Eq. 5.57). If you use non-bonded Lennard-Jones terms, you also have to add a
NONB entry for each new atom type. If you use the default soft-sphere non-bonded restraints, you have
already taken care of it by adding the new atom types to the $RADII LIB and $RADII LIB libraries.

18. How do I define my own patching residue types?

This is even messier than defining a new residue type. As an example, we will define the patching residue for
establishing a disulfide bond between two CYS residues.

PRES DISU -0.36 ! Patch for disulfides. Patch must be 1-CYS and 2-CYS.

ATOM 1:CB CT2 -0.10 !

ATOM 1:SG SM -0.08 ! 2:SG--2:CB--

ATOM 2:SG SM -0.08 ! /

ATOM 2:CB CT2 -0.10 ! -1:CB--1:SG

DELETE ATOM 1:HG

DELETE ATOM 2:HG

BOND 1:SG 2:SG

IC 1:CA 1:CB 1:SG 2:SG 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1:CB 1:SG 2:SG 2:CB 0.0000 0.0000 90.0000 0.0000 0.0000

IC 1:SG 2:SG 2:CB 2:CA 0.0000 0.0000 180.0000 0.0000 0.0000
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The PRES record specifies the Charmm patching residue type (up to four characters). As for the nor-
mal RESI residue types, patching residue types also have to be defined in the residue type library,
’modlib/restyp.lib’.

The ATOM records have the same meaning as for the RESI residue types described above. The extension
is that the IUPAC atom names (listed first) must be pre-fixed by the index of the residue that is patched.
In this example, there are two CYS residues that are patched, thus the prefixes 1 and 2. When using the
PATCH command, the order of the patched residues specified by RESIDUE IDS must correspond to these
indices (this is only important when the patch is not symmetric, unlike the ’DISU’ patch in this example).

DELETE records specify the atoms to be deleted, the two hydrogens bonded to the two sulphurs in this case.

The BOND and IC (internal coordinate) records are the same as those for the RESI residues, except that the
atom names are prefixed with the patched residue indices.

19. Is it possible to restrain secondary structure in the target sequence?

Yes. There are ’ALPHA’, ’STRAND’ and ’SHEET’ restraint types that the MAKE RESTRAINTS com-
mand can generate. One specifies the segment which is then restrained to the specified secondary structure
conformation. For example,

# This is as usual:

INCLUDE

SET ALNFILE = ’align1.ali’, KNOWNS=’templ1’, SEQUENCE=’targ1’

CALL ROUTINE = ’model’

STOP

# Redefine the special_restraints routine to include the secondary

# structure restraints (this routine is empty by default):

SUBROUTINE ROUTINE = ’special_restraints’

SET ADD_RESTRAINTS = on

# An alpha-helix:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’alpha’, RESIDUE_IDS = ’20’ ’30’

# SET KEEP_DUPL_RESTR = ’new’

# Two strands:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’STRAND’, RESIDUE_IDS = ’1’ ’6’

MAKE_RESTRAINTS RESTRAINT_TYPE = ’STRAND’, RESIDUE_IDS = ’9’ ’14’

# An anti-parallel sheet:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’SHEET’, ATOM_IDS = ’N:1’ ’O:14’, SHEET_H-BONDS = -5

RETURN

END_SUBROUTINE

20. I want to patch the N-terminal or (C-terminal) residue (e.g., to model acetylation properly),
but the PATCH command does not work.

This is probably because the N-terminus is patched by default with the NTER patching residue (corresponding
to –NH3+) and a patched residue must not be patched again. The solution is to turn the default patching
off by SET PATCH DEFAULT = off before the GENERATE TOPOLOGY command is called.

21. Is it possible to use templates with the coordinates for Cα atoms only?

Yes. You do not have to do anything special.

22. How do I analyze the output log file?

First, check for the error messages by searching for string ’ E>’’. These messages can only rarely be ignored.
Next, check for the warning messages by searching for string ’ W>’’. These messages can almost always be
ignored. If everything is OK so far, the most important part of the log file is the output of the ENERGY
command for each model. This is where the violations of restraints are listed. When there are too many too
violated restraints, more optimization or a different alignment is needed. What is too many and too much?
It depends on the restraint type and is best learned by doing ENERGY on an X-ray structure or a good
model to get a feel for it. You may also want to look at the output of command CHECK ALIGNMENT,
which should be self-explanatory. I usually ignore the other parts of the log file.
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23. How do I prevent “knots” in the final models?

The best way to prevent knots is to start with a starting structure that is as close to the desired final model
as possible. Other than that, the only solution at this point is to calculate independently many models
and hope that in some runs there won’t be knots. Knots usually occur when one or more neighboring long
insertions (i.e., longer than 15 residues) are modeled from scratch. The reason is that an insertion is build
from a randomized distorted structure that is located approximately between the two anchoring regions.
Under such conditions, it is easy for the optimizer to “fall” into a knot and then not be able to recover from
it. Sometimes knots result from an incorrect alignment, especially when more than one template is used.
When the alignment is correct, knots are a result of optimization not being good enough. However, making
optimization more thorough by increasing the CPU time would not be worth it on the average as knots occur
relatively infrequently. The excluded volume restraints are already included in the standard comparative
modeling routine.

24. What do I do when I get Syntax error at line 1: ‘(’ unexpected message?

The executable is not recognized as such on your system. Make sure you FTP the file in the binary format.
Make sure the system version matches the self-descriptive name of the binary file. Also it could be related to
automatic processing of files by some Web browsers. Make sure you got a binary, not the file compressed by
”compress” or ”gzip” command. If you are not sure about the version of your system use the most generic
executable which has been compiled for lower version of operating system.

25. What is considered to be the minimum length of a sequence motif necessary to derive mean-
ingful constraints from the alignment to use in modeling.. one, two, three, or more?

Usually more than that (dozens if you want just to detect reliable similarity, and even more if you want a
real model). It is good to have at least 35-40% sequence identity to build a model. Sometimes even 30% is
OK.

26. Does Modeller have a graphical interface (GUI) ?

No; Modeller is run from the command line, and uses a TOP script to direct it. However, a graphical
interface to Modeller is commercially available from Accelrys, as part of Discovery Studio Modeling 1.1, at
http://www.accelrys.com/dstudio/ds modeling/ds modeler.html.

27. What does the ‘Alignment sequence not found in PDB file’ error mean?

When you give Modeller an alignment, it also needs to read the structure of the known proteins (templates)
from PDB files. In order to correctly match coordinates to the residues specified in the alignment, the
sequences in the PDB file and the alignment file must be the same (although obviously you can add gap or
chain break characters to your alignment). If they are not, you see this error. (Note that Modeller takes
the PDB sequence from the ATOM and HETATM PDB records, not the SEQRES records.)

To see the sequence that Modeller reads from the PDB, use this short TOP script:

READ_MODEL FILE = ’1BY8.pdb’

SEQUENCE_TO_ALI

WRITE_ALIGNMENT FILE = ’1BY8.seq’
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1.9 Modeller updates

1.9.1 Changes since release 6v2

• The CUT OVERHANGS argument to the WRITE ALIGNMENT command has been removed, and re-
placed by a more powerful EDIT ALIGNMENT command.

• The MAX LOOP LENGTH argument to the PICK ATOMS command has been replaced by MIN-

MAX LOOP LENGTH, such that both the minimum and maximum loop segment lengths can be selected
for in ’SEGMENT’ mode.

• The SEARCH CHAINS LIST and SEARCH CHAINS FILE arguments to SEQUENCE SEARCH have
been removed. Instead, a sequence database must now be read into memory prior to using SE-
QUENCE SEARCH by using the new READ SEQUENCE DB command. (Such a database can also
be written out with WRITE SEQUENCE DB.)

• New ’all-hydrogens’ example directory, for building all-hydrogen models.

• CHARMM topology libraries are now PDB (IUPAC) compliant. Most obviously, this has resulted in the
following name changes:

– The HSD (neutral histidine) residue is now HIS.

– The ILE CD atom is now CD1.

– The LEU CD1 and CD2 atoms have been swapped.

– PDB hydrogen atom naming conventions now apply.

See also the ’top-charmmH.lib’ file for the old CHARMM-style naming, and the comments at the start of
’top.lib’.

• READ ALIGNMENT can now read ’FASTA’ format alignments. Additionally, the CLOSE FILE,
REWIND FILE, and END OF FILE variables can be used to read partial ’PIR’ or ’FASTA’ files.

• MALIGN3D allows the filenames of fitted atom files to be customized with the EDIT FILE EXT variable.

• MAKE RESTRAINTS can now impose additional gap-distance weighting on distance restraints, using
the RESTRAINT STDEV2 variable.

• New commands for dealing with profiles: ALN TO PROF, PROF TO ALN, WRITE PROFILE,
READ PROFILE, BUILD PROFILE.

• New options to ALIGN and ALIGN2D for dealing with profiles: WEIGH SEQUENCES,
SMOOTH PROF WEIGHT, READ PROFILE, INPUT PROFILE FILE, WRITE PROFILE, OUT-

PUT PROFILE FILE. ALIGN WHAT can also now take the value ’PROFILE’.

• Other new commands: SEQFILTER, TIME MARK, MAKE CHAINS, VOLUME, VOL-
UME CAVITY.

1.9.2 Changes between releases 4 and 6v2

Modeller 5 has not been generally released; the major changes in Modeller 6v2 relative to version 4 include
(this is a very incomplete list):

• New TOP loop modeling routine ’loop’ significantly improves the accuracy of loop modeling (Section 3.3).
It can also be used in modeling of sidechains or other parts of the structure.

• Several new statistical atomic distance-dependent potentials can typically be used for loop modeling and
model evaluation.

• The ENERGY OUTPUT = ’ENERGY PROFILE’ allows construction of energy profiles for model evaluation,
based on any combination of MODELLER energy terms. It replaces the ENERGY PROFILE command.
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• New functional form and parameters for the binormal Φ,Ψ restraints improve their numerical stability and
accuracy.

• New TOP command SEGMENT MATCHING facilitates exploring many different alignments in the
difficult comparative modeling cases.

• New dynamic memory allocation makes MODELLER more memory efficient.

• Many bug fixes.

• Many new arguments, changed naming/meaning of arguments, and several new commands.

• Conversion from Fortran 77 to Fortran 90 was the main culprit for a very long delay before the latest release.
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Chapter 2

Modeller commands

Sections in this Chapter describe technical aspects of Modeller. They include:

• miscellaneous rules and features of Modeller (Section 2.1);

• dealing with stereochemical parameters and molecular topology (Section 2.2);

• handling of atomic coordinates (Section 2.3);

• comparing and searching of sequences and structures (Section 2.4);

• calculating spatial restraints (Section 2.5),

• deriving the model by minimizing the restraints (Section 2.6).

2.1 Miscellaneous rules and features of Modeller

This Section describes several features of the program, including file naming conventions, various file types, and
the control of the amount of output.

2.1.1 Modeller system

One of the main aims of Modeller is to allow for flexible exploration of various modeling protocols to facilitate
the development of better modeling methods. Modeller can be seen as an interpreted language that is specialized
for modeling of protein 3D structure. Modeller’s organization is hierarchical and modular:

User script files.
Modeller tasks (e.g., ’model’).

Library of Modeller’s routines.
Top interpreter commands.

Top interpreter.
Modeller source code.

2.1.2 Running Modeller scripts

Modeller is a command-line only tool, and as such should be run from a command-line environment, whether
this be be a Unix console or xterm, the Mac Terminal application, or a Windows Command Prompt. The command
to run Modeller is

27
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mod7v7 script file name

where script file name is the name of the script file with instructions for Modeller. (If the name ‘-’ is
given, commands will be read instead from standard input.) This file contains commands in the Top language.
Each command line consist of the name of the command and optional variable assignments that control the action
of the command. The scope of the variables is global; that is, once a variable is assigned on any command line,
the assigned value remains in effect, in the main program and all subroutines, until explicitly changed by another
assignment or, in a few cases, by Modeller. All the commands and the default values of the variables are listed
in Section 5.4. This Chapter describes the Top commands that are used for dealing with proteins; the general Top

commands (e.g., assignment, flow control, arithmetic operations) are described in Chapter 4.

See directory examples for examples of the Top scripts that use commands described in this Chapter. In
particular, sub-directory examples/commands contains the examples used in this Chapter. Another set of Top

scripts that you could use as templates can be found in the bin directory.

2.1.3 Controlling breakpoints and the amount of output

Some errors are recoverable. For those errors, Top variable MODELLER STATUS becomes 1. A test is then
performed: If MODELLER STATUS is equal or greater then STOP ON ERROR, execution stops; otherwise, the
control is passed back to the calling Top routine where execution continues with the next Top command. It is
then up to your Top script to deal sensibly with the failure of the preceding command. For example, this flexibility
allows derivation of multiple models and searching for many sequences, even if some cases abort due to convergence
problems.

There are five kinds of messages that Modeller writes to the log file, indexed 1 to 5: long output from the
Modeller commands, short notes to do with the execution of the program (files opened, etc.), warnings identified
by ‘ W>’, errors identified by ‘ E>’, and the messages about the status of dynamic memory allocation. The five
elements in the Top variable OUTPUT CONTROL[1:5] can assume values of 0 or ‘not 0’; 0 indicates that the
corresponding information is not written out, ‘not 0’ indicates that it is.1 Thus, different amounts of output can
be selected. If everything is well, OUTPUT CONTROL = 1 0 0 1 0 is convenient because no execution messages,
warnings, and dynamic memory reports are written out; for debugging, use OUTPUT CONTROL = 1 1 1 1 1. To
increase the detail of the dynamic memory status reports, set the last flag to 2.

2.1.4 File naming

There are several filename generating mechanisms that facilitate file handling. Not all of them apply to all file
types.

Environment variables

There can be Unix shell environment variables in any input or output filename. The environment variables have
to be in the format ${VARNAME} or $(VARNAME). Also, four predefined macros are available for string variables:

• ${LIB} is expanded into the $LIB MODELLER variable defined in modlib/libs.lib (equal to
$MODINSTALL7v7/modlib);

• ${DIR} is expanded into the Top variable DIRECTORY;

• ${JOB} is expanded into the root of the Top script filename, or ’(stdin)’ if Top instructions are being read
from standard input;

• ${DEFAULT} is expanded into (ROOT NAME)(FILE ID)(ID1)(ID2)(FILE EXT), where ROOT NAME, FILE ID,
ID1, ID2, and FILE EXT are Top variables. FILE ID is a string that may be set to ’default’. In that case,
a hard-wired short string is used instead of FILE ID. Otherwise, the explicitly specified FILE ID is applied.
In any case, FILE ID is not modified by the filename generation routine so that it can be used more than
once without resetting it to the ’default’ value. Four digits are used for both ID1 and ID2. For example,
’2ptn.B99990001’ results from ROOT NAME = ’2ptn’, FILE EXT = ’.B’, ID1 = 9999, and ID2 = 1.

1This has not been implemented for all the output yet.
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Automatic filename generation

For any filename, input or output, if the value of the variable is ’default’ (case insensitive), the actual filename
is constructed within the routine that will use the filename. The name is constructed by the same rule as that
for the ${DEFAULT} environment variable (Section 2.1.4). The only difference between the two cases is that SET

FILE = ’default’ may not work as expected if the Top variables defining the filename change between the SET
command and the command that will use the filename, whereas SET FILE = ’${DEFAULT}’ will work as expected
because the filename FILE is actually constructed during the SET command.2

Directory prefixes

Input For many input filenames, the full filename is obtained by looking for the file in the list of directories
specified in the Top variable DIRECTORY. The directories in DIRECTORY are separated by colons (’:’) (e.g.,
‘dir1:dir2:dir3:...’). DIRECTORY can also contain the current directory (‘ ’ or ‘./’).

The directory prefix for the input atom coordinate filenames is obtained in a similar way, except that ATOM -

FILES DIRECTORY is used instead of DIRECTORY. Moreover, there is an additional mechanism for reading an
atom coordinate file that requires specifying the protein code only (see below in Section on coordinate files and
derivative data).

The list of directories is not scanned for the input filenames that start with ’/’.

In contrast, the INCLUDE FILE file is looked for in the distribution’s $BIN MODELLER7v7 directory (equal to
$MODINSTALL7v7/bin directory) in addition to the DIRECTORY directories. This allows for an easy inclusion of
the predefined system ’ *.top’ files by the INCLUDE command.

Output For all output filenames, except for those that start with ’/’, the full output filename is obtained by
pre-fixing the filename with OUTPUT DIRECTORY.

Coordinate files and derivative data

When accessing an atom file, a specified filename is tried first. If this is unsuccessful, Modeller automatically
expands the original filename by adding extension ’.Z’. This allows it to detect atom files compressed with the Unix

compress command. If the compressed file exists, Modeller automatically uncompresses it, reads it, and puts it
back into the original state after the reading is finished. If the specified file is still not found, the extensions ’.atm’,
’.pdb’, ’.ent’, and ’.crd’ are tried in this order, without and with extension ’.Z’, then also with the ’pdb’

prefix. This search for the atom file is repeated through all the directories in ATOM FILES DIRECTORY (directories
are separated by ’:’), unless input atom filename starts with ’/’, in which case ATOM FILES DIRECTORY is
neglected. Finally, if still unsuccessful and the file specified by the environment variable $PDBENT exists, the
coordinate filename (e.g., the 4 character PDB code) is matched to the list of the full PDB filenames in $PDBENT

(compressed and uncompressed). For example, $PDBENT file may be:

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb1ema.ent

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb1hbp.ent

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb1gpy.ent

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb6gpb.ent

/disk2/pdb/pdb.pdb.bnl.gov/all_entries/uncompressed_files/pdb1fia.ent

etc.

Any derivative data that Modeller may need, including residue solvent accessibilities, hydrogen bonding
information, dihedral angles, residue neighbors, etc., are calculated on demand from the atomic coordinates. The
most time consuming operation is calculating solvent accessibility, but even this calculation takes less than 1 sec
for a 200 residue protein on a Pentium III workstation.

Modeller stores the filenames of coordinate sets in the alignment arrays. These arrays are used by COM-
PARE, MAKE RESTRAINTS, MALIGN3D, ALIGN2D, and several other commands. If these filenames

2The ’default’ substitution will be phased out because it is a subset of the ${DEFAULT} substitution.



30 CHAPTER 2. MODELLER COMMANDS

do not change when the structures are needed for the second time, the coordinate files are not re-read because they
should already be in memory. This creates a problem only when the contents of a structure file changes since it
was last read during the current job.

2.1.5 File types

Modeller uses a number of standard filename extensions to indicate the type of data stored in a file (Table 2.1).
The extensions are generally not mandatory, only very helpful.

2.1.6 Format of the command description

For each command, the list of arguments, brief description, and an example are given. Additional background
information may be found in Chapter 5. The variable types are described as follows (see also Table 4.1):

〈integer : 1〉 an integer variable or constant
〈real : 1〉 a real variable or constant
〈string : 1〉 a string variable or constant
〈logical : 1〉 a logical variable or constant
〈integer : 0〉 a vector of any length with elements 〈integer : 1〉
〈integer : N〉 a vector of N elements 〈integer : 1〉
etc. the same for real, string, and logical types
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Extension Description
.top TOP script with instructions for a Modeller job
.log log output produced by a Modeller run
.ali alignment or sequences in the PIR format
.pap alignment or sequences in the PAP format
.aln alignment or sequences in the Quanta format
.aln alignment or sequences in the InsightII format
.seq, .chn sequence(s) in the PIR alignment format
.cod list of sequence codes
.grp list of families in PDB
.atm, .pdb, .ent atom coordinates in the PDB or Grasp format
.crd atom coordinates in the Charmm format
fit.pdb fitted protein structures in the PDB format
.ini initial Modeller model
.B* Modeller model in the PDB format
.D* the progress of optimization
.BL* Modeller model in the PDB format, in loop modeling
.DL* the progress of optimization, in loop modeling
.IL* initial Modeller model, in loop modeling
.V* violations profile
.E* energy profile
.rsr restraints in MODELLER or USER format
.sch schedule file for the variable target function optimization
.mat matrix of pairwise protein distances from an alignment
.mat matrix of pairwise residue type–residue type distance scores
.sim.mat matrix of pairwise residue type–residue type similarity scores
.lib various Modeller libraries
.psa residue solvent accessibilities
.sol atomic solvent accessibilities
.ngh residue neighbors
.dih mainchain and sidechain dihedral angles
.ssm secondary structure assignment
.var sequence variability profile from multiple alignment
.asgl data for plotting by Asgl

Table 2.1: List of file types.
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2.2 Stereochemical parameters and molecular topology

All molecular modeling programs generally need to know what are the atoms in all residue types, what are the atom
pairs that are covalently bonded to each other (i.e., molecular topology), and what are the ideal bond lengths,
angles, dihedral angles, and improper dihedral angles (i.e., internal coordinates and stereochemical restraints).
For a given MODEL, these data are constructed mostly from information in the residue topology and parameter
libraries. This section describes the commands for reading and writing parameter and residue topology libraries,
and for generating, patching, and mutating molecular topology.

2.2.1 Modeling residues with non-existing or incomplete entries in the topology and
parameter libraries

Defining new residue types is generally one of the more painful areas in developing and using a molecular modeling
program. Modeller has two quick-and-dirty solutions described in the next two sections that are often sufficient
for comparative modeling involving new residue types. On the other hand, if you are willing to spend some time
and define a new entry or complete an incomplete entry in the residue topology or parameter libraries, see the FAQ
Section 1.8, Question 17.

Residues with defined topology, but with missing parameters

The parameter library is used by the MAKE RESTRAINTS command to construct bond, angle, dihedral
angle, improper dihedral angle, and non-bonded Lennard-Jones restraints. If some parameters for these restraints
are missing, they are guessed on the fly from the current Cartesian coordinates of the MODEL. Thus, when there
are missing parameters, the MODEL coordinates must be defined before calling MAKE RESTRAINTS. The
coordinates can be defined by the BUILD MODEL command (from the IC entries in the residue topology library),
by the READ MODEL command (from an existing coordinate file for MODEL), or by the TRANSFER XYZ
command (from template coordinate files aligned with MODEL). The bonds, angles, and improper dihedral angles
are restrained by a harmonic potential with the mean equal to the value in the current structure and a force
constant typical for chemical bonds, angles, and improper dihedral angles, respectively. The dihedral angles are
restrained by a tri-modal cosine term with the mean equal to the angle in the current structure. A message detailing
Modeller’s improvization is written to the log file.

Block (BLK) residues with undefined topology and parameters

The second relatively easy way of dealing with missing entries in the residue topology and/or parameters libraries
is to use a “block” residue. These residues are restrained more or less as rigid bodies to the conformation of the
equivalent residue(s) in the template(s). No chemical information is used. The template residues can themselves
be defined as block residues. The symbol for the block residues is ‘BLK’ in the four- and three-letter codes and
‘.’ in the single-letter code. The atoms in a BLK residue include all uniquely named atoms from the equivalent
residues in all the templates. The atom type of all BLK atoms is the Charmm type ‘undf’. The IUPAC atom
names (as opposed to the atom types) are the same as in the templates. The ‘undf’ atom type for all BLK atoms
facilitates using the PICK ATOMS command for generating restraints on the ‘BLK’ residues.

The ‘undf’ atoms are treated differently from the other atoms during preparation of dynamic restraints: No
pairs of intra-BLK atoms are put on the dynamic non-bonded list. Only the “inter-BLK” atom pairs and “BLK–
other” atom pairs are considered for the dynamic non-bonded restraints. The radius of all block atoms is obtained
from the $RADII LIB library using the block atom names (as written out to a PDB file), not the ‘undf’ atom
type. All intra-BLK and inter-residue BLK restraints other than the non-bonded restraints have to be derived
separately and explicitly by MAKE RESTRAINTS command using RESTRAINT TYPE = ’distance’. See
script scripts/ homcsr.top for the routine that makes block restraints for comparative modeling by the ‘model’
script. Lennard-Jones, electrostatic, and general non-bonded spline terms involving ‘undf’ atoms are ignored by
Modeller.

Please note that if you use ‘BLK’ residues, you must set HETATM IO to ’on’, as ‘BLK’ residues are treated as
HETATMs.

For an example of how to use block residues, see the FAQ Section 1.8, Question 16.
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2.2.2 READ RESTYP LIB — read residue type library

Options:
RESTYP LIB FILE = 〈string : 1〉 ’$(LIB)/restyp.lib’ residue type library

Description: This command reads residue types from the residue type library specified by variable
RESTYP LIB FILE. See the FAQ Section 1.8, Question 17 for the format of this file. Modeller reads
the default residue type library during startup; this command can be used to read residue type definitions
for new residue types defined by the user without editing the default residue type library.

Example:

# Example for: READ_RESTYP_LIB

# This will read again a user specified residue type library, perhaps

# to read in the new user-defined residue types.

# Just read the default file again for this example:

READ_RESTYP_LIB RESTYP_LIB_FILE = ’$(LIB)/restyp.lib’

2.2.3 READ TOPOLOGY — read residue topology library

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ADD TOPOLOGY = 〈logical : 1〉 off whether to add new residue topologies to

existing ones

Description: This command reads residue topologies from the topology library, such as the Charmm 22 topology
file [MacKerell et al., 1998] (it also reads which subsets of atoms correspond to each TOPOLOGY MODEL

from library ’MODELS LIB’). This file must include atomic connectivities of residues and patching residues,
and the internal coordinates for minimum energy residue conformations. Patching residues modify residues;
for example, N-terminus, C-terminus and disulfide bonds are defined by patching the original topology. This
information is used for generating the molecular topology and possibly for calculating an initial conformation.
The default topology for comparative modeling by Modeller includes only non-hydrogen atoms (TOPOL-

OGY MODEL = 3). To define your entries in the topology library, see the FAQ Section 1.8, Questions 17 and
18.

If ADD TOPOLOGY is on, the new residue topologies are added to the existing residue topologies, otherwise
the new topology file replaces the old one. If the topology for a residue is duplicated only the last definition
is kept.

Not all the features of the Charmm 22 topology library are implemented in Modeller, although a Charmm

file should be read in successfully. A variety of topology files for different kinds of models can be prepared by
the MAKE TOPOLOGY MODEL command.

The filename for the library is DIRECTORY/FILE.

Example: See PATCH command.
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2.2.4 READ PARAMETERS — read parameters library

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ADD PARAMETERS = 〈logical : 1〉 off whether to add new parameters to exist-

ing ones

Description: This command reads the parameters from the parameter library, such as the Charmm 22 parameter
file for proteins with all atoms [MacKerell et al., 1998]. This file contains the values for bond lengths, angles,
dihedral angles, improper dihedral angles, and non-bonded interactions. Modeller relies on slightly modified
Charmm-22 parameters to reproduce the protein geometry in the Modeller environment. For example,
for the default non-hydrogen atoms model, the ω dihedral angle restraints are stronger than the original
Charmm 22 values which apply to the all-hydrogen model. For a sparse discussion of the parameter library,
see the FAQ Section 1.8, Question 17.

If ADD PARAMETERS is on, the new parameters are added to the existing parameter list, otherwise the
contents of the new parameter file replaces the old one.

The filename for the library is DIRECTORY/FILE.

Example: See PATCH command.

2.2.5 READ ATOM CLASSES — read classification of atom types

Options:
ATOM CLASSES FILE = 〈string : 1〉 ’$(LIB)/atmcls-melo.lib’ library with atom class definitions for

MODELLER non-bonded restraints

Description: This command reads a Modeller classification of atom types from file ATOM CLASSES FILE. This
particular atom type classification is used for calculation of the special non-bonded terms other than the soft-
sphere, Lennard-Jones or Coulomb terms (for which the Charmm atom type classification is used). These
terms are usually the statistical potentials of mean force described by non-bonded spline restraints, including
single body and two body terms. The default atom classification is read during Modeller initialization.

Example:

# Example for: READ_ATOM_CLASSES

# This will read an atom classification for non-bonded statistical potentials

# of mean force.

READ_ATOM_CLASSES ATOM_CLASSES_FILE = ’$(LIB)/atmcls-melo.lib’

2.2.6 GENERATE TOPOLOGY — generate MODEL topology

Options:
ADD SEGMENT = 〈logical : 1〉 off whether to add the new segments to the

list of segments

PATCH DEFAULT = 〈logical : 1〉 on whether to do default NTER and CTER

patching

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment
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SEQUENCE = 〈string : 1〉 ’undefined’ protein code in the alignment whose

topology is constructed

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

Requirements: topology and parameter libraries

Description: This command calculates MODEL’s covalent topology (i.e., atomic connectivity) and internal coor-
dinates, and assigns Charmm atom types, Modeller atom types for non-bonded spline restraints, atomic
charges, and atomic radii.

If a protein with code SEQUENCE is found in the current alignment (codes of proteins in the current alignment
are stored in ALIGN CODES), this protein’s topology is calculated. If no SEQUENCE entry exists or if the
alignment does not exist, the sequence of the MODEL is used. If the MODEL does not exist, an error is
reported. The MODEL can be read in from an atomic coordinates file with the READ MODEL command.

The new sequence is added to the list of segments of the MODEL if ADD SEGMENT is on, otherwise this list
is initiated.

A sequence in the alignment can use any non-patching residue listed in the single-character code column of the
$RESTYP LIB library (’modlib/restyp.lib’). Examples of non-standard residue types include water (’w’),
zinc (’z’), calcium (’3’), heme (’h’), and many others. Patching residues must not be used here, but with
the subsequent PATCH commands. Unrecognized residues are ignored. A special allowed residue type is
the chain break ‘/’. This can be used to construct a protein that consists of several chains separated by chain
breaks. Chain breaks before a non-standard residue type (there are 23 standard residue types, including ’-’,
’Asx’ and ’Glx’) are inserted automatically and do not have to be specified explicitly in the sequence.

The GENERATE TOPOLOGY command generates only the topology of the MODEL, not its Cartesian
coordinates; the Cartesian coordinates are assigned by the BUILD MODEL, TRANSFER XYZ, or
READ MODEL commands.

In general, the GENERATE TOPOLOGY command has to be executed before any energy commands
(ENERGY, OPTIMIZE, PICK HOT ATOMS). The reason is that reading the Cartesian coordinates
by the READ MODEL command does not generate all the data usually needed for energy evaluation.
However, if the order and number of atoms in the input file correspond exactly to the order and number of
atoms implied by the restraint atom indices and if you are not using dynamic restraints that rely on non-
existing data, such as bond, angle, and dihedral angle lists, atomic charges, radii, Lennard-Jones parameters,
Modeller atom types, or Charmm atom types (which are used to determine the atomic radii), it is sufficient
to do only READ MODEL and omit GENERATE TOPOLOGY before the energy commands. In short,
if you use static restraints alone and if the atom file has the atoms in the correct order, you do not have to
call GENERATE TOPOLOGY before calculating energy.

The variables ATOM FILES, ATOM FILES DIRECTORY, WATER IO, HETATM IO, HYDROGEN IO, and
TOPOLOGY MODEL are necessary only when the ’BLOCK’ residues are present in the sequence whose topol-
ogy is generated. In that case, the template PDB files are read in.

Example: See PATCH command.

2.2.7 PATCH — patch MODEL topology

Options:
RESIDUE IDS = 〈string : 0〉 ’’ identifiers of the patched residues
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RESIDUE TYPE = 〈string : 1〉 ’undefined’ patching residue type

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

Description: This command uses a Charmm patching residue to patch the topology of the MODEL. Charmm

patch rules are observed.

RESIDUE TYPE is the type of the patching residue (PRES entry in the topology library), such as ’DISU’,
’NTER’, ’CTER’, etc. You do not have to apply explicitly the N- and C-terminal patches to protein chains
because the ’NTER’ and ’CTER’ patches are applied automatically to the appropriate residue types at the
termini of each chain at the end of each GENERATE TOPOLOGY command.

RESIDUE IDS are residue identifiers of the patched residues (Section 2.4.1). The first residue is the patched
residue 1, the second residue is the patched residue 2, etc; for example, the ’DISU’ patching residue has two
patched Cys residues while the ’ACE’ patching residue has only one patched residue. The order of the residue
identifiers here has to match the definition of the patching residue in the topology library.

It is not allowed to patch an already patched residue. Since the N- and C-terminal residues of each chain
are automatically patched with the ’NTER’ and ’CTER’ patching residues, respectively, a user who wants to
patch the N- or C-terminal residues with other patches, should turn the default patching off before executing
GENERATE TOPOLOGY. This is achieved by SET PATCH DEFAULT = off.

Example:

# Example for: PATCH, READ_TOPOLOGY, READ_PARAMETERS

# This will define a CYS-CYS disulfide bond between residues 3 and 22.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the sequence:

READ_MODEL FILE = ’1fas’

# have two copies of the sequence in the alignment, for TRANSFER_XYZ later:

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

# Create the disulfide bond:

PATCH RESIDUE_TYPE = ’DISU’, RESIDUE_IDS = ’3’ ’22’

# Get MODEL’s coordinates from the template, using the alignment (1:1 here):

TRANSFER_XYZ

# Calculate missing coordinates using internal coordinates:

BUILD_MODEL INITIALIZE_XYZ = off

# Create the stereochemical restraints

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

# Calculate the energy to test the disulfide:

ENERGY

2.2.8 PATCH SS TEMPLATES — guess MODEL disulfides from templates

Options:
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ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

Requirements: alignment

Output: DISTANCE ATOMS

Description: This command defines and patches disulfide bonds in the MODEL using an alignment of the MODEL
sequence with one or more template structures. The MODEL sequence has to be the last sequence in the
alignment. The template structures are all the other proteins in the alignment. All Cys–Cys pairs in the
target sequence that are aligned with at least one template disulfide are defined as disulfide bonds themselves.
The covalent connectivity is patched accordingly.

If no alignment exists, a default 1:1 alignment is constructed. Variable ATOM FILES can be used to specify
template structures.

This command should be run after GENERATE TOPOLOGY and before MAKE RESTRAINTS to
ensure that the disulfides are restrained properly by the bond length, angle, and dihedral angle restraints and
that no SG–SG non-bonded interactions are applied.

The disulfide bond, angle and dihedral angle restraints have their own physical restraint type separate from
the other bond, angle and dihedral angle restraints (Table 2.4).

DISTANCE ATOMS becomes CA SG.

Example:

# Example for: PATCH_SS_TEMPLATES and PATCH_SS_MODEL

# This will patch CYS-CYS disulfide bonds using disulfides in aligned templates:

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the sequence, calculate its topology, and coordinates:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

# Superpose the two template structures without changing the alignment.

# This is for TRANSFER_XYZ to work properly. It relies on not reading

# the atom files again before TRANSFER_XYZ.

MALIGN3D FIT = off # This is for TRANSFER_XYZ to work properly.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ALIGN_CODES ’1fas’

GENERATE_TOPOLOGY SEQUENCE = ’1fas’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = on

WRITE_MODEL FILE = ’1fas.noSS’

# Create the disulfide bonds using equivalent disulfide bonds in templates:

PATCH_SS_TEMPLATES
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# Create the stereochemical restraints

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

# Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):

ENERGY

READ_MODEL FILE = ’1fas.noSS’

# Create the disulfide bonds guessing by coordinates

PATCH_SS_MODEL

# Create the stereochemical restraints

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

# Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):

ENERGY

2.2.9 PATCH SS MODEL — guess MODEL disulfides from model structure

Options:
TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

Requirements: model

Description: This command defines and patches disulfide bonds in MODEL using MODEL’s current structure.
A disulfide bridge is declared between all pairs of Cys residues whose SG–SG distances are less than 2.5Å.
The covalent connectivity is patched accordingly.

This command should be run after READ MODEL and before optimization to ensure that the disulfides
are fixed properly and that no SG–SG non-bonded interactions are applied.

TOPOLOGY MODEL is needed to make sure the correct atomic radii are used in CYS–CYS patching.

Example: See PATCH SS TEMPLATES command.

2.2.10 MUTATE MODEL — mutate selected MODEL residues

Options:
RESIDUE TYPE = 〈string : 1〉 ’undefined’ new residue type

Description: This command mutates the selected residues of the MODEL to the type specified by RESIDUE -

TYPE. Charmm 4-character residue type names are used (see library file $RESTYP LIB). To select the residues
for mutation, use PICK ATOMS command. All the residues with at least one atom in the selected set
1 of atoms are mutated. To produce mutants, employ this command with SEQUENCE TO ALI and
WRITE ALIGNMENT. It is usually necessary to write the mutated sequence out and read it in before
proceeding, because not all sequence related information about MODEL is changed by this command (e.g.,
internal coordinates, charges, and atom types and radii are not updated).

Example:
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# Example for: MUTATE_MODEL

# This will read a PDB file, change its sequence a little, build new

# coordinates for any of the additional atoms using only the internal

# geometry, and write the mutant PDB file. It can be seen as primitive,

# but rapid comparative modeling for substitution mutants. For insertion

# and deletion mutants, follow the standard comparative modeling procedure.

# Read the topology library with non-hydrogen atoms only:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’, TOPOLOGY_MODEL = 3

# To produce a mutant with all hydrogens, uncomment this line:

# READ_TOPOLOGY FILE = ’$(LIB)/top.lib’, TOPOLOGY_MODEL = 1

# Read the CHARMM parameter library:

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the original PDB file and copy its sequence to the alignment array:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

# Select the residues to be mutated: in this case all ASP residues:

PICK_ATOMS RES_TYPES = ’ASP’

# The second example is commented out; it selects residues ’1’ and ’10’.

# SET SELECTION_SEARCH = ’SEGMENT’, SELECTION_FROM = ’ALL’

# PICK_ATOMS SELECTION_SEGMENT = ’1’ ’1’, SELECTION_STATUS = ’INITIALIZE’

# PICK_ATOMS SELECTION_SEGMENT = ’10’ ’10’, SELECTION_STATUS = ’ADD’

# Mutate the selected residues into HIS residues (neutral HIS):

MUTATE_MODEL RESIDUE_TYPE = ’HIS’

# Add the mutated sequence to the alignment arrays (it is now the second

# sequence in the alignment):

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fas-1’

# Generate molecular topology for the mutant:

GENERATE_TOPOLOGY SEQUENCE = ’1fas-1’

# Transfer all the coordinates you can from the template native structure

# to the mutant (this works even if the order of atoms in the native PDB

# file is not standard):

TRANSFER_XYZ

# Build the remaining unknown coordinates for the mutant:

BUILD_MODEL INITIALIZE_XYZ = off

# Write the mutant to a file:

WRITE_MODEL FILE = ’1fas-1.atm’

2.2.11 MAKE TOPOLOGY MODEL — make a subset topology library

Options:
TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10
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Description: This command makes a residue topology library from the most detailed Charmm topology library,
which contains all atoms, including all hydrogens (corresponding to TOPOLOGY MODEL = 1). There are
currently ten residue topologies, all of which are defined in library $MODELS LIB. For example, the default
non-hydrogen atom topology is selected by TOPOLOGY MODEL = 3. For each TOPOLOGY MODEL and
residue type, the $MODELS LIB library lists those atoms in the full atom set that are part of the specified
topology. This command works by deleting all the entries that contain non-existing atoms from the original
topology file. One must carefully test topology files produced in this way. Library $RADII LIB must specify
atomic radii for each atom in each residue type for each topology model. TOPOLOGY MODEL must be an
integer from 1 to 10. For more information about the topology library, see the FAQ Section 1.8, Questions 17
and 18.

Example:

# Example for: MAKE_TOPOLOGY_MODEL, WRITE_TOPOLOGY_MODEL

# This creates a topology library for heavy atoms from the

# CHARMM all-atom topology library:

# Read CHARMM all-atom topology library:

READ_TOPOLOGY FILE = ’${LIB}/top.lib’

# Keep only heavy atoms (TOPOLOGY_MODEL = 3)

MAKE_TOPOLOGY_MODEL TOPOLOGY_MODEL = 3

# Write the resulting topology library to a new file:

WRITE_TOPOLOGY_MODEL FILE = ’top_heav.lib’

2.2.12 WRITE TOPOLOGY MODEL — write residue topology library

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

Description: This command writes a residue topology library to the specified file. It is usually used after
MAKE TOPOLOGY MODEL.

Example: See MAKE TOPOLOGY MODEL command.
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2.3 Handling of atomic coordinates

This section describes commands for dealing with Cartesian coordinates of a 3D model: for reading, writing,
creating and transforming them.

2.3.1 READ MODEL — read coordinates for MODEL

Options:
FILE = 〈string : 1〉 ’default’ name of the coordinates’ file

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

MODEL SEGMENT = 〈string : 2〉 ’FIRST:@’ ’LAST:’ segment to be read in

MODEL FORMAT = 〈string : 1〉 ’PDB’ selects input atom file format: ’PDB’ |

’CHARMM’ | ’UHBD’

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

Description: This command reads the atomic coordinates, atom names, residue names, residue numbers, isotropic
temperature factors and segment specifications for MODEL, assigns residue types, and defines the dihedral
angles listed in the $RESDIH LIB library. For CHARMM and UHBD file formats, it also reads the atomic charges.
However, it does not assign Charmm and Modeller atom types, internal coordinates, charges (in the case
of the ’PDB’ format), or patches (such as disulfides); to make these assignments, which are necessary for
almost all energy commands, use GENERATE TOPOLOGY. All real and pseudo atoms are selected.
The PDB residue type ’HIS’ is assigned the Charmm residue type ’HSD’, which is the neutral His with H on
ND1. The PDB types ’ASP’ and ’GLU’ are assigned the corresponding charged Charmm residue types, as
are ’LYS’ and ’ARG’. These conventions are relevant only if electrostatic terms and/or hydrogens are used.

MODEL SEGMENT sets the beginning and ending residue identifiers for the contiguous sequence of residues
to be read from the PDB file (this option does not work yet for the other file formats). The format of residue
identifiers is described in Section 2.4.1. In addition, the following rule applies: If there is no ‘:’ in the first
residue specification, the segment specification is taken from the alignment entry with the specified code.
Similarly, if there is no ‘:’ in the second residue specification, the PDB filename is taken from the alignment
entry with the specified code. The two codes do not have to be the same. For example, MODEL SEGMENT

= ’4ape’ ’4ape’ will take the segment specification and atom filename for entry 4ape in the alignment.

Example:

# Example for: READ_MODEL, WRITE_MODEL

# This will read a PDB file and write a CHARMM atom file without atomic charges

# or radii. For assigning charges and radii, see the all_hydrogen.top script.

READ_MODEL FILE = ’1fas’

WRITE_MODEL FILE = ’1fas.crd’, MODEL_FORMAT = ’CHARMM’

WRITE_MODEL FILE = ’1fas.cif’, MODEL_FORMAT = ’MMCIF’

2.3.2 READ MODEL2 — read coordinates for MODEL2

Options:
FILE = 〈string : 1〉 ’default’ name of the coordinates’ file
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ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

MODEL2 SEGMENT = 〈string : 2〉 ’FIRST:@’ ’LAST:’ segment to be read in

MODEL FORMAT = 〈string : 1〉 ’PDB’ selects input atom file format: ’PDB’ |

’CHARMM’ | ’UHBD’

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

Description: This command reads a coordinate file for MODEL2. See the description of the READ MODEL
command for more information. The ability to have a second, independent set of coordinates in memory
is used in conjunction with the SUPERPOSE, TRANSFER RES NUMB, REORDER ATOMS and
some other commands, as well as for changing the format of the atom file.

Example: See READ MODEL command.

2.3.3 WRITE MODEL — write MODEL

Options:
FILE = 〈string : 1〉 ’default’ name of the coordinates’ file

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

MODEL FORMAT = 〈string : 1〉 ’PDB’ selects output atom file type: ’PDB’ |

’CHARMM’ | ’UHBD’ | ’GRASP’ | ’MMCIF’

WRITE ALL ATOMS = 〈logical : 1〉 on whether to write all atoms, even if unse-

lected
NO TER = 〈logical : 1〉 off whether to not write TER into PDB

Requirements: MODEL

Description: This command writes the current MODEL to a file in the selected format. If the file format is ’PDB’,
only the selected atoms are written out when WRITE ALL ATOMS = off; otherwise all atoms are written
out.

’MMCIF’ writes out files in the Macromolecular Crystallographic Information File (mmCIF) format.

The ’GRASP’ format is the same as the ’PDB’ format, except that it includes two special lines at the top of
the file and the atomic radii and charges in the columns following the Cartesian coordinates of atoms. This
format is useful for input to program Grasp, written by Anthony Nicholls in the group of Barry Honig at
Columbia University [Nicholls et al., 1991].

Example: See READ MODEL command.

2.3.4 WRITE MODEL2 — write MODEL2

Options:
FILE = 〈string : 1〉 ’default’ name of the coordinates’ file

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

MODEL FORMAT = 〈string : 1〉 ’PDB’ selects output atom file type: ’PDB’ |

’CHARMM’ | ’UHBD’ | ’GRASP’ | ’MMCIF’

NO TER = 〈logical : 1〉 off whether to not write TER into PDB
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Requirements: MODEL2

Description: This command writes MODEL2 to a file in the selected format. See the description of the
WRITE MODEL command for more information.

Example: See READ MODEL command.

2.3.5 BUILD MODEL — build MODEL coordinates from topology

Options:
INITIALIZE XYZ = 〈logical : 1〉 on whether to use IC entries to calculate all

coordinates
RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

BUILD METHOD = 〈string : 1〉 ’INTERNAL COORDINATES’ method for building coordinates:

’INTERNAL COORDINATES’ | ’ONE STICK’

| ’TWO STICKS’ | ’3D INTERPOLATION’

Requirements: topology file & parameters file & MODEL topology

Description: This command builds Cartesian coordinates of the MODEL.

If INITIALIZE XYZ is on, all coordinates are built. Otherwise only the undefined coordinates are built. The lat-
ter is useful because some coordinates may be undefined after the READ MODEL or TRANSFER XYZ
command. The undefined coordinates have a value of −999. when written to a PDB file.

If BUILD METHOD is ’INTERNAL COORDINATES’, the Cartesian coordinates are built from the ideal values of
the internal coordinates as obtained from the IC entries in the residue topology library. If an appropriate IC
entry does not exist, the ideal value of the internal coordinate is calculated from the corresponding energy
term in the parameter library. If some coordinates still cannot be built, they are set to values close to those
of the neighboring atoms. If even this fails, they are set randomly.

If BUILD METHOD is ’3D INTERPOLATION’, the Cartesian coordinates are built by linearly interpolating
between the two defined atoms that span the contiguous undefined segment of atoms. In this mode, both
the mainchain and sidechain conformations of all inserted residues are random and distorted. This build-up
mode is useful because it may eliminate a knot and minimize the extended nature of the insertion obtained by
BUILD METHOD = ’INTERNAL COORDINATES’. In the end, the coordinates of each of the interpolated atoms
are slightly randomized (±0.2Å) to prevent numerical problems with colinear angles and colinear dihedral
angles. If one or both of the spanning atoms are undefined, the ’ONE STICK’ option (below) is used.

If BUILD METHOD is ’ONE STICK’, the Cartesian coordinates are built by “growing” them linearly out of
the N-terminal spanning atom (C-terminal atom for the undefined N-terminal), away from the gravity center
of all the defined atoms. If there are no spanning atoms, the spanning atom is defined randomly.

If BUILD METHOD is ’TWO STICK’, the loop is broken into two equal pieces and the ’ONE STICK’ algorithm
is applied to both halves of the loop separately.

Example:

# Example for: BUILD_MODEL

# This will build a model for a given sequence in an extended conformation.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the sequence from a file (does not have to be part of an alignment):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’

# Calculate its molecular topology:
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GENERATE_TOPOLOGY SEQUENCE = ’1fas’

# Calculate its Cartesian coordinates using internal coordinates and

# parameters if necessary:

BUILD_MODEL INITIALIZE_XYZ = on

# Write the coordinates to a PDB file:

WRITE_MODEL FILE = ’1fas.ini’

Example:

# Example for: GENERATE_TOPOLOGY, BUILD_MODEL

# This will read a specified atom file, generate all hydrogen atoms,

# add atomic radii and charges, and write the model to a PDB file in

# the GRASP format. This can be used with GRASP to display electrostatic

# properties without assigning charges and radii in GRASP.

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_TOPOLOGY FILE = ’$(LIB)/top.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

SET TOPOLOGY_MODEL = 1

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas’

# Have to patch the topology here to remove sulfhydril hydrogens:

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’17’ ’39’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’3’ ’22’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’53’ ’59’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’41’ ’52’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off, BUILD_METHOD = ’INTERNAL_COORDINATES’

WRITE_MODEL FILE = ’1fas.ini1’, MODEL_FORMAT = ’GRASP’

WRITE_MODEL FILE = ’1fas.ini2’, MODEL_FORMAT = ’PDB’

2.3.6 UNBUILD MODEL — undefine MODEL coordinates

Description: This command undefines all of the Cartesian coordinates of the MODEL.

2.3.7 TRANSFER XYZ — copy templates’ coordinates to MODEL

Options:
CLUSTER CUT = 〈real : 1〉 1.0 definition of a cluster

CLUSTER METHOD = 〈string : 1〉 ’RMSD’ what distance function to use; ’RMSD’ |

’MAXIMAL DISTANCE’

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)
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WATER IO = 〈logical : 1〉 off whether to read water coordinates

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

Requirements: alignment and MODEL

Description: This command transfers coordinates of the equivalent atoms and their isotropic temperature factors
from the template structures to MODEL.

The alignment has to be in memory. The target sequence is the last protein in the alignment and has to be
the same as the MODEL sequence. The template structures are all the other proteins in the alignment.

Before transferring coordinates, the template structures generally have to be explicitly least-squares super-
posed onto each other. This is most conveniently achieved with the MALIGN3D command called just before
TRANSFER XYZ. This is an important difference relative to Modeller-3, which did not require explicit
superposition by the user. Note, however, that the ’model’ script does this superposition automatically.

If CLUSTER CUT is less than 0, the transferred coordinates for a given target atom are the average of the
coordinates of all the equivalent template atoms. Otherwise, the transferred coordinates are the average of
the templates in the largest cluster of the atoms. This cluster is obtained as follows (it only works when
all templates and the target have exactly the same topology): For each residue position separately, calculate
the maximal inter-template equivalent atom–atom distances (CLUSTER METHOD = ’MAXIMAL DISTANCE’)
or atomic Rms deviation (CLUSTER METHOD = ’RMSD’) for all template–template comparisons. Use the
weighted pair-group average clustering method (the same as in the DENDROGRAM command) to obtain
the clustering tree for the given residue position. Find the clusters that contain residues joined above CLUS-

TER CUT angstroms (1Å is a good value). Use the largest cluster in the averaging for the target coordinates.
The number of residue positions at which each template contributes to the consensus is written to the log file
(’The largest cluster occupancy’). Sometimes the first template contributes many more times than the
rest of the templates. This results from having many residue positions where all “clusters” have one template
only (the first cluster/template is then picked by default). This artifact can be corrected by specifying a
larger CLUSTER CUT.

Both kinds of averaging, but especially the cluster averaging, are useful for deriving a consensus model from
an ensemble of models of the same sequence. If the consensus model is optimized by the conjugate gradients
method, it frequently has a significantly lower value of the objective function than any of the contributing
models. Thus, the construction of a consensus model can also be seen as part of an efficient optimization. The
reason why consensus construction frequently results in better models is that the consensus model generally
picks the best (i.e., most frequent) conformation for the regions that are variable in the individual models,
while it is very unlikely that a single model will have optimal conformation in all of the variable regions. The
consensus construction may not work when two or more locally optimal conformations are inconsistent with
each other (e.g., because of the atom overlaps).

Two atoms are equivalent if they have exactly the same name and are in the equivalent residues. Note
that the $ATMEQV LIB library of equivalent residue–residue atom pairs, which is used in the construction of
homology-derived distance restraints, is not used here. The atom names in the target may not correspond to
the atom names in the template files. In such a case, if you want to copy the template atoms’ coordinates,
you have to edit the atom names in the template atom files so that they correspond to the Modeller atom
names (which you can see in the .ini atom file). At least for water molecules, this is usually better than
letting the optimizer deal with grossly incorrect starting positions.

The atoms with undefined coordinates in MODEL are flagged by setting the coordinates to −999. The
coordinates of the undefined atoms of the MODEL can be set with the BUILD MODEL command, which
relies on the internal coordinates specified in the residue topology library or on various types of geometric
interpolation and extrapolation.

Example:

# Example for: TRANSFER_XYZ



46 CHAPTER 2. MODELLER COMMANDS

# This will build a model for a given sequence by copying

# coordinates from aligned templates. When the templates

# have the same sequence as the target, this procedure ensures

# that the new model corresponds to the MODELLER topology library.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the sequence and calculate its topology:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’1nbt’

MALIGN3D FIT = off

SET ADD_SEQUENCE = on

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ALIGN_CODES ’1fas’

GENERATE_TOPOLOGY SEQUENCE = ’1fas’

# Assign the average of the equivalent template coordinates to MODEL:

TRANSFER_XYZ

# Get the remaining undefined coordinates from internal coordinates:

BUILD_MODEL INITIALIZE_XYZ = off

# Write the final MODEL coordinates to a PDB file:

WRITE_MODEL FILE = ’1fas.ini’

2.3.8 TRANSFER RES NUMB — residue numbers from MODEL2 to MODEL

Options:
ALIGN CODES = 〈string : 2〉 ’all’ MODEL2 code, MODEL code

Requirements: MODEL & MODEL2 [& alignment]

Description: This command transfers residue numbers and chain ids from MODEL2 to MODEL. It uses the
current alignment if present, otherwise a 1:1 correspondence is assumed. MODEL2 and MODEL must
correspond to the first and second protein in the alignment, respectively. The ALIGN CODES variable is used
only for output to the log file, not in the calculation. Both MODEL and MODEL2 must already be in
memory.

Example:

# Example for: TRANSFER_RES_NUMB

# This will transfer residue numbers and chain ids from model2 to model.

SET OUTPUT_CONTROL = 1 1 1 1 0

# Optionally, read an alignment for the transfer (otherwise 1:1 is assumed):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’1fas’

# Read the template and target models:

READ_MODEL2 FILE = ’2ctx’

READ_MODEL FILE = ’1fas’

# Transfer the residue and chain ids and write out the new MODEL:

TRANSFER_RES_NUMB

WRITE_MODEL FILE = ’1fas.ini’
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2.3.9 RENAME SEGMENTS — rename MODEL segments

Options:
SEGMENT IDS = 〈string : 0〉 ’’ new segment ids

RENUMBER RESIDUES = 〈integer : 0〉 starting residue index for renumbering

residues

Requirements: MODEL

Description: This command re-labels residue numbers in each chain (i.e., segment) so that they start with
RENUMBER RESIDUES[iseg]. In addition, the single character PDB chain id’s are also assigned: They are
obtained from the corresponding elements of SEGMENT IDS. Thus, there should be as many elements in
SEGMENT IDS and RENUMBER RESIDUES as there are chains in the current MODEL.

Example:

# Example for: RENAME_SEGMENTS

# This will assign new PDB single-character chain id’s to all the chains

# in the input PDB file (here there are two ’chains’: protein and the HETATM

# water molecules).

# Read the MODEL with all HETATM and water records (so there are two ’chains’):

READ_MODEL FILE = ’1fas’, HETATM_IO = on, WATER_IO = on

# Assign new segment names and write out the new model:

RENAME_SEGMENTS SEGMENT_IDS = ’X’ ’Y’

WRITE_MODEL FILE = ’1fas.ini’

2.3.10 PICK ATOMS — select atoms in MODEL

Options:
PICK ATOMS SET = 〈integer : 1〉 1 index of the selected atoms set: 1 | 2 |

3
SELECTION SEARCH = 〈string : 1〉 ’SEGMENT’ search method: ’SPHERE’ | ’SEGMENT’ |

’SPHERE SEGMENT’

RES TYPES = 〈string : 1〉 ’ALL’ residue type selection: ’ALL’ | ’HET’ |

’BLK’ | ’STD’ | Charmm 4-letter codes

ATOM TYPES = 〈string : 1〉 ’ALL’ atom type selection: ’ALL’ | ’SDCH’ |

’MNCH’ | IUPAC atom names

SELECTION FROM = 〈string : 1〉 ’ALL’ selecting from: ’ALL’ | ’SELECTED’

SELECTION MODE = 〈string : 1〉 ’ATOM’ selecting what: ’ATOM’ | ’RESIDUE’

SELECTION STATUS = 〈string : 1〉 ’INITIALIZE’ what to do with selected atoms: ’ADD’ |

’REMOVE’ | ’INITIALIZE’

• For SELECTION SEARCH = ’SEGMENT’:
SELECTION SEGMENT = 〈string : 2〉 ’’ ’’ ’RES:CHN’ ids for the first and last

residues in a chain/segment; or ’LOOPS’

GAP EXTENSION = 〈integer : 2〉 2 1 extend insertions/deletions for that

many residues, in PICK ATOMS; don’t

select loops longer than i3

MINMAX LOOP LENGTH = 〈integer : 2〉 5 15 minimal/maximal length of a loop in

PICK ATOMS
• For SELECTION SEARCH = ’SPHERE’:

SPHERE CENTER = 〈string : 2〉 ’undefined’ ’undefined’ ’#RES1:C’ ’ATOM NAME’
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SPHERE RADIUS = 〈real : 1〉 10.0 sphere radius for atoms selection

SELECTION SLAB = 〈real : 5〉 9999 9999 0 0 0 slab for atoms selection: ’dz1’ ’dz2’

’xtrans’ ’ytrans’ ’ztrans’

• For SELECTION SEARCH = ’SPHERE SEGMENT’:
SELECTION SEGMENT = 〈string : 2〉 ’’ ’’ ’RES:CHN’ ids for the first and last

residues in a chain/segment; or ’LOOPS’

GAP EXTENSION = 〈integer : 2〉 2 1 extend insertions/deletions for that

many residues, in PICK ATOMS; don’t

select loops longer than i3

SPHERE RADIUS = 〈real : 1〉 10.0 sphere radius for atoms selection

Description: This command adds atoms to, removes atoms from, or initializes any one of the three independent
sets of selected atoms of MODEL. There are three selection sets because it is convenient to have different sets
used by different Modeller commands.

PICK ATOMS SET specifies the set of selected atoms. Set 1 is used in the PICK RESTRAINTS, RO-
TATE DIHEDRALS, RANDOMIZE XYZ and MUTATE MODEL commands. Sets 2 and 3 are
used in the MAKE RESTRAINTS command.

SELECTION STATUS determines whether the selected atoms are added (’ADD’), removed (’REMOVE’), or a
set is initialized and then the selected atoms are added (’INITIALIZE’).

The selection of atoms is a hierarchical two level process. The first level of selection consists of specifying how
the atoms will be scanned. The second level consists of selecting by the specified atom and residue names.

How the atoms are scanned is specified by setting the SELECTION SEARCH variable to either ’SEGMENT’,
’SPHERE’, or ’SPHERE SEGMENT’:

1. ’SEGMENT’ mode: Only a single stretch of residues specified by the beginning and ending residue iden-
tifiers in SELECTION SEGMENT (Section 2.4.1) is scanned. Alternatively, if SELECTION SEGMENT[1]
has the special value ’LOOPS’ only residues in loops are scanned. Loops are defined as those residues
in the MODEL that are aligned with only gap positions in the templates (MODEL has to be the last
sequence in the current alignment), are within GAP POSITIONS[1] of an insertion in MODEL, or are
within GAP POSITIONS[2] positions of a deletion in MODEL, and are not in a loop segment shorter
than MINMAX LOOP LENGTH[1] or longer than MINMAX LOOP LENGTH[2]. This selection mode is
useful for automatic selection of loops to be refined by the loop modeling procedure.

2. ’SPHERE’ mode: Only those atoms that are closer than SPHERE RADIUS angstroms to the
SPHERE CENTER atom, after the center atom was translated by (xtrans, ytrans, ztrans) angstroms
specified in SELECTION SLAB[3:5], are scanned. If the first element of SPHERE CENTER is string
’INDEX’, the second element is an integer atom index of the center atom; otherwise, the first and second
element are the residue identifier (Section 2.4.1) and the IUPAC atom name, respectively. SELEC-

TION SLAB[1:2] specifies the interval on the Z-axis relative to the Z coordinate of the translated central
atom that imposes another condition on the selected atoms: Zcen + dz1 < Z + ztrans < Zcen + dz2.
Larger Z values are in front, so dz1 specifies the plane that is further away than the dz2 plane. To pick
any atoms, dz1 < dz2.

3. ’SPHERE SEGMENT’ mode: Only atoms within a sphere around the atoms in the specified segment of
residues are scanned. This is useful, for example, when a neighborhood of a loop needs to be selected.
As for the ’SEGMENT’ mode, if SELECTION SEGMENT[1] has the special value ’LOOPS’, only loop atoms
are scanned for their neighbors.

If SELECTION FROM is ’SELECTED’, scanning specified above is restricted only to the atoms that were
already selected before calling PICK ATOMS.

Once the method for scanning the atoms is specified, each of the scanned atoms is checked against the specified
atom name(s) (ATOM TYPES) and residue name(s) (RES TYPES). If SELECTION MODE is ’RESIDUE’,
all atoms in a residue with at least one atom that matches both the residue and atom name criteria are
selected. Otherwise, only those atoms that have both the specified residue and atom names are selected. The
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RES TYPES and ATOM TYPES keywords can contain several residue and atom names in one quoted string
or in several quoted strings. For example, both ’CA’ ’N’ and ’CA N’ are valid specifications selecting the
CA and N atoms. The following groups of residues and atoms are defined:

• If RES TYPES contains word ’ALL’, all residues will be selected.

• If RES TYPES contains word ’HET’, all ‘HETATM’ residues will be selected (e.g., all residue types with
the Modeller residue code larger than 27; see library $RESTYP LIB).

• If RES TYPES contains word ’BLK’, all ‘BLK’ residue types will be selected (Section 2.2.1).

• If RES TYPES contains word ’STD’, all standard residue types will be selected. Standard residue types
are all residue types but ‘HETATM’ and ‘BLK’ types.

• If ATOM TYPES contains word ’ALL’, all atoms will be selected.

• If ATOM TYPES contains word ’MNCH’, all mainchain atoms will be selected. Mainchain atoms are N,
C, CA, O, and OXT.

• If ATOM TYPES contains word ’SDCH’, all sidechain atoms will be selected. Sidechain atoms are all
non-mainchain atoms, including non-mainchain atoms in ‘HETATM’ and ‘BLK’ residues.

Example:

# Example for: PICK_ATOMS

# This will pick various subsets of atoms in the MODEL and compare them

# with MODEL2.

SET OUTPUT_CONTROL = 1 1 1 1 0

# Read the models and the alignment:

READ_MODEL FILE = ’1fas’

READ_MODEL2 FILE = ’2ctx’

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’

WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’

# Set some defaults (the same as in top.ini):

SET SELECTION_MODE = ’ATOM’ # only the selected atoms, not whole residues

SET SELECTION_FROM = ’ALL’ # scanning of all atoms, not selected atoms

SET SELECTION_SEARCH = ’SEGMENT’ # scan over a segment

SET SELECTION_SEGMENT= ’FIRST:’ ’LAST:’ # the whole chain as a segment

SET RES_TYPES = ’ALL’ # all residue types

SET PICK_ATOMS_SET = 1 # put the selected atoms in set 1

SET SELECTION_STATUS = ’INITIALIZE’ # select only the selected atoms

# Pick and superpose mainchain atoms:

PICK_ATOMS ATOM_TYPES = ’MNCH’

SUPERPOSE

# Pick and superpose sidechain atoms:

PICK_ATOMS ATOM_TYPES = ’SDCH’

SUPERPOSE

# Pick and superpose CA and CB atoms:

PICK_ATOMS ATOM_TYPES = ’CA CB’

SUPERPOSE

# Pick and superpose all atoms:

PICK_ATOMS ATOM_TYPES = ’ALL’

SUPERPOSE
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# Pick and superpose CA and CB atoms in one segment only:

PICK_ATOMS ATOM_TYPES = ’CA CB’, SELECTION_SEGMENT = ’2:’ ’10:’

SUPERPOSE

SET SELECTION_SEGMENT = ’FIRST:’ ’LAST:’ # allow for the whole chain again

# Pick and superpose all atoms within 6 angstroms of the ’CA’ atom in residue ’10:’:

PICK_ATOMS ATOM_TYPES = ’ALL’, SPHERE_RADIUS = 6.0, ;

SELECTION_SEARCH = ’SPHERE’, SPHERE_CENTER = ’10:’ ’CA’

SUPERPOSE

# Pick and superpose all atoms within 6 angstroms of any atom in

# segment 2: to 10:

PICK_ATOMS ATOM_TYPES = ’ALL’, SELECTION_SEGMENT = ’2:’ ’10:’,;

SELECTION_SEARCH = ’SPHERE_SEGMENT’, SPHERE_RADIUS = 6.0

SUPERPOSE

# Pick and superpose all atoms in all loops (ie residues within 2 positions

# of any gap in the alignment):

PICK_ATOMS ATOM_TYPES = ’ALL’, SELECTION_SEGMENT = ’LOOPS’ ’’, ;

SELECTION_SEARCH = ’SEGMENT’, GAP_EXTENSION = 2 2

SUPERPOSE

# Pick and superpose all atoms within 6 angstroms of all loops (ie residues

# within 2 positions of any gap in the alignment):

PICK_ATOMS ATOM_TYPES = ’ALL’, SELECTION_SEGMENT = ’LOOPS’ ’’,;

SELECTION_SEARCH = ’SPHERE_SEGMENT’, SPHERE_RADIUS = 6.0, ;

GAP_EXTENSION = 2 2

SUPERPOSE

2.3.11 PICK HOT ATOMS — pick atoms violating restraints

Options:
VIOL REPORT CUT = 〈real : 35〉 4.5 4.5 4.5 4.5 4.5 4.5 4.5

4.5 4.5 4.5 4.5 4.5 4.5 999

999 999 999 4.5 4.5 4.5 4.5

4.5 4.5 999 6.5 4.5 4.5 4.5

4.5 4.5 999 999 999 4.5 4.5

cutoffs for selecting violated restraints

PICK HOT CUTOFF = 〈real : 1〉 4.0 radius for picking hot atoms

SELECTION MODE = 〈string : 1〉 ’ATOM’ selecting what: ’ATOM’ | ’RESIDUE’

EXTEND HOT SPOT = 〈integer : 1〉 0 whether to extend hot spots

The ENERGY command keywords

Description: This command selects those selected atoms (set 1) in the MODEL that should be optimized to
remove hot spots in the MODEL; only selected restraints are considered.

More precisely, the command first flags violated selected atoms. An atom is violated if it is part of a violated
restraint. A restraint of physical group i (Table 2.4) is violated when its relative deviation from the optimal
value is larger than specified in VIOL REPORT CUT[i]. For restraints that are based on probability density
functions, relative violation is defined as the difference between the actual and the ideal values divided by the
standard deviation (‘relative heavy violation’); energy based restraints have ad hoc definition of violations
(Table 2.2).
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The command then flags those selected atoms that are within the PICK HOT CUTOFF angstroms of any of
the already flagged atoms.

Next, if SELECTION MODE is ’RESIDUE’, all atoms in the residues that have at least one atom flagged are
also flagged. In addition, the contiguous segments of flagged residues are extended for EXTEND HOT SPOT

residues on either side.

This command is usually followed by the PICK RESTRAINTS and OPTIMIZE commands to select all
the restraints that operate on selected (hot) atoms and optimize positions of these hot atoms.

In addition to the keywords above, all the keywords for the ENERGY command also apply here.

Example:

# Example for: PICK_HOT_ATOMS

# This will pick atoms violated by some restraints (bond length restraints here),

# select restraints operating on violated atoms, and calculate the energy for

# the selected restraints only (note that a list of violated restraints

# can be obtained by the ENERGY command alone, without preceding it with

# PICK_HOT_ATOMS).

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Read the sequence, calculate its topology and coordinates:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

# Just to get some violations:

RANDOMIZE_XYZ DEVIATION = 0.03

# Create the bond length restraints and ignore the hard sphere overlap:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’bond’, DYNAMIC_SPHERE = off

# Pick hot atoms and the corresponding violated and neighbouring restraints:

PICK_HOT_ATOMS

PICK_RESTRAINTS ADD_RESTRAINTS = off

# Calculate the energy of the selected restraints and write them out in detail:

ENERGY OUTPUT = ’VERY_LONG’

2.3.12 RANDOMIZE XYZ — randomize MODEL coordinates

Options:
DEVIATION = 〈real : 1〉 0.0 coordinate randomizaton amplitude in

angstroms

RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

Description: This command randomizes the Cartesian coordinates of the selected atoms (set 1) in MODEL. If
DEVIATION is positive, the coordinates are randomized by the addition of a random number uniformly dis-
tributed in the interval from −DEVIATION to +DEVIATION angstroms. If DEVIATION is negative, the coor-
dinates are assigned a random value uniformly distributed in the interval from −DEVIATION to +DEVIATION

angstroms.

Example:
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# Example for: RANDOMIZE_XYZ

# This will randomize the X,Y,Z of the model:

READ_MODEL FILE = ’1fas’

# Change existing X,Y,Z for +- 4 angstroms:

RANDOMIZE_XYZ DEVIATION = 4.0

WRITE_MODEL FILE = ’1fas.ini1’

# Assign X,Y,Z in the range from -100 to 100 angstroms:

RANDOMIZE_XYZ DEVIATION = -100.0

WRITE_MODEL FILE = ’1fas.ini2’

2.3.13 IUPAC MODEL — standardize certain dihedral angles

Requirements: MODEL

Description: This routine swaps specific pairs of atoms within some residues of MODEL so that certain dihedral
angles are within ±90◦, satisfying the IUPAC convention [IUPAC-IUB, 1970,Kendrew et al., 1970]. These
residues, pairs of atoms, and dihedral angles are:

• Phe, Tyr: (CD1, CD2), (CE1, CE2); χ2;

• Asp: (OD1, OD2); χ2;

• Glu: (OE1, OE2); χ3;

• Arg: (NH1, NH2); χ4.

It is possible that for distorted sidechains, neither of the two possibilities satisfies the IUPAC convention. In
such a case, a warning message is written to the log file.

Example:

# This will swap certain atom names in some planar sidechains to satisfy

# the IUPAC convention.

SET OUTPUT_CONTROL = 1 1 1 1 0

READ_MODEL FILE = ’2abx’

IUPAC_MODEL

WRITE_MODEL FILE = ’2abx.iup’

2.3.14 REORDER ATOMS — standardize order of MODEL atoms

Requirements: topology library & MODEL

Description: This routine reorders atoms within the residues of MODEL so that they follow the order in the
current residue topology library.

Example:
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# Example for: REORDER_ATOMS

# This will standardize the order of atoms in the model.

# Order the atoms according to a topology library:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_MODEL FILE = ’1fas’

REORDER_ATOMS

WRITE_MODEL FILE = ’1fas.ini1’

2.3.15 ROTATE DIHEDRALS — change dihedral angles

Options:
DIHEDRALS = 〈string : 0〉 ’PHI’ ’PSI’ ’CHI1’ ’CHI2’

’CHI3’ ’CHI4’

dihedral angle type selection: ’phi’ |

’psi’ | ’omega’ | ’chi1’ | ’chi2’ |

’chi3’ | ’chi4’ | ’chi5’ | ’alpha’

CHANGE = 〈string : 1〉 ’RANDOMIZE’ what to do: ’RANDOMIZE’ | ’OPTIMIZE’

DEVIATION = 〈real : 1〉 0.0 amplitude of dihedral angle randomiza-

tion
RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

Requirements:
for CHANGE=’OPTIMIZE’: topology & MODEL & restraints
for CHANGE=’RANDOMIZE’: topology & MODEL

Description: This command changes the dihedral angles in MODEL.

CHANGE selects an optimization (when equal to ’OPTIMIZE’) or randomization (when equal to ’RANDOMIZE’):

1. When optimizing, this command finds the first selected restraint that restrains the specified dihedral
angle of each selected residue. It then sets the value of that dihedral to the most likely value. A residue
is selected if any of its atoms is in the set 1 of selected atoms.

2. When randomizing, the command changes the specified dihedral angle of each selected residue by adding
a random value distributed uniformly from −DEVIATION to +DEVIATION degrees. The value of the
random seed variable, RAND SEED, is changed after returning from the RANDOMIZE command. Use a
negative integer from −2 to −50000 as the seed for the random number generator.

DIHEDRALS can be either a vector of dihedral angle names or a single string containing all the dihedral angle
names separated by blanks. The dihedral angles involved in cyclic structures are not changed (e.g., sidechain
dihedral angles in disulfide bonds and prolines). The dihedral angles that can be changed are listed at the top
of the $RESDIH LIB library: alpha, phi, psi, omega, chi1, chi2, chi3, chi4, chi5. Dihedral angle
’alpha’ is the virtual Cα dihedral angle defined by four consecutive Cα atoms.

The bond connectivity of the MODEL has to exist before this command is executed. If you read in the model
by READ MODEL, the bond connectivity is defined by subsequent calls to READ TOPOLOGY and
GENERATE TOPOLOGY (also make sure that SEQUENCE entry does not exist in the alignment or that
no alignment is in memory).

Example:

# Example for: ROTATE_DIHEDRALS



54 CHAPTER 2. MODELLER COMMANDS

# This will optimize and randomize dihedrals in a MODEL

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Select dihedral angle types for optimization and randomization:

SET DIHEDRALS = ’phi psi omega chi1 chi2 chi3 chi4 chi5’

# Read the sequence, get its topology and coordinates:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ALIGN_CODES = ’1fas’, ATOM_FILES = ALIGN_CODES

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fas_ini’, ATOM_FILES = ALIGN_CODES

GENERATE_TOPOLOGY SEQUENCE = ’1fas_ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

ROTATE_DIHEDRALS CHANGE = ’RANDOMIZE’, RAND_SEED = -2312, DEVIATION = 90.0

WRITE_MODEL FILE = ’1fas.ini1’

# Get restraints from somewhere and optimize dihedrals:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

ROTATE_DIHEDRALS CHANGE = ’OPTIMIZE’

WRITE_MODEL FILE = ’1fas.ini2’

2.3.16 ORIENT MODEL — center and orient MODEL

Description: This command translates the MODEL so that its gravity center is at the origin of the coordinate
system and that the three principal axes of the model’s inertia ellipsoid correspond to the x, y, and z axes
of the coordinate system. It may even be used for approximate superposition if molecules have a similar
non-spherical shape. Information about the principal axes is written to the log file.

Example:

# Example for: ORIENT_MODEL

# This will orient the model along the principal axes of the inertia ellipsoid:

READ_MODEL FILE = ’1fas’

ORIENT_MODEL

WRITE_MODEL FILE = ’1fas.ini’

2.3.17 ROTATE MODEL — rotate and translate MODEL

Options:
TRANSLATION = 〈real : 3〉 0.0 0.0 0.0 translation vector for MODEL

ROTATION MATRIX = 〈real : 9〉 1 0 0 0 1 0 0 0 1 rotation matrix for MODEL

ROTATION ANGLE = 〈real : 1〉 0.0 rotation of MODEL around axis [de-

grees]

ROTATION AXIS = 〈real : 3〉 1.0 0.0 0.0 rotation axis for MODEL
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Description: This command transforms the Cartesian coordinates of MODEL.

Translation is specified by a translation vector TRANSLATION and is done first.

Rotation is specified by a rotation matrix ROTATION MATRIX that is given as a vector of 9 elements (three
rows times three columns), with column index running first: a11, a12, a13, a21, a22, a23, a31, a32, a33. The ro-
tation matrix pre-multiplies the Cartesian coordinate vectors. The matrix corresponds to the view matrix of
Quanta and to the rotation matrix of Molscript.

The second kind of rotation is specified by a screw transformation, given by the ROTATION AXIS axis and
ROTATION ANGLE rotation around the axis (in degrees). This is done last.

If only some transformations are desired, set the other values to 0.

Example:

# Example for: ROTATE_MODEL

# This will orient a model as specified (no change in this example):

# Read the structure and transform it:

READ_MODEL FILE = ’1fas’

ROTATE_MODEL TRANSLATION = 0 0 0, ROTATION_MATRIX = 1 0 0 ;

0 1 0 ;

0 0 1,;

ROTATION_ANGLE = 0, ROTATION_AXIS = 1 1 1

WRITE_MODEL FILE = ’1fas.ini’

2.3.18 WRITE DATA — write derivative MODEL data

Options:
FILE = 〈string : 1〉 ’default’ root of output filename(s)

ACCESSIBILITY TYPE = 〈integer : 1〉 8 type of solvent accessibility: 1–10

SURFTYP = 〈integer : 1〉 1 Surface Type for accessibility calcula-

tions 1= contact; 2=surface

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

RADII FACTOR = 〈real : 1〉 0.82 factor for van der Waals radii

PSA INTEGRATION STEP = 〈real : 1〉 0.1 integration step for WRITE DATA

PROBE RADIUS = 〈real : 1〉 1.4 probe radius for WRITE DATA

NUMBER OF STEPS = 〈integer : 1〉 1 for calculating cavity volume

GRID UNIT = 〈real : 1〉 1 grid size for cavities calculation in

WRITE DATA
ACCURACY BORDER = 〈logical : 1〉 off whether or not the closure on the surface

accepts diagonal cords

RCUTL = 〈real : 1〉 5.0 Radius of cut-off for a long sphere of

atoms
RCUTP = 〈real : 1〉 3.0 Radius of cut-off for a short sphere of

atoms
ORIENT = 〈logical : 1〉 off whether or not to orient structure before

volume calculation in WRITE DATA
OUTPUT = 〈string : 1〉 ’LONG’ what to calculate and write out: ’ALL’

| ’PSA’ | ’ATOMIC SOL’ | ’NGH’ |

’DIH’ | ’SSM’ | ’CRV’ | ’CAV’ |

’CROSS-SECTIONS’
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Requirements: topology file & TOPOLOGY MODEL

Description: This command writes the selected types of data about the MODEL to a corresponding file and to
the ‘fourth’ column of the model. The root of the output filenames is given by the FILE variable. In addition
to the output files, the Biso field of the model (‘fourth column’ in the PDB file) will be assigned the last
selected property from the following list: atomic or residue accessibility, dihedral type ACCESSIBILITY TYPE

(from 1 to 9 for α, Φ, Ψ, ω, χ1, χ2, χ3, χ4, and χ5; where α is the virtual dihedral angle between four
successive Cα atoms), number of residue neighbors, the secondary structure type, and the local mainchain

curvature. For accessibility, when OUTPUT contains ATOMIC SOL, atomic accessibilities in Å
2

are assigned to
Biso, otherwise residue accessibility of type ACCESSIBILITY TYPE (from 1 to 10, for the columns in the .psa
file) is assigned. If SURFTYP is 1, contact accessibility is calculated; if 2, surface accessibility is returned.

The data to be calculated are specified by concatenating the corresponding keywords in the OUTPUT variable:

• ’ALL’: All types of data are written to the corresponding files.

• ’PSA’: The atomic and residue solvent accessibilities are written to the .sol and .psa files, respec-
tively. The algorithm for the solvent contact areas is described in [Richmond & Richards, 1978]. The
normalization for the fractional areas is carried out as described in [Hubbard & Blundell, 1987], with
the normalization factors courtesy of Simon Hubbard (personal communication). The single reference is
Šali & Overington, 1994. Accessibilities are calculated with scaled radii from the $MODELS LIB library,
as specified by TOPOLOGY MODEL. The radii are scaled by RADII FACTOR, which should usually be
set to 1.

• ’CAV’: The protein and internal cavity volumes are written out. The calculation on a grid is used. The
grid unit is specified by GRID UNIT in angstroms (say 1.4Å). The radii are scaled by RADII FACTOR,
which should usually be set to 1. The cross-sections are written to file FILE.cav when OUTPUT contains
CROSS-SECTIONS. The NUMBER OF STEPS is the number of small shifts along x, y, and z that are used
in the averaging of the protein and cavity volumes with respect to small changes in the relative position
of the protein and the grid; the total number of calculations is therefore equal to the third power of
NUMBER OF STEPS. If ORIENT is on, the structure is oriented before the volume calculation such that
the moment of inertia are parallel to the x, y, and z coordinate axes (this orientation minimizes the size
of the grid). However, the coordinates of the MODEL are not changed upon exit from this routine (you
need to use ORIENT MODEL to change the orientation of the MODEL).

• ’NGH’: Residue neighbors of each residue are listed to a .ngh file. The Modeller definition of a residue–
residue contact used in restraints derivation is applied [Šali & Blundell, 1993]: Any pair of residues that
has any pair of atoms within 6Å of each other are in contact.

• ’DIH’: All the dihedral angle types defined in the $RESDIH LIB library (virtual Cα, mainchain, and
sidechain dihedral angles) are written to a .dih file.

• ’SSM’: Secondary structure assignments are written to a .ssm file. The algorithm for secondary structure
assignment depends on the Cα positions only and is based on the distance matrix idea described in
[Richards & Kundrot, 1988]. For each secondary structure type, a ‘library’ Cα distance matrix was
calculated by averaging distance matrices for several secondary structure segments from a few high
resolution protein structures. Program Dssp was used to assign these secondary structure segments
[Kabsch & Sander, 1983]. Outlier distances were omitted from the averaging. Currently, there are only
two matrices: one for the α-helix (secondary structure type 2) and one for the β-strand (type 1). The
algorithm for secondary structure assignment is as follows:

1. For each secondary structure type (begin with a helix, which can thus overwrite parts of strand if
they overlap):

– Define the degree of the current secondary structure fit for each Cα atom by Drms deviation
(P1) and maximal distance difference (P2) obtained by comparing the library distance matrix
with the distance matrix for a segment starting at the given Cα position;

– Assign the current secondary structure type to all Cα’s in all segments whose Drms deviation
and maximal distance difference are less than some cutoffs (P1 < cut1, P1 < cut2) and are not
already assigned to ‘earlier’ secondary structure types;
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2. Split kinked contiguous segments of the same type into separate segments:
Kinking residues have both DRMS and maximal distance difference beyond their respective cutoffs
(P1 > cut3, P2 > cut4). The actual single kink residue separating the two new segments of the same
type is the central kinking residue. Note: we are assuming that there are no multiple kinks within
one contiguous segment of residues of the same secondary structure type. The kink residue type is
−2.

3. If the current secondary structure type is β-strand: Eliminate those runs of strand residues that are
not close enough to other strand residues separated by at least two other residues: P3 is minimal
distance to a non-neighboring residue of the strand type (P3 < cut3). Currently, only one pass of
this elimination is done, but could be repeated until self-consistency.

4. Eliminate those segments that are shorter than the cutoff (cut6) length (e.g., 5 or 6).

5. Remove the isolated kinking residues (those that occur on their own or begin or end a segment).

• ’CRV’: Local mainchain curvatures are written to a .crv file. Local mainchain curvature at residue i is
defined as the angle between the least-squares lines through Cα atoms i − 3 to i and i to i + 3.

Example:

# Example for: WRITE_DATA

# This will calculate solvent accessibility, dihedral angles, and

# residue-residue neighbors for a structure in the PDB file.

SET OUTPUT_CONTROL = 1 1 1 1 1

# Get topology library for radii and the model without waters and HETATMs:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

SET HETATM_IO = off, WATER_IO = off

READ_MODEL FILE = ’1fas’

# Calculate residue solvent accessibilities, dihedral angles, and

# residue-residue neighbors:

SET RADII_FACTOR = 1.0 # The default is 0.82 (for soft-sphere restraints)

WRITE_DATA FILE = ’1fas’, OUTPUT = ’PSA DIH NGH SSM CRV’

2.3.19 WRITE PDB XREF — write residue number/index correspondence

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

MODEL SEGMENT = 〈string : 2〉 ’FIRST:@’ ’LAST:’ segment to be read in

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

Description: This command writes the correspondence between the PDB residue numbers and residue indices for
the selected part of the MODEL. It is more useful than one would think because of its interaction with the
alignment data and the option to use wild characters to specify the beginning and ending residues.

Example:

# Example for: WRITE_PDB_XREF
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# This writes out information useful for relating PDB residue numbers with

# residue indices.

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_MODEL FILE = ’2abx.atm’, MODEL_SEGMENT = ’FIRST:@’ ’END:’

SEQUENCE_TO_ALI ALIGN_CODES = ’2abx’

WRITE_PDB_XREF FILE = ’2abx.xref1’,MODEL_SEGMENT=’FIRST:@’ ’END:’ # if not found, 1, NRES used

WRITE_PDB_XREF FILE = ’2abx.xref2’,MODEL_SEGMENT=’1:’ ’50:’ # You can use string resid’s

WRITE_PDB_XREF FILE = ’2abx.xref3’,MODEL_SEGMENT=’!2’ ’!50’ # You can use integer resid’s

WRITE_PDB_XREF FILE = ’2abx.xref4’,MODEL_SEGMENT=’2abx’ ’2abx’ # You can even use the alignment

# specs, but not with ALIGN_CODES

# that start with ’!’

WRITE_PDB_XREF FILE = ’2abx.xref5’,MODEL_SEGMENT=’!2’ ’50:’ # You can mix the specs

WRITE_PDB_XREF FILE = ’2abx.xref6’,MODEL_SEGMENT=’!2’ ’END:’ # You can mix the specs

2.3.20 MAKE REGION — define a random surface patch of atoms

Options:
ATOM ACCESSIBILITY = 〈real : 1〉 1.0 accessible atoms for MAKE REGION

REGION SIZE = 〈integer : 1〉 20 size of exposed region in

MAKE REGION
RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

Description: This command defines a contiguous patch of exposed atoms of the specified size. First, the exposed

atoms in MODEL are identified by using the ATOM ACCESSIBILITY cutoff (in Å
2
). The seed atom is picked

randomly among the exposed atoms. The patch is expanded by iteratively adding the exposed atom that is
closest to the gravity center of the currently selected patch atoms. Thus, the patch is defined deterministically
once the seed atom is picked. The patch is defined by setting the fourth column parameter (Biso) to 1 for
the patch atoms and to 0 for the remaining atoms. The “temperature” color option of Rasmol can be used
to display the patch graphically.

To obtain surface patches that look good in visual inspection, it is necessary to use a non-obvious scaling
factor for atomic radii and probe radius for solvent calculation by WRITE DATA, as well as the accessibility
cutoff for MAKE REGION.

Example:

# Example for: MAKE_REGION

# This will define a random contiguous patch of atoms on a surface of the

# protein.

SET OUTPUT_CONTROL = 1 1 1 1 0

# Read the PDB file

READ_MODEL FILE = ’../atom_files/pdb1fdn.ent’

# Calculate atomic accessibilities with appropriate probe_radius

WRITE_DATA OUTPUT = ’PSA ATOMIC_SOL’, RADII_FACTOR = 1.6, ;

PSA_INTEGRATION_STEP = 0.05, PROBE_RADIUS = 0.1
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# Get the "random" patch of exposed atoms on the surface

MAKE_REGION ATOM_ACCESSIBILITY = 0.5, REGION_SIZE = 35, RAND_SEED = -18343

# Write out a PDB file with the patch indicated by Biso = 1:

WRITE_MODEL FILE = ’1fdn.reg’
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2.4 Comparison and searching of sequences and structures

This section describes the format of the alignment file and commands for reading, writing, making, analyzing and
using the alignments of sequences and structures (pairwise and multiple). It also includes a description of the
command for searching a sequence database. For the underlying dynamic programming methods see Section 5.1.

2.4.1 Alignment file format

The preferred format for comparative modeling is related to the PIR database format:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 : :106 : :ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

The first line of each sequence entry specifies the protein code after the >P1; line identifier. The line identifier
must occur at the beginning of the line. For example, 1fdx is the protein code of the first entry in the alignment
above. The protein code corresponds to the ALIGN CODES variable.

The second line of each entry contains information necessary to extract atomic coordinates of the segment from
the original PDB coordinate set. The fields in this line are separated by colon characters, ‘:’. The fields are as
follows:

Field 1: A specification of whether or not 3D structure is available and of the type of the method used to obtain
the structure (structureX, X-ray; structureN, NMR; structureM, model; sequence, sequence). Only
structure is also a valid value.

Field 2: The PDB code. While the protein code in the first line of an entry, which is used to identify the entry, must
be unique for all proteins in the file, the PDB code in this field, which is used to get structural data, does
not have to be unique. It is a good idea to use the PDB code with an optional chain identifier as the protein
code. The PDB code corresponds to the ATOM FILES variable and can also contain the full atom filename,
directory included.

Fields 3–6: The residue identifiers (see below) for the first (fields 3–4) and last residue (fields 5–6) of the sequence in the
subsequent lines. There is no need to edit the coordinate file if a contiguous sequence of residues is required
— simply specify the beginning and ending residues of the required contiguous region of the chain. If the
beginning residue is not found, no segment is read in. If the ending residue identifier is not found in the
coordinate file, the last residue in the coordinate file is used. By default, the whole file is read in.

The unspecified beginning and ending residue numbers and chain id’s for a structure entry in an alignment
file are taken automatically from the corresponding atom file, if possible. The first matching sequence in the
atom file that also satisfies the explicitly specified residue numbers and chain id’s is used. A residue number
is not specified when a blank character or a dot, ‘.’, is given. A chain id is not specified when a dot, ‘.’, is
given. This slight difference between residue and chain id’s is necessary because a blank character is a valid
chain id.

Field 7: Protein name. Optional.

Field 8: Source of the protein. Optional.

Field 9: Resolution of the crystallographic analysis. Optional.
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Field 10: R-factor of the crystallographic analysis. Optional.

A residue identifier consists of a residue number and an optional chain identifier. They must be separated by a
colon, ‘:’. For example, ’10I:A’ is residue number ’10I’ in chain ’A’, and ’6’ or ’6:’ is residue number ’6’ in
a chain without a name. Free format can be used, that is the blank characters are ignored. The residue number is
a string of up to 5 characters long, as found in the PDB atom file and consists of the PDB residue number proper
(22X,A4 in the PDB ATOM record) and PDB residue insertion code (26X, A1). The chain identifier is a single
character, as found in the PDB atom file (21X,A1).

The residue number for the first position (resID1) in the MODEL SEGMENT range ’resID1:chainID1

resID2:chainID2’ can be either a real residue number or ’FIRST’ (which indicates the first residue in a matching
chain). The residue number for the second position (resID2) in the MODEL SEGMENT range can be either: (1) a
real residue number; (2) ’LAST’ (which indicates the last residue in a matching chain); or ’END’ (which indicates
the last residue in the PDB file). The chain id for either position in the MODEL SEGMENT range (chainID1 or
chainID2) can be either: (1) a real chain id (including a blank/space/null/empty); or ’@’, which matches any chain
id.

Examples, assuming a two chain PDB file (chains A and B):

• ’15:A 75:A’ reads residues 15 to 75 in chain A.

• ’FIRST:@ 75:@’ reads the first 75 residues in chain A (the first chain).

• ’FIRST:@ LAST:@’ reads all residues in chain A, assuming ’FIRST’ is not a real number of the non-first
residue in chain A.

• ’10:@ LAST:’ reads all residues from 10 in chain A to the end of the file (chain id for the last residue is
irrelevant), again assuming ’LAST’ is not a real residue number of a non-last residue.

• ’FIRST:@ END:’ reads the whole file no matter what, the chainID is ignored completely.

For the SELECTION SEGMENT the string containing ’@’ will match any residue number and chainID. For
example, ’@:A’ is the first residue in chain ’A’ and ’@:@’ is the first residue in the coordinate file. The last chain
can not be specified in a general way, except if it is the last residue in the file.

When an alignment file is used in conjunction with structural information, the first two fields must be filled in,
the rest of them can be empty or even missing entirely. If the alignment is not used in conjunction with structural
data, all but the first field can be empty. This means that in comparative modeling, the template structures must
have at least the first two fields specified while the target sequence must only have the first field filled in. Thus, a
simple second line of an entry in an alignment file in the ’PIR’ format is

structure:pdb_file:.:.:.:.

This entry will result in reading from PDB file pdb file the structure segment corresponding to the sequence
in the subsequent lines of the alignment entry.

The fields that do not exist are assigned blank values. Thus,

structure:pdb_file

is equivalent to

structure:pdb_file: : : : : : : :

which will achieve what was probably intended (read in the structure segment from file pdb file that corre-
sponds to the sequence in the subsequent lines of the alignment entry) only if the chain id is a blank character.

Each sequence must be terminated by the terminating character, ‘*’.

When the first character of the sequence line is the terminating character, ‘*’, the sequence is obtained from
the specified PDB coordinate file (Section 2.1.4).
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Chain breaks are indicated by ‘/’. There should not be more than one chain break character to indicate a single
chain break (use gap characters instead, ‘-’). All residue types specified in $RESTYP LIB, but not patching residue
types, are allowed; there are on the order of 100 residue types specified in the $RESTYP LIB library. To add your
own residue types to this library, see Section 1.8, Question 17.

The alignment file can contain any number of blank lines between the protein entries. Comment lines can occur
outside protein entries and must begin with the identifiers ‘C;’ or ‘R;’ as the first two characters in the line.

An alignment file is also used to input non-aligned sequences.

The best way to generate initial alignment files containing PDB sequences, which can later be edited by hand,
is to follow this example:

# Specify the PDB and protein codes in the alignment:

SET ATOM_FILES = ’1fdx’ ’5fd1’, ALIGN_CODES = ’1fdx’ ’5fd1’

READ_MODEL FILE = ’1fdx’, MODEL_SEGMENT = ’@:@’ ’X:X’ # Read the whole 1fdx atom file

SEQUENCE_TO_ALI # Copy the residues to the alignment array

READ_MODEL FILE = ’5fd1’, MODEL_SEGMENT = ’1:’ ’63:’ # Read 5fd1 atom file from 1-63

SEQUENCE_TO_ALI ADD_SEQUENCE = on # Add this segment to the alignment array

MALIGN GAP_PENALTIES = -500 -300 # align them by sequence

WRITE_ALIGNMENT FILE = ’fer1-seq.ali’

MALIGN3D GAP_PENALTIES = 0.0 2.0 # align them by structure

CHECK_ALIGNMENT # check the alignment for its suitability for modeling

WRITE_ALIGNMENT FILE = ’fer1.ali’

2.4.2 READ ALIGNMENT — read sequences and/or their alignment

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ALIGNMENT FORMAT = 〈string : 1〉 ’PIR’ format of the alignment file: ’PIR’

| ’PAP’ | ’QUANTA’ | ’INSIGHT’ |

’FASTA’

REMOVE GAPS = 〈logical : 1〉 on whether to remove all-gap positions in

input alignment

ADD SEQUENCE = 〈logical : 1〉 off whether to add the new sequences to the

existing alignment

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

CLOSE FILE = 〈logical : 1〉 on whether or not to close the alignment file

at the end of READ ALIGNMENT
REWIND FILE = 〈logical : 1〉 off whether or not to rewind the alignment

file at the start of READ ALIGNMENT
END OF FILE = 〈integer : 1〉 0 0 | 1 whether or not reached end of file

during READ ALIGNMENT

Output: MODELLER STATUS = 〈integer : 1〉, NUMB OF SEQUENCES, ALIGN CODES

Description: This command reads the sequence(s) and/or their alignment from a text file. Only sequences with
the specified codes are read in; ALIGN CODES = ’all’ can be used to read all sequences.

There are several alignment formats:

1. The ’PIR’ format resembles that of the PIR sequence database. It is described in Section 2.4.1 and is
used for comparative modeling because it allows for additional data about the proteins that are useful
for automated access to the atomic coordinates.
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2. The ’FASTA’ format resembles the ’PIR’ format but has a missing second ‘comment’ line and a missing
star at the end of each sequence.

3. The ’PAP’ format is nicer to look at but contains less information and is not used by other programs.
When used in conjunction with PDB files, the PDB files must contain exactly the residues in the
sequences in the ’PAP’ file; i.e., it is not possible to use only a segment of a PDB file. In addition, the
’PAP’ protein codes must be expandable into proper PDB atom filenames, as described in Section 2.1.4.
The protein sequence can now start in any column (this was limited to column 11 before release 5).

4. The ’QUANTA’ format can be used to communicate with the Quanta program. You are not supposed
to mix ’QUANTA’ format with any other format because the ’QUANTA’ format contains residue numbers
which do not occur in the other formats and are difficult to guess correctly. Modeller can write out
alignments in the ’QUANTA’ format but cannot read them in.

5. The ’INSIGHT’ format is very similar to the ’PAP’ format and can sometimes be used to communicate
with the InsightII program. When used in conjunction with PDB files, the same rules as for the ’PAP’

format apply.

If REMOVE GAPS = on, positions with gaps in all selected sequences are removed from the alignment.

If ADD SEQUENCE is on, the new sequences are added to the current ones, otherwise the old sequences are
deleted.

Ordinarily, the alignment file is closed at the end of this commmand. However, when reading ’PIR’ or ’FASTA’
format files, if CLOSE FILE is off, then the file is left open. Subsequent calls to READ ALIGNMENT
will then resume at this point in the file, provided they set REWIND FILE to off. The END OF FILE variable
is set to 1 if Modeller reached the end of the ’PIR’ or ’FASTA’ file during the read, or 0 otherwise.

Example:

# Example for: READ_ALIGNMENT, WRITE_ALIGNMENT,

# READ_ALIGNMENT2, WRITE_ALIGNMENT2,

# CHECK_ALIGNMENT

# Read an alignment, write it out in the ’PAP’ format, and

# check the alignment of the N-1 structures as well as the

# alignment of the N-th sequence with each of the N-1 structures.

SET OUTPUT_CONTROL = 1 1 1 1 0

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’

WRITE_ALIGNMENT FILE = ’toxin.fasta’, ALIGNMENT_FORMAT = ’FASTA’

CHECK_ALIGNMENT

2.4.3 READ ALIGNMENT2 — read 2nd alignment

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ALIGN CODES2 = 〈string : 0〉 ’all’ align codes for alignment2

ALIGNMENT FORMAT = 〈string : 1〉 ’PIR’ format of the alignment file: ’PIR’

| ’PAP’ | ’QUANTA’ | ’INSIGHT’ |

’FASTA’

REMOVE GAPS = 〈logical : 1〉 on whether to remove all-gap positions in

input alignment
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STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command reads the sequences and/or their alignment from a text file into the second alignment
array. The two alignments can be compared by the COMPARE ALIGNMENTS command.

Example: See READ ALIGNMENT command.

2.4.4 CHECK ALIGNMENT — check alignment for modeling

Options:
ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

Description: This command evaluates an alignment to be used for comparative modeling. It uses two criteria:

First, it checks the alignment of the template structures (all but the last entry in the alignment): For each
pairwise superposition of the templates, it reports those equivalent pairs of Cα atoms that are more than
6Å away from each other. Such pairs are almost certainly misaligned. The pairwise superpositions are done
using the Cα atoms and the given alignment.

Second, the command checks the alignment of the target sequence (the last entry in the alignment) with each
of the templates: For all consecutive pairs of Cα atoms in the target, it calculates the distance between the
two equivalent Cα atoms in each of the templates. If the distance is longer than 8Å, it is reported. In such a
case, the alignment between the template and the target is almost certainly incorrect.

Example:

# Example for: READ_ALIGNMENT, WRITE_ALIGNMENT,

# READ_ALIGNMENT2, WRITE_ALIGNMENT2,

# CHECK_ALIGNMENT

# Read an alignment, write it out in the ’PAP’ format, and

# check the alignment of the N-1 structures as well as the

# alignment of the N-th sequence with each of the N-1 structures.

SET OUTPUT_CONTROL = 1 1 1 1 0

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’

WRITE_ALIGNMENT FILE = ’toxin.fasta’, ALIGNMENT_FORMAT = ’FASTA’

CHECK_ALIGNMENT

2.4.5 COLOR ALN MODEL — color MODEL according to alignment

Description: This command colors MODEL according to a given alignment between MODEL and a sequence.
MODEL has to be the first protein in the alignment. The second protein can be any sequence, with or
without known structure. The MODEL can be displayed on the screen, colored by ‘the fourth parameter’
and inspected for the structural context of deletions and insertions. This is useful in optimizing the alignment
for comparative modeling. The isotropic temperature factors in MODEL are set as follows:
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• 0, for those regions that have residues in both MODEL and the sequence (blue in Rasmol; light green
in Quanta);

• 1, for the two residues that span regions occurring in the sequence but not in MODEL (green in Rasmol;
pink in Quanta);

• 2, regions that occur in MODEL but are deleted from the sequence (red in Rasmol; bright green in
Quanta).

Example:

# Example for: COLOR_ALN_MODEL

# Two demos:

#

# 1) Use a given alignment to color a structure according to

# insertions and deletions in a pairwise alignment.

#

# 2) Superpose two 3D structure and do (1).

# Demo 1:

READ_MODEL FILE = ’1nbt’

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1nbt’ ’1fas’, ;

REMOVE_GAPS = on

COLOR_ALN_MODEL

WRITE_MODEL FILE = ’1nbt-1.clr’

# Demo 2:

READ_MODEL FILE = ’1nbt’, MODEL_SEGMENT = ’1:A’ ’66:A’

SEQUENCE_TO_ALI ALIGN_CODES = ’1nbt’, ATOM_FILES = ALIGN_CODES

READ_MODEL FILE = ’1fas’, MODEL_SEGMENT = ’1:’ ’61:’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fas’, ;

ATOM_FILES = ALIGN_CODES

ALIGN GAP_PENALTIES_1D= -600 -400

MALIGN3D GAP_PENALTIES_3D= 0 3.0

WRITE_ALIGNMENT FILE = ’color_aln_model.pap’, ALIGNMENT_FORMAT = ’PAP’

READ_MODEL FILE = ’1nbt’, MODEL_SEGMENT = ’1:A’ ’66:A’

COLOR_ALN_MODEL

WRITE_MODEL FILE = ’1nbt-2.clr’

2.4.6 COMPARE ALIGNMENTS — compare two alignments

Requirements: READ ALIGNMENT & READ ALIGNMENT2

Description: This command compares two pairwise alignments read by the READ ALIGNMENT and
READ ALIGNMENT2 commands. The alignment of the first sequence with the second sequence in
ALIGNMENT is evaluated with respect to ALIGNMENT2. The numbers are not symmetric; i.e., they will
change if the sequences or alignments are swapped. The output in the log file is self-explanatory.

Example:

# Example for: COMPARE_ALIGNMENTS, SEQUENCE_TO_ALI
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# Compare two alignments of two proteins each. In this case, the first

# alignment is a sequence-sequence alignment and the second alignment

# is a structure-structure alignment.

# ATOM_FILES and ALIGN_CODES have to be set explicitly so that the alignment

# file has this information (ATOM_FILES is copied to the alignment array

# during SEQUENCE_TO_ALI):

SET OUTPUT_CONTROL = 1 1 1 1 0

# Generate and save sequence-sequence alignment:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ALIGN_CODES = ’1fas’, ATOM_FILES = ALIGN_CODES

READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’2ctx’, ATOM_FILES = ALIGN_CODES

ALIGN GAP_PENALTIES_1D= -600 -400

WRITE_ALIGNMENT FILE = ’toxin-seq.ali’

# Generate and save structure-structure alignment:

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

SET ADD_SEQUENCE = off

# Compare the two pairwise alignments:

READ_ALIGNMENT FILE = ’toxin-seq.ali’, ALIGN_CODES = ’all’

READ_ALIGNMENT2 FILE = ’toxin-str.ali’, ALIGN_CODES2 = ’all’

COMPARE_ALIGNMENTS

2.4.7 SEQUENCE TO ALI — copy MODEL sequence and coordinates to alignment

Options:
ADD SEQUENCE = 〈logical : 1〉 off whether to add the new sequences to the

existing alignment

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

Output: NUMB OF SEQUENCES, ALIGN CODES, ATOM FILES

Description: This command copies the sequence and coordinates of the MODEL to the alignment arrays.

If ADD SEQUENCE is on the sequence is added to the sequences that are already in the alignment arrays,
otherwise it becomes the only sequence in those arrays.

When sequence i is added, the corresponding elements of ALIGN CODES and ATOM FILES are used to set
the protein and PDB code fields in the alignment file, respectively.

Example: See COMPARE ALIGNMENTS command.
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2.4.8 WRITE ALIGNMENT — write sequences and/or their alignment

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ALIGNMENT FORMAT = 〈string : 1〉 ’PIR’ format of the alignment file: ’PIR’

| ’PAP’ | ’QUANTA’ | ’INSIGHT’ |

’FASTA’

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

ALIGN ALIGNMENT = 〈logical : 1〉 off writing out an alignment of alignments

(for *)

ALIGNMENT FEATURES = 〈string : 1〉 ’INDICES CONSERVATION’ what alignment features to write out:

’ACCURACY’ | ’HELIX’ | ’BETA’ |

’ACCESSIBILITY’ | ’STRAIGHTNESS’ |

’CONSERVATION’ | ’INDICES’ | ’ALL’ |

’GAPS’

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

Description: This command writes the whole alignment to a text file.

The ’PAP’ format, which corresponds to a relatively nice looking alignment, has several additional formatting
options that can be selected by the ALIGNMENT FEATURES variable. This scalar variable can contain any
combination of the following keywords:

• ’INDICES’, the alignment position indices;

• ’CONSERVATION’, a star for each absolutely conserved position;

• ’ACCURACY’, the alignment accuracy indices, scaled between 0–9, as calculated by ALIGN -
CONSENSUS;

• ’HELIX’, average content of helical residues for structures 1 – ALIGN BLOCK at each position, 0 for 0%
and 9 for 100%, as calculated by ALIGN2D.

• ’BETA’, average content of β-strand residues for structures 1 – ALIGN BLOCK at each position, 0 for
0% and 9 for 100%, as calculated ‘by ALIGN2D.

• ’ACCESSIBILITY’, average relative sidechain buriedness for structures 1 – ALIGN BLOCK, 0 for 0%
(100% accessibility) and 9 for 100% (0% accessibility), as calculated by ALIGN2D;

• ’STRAIGHTNESS’, average mainchain straightness structures 1 – ALIGN BLOCK at each position 0 for
0% and 9 for 100%, as calculated by ALIGN2D.

Options ’HELIX’, ’BETA’, ’ACCESSIBILITY’, and ’STRAIGHTNESS’ are valid only after executing command
ALIGN2D, where the corresponding quantities are defined. They refer to the 3D profile defined for the
first ALIGN BLOCK structures (run ALIGN2D with FIT = off to prepare these structural data with-
out changing the input alignment). Similarly, the ’ACCURACY’ option is valid only after the CONSEN-
SUS ALIGNMENT command.

ALIGN ALIGNMENT and ALIGN BLOCK are used to ensure correct indication of identical alignment positions,
depending on whether sequences or two blocks of sequences were aligned: For sequences (ALIGN ALIGNMENT

= off and ALIGN BLOCK is ignored), a ’*’ indicating a conserved position is printed where all sequences
have the same residue type. For blocks (ALIGN ALIGNMENT = on and ALIGN BLOCK indicates the last
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sequence of the first block), a ’*’ is printed only where the two blocks have the same order of residue types
(there has to be the same number of sequences in both blocks). The blocks option is useful when comparing
two alignments, possibly aligned by the ALIGN command.

Example: See READ ALIGNMENT command.

2.4.9 EDIT ALIGNMENT — edit overhangs in alignment

Options:
EDIT ALIGN CODES = 〈string : 0〉 ’last’ codes of proteins in the alignment to be

edited
BASE ALIGN CODES = 〈string : 0〉 ’rest’ codes of proteins in the alignment to be

used as the base
MIN BASE ENTRIES = 〈integer : 1〉 1 minimal number of templates in

EDIT ALIGNMENT
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

HETATM IO = 〈logical : 1〉 off whether to read HETATM coordinates

WATER IO = 〈logical : 1〉 off whether to read water coordinates

HYDROGEN IO = 〈logical : 1〉 off whether to read hydrogen coordinates

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

Description: This command edits the overhangs in the alignment.

EDIT ALIGN CODES specifies the alignment codes for the alignment entries whose overhangs are to be cut;
in addition, all or last can be used.

BASE ALIGN CODES specifies the alignment codes for the alignment entries that are used to determine
the extent of the overhangs to be cut from the edited entries; in addition, all or rest (relative to
EDIT ALIGN CODES) can be used.

The same entries can be cut and used for determining the base.

The base of the alignment is determined by the first and last alignment positions that have at least
MIN BASE ENTRIES entries that started by that position, beginning from the first and last alignment posi-
tions, respectively.

The cuts are shortened by OVERHANG residues respectively, so that reasonably short terminii can be easily
modeled ab initio if desired.

The HETATM IO, WATER IO, HYDROGEN IO, and ATOM FILES DIRECTORY keywords also apply because
the beginning and ending residue numbers for the ‘structure’ entries in the alignment are renumbered
automatically by reading the appropriate atom files.

Example:

# Example for: EDIT_ALIGNMENT

# Read an alignment, write it out in the ’PAP’ format, with overhangs cut.

SET OUTPUT_CONTROL = 1 1 1 1 0

# Cut overhangs in the last sequences that are longer than 3 residues

# relative to the longest remaining entry in the alignment:

SET EDIT_ALIGN_CODES = ’last’

SET BASE_ALIGN_CODES = ’rest’, MIN_BASE_ENTRIES = 1

SET OVERHANG = 3
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READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’, ALIGNMENT_FORMAT = ’PIR’

WRITE_ALIGNMENT FILE = ’toxin.pap’, ALIGNMENT_FORMAT = ’PAP’

EDIT_ALIGNMENT

WRITE_ALIGNMENT FILE = ’toxin-1.pir’, ALIGNMENT_FORMAT = ’PIR’

WRITE_ALIGNMENT FILE = ’toxin-1.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.10 DESCRIBE — describe proteins

Options:
ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

Requirements: [alignment]

Description: This command outputs basic data about the proteins whose atom filenames are specified by ATOM -

FILES or ALIGN CODES. An alternative specification of the proteins to be described can be provided by the
alignment in memory; i.e., READ ALIGNMENT followed by DESCRIBE will describe all the proteins
in the alignment. This command is useful for preparation before comparative modeling because it summarizes
disulfides, cis-prolines, charges, chain breaks, etc. When an alignment is given, results depending only on the
amino acid sequences are still written out even if some atom files do not exist.

Example:

# Example for: DESCRIBE

# Describe the sequences and structures in the alignment.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

DESCRIBE

2.4.11 ID TABLE — calculate percentage sequence identities

Options:
ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

MATRIX FILE = 〈string : 1〉 ’family.mat’ the filename of the pairwise distance ma-

trix
OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

Requirements: alignment

Description: This command calculates percentage residue identities for all pairs of sequences in the current
alignment. The percentage residue identity is defined as the number of identical residues divided by the
length of the shorter sequence.

The ALIGN CODES variable is only used for output, not in calculations, so it does not have to be set.
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In addition to the output in the log file, this routine creates file OUTPUT DIRECTORY/MATRIX FILE with
pairwise sequence distances that can be used directly as the input to the tree making programs of the Phylip

package, such as Kitsch [Felsenstein, 1985], and also for the DENDROGRAM and PRINCIPAL -
COMPONENTS commands. A more general version of this command, which allows a user specified
measure for residue–residue differences is SEQUENCE COMPARISON.

Example:

# Example for: ID_TABLE, SEQUENCE_COMPARISON, PRINCIPAL_COMPONENTS, DENDROGRAM

# Pairwise sequence identity between sequences in the alignment.

# Read all entries in this alignment:

READ_ALIGNMENT FILE = ’toxin.ali’

# Calculate pairwise sequence identities:

ID_TABLE MATRIX_FILE = ’toxin_id.mat’

# Calculate pairwise sequence similarities:

SET RR_FILE = ’$(LIB)/as1.sim.mat’, MAX_GAPS_MATCH = 1

READ_MODEL FILE = ’2ctx’, MODEL_SEGMENT = ’1:’ ’71:’

SEQUENCE_COMPARISON MATRIX_FILE = ’toxin.mat’, VARIABILITY_FILE = ’toxin.var’

WRITE_MODEL FILE = ’2ctx.var’

# Do principal components clustering using sequence similarities:

PRINCIPAL_COMPONENTS MATRIX_FILE = ’toxin.mat’, FILE = ’toxin.princ’

# Dendrogram in the log file:

DENDROGRAM

2.4.12 SEQUENCE COMPARISON — compare sequences in alignment

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

MATRIX FILE = 〈string : 1〉 ’family.mat’ the filename of the pairwise distance ma-

trix
VARIABILITY FILE = 〈string : 1〉 ’undefined’ output filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

MAX GAPS MATCH = 〈integer : 1〉 1

Description: The pairwise similarity of sequences in the current alignment is evaluated using a user specified
residue–residue scores file.

The residue–residue scores, including gap–residue, and gap–gap scores, are read from file RR FILE. The
sequence pair score is equal to the average pairwise residue–residue score for all alignment positions that have
at most MAX GAPS MATCH gaps (1 by default). If the gap–residue and gap–gap scores are not defined in
MATRIX FILE, they are set to the worst and best residue–residue score, respectively. If MATRIX FILE is a
similarity matrix, it is converted into a distance matrix (x′ = −x + xmax).

The comparison matrix is written in the Phylip format to file MATRIX FILE.
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The family variability as a function of alignment position is calculated as the Rms deviation of all residue –
residue scores at a given position, but only for those pairs of residues that have at most MAX GAPS MATCH

gaps (0, 1, or 2). The variability is written to file VARIABILITY FILE, as is the number of pairwise comparisons
contributing to each positional variability.

Example: See ID TABLE command.

2.4.13 DENDROGRAM — clustering

Options:
MATRIX FILE = 〈string : 1〉 ’family.mat’ the filename of the pairwise distance ma-

trix

Description: This command calculates a clustering tree from the input matrix of pairwise distances. This matrix
must be in the Phylip format and can be produced by the ID TABLE, SEQUENCE COMPARISON,
or COMPARE commands. The weighted pair-group average clustering method is used.

The tree is written to the log file.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See ID TABLE command.

2.4.14 PRINCIPAL COMPONENTS — clustering

Options:
MATRIX FILE = 〈string : 1〉 ’family.mat’ the filename of the pairwise distance ma-

trix
FILE = 〈string : 1〉 ’default’ output file

Description: This command calculates principal components clustering for the input matrix of pairwise distances.
This matrix must be in the Phylip format and can be produced by the ID TABLE, SEQUENCE -
COMPARISON, or COMPARE commands.

The projected coordinates p and q are written to file FILE. The output file can be used with Asgl to produce
a principal components plot.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See ID TABLE command.

2.4.15 ALIGN — align two (blocks of) sequences

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment
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MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

ALIGN WHAT = 〈string : 1〉 ’BLOCK’ what to align in ALIGN; ’BLOCK’ |

’ALIGNMENT’ | ’LAST’ | ’PROFILE’

READ WEIGHTS = 〈logical : 1〉 off whether to read the whole NxM weight

matrix for ALIGN*
WRITE WEIGHTS = 〈logical : 1〉 off whether to write the whole NxM weight

matrix for ALIGN*
INPUT WEIGHTS FILE = 〈string : 1〉 ’’

OUTPUT WEIGHTS FILE = 〈string : 1〉 ’’

WEIGH SEQUENCES = 〈logical : 1〉 off whether or not to weigh sequences in a

profile

SMOOTH PROF WEIGHT = 〈real : 1〉 10 for smoothing the profile aa frequency

with a prior

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command aligns two blocks of sequences.

The two blocks of sequences to be aligned are sequences 1 to ALIGN BLOCK and ALIGN BLOCK+1 to the last
sequence. The sequences within the two blocks should already be aligned; their alignment does not change.

The command can do either the global (similar to [Needleman & Wunsch, 1970]; LOCAL ALIGNMENT =
off) or local dynamic programming alignment (similar to [Smith & Waterman, 1981]; LOCAL ALIGNMENT

= on).

For the global alignment, set overhang length OVERHANG to more than 0 so that the corresponding number
of residues at either of the four termini won’t be penalized by any gap penalties (this makes it a pseudo local
alignment).

To speed up the calculation, set OFF DIAGONAL to a number smaller than the shortest sequence length. The
alignments matching residues i and j with |i − j| > OFF DIAGONAL are not considered at all in the search
for the best alignment.

The gap initiation and extension penalties are specified by GAP PENALTIES 1D. The default values of -900
-50 for the ’as1.sim.mat’ similarity matrix were found to be optimal for pairwise alignments of sequences
that share from 30% to 45% sequence identity (RS and AŠ, in preparation).

The residue type – residue type scores are read from file RR FILE. The routine automatically determines
whether it has to maximize similarity or minimize distance.

MATRIX OFFSET applies to local alignment only and influences its length. MATRIX OFFSET should be
somewhere between the lowest and highest residue–residue scores. A smaller value of this parameter will
make the local alignments shorter when distance is minimized, and longer when similarity is maximized.
This works as follows: The recursively constructed dynamic programming comparison matrix is reset to
0 at position i, j when the current alignment score becomes larger (distance) or smaller (similarity) than
MATRIX OFFSET. Note that this is equivalent to the usual shifting of the residue–residue scoring matrix in
the sense that there are two combinations of GAP PENALTIES 1D and MATRIX OFFSET values that will give
exactly the same alignments irrespective of whether the matrix is actually offset (with 0 used to restart local
alignments in dynamic programming) or the matrix is not offset but MATRIX OFFSET is used as the cutoff
for restarting local alignments in dynamic programming. For the same reason, the matrix offset does not have
any effect on the global alignments if the gap extension penalty is also shifted for half of the matrix offset.

The position–position score is an average residue–residue score for all possible pairwise comparisons between
the two blocks (n ×m comparisons are done, where n and m are the number of sequences in the two blocks,
respectively). The first exception to this is when ALIGN WHAT is set to ’ALIGNMENT’, in which case the two
alignments defined by ALIGN BLOCK are aligned; i.e., the score is obtained by comparing only equivalent
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positions between the two alignment blocks (only n comparisons are done, where n is the number of sequences
in each of the two blocks). This option is useful in combination with COMPARE ALIGNMENTS and
WRITE ALIGNMENT for evaluation of various alignment parameters and methods. The second excep-
tion is when ALIGN WHAT is set to ’LAST’, in which case only the last sequences in the two blocks are used
to get the scores. In ’BLOCK’, ’ALIGNMENT’, and ’LAST’ comparisons, penalty for a comparison of a gap with
a residue during the calculation of the scoring matrix is obtained from the score file (gap–gap match should
have a score of 0.0).

Only the 20 standard residue types, plus Asx (changes to Asn) and Glx (changes to Gln) are recognized. Every
other unrecognized residue, except for a gap and a chain break, changes to Gly for comparison purposes.

If you receive an error message to increase the MAXRES constant, you can try to increase the gap penalties first.
Here and elsewhere in Modeller, MAXRES is both the maximal number of residues in a protein as well as
the maximal length of an alignment. If the length of the alignment arrays is too small, MODELLER STATUS

becomes 1 (Section 2.1.3).

For the time being, this and the other alignment commands (MALIGN, ALIGN2D, ALIGN3D, and
MALIGN3D) remove chain break information from the CALN array, which means that chain breaks are not
retained when the alignment is written to a file after executing these commands.

Example:

# Example for: ALIGN

# This will read two sequences, align them, and write the alignment

# to a file:

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’

# The as1.sim.mat similarity matrix is used by default:

ALIGN GAP_PENALTIES_1D = -600 -400

WRITE_ALIGNMENT FILE = ’toxin-seq.ali’

2.4.16 ALIGN2D — align sequences with structures

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory of RR FILE

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

GAP PENALTIES 2D = 〈real : 9〉 0.35 1.2 0.9 1.2 0.6 8.6

1.2 0 0

gap penalties for sequence/structure

alignment: helix, beta, accessibility,

straightness, and CA–CA distance fac-

tor, dst min, dst power, t, struc-

ture profile ; best U,V=-450,0

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons
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LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

ALIGN WHAT = 〈string : 1〉 ’BLOCK’ what to align in ALIGN; ’BLOCK’ |

’ALIGNMENT’ | ’LAST’ | ’PROFILE’

FIT = 〈logical : 1〉 on whether to align

READ WEIGHTS = 〈logical : 1〉 off whether to read the whole NxM weight

matrix for ALIGN*
WRITE WEIGHTS = 〈logical : 1〉 off whether to write the whole NxM weight

matrix for ALIGN*
INPUT WEIGHTS FILE = 〈string : 1〉 ’’

OUTPUT WEIGHTS FILE = 〈string : 1〉 ’’

WEIGH SEQUENCES = 〈logical : 1〉 off whether or not to weigh sequences in a

profile

SMOOTH PROF WEIGHT = 〈real : 1〉 10 for smoothing the profile aa frequency

with a prior

READ PROFILE = 〈logical : 1〉 off whether to read str profile for ALIGN2D

INPUT PROFILE FILE = 〈string : 1〉 ’’

WRITE PROFILE = 〈logical : 1〉 off whether to write str profile for

ALIGN2D
OUTPUT PROFILE FILE = 〈string : 1〉 ’’

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command aligns a block of sequences (second block) with a block of structures (first block). It
is the same as the ALIGN command except that a variable gap opening penalty is used. This gap penalty
depends on the 3D structure of all sequences in block 1. The variable gap penalty can favor gaps in exposed
regions, avoid gaps within secondary structure elements, favor gaps in curved parts of the mainchain, and
minimize the distance between the two Cα positions spanning a gap. The ALIGN2D command is preferred
for aligning a sequence with structure(s) in comparative modeling because it tends to place gaps in a better
structural context. See Section 5.1.2 for the dynamic programming algorithm that implements the variable
gap penalty. GAP PENALTIES 2D specifies parameters ωH , ωS , ωB , ωC , ωD, do, γ, t and ωSC. (Section 5.1.2).
The default gap penalties GAP PENALTIES 1D (−450, 0) and GAP PENALTIES 2D (0.35, 1.2, 0.9, 1.2, 0.6,
8.6, 1.2, 0.0, 0.0) as well as the RR FILE substitution matrix (’as1.sim.mat’) were found to be optimal in
pairwise alignments of structures and sequences sharing from 30% to 45% sequence identity (MSM, MAM-R,
RS and AŠ, in preparation).

— move to back

The linear gap penalty function for inserting a gap in block 1 of structures is: g = f1(H,S,B,C, SC)u + lv
where u and v are the usual gap opening and extension penalties, l is gap length, and f1 is a function
that is at least 1, but can be larger to make gap opening more difficult in the following circumstances:
between two consecutive (i.e., i, i + 1) helical positions, two consecutive β-strand positions, two consecutive
buried positions, or two consecutive positions where the mainchain is locally straight. This function is
f1 = 1 + [ωHHiHi+1 + ωSSiSi+1 + ωBBiBi+1 + ωCCiCi+1 + ωSCSCiSCi+1], Hi is the fraction of helical
residues at position i in block 1, Si is the fraction of β-strand residues at position i in block 1, Bi is the average
relative sidechain buriedness of residues at position i in block 1, Ci is the average straightness of residues at
position i in block 1, and SCi is the strucutural conserveredness at position i in block 1. See Section 2.3.18 for
the definition of these features. The original straightness is modified here by assigning maximal straightness of
1 to all residues in a helix or a β-strand. The structural conservedness of the residues in block 1 are imported
from an external source ”input profile file”. The structural conservedness at a particular position gives the
liklehood of the occurance of a gap when structurally similar regions from all know protein structures are
aligned structurally.

The linear gap penalty function for opening a gap in block 2 of sequences is:
g = f2(H,S,B,C,D, SC)u + lv where f2 is a function that is at least 1, but can be larger to make
the gap opening in block 2 more difficult in the following circumstances: when the first gap position is
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aligned with a helical residue, a β-strand residue, a buried residue, extended mainchain, or when the
whole gap in block 2 is spanned by two residues in block 1 that are far apart in space. This function is
f2 = 1 + [ωHHi + ωSSi + ωBBi + ωCCi + ωD

√
d − do + ωSCSCi]. d is the distance between the two Cα

atoms spanning the gap, averaged over all structures in block 1 and do is the distance that is small enough
to correspond to no increase in the opening gap penalty (e.g., 8.6Å).

When FIT is off, no alignment is done and the routine returns only the average structural information, which
can be written out by the WRITE ALIGNMENT command.

Example:

# Demonstrating ALIGN2D, aligning with variable gap penalty

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

# Read aligned structure(s):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’

# READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

SET ADD_SEQUENCE = on, ALIGN_BLOCK = NUMB_OF_SEQUENCES

# Read aligned sequence(s):

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ALIGN_CODES ’1nbt’

# Structure sensitive variable gap penalty sequence-sequence alignment:

SET OVERHANG = 0

# SET RR_FILE = ’$(LIB)/id.sim.mat’

SET GAP_PENALTIES_1D = -450 0

SET GAP_PENALTIES_2D = 0.35 1.2 0.9 1.2 0.6 8.6 1.2 0. 0.

ALIGN2D

WRITE_ALIGNMENT FILE = ’align2d.ali’, ALIGNMENT_FORMAT = ’PIR’,

WRITE_ALIGNMENT FILE = ’align2d.pap’, ALIGNMENT_FORMAT = ’PAP’, ;

ALIGNMENT_FEATURES=’INDICES HELIX BETA STRAIGHTNESS ACCESSIBILITY CONSERVATION’

CHECK_ALIGNMENT

# Color the first template structure according to gaps in alignment:

READ_ALIGNMENT FILE = ’align2d.ali’, ALIGN_CODES = ’2ctx’ ’1nbt’, ;

ALIGNMENT_FORMAT = ’PIR’, ADD_SEQUENCE = off, REMOVE_GAPS = on

READ_MODEL MODEL_SEGMENT = ’2ctx’, FILE = ’2ctx’

COLOR_ALN_MODEL

WRITE_MODEL FILE = ’2ctx.aln.pdb’

# Color the first template structure according to secondary structure:

WRITE_DATA OUTPUT = ’SSM BISO_SSM’, FILE = ’2ctx’

WRITE_MODEL FILE = ’2ctx.ssm.pdb’

# Superpose the target structure onto the first template:

READ_MODEL2 FILE = ’1nbt.pdb’, MODEL2_SEGMENT = ’1nbt’ ’1nbt’

PICK_ATOMS ATOM_TYPES = ’CA’

SUPERPOSE

WRITE_MODEL2 FILE = ’1nbt.fit.pdb’

2.4.17 MALIGN — align two or more sequences

Options:
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RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command performs a multiple sequence alignment. The sequences to be aligned are the se-
quences in the current alignment arrays. The command uses the dynamic programming method for the best
sequence alignment, given the gap initiation and extension penalties specified by GAP PENALTIES 1D, and
residue type weights read from file RR FILE. See command ALIGN for more information.

The algorithm for the multiple alignment is as follows. First, sequence 2 is aligned with sequence 1 (i.e., block
of sequences from 1–ALIGN BLOCK). Next, sequence 3 is aligned with an average of the aligned sequences 1
and 2; i.e., the weight matrix is an average of the weights 1–3 and 2–3. For this averaging, the gap–residue
and gap–gap weights are obtained from the residue–residue weight matrix file, not from gap penalties. If the
corresponding weights are not in the file, they are set to the worst and best residue–residue score, respectively.

See instructions for ALIGN for more details.

Example:

# Example for: MALIGN

# This will read all sequences from a file, align them, and write

# the alignment to a new file:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

MALIGN GAP_PENALTIES_1D= -600 -400

WRITE_ALIGNMENT FILE = ’toxin-seq.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.18 ALIGN CONSENSUS — consensus sequence alignment

Options:
GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

READ WEIGHTS = 〈logical : 1〉 off whether to read the whole NxM weight

matrix for ALIGN*
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WRITE WEIGHTS = 〈logical : 1〉 off whether to write the whole NxM weight

matrix for ALIGN*
INPUT WEIGHTS FILE = 〈string : 1〉 ’’

OUTPUT WEIGHTS FILE = 〈string : 1〉 ’’

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command is similar to ALIGN except that a consensus alignment of two blocks of sequences
is produced. A consensus alignment is obtained from a consensus similarity matrix using the specified gap
penalties and the global dynamic programming method. The consensus similarity matrix is obtained by
aligning the two blocks of sequences many times with different parameters and methods and counting how
many times each pair was aligned. This command is still experimental and no detailed description is given
at this time.

This command also produces the alignment accuracy that can be printed out by the
WRITE ALIGNMENT command in the ’PAP’ format (0 inaccurate, 9 accurate). If the gap initi-
ation penalty is 0, the gap extension penalty of say 0.4 means that only those positions will be equivalenced
that were aligned in at least 80% of the individual alignments (i.e., 2 times 0.40).

Example:

# Example for: ALIGN_CONSENSUS

# This will read 2 sequences and prepare a consensus alignment

# from many different pairwise alignments.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

ALIGN_CONSENSUS GAP_PENALTIES_1D= 0 0.4, ALIGN_BLOCK = 1

WRITE_ALIGNMENT FILE = ’toxin-seq.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.19 SUPERPOSE — superpose MODEL2 on MODEL given alignment

Options:
ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

FIT = 〈logical : 1〉 on whether to superpose

SUPERPOSE REFINE = 〈logical : 1〉 off whether to refine the superposition

RMS CUTOFFS = 〈real : 11〉 3.5 3.5 60 60 15 60 60 60

60 60 60

only the first element is used for calculat-

ing the cutoff RMS and DRMS measures

REFERENCE ATOM = 〈string : 1〉 ’’ reference atom name in SUPERPOSE

REFERENCE DISTANCE = 〈real : 1〉 3.5 cutoff for selecting reference positions in

SUPERPOSE
SWAP ATOMS IN RES = 〈string : 1〉 ’’ minimize RMS by swapping atoms

in these residues (1 char code:

’DEFHLNQRVY’)

Requirements: MODEL & MODEL2 [& alignment]

Description: This command superposes MODEL2 on MODEL, without changing the alignment.

If an alignment is in memory, it is used to obtain the equivalent atoms. MODEL must be the first sequence
in the alignment, MODEL2 must be the second sequence in the alignment. The equivalent atoms are those
selected atoms (set 1) of the MODEL that have equivalently named atoms in MODEL2; the atom equivalences
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are defined in library $ATMEQV LIB. Use the PICK ATOMS command to select the desired atoms for
superposition. By default, all atoms are selected. If there is no alignment, a 1:1 correspondence between the
residues is assumed.

No fitting is done if FIT = off.

The ALIGN CODES variable is used only for output, not in calculations.

The RMS CUTOFFS[1] element is the cutoff used in calculating the cutoff Rms deviations; i.e., those position
and distance Rms deviations that are defined on the equivalent atoms which are less than RMS CUTOFFS[1]
angstroms away from each other (as superposed using all aligned positions) and those equivalent distances
which are less than RMS CUTOFFS[1] angstroms different from each other, respectively.

If SUPERPOSE REFINE is on the refinement of the superposition is done by repeating the fitting with only
those aligned pairs of atoms that are within RMS CUTOFFS[1] of each other until there is no change in the
number of equivalent positions. This refinement can only remove compared positions, not add them like
ALIGN3D can do. This is useful for comparing equivalent parts of two structures with a fixed alignment
but omitting divergent parts from the superposition and Rms deviation calculation; e.g., comparing a model
with the X-ray structure.

If SUPERPOSE REFINE is off and REFERENCE ATOM is non-blank, only those pairs of equivalently named
selected atoms from aligned residues are superposed that come from residues whose REFERENCE ATOM

atoms are closer than REFERENCE DISTANCE Å to each other.

When MODEL and MODEL2 have exactly the same atoms in the same order, one can set
SWAP ATOMS IN RES to any combination of single character amino acid residue codes in DEFHLNQRVY. Cer-
tain atoms (see below) in the specified sidechains of MODEL2 are then swapped to minimize their Rms

deviation relative to MODEL. The labelling resulting in the lowest Rms deviation is retained. The following
swaps are attempted:

Residue Swap(s)
D OD1, OD2
E OE1, OE2
F CD1, CD2

CE1, CE2
H ND1, CD2

NE2, CE1
N OD1, ND2
Q OE1, NE2
R NH1, NH2
V CG1, CG2
Y CD1, CD2

CE1, CE2

Example:

# Example for: SUPERPOSE

# This will use a given alignment to superpose Calpha atoms of

# one structure (2ctx) on the other (1fas).

READ_MODEL FILE = ’1fas’

READ_MODEL2 FILE = ’2ctx’

SET ALIGN_CODES = ’1fas’ ’2ctx’

READ_ALIGNMENT FILE = ’toxin.ali’

PICK_ATOMS PICK_ATOMS_SET = 1, ATOM_TYPES = ’CA’

SUPERPOSE

WRITE_MODEL2 FILE = ’2ctx.fit’
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Example:

# Example for: ALIGN3D, SUPERPOSE

# This will align 3D structures of two proteins:

SET OUTPUT_CONTROL = 1 1 1 1 1

# First example: read sequences from a sequence file:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’

ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 4.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

# Second example: read sequences from PDB files to eliminate the

# need for the toxin.ali sequence file:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’2ctx’, ;

ALIGN_CODES = ALIGN_CODES ’2ctx’

ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

# And now superpose the two structures using current alignment to get

# various RMS’s:

READ_MODEL FILE = ’1fas’

PICK_ATOMS ATOM_TYPES = ’CA’

READ_MODEL2 FILE = ’2ctx’

SUPERPOSE FIT_ATOMS = ’CA’

Example:

# This script illustrates the use of the SWAP_ATOMS_IN_RES

# argument to the SUPERPOSE command:

# Need to make sure that the topologies of the two molecules

# superposed are exactly the same:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’../tutorial-model/1fdx.atm’

SEQUENCE_TO_ALI ALIGN_CODES = ’1fdx’, ATOM_FILES = FILE

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’1fdx’, ATOM_FILES = ATOM_FILES FILE

GENERATE_TOPOLOGY SEQUENCE = ’1fdx’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

# READ_MODEL2 FILE = ’../tutorial-model/1fdx.B99990002’

READ_MODEL2 FILE = ’./1fdx.swap.atm’

SET SWAP_ATOMS_IN_RES = ’’

SUPERPOSE

SET SWAP_ATOMS_IN_RES = ’DEFHLNQRVY’
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SUPERPOSE FIT = off

SET SWAP_ATOMS_IN_RES = ’’

SUPERPOSE FIT = on

2.4.20 COMPARE — compare 3D structures given alignment

Options:
ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

OUTPUT = 〈string : 1〉 ’LONG’ selects output: ’SHORT’ | ’LONG’ |

’RMS’ | ’DRMS’

MATRIX FILE = 〈string : 1〉 ’family.mat’ the filename of the pairwise distance ma-

trix
COMPARE MODE = 〈integer : 1〉 3 selects the type of comparison: 1 | 2 | 3

RMS CUTOFFS = 〈real : 11〉 3.5 3.5 60 60 15 60 60 60

60 60 60

cutoffs for RMS, DRMS, Alpha Phi Psi

Omega chi1 chi2 chi3 chi4 chi5

FIT ATOMS = 〈string : 1〉 ’CA’ whether to superpose before comparison

DISTANCE ATOMS = 〈string : 2〉 ’CA’ ’CA’ atom type used for variability calcula-

tions
FIT = 〈logical : 1〉 on whether to do pairwise least-squares fit-

ting or ALIGN2D alignment

ASGL OUTPUT = 〈logical : 1〉 off whether to write output for ASGL

Description: This command compares the structures in the given alignment. It does not make an alignment, but it
calculates the Rms and Drms deviations between atomic positions and distances, and class differences between
the mainchain and sidechain dihedral angles. In contrast to the SUPERPOSE command, COMPARE
works with a multiple alignment and it writes more information about the pairwise comparisons.

If no alignment is available, it assumes a 1:1 correspondence for the proteins specified by ATOM FILES

or ALIGN CODES. If ATOM FILES is defined, it is used with the Modeller file-naming mechanism (Sec-
tion 2.1.4) to find full names for the atom files. If it is not defined, ALIGN CODES, which is usually set by the
previous READ ALIGNMENT command, is used. ALIGN CODES does not have to be set if ATOM FILES

is set.

OUTPUT selects short (’SHORT’) or long (’LONG’) form of output to the log file. If it contains word ’RMS’

or ’DRMS’ it also outputs the Rms or Drms deviation matrix to file MATRIX FILE. This file can be used
with the Phylip program or with the DENDROGRAM or PRINCIPAL COMPONENTS commands
of Modeller to calculate a clustering of the structures.

COMPARE MODE selects the form of the positional variability calculated for each position along the sequence:

1, for true Rms deviation over all proteins that have a residue at the current position. This does not make
any sense for periodic quantities like dihedral angles.

2, for the average absolute distance over all pairs of residues that have a residue at the current position.

3, the same as 2 except that average distance, not its absolute value is used (convenient for comparison of
2 structures to get the ± sign of the changes for dihedral angles and distances).

RMS CUTOFFS specifies cutoff values for calculation of the position, distance, and dihedral angle Rms devia-
tions for pairwise overall comparisons. If difference between two equivalent points is larger than cutoff it is not
included in the Rms sum. The order of cutoffs in this vector is: atomic position, intra-molecular distance, α,
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Φ, Ψ, ω, χ1, χ2, χ3, χ4, and χ5 (there are 5 dihedrals in a disulfide bridge), where α is the virtual Cα dihedral
angle between four consecutive Cα atoms. These cutoffs do not affect positional variability calculations.

FIT ATOMS string specifies all the atom types (including possibly a generic ’ALL’) to be fitted in the least-
squares superposition. These atom types are used in the least-squares superposition, and in calculation of
the position and distance Rms deviations.

DISTANCE ATOMS[1] specifies the atom type that is used for getting the average structure and Rms deviation
at each alignment position in the Asgl output file ’posdif.asgl’. This Asgl file contains the positional
variability of the selected atom type in the family of compared proteins. The Asgl output files can then be
used with Asgl scripts ’posdif’ and ’dih’ to produce PostScript plots of the corresponding variabilities
at each alignment position. ASGL OUTPUT has to be on to obtain the Asgl output files.

If FIT = on, a least-squares superposition is done before the comparisons; otherwise, the orientation of the
molecules in the input atom files is used.

Example: See MALIGN3D command.

2.4.21 ALIGN3D — align two structures

Options:
GAP PENALTIES 3D = 〈real : 2〉 0.0 1.75 gap creation and extension penalties for

structure/structure superposition

FIT ATOMS = 〈string : 1〉 ’CA’ one atom type used for superposition

FIT = 〈logical : 1〉 on whether to align

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

OUTPUT = 〈string : 1〉 ’LONG’ ’SHORT’ | ’LONG’ | ’VERY LONG’

ALIGN3D TRF = 〈logical : 1〉 off whether to transform the distances be-

fore dynamic programming

ALIGN3D REPEAT = 〈logical : 1〉 off do several starts to maximize number of

equivalent positions

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command uses the current alignment as the starting point for an iterative least-squares su-
perposition of two 3D structures. This results in a new pairwise structural alignment. If no alignment is in
memory, the initial alignment is the 1:1 alignment. A good initial alignment may be obtained by sequence
alignment (ALIGN). For superpositions, only one atom per residue is used, as specified by FIT ATOMS[1].

The alignment algorithm is as follows. First, structure 2 is least-squares fit on structure 1 using all the
equivalent residue positions in the initial alignment that have the specified atom type. Next, the residue–
residue distance matrix is obtained by calculating Euclidean distances between all pairs of selected atoms
from the two structures. The alignment of the two structures is then obtained by the standard dynamic
programming optimization based on the residue–residue distance matrix.

GAP PENALTIES 3D[1] is a gap creation penalty (usually 0), and GAP PENALTIES 3D[2] is a gap extension
penalty, say 1.75. This procedure identifies pairs of residues as equivalent when they have their selected atoms
at most 2 times GAP PENALTIES 3D[2] angstroms apart in the current orientation (this is so when the gap
initiation penalty is 0). The reason is that an equivalence costs the distance between the two residues while
an alternative, the gap–residue and residue-gap matches, costs twice the gap extension penalty.
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From the dynamic programming run, a new alignment is obtained. Thus, structure 2 can be fitted onto
structure 1 again, using this new alignment, and the whole cycle is repeated until there is no change in the
number of equivalent positions and until the difference in the rotation matrices for the last two superpositions
is very small. At the end, the framework, that is the alignment positions without gaps, is written to the log

file.

If FIT is off, no alignment is done.

If OUTPUT contains ’SHORT’, only the best alignment and its summary are displayed. If OUTPUT contains
’LONG’, summaries are displayed for all initial alignments in each framework cycle. If OUTPUT contains
’VERY LONG’, all alignments are displayed.

If ALIGN3D TRF is on, the weights in the weight matrix are modified distances [Subbiah et al., 1993].

If ALIGN3D REPEAT is on, three additional initial alignments are tried and the one resulting in the largest
number of equivalent positions is selected.

Example:

# Example for: ALIGN3D, SUPERPOSE

# This will align 3D structures of two proteins:

SET OUTPUT_CONTROL = 1 1 1 1 1

# First example: read sequences from a sequence file:

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’1fas’ ’2ctx’

ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 4.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

# Second example: read sequences from PDB files to eliminate the

# need for the toxin.ali sequence file:

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

READ_MODEL FILE = ’2ctx’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’2ctx’, ;

ALIGN_CODES = ALIGN_CODES ’2ctx’

ALIGN GAP_PENALTIES_1D= -600 -400

ALIGN3D GAP_PENALTIES_3D= 0 2.0

WRITE_ALIGNMENT FILE = ’toxin-str.ali’

# And now superpose the two structures using current alignment to get

# various RMS’s:

READ_MODEL FILE = ’1fas’

PICK_ATOMS ATOM_TYPES = ’CA’

READ_MODEL2 FILE = ’2ctx’

SUPERPOSE FIT_ATOMS = ’CA’

2.4.22 MALIGN3D — align two or more structures

Options:
ALIGN CODES = 〈string : 0〉 ’all’ codes of proteins in the alignment

ATOM FILES = 〈string : 0〉 ’’ complete or partial atom filenames

ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)
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GAP PENALTIES 3D = 〈real : 2〉 0.0 1.75 gap creation and extension penalties for

structure/structure superposition

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

FIT ATOMS = 〈string : 1〉 ’CA’ one atom type for superposition

FIT = 〈logical : 1〉 on whether to align

OUTPUT = 〈string : 1〉 ’LONG’ ’SHORT’ |’LONG’ |’VERY LONG’ |

’NO ALIGNMENT’

WRITE FIT = 〈logical : 1〉 off whether to write out fitted coordinates

to .fit files
EDIT FILE EXT = 〈string : 2〉 ’.pdb’ ’ fit.pdb’ old and new file extensions for filename

construction in MALIGN3D
CURRENT DIRECTORY = 〈logical : 1〉 on whether to write output .fit files to cur-

rent directory

WRITE WHOLE PDB = 〈logical : 1〉 on whether to write out all lines in the input

PDB file
STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command uses the current alignment as the starting point for an iterative least-squares super-
position of two or more 3D structures. This results in a new multiple structural alignment. If no alignment is
in memory, the initial alignment is the 1:1 alignment. A good initial alignment may be obtained by sequence
alignment (MALIGN). For superpositions, only one atom per residue is used, as specified by FIT ATOMS.
The resulting alignment can be written to a file with the WRITE ALIGNMENT command. The multiply
superposed coordinates remain in memory and can be used with such commands as TRANSFER XYZ
if ATOM FILES is not changed in the meantime. It is best to use the structure that overlaps most with all
the other structures as the first protein in the alignment. This may prevent an error exit due to too few
equivalent positions during framework construction.

The alignment algorithm is as follows. There are several cycles, each of which consists of an update of
a framework and a calculation of a new alignment; the new alignment is based on the superposition of
the structures onto the latest framework. The framework in each cycle is obtained as follows. The initial
framework consists of the atoms in structure 1 that correspond to FIT ATOMS. If there is no specified atom
types in any of the residues at a given position, the coordinates for this framework position are approximated
by the neighboring coordinates. Next, all other structures are fit to this framework. The final framework for
the current cycle is then obtained as an average of all the structures, in their fitted orientations, but only
for residue positions that are common to all of them, given the current alignment. Another result is that
all the structures are now superposed on this framework. Note that the alignment has not been changed
yet. Next, the multiple alignment itself is re-derived in N − 1 dynamic programming runs, where N is
the number of structures. This is done as follows. First, structure 2 is aligned with structure 1, using the
inter-molecular atom–atom distance matrix, for all atoms of the selected type, as the weight matrix for the
dynamic programming run. Next, structure 3 is aligned with an average of structures 1 and 2 using the same
dynamic programming technique. Structure 4 is then aligned with an average of structures 1–3, and so on.
Averages of structures i–j are calculated for all alignment positions where there is at least one residue in
any of the structures i–j (this is different from a framework which requires that residues from all structures
be present). Note that in this step, residues out of the current framework may get aligned and the current
framework residues may get unaligned. Thus, after the series of N − 1 dynamic programming runs, a new
multiple alignment is obtained. This is then used in the next cycle to obtain the next framework and the
next alignment. The cycles are repeated until there is no change in the number of equivalent positions. This
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procedure is best viewed as a way to determine the framework regions, not the whole alignment. The results
from this command are expected to be similar to the output of program Mnyfit [Sutcliffe et al., 1987].

GAP PENALTIES 3D[1] is a gap creation penalty (usually 0), and GAP PENALTIES 3D[2] is a gap extension
penalty, say 1.75. This procedure identifies pairs of positions as equivalent when they have their selected
atoms at most 2 times GAP PENALTIES 3D[2] angstroms apart in the current superposition (this is so when
the gap initiation penalty is 0), as described for the ALIGN3D command.

Argument OUTPUT can contain the following values:

• ’SHORT’, only the final framework is written to the log file.

• ’LONG’, the framework after the alignment stage in each cycle is written to the log file.

• ’VERY LONG’, the framework from the framework stage in each cycle is also written to the log.

If WRITE FIT is on, the fitted atom files are written out in their final fitted orientations. To construct the
filenames, first the file extension in EDIT FILE EXT[1] is removed (if present), and then the extension in
EDIT FILE EXT[2] is added. By default this creates files with a fit extension.

If CURRENT DIRECTORY is on, the fitted atom files will go to the current directory. Otherwise, the output
will be in the directory with the original files.

If WRITE WHOLE PDB is on, the whole PDB files are written out; otherwise only the parts corresponding
to the aligned sequences are output.

If FIT is off, the initial alignment is not changed. This is useful when all the structures have to be superim-
posed with the initial alignment (FIT = off and WRITE FIT = on).

Example:

# Example for: MALIGN3D, COMPARE

# This will read all sequences from a sequence file, multiply align

# their 3D structures, and then also compare them using this alignment.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’all’

MALIGN GAP_PENALTIES_1D= -600 -400

MALIGN3D GAP_PENALTIES_3D= 0 2.0, WRITE_FIT = on, WRITE_WHOLE_PDB = off

WRITE_ALIGNMENT FILE = ’toxin-str.pap’, ALIGNMENT_FORMAT = ’PAP’

# Make two comparisons: no cutoffs, and 3.5A/60 degree cutoffs for RMS, DRMS,

# and dihedral angle comparisons:

COMPARE RMS_CUTOFFS = 999 999 999 999 999 999 999 999 999 999 999

COMPARE RMS_CUTOFFS = 3.5 3.5 60 60 60 60 60 60 60 60 60

2.4.23 ALN TO PROF — convert alignment to profile format

Options:
CLEAN SEQUENCES = 〈logical : 1〉 on whether or not clean non-standard

residues

Description: This command will convert the alignment, currently in memory, into the profile format. For more
details on the profile format, see READ PROFILE.

If CLEAN SEQUENCES is set to ’on’, then the non-standard residues in the sequences will be cleaned before
transferring into the profile format. Specifically, ASX (B) will be replaced with ASN (N), GLX (Z) will be
replaced with GLN (Q) and UNK (X) will be replaced with ALA (A).

Example:
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# Read in the alignment file

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGNMENT_FORMAT = ’PIR’

# Convert the alignment to profile format

ALN_TO_PROF CLEAN_SEQUENCES = on

# Write out the profile

# in text file

WRITE_PROFILE FILE = ’alntoprof.prf’, PROFILE_FORMAT = ’TEXT’

# in binary format

WRITE_PROFILE FILE = ’alntoprof.bin’, PROFILE_FORMAT = ’BINARY’

2.4.24 PROF TO ALN — profile to alignment

Options:
APPEND ALN = 〈logical : 1〉 off whether to append profiles to existing

alignment arrays

Description: This command will convert a profile that is in memory into the alignment format (see Section 2.4.1).
The function of this command is complimentary to ALN TO PROF.

If the APPEND ALN flag is set to ’on’, then multiple profiles can be appended to the same alignment.

Note: Not all information of a ’PIR’ format is encoded in a profile. (See READ PROFILE). So converting
a profile to an alignment may need manual attention to ensure that the alignment is useful for other routines.

Example:

# Example file for: READ_PROFILE, PROF_TO_ALN

# Read in the profile file

READ_PROFILE FILE = ’toxin.prf’, PROFILE_FORMAT = ’TEXT’

# Convert the profile to alignment

PROF_TO_ALN

# Select the sequences to write out

SET ALIGN_CODES = ’2ctx’ ’1nbt’

# Write out the alignment

WRITE_ALIGNMENT FILE = ’readprofile.pir’, ALIGNMENT_FORMAT = ’PIR’

2.4.25 READ PROFILE — read a profile of a sequence

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

PROFILE FORMAT = 〈string : 1〉 ’TEXT’ ’TEXT’ | ’BINARY’ ; for

READ/WRITE PROFILE
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Description: This command will read a profile from a specified file. Two formats are supported: TEXT and BINARY.

The format of the profile file (text) is as follows:

# Number of sequences: 4
# Length of profile : 20
# N_PROF_ITERATIONS : 3
# GAP_PENALTIES_1D : -900.0 -50.0
# MATRIX_OFFSET : 0.0
# RR_FILE : ${MODINSTALLCVS}/modlib//as1.sim.mat

1 2ctx X 0 71 1 71 0 0 0 0. 0.0 IRCFITPDITS---KDCPN-
2 2abx X 0 74 1 74 0 0 0 0. 0.0 IVCHTTATIPS-SAVTCPPG
3 1nbt X 0 66 1 66 0 0 0 0. 0.0 RTCLISPSS---TPQTCPNG
4 1fas X 0 61 1 61 0 0 0 0. 0.0 TMCYSHTTTSRAILTNCG--

The first six lines begin with a ’#’ in the first column and give a few general details of the profile.

The first line gives the number of sequences in the profile. The line should be in the following format:
’(24x,i6)’.

The second line gives the number of positions in the profile. This should be in ’(24x,i6)’ format also.

The third line gives the value of the N PROF ITERATIONS variable. The fourth line gives the value of the
GAP PENALTIES 1D variable. The fifth line gives the value of the MATRIX OFFSET variable. The sixth line
gives the value of the RR FILE variable.

The number of sequences in the profile and its length are used to allocate memory for the profile arrays. So
they should provide an accurate description of the profile.

The values of the variables described in lines 3 through 6 are not used internally by MODELLER. But
the command expects to find a total of six header lines. These records represent useful information when
BUILD PROFILE was used to construct the profile.

The remaining lines consist of the alignment of the sequences in the profile. The format of these lines is of
the form: ’(i5,1x,a40,1x,a1,1x,7(i5,1x),f5.0,1x,g10.2,1x,32767a1)’

The various columns that precede the sequence are:

1. The index number of the sequence in the profile.

2. The code of the sequence (similar to ALIGN CODES).

3. The type of sequence (’S’ for sequence, ’X’ for structure). This depends on the original source of the
sequences. (See ALN TO PROF and READ SEQUENCE DB).

4. The iteration in which the sequence was selected as significant. (See BUILD PROFILE).

5. The length of the database sequence.

6. The starting position of the target sequence in the alignment.

7. The ending position of the target sequence in the alignment.

8. The starting position of the database sequence in the alignment.

9. The ending position of the database sequence in the alignment.

10. The number of equivalent positions in the alignment.

11. The sequence identity of between the target sequence and the database sequence.

12. The e-value of the alignment. (See BUILD PROFILE).

13. The sequence alignment.

Many of the fields described above are valid only when the profile that is written out is the result of
BUILD PROFILE.

Example:

# Example file for: READ_PROFILE, PROF_TO_ALN

# Read in the profile file

READ_PROFILE FILE = ’toxin.prf’, PROFILE_FORMAT = ’TEXT’
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# Convert the profile to alignment

PROF_TO_ALN

# Select the sequences to write out

SET ALIGN_CODES = ’2ctx’ ’1nbt’

# Write out the alignment

WRITE_ALIGNMENT FILE = ’readprofile.pir’, ALIGNMENT_FORMAT = ’PIR’

2.4.26 WRITE PROFILE — write a profile

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
PROFILE FORMAT = 〈string : 1〉 ’TEXT’ ’TEXT’ | ’BINARY’ ; for

READ/WRITE PROFILE

RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

Description: This command will write a profile to a specified file, together with a number of variables that are
associated with the profile in the memory. Two formats are supported: TEXT and BINARY.

Example:

# Read in the alignment file

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGNMENT_FORMAT = ’PIR’

# Convert the alignment to profile format

ALN_TO_PROF CLEAN_SEQUENCES = on

# Write out the profile

# in text file

WRITE_PROFILE FILE = ’alntoprof.prf’, PROFILE_FORMAT = ’TEXT’

# in binary format

WRITE_PROFILE FILE = ’alntoprof.bin’, PROFILE_FORMAT = ’BINARY’

2.4.27 BUILD PROFILE — Build a profile for a given sequence or alignment

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment
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MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

N PROF ITERATIONS = 〈integer : 1〉 3 number of iterations in PRO-

FILE SEARCH
CHECK PROFILE = 〈logical : 1〉 on whether to monitor profile degenration

OUTPUT SCORES = 〈logical : 1〉 off whether to output individual scores in a

build profile scan

OUTPUT SCORE FILE = 〈string : 1〉 ’default’ output file for writing out individual

scores in seqfilter

MAX ALN EVALUE = 〈real : 1〉 0.1 Max. E-value of alignments to include in

BUILD PROFILE
GAPS IN TARGET = 〈logical : 1〉 off whether to include gaps in target when

using build profile

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command iteratively scans a database of sequences to build a profile for the input sequence
or alignment. The command calculates the score for a Smith-Waterman local alignment between the input
sequence and each of the sequences in the database. The significance of the alignment scores (e-values) are
calculated using a procedure similar to that described by Pearson (1998).

Alignments with e-values below MAX ALN EVALUE are then added to the current alignment. A position-
specific scoring matrix is then calculated for the current alignment and is used to search the sequence database.
This procedure is repeated for N PROF ITERATIONS or until there are are no significant alignments below
the threshold, whichever occurs first.

The initial sequence or alignment can be read in either in the profile format, with READ PROFILE, or
as an alignment using READ ALIGNMENT. In the latter case, the alignment has to be converted to the
profile format using ALN TO PROF.

The output contains a multiple sequence alignment (assembled) of all the homologues of the input sequence
found in the database. The output can be formatted as a profile with WRITE PROFILE or converted
into any of the standard alignment formats using PROF TO ALN. It can then be written out to a file with
WRITE ALIGNMENT.

The fit between the observed and theoretical distributions of the z-scores is calculated after each iteration
and is reported in the log file. The fit is calculated using the Kolmogorov-Smirnov D-statistic. If the
CHECK PROFILE flag is set to ’on’, then the command will not proceed if the fit deviates by more than 0.04
(D-statistic).

By default, regions of the alignment that introduce gaps in the target sequence are ignored (deleted) in the
final multiple alignment. But if GAPS IN TARGET is set to ’on’, then the gaps are retained. (See below for
comments).

If the OUTPUT SCORES flag is set to ’on’, then the scores of each alignment between the input sequence and
each database sequence, from all iterations, will be written out to the file specified in OUTPUT SCORE FILE.

Comments:

1. The procedure has been optimized only for the BLOSUM62 similarity matrix.

2. The dynamic programming algorithm has been optimized for performance on Intel Itanium2 architecture.
Nevertheless, the calculation is sufficiently CPU intensive. It takes about 20 min for an iteration, using
an input sequence of 250aa against a database containing 500,000 sequences on an Itanium2 machine.
It could take much longer on any other machine.

3. It is advisable to have GAPS IN TARGET set to ’off’, when scanning against large databases to avoid
the local-alignments inserting a huge number of gaps in the final alignments.

4. The statistics will not be accurate (or may even fail) if the database does not have sequences that
represent the entire range of lengths possible.
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5. The method can be used for fold-assignment by first building a profile for the target sequence by scanning
against a large non-redundant sequence database (like swissprot) and then using the resulting profile to
scan once against a database of sequences extracted from PDB structures. GAPS IN TARGET can be
set to ’on’ in the second step to get the complete alignments that can then be used for modeling.

Example:

SET OUTPUT_CONTROL = 1 1 1 1 1

#-- Prepare the input files

#-- Read in the sequence database

SET MINMAX_DB_SEQ_LEN = 1 40000, CLEAN_SEQUENCES = on

READ_SEQUENCE_DB SEQ_DATABASE_FILE = ’pdb95.fsa’, ;

SEQ_DATABASE_FORMAT = ’FASTA’, ;

CHAINS_LIST = ’all’

#-- Write the sequence database in binary form

WRITE_SEQUENCE_DB SEQ_DATABASE_FILE = ’pdb95.bin’, ;

SEQ_DATABASE_FORMAT = ’BINARY’

#-- Now, read in the binary database

READ_SEQUENCE_DB SEQ_DATABASE_FILE = ’pdb95.bin’, ;

SEQ_DATABASE_FORMAT = ’BINARY’, ;

CHAINS_LIST = ’all’

#-- Read in the target sequence/alignment

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGNMENT_FORMAT = ’PIR’

#-- Convert the input sequence/alignment into

# profile format

ALN_TO_PROF

#-- Scan sequence database to pick up homologous sequences

SET MATRIX_OFFSET = -450

SET RR_FILE = ’${LIB}/blosum62.sim.mat’

SET GAP_PENALTIES_1D = -500 -50

BUILD_PROFILE N_PROF_ITERATIONS = 5, ;

CHECK_PROFILE = off, ;

MAX_ALN_EVALUE = 0.01, ;

GAPS_IN_TARGET = off

#-- Write out the profile

WRITE_PROFILE FILE = ’buildprofile.prf’

#-- Convert the profile back to alignment format

PROF_TO_ALN

#-- Write out the alignment file

WRITE_ALIGNMENT FILE = ’buildprofile.ali’, ;

ALIGNMENT_FORMAT = ’PIR’
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2.4.28 READ SEQUENCE DB — read a database of sequences

Options:
CHAINS LIST = 〈string : 1〉 ’$(LIB)/CHAINS 3.0 40 XN.cod’file with sequences

SEQ DATABASE FILE = 〈string : 1〉 ’$(LIB)/CHAINS all.seq’ file with a list of sequence codes

SEQ DATABASE FORMAT = 〈string : 1〉 ’PIR’ ’PIR’ ’FASTA’ ’BINARY’; for

READ/WRITE SEQUENCE DB

CLEAN SEQUENCES = 〈logical : 1〉 on whether or not clean non-standard

residues
MINMAX DB SEQ LEN = 〈integer : 2〉 0 999999 minimal/maximal database sequence

length

OUTPUT CONTROL = 〈integer : 5〉 1 0 1 1 0 selects output, flow-control msgs, warn-

ings, errors, dynamic mem msgs

Description: This command will read a database of sequences, either in the PIR, FASTA, or BINARY format.

If the format is PIR or FASTA:

• It is possible to clean all sequences of non-standard residue types by setting CLEAN SEQUENCES to on.

• Sequences shorter than MINMAX DB SEQ LEN[1] and longer than MINMAX DB SEQ LEN[2] are elimi-
nated.

• Only sequences whose codes are listed in the CHAINS LIST file are read from the SEQ DATABASE FILE

of sequences. If CHAINS LIST is all, all sequences in the SEQ DATABASE FILE file are read in, and
there is no need for the CHAINS LIST file.

For the PIR and FASTA formats, make sure the order of sequences in the CHAINS LIST and
SEQ DATABASE FILE is the same for faster access (there can of course be more sequences in the sequence
file than there are sequence codes in the codes file).

Additionally, if the sequences are in ’PIR’ format, then the protein type and resolution fields are stored in
the database format. (see Section 2.4.1 for description of ’PIR’ fields).

The protein type field is encoded in a single letter format. ’S’ for sequence and ’X’ for structures of
any kind. This information is transferred to the profile arrays when using BUILD PROFILE. (See also
READ PROFILE).

The resolution field is used to pick representatives from the clusters in SEQFILTER.

None of the options above apply to the BINARY format, which, in return, is very fast (i.e., 3 seconds for 300
MB of 800,000 sequences in the TrEMBL database).

Example: See BUILD PROFILE command.

2.4.29 WRITE SEQUENCE DB — write a database of sequences

Options:
CHAINS LIST = 〈string : 1〉 ’$(LIB)/CHAINS 3.0 40 XN.cod’file with sequences

SEQ DATABASE FILE = 〈string : 1〉 ’$(LIB)/CHAINS all.seq’ file with a list of sequence codes

SEQ DATABASE FORMAT = 〈string : 1〉 ’PIR’ ’PIR’ ’FASTA’ ’BINARY’; for

READ/WRITE SEQUENCE DB

Description: This command will write a database of sequences currently in memory, either in the PIR, FASTA, or
BINARY format. The CHAINS LIST file is written only for the PIR or FASTA formats.

Example: See BUILD PROFILE command.
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2.4.30 EXPAND ALIGNMENT — put all models into alignment

Options:
ROOT NAME = 〈string : 1〉 ’undf’ root of a filename for filename construc-

tion
FILE ID = 〈string : 1〉 ’default’ file id for filename construction

EXPAND CONTROL = 〈integer : 5〉 9999 9999 1 10 0 for controlling EXPAND ALIGNMENT

FILE EXT = 〈string : 1〉 ’’ file extension for filename construction

Output: alignment

Description: ID1, ID2, ROOT NAME, FILE EXT, and FILE ID are used to construct atom filenames for all the
models (Section 2.1.4). Next, all the models are added to the alignment, using the last sequence in the
input alignment as the guide. This allows easy multiple superposition of all the templates and models after
comparative modeling.

Example:

# Example for: EXPAND_ALIGNMENT

# This will add models to the alignment.

READ_ALIGNMENT FILE = ’toxin.ali’, ALIGN_CODES = ’2ctx’ ’2abx’

EXPAND_ALIGNMENT EXPAND_CONTROL = 9999 9999 1 3 0, ;

ROOT_NAME = ’2abx’, FILE_ID = ’.B’, FILE_EXT = ’’

WRITE_ALIGNMENT FILE = ’toxin-expand.ali’

2.4.31 SEQUENCE SEARCH — search for similar sequences

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

FILE = 〈string : 1〉 ’default’ file with the target sequence

ALIGN CODES = 〈string : 0〉 ’all’ the code of the target sequence

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

OFF DIAGONAL = 〈integer : 1〉 100 to speed up the alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
OVERHANG = 〈integer : 1〉 0 un-penalized overhangs in protein com-

parisons

LOCAL ALIGNMENT = 〈logical : 1〉 off whether to do local as opposed to global

alignment

SEARCH GROUP LIST = 〈string : 1〉 ’$(LIB)/CHAINS 3.0 40 XN.grp’file with 40% groups of sequences

ALIGNMENT FORMAT = 〈string : 1〉 ’PIR’ sequence file formats; has to be ’PIR’

ALIGNMENT FEATURES = 〈string : 1〉 ’INDICES CONSERVATION’ what alignment features to write out:

’ACCURACY’ | ’HELIX’ | ’BETA’ |

’ACCESSIBILITY’ | ’STRAIGHTNESS’ |

’CONSERVATION’ | ’INDICES’ | ’ALL’ |

’GAPS’
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REMOVE GAPS = 〈logical : 1〉 on whether to remove all-gap positions in

input alignment

SEARCH TOP LIST = 〈integer : 1〉 20 the length of the output hits list

OUTPUT = 〈string : 1〉 ’LONG’ ’SHORT’ | ’LONG’

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

SEARCH SORT = 〈string : 1〉 ’LONGER’ which sequence to use for normalization

when sorting the hit list: ’SHORTER’ |

’LONGER’
SEARCH RANDOMIZATIONS =

〈integer : 1〉

0 number of randomizations for cal-

culating the significance of a se-

quence/sequence similarity

RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

FAST SEARCH = 〈logical : 1〉 off whether to use fast sequence search or

not
FAST SEARCH CUTOFF = 〈real : 1〉 1.0 if FAST SEARCH is ON only sequences

with database scan significance higher

than this value are considered for ran-

domization significance

DATA FILE = 〈logical : 1〉 off whether results go to a separate file or

not
SIGNIF CUTOFF = 〈real : 2〉 4.0 5.0 cutoff for adding sequences to alignment,

max difference from the best

Requirements: Sequence database

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command searches a sequence database for proteins that are similar to a given target sequence.

Target sequence is read from file FILE.

ALIGN CODES specifies the code of the target sequence in the FILE file. If only one sequence is in the file,
you can use ALIGN CODES = ’all’ to read it without bothering about the actual sequence code.

The database of sequences to be scanned against must be read previously by the READ SEQUENCE DB
command.

The command uses the dynamic programming method for the best sequence alignment, given the gap creation
and extension penalties specified by GAP PENALTIES 1D and residue type scores read from file RR FILE.
GAP PENALTIES 1D[1] is a gap creation penalty and GAP PENALTIES 1D[2] is a gap extension penalty.

The SEARCH TOP LIST top hits are written to the log file at the end. The hits are sorted according to the
fractional sequence identity score obtained by dividing the number of identical residue pairs by the length of
the longer sequence (SEARCH SORT = ’LONGER’) or the shorter sequence (SEARCH SORT = ’SHORTER’).

The final list of hits contains three different significance values:

1. SIGNI. Z-score from sequence randomizations. This is the most accurate significance score, but the
slowest one to calculate. For each pairwise comparison, the two sequences are shuffled a specified number
of times (SEARCH RANDOMIZATIONS) to obtain the mean and standard deviation of “random” scores
from which the Z-score for an alignment score of a given pair of sequences is calculated.

2. SIGNI2. Z-score for sequence identity from the database scan. After comparison of the target sequence
with all sequences in the database is done, the comparisons are sorted by the length of the database
sequence. The pairwise sequence identities of the 20 sequences closest in length to the target sequence are
used to calculate the average and standard deviation of the percentage sequence identities for subsequent
calculation of the Z-score for the percentage sequence identity of a given pairwise alignment.

3. SIGNI3. Z-score for alignment score from the database scan. The procedure is the same as for SIGNI2,
except that the alignment scores are used instead of the pairwise sequence identities.
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The calculation of the Z-scores assumes that the random scores are distributed according to the Gaussian
distribution, instead of the extreme value distribution [Karlin & Altschul, 1990], which is more correct.

SEARCH RANDOMIZATIONS specifies how many alignments of the shuffled sequences are done to calculate
the significance score for the overall sequence similarity. If 0, the significance is not calculated. If more than
5 randomizations are done, the significance score, not sequence identity, is used for sorting the hit list.

When FAST SEARCH is on only those sequences that have a database-scan alignment score significance
(SIGNI3 in output) above FAST SEARCH CUTOFF are used for the “full” randomization-based significance
calculation. Since the mean and the standard deviation of the distribution obtained by randomizing the two
compared sequences are much more appropriate than the corresponding quantities for the target/database
comparisons, FAST SEARCH should be on only when you are in a hurry and the database is large.

If DATA FILE is on the final results (list of PDB codes with significances, etc.) are also written to a separate
file ’seqsearch.dat’.

If OUTPUT is ’LONG’, the best alignment for each sequence in the database and its various scores are also
written to the log file. If OUTPUT is ’VERY LONG’, individual scores obtained for randomized sequences are
also written to the log file (this is almost never needed).

If the selected significance score is larger than SIGNIF CUTOFF[1] and not more than SIGNIF CUTOFF[2]
units worse than the best hit, all the members of the same group, as defined in SEARCH GROUP LIST, are
added to the alignment array. Subsequent MALIGN, DENDROGRAM and WRITE ALIGNMENT
can then be used to write out all related PDB chains aligned to the target sequence.

Example:

# Example for: SEQUENCE_SEARCH

# This will search the MODELLER database of representative protein chains

# for chains similar to the specified sequence.

SET OUTPUT_CONTROL = 1 1 1 1 1

SET SEARCH_RANDOMIZATIONS = 20 # should use 100 in real life;

SET OFF_DIAGONAL = 9999

SET GAP_PENALTIES_1D = -800 -400

SET CHAINS_LIST = ’very-short-for-test.cod’

READ_SEQUENCE_DB # SEQ_DATABASE_FILE = ’$(LIB)/CHAINS_all.seq’, ;

# CHAINS_LIST = ’$(LIB)/CHAINS_3.0_40_XN.cod’, ;

# SEQ_DATABASE_FORMAT = ’PIR’

SEQUENCE_SEARCH FILE = ’toxin.ali’, ALIGN_CODES = ’1nbt’

MALIGN

WRITE_ALIGNMENT FILE = ’toxin-search.pap’, ALIGNMENT_FORMAT = ’PAP’

2.4.32 SEQFILTER — cluster sequences by sequence-identity

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

GAP PENALTIES 1D = 〈real : 2〉 900 50 gap creation and extension penalties for

sequence/sequence alignment

MATRIX OFFSET = 〈real : 1〉 0.00 substitution matrix offset for local align-

ment
STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

OUTPUT GRP FILE = 〈string : 1〉 ’seqfilt.grp’ output file for seqfilter groups



94 CHAPTER 2. MODELLER COMMANDS

OUTPUT COD FILE = 〈string : 1〉 ’seqfilt.cod’ output file for seqfilter representative

groups

SEQID CUT = 〈integer : 1〉 95 Sequence Identity cut-off for SEQFIL-

TER
MAX DIFF RES = 〈integer : 1〉 30 Length cut-off for SEQFILTER

MAX UNALIGNED RES = 〈integer : 1〉 10 Cut-off for number of unaligned residues

in SEQFILTER

Output: MODELLER STATUS = 〈integer : 1〉

Description: This command clusters a set of sequences by sequence identity. The command uses a greedy algo-
rithm: the first sequence in the file becomes the first group representative. All other sequences are compared
with this and if they are similar enough, as specified in SEQID CUT, they are added as members of this
group. These sequences are not used for further comparisons. The next non-member sequence becomes the
next group representative and so on.

The initial set of sequences must be read previously by the READ SEQUENCE DB command with
SEQ DATABASE FORMAT being either ’PIR’ or ’FASTA’.

RR FILE is residue-residue substitution matrix. The command only handles similarity matrices for efficiency
purposes.

The command uses the Smith-Waterman dynamic programming method for the best sequence alignment,
given the gap creation and extension penalties specified by GAP PENALTIES 1D and residue type scores read
from file RR FILE. GAP PENALTIES 1D[1] is a gap creation penalty and GAP PENALTIES 1D[2] is a gap
extension penalty. The command only works with similarity matrices for efficiency reasons.

The final list of groups and their members is written out to OUTPUT GRP FILE. The codes of the represen-
tative sequences is written out to OUTPUT COD FILE.

The clustering algorithm evaluates the following conditions in hierarchial order before adding a sequence to
a group:

1. The difference in length: If the difference in the number of residues between the group representative
and the sequence being compared is greater than MAX DIFF RES, the sequence will not be included into
that group.

2. The number of unaligned residues: After the local alignment is performed, a sequence will not be
considered for addition into a group unless the difference between the smaller of the two sequences and
the number of aligned positions in the alignment is less than MAX UNALIGNED RES.

3. Sequence Identity: Finally, if the sequence identity calculated from the alignment is greater than SE-

QID CUT, the sequence is added to a group.

If the initial set of sequences read were in ’PIR’ format with values in the resolution field, then the group
representative is the sequence with the highest resolution. This is especially useful when clustering sequences
from the PDB.

Example:

SET OUTPUT_CONTROL = 1 1 1 1 1

SET MINMAX_DB_SEQ_LEN = 30 3000, CLEAN_SEQUENCES = on

READ_SEQUENCE_DB SEQ_DATABASE_FILE = ’sequences.pir’, ;

CHAINS_LIST = ’all’, ;

SEQ_DATABASE_FORMAT = ’PIR’

SET RR_FILE = ’${LIB}/id.sim.mat’

SET GAP_PENALTIES_1D = -3000 -1000

SET MAX_DIFF_RES = 30

SET MAX_UNALIGNED_RES = 10

SET OUTPUT_GRP_FILE = ’seqfilt.grp’

SET OUTPUT_COD_FILE = ’seqfilt.cod’

SEQFILTER SEQID_CUT = 95
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2.4.33 DELETE ALIGNMENT — delete alignment

Description: This command deletes an existing alignment from the Modeller memory. This is useful when a
default 1:1 correspondence, such as that between an X-ray structure and its Modeller model, is needed.
This default alignment is constructed for the commands that need an alignment only if there is no alignment
already in memory.

Example: See PATCH command.

2.4.34 SEGMENT MATCHING — align segments

Options:
RR FILE = 〈string : 1〉 ’$(LIB)/as1.sim.mat’ input residue-residue scoring file

ALIGN BLOCK = 〈integer : 1〉 0 the last sequence in the first block of se-

quences

SEGMENT REPORT = 〈integer : 1〉 1D6 for SEGMENT MATCHING

SEGMENT CUTOFF = 〈real : 1〉 999999 cutoff for writing out an alignment in

SEGMENT MATCHING
SEGMENT SHIFTS = 〈integer : 0〉 segment shifts +- in SEG-

MENT MATCHING
SEGMENT GROWTH N = 〈integer : 0〉 reducing/growing segment N-termini in

SEGMENT MATCHING
SEGMENT GROWTH C = 〈integer : 0〉 reducing/growing segment C-termini in

SEGMENT MATCHING
MIN LOOP LENGTH = 〈integer : 0〉 inter-segment minimal lengths in SEG-

MENT MATCHING
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

ROOT NAME = 〈string : 1〉 ’undf’ root of a filename for filename construc-

tion
FILE ID = 〈string : 1〉 ’default’ file id for filename construction

FILE EXT = 〈string : 1〉 ’’ file extension for filename construction

Requirements: alignment

Description: This command enumerates alignments between two blocks of sequences. More precisely, it enu-
merates the alignments between the segments in the first block and the sequences in the second block. The
segments can be moved to the left and right as well as lengthened and shortened, relative to the initial align-
ment. The regions not in segments or not aligned with segments are left un-aligned, possibly to be modeled
as insertions. Typically, the first block of sequences corresponds to structures, the segments to secondary
structure elements in the first block, and the second block to the sequences one of which is to be modeled later
on. The command is useful for generating many alignments which can then be used by another Modeller

script to generate and evaluate the corresponding 3D models.

All the sequences and segments are defined in the alignment array. The first block of sequences, the ones
with segments, are the first ALIGN BLOCK sequences. The regions corresponding to the segments are defined
by the last entry in the alignment as contiguous blocks of non-gap residues. Any standard single character
residue code may be used. The segments must be separated by gap residues, ‘-’. The remaining sequences
from ALIGN BLOCK + 1 to NSEQ − 1 are the second block of sequences. The alignment of the sequences
within the two blocks does not change. A sample alignment file is
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The enumeration of alignments explores all possible combinations of alignments between each segment and
the 2nd block of sequences: The starting position of each segment i is varied relative to the input align-
ment in the interval from SEGMENT SHIFT[2i − 1] to SEGMENT SHIFT[2i]. There has to be at least
MIN LOOP LENGTH[i] and MIN LOOP LENGTH[i + 1] residues that are not in any segment before and after
the i-th segment, respectively. The location of the N-terminus of segment i is varied relative to the location
in the input alignment in the interval from SEGMENT GROWTH N[2i − 1] to SEGMENT GROWTH N[2i].
Similarly, the location of the C-terminus of segment i is varied relative to the location in the input align-
ment in the interval from SEGMENT GROWTH C[2i− 1] to SEGMENT GROWTH C[2i]. The shortening and
lengthening of the segments may be useful in determining the best anchor regions for modeling of a loop.

Each alignment is scored according to the similarity scoring matrix specified by filename RR FILE. This matrix
may contain residue—gap scores, the gap being residue type 21; otherwise the value is set to the smallest value
in the matrix. The score for an alignment is obtained by summing scores only over all alignment positions
corresponding to the segments (no gap penalty is added for loops). When there is more than one sequence
in any of the two blocks, the position score is an average of all pairwise comparisons between the two blocks
of sequences. In the case where the number of positions in the alignment changes (i.e., the segments grow
or shorten), the scores are not comparable to each other. It is feasible to enumerate on the order of 1010

different alignments in less than one hour of CPU time.

In general, two runs are required. In the first run, the alignments are scored and a histogram of the scores is
written to file FILE. Then this file must be inspected to determine the cutoff SEGMENT CUTOFF. In the second
run, all the alignments with a score higher than SEGMENT CUTOFF are written to files in the PIR format,
using the standard filenaming convention: OUTPUT DIRECTORY/ROOT NAMEFILE IDnnnn0000FILE EXT,
where nnnn is the alignment file counter. In addition, the alignments are also written out in the PAP format
for easier inspection by eye. Thus, SEGMENT CUTOFF has to be set to a very large value in the first run,
to avoid writting alignment files. During a run, a message is written to the log every SEGMENT REPORT

aligments; this is useful for knowing what is going on during very long runs.
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2.5 Calculation of spatial restraints

This Chapter explains how the restraints are represented in a restraint file and also describes commands for reading,
writing, generating, and manipulating restraints. See Section 5.3 for equations defining the restraints and their
derivatives with respect to atomic positions. See Section 2.6 for commands for calculating the objective function
and Section 5.2 for optimization methods. See the original papers for the most detailed definition and description
of the restraints [Šali & Blundell, 1993, Šali & Overington, 1994].

2.5.1 Specification of restraints

Static and dynamic restraints

Static restraints are read from the restraints file or are generated by the MAKE RESTRAINTS command. All
other restraints are dynamic restraints and are created on the fly; they currently include restraints on non-bonded
atom pairs.

Formats of the restraints file

Restraints may be read from a restraints file in two formats, MODELLER or USER. The files in the MODELLER
and USER formats have to begin with the lines ’MODELLER5 VERSION: MODELLER FORMAT’ and ’MODELLER5

VERSION: USER FORMAT’, respectively. In both formats, there is one entry per line. The format is free, except that
the first character has to be at the beginning of the line. There are three different entry types in the MODELLER
format:

R Form Modality Feature Group Numb_atoms Numb_parameters 0 Atom_indices Parameters

E Atom_index_1 Atom_index_2

P Pseudo_atom_index Pseudo_atom_type Numb_real_atoms Real_atom_indices

For example,

R 3 1 1 1 2 2 0 437 28 1.5000 0.1000

E 120 540

P 1 3 3 120 121 122

When the line starts with ’R’, it contains a restraint, ’E’ indicates a pair of atoms to be excluded from the
calculation of the dynamic non-bonded pairs list, and ’P’ indicates a pseudo atom definition (Section 2.5.2).

The USER format recognizes only the R entries. The fields of a line in the USER format are:

Id Form Modality Feature Group Numb_atoms Numb_parameters 0 Parameters Atom_ids

(Note that Parameters and Atom ids are in opposite orders in the USER and MODELLER formats.)

For example,

R 3 1 1 1 2 2 0 1.5000 0.1000 NH#:1:A CA:2:A

The seven integer indices used to specify various restraint properties are listed in Tables 2.2–2.4. They are: Form
specifies the mathematical form of the restraint. Modality should be viewed as the argument to Form. It specifies
the number of single Gaussians in a poly-Gaussian pdf, periodicity n of the cosine in the cosine potential, and
the number of spline points for cubic splines. Only certain combinations of Form and Modality are possible. Any
Feature can be used with any Form/Modality pair. Group or “physical feature type” groups restraints for reporting
purposes in ENERGY, etc. The number of atoms and parameters for the restraint are specified by Numb atoms

and Numb prms, respectively. The seventh integer index can be ignored. Atom indices and Parameters have to
match the hard-wired conventions. The format of the atom id is ATOM NAME:RESIDUE #[:CHAIN ID], where
ATOM NAME is the four character IUPAC atom name as found in a PDB file, RESIDUE # is a five character
residue number as it occurs in the PDB file of a model, and the optional CHAIN ID is the single character chain
id as it occurs in the PDB file. For example, the carbonyl oxygen (O) in residue ’10A’ in chain ’A’ is specified by
’O:10A:A’; if the chain has no chain id, the name would be only ’O:10A’.
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2.5.2 Specification of pseudo atoms

There are virtual and pseudo atoms. A virtual atom is an atom that occurs in the actual molecule, but whose
position is not represented explicitly in the MODEL and topology file. A pseudo atom is a position that does not
correspond to an actual atom in a molecule, but is some sort of an average of positions of real atoms. Modeller

follows Gromos definitions for the seven types of pseudo and virtual atoms: gravity center, V41, V31, P2, V42, P3,
and P6. These names are constructed using the following rules: ’V’ and ’P’ indicate virtual and pseudo atoms,
respectively. The second digit indicates the number of substituents on the central atom (for ’V’) and the number
of protons whose positions are averaged (for ’P’). The last digit indicates the number of protons on the central
atom (for ’V’).

GROMOS ROUTINE #DEF DESCRIPTION

TYPE NAME ATM

--------------------------------------------------------------------------

1 PSD N gravity center

2 VCH1 4 virtual aliphatic proton on a tetrahedral carbon (->CH),

defined by the central C and the three other substituents;

3 VCH1A 3 virtual aromatic proton on a trigonal carbon (=CH),

defined by the central C and the two C atoms bonded

to the central C;

4 PCH2 3 pseudo aliphatic proton on a tetrahedral carbon (>CH2)

not assigned stereospecifically; its position is

between the two real protons; defined by the central

C and the other two substituents;

5 VCH2 3 virtual aliphatic proton on a tetrahedral carbon (>CH2)

assigned stereospecifically; defined by the central

tetraedral atom and the other two substituents on it;

6 PCH31 2 pseudo aliphatic proton on a tetrahedral carbon (-CH3),

defined by the central C and the heavy atom X in X-CH3;

its position is the average of the three real protons;

7 PCH32 3 pseudo aliphatic proton between two unassigned -CH3

groups; defined by X in CH3 - X - CH3 and the two

C atoms from the two CH3 groups (Val, Leu!);

its position is the average of the six real protons;

0 - - delta and epsilon protons on rapidly flipping aromatic

rings should refer directly to real gamma and delta C

atoms, respectively.

In a restraints file, pseudo atoms are indexed from NATM+1 to NATM+NPSEUDO where NPSEUDO is the
number of pseudo atoms. The restraints (the R entries) are exactly the same as for the real atoms, except that
the pseduo atom integer indices are used (indices are larger than NATM). The pseudo atoms are defined in the P
entries:

P i j k a1 a2 a3

where i is atom index of pseudo atom i, j is the type of the pseudo atom i (see the table above), k is the number
of real atoms defining the current pseudo atom (3 in this case), and a1 a2 a3 are the integer indices of real atoms
defining the current pseudo atom.

For example, if you want to define a pseudo atom which is a gravity center of atoms 4, 7, and 10, and there are
101 real atoms in the protein:



2.5. CALCULATION OF SPATIAL RESTRAINTS 99

P 102 1 3 4 7 10
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# Form Parameters Violation Reference

1 left Gaussian (harmonic lower bound) f̄ , σ (f − f̄)/σ Eq. 5.55
2 right Gaussian (harmonic upper bound) f̄ , σ (f − f̄)/σ Eq. 5.56
3 single Gaussian (harmonic potential) f̄ , σ (f − f̄)/σ Eq. 5.39
4 multiple Gaussian (ωi)n, (f̄i)n, (σi)n maxωi

(f − f̄i)/σi Eq. 5.41
5 Lennard-Jones potential A, B 0.0 Eq. 5.63
6 Coulomb point-to-point potential q1, q2 0.0 Eq. 5.60
7 Cosine potential a, b c Eq. 5.57
8 undefined

9 multiple binormal (ωi)n, (f̄1i, f̄2i)n, (σ1i, σ2i)n, (ρ)n maxωi

√

− 1
2(1−ρ2

i
)

[

(

f1−f̄1i

σ1i

)2

− 2ρi
f1−f̄1i

σ1i

f2−f̄2i

σ2i

+
(

f2−f̄2i

σ2i

)2
]

Eq. 5.51

10 cubic spline pi, for i = 1, 6 + n (f − fmin)/σ Eq. 5.70

Table 2.2: List of mathematical forms of restraints. The parameters and their order in the restraint file are also given (Params above). (. . .)n indicates that
(. . .) is repeated n times, where n is specified by the second integer parameter of the restraint, modality (see above). Modality also defines periodicity of
the cosine restraint, corresponding to parameter n in Eq 5.57, and the number of interpolating points for the spline restraint (Eq. 5.70). Feature f can
generally be either a measure of solvent exposure (undocumented), a distance, an angle, or a dihedral angle, with the exception of restraint form 9 that
only works with a pair of dihedral angles. The angle unit in the restraints file is radians. The internal angle unit of Modeller is radians, too. Column
’Violation’ defines the “relative heavy violations” used in PICK HOT ATOMS. For cubic splines, fmin is the feature value that results in the smallest
value of the restraint and σ is the standard deviation of the Gaussian function fitted locally around fmin. The parameters pi for a spline restraint are: the
scaling factor (p1), the smallest value at which interpolation is done, x1 (p2), the largest interpolating value xn (p3), the interval between interpolating
points, ∆x (p4), the first derivative at x1 (p5), the first derivative at xn (p6). The following n values are the values of the restraint at the interpolating xi

points. The Modeller-4 format has additional n values, which are the second derivatives of the restraint at the interpolating xi points.
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Index Feature

1 distance
2 angle
3 dihedral angle
4 a pair of dihedral angles (points 1–4 and 5–8)
5 distance between gravity centers of two groups of atoms
6 minimal distance between several pairs of atoms

7 atomic area exposed to solvent in Å
2

8 atomic density (number of atoms within CONTACT SHELL)
9 x coordinate

10 y coordinate
11 z coordinate
12 difference between two dihedral angles (1–4 and 5–8)

Table 2.3: List of feature types that can be restrained.
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Index Group

1 Bond length potential
2 Bond angle potential
3 Stereochemical cosine dihedral potential
4 Stereochemical improper dihedral potential
5 soft-sphere overlap restraints
6 Lennard-Jones 6–12 potential
7 Coulomb point-point electrostatic potential
8 H-bonding potential
9 Distance restraints 1 (Cα–Cα)

10 Distance restraints 2 (N–O)
11 Mainchain Φ dihedral restraints
12 Mainchain Ψ dihedral restraints
13 Mainchain ω dihedral restraints
14 Sidechain χ1 dihedral restraints
15 Sidechain χ2 dihedral restraints
16 Sidechain χ3 dihedral restraints
17 Sidechain χ4 dihedral restraints
18 Disulfide distance restraints
19 Disulfide angle restraints
20 Disulfide dihedral angle restraints
21 X lower bound distance restraints
22 X upper bound distance restraints
23 Distance restraints 3 (SDCH–MNCH)
24 Sidechain χ5 dihedral restraints
25 (Φ,Ψ) binomial dihedral restraints
26 Distance restraints 4 (SDCH–SDCH)
27 Distance restraints 5 (X–Y)
28 NMR distance restraints 6 (X–Y)
29 NMR distance restraints 7 (X–Y)
30 Minimal distance restraints
31 Non-bonded spline restraints
32 Atomic accessibility restraints
33 Atom density restraints
34 Absolute position restraints
35 Dihedral angle difference restraints

Table 2.4: List of “physical” restraint types.
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2.5.3 MAKE RESTRAINTS — make restraints

Options:
RESTRAINT TYPE = 〈string : 1〉 ’STEREO’ restraint type to be calculated: ’STEREO’

| ’BOND’ | ’ANGLE’ | ’IMPROPER’

| ’DIHEDRAL’ | ’MRFP STEREO’

| ’MRFP BOND’ | ’MRFP ANGLE’

| ’MRFP DIHEDRAL’ | ’SPHERE’

| ’SPHERE14’ | ’LJ’ | ’LJ14’ |

’COULOMB’ | ’COULOMB14’ | ’ALPHA’

| ’STRAND’ | ’SHEET’ | ’DISTANCE’ |

’USER DISTANCE’ | ’NONB PAIR SPLINE’

| ’PHI-PSI BINORMAL’ |

’PHI-PSI CLASS’ | ’PHI DIHEDRAL’

| ’PSI DIHEDRAL’ | ’OMEGA DIHEDRAL’

| ’CHI1 DIHEDRAL’ | ’CHI2 DIHEDRAL’

| ’CHI3 DIHEDRAL’ | ’CHI4 DIHEDRAL’

RADII FACTOR = 〈real : 1〉 0.82 factor for van der Waals radii

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

DIH LIB ONLY = 〈logical : 1〉 off whether to use only library, not ho-

mologs for dihedral angle rsrs

MNCH LIB = 〈integer : 1〉 1 which MNCH lib to use in

MAKE RESTRAINTS
INTERSEGMENT = 〈logical : 1〉 on whether to restrain inter-segment non-

bonded pairs

ADD RESTRAINTS = 〈logical : 1〉 off whether to add new restraints to existing

restraints
RESIDUE GROUPING = 〈integer : 1〉 1

MAXIMAL DISTANCE = 〈real : 1〉 999 maximal distance for distance restraints

RESIDUE SPAN RANGE = 〈integer : 2〉 0 99999 range of residues spanning the allowed

distances; for MAKE RESTRAINTS,

PICK RESTRAINTS, non-bonded dy-

namic pairs

RESIDUE SPAN SIGN = 〈logical : 1〉 on whether to do N*(N-1)/2 loop for

atom pairs in MAKE RESTRAINTS

RESTRAINT TYPE = ’distance’
RESTRAINT SEL ATOMS = 〈integer : 1〉 1 a restraint other than non-bonded pair

has to have at least as many selected

atoms
NONBONDED SEL ATOMS = 〈integer : 1〉 1 a non-bonded pair has to have at least

as many selected atoms

EXCL LOCAL = 〈logical : 4〉 on on on on whether to exclude bonds, angles, di-

hedrals, explicit excl pairs from the

homology-derived distance rsrs

ACCESSIBILITY TYPE = 〈integer : 1〉 8 type of solvent accessibility: 1–10

DISTANCE RSR MODEL = 〈integer : 1〉 1 the model for calculating distance re-

straints: 1–7
RESTRAINT STDEV = 〈real : 2〉 0.0 1.0 transforming factors for standard devia-

tions (y=a+bx) in models 1–6 or stan-

dard deviation for model 7 (a)

RESTRAINT STDEV2 = 〈real : 3〉 0 0 0 transforming standard deviation in mod-

els 3–6: S’ = S + [ a + b max(0, c-g) ]

RESTRAINT PARAMETERS = 〈real : 0〉 3 1 3 3 4 2 0 0.0 0.087 restraint parameters for

’USER DISTANCE’
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ATOM FILES DIRECTORY = 〈string : 1〉 ’./’ input atom files directory list (e.g.,

’dir1:dir2:dir3:./:/’)

BASIS PDF WEIGHT = 〈string : 1〉 ’LOCAL’ a method for calculation of basis pdf

weights: ’LOCAL’ | ’GLOBAL’

BASIS RELATIVE WEIGHT = 〈real : 1〉 0.05 the cutoff weight of basis pdf’s for their

removal
RESIDUE IDS = 〈string : 0〉 ’’ residue id (number:chnid)

SPLINE ON SITE = 〈logical : 1〉 off whether to convert restraints to splines

SHEET H-BONDS = 〈integer : 1〉 7 specify hydrogen bonds in a beta-sheet

Requirements: topology & parameters [& alignment] [& picked atoms sets 2 and 3]

Description: This command calculates and selects new restraints of a specified type. See the original papers for
the most detailed definition and description of the restraints [Šali & Blundell, 1993, Šali & Overington, 1994].
The calculation of restraints of all types is now (partly) limited to the selected atoms only (either set 1, or 2
and 3; see below).

If ADD RESTRAINTS is off, all old restraints are deleted, otherwise new restraints are added to the old ones.

RESTRAINT TYPE selects the types of the generated restraints. Only one restraint type can be selected at a
time, except for the stereochemical restraints (BOND, ANGLE, DIHEDRAL, IMPROPER) that can all be calculated
at the same time. It is useful to distinguish between the stereochemical restraints and homology-derived
restraints. The stereochemical restraints are obtained from libraries that depend on atom and/or residue
types only (e.g., Charmm 22 force field [MacKerell et al., 1998] or statistical potentials), and do not require
an alignment with template structures. In contrast, the homology-derived restraints are calculated from
related protein structures, which correspond to all but the last sequence in the alignment (the target). These
templates are read from coordinate files, which are the only data files required. All restraints are added to
the existing restraints, even if they duplicate them (but see the comment for the ’OMEGA’ restraints below).

Stereochemical restraints:

• ’BOND’. This calculates covalent bond restraints (harmonic terms). It relies on the list of the atom–
atom bonds for MODEL, prepared previously by the GENERATE TOPOLOGY command. The
mean values and force constants are obtained from the parameter library in memory. Only those bonds
are restrained that have all or at least RESTRAINT SEL ATOMS in the selected atom set 1.

• ’ANGLE’. This calculates covalent angle restraints (harmonic terms). It relies on the list of the atom–
atom–atom bonds for MODEL, prepared previously by the GENERATE TOPOLOGY command.
The mean values and force constants are obtained from the parameter library in memory. Only those
angles are restrained that have all or at least RESTRAINT SEL ATOMS in the selected atom set 1.

• ’DIHEDRAL’. This calculates covalent dihedral angle restraints (cosine terms). It relies on the list
of the atom–atom–atom–atom dihedral angles for MODEL, prepared previously by the GENER-
ATE TOPOLOGY command. The minima, phases, and force constants are obtained from the pa-
rameter library in memory. Only those dihedral angles are restrained that have all or at least RE-

STRAINT SEL ATOMS in the selected atom set 1.

• ’IMPROPER’. This calculates improper dihedral angle restraints (harmonic terms). It relies on the list
of the improper dihedral angles for MODEL, prepared previously by the GENERATE TOPOLOGY
command. The mean values and force constants are obtained from the parameter library in memory.
Only those impropers are restrained that have all or at least RESTRAINT SEL ATOMS in the selected
atom set 1.

• ’STEREO’. This implies all ’BOND’, ’ANGLE’, ’DIHEDRAL’, and ’IMPROPER’ restraints.

• ’MRFP BOND’. Similar to ’BOND’ except that spline restraints from the corresponding MRFP entries in the
parameter library are used instead of the harmonic terms. Only those bonds are restrained that have
all or at least RESTRAINT SEL ATOMS in the selected atom set 1.

• ’MRFP ANGLE’. Similar to ’ANGLE’ except that spline restraints from the corresponding MRFP entries in
the parameter library are used instead of the harmonic terms. Only those angles are restrained that
have all or at least RESTRAINT SEL ATOMS in the selected atom set 1.
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• ’MRFP DIHEDRAL’. Similar to ’DIHEDRAL’ except that spline restraints from the corresponding MRFP

entries in the parameter library are used instead of the cosine terms. Only those dihedral angles are
restrained that have all or at least RESTRAINT SEL ATOMS in the selected atom set 1.

• ’MRFP STEREO’. This implies all ’MRFP BOND’, ’MRFP ANGLE’, and ’MRFP DIHEDRAL’ restraints.

• ’SPHERE14’. This constructs soft-sphere overlap restraints (lower harmonic bounds) for atom pairs
separated by exactly three bonds (1–4 pairs). It relies on atom radii from the ’$RADII14 LIB’ library.
Only those non-bonded pairs are restrained that have all or at least NONBONDED SEL ATOMS in
the selected atom set 1. They must also satisfy the RESIDUE SPAN RANGE & RESIDUE SPAN SIGN

criterion.

• ’LJ14’. This constructs 1–4 Lennard-Jones restraints using the modified 1–4 Lennard-Jones parameters
from the Charmm parameter library. There is no way to calculate ’LJ14’ as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least NONBONDED SEL ATOMS in the selected
atom set 1. They must also satisfy the RESIDUE SPAN RANGE & RESIDUE SPAN SIGN criterion.

• ’COULOMB14’. This constructs 1–4 Coulomb restraints by relying on the atomic charges from the
Charmm topology library. There is no way to calculate ’COULOMB14’ as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least NONBONDED SEL ATOMS in the se-
lected atom set 1. They must also satisfy the RESIDUE SPAN RANGE & RESIDUE SPAN SIGN criterion.

• ’SPHERE’. This constructs soft-sphere overlap restraints (lower harmonic bounds) for all atom pairs that
are not in bonds, angles, dihedral angles, improper dihedral angles, nor are explicitly excluded by the
’E’ entries read from a restraint file or added by the ADD RESTRAINT command. Only those non-
bonded pairs are restrained that have all or at least NONBONDED SEL ATOMS in the selected atom
set 1. They must also satisfy the RESIDUE SPAN RANGE & RESIDUE SPAN SIGN criterion. Note that
this makes these restraints static (i.e., not dynamic) and that you must set DYNAMIC SPHERE to off

before evaluating the molecular pdf if you want to avoid duplicated restraints. These restraints should
usually not be combined with the Lennard-Jones (’LJ’) restraints.

When INTERSEGMENT is on, the inter-segment non-bonded restraints are also constructed; otherwise,
the segments do not feel each other via the non-bonded restraints. This option does not apply to the
OPTIMIZE command where information about segments is not used at all (i.e., OPTIMIZE behaves
as if INTERSEGMENT = on).

• ’LJ’. This constructs Lennard-Jones restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the ADD RESTRAINT command. Only those non-bonded pairs are restrained that
have all or at least NONBONDED SEL ATOMS in the selected atom set 1. They must also satisfy the
RESIDUE SPAN RANGE & RESIDUE SPAN SIGN criterion. Note that this command makes the non-
bonded restraints static (i.e., not dynamic) and that you must set DYNAMIC LENNARD to off before
evaluating the molecular pdf if you want to avoid duplicated restraints. Note that Charmm uses both
’LJ14’ and ’LJ’. For large molecules, it is better to calculate ’LJ’ as dynamic restraints because you can
use distance cutoff CONTACT SHELL in OPTIMIZE to reduce significantly the number of non-bonded
atom pairs.

• ’COULOMB’. This constructs Coulomb restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the ADD RESTRAINT command. Only those non-bonded pairs are restrained that
have all or at least NONBONDED SEL ATOMS in the selected atom set 1. They must also satisfy
the RESIDUE SPAN RANGE & RESIDUE SPAN SIGN criterion. Note that this command makes the
non-bonded restraints static (i.e., not dynamic) and that you must set DYNAMIC COULOMB to off

before evaluating the molecular pdf if you want to avoid duplicated restraints. Note that Charmm uses
both ’COULOMB14’ and ’COULOMB’. For large molecules, it is better to calculate ’COULOMB’ as dynamic
restraints because you can use distance cutoff CONTACT SHELL in OPTIMIZE to reduce significantly
the number of non-bonded atom pairs.

• ’ALPHA’. This makes restraints enforcing an α-helix (mainchain conformation class “A”) for the residue
segment specified by the two RESIDUE IDS (Section 2.4.1). The helix is restrained by Φ,Ψ binormal
restraints, N–O hydrogen bonds, Cα–Cα distances for i− j ∈ {2−9}, Cα–O distances for i− j ∈ {2−9},
and O–O distances for i − j ∈ {2 − 6}. These target distances were all obtained from a regular α-helix
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in one of the high-resolution myoglobin structures. A convenient way to add ’ALPHA’, ’STRAND’, or
’SHEET’ restraints to the calculation by the ’model’ script is to include them in the special restraints

routine (Section 1.8, Question 19). Note that at least the non-hydrogen mainchain atoms topology model
is required although the same functionality could also be provided for the Cα-only topology with small
changes to the source code.

• ’STRAND’. This makes restraints enforcing an extended strand conformation for the residue segment
specified by the two RESIDUE IDS (Section 2.4.1). This is achieved by applying Φ,Ψ binormal restraints
only. These binormal restraints force the mainchain conformation into class “B”, except for the Pro
residues which are restrained to class “P” [Šali & Blundell, 1993].

• ’SHEET’. This calculates H-bonding restraints for a pair of β-strands. ATOM IDS specifies the two atom
identifiers (Section 2.5.1) defining the first H-bond in the β-sheet ladder. SHEET H-BONDS specifies
the number of H-bonds to be added. The parallel and anti-parallel sheets are selected by a positive and
negative integer in SHEET H-BONDS, respectively. In a parallel sheet, hydrogen bonds start at the first
or the second term of the following series (depending on ATOM IDS): 1N:1O, 1O:3N, 3N:3O, 3O:5N, etc.
For an anti-parallel sheet, the corresponding series is 1N:3O, 1O:3N, 3N:1O, 3O:1N, etc; note that the
residue indices are always decreasing for the second strand. The extended structure of the individual
strands must be enforced separately by the ’STRAND’ restraints if so desired.

• ’USER DISTANCE’. This makes distance restraints between pairs of atoms from set 2 and 3 (inter-set only),
using the value of RESTRAINT PARAMETERS. Only distances satisfying the RESIDUE SPAN RANGE

criterion are restrained. This command is useful for making non-specific “compactization” restraints.

Homology-derived restraints:

• ’DISTANCE’. This makes distance restraints that are generated for all pairs of atoms i, j where atom i
is from selected set 2 and atom j is from selected set 3 (as defined by the PICK ATOMS command).
The atoms also have to be within the residue spanning range specified by RESIDUE SPAN RANGE

= r1 r2, such that the residue index difference r1 ≤ |ir2 − ir1| ≤ r2 when RESIDUE SPAN SIGN

= off and r1 ≤ (ir2 − ir1) ≤ r2 when RESIDUE SPAN SIGN = on. Moreover, for a restraint to
be created, at least one distance in the template structures must be less than MAXIMAL DISTANCE

(in Å). The mean of this basis pdf is equal to the template distance and its standard deviation σ
is calculated from an analytic model specified by DISTANCE RSR MODEL. Use model 5 for Cα–Cα

distances and model 6 for N–O distances. For models 1 through 6, this standard deviation is transformed
by σ′ = a + b ∗ (σ + Wg) where a and b are given by RESTRAINT STDEV and Wg is a gap weighting
function of the form Wg = 0.6 ∗ max(0, 4 − gav). gav is the average distance of the two residues
involved in the restraint from a gap. For models 3 through 6, this is additionally transformed by
σ′′ = σ′ +

∑

i[d + e ∗max(0, f − gi)] where the sum is over each of the atoms i involved in the distance,
d e and f are given by RESTRAINT STDEV2, and gi is the distance of each residue from a gap. The
first six models are polynomials and depend on several structural features of the template and its
similarity to the target. The polynomial coefficients are specified in library file ’$PARAMS LIB’. When
“polynomial model” 7 is selected, the standard deviation of restraints is set to constant a. Each basis
pdf in the distance pdf corresponds to one template structure with an equivalent distance. The weights
of basis pdf’s depend on local sequence similarity between the target and the templates when BASIS -

PDF WEIGHT = ’LOCAL’ and on global sequence identity when BASIS PDF WEIGHT = ’GLOBAL’. In
addition, the atom pairs restrained by homology-derived restraints must by default not be in a chemical
bond, chemical angle, dihedral angle, or on an excluded pairs list. This behavior can be changed by
resetting EXCL LOCAL (see OPTIMIZE).

• ’PHI-PSI CLASS’, ’CHI1 DIHEDRAL’, ’CHI2 DIHEDRAL’, ’CHI3 DIHEDRAL’, ’CHI4 DIHEDRAL’, ’PHI -

DIHEDRAL’, ’PSI DIHEDRAL’, ’OMEGA DIHEDRAL’, ’PHI-PSI BINORMAL’ are the mainchain and sidechain
dihedral angle restraints. Only those dihedral angles are restrained that have all or at least NON-

BONDED SEL ATOMS in the selected atom set 1. The means and standard deviations for the dihedral
Gaussian restraints are obtained from the $RESDIH LIB and $MNCH? LIB libraries and their weights from
the MDT tables, which are read in as specified by MDT LIB in $LIB/libs.lib. The large MDT tables
give the conditional weights for each possible dihedral angle class, as a function of all possible combina-
tions of features on which a particular class depends. If DIH LIB ONLY is ON or there is no equivalent
residue in any of the templates, the weights for the dihedral angle classes depend only on the residue
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type and are obtained from the ’$RESDIH LIB’ and ’$MNCH? LIB’ libraries; the DIH LIB ONLY argu-
ment allows one to force the calculation of the “homology-derived” mainchain and sidechain dihedral
angle restraints that ignore template information. BASIS PDF WEIGHT has the same effect as for the
distance pdf’s. MDT LIB FILE and BIN LIB FILE have to be specified for all homology-derived restraints
that depend on the MDT files, including all mainchain and sidechain dihedral angle restraints. When
Modeller’s ’OMEGA’ restraints are calculated, the currently existing restraints on atoms ’O C +N +CA’

in all residues are automatically deleted. These deleted restraints correspond to the improper dihedral
angles involving the ω atoms. They are deleted because they could be “frustrated” by the new ’OMEGA’

restraints. No action is taken with regard to any of the previously existing, possibly duplicated dihedral
angle restraints. Thus, to avoid restraint duplication, including that of the ’OMEGA’ restraints, call the
CONDENSE RESTRAINTS command after all the restraints are calculated.

BASIS RELATIVE WEIGHT is the cutoff for removing weak basis pdf’s from poly-Gaussian feature pdf’s: a
basis pdf whose weight is less than the BASIS RELATIVE WEIGHT fraction of the largest weight is deleted.

Example:

# Example for: MAKE_RESTRAINTS, SPLINE_RESTRAINTS, WRITE_RESTRAINTS

# This will compare energies of bond length restraints expressed

# by harmonic potential and by cubic spline.

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’, MODEL_SEGMENT = ’1:’ ’61:’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE ’1fas.ini’

MAKE_RESTRAINTS RESTRAINT_TYPE = ’bond’

WRITE_RESTRAINTS FILE = ’1fas-1.rsr’

ENERGY DYNAMIC_SPHERE = off

SPLINE_RESTRAINTS SPLINE_RANGE = 5.0, SPLINE_DX = 0.005, SPLINE_SELECT = 3 1 1

CONDENSE_RESTRAINTS

WRITE_RESTRAINTS FILE = ’1fas-2.rsr’

ENERGY

2.5.4 DEFINE SYMMETRY — define similar segments

Options:
SYMMETRY WEIGHT = 〈real : 1〉 1.0 the weight of the symmetry objective

function term
ADD SYMMETRY = 〈logical : 2〉 off on whether to add segment pair, add atoms

to segment pair

Description: This command allows defining pairs of segments that will be restrained to be the same during
optimization of the objective function. This is achieved by adding the sum of squares of the differences
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between the equivalent distances (similar to distance Rms deviation) to the objective function being optimized,
separately for each pair of segments defined by DEFINE SYMMETRY. The value of this term is reported
in the log file by the ENERGY command, which also reports the individual contributions to the term when
OUTPUT contains word ’SYMMETRY’. In each call of the DEFINE SYMMETRY command, the list of
such segments is either initiated, extended by a new pair of segments, or the last defined pair of segments is
extended by adding new atoms.

SYMMETRY WEIGHT specifies the atomic weights to be used in the calculation of the symmetry term
(Eq. 5.72).

The two segments correspond to the selected sets 2 and 3 (obtained by the PICK RESTRAINTS com-
mand). They must have the same number of atoms.

A pair of segments can be either added to the list (ADD SYMMETRY[1] = on) or the list can be initialized
(ADD SYMMETRY[1] = off).

If ADD SYMMETRY[2] = on, the currently selected atoms are added to the last segment pair in the segment
pairs list, otherwise a new segment pair is started.

Example:

# Example for: DEFINE_SYMMETRY

# This will force two copies of 1fas to have similar mainchain

# conformation.

DEFINE_STRING VARIABLES = SEG1 SEG2

SET OUTPUT_CONTROL = 1 1 1 1 0

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

# Generate two copies of a segment:

READ_MODEL FILE = ’2abx’, MODEL_SEGMENT = ’1:A’ ’74:B’

SEQUENCE_TO_ALI ALIGN_CODES = ’2abx’, ATOM_FILES = ALIGN_CODES

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ALIGN_CODES = ALIGN_CODES ’2abx_ini’, ;

ATOM_FILES = ALIGN_CODES

GENERATE_TOPOLOGY SEQUENCE = ’2abx_ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

RENAME_SEGMENTS SEGMENT_IDS = ’A’ ’B’, RENUMBER_RESIDUES = 1 1

ENERGY DYNAMIC_SPHERE = off

RANDOMIZE_XYZ DEVIATION = 6.0

# Define the two segments (chains in this case) to be identical:

CALL ROUTINE = ’defsym’, SEG1 = ’1:A’ ’74:A’, SEG2 = ’1:B’ ’74:B’

# Make them identical by optimizing the initial randomized structure

# without any other restraints:

ENERGY

WRITE_MODEL FILE = ’define_symmetry-1.atm’

OPTIMIZE MAX_ITERATIONS = 300

WRITE_MODEL FILE = ’define_symmetry-2.atm’

ENERGY

# Now optimize with stereochemical restraints so that the

# result is not so distorted a structure (still distorted

# because optimization is not thorough):

SET DYNAMIC_SPHERE = on
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MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

RANDOMIZE_XYZ DEVIATION = 3.0

SET MAX_ITERATIONS = 300, MD_RETURN = ’FINAL’

OPTIMIZE OPTIMIZATION_METHOD = 1 # Conjugate gradients

OPTIMIZE OPTIMIZATION_METHOD = 3 # Molecular dynamics

OPTIMIZE OPTIMIZATION_METHOD = 1 # Conjugate gradients

WRITE_MODEL FILE = ’define_symmetry-3.atm’

ENERGY

DELETE_ALIGNMENT

READ_MODEL MODEL_SEGMENT = ’1:A’ ’74:A’

READ_MODEL2 MODEL2_SEGMENT = ’1:B’ ’74:B’

PICK_ATOMS ATOM_TYPES = ’MNCH’

SUPERPOSE

STOP

SUBROUTINE ROUTINE = ’defsym’

SET ATOM_TYPES = ’MNCH’

SET SELECTION_STATUS = ’INITIALIZE’

SET SELECTION_SEARCH = ’SEGMENT’

SET SYMMETRY_WEIGHT = 1.0

PICK_ATOMS PICK_ATOMS_SET = 2, SELECTION_SEGMENT = SEG1

PICK_ATOMS PICK_ATOMS_SET = 3, SELECTION_SEGMENT = SEG2

DEFINE_SYMMETRY ADD_SYMMETRY = on off

RETURN

END_SUBROUTINE

2.5.5 PICK RESTRAINTS — pick restraints for selected atoms

Options:
RESIDUE SPAN RANGE = 〈integer : 2〉 0 99999 range of residues spanning the allowed

distances; for MAKE RESTRAINTS,

PICK RESTRAINTS, non-bonded dy-

namic pairs

RESTRAINTS FILTER = 〈real : 35〉 999 999 999 999 999 999 999

999 999 999 999 999 999 999

999 999 999 999 999 999 999

999 999 999 999 999 999 999

999 999 999 999 999 999 999

keep restraints?

RESTRAINT SEL ATOMS = 〈integer : 1〉 1 a restraint other than non-bonded pair

has to have at least as many selected

atoms
ADD RESTRAINTS = 〈logical : 1〉 off whether to add new restraints to existing

restraints

Description: This command selects some or all of the restraints currently in memory.

If ADD RESTRAINTS is on, the already selected restraints remain selected; additional restraints also be-
come selected if they satisfy currently specified conditions (see below). If ADD RESTRAINTS is off, only
those restraints that satisfy currently specified conditions become selected. This command runs over all
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restraints in memory, including the currently unselected restraints. Be careful about this: If you have
some unselected restraints in memory, PICK RESTRAINTS may select them; to prevent this, do CON-
DENSE RESTRAINTS before calling PICK RESTRAINTS.

A static restraint is selected if all or at least RESTRAINT SEL ATOMS of its atoms are selected (set
1), if it is strong enough based on its standard deviations or force constants (see the next paragraph),
and if it does not span less (more) than the minimal (maximal) allowed number of residues specified by
RESIDUE RANGE. Note that here the RESTRAINT SEL ATOMS is used also for the static non-bonded re-
straints, while MAKE RESTRAINTS and OPTIMIZE commands use NONBONDED SEL ATOMS for
this purpose (RESTRAINT SEL ATOMS is used in MAKE RESTRAINTS only for most restraint type
other than non-bonded pairs).

To decide if a restraint is strong enough, the current standard deviations or force constants are compared
with the corresponding RESTRAINTS FILTER[physical restraint type]. A harmonic restraint, lower and upper
bounds, and multi-modal Gaussian restraints are selected if the (smallest) standard deviation is less than the
corresponding RESTRAINTS FILTER[i]. The cosine energy term is selected if its force constant is larger
than the corresponding RESTRAINTS FILTER[i]. If RESTRAINTS FILTER[i] = −999, a restraint of type i is
always selected. Restraints of the other physical restraint types are always selected (Coulomb, Lennard-Jones,
binormal, and spline). The RESTRAINTS FILTER angles have to be specified in radians.

Example:

# Example for: PICK_RESTRAINTS, CONDENSE_RESTRAINTS

# This will pick only restraints that include at least one

# CA atom and write them to a file.

SET OUTPUT_CONTROL = 1 1 1 1 1

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

ENERGY

PICK_ATOMS ATOM_TYPES = ’CA N C O’

PICK_RESTRAINTS ADD_RESTRAINTS = off, RESTRAINT_SEL_ATOMS = 1

# Delete the unselected restraints from memory:

CONDENSE_RESTRAINTS

ENERGY

WRITE_RESTRAINTS FILE = ’1fas.rsr’

2.5.6 CONDENSE RESTRAINTS — remove unselected restraints

Description: This command removes all the unselected restraints from memory. In addition, it also removes
those cosine dihedral angle restraints (RESTRAINT TYPE = ’DIHEDRAL’) that operate on the same atoms
as any other restraints on a dihedral angle or a pair of dihedral angles. Such restraints include the
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Modeller ’PHI DIHEDRAL’, ’PSI DIHEDRAL’, ’OMEGA DIHEDRAL’, ’CHI1 DIHEDRAL’, ’CHI2 DIHEDRAL’,
’CHI3 DIHEDRAL’, ’CHI4 DIHEDRAL’, ’PHI PSI CLASS’, ’MRFP DIHEDRAL’, and ’PHI PSI BINORMAL’ dihe-
dral angle restraints, as well as the 2nd, 3rd, etc. cosine dihedral angle restraints on the same atoms; the
improper dihedral angle restraints are not considered here. For this command to work properly, the cosine
dihedral angle restraints must be constructed before any other dihedral angle restraints. This functionality is
needed because some of the Charmm cosine terms are sometimes duplicated by other Charmm cosine terms
as well as by Modeller homology-derived mainchain and sidechain dihedral and bi-dihedral angle restraints.
In the standard model script, the redundant Charmm terms are always removed.

Example: See READ MODEL command.

2.5.7 ADD RESTRAINT — add restraint

Options:
ATOM IDS = 〈string : 0〉 ’’ atom ids:

’atom:residue id[:chain id]’

RESTRAINT PARAMETERS = 〈real : 0〉 3 1 3 3 4 2 0 0.0 0.087 restraint parameters

Description: This command adds a specified restraint to the end of the restraints list and selects it. It can also
add an excluded pair or a pseudo atom definition to the respective lists, depending on the dimension of
RESTRAINT PARAMETERS (Section 2.5.1). This command is useful for specifying cis-peptide bonds from a
Top script. The angles have to be in radians.

Example:

# Example for: ADD_RESTRAINT, DELETE_RESTRAINT

# This will enforce cis conformation for Pro-56.

# Make a model and stereochemical restraints:

SET OUTPUT_CONTROL = 1 1 1 1 0

DEFINE_STRING VARIABLES = ATOM_IDS1 ATOM_IDS2

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

# Change the Pro-56 restraint from trans to cis:

CALL ROUTINE = ’cispeptide’, ATOM_IDS1 = ’O:56’ ’C:56’ ’N:57’ ’CA:57’, ;

ATOM_IDS2 = ’CA:56’ ’C:56’ ’N:57’ ’CA:57’

WRITE_RESTRAINTS FILE = ’1fas.rsr’

ENERGY

SUBROUTINE ROUTINE = ’cispeptide’

# Delete the old restraint on the same atoms:

DELETE_RESTRAINT ATOM_IDS = ATOM_IDS1

# Add the new restraint:

ADD_RESTRAINT RESTRAINT_PARAMETERS = 3 1 3 3 4 2 0 3.141593 0.087
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DELETE_RESTRAINT ATOM_IDS = ATOM_IDS2

ADD_RESTRAINT RESTRAINT_PARAMETERS = 3 1 3 3 4 2 0 0.0 0.087

RETURN

END_SUBROUTINE

2.5.8 DELETE RESTRAINT — unselect restraint

Options:
ATOM IDS = 〈string : 0〉 ’’ atom ids:

’atom:residue id[:chain id]’

Requirements: MODEL

Description: This command scans the currently selected restraints to find all the restraints that operate on the
specified atoms (Section 2.5.1) and then unselects them. The order of the atom names in ATOM IDS does
not matter: All restraints that contain all and only the specified atoms are unselected. This means that it
is not possible to distinguish between the dihedral angle and improper dihedral angle restraints on the same
four atoms.

The command only unselects the restraints found. To completely remove all the unselected restraints from
memory, use CONDENSE RESTRAINTS. The DELETE RESTRAINT command is useful in speci-
fying cis-peptide bonds from a Top script.

Example: See ADD RESTRAINT command.

2.5.9 REINDEX RESTRAINTS — renumber MODEL2 restraints for MODEL

Requirements: restraints & MODEL & MODEL2

Description: This command renumbers atom indices in all restraints in memory. It is expected that the input re-
straints refer to MODEL2; the re-indexed restraints will correspond to MODEL. Both MODEL and MODEL2
have to be in memory. Only those restraints that have all atoms in MODEL will be selected. You can remove
the others by CONDENSE RESTRAINTS. This command is useful when the old restraints have to be
used while changing from one topology model to another.

Example:

# Example for: REINDEX_RESTRAINTS

# This will reindex restraints obtained previously for a simpler topology so

# that they will now apply to a more complicated topology.

# Generate the model for the simpler topology (CA only in this case):

READ_TOPOLOGY FILE = ’$(LIB)/top_ca.lib’

READ_PARAMETERS FILE = ’$(LIB)/par_ca.lib’

SET TOPOLOGY_MODEL = 7

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ca’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ca’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ca’



2.5. CALCULATION OF SPATIAL RESTRAINTS 113

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE = ’1fas.ca’

# Generate the restraints for the simpler topology:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

WRITE_RESTRAINTS FILE = ’1fas-ca.rsr’

ENERGY

# Generate the model for the more complicated topology:

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

SET TOPOLOGY_MODEL = 3

READ_MODEL FILE = ’1fas’

SET ADD_SEQUENCE = off

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

WRITE_MODEL FILE = ’1fas.ini’

READ_MODEL2 FILE = ’1fas.ca’

REINDEX_RESTRAINTS

WRITE_RESTRAINTS FILE = ’1fas.rsr’

ENERGY

2.5.10 SPLINE RESTRAINTS — approximate restraints by splines

Options:
SPLINE DX = 〈real : 1〉 0.5 interval size for splining restraints

SPLINE MIN POINTS = 〈integer : 1〉 5 have at least as many intervals in a spline

SPLINE RANGE = 〈real : 1〉 4.0 range of the splines

SPLINE SELECT = 〈integer : 3〉 4 1 9 specification of the restraints to be

splined: form feature group

The ENERGY command keywords

Description: This command calculates and selects new restraints that are a spline approximation of the selected
restraints of the specified type. It unselects the approximated restraints.

The type of the approximated restraints is specified by SPLINE SELECT and is defined by the mathematical
form (Gaussian, etc), feature type (distance, etc), and physical restraint group (sidechain χ1, etc) (the first,
third, and fourth integer numbers in the restraint specification).

The restraint is approximated in a certain range only, determined differently for different mathematical forms.
For example, the poly-Gaussian range is from m−SPLINE RANGE×σm to M +SPLINE RANGE×σM , where
m and M are the minimal and maximal means of the basis pdfs, and σm and σM are their corresponding
standard deviations.

The spline points are distributed evenly over this range with an interval of SPLINE DX. SPLINE DX should
be equal to the scale of the peaks of the restraint that you want to approximate reliably. The value of the
restraint beyond the range is determined by linear extrapolation using the first derivatives at the bounds.

If the x-range and SPLINE DX are such that the number of spline points would be less than SPLINE -

MIN POINTS, SPLINE DX is decreased so that there are SPLINE MIN POINTS defining the “splined” restraint.
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Example: See MAKE RESTRAINTS command.

2.5.11 READ RESTRAINTS — read spatial restraints

Options:
FILE = 〈string : 1〉 ’default’ input restraints file

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

ADD RESTRAINTS = 〈logical : 1〉 off whether to add new restraints to existing

restraints

Description: This command reads restraints, excluded atom pairs, and pseudo atom definitions from a file. An
excluded atom pair specifies two atoms that are not to be tested during generation of the dynamic non-bonded
pair list. There is one restraint entry per line. The two possible formats of the file, MODELLER and USER, are
described in Section 2.5. The routine determines automatically which format is used, based on the presence
of the MODELLER or USER keywords in the first line. The new restraints are added to those that are already
in memory if ADD RESTRAINTS = on, otherwise they initiate the restraints list. All the new restraints are
automatically selected.

Example: See MAKE RESTRAINTS command.

2.5.12 WRITE RESTRAINTS — write spatial restraints

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

RESTRAINTS FORMAT = 〈string : 1〉 ’MODELLER’ format of the restraints file: ’MODELLER’

| ’USER’

Description: This command writes the currently selected restraints to a file in either the MODELLER or
USER format, as selected by RESTRAINTS FORMAT (see Section 2.5). Both formats can be read with
the READ RESTRAINTS command.

Example: See MAKE RESTRAINTS command.
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2.6 Optimization of the model

This section describes commands for creating, reading and writing optimization schedule, and for calculating and
optimizing the objective function. For technical background, see Section 5.2.

2.6.1 MAKE SCHEDULE — create optimization schedule

Options:
LIBRARY SCHEDULE = 〈integer : 1〉 1 selects schedule from the $SCHED LIB

library

SCHEDULE SCALE = 〈real : 35〉 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

factors for physical restraint types in

scaling the schedule

Requirements: MODEL

Output: N SCHEDULE

Description: This command constructs an optimization schedule for the variable target function method for the
current MODEL.

The template for construction of the schedule is the LIBRARY SCHEDULE-th entry in library file $SCHED LIB.

The usual schedule for the variable target function part of optimization in comparative modeling is as follows.
The residue range (PICK RESTRAINTS and Section 2.5.3) is increased with increasingly larger steps until
the protein length is reached. The scaling of homology-derived and bonded stereochemical restraints increases
from a small value to 1 in the initial few steps to allow for imperfect starting geometries, especially those
that result from RANDOMIZE XYZ and long insertions or deletions. The soft-sphere overlap restraints
are slowly introduced only in the last four steps of the variable target function method to save CPU time and
increase the radius of convergence. In comparative modeling by the ’model’ script in the default mode, the
variable target function method is usually followed by simulated annealing with molecular dynamics. In this
last stage, all homology-derived and stereochemical restraints are generally used with the scaling factors of
1. There are a number of variables defined in the ’modlib/ defs.top’ script that can be used to influence
the thoroughness of both the variable target function and molecular dynamics parts of the optimization
(Chapter 3).

The scaling factors for all physical restraint groups, in all schedule steps, are multiplied by the corresponding
scalar in SCHEDULE SCALE (1 by default). This is useful when template-derived fold restraints have to be
weakened relative to some external restraints, so that the fold can actually reflect these external restraints,
even when they are quite different from the template-derived restraints.

This command is an alternative to the READ SCHEDULE command.

Use the WRITE SCHEDULE command to find out what the calculated schedule is. The schedule file
written by the ‘model’ routine has an extension .sch.

Example:

# Example for: MAKE_SCHEDULE, WRITE_SCHEDULE, READ_SCHEDULE

# This will create an VTFM optimization schedule for a model

# and write it to a file.

# MODEL has to be in memory for MAKE_SCHEDULE:

READ_MODEL FILE = ’1fas’

MAKE_SCHEDULE LIBRARY_SCHEDULE = 1

# Write the schedule to a file:

WRITE_SCHEDULE FILE = ’1fas.sch’

# Read it in just for fun:

READ_SCHEDULE FILE = ’1fas.sch’
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2.6.2 READ SCHEDULE — read optimization schedule

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

SCHEDULE SCALE = 〈real : 35〉 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

factors for physical restraint types in

scaling the schedule

Output: N SCHEDULE

Description: This command reads a text file that contains an optimization schedule for the variable target function
method.

Each line in the file contains in free format the parameters for a single step of the variable target function
method. These parameters are: step index (not used by the program), optimization method, maximal
difference in residue indices of atoms restrained by the selected restraints (PICK RESTRAINTS and
Section 2.5.3), and the scaling factors for all types of restraints. The smaller the scaling factor, the weaker
the corresponding restraint.

See MAKE SCHEDULE for explanation of SCHEDULE SCALE.

This command also sets the Top variable N SCHEDULE to the total number of the variable target function
steps that were read in.

Example: See MAKE SCHEDULE command.

2.6.3 WRITE SCHEDULE — write optimization schedule

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

Description: This command writes out the schedule for the variable target function method. This schedule file
can then be read by the READ SCHEDULE command.

Example: See MAKE SCHEDULE command.
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2.6.4 ENERGY — evaluate MODEL given restraints

Options:
VIOL REPORT CUT = 〈real : 35〉 4.5 4.5 4.5 4.5 4.5 4.5 4.5

4.5 4.5 4.5 4.5 4.5 4.5 999

999 999 999 4.5 4.5 4.5 4.5

4.5 4.5 999 6.5 4.5 4.5 4.5

4.5 4.5 999 999 999 4.5 4.5

cutoffs for reporting relative violations

VIOL REPORT CUT2 = 〈real : 35〉 2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0

OUTPUT = 〈string : 1〉 ’LONG’ ’SHORT’ | ’LONG’ | ’VERY LONG’

| ’GRADIENT’ | ’SYMMETRY’

| ’ENERGY PROFILE’ |

’VIOLATIONS PROFILE’

NORMALIZE PROFILE = 〈logical : 1〉 off whether to normalize energy/violations

profiles or not, by the number of terms

per residue

SMOOTHING WINDOW = 〈integer : 1〉 3 profiles are smoothed over 2*SW + 1

residues
SCHEDULE SCALE = 〈real : 35〉 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

factors for physical restraint types in

scaling the schedule

SCHEDULE STEP = 〈integer : 1〉 1 schedule step for optimization

FILE = 〈string : 1〉 ’default’ partial or complete filename

ASGL OUTPUT = 〈logical : 1〉 off whether to write output for ASGL

SCHEDULE STEP = 〈integer : 1〉 1 schedule step for optimization

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

RADII FACTOR = 〈real : 1〉 0.82 factor for van der Waals radii

SPHERE STDV = 〈real : 1〉 0.05 standard deviation of soft-sphere repul-

sion
DYNAMIC SPHERE = 〈logical : 1〉 on whether to use dynamic soft-sphere re-

pulsion terms

DYNAMIC LENNARD = 〈logical : 1〉 off whether to use dynamic Lennard-Jones

energy terms

DYNAMIC COULOMB = 〈logical : 1〉 off whether to use dynamic Coulomb energy

terms
DYNAMIC MODELLER = 〈logical : 1〉 off whether to use dynamic MODELLER

non-bonded restraints
DYNAMIC ACCESS = 〈logical : 1〉 off whether to use dynamic accessibility en-

ergy terms

EXCL LOCAL = 〈logical : 4〉 on on on on whether to exclude bonds, angles, di-

hedrals, explicit excl pairs from the

homology-derived distance rsrs

LENNARD JONES SWITCH = 〈real : 2〉 6.5 7.5 the range for Lennard-Jones interaction

smoothing to 0

COULOMB SWITCH = 〈real : 2〉 6.5 7.5 the range for Coulomb interaction

smoothing to 0

RELATIVE DIELECTRIC = 〈real : 1〉 1.0 relative dielectric constant

CONTACT SHELL = 〈real : 1〉 4.0 distance cutoff for calculation of the non-

bonded pairs list

UPDATE DYNAMIC = 〈real : 1〉 0.39 when to update non-bonded pairs list
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NLOGN USE = 〈integer : 1〉 15 number of residues at which to begin us-

ing the N Log N non-bonded pairs rou-

tine
COVALENT CYS = 〈logical : 1〉 off whether to consider SG-SG covalent

bond similar to polypeptide chain when

proximity of residues along the sequence

is considered. If PATCH SS MODEL is

done, then make it ON.

RESIDUE SPAN RANGE = 〈integer : 2〉 0 99999 range of residues spanning the allowed

distances; for MAKE RESTRAINTS,

PICK RESTRAINTS, non-bonded dy-

namic pairs

Output: MOLPDF

Requirements: MODEL & restraints

Description: The main purpose of this command is to compare spatial features of the current MODEL with
the selected restraints in order to determine the violations of the molecular pdf. It lists variable amounts of
information about the values of the basis, feature, and molecular pdf’s for the current MODEL. All arguments
that affect the value of the molecular pdf are also relevant for the ENERGY command.

Within this routine only, the scaling factors for the physical restraint types are obtained from the SCHED-

ULE STEP step of the current schedule, multipled by SCHEDULE SCALE (the original values are returned
upon exit from the routine). This allows easy reporting of only a selected subset of all restraints.

Most of the output goes to the log file. The output of the ENERGY command has to be examined carefully,
at least at the end of the optimization, when the final model is produced. Additional output files, for the
Asgl plotting program are created if ASGL OUTPUT = on (undocumented).

OUTPUT selects various kinds of output information:

• ’LONG’ writes restraint violations one per line to the log file.

• ’VERY LONG’ writes the most detailed examination of the selected basis and feature pdf’s to the log file,
using several lines of output for each restraint.

• ’GRADIENT’ writes the ‘force’ gradients for the currently selected restraints to the isotropic temperature
factors for each atom of the current MODEL.

• ’SYMMETRY’ writes a comparison of equivalent distances involved in the definition of the symmetry
enforcing term to the log file.

VIOL REPORT CUT is a vector with one real number for each physical restraint type. A restraint is reported
when its ‘heavy relative violation’ is larger than the corresponding cutoff. The heavy relative violation
is calculated by finding the global minimum of a feature according to the restraint, taking the difference
between the actual feature in the model and this global minimum, and then normalizing the difference by the
standard deviation of the global minimum. The ‘minimal violation’ of a restraint is defined as the difference
from the local minimum closest to the value of the feature in the model (with the exception of the spline
restraints; see next paragraph).

VIOL REPORT CUT2 is similar to VIOL REPORT CUT, except that it contains cutoffs for restraint ‘energies’,
not heavy relative violations.

The meaning of various other reported properties of the violated restraints is briefly described in the log file.
Note that for multi-modal restraints that are described by cubic splines (by default, all multimodal homology-
derived restraints), only one optimal value is defined, not the local and global minimum as for the multi-modal
Gaussian restraints. As a result, the minimal violations and heaviest violations are the same. For interpreting
the seriousness of violations, use the following rule of thumb: There should be at most a few small violations
(e.g., 4 standard deviations) for all monomodal restraints. In comparative modeling, the monomodal restraints
include the stereochemical restraints and distance restraints when only one homologous structure is used. For
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the multimodal restraints, there are usually many violations reported because the heaviest violations are used
in deciding whether or not to report a violation. In comparative modeling, the multimodal restraints include
the χi restraints, (Φ, Ψ) binormal restraints and distance restraints when more than one template is used.
See also Section 1.8, Question 22.

For profiles:

This command calculates residue energies or heavy relative violations, depending on OUTPUT, for all physical
restraint types (there are NPHYCNS of them). Relative heavy violations (Table 2.2) are used because only
relative violations of different features are comparable. In both cases, the residue sum is the sum over all
restraints that have at least one atom in a given residue. The contribution of each restraint is counted exactly
once for each residue, without any weighting. Restraints spanning more than one residue contribute equally
to all of them. Thus, the sum of residue energies is generally larger than molecular pdf. The command also
calculates the sum of the NPHYCNS contributions for each residue and writes all NPHYCNS+1 columns to a file
suitable for plotting by Asgl.

If NORMALIZE PROFILE is on the profile for each residue is normalized by the number of terms applying to
each residue.

All the curves are smoothed by the running window averaging method if SMOOTHING WINDOW is larger than
0: The window is centered on residue i and extends for (SMOOTHING WINDOW/2) - 1 residues on each side.
Thus, SMOOTHING WINDOW has to be an even number (or it is made such by the program automatically).
The only exceptions are the two terminii, where a smaller number of residues are available for smoothing. The
relative weight of residue j when calculating the smoothed value at residue i is (SMOOTHING WINDOW/2−
|j − i|).
The energy or the violations profile is written to the fourth column of the MODEL atomic records (atomic
isotropic temperature factors for X-ray structures). Note that all the atoms in one residue get the same
number. This output is useful for exploring the violations on a graphics terminal.

See description of OPTIMIZE for the other variables.

Example:

# Example for: ENERGY

# This will calculate the stereochemical energy (bonds,

# angles, dihedrals, impropers) for a given model.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

# Must patch disulfides here to calculate the non-bonded

# energy properly. Also, when you use hydrogens, disulfides

# must always be patched so that sulfhydril hydrogens are

# removed from the model.

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’17’ ’39’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’3’ ’22’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’53’ ’59’

PATCH RESIDUE_TYPE = DISU, RESIDUE_IDS = ’41’ ’52’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

ENERGY DYNAMIC_SPHERE = on
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2.6.5 OPTIMIZE — optimize MODEL given restraints

Options:
OPTIMIZATION METHOD = 〈integer : 1〉 999 type of optimization method: 1 | 3

SCHEDULE STEP = 〈integer : 1〉 1 schedule step for optimization

TOPOLOGY MODEL = 〈integer : 1〉 3 selects topology library: 1–10

RADII FACTOR = 〈real : 1〉 0.82 factor for van der Waals radii

SPHERE STDV = 〈real : 1〉 0.05 standard deviation of soft-sphere repul-

sion
DYNAMIC SPHERE = 〈logical : 1〉 on whether to use dynamic soft-sphere re-

pulsion terms

DYNAMIC LENNARD = 〈logical : 1〉 off whether to use dynamic Lennard-Jones

energy terms

DYNAMIC COULOMB = 〈logical : 1〉 off whether to use dynamic Coulomb energy

terms
DYNAMIC MODELLER = 〈logical : 1〉 off whether to use dynamic MODELLER

non-bonded restraints
DYNAMIC ACCESS = 〈logical : 1〉 off whether to use dynamic accessibility en-

ergy terms

EXCL LOCAL = 〈logical : 4〉 on on on on whether to exclude bonds, angles, di-

hedrals, explicit excl pairs from the

homology-derived distance rsrs

LENNARD JONES SWITCH = 〈real : 2〉 6.5 7.5 the range for Lennard-Jones interaction

smoothing to 0

COULOMB SWITCH = 〈real : 2〉 6.5 7.5 the range for Coulomb interaction

smoothing to 0

RELATIVE DIELECTRIC = 〈real : 1〉 1.0 relative dielectric constant

NONBONDED SEL ATOMS = 〈integer : 1〉 1 a non-bonded pair has to have at least

as many selected atoms

RESIDUE SPAN RANGE = 〈integer : 2〉 0 99999 range of residues spanning the allowed

distances; for MAKE RESTRAINTS,

PICK RESTRAINTS, non-bonded dy-

namic pairs

COVALENT CYS = 〈logical : 1〉 off whether to consider SG-SG covalent

bond similar to polypeptide chain when

proximity of residues along the sequence

is considered. If PATCH SS MODEL is

done, then make it ON.

CONTACT SHELL = 〈real : 1〉 4.0 distance cutoff for calculation of the non-

bonded pairs list

UPDATE DYNAMIC = 〈real : 1〉 0.39 when to update non-bonded pairs list

NLOGN USE = 〈integer : 1〉 15 number of residues at which to begin us-

ing the N Log N non-bonded pairs rou-

tine
TRACE OUTPUT = 〈integer : 1〉 0 modulus for writing information about

optimization iterations: 0 for nothing

MAX ITERATIONS = 〈integer : 1〉 200 maximal iterations in optimization

OUTPUT = 〈string : 1〉 ’LONG’ ’NO REPORT’ | ’REPORT’

• For conjugate gradients:
MIN ATOM SHIFT = 〈real : 1〉 0.010 minimal atomic shift for the optimiza-

tion convergence test

• For molecular dynamics:
MD TIME STEP = 〈real : 1〉 4.0 time step for MD in fs

INIT VELOCITIES = 〈logical : 1〉 on whether to initialize velocities before MD
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TEMPERATURE = 〈real : 1〉 293.0 temperature for MD simulation in K

EQUILIBRATE = 〈integer : 1〉 999999 equilibrate during MD every that many

steps

MD RETURN = 〈string : 1〉 ’FINAL’ return MODEL with ’MINIMAL’ energy

or ’FINAL’ MODEL
CAP ATOM SHIFT = 〈real : 1〉 0.2 limit for atomic shifts in optimization

RAND SEED = 〈integer : 1〉 8123 random seed from -50000 to -2

STOP ON ERROR = 〈integer : 1〉 1 whether to stop on error

Output: MOLPDF, MODELLER STATUS

Requirements: MODEL & restraints

Description: This command performs a number of optimizing iterations using a selected optimization method
(5.2). One call to OPTIMIZE corresponds to a single step of the variable target function method. The
whole variable target function method is implemented by a Top script. The molecular pdf is optimized with
respect to the selected coordinates of the current MODEL; the optimized coordinates are returned as the
current MODEL.

Some output may be generated during optimization; for example, a value of the molecular pdf, average and
maximal atomic shifts are written to the current tracing file every TRACE OUTPUT iterations of the optimizer
if TRACE OUTPUT is larger than 0 (see the SWITCH TRACE command).

In addition, a summary of the optimization results is written to the log file after optimization, unless OUTPUT

contains string ’NO REPORT’.

OPTIMIZATION METHOD = 1 selects a conjugate gradients optimization method. OPTIMIZA-

TION METHOD = 3 selects a molecular dynamics optimization at a fixed temperature. The conjugate
gradients optimizer is a modified version of the Beale restart conjugate gradients method [Shanno & Phua,
1980,Shanno & Phua, 1982]. The molecular dynamics routine is the most basic version of the iterative solver
of the Newton’s equations of motion. The integrator uses the Verlet algorithm [Verlet, 1967]. All atomic
masses are set to that of carbon 12. A brief description of the algorithms is given in Section 5.2.

SCHEDULE STEP is the variable target function step. It selects some of the optimization parameters; it refers
to the line in the schedule file which specifies (1) the optimization method (1=Conjugate Gradients, 3=Molec-
ular Dynamics); (2) maximal number of residues that the restraints are allowed to span (Section 2.5.3); (3)
the individual scaling factors for all the physical restraint types. OPTIMIZATION METHOD overrides the
schedule specification if it is within a defined range.

CONTACT SHELL defines the maximal distance between atoms that flags a non-bonded atom pair. Such pairs
are stored in the list of non-bonded atom pairs. Only those non-bonded pairs that are sufficiently close to
each other will result in an actual non-boned restraint. If undefined (−999), the default value is the maximum
of the three possibilities: twice the radius of the largest atom multiplied by RADII FACTOR (in the case of
the all non-hydrogen atoms model, this is 3.2 Å); LENNARD JONES SWITCH[2]; or COULOMB SWITCH[2].
Only those values of the three possibilities are compared that have the corresponding DYNAMIC SPHERE,
DYNAMIC LENNARD, or DYNAMIC COULOMB set to on. The best value for CONTACT SHELL must be
found in combination with UPDATE DYNAMIC (see also below). Good values are 4Å for CONTACT SHELL

and 0.39Å for UPDATE DYNAMIC when no Lennard-Jones and Coulomb terms are used; if CONTACT SHELL

is larger, there would be many pairs in the non-bonded pairs list which would slow down the evaluation of
the molecular pdf. If it is too small, however, the increased frequency of the pair list recalculation may slow
down the optimization. It is useful in some simulations to be able to set CONTACT SHELL to something
large (e.g., 8Å) and UPDATE DYNAMIC to 999999.9, so that the pairs list is prepared only at the beginning.
However, you have to make sure that the potential energy is not invisibly pumped into the system by making
contacts that are not on the list of non-bonded pairs (see below).

UPDATE DYNAMIC sets the cumulative maximal atomic shift that triggers recalculation of the list of atom–
atom non-bonded pairs. It should be set in combination with CONTACT SHELL. For soft-sphere overlap,
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to be absolutely sure that no unaccounted contacts occur, UPDATE DYNAMIC has to be equal to (CON-

TACT SHELL – maximal overlap distance) / 2. Maximal overlap distance is equal to the diameter of
the largest atom in the model; it is 3.2 Å in the case of the all non-hydrogen atoms model. This distance is the
CONTACT SHELL value if a default is requested. Factor 2 comes from the fact that the moves of both atoms
can reduce the distance between them. DYNAMIC SPHERE has to be set to on for the automatic generation
of the soft-sphere overlap restraints. Another necessary condition is that the scaled standard deviation of the
soft-sphere overlap restraints is greater than zero. It is simpler not to pre-calculate any soft-sphere overlap
restraints and to use the dynamically generated restraints alone, although this may be slower.

Similarly, DYNAMIC LENNARD, DYNAMIC COULOMB, DYNAMIC MODELLER and DYNAMIC ACCESS de-
termine whether the dynamic Lennard-Jones terms, electrostatic interactions, Modeller non-bonded spline
restraints and Modeller atomic density restraints are calculated during optimization. Currently, the first
derivatives of the atom density restraints are set to 0. SHELL here xx.

EXCL LOCAL[4] specifies whether or not the atoms in a chemical bond, chemical angle, dihedral/improper
angle, and in the excluded pairs list are considered in the construction of the non-bonded atom pairs list.
This is especially useful when simplified protein representations are used; e.g., when non-bonded restraints
need to be used on Cαi – Cαi+2 terms.

The initial atom radii (before scaling by RADII FACTOR) depend on TOPOLOGY MODEL which selects a
column of radii for the specified topology model from the $RADII LIB library file.

RADII FACTOR is the scaling factor for the atom radii as read from the library file. The scaled radii are used
only for the calculation of violations of the soft-sphere overlap restraints.

LENNARD JONES SWITCH is a real vector of two elements. It specifies rmin and rmax for the Lennard-Jones
interaction (Eq. 5.63). The potential is smoothed down to zero between these two distances.

COULOMB SWITCH is a real vector of two elements. It specifies rmin and rmax for the electrostatic interaction
(Eq. 5.60). The potential is smoothed down to zero between these two distances.

RESIDUE SPAN RANGE determines what atom pairs can possibly occur in the dynamic non-bonded atom
pairs list (see MAKE RESTRAINTS). RESIDUE SPAN SIGN is ignored in OPTIMIZE. The effect of
RESIDUE SPAN RANGE is modulated by COVALENT CYS. If COVALENT CYS is on, the disulfide bridges
are taken into account when calculating the residue index difference between two atoms (i.e., disulfides make
some atom pairs closer in sequence). COVALENT CYS = on is slow and only has an effect when certain
statistical non-bonded potentials are used (i.e., DYNAMIC MODELLER is on and the non-bonded library has
been derived considering the disulfide effect). Thus, it should generally be set to off. The dynamic restraints
include soft-sphere overlap, Lennard-Jones, electrostatic restraints, and general spline restraints. The first
three types of restraints can also be generated as static restraints by MAKE RESTRAINTS.

The automatically generated dynamic restraints are always deleted after a command that calculates them is
finished (OPTIMIZE, ENERGY, PICK HOT ATOMS); you have to use MAKE RESTRAINTS to
calculate equivalent static restraints if you want to write the ‘dynamic’ restraints to a file.

MIN ATOM SHIFT is a convergence criterion for the conjugate gradients optimization. When the maximal
atomic shift is less than the specified value, the optimization is finished regardless of the number of optimiza-
tion cycles or function value and its change.

MAX ITERATIONS is used to prevent a waste of CPU time in the conjugate gradients optimization. When
that many cycles are done, the optimization is finished regardless of the maximal atomic shift.

Before calculating dynamic non-bonded restraints, Modeller determines which of the several routines is
most appropriate and efficient for calculating the non-bonded atom pairs list. The user can influence this
selection by specifying two variables: NONBONDED SEL ATOMS, which has an effect when only a subset of
all atoms is selected by the PICK ATOMS or PICK HOT ATOMS commands (set 1), and NLOGN USE,
which has an effect when all atoms are selected. If NONBONDED SEL ATOMS is 2 (default), the non-bonded
pairs will contain only selected atoms (set 1). This means that the optimized atoms will not “feel” the rest of
the protein through the non-bonded terms at all. If NONBONDED SEL ATOMS is 1, only one of the atoms
in the non-bonded pair has to be a selected atom. This means that the selected region feels the rest of the
system through the non-bonded terms, at the expense of longer CPU times. When all atoms are selected,
NONBONDED SEL ATOMS of course has no effect. However, in that case, NLOGN USE is used to select
either a straightforward O(n2) search or a cell-based algorithm which has n log n dependency of CPU time
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versus size n. The latter algorithm is used when the maximal difference in residue indices of the atoms in the
current dynamic restraints is larger than NLOGN USE or when the box size for this algorithm would have to
be larger than 8Å.

The molecular dynamics optimizer pretends that the natural logarithm of the molecular pdf is energy in
kcal/mole. MD TIME STEP is the time step in femtoseconds. TEMPERATURE is the temperature of the
system in degrees Kelvin. MAX ITERATIONS determines the number of MD steps. If MD RETURN is ’FINAL’
the last structure is returned as the MODEL. If MD RETURN is ’MINIMAL’ then the structure with the lowest
value of the objective function on the whole trajectory is returned as the MODEL. Rescaling of velocities
is done every EQUILIBRATION steps to match the specified temperature. Atomic shifts along one axis are
limited by CAP ATOM SHIFT. This value should be smaller than UPDATE DYNAMIC. If INIT VELOCITIES

= on, the velocity arrays are initialized, otherwise they are not. In that case, the final velocities from the
previous run are used as the initial velocities for the current run.

RAND SEED is the seed for the random number generator. It has to be between −2 and −50000. Its value
is changed after the return from the optimization routine.

MOLPDF contains the value of the objective function at the end of optimization.

MODELLER STATUS is set to 1 if optimization is aborted because dynamic restraints could not be calculated
as a result of a system being too large. If MODELLER STATUS is equal or greater than STOP ON ERROR

the execution is stopped. Otherwise the execution returns back to the Top routine, exiting all optimization
routines immediately. The execution then continues as if nothing happened. It is up to the calling Top

routine to ensure that sensible action is taken; e.g., skipping the rest of modeling for the model that resulted
in an impossible function evaluation. This option is useful when calculating several independent models
and you do not want one bad model to abort the whole calculation. A probable reason for an interrupted
optimization is that it was far from convergence by the time the calculation of dynamic restraints was first
requested. Two possible solutions are: (1) optimize more thoroughly (i.e. slowly) and (2) use a different
contact pairs routine (SET NLOGN USE = 9999). MODELLER STATUS can be used in the Top routine to
exit from an optimization of a hopeless model and to continue with another model from a different initial
conformation.

Example:

# Example for: OPTIMIZE, SWITCH_TRACE

# This will optimize stereochemistry of a given model, including

# non-bonded contacts.

READ_TOPOLOGY FILE = ’$(LIB)/top_heav.lib’

READ_PARAMETERS FILE = ’$(LIB)/par.lib’

READ_MODEL FILE = ’1fas’

SEQUENCE_TO_ALI ATOM_FILES = ’1fas’, ALIGN_CODES = ’1fas’

SEQUENCE_TO_ALI ADD_SEQUENCE = on, ATOM_FILES = ATOM_FILES ’1fas.ini’, ;

ALIGN_CODES = ALIGN_CODES ’1fas-ini’

GENERATE_TOPOLOGY SEQUENCE = ’1fas-ini’

TRANSFER_XYZ

BUILD_MODEL INITIALIZE_XYZ = off

WRITE_MODEL FILE = ’1fas.ini’

# Generate the restraints:

MAKE_RESTRAINTS RESTRAINT_TYPE = ’stereo’

WRITE_RESTRAINTS FILE = ’1fas.rsr’

ENERGY DYNAMIC_SPHERE = on

SWITCH_TRACE TRACE_OUTPUT = 1, FILE = ’1fas.trc’

OPTIMIZE OPTIMIZATION_METHOD = 1, MAX_ITERATIONS = 20

OPTIMIZE OPTIMIZATION_METHOD = 3, TEMPERATURE = 300, MAX_ITERATIONS = 50

OPTIMIZE OPTIMIZATION_METHOD = 1, MAX_ITERATIONS = 20

ENERGY
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Column Description
1 iteration number within one step of the variable target function method
2 number of function evaluations within one step of VTFM
3 objective function value
4 average atomic shift
5 maximal atomic shift
6 proportional to the gradient
7 kinetic energy
8 temperature for molecular dynamics optimization
9 total energy (kinetic and potential; potential = objective function value)

Table 2.5: Columns in an optimization trace file.

WRITE_MODEL FILE = ’1fas.B’

2.6.6 SWITCH TRACE — open new optimization trace file

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

DIRECTORY = 〈string : 1〉 ’’ directory list (e.g.,

’dir1:dir2:dir3:./:/’)

TRACE OUTPUT = 〈integer : 1〉 0 modulus for writing information about

optimization iterations: 0 for nothing

Description: This command specifies the file for the subsequent optimization tracing output. It is useful for
separating tracing output for different models constructed in a single run of Modeller. The tracing output
is only produced if TRACE OUTPUT is larger than 0. The tracing file includes the iteration number, number
of function evaluations, function value, average and maximal atomic shifts, the size of the gradient vector,
kinetic energy (for molecular dynamics ‘optimization’ only), temperature (MD only) and total energy. This
is written out in every TRACE OUTPUT-th cycle of whatever optimization method is used, starting with the
state just before the optimization (iteration 0).

When using the model script for comparative modeling, there is one .D file for each .B file with a model. The
.D files contain information about the progress of optimization, from the beginning to the end. The most
important column is column 3, which contains the value of the objective function, which is being optimized, as
a function of the iteration step (every 10 steps, by default). Thus, the best model, according to Modeller,
is the one that has the lowest number in the third column of the last line of its .D file. This value is also
written out in the REMARK record of the PDB file containing the model and in the log file.

Example: See OPTIMIZE command.

2.6.7 DEBUG FUNCTION — test code self-consistency

Options:
DEBUG FUNCTION CUTOFF = 〈real : 3〉 0.01 0.001 0.1 cutoffs for reporting differences be-

tween numerical and analytical deriva-

tives: absolute, relative errors, fac-

tor for indiv rstrs
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DETAILED DEBUGGING = 〈logical : 1〉 off whether to evaluate energy and deriva-

tives wrt each restraint
all the ENERGY options

Description: This command checks the self-consistency of the code for the objective function and its deriva-
tives by calculating and comparing numeric and analytical derivatives. All the parameters influencing the
evaluation of the molecular pdf are also relevant (see ENERGY). The derivative is reported if both the
absolute difference and the fractional difference between the two kinds of evaluations are larger than DE-

BUG FUNCTION CUTOFF[1] and DEBUG FUNCTION CUTOFF[2], respectively.

When DETAILED DEBUGGING is on, the analytic and numeric derivatives of each restraint with respect to
atomic positions are also compared for the atoms ‘violated’ by the whole molecular pdf. The absolute cutoff
for writing out the discrepancies is scaled by DEBUG FUNCTION CUTOFF[3]; the relative cutoff remains the
same as before.

When Modeller is compiled in double precision, this test reports a smaller number of discrepancies.

Example:

# Example for: DEBUG_FUNCTION

# This will use default MODELLER scripts to construct homology

# restraints for 1fas. It will then use DEBUG_FUNCTION to test

# the source code for the function and derivatives calculation

# by comparing analytical and numerical first derivatives.

# Some discrepancies will be reported but ignore them here.

INCLUDE

SET OUTPUT_CONTROL = 1 1 1 1 1

SET ALNFILE = ’debug_function.ali’

SET SEQUENCE = ’1fas’

SET KNOWNS = ’2ctx’ ’1nbt’

SET SPLINE_ON_SITE = off

CALL ROUTINE = ’model’, EXIT_STAGE = 1

# To assign 0 weights to restraints whose numerical derivatives

# code does not work (i.e., splines for angles and dihedrals):

READ_SCHEDULE FILE = ’debug_function.sched’

ENERGY

DEBUG_FUNCTION DEBUG_FUNCTION_CUTOFF = 15.00 0.10 0.1, DETAILED_DEBUGGING = on
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Chapter 3

Modeller scripts

This section describes some of the Modeller scripts found in the $MODINSTALL7v7/bin/ *.top files. All these
files and brief descriptions are listed in Table 3.1.

Filename Description
model.top the main script for comparative modeling with user alignment
full homol.top the main script for comparative modeling with automatic alignment
loop.top loop modeling
defs.top variable definitions for modeling by model

align strs seq.top aligning many structures with a sequence
getnames.top generating default filenames from protein codes
homcsr.top generating homology-derived restraints
spline.top generating splined restraints
cispeptide.top defining cis-peptides
default patches.top making topology patches during modeling by model

special.top generating and reading special restraints/patches for modeling by model

generate model.top generating initial models for modeling by model

single model.top used by model to generate a single model
multiple models.top used by model to generate an ensemble of models
refine.top molecular dynamics refinement for modeling by model

loop.top modeling of loops
principal.top principal components clustering
cluster.top optimization by ’clustering’ and refinement
spline. top spline most restraint types in memory
asgl mod.top plotting for clustering analysis (requires Asgl)
complete.top generating missing atoms in a PDB file
fit.top superposing two structures, given an alignment
mod.top the main include file including all other *.top files

Table 3.1: List of Modeller scripts.

3.1 Flowchart of comparative modeling by Modeller

This section describes a flowchart of comparative modeling by Modeller, as implemented in the ’model’ Top

script. This script is also called by Quanta and InsightII. It can be used for a variety of modeling tasks, not
only for comparative modeling.

Input: script file, alignment file, PDB file(s) for template(s).

127
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Output:

job.log log file
job.ini initial conformation for optimization
job.rsr restraints file
job.sch VTFM schedule file
job.B9999???? PDB atom file(s) for the model(s) of the target sequence
job.V9999???? violation profiles for the model(s)
job.D9999???? progress of optimization
job.BL9999???? optional loop model(s)
job.DL9999???? progress of optimization for loop model(s)
job.IL9999???? initial structures for loop model(s)

The main Modeller routines used in each step are given in parentheses.

1. Read and check the alignment between the target sequence and the template structures
(READ ALIGNMENT and CHECK ALIGNMENT).

2. Calculate restraints on the target from its alignment with the templates:

(a) Generate molecular topology for the target sequence (GENERATE TOPOLOGY). Disulfides in the
target are assigned here from the equivalent disulfides in the templates (PATCH SS TEMPLATES).
Any user defined patches are also done here (as defined in Top routine ‘special patches’).

(b) Calculate coordinates for atoms that have equivalent atoms in the templates as an average over all
templates (TRANSFER XYZ) (alternatively, read the initial coordinates from a file).

(c) Build the remaining unknown coordinates using internal coordinates from the Charmm topology library
(BUILD MODEL).

(d) Write the initial model to a file with extension .ini (WRITE MODEL).

(e) Generate stereochemical, homology-derived, and special restraints (MAKE RESTRAINTS) (alter-
natively, skip this and assume the restraints file already exists):

stereochemical RESTRAINT TYPE = ’bond angle dihedral improper’
mainchain dihedrals Φ, Ψ RESTRAINT TYPE = ’phi-psi binormal’
mainchain dihedral ω RESTRAINT TYPE = ’omega dihedral’
sidechain dihedral χ1 RESTRAINT TYPE = ’chi1 dihedral’
sidechain dihedral χ2 RESTRAINT TYPE = ’chi2 dihedral’
sidechain dihedral χ3 RESTRAINT TYPE = ’chi3 dihedral’
sidechain dihedral χ4 RESTRAINT TYPE = ’chi4 dihedral’
mainchain CA–CA distance RESTRAINT TYPE = ’distance’
mainchain N–O distance RESTRAINT TYPE = ’distance’
sidechain–mainchain distance RESTRAINT TYPE = ’distance’
sidechain–sidechain distance RESTRAINT TYPE = ’distance’
block distance restraints RESTRAINT TYPE = ’distance’
user defined CALL ROUTINE = ’special restraints’
non-bonded pairs distance RESTRAINT TYPE = ’sphere’; calculated on the fly

(f) Write all restraints to a file with extension .rsr (WRITE RESTRAINTS).

3. Calculate model(s) that satisfy the restraints as well as possible. For each model:

(a) Generate the optimization schedule for the variable target function method (VTFM)
(MAKE SCHEDULE).

(b) Read the initial model (usually from the .ini file from 2.d) (READ MODEL).

(c) Randomize the initial structure by adding a random number between ±DEVIATION angstroms to all
atomic positions (RANDOMIZE XYZ).

(d) optimize the model:

• Partially optimize the model by VTFM; Repeat the following steps as many times as specified by
the optimization schedule:
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– Read all the restraints by ‘rd restraints’ (READ RESTRAINTS).

– Select only the restraints that operate on the atoms that are close enough in sequence, as specified
by the current step of VTFM (PICK RESTRAINTS).

– Optimize the model by conjugate gradients, using only currently selected restraints (OPTI-
MIZE).

• Refine the model by simulated annealing with molecular dynamics, if so selected:

– do a short conjugate gradients optimization (OPTIMIZE).

– increase temperature in several steps and do molecular dynamics optimization at each temper-
ature (OPTIMIZE).

– decrease temperature in several steps and do molecular dynamics optimization at each temper-
ature (OPTIMIZE).

– do a short conjugate gradients optimization (OPTIMIZE).

(e) calculate the remaining restraint violations and write them out (ENERGY).

(f) write out the final model to a file with extension .B9999???? where ???? indicates the model number
(WRITE MODEL). Also write out the violations profile. Also write superposed templates and models
if so selected by FINAL MALIGN3D = 1.

(g) superpose the models and the templates, if so selected, and write them out (EX-
PAND ALIGNMENT, MALIGN3D).

(h) do loop modeling if so selected ( loop).

3.2 Script for comparative modeling

The model script implements the flowchart for comparative modeling by Modeller that is described in the
previous Section 3.1. The script uses routines in several other files. It is structured so that it is easy to deal with
many different situations, some of which are described in Section 1.8. The script is too long to be listed here. It
can be found in $MODINSTALL7v7/bin/ model.top. The default values of its arguments are defined in the defs

script file:

# Define additional TOP variables needed for MODELLER:

DEFINE_INTEGER VARIABLES = STARTING_MODEL ENDING_MODEL RSTRS_REFINED

DEFINE_INTEGER VARIABLES = LOOP_STARTING_MODEL LOOP_ENDING_MODEL

DEFINE_INTEGER VARIABLES = MAX_ITERATIONS_STORE WRITE_INTERMEDIATES

DEFINE_INTEGER VARIABLES = IREPEAT REPEAT_OPTIMIZATION EXIT_STAGE

DEFINE_INTEGER VARIABLES = CREATE_RESTRAINTS REFINE_HOT_ONLY

DEFINE_INTEGER VARIABLES = MAX_VAR_ITERATIONS FINAL_MALIGN3D INITIAL_MALIGN3D

DEFINE_INTEGER VARIABLES = DO_LOOPS ID1B

DEFINE_REAL VARIABLES = VIOL_REP_STORE MAX_MOLPDF

DEFINE_REAL VARIABLES = MAX_CA-CA_DISTANCE MAX_N-O_DISTANCE

DEFINE_REAL VARIABLES = MAX_SC-SC_DISTANCE MAX_SC-MC_DISTANCE

DEFINE_STRING VARIABLES = MODEL MODEL2 CODE CODE2 ALNFILE MODEL2_FIT

DEFINE_STRING VARIABLES = CSRFILE KNOWNS SCHFILE FINAL_MODEL

DEFINE_STRING VARIABLES = GENERATE_METHOD RAND_METHOD MD_LEVEL

DEFINE_STRING VARIABLES = SEGFILE PDB_EXT TOPLIB PARLIB FAMILY FIT_IN_REFINE

DEFINE_STRING VARIABLES = ATOM_IDS1 ATOM_IDS2 OUTPUT2

DEFINE_STRING VARIABLES = LOOP_CSRFILE LOOP_INI_MODEL

DEFINE_STRING VARIABLES = LOOP_MD_LEVEL LOOP_INI_MODEL

DEFINE_STRING VARIABLES = LOOP_MODEL

DEFINE_STRING VARIABLES = TOP_VERSION

# For the academic version:

SET TOP_VERSION = ’academic’

# For the Accelrys version:

# SET TOP_VERSION = ’accelrys’
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# read the residue types again, if the Accelrys lib required:

STRING_IF STRING_ARGUMENTS = TOP_VERSION ’accelrys’, OPERATION = ’ne’, THEN = ’GO_TO __ACCELRYS7’

SET RESTYP_LIB_FILE = ’$(LIB)/restyp_accelrys.lib’

READ_RESTYP_LIB

LABEL __ACCELRYS7

# default values for options in comparative modeling by MODELLER:

SET STARTING_MODEL= 1 # the index of the first model;

# determines how many models are calculated;

SET ENDING_MODEL = 1 # the index of the last model;

# determines how many models are calculated;

SET DEVIATION = 4.0 # the amount of randomization of the initial model

# must be > 0 if different final models are wanted;

SET DO_LOOPS = ’0’ # whether or not to do automatic loop refinement

# for each model *.B???????? (0 for no, 1 for yes)

# can rely on automatic loop definition or

# re-define select_loop_atoms routine.

SET LOOP_STARTING_MODEL = 1 # how many loop models to generate for

SET LOOP_ENDING_MODEL = 25 # each *.B????????

SET LOOP_MD_LEVEL = ’refine_3’ # the same as for MD_LEVEL, but for loops

#

# Do not forget to set WATER_IO, HETATM_IO, HYDROGEN_IO to ON if your model

# includes WATER, HYDROGEN, and/or HETATM atoms.

#

# Additional flexibility is provided by re-defining the TOP routines

# ’select_atoms’, ’special_restraints’, ’special_patches’, and

# ’rd_restraints’.

#

# Options that are not changed frequently:

SET LIBRARY_SCHEDULE = 4 # 1 ... thorough var target func schedule

# 4 ... faster var target func schedule

SET MAX_VAR_ITERATIONS = 200 # maximal numb of iterations for the cycles

# of the variable target function method

SET MD_LEVEL = ’refine_1’ # what kind of optimization is done after

# the variable target function method:

# ’nothing’ ... nothing;

# ’refine_1’ ... very fast MD annealing;

# ’refine_2’ ... fast MD annealing;

# ’refine_3’ ... slow MD annealing;

# ’refine_4’ ... very slow MD annealing;

# ’refine_5’ ... very slow/large dt MD annealing;

SET REFINE_HOT_ONLY = 0 # 1 ... select and optimize only HOT atoms in refine;

# 0 ... select and optimize all atoms in refine;

# usually about half of the atoms are hot; in such cases,

# 0 is faster for sequences longer than about 100 aa

# because a faster non-bonded pairs algorithm can be used.

SET RSTRS_REFINED = 1 # the types of restraints used to define

# hot spots when MD_LEVEL <> ’nothing’:

# 0 ... stereochemistry only;

# 1 ... stereochemistry and dihedral;
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# 2 ... all restraints;

SET EXIT_STAGE = 0 # 0 ... no effect;

# 1 ... exit without any optimization after

# restraints and an initial model are

# calculated (more efficient than

# REPEAT_OPTIMIZATION=0);

# 2 ... exit after the initial model is calculated

# (restraints are not calculated)

SET REPEAT_OPTIMIZATION = 1 # how many times the whole optimization

# schedule (variable target function

# method and refinement) is repeated

# for each initial model;

SET TRACE_OUTPUT = 10 # every which CG or MD cycle is reported;

SET MAX_MOLPDF = 100E3 # abort optimization of the current model if

# the molecular pdf is larger than this and

# continue with the next model;

SET TOPLIB = ’${LIB}/top_heav.lib’ # topology library (all non-hydrogen atoms);

SET TOPOLOGY_MODEL = 3 # corresponding topology model;

SET PARLIB = ’${LIB}/par.lib’ # parameters library;

SET WRITE_INTERMEDIATES = 0 # 0 ... do not write out intermediate

# atom files during optimization;

# 1 ... write out intermediate atom files;

SET INITIAL_MALIGN3D = 0 # 0 ... do not do MALIGN3D before

# TRANSFER_XYZ

# 1 ... do that.

SET FINAL_MALIGN3D = 0 # 0 ... do not do MALIGN3D and write

# superposed templates & models

# at the end of ’model’

# 1 ... do that.

SET GENERATE_METHOD= ’transfer_xyz’ # how to build the initial model:

# ’generate_xyz’ from internal coordinates

# and write them to a file;

# ’transfer_xyz’ from template coordinates

# and write them to a file;

# ’read_xyz’ read coordinates from

# a file;

SET RAND_METHOD = ’randomize_xyz’ # a method to perturb the initial model:

# ’randomize_dihedrals’ ... uses DEVIATION

# in degrees;

# ’randomize_xyz’ ... uses DEVIATION

# in angstroms;

# ’nothing’

SET CREATE_RESTRAINTS = 1 # 0 ... read the restraints from a file;

# 1 ... make the restraints and write them

# to a file before reading them

# for the optimization; in addition

# to the default restraints, the TOP

# routine ’special_restraints’,

# which may be re-defined in the
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# user TOP file, is called for any

# user defined restraints that are

# then also written to the same file.

SET SPLINE_ON_SITE = on # on ... convert some restraints into splines

# off ... no conversion

# SET OUTPUT_CONTROL = 1 1 1 1 0 # write real_output, notes, warnings, errors, dynmem

SET OUTPUT_CONTROL = 1 0 0 1 0 # write real_output, notes, warnings, errors, dynmem

# Set maximal values for various distance restraints:

SET MAX_CA-CA_DISTANCE = 14.0

SET MAX_N-O_DISTANCE = 11.0

SET MAX_SC-MC_DISTANCE = 5.5

SET MAX_SC-SC_DISTANCE = 5.0

# Routine ’user_after_single_model’ can be redefined to do whatever at the end

# of each model calculation (e.g. comparison with X-ray structure).

# To write out reports on individual optimizations:

SET OUTPUT = ’NO_REPORT SHORT’

# The alignment file format (I/O):

SET ALIGNMENT_FORMAT = ’PIR’

# The extension added to all *.Bxxxxnn filenames:

SET PDB_EXT = ’.pdb’

# to prevent SUPERPOSE in refine() if molecules are too small:

SET FIT_IN_REFINE = ’NO_FIT’

# To enable default filename generation if not explicitly defined:

SET MODEL = ’undefined’

SET CSRFILE = ’undefined’

# Call this routine before calling ’model’ if you want real fast optimization

SUBROUTINE ROUTINE = ’very_fast’

# SET STARTING_MODEL = 1

# SET ENDING_MODEL = 1

SET MAX_CA-CA_DISTANCE = 10.0

SET MAX_N-O_DISTANCE = 6.0

SET MAX_SC-MC_DISTANCE = 5.0

SET MAX_SC-SC_DISTANCE = 4.5

# Note that all models will be the same if you do not change RAND_METHOD

SET RAND_METHOD = ’nothing’

SET MAX_VAR_ITERATIONS = 50

SET LIBRARY_SCHEDULE = 7

SET MD_LEVEL = ’nothing’

RETURN

END_SUBROUTINE

3.3 Script for modeling of loops

The new loop optimization method relies on a scoring function and optimization schedule adapted for loop modeling
[Fiser et al., 2000]. The corresponding Top routine is called when you set DO LOOPS to 1.

The method first takes the generated model, and selects all regions around gaps in the alignment for additional
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loop modeling. (To select a different region for modeling, simply redefine the select loop atoms routine.) An
initial loop conformation is then generated by simply positioning the atoms of the loop with uniform spacing on
the line that connects the main-chain carbonyl oxygen and amide nitrogen atoms of the N- and C-terminal anchor
regions respectively, and this model is written out to a file with the .IL extension.

Next, a number of loop models are generated from LOOP STARTING MODEL to LOOP ENDING MODEL. Each
takes the initial loop conformation and randomizes it by ±5Å in each of the Cartesian directions. The model is
then optimized thoroughly twice, firstly considering only the loop atoms and secondly with these atoms “feeling”
the rest of the system. The loop optimization relies on an atomistic distance-dependent statistical potential of
mean force for nonbond interactions [Melo & Feytmans, 1997]. This classifies all amino acid atoms into one of 40
atom classes (as defined in $LIB/atmcls-melo.lib) and applies a potential as Modeller cubic spline restraints
(as defined in $LIB/melo-dist1.lib). Each loop model is written out with the .BL extension.

For more information, please consult the loop modeling paper [Fiser et al., 2000] or look at the loop modeling
script itself, loop.top.

Example:

# Homology modelling by the MODELLER TOP routine ’model’.

#

# This can be ran with run_clustor model-loop.top, too.

#

# In addition to the standard overall homology modeling, at the end, this

# routine also calls the thorough loop optimization routine, which generates

# by default 25 loop models for each *.B9999???? model. The default

# loop selection (regions around gaps) can be changed by re-defining

# routine select_loop_atoms.

INCLUDE # Include the predefined TOP routines

SET OUTPUT_CONTROL = 1 1 1 1 0

SET ALNFILE = ’alignment.ali’ # alignment filename

SET KNOWNS = ’5fd1’ # codes of the templates

SET SEQUENCE = ’1fdx’ # code of the target

SET ATOM_FILES_DIRECTORY = ’./:../atom_files’ # directories for input atom files

# SET STARTING_MODEL= 1

# SET ENDING_MODEL = 1

# (determines how many models to calculate)

SET DO_LOOPS = 1 # do loops extensively

SET LOOP_STARTING_MODEL = 1

SET LOOP_ENDING_MODEL = 4

SET LOOP_MD_LEVEL = ’refine_1’

SET MD_LEVEL = ’nothing’

CALL ROUTINE = ’model’ # do homology modelling
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Chapter 4

Top, Modeller scripting language

Top is an interpreter of a scripting language specialized for certain areas. Its use includes programs Modeller

and Asgl. Its syntax resembles that of Fortran.

4.1 The source file

Each Top program or include file is stored in a file named ’program.top’. The .top extension is mandatory.

The Top program consists of a series of commands. The order of commands is important. An example of the
Top program that writes integers 1 to 10 to the output file is:

# Define a variable:

DEFINE_INTEGER VARIABLES = IVAR

# Open a file for appending

OPEN IO_UNIT = 21, OBJECTS_FILE = ’output.file’, FILE_ACCESS = ’APPEND’

# Loop from 1 to 10:

DO IVAR = 1, 10, 1

# Append IVAR to the output file:

WRITE IO_UNIT = 21, OBJECTS = IVAR

END_DO

# Close a file

CLOSE IO_UNIT = 11

# Exit:

STOP

There can be at most one command per line. Each command or line can be at most LENACT (2000) characters
long. The command can extend over several lines if a continuation character ‘;’ is used to indicate the end of the
current line. Everything on that line after the continuation character is ignored.

A comment character ‘#’ can be used anywhere on the line to ignore everything that occurs after the comment
character.

Blank lines are allowed. They are ignored.

TAB characters are replaced by blank characters.

Top converts all commands to upper case, except for the string constants that are quoted in single quotes ’.
Thus, Top is case insensitive, except for the quoted strings.

There are two groups of commands: flow control commands and commands that perform certain tasks. The
next two sections describe the flow control commands and those ‘performing’ commands that are an integral part
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of Top. There are also additional commands specific to each application of Top, such as Modeller and Asgl,
which are described elsewhere.

The usual Unix conventions are used for typesetting the rules. Table 4.1 explains the shorthand used to describe
different variables and constants:

〈integer : 1〉 an integer variable or constant
〈real : 1〉 a real variable or constant
〈string : 1〉 a string variable or constant
〈logical : 1〉 a logical variable or constant
〈var : 1〉 prefix for a variable
〈const : 1〉 prefix for a constant
〈variable : 1〉 〈var integer : 1〉 | 〈var real : 1〉 | 〈var string : 1〉 | 〈var logical : 1〉
〈constant : 1〉 〈const integer : 1〉 | 〈const real : 1〉 | 〈const string : 1〉 | 〈const logical : 1〉
〈number : 1〉 〈integer : 1〉 | 〈real : 1〉
〈quantity : 1〉 〈variable : 1〉 | 〈constant : 1〉
〈quantity : 0〉 a vector of any length with elements 〈quantity : 1〉
〈quantity : N〉 a vector of N elements 〈quantity : 1〉

Table 4.1: List of variable types in Top.

All the variables are formally vectors. When a variable is referred to in a scalar context its first element is used.
All elements of one vector are of the same type. All variables, including a vector of the variable length, must have
at least one element.

There are four different variable types: integer, real, string and logical.

The real constant is (Fortran real number representation):

[+|-][digits][.][digits][{e|E|d|D}{+|-}digits]

The integer constant is (Fortran integer number representation):

[+|-][digits]

The logical constant can be either on or off (case insensitive).

The string constant can contain any character except for a prime ’. It can be optionally enclosed in primes. If
it is not quoted it is converted to upper case and its extent is determined by the position of the blanks on each side
of the contiguous string of non-blank characters.

4.2 Top Commands

There are ‘flow control’ and ‘performing’ commands. If general, the ‘performing’ commands have the following
syntax:

ACTION [ASSIGNMENT, ASSIGNMENT, . . . , ASSIGNMENT]

ACTION specifies what action to take. ASSIGNMENT sets the variable to the specified value. The values
assigned in this way are kept until the next assignment. For example, CALL ROUTINE = ’routine name’, IVAR =

3 sets the integer variable IVAR to 3 and then calls routine routine name; if IVAR is not changed in the routine,
its value will remain to be 3 after the call to the routine.

There can be any number of assignments in a command. They must be separated by commas. The assignment
is of the form:

〈variable : 0〉 = [-]〈quantity : 0〉
The ‘=’ character is optional (can be replaced with a blank).
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〈integer : 1〉 and 〈real : 1〉 can be assigned to each other. When a real number is assigned to an integer
variable, the decimal places are ignored. That is, the result is the same as if the Fortran function IFIX() was
used. There must be no space between the optional − and 〈quantity : 0〉. If a vector variable is assigned to a
variable, all its elements are used.

Real, integer, and logical variables can also be assigned to a string variable. The conversion of a real variable to
a string value is guided by the Top variable NUMBER PLACES which is of type 〈integer : 2〉. The first element
of NUMBER PLACES sets the number of places before the decimal point, and the second element the number of
places after the decimal point. If the latter is −1, an integer number without a decimal point is obtained, if 0 there
is a decimal point without any decimal places.

Assignments can follow any command, except DO, END DO, GO TO, LABEL, STOP, and END -
SUBROUTINE.

4.2.1 DEFINE INTEGER — define integer variables

Options:
VARIABLES = 〈string : 0〉 ’’ variable names

Description: This command defines user integer variables. All variables used in the Top program must be defined.
An exception are the pre-defined Top variables listed at the end of this section.

4.2.2 DEFINE LOGICAL — define logical variables

Options:
VARIABLES = 〈string : 0〉 ’’ variable names

Description: This command defines user logical variables.

4.2.3 DEFINE REAL — define real variables

Options:
VARIABLES = 〈string : 0〉 ’’ variable names

Description: This command defines user real variables.

4.2.4 DEFINE STRING — define string variables

Options:
VARIABLES = 〈string : 0〉 ’’ variable names

Description: This command defines user string variables.

4.2.5 SET — set variable

Command: SET [ASSIGNMENT, [ASSIGNMENT, . . . [ASSIGNMENT]]]

Description: This command sets the values of variables of any of the four types. See the description of AS-
SIGNMENT above.



138 CHAPTER 4. TOP, MODELLER SCRIPTING LANGUAGE

There can be Unix shell environment variables in any input or output filename. The environment variables
have to be in the format ${VARNAME} or $(VARNAME). Also, four predefined macros are available for string
variables:

Four predefined macros are available for string variables:

• ’${LIB}’ is expanded into $LIB APPLICATION shell environment variable, where APPLICATION is the
name-version of the program (e.g., MODELLER5);

• ’${DIR}’ is expanded into the Top variable DIRECTORY;

• ’${JOB}’ is expanded into the root of the Top script filename, or ’(stdin)’ if Top instructions are
being read from standard input;

• ’${DEFAULT}’ is expanded into (ROOT NAME)(FILE ID)(ID1)(ID2)(FILE EXT), where ROOT NAME,
FILE ID, ID1, ID2, and FILE EXT are Top variables. FILE ID is a string that may be set to ’default’.
In that case, a hard-wired short string is used instead of FILE ID. Otherwise, the explicitly specified
FILE ID is applied instead. In any case, FILE ID is not modified by the filename generation routine so
that it can be used more than once without resetting it to the ’default’ value. Four digits are used for
both ID1 and ID2. For example, ’2ptn.B99990001’ results from ROOT NAME = ’2ptn’, FILE EXT =
’.B’, ID1 = 9999, and ID2 = 1.

4.2.6 OPERATE — perform mathematic operation

Options:
OPERATION = 〈string : 1〉 ’SUM’ operation to perform: ’SUM’ |

’MULTIPLY’ | ’DIVIDE’ | ’POWER’

| ’MOD’

RESULT = 〈string : 0〉 ’’ variable name for the result of operation

ARGUMENTS = 〈real : 0〉 0.00 real arguments to the math operation

Description: This command performs a specified mathematical operation. There can be up to MRPRM (120)
arguments for the ’SUM’ and ’MULTIPLY’ operations, but only two for ’DIVIDE’, ’POWER’ and ’MOD’. The
RESULT value has to be the name of a real variable.

4.2.7 STRING OPERATE — perform string operation

Options:
OPERATION = 〈string : 1〉 ’SUM’ operation to perform: CONCATENATE

RESULT = 〈string : 0〉 ’’ variable name for the result of operation

STRING ARGUMENTS = 〈string : 0〉 ’’ arguments for string operation

Description: This command performs a specified string operation. There can be up to MSPRM (130) operands for
the CONCATENATE operation. The RESULT value has to be a name of the string variable.

4.2.8 RESET — reset Top

Description: This command resets the internal state of Top and its predefined variables to their initial values.
It does this by calling the initialization routine that reads the ’top.ini’ file. This command also undefines
all user defined variables.

4.2.9 OPEN — open input file

Options:
IO UNIT = 〈integer : 1〉 21 IO unit for file operations
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OBJECTS FILE = 〈string : 1〉 ’top.out’ filename

FILE ACCESS = 〈string : 1〉 ’SEQUENTIAL’ file access: ’SEQUENTIAL’ | ’APPEND’

FILE STATUS = 〈string : 1〉 ’UNKNOWN’ file status: ’UNKNOWN’ | ’OLD’ | ’NEW’

NUMBER LINES = 〈integer : 1〉 0 number of lines in the newly opened file

Description: This command opens a specified file on the specified I/O stream for formatted access. Fortran

conventions apply to FILE ACCESS and FILE STATUS. NUMBER LINES will contain the number of lines in
the file (if opened for reading).

4.2.10 TIME MARK — print current date, time, and CPU time

Options:

Description: Self-evident.

4.2.11 WRITE — write Top objects

Options:
IO UNIT = 〈integer : 1〉 21 IO unit for file operations

OBJECTS = 〈string : 0〉 ’’ variable names or constants

NUMBER PLACES = 〈integer : 2〉 5 2 pre- and post-decimal point places

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

Description: This command writes the specified objects to a single line which is then written to a selected I/O
stream. Each element of the OBJECTS vector is first tested if it is a name of a variable of any type. If it
is the contents of that variable is written out. If it is not, the element is treated as a string constant. The
first and second element of NUMBER PLACES set the numbers of places before and after the decimal point,
respectively, for real and integer objects.

4.2.12 READ — read record from input file

Options:
IO UNIT = 〈integer : 1〉 21 IO unit for file operations

RECORD = 〈string : 1〉 ’undefined’ contents of the input line

Description: This command reads a line from the file on the I/O channel IO UNIT. The line goes into the string
variable RECORD.

4.2.13 CLOSE — close an input file

Options:
IO UNIT = 〈integer : 1〉 21 IO unit for file operations

Description: This command closes a specified I/O stream.
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4.2.14 DELETE FILE — delete a file

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

Description: This command deletes the named file.

4.2.15 WRITE TOP — write the Top program

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

OUTPUT DIRECTORY = 〈string : 1〉 ’’ output directory

FILE ACCESS = 〈string : 1〉 ’SEQUENTIAL’ file access: ’SEQUENTIAL’ | ’APPEND’

Description: This command writes the current Top program in memory to a specified file.

4.2.16 SYSTEM — execute system command

Options:
COMMAND = 〈string : 1〉 ’nothing’ Unix or DOS command

Description: This command executes the specified operating system command, for example ‘rm’ or ‘ls’ on a Unix
system, or ‘dir’ on a Windows machine. This should be avoided in portable TOP scripts, precisely because
the available commands differ between operating systems.

4.2.17 INQUIRE — check if file exists

Options:
FILE = 〈string : 1〉 ’default’ partial or complete filename

Description: This command assigns 1 to FILE EXISTS if the specified file exists, otherwise it assigns 0. You can
use it with a subsequent IF command for the flow control.

4.2.18 GO TO — jump to label

Command: GO TO 〈string : 1〉

Description: The ‘go to’ statement, which transfers execution to the Top statement occurring after the LABEL
statement with the same name.

4.2.19 LABEL — place jump label

Command: LABEL 〈string : 1〉

Description: This command labels a target position for the GO TO statement with the same name.
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4.2.20 INCLUDE — include Top file

Options:
INCLUDE FILE = 〈string : 1〉 ’ mod’ include file name

Description: This command includes a Top file INCLUDE FILE. You do not have to specify the .top extension.
First, the given filename is tried. Second, the directory specified in the $BIN APPLICATION environment
variable is prefixed and the open function is tried again. INCLUDE command is useful for including
standard subroutines.

4.2.21 CALL — call Top subroutine

Options:
ROUTINE = 〈string : 1〉 ’’ subroutine name

Description: This command calls a Top subroutine ROUTINE.

4.2.22 SUBROUTINE — define Top subroutine

Options:
ROUTINE = 〈string : 1〉 ’’ subroutine name

Description: This command is the first Top statement for any routine. It has to have a matching END -
SUBROUTINE. No nesting of subroutine definitions is allowed, although the definitions can be located
anywhere in a file.

4.2.23 RETURN — return from Top subroutine

Description: This command will exit the execution from the current routine. It is optional.

4.2.24 END SUBROUTINE — end definition of Top subroutine

Description: This command has to be present at the end of each routine. Possibly used instead of RETURN if
RETURN not present.

4.2.25 DO — DO loop

Command: DO VAR = START, END, STEP
commands
END DO

Description: Commas after START and END can be omitted. This loop is exactly like a Fortran DO loop except
that real values are allowed for any of the four controlling variables. VAR must be a variable, while START,
END and STEP can also be constants.

4.2.26 IF — conditional statement for numbers

Options:
OPERATION = 〈string : 1〉 ’SUM’ EQ | GT | LT | GE | LE | NE
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ARGUMENTS = 〈real : 0〉 0.00 real arguments to the math operation

THEN = 〈string : 1〉 ’undefined’ statement when IF evaluates to T

ELSE = 〈string : 1〉 ’undefined’ statement when IF evaluates to F

Description: This command performs a conditional IF operation on two real arguments. The possible operations
are equal (EQ), greater than (GT), less than (LT), greater or equal (GE), less or equal (LE), and not equal (NE).
If the condition is true, the command specified in the THEN variable is executed. Otherwise the command
in the ELSE variable is executed. Typically, these commands are GO TO statements.

4.2.27 STRING IF — conditional statement for strings

Options:
OPERATION = 〈string : 1〉 ’SUM’ EQ | NE | INDEX

STRING ARGUMENTS = 〈string : 0〉 ’’ arguments for string operation

THEN = 〈string : 1〉 ’undefined’ statement when IF evaluates to T

ELSE = 〈string : 1〉 ’undefined’ statement when IF evaluates to F

Description: This command performs a conditional IF operation on two string arguments. The possible operations
are equal (EQ), not equal (NE), and the Fortran index() function (INDEX), which returns true if there is
‘argument2’ substring within ‘argument1’. If the condition is true, the command specified in the THEN

variable is executed. Otherwise the command in the ELSE variable is executed. Typically, these commands
are GO TO statements.

4.2.28 STOP — exit Top

Description: This command stops the execution of the Top program.

4.3 Predefined Top variables
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Name Type
ARGUMENTS 〈real : 0〉
IO UNIT 〈integer : 1〉
ID1 〈integer : 1〉
ID2 〈integer : 1〉
NUMBER PLACES 〈integer : 2〉
FILE EXISTS 〈integer : 1〉
OUTPUT CONTROL 〈integer : 4〉
STOP ON ERROR 〈integer : 1〉
ERROR STATUS 〈integer : 1〉
OBJECTS 〈string : 0〉
VARIABLES 〈string : 0〉
ROUTINE 〈string : 1〉
ROOT NAME 〈string : 1〉
DIRECTORY 〈string : 1〉
FILE ID 〈string : 1〉
OPERATION 〈string : 1〉
RESULT 〈string : 1〉
STRING ARGUMENTS 〈string : 0〉
OBJECTS FILE 〈string : 1〉
INCLUDE FILE 〈string : 1〉
FILE 〈string : 1〉
RECORD 〈string : 1〉
THEN 〈string : 1〉
ELSE 〈string : 1〉
COMMAND 〈string : 1〉
FILE EXT 〈string : 1〉
OUTPUT DIRECTORY 〈string : 1〉
FILE ACCESS 〈string : 1〉
FILE STATUS 〈string : 1〉

Table 4.2: Predefined Top variables
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Chapter 5

Methods

5.1 Dynamic programming for sequence and structure comparison
and searching

In this section, the basic dynamic programming method for sequence alignment is described [Šali & Blundell,
1990]. This method forms the core of the pairwise and multiple sequence and structure comparisons as well as of
the sequence database searching.

5.1.1 Pairwise comparison

The residue by residue scores Wij can be used directly in the sequence alignment algorithm of Needleman &
Wunsch [Needleman & Wunsch, 1970] to obtain the comparison of two protein sequences or structures. The only
difference between the two types of comparison is in the type of the comparison matrix. In the case of sequence,
the amino acid substitution matrix is used. In the case of 3D structure, the Euclidean distance (or some function
of it) between two equivalent atoms in the current optimal superposition is used [Šali & Blundell, 1990].

The problem of the optimal alignment of two sequences as addressed by the algorithm of Needleman & Wunsch
is as follows. We are given two sequences of elements and an M times N score matrix W where M and N are the
numbers of elements in the first and second sequence. The scoring matrix is composed of scores Wij describing
differences between elements i and j from the first and second sequence respectively. The goal is to obtain an
optimal set of equivalences that match elements of the first sequence to the elements of the second sequence. The
equivalence assignments are subject to the following “progression rule”: for elements i and k from the first sequence
and elements j and l from the second sequence, if element i is equivalenced to element j, if element k is equivalenced
to element l and if k is greater than i, l must also be greater than j. The optimal set of equivalences is the one
with the smallest alignment score. The alignment score is a sum of scores corresponding to matched elements,
also increased for occurrences of non-equivalenced elements (ie gaps). For a detailed discussion of this and related
problems see [Sankoff & Kruskal, 1983].

We summarize the dynamic programming formulae used by Modeller to obtain the optimal alignment since
they differ slightly from those already published [Sellers, 1974,Gotoh, 1982]. The recursive dynamic programming
formulae that give a matrix D are:
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Di,j = min







Pi,j

Di−1,j−1 + Wi,j

Qi,j

Pi,j = min

{

Di−1,j + g(1)
Pi−1,j + v

Qi,j = min

{

Di,j−1 + g(1)
Qi,j−1 + v

(5.1)

where g(l) is a linear gap penalty function:

g(l) = u + v · l . (5.2)

Note that only a vector is needed for the storage of P and Q. The uppermost formula in Eq. 5.1 is calculated for
i = M and j = N . Variable l is a gap length and parameters u and v are gap-penalty constants.

The arrays D, P and Q are initialized as follows:

Di,0 =

{

0, i ≤ e
g(i − e), e < i ≤ N

D0,j =

{

0, j ≤ e
g(j − e), e < j ≤ N

Pi,0 = Qi,0 = ∞, i = 1, 2, . . . ,M

P0,j = Q0,j = ∞, j = 1, 2, . . . , N

(5.3)

where parameter e is the maximal number of elements at sequence termini which are not penalized with a gap-
penalty if not equivalenced. A segment at the terminus of length e is termed an “overhang”. Note a difference
from [Gotoh, 1982] in the initialization of the P and Q arrays. Also note that only vectors Qi and Pj need to be
stored in computer, not the whole arrays.

The minimal score dM,N is obtained from

dM,N = min(Di,N , DM,j) (5.4)

where i = M,M − 1, . . . ,M − e and j = N,N − 1, . . . , N − e to allow for the overhangs. The equivalence
assignments are obtained by backtracking in matrix D. Backtracking starts from the element Di,j = dM,N .

5.1.2 Variable gap penalty

This work is still in progress and is not described here.

5.1.3 Local versus global alignment

The Kruskal and Sankoff version of the local alignment is implemented [Sankoff & Kruskal, 1983]; this is very
similar to the [Smith & Waterman, 1981] method. All the routines for the local alignment are exactly the same as
the routines for the global alignment except that during the construction of matrix D the alignment is restarted
each time the score becomes higher than a cutoff. The second difference is that the backtracking starts from the
lowest element in the matrix, wherever it is.
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5.1.4 Similarity versus distance scores

Each scoring matrix contains a flag determining whether it is a distance or similarity matrix. An appropriate
optimization is used automatically. This is achieved by using exactly the same code except that one side of
comparisons is multiplied by −1 when dealing with similarities as opposed to distances.

5.1.5 Multiple comparisons

In the discussion of the previous section, we have assumed that the sequences or structures would be compared in
a pairwise manner. However, such pairwise comparisons of several related proteins may not be self consistent, ie

the following transitivity rule can be broken: If residue a from protein A is equivalent to residue b in protein B
which in turn is equivalent to residue c in protein C then the residue a from protein A must also be equivalent to
residue c from protein C. This property is not always attained in the set of usual pairwise comparisons relating a
group of similar proteins. For this reason we proceed by simultaneously aligning all proteins. This is achieved by
aligning the second sequence with the first one, the third sequence with the alignment of the first two, etc. A more
general tree-like growth of the multiple alignment is not yet implemented.

If the number of all proteins is N , N − 1 alignments must be made to obtain the final multiple comparison. It
is noted that once an equivalence or gap is introduced it is not changed in later stages.

5.2 Optimization of the objective function by Modeller

This section describes the optimization methods implemented in Modeller. The general form of the objective
function and the structure of optimization are similar to molecular dynamics programs, such as Charmm [MacKerell
et al., 1998].

5.2.1 Function

Modeller minimizes the objective function F with respect to Cartesian coordinates of ∼ 10, 000 atoms (3D points)
that form a system (one or more molecules):

F = F (R) = Fsymm +
∑

i

ci(fi,pi) (5.5)

where Fsymm is an optional symmetry term defined in Eq. 5.72, R are Cartesian coordinates of all atoms, c is a
restraint i, f is a geometric feature of a molecule, and p are parameters. For a 10,000 atom system there can be on
the order of 200,000 restraints. The form of c is simple; it includes a quadratic function, cosine, a weighted sum of
a few Gaussian functions, Coulomb law, Lennard-Jones potential, cubic splines, and some other simple functions.
The geometric features presently include a distance, an angle, a dihedral angle, a pair of dihedral angles between
two, three, four atoms and eight atoms, respectively, the shortest distance in the set of distances (not documented

further), solvent accessibility in Å
2
, and atom density expressed as the number of atoms around the central atom.

A pair of dihedral angles can be used to restrain such strongly correlated features as the mainchain dihedral angles
Φ and Ψ. Each of the restraints also depends on a few parameters pi that generally vary from a restraint to a
restraint. Some restraints can restrain pseudo-atoms such as a gravity center of several atoms.

Modeller allows some atoms to be fixed during optimization; i.e., only selected atoms are allowed to be
moved. Similarly, Modeller also allows only a subset of all restraints to be actually used in the calculation of the
objective function. Each subset is indicated by a list of indices specifying the selected atoms or restraints.

There are two kinds of restraints, static and dynamic, that both contribute to the objective function as indicated
in Eq. 5.5:

F = Fsymm + Fs + Fd . (5.6)

The static restraints and their parameters are pre-defined; i.e., they are given before the call to the optimizer and
are not changed during optimization. The dynamic restraints are re-generated repeatedly during optimization.
Usually, the CPU time is spent evenly between the two kinds of restraints, although the dynamic restraints become
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more important as the size of the system increases. All dynamic restraints are always selected and they can restrain
only pairs of atoms. In all other respects, the two kinds of restraints are the same.

The dynamic restraints are obtained from a dynamic pairs list (the non-bonded pairs list). Each dynamic pair
corresponds to at least one restraint, which may or may not be violated. The dynamic pairs list includes only the
pairs of atoms that satisfy the following three conditions: (1) One or both atoms in a pair are allowed to move.
(2) The two atoms are not connected through one, two, or three chemical bonds. (3) The two atoms are closer
than a preset cutoff distance (e.g., 4 Å). There are on the order of 5000 atom pairs in the dynamic pairs list when
only soft-sphere overlap restraints are used. Currently, the restraint types on the dynamic atom pairs that can
be selected include the soft-sphere overlap, Lennard-Jones, Coulombic interactions, and Modeller non-bonded
spline restraints. xx atom density?

The existence of the dynamic pairs list is justified by the fact that dynamic pairs are usually a small fraction of
all possible atom–atom pairs (N · (N −1)/2, where N is the number of atoms in a system). The use of the dynamic
pairs list becomes especially beneficent as the size of the system increases.

The actual algorithm for creating the dynamic pairs list varies with the size of the system, whether or not all
atoms are allowed to move, or whether or not the user wants to include the fixed environment in the calculation of
non-bonded restraints involving the selected atoms. See Section 2.6.5 for more information.

The hash-function algorithm is used to determine whether or not two atoms are a dynamic atom pair. This
algorithm is about 20 times slower than a lookup table but it requires much less memory and still spends a negligible
fraction of the total CPU time. A hash-function table is prepared only once before the start of the optimization
and any other operation involving an evaluation of the objective function (e.g., OPTIMIZE, ENERGY, and
PICK HOT ATOMS).

The dynamic pairs list is not necessarily re-generated each time the objective function is evaluated, although
the contribution of the restraint to the objective function is calculated in each call to the objective function routine
with the current values of the Cartesian coordinates. The dynamic pairs list is re-generated only when maximal
atomic shifts accumulate to a value larger than a preset cutoff. This cutoff is chosen such that there cannot be a
violation of a restraint without having its atom pair on the dynamic pairs list. The dynamic pairs list is recalculated
in ∼ 20% and ∼ 2% of the objective function calls at the beginning and the end of optimization, respectively.

Each evaluation of the objective function or of its first derivatives with respect to the Cartesian coordinates
involves the following steps:

1. Calculate non-fixed pseudo-atoms from the current atomic positions
(routine objfunc:pseudo).

2. Update the dynamic pairs list, if necessary (routine objfunc:upddyn).

3. Calculate the violations of selected restraints and all other quantities that are shared between the calculations
of the objective function and its derivatives (routine objfunc:getviol).

4. Sum the contributions of all violated restraints to the objective function and the derivatives (routine
objfunc:getviol).

5.2.2 Optimizers

Modeller currently implements a Beale restart conjugate gradients algorithm [Shanno & Phua, 1980,Shanno &
Phua, 1982] and a molecular dynamics procedure with the Verlet integrator [Verlet, 1967]. The conjugate gradients
optimizer is usually used in combination with the variable target function method [Braun & Gõ, 1985] which is
implemented with the Top script (Section 3.1). The molecular dynamics procedure can be used in a simulated
annealing protocol that is also implemented with the Top script.

Molecular dynamics

Force in Modeller is obtained by equating the objective function F with internal energy in kcal/mole. The
atomic masses are all set to that of C12 (Modeller unit is kg/mole). The initial velocities at a given temperature
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are obtained from a Gaussian random number generator with a mean and standard deviation of:

v̄x = 0 (5.7)

σx =

√

kBT

m
= 0.000263143

√
T (5.8)

where kB is the Boltzmann constant, m is the mass of one C12 atom, and the velocity is expressed in angstroms/-
femtosecond.

The Newton’s equations of motion are integrated by the Verlet algorithm [Verlet, 1967]:

vx(i + 1) = vx(i) +
∂F

∂x
A (5.9)

x(i + 1) = x(i) + vx(i + 1)∆t (5.10)

A = c
∆t

m
= 4.1868 · 10−7 ∆t

m
(5.11)

where velocities v(i + 1) are for t + ∆t/2 and positions x(i + 1) for t + ∆t. Parameter c is a scaling factor so that
positions are expressed in angstroms, time in femtoseconds, and velocities in angstroms/femtosecond, given that
the objective function is in kcal/mole and atomic mass in kg/mole. In addition, velocity is capped at a maximum
value, before calculating the shift, such that the maximal shift along one axis can only be CAP ATOM SHIFT. The
velocities can be equilibrated every EQUILIBRATE steps to stabilize temperature. This is achieved by scaling the
velocities with a factor f :

f =
√

T/Ekin (5.12)

Ekin =
m

2

Natoms
∑

i

(v2
x + v2

y + v2
z) (5.13)

where Ekin is the current kinetic energy of the system.

5.3 Equations used in the derivation of the molecular pdf

5.3.1 Features and their derivatives

Distance

Distance is defined by points i and j:
d =

√

~rij · ~rij = |~rij | = rij (5.14)

where
~rij = ~ri − ~rj . (5.15)

The first derivatives of d with respect to Cartesian coordinates are:

∂d

∂~ri
=

~rij

|~rij |
(5.16)

∂d

∂~rj
= − ∂d

∂~ri
(5.17)

Angle

Angle is defined by points i, j, and k, and spanned by vectors ij and kj:

α = arccos
~rij · ~rkj

|~rij ||~rkj |
. (5.18)

It lies in the interval from 0 to 180◦. Internal Modeller units are radians.
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The first derivatives of α with respect to Cartesian coordinates are:

∂α

∂~ri
=

∂α

∂ cos α

∂ cos α

∂~ri
=

1√
1 − cos2 α

1

rij

(

~rij

rij
cosα − ~rkj

rkj

)

(5.19)

∂α

∂~rk
=

∂α

∂ cos α

∂ cos α

∂~rk
=

1√
1 − cos2 α

1

rkj

(

~rkj

rkj
cos α − ~rij

rij

)

(5.20)

∂α

∂~rj
= − ∂d

∂~ri
− ∂d

∂~rk
(5.21)

These equations for the derivatives have a numerical instability when the angle goes to 0 or to 180◦. Presently,
the problem is ‘solved’ by testing for the size of the angle; if it is too small, the derivatives are set to 0 in the hope
that other restraints will eventually pull the angle towards well behaved regions. Thus, angle restraints of 0 or 180◦

should not be used in the conjugate gradients or molecular dynamics optimizations.

Dihedral angle

Dihedral angle is defined by points i, j, k, and l (ijkl):

χ = sign(χ) arccos
(~rij × ~rkj) · (~rkj × ~rkl)

|~rij × ~rkj ||~rkj × ~rkl|
(5.22)

where
sign(χ) = sign[~rkj · (~rij × ~rkj) × (~rkj × ~rkl)] . (5.23)

The first derivatives of χ with respect to Cartesian coordinates are:

dχ

d~r
=

dχ

d cos χ

d cos χ

d~r
(5.24)

where
dχ

d cosχ
=

(

d cos χ

dχ

)

−1

= − 1

sin χ
(5.25)

and

∂ cos χ

∂~ri
= ~rkj × ~a (5.26)

∂ cos χ

∂~rj
= ~rik × ~a − ~rkl ×~b (5.27)

∂ cos χ

∂~rk
= ~rjl ×~b − ~rij × ~a (5.28)

∂ cos χ

∂~rl
= ~rij ×~b (5.29)

~a =
1

|~rij × ~rkj |

(

~rkj × ~rkl

|~rkj × ~rkl|
− cos χ

~rij × ~rkj

|~rij × ~rkj |

)

(5.30)

~b =
1

|~rkj × ~rkl|

(

~rij × ~rkj

|~rij × ~rkj |
− cos χ

~rkj × ~rkl

|~rkj × ~rkl|

)

. (5.31)

These equations for the derivatives have a numerical instability when the angle goes to 0. Thus, the following
set of equations is used instead [van Schaik et al., 1993]:
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~rmj = ~rij × ~rkj (5.32)

~rnk = ~rkj × ~rkl (5.33)

∂χ

∂~ri
=

rkj

r2
mj

~rmj (5.34)

∂χ

∂~rl
= − rkj

r2
nk

~rnk (5.35)

∂χ

∂~rj
=

(

~rij · ~rkj

r2
kj

− 1

)

∂χ

∂~ri
− ~rkl · ~rkj

r2
kj

∂χ

∂~rl
(5.36)

∂χ

∂~rk
=

(

~rkl · ~rkj

r2
kj

− 1

)

∂χ

∂~rl
− ~rij · ~rkj

r2
kj

∂χ

∂~ri
(5.37)

The only possible instability in these equations is when the length of the central bond of the dihedral, rkj ,
goes to 0. In such a case, which should not happen, the derivatives are set to 0. The expressions for an improper
dihedral angle, as opposed to a dihedral or dihedral angle, are the same, except that indices ijkl are permuted to
ikjl. In both cases, covalent bonds ij, jk, and kl are defining the angle.

Atomic solvent accessibility

xx

Atomic density

Atomic density for a given atom is simply calculated as the number of atoms within a distance CONTACT SHELL

of that atom. First derivatives are not calculated, and are always returned as 0.

Atomic coordinates

The absolute atomic coordinates xi, yi and zi are available for every point i, primarily for use in anchoring points
to planes, lines or points. Their first derivatives with respect to Cartesian coordinates are of course simply 0 or 1.

5.3.2 Restraints and their derivatives

The chain rule is used to find the partial derivatives of the feature pdf with respect to the atomic coordinates.
Thus, only the derivatives of the pdf with respect to the features are listed here.

Single Gaussian restraint

The pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

p =
1

σ
√

2π
exp

[

−1

2

(

f − f̄

σ

)2
]

. (5.38)

A corresponding restraint c in the sum that defines the objective function F is

c = − ln p =
1

2

(

f − f̄

σ

)2

− ln
1

σ
√

2π
(5.39)

The first derivatives with respect to feature f are:

dc

df
=

f − f̄

σ

1

σ
. (5.40)
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Multiple Gaussian restraint

The polymodal pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

p =

n
∑

i=1

ωipi =

n
∑

i=1

ωi
1

σi

√
2π

exp

[

−1

2

(

f − f̄i

σi

)2
]

. (5.41)

A corresponding restraint c in the sum that defines the objective function F is

c = − ln p = − ln

n
∑

i=1

ωipi (5.42)

The first derivatives with respect to feature f are:

dc

df
=

1

p

n
∑

i=1

ωipi ·
[

f − f̄i

σi

1

σi

]

. (5.43)

When any of the normalized deviations vi = (f − f̄i)/σi is large, there are numerical instabilities in calculating
the derivatives because vi are arguments to the exp function. Robustness is ensured as follows. The ‘effective’
normalized deviation is used in all the equations above when the magnitude of normalized violation v is larger than
cutoff rgauss1 (10 for double precision). This scheme works up to rgauss2 (200 for double precision); violations
larger than that are ignored. This trick is equivalent to increasing the standard deviation σi. A slight disadvantage
is that there is a discontinuity in the first derivatives at rgauss1. However, if continuity were imposed, the
range would not be extended (this is equivalent to linearizing the Gaussian, but since it is already linear for large
deviations, a linearization with derivatives smoothness would not introduce much change at all).

M = 37 ; M2/2 has to be smaller than the largest argument to exp (5.44)

A =
1

M

rgauss2− M

rgauss2− rgauss1
(5.45)

B =
rgauss2

M

M − rgauss1

rgauss2− rgauss1
(5.46)

v =
f − f̄i

σi
(5.47)

F = A |v| + B (5.48)

v′ = v/F (5.49)

Now, Eqs. 5.41–5.43 are used with v′ instead of v. For single precision, M = 12, rgauss1 = 4, rgauss2 = 100.

Multiple binormal restraint

The polymodal pdf for a geometric feature (f1, f2) (e.g., a pair of dihedral angles) is

p =
n
∑

i=1

ωipi =
n
∑

i=1

ωi
1

2πσ1iσ2i

√

(1 − ρ2
i )

·

exp

{

− 1

2(1 − ρ2
i )

[

(

f1 − f̄1i

σ1i

)2

− 2ρi
f1 − f̄1i

σ1i

f2 − f̄2i

σ2i
+

(

f2 − f̄2i

σ2i

)2
]}

. (5.50)

where ρ < 1. ρ is the correlation coefficient between f1 and f2. Modeller actually uses the following series
expansion to calculate p:
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p =

n
∑

i=1

1

2πσ1iσ2i

√

(1 − ρ2
i )

·

exp

{

− 1

1 − ρ2
i

[

1 − cos(f1 − f̄1i)

σ2
1i

− ρi
sin(f1 − f̄1i)

σ1i

sin(f2 − f̄2i)

σ2i
+

1 − cos(f2 − f̄2i)

σ2
2i

]}

. (5.51)

A corresponding restraint c in the sum that defines the objective function F is

c = − ln p = − ln
n
∑

i=1

ωipi (5.52)

The first derivatives with respect to features f1 and f2 are:

∂c

∂f1
=

1

p

n
∑

i=1

[

ωipi ·
1

σ1i(1 − ρ2
i )

(

sin(f1 − f̄1i)

σ1i
− ρi

cos(f1 − f̄1i) sin(f2 − f̄2i)

σ2i

)]

(5.53)

∂c

∂f2
=

1

p

n
∑

i=1

[

ωipi ·
1

σ2i(1 − ρ2
i )

(

sin(f2 − f̄2i)

σ2i
− ρi

cos(f2 − f̄2i) sin(f1 − f̄1i)

σ1i

)]

. (5.54)

Lower bound

This is like the left half of a single Gaussian restraint:

p =

{

pgauss ; f < f̄
0 ; f ≥ f̄

(5.55)

where f̄ is a lower bound and pgauss is given in Eq. 5.38. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of a lower bound.

Upper bound

This is like the right half of a single Gaussian restraint:

p =

{

pgauss ; f > f̄
0 ; f ≤ f̄

(5.56)

where f̄ is an upper bound and pgauss is given in Eq. 5.38. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of an upper bound.

Cosine restraint

This is usually used for dihedral angles f :

c = |b| − b cos(nf + a) (5.57)

where b is Charmm force constant, a is phase shift (tested for 0 and 180◦), and n is periodicity (tested for 1, 2,
3, 4, 5, and 6). The Charmm phase value from the Charmm parameter library corresponds to a − 180◦. The
force constant b can be negative, in effect offsetting the phase a for 180◦ compared to the same but positive force
constant.

dc

df
= bn sin(nf + a) (5.58)
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Coulomb restraint

c =
1

εr

qiqj

f
s(f, f1, f2) (5.59)

s(f, f1, f2) =











1 ; f ≤ f1
(f2−f)2(f2+2f−3f1)

(f2−f1)3
; fo < f ≤ f2

0 ; f > f2

(5.60)

where qi and qj are the atomic charges of atoms i and j, obtained from the Charmm topology file, that are
at a distance f . εr is the relative dielectric, controlled by the RELATIVE DIELECTRIC Top variable. Function
s(f, f1, f2) is a switching function that smoothes the potential down to zero in the interval from f1 to f2 (f2 > f1).
The total Coulomb energy of a molecule is a sum over all pairs of atoms that are not in the same bonds or bond
angles. 1–4 energy for the 1–4 atom pairs in the same dihedral angle corresponds to the ELEC14 Modeller term;
the remaining longer-range contribution corresponds to the ELEC term.

The first derivatives are:

dc

df
= − c

f
+

c

s

ds

df
(5.61)

ds

df
=







0 ; f ≤ f1
6(f2−f)(f1−f)

(f2−f1)3
; f1 < f ≤ f2

0 ; f > f2

(5.62)

Lennard-Jones restraint

Usually used for non-bonded distances:

c =

[

(

A

f

)12

−
(

B

f

)6
]

s(f, f1, f2) (5.63)

The parameters f1 and f2 of the switching function can be different from those in Eq. 5.60. The parameters A and
B are obtained from the Charmm parameter file (NONBOND section) where they are given as Ei and rj such
that Eij(f) = −4

√

EiEj [(ρij/f)12− (ρij/f)6] in kcal/mole for f in angstroms and ρ = (ri +rj)/2
1/6; the minimum

of E is −
√

EiEj at f = (ri + rj), and its zero is at f = ρ. The total Lennard-Jones energy should be evaluated
over all pairs of atoms that are not in the same bonds or bond angles. The parameters A and B for 1–4 pairs in
dihedral angles can be different from those for the other pairs; they are obtained from the second set of Ei and ri

in the Charmm parameter file, if it exists. 1–4 energy corresponds to the LJ14 Modeller term; the remaining
longer-range contribution corresponds to the LJ term.

The first derivatives are:

dc

df
=

Cs

f
− C

ds

df
(5.64)

C = −12

(

A

f

)12

+ 6

(

B

f

)6

(5.65)

Spline restraint

Any restraint form can be represented by a cubic spline [Press et al., 1992]:

c = Acj + Bcj+1 + Cc′′j + Dc′′j+1 (5.66)

A =
fj+1 − f

fj+1 − fj
(5.67)

B = 1 − A (5.68)
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C =
1

6
(A3 − A)(fj+1 − fj)

2 (5.69)

D =
1

6
(B3 − B)(fj+1 − fj)

2 (5.70)

where fj ≤ f ≤ fj+1.

The first derivatives are:

dc

df
=

cj+1 − cj

fj+1 − fj
− 3A2 − 1

6
(fj+1 − fj)c

′′

j +
3B2 − 1

6
(fj+1 − fj)c

′′

j+1 (5.71)

The values of c and c′ beyond f1 and fn are obtained by linear interpolation from the termini. A violation of
the restraint is calculated by finding the global minimum. A relative violation is estimated by using a standard
deviation (e.g., force constant) obtained by fitting a parabola to the global minimum.

Variable spacing of spline points could be used to save on memory. However, this would increase the execution
time, so it is not used.

Symmetry restraint

The asymmetry penalty added to the objective function is defined as

Fsymm =
∑

i<j

ωiωj(dij − d′

ij)
2 (5.72)

where the sum runs over all pairs of equivalent atoms ij, ωi is an atom weight for atom i, dij is an intra-molecular
distance between atoms ij in the first segment, and d′

ij is the equivalent distance in the second segment.

For each i < j, the first derivatives are:

∂c

∂ ~dij

= 2ωiωj(dij − d′

ij)
~dij

dij
(5.73)

∂c

∂ ~d′ij
= −2ωiωj(dij − d′

ij)
~d′ij
d′ij

(5.74)

Thus, the total first derivatives are obtained by summing the two expressions above for all i and j > i distances.

5.4 List of commands, arguments, and default values

The top.ini file contains the list of all Modeller commands, arguments, and default values of arguments.

--- COMMANDS:

1 no_action

2 SET

3 STOP

4 LABEL

5 GO_TO

6 DEFINE_INTEGER

7 DEFINE_REAL

8 END_DO

9 DO

10 CALL

11 RESET

12 WRITE

13 OPERATE

14 STRING_OPERATE

15 DEFINE_STRING

16 DEFINE_LOGICAL
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17 SUBROUTINE

18 END_SUBROUTINE

19 INCLUDE

20 RETURN

21 READ

22 OPEN

23 CLOSE

24 IF

25 WRITE_TOP

26 SYSTEM

27 INQUIRE

28 STRING_IF

29 TIME_MARK

31 READ_RESTRAINTS

32 READ_SCHEDULE

33 WRITE_RESTRAINTS

34 READ_MODEL

35 SUPERPOSE

36 COMPARE

37 WRITE_MODEL

38 WRITE_MODEL2

39 OPTIMIZE

40 ENERGY

41 READ_MODEL2

42 PICK_ATOMS

43 ROTATE_DIHEDRALS

44 READ_ALIGNMENT

45 DELETE_ALIGNMENT

46 SWITCH_TRACE

47 PATCH

48 TRANSFER_RES_NUMB

49 MAKE_SCHEDULE

50 WRITE_SCHEDULE

51 ID_TABLE

52 undefined70

53 BUILD_MODEL

54 GENERATE_TOPOLOGY

55 MAKE_RESTRAINTS

56 READ_TOPOLOGY

57 READ_PARAMETERS

58 WRITE_TOPOLOGY_MODEL

59 MAKE_TOPOLOGY_MODEL

60 ROTATE_MODEL

61 WRITE_ALIGNMENT

62 REORDER_ATOMS

63 PICK_RESTRAINTS

64 CONDENSE_RESTRAINTS

65 DELETE_RESTRAINT

66 ADD_RESTRAINT

67 TRANSFER_XYZ

68 RANDOMIZE_XYZ

69 DEBUG_FUNCTION

70 undefined70

71 PICK_HOT_ATOMS

72 REINDEX_RESTRAINTS

73 ALIGN

74 SEQUENCE_SEARCH

75 ALIGN3D

76 ORIENT_MODEL

77 DESCRIBE

78 SEQUENCE_COMPARISON
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79 MALIGN3D

80 MALIGN

81 SEQUENCE_TO_ALI

82 undefined70

83 MUTATE_MODEL

84 PATCH_SS_MODEL

85 WRITE_DATA

86 PRINCIPAL_COMPONENTS

87 READ_ALIGNMENT2

88 COMPARE_ALIGNMENTS

89 ALIGN_CONSENSUS

90 QUICK_AND_DIRTY

91 SPLINE_RESTRAINTS

92 RENAME_SEGMENTS

93 DEFINE_SYMMETRY

94 PATCH_SS_TEMPLATES

95 CHECK_ALIGNMENT

96 ALIGN2D

97 COLOR_ALN_MODEL

98 IUPAC_MODEL

99 DENDROGRAM

100 EXPAND_ALIGNMENT

101 UNBUILD_MODEL

102 READ_ATOM_CLASSES

103 SEGMENT_MATCHING

104 READ_RESTYP_LIB

105 WRITE_PDB_XREF

106 MAKE_REGION

107 MAKE_CHAINS

108 disabled7v7_1

109 BUILD_PROFILE

110 READ_SEQUENCE_DB

111 WRITE_SEQUENCE_DB

112 disabled7v7_2

113 READ_PROFILE

114 WRITE_PROFILE

115 ALN_TO_PROF

116 PROF_TO_ALN

117 VOLUME

118 VOLUME_CAVITY

119 EDIT_ALIGNMENT

120 SEQFILTER

121 DELETE_FILE

122 disabled7v7_3

--- KEYWORDS:

1 REAL ARGUMENTS 0 0.00 # real arguments to the math operation

31 REAL UPDATE_DYNAMIC 1 0.39 # when to update non-bonded pairs list

32 REAL MATRIX_OFFSET 1 0.00 # substitution matrix offset for local alignment

33 REAL SPHERE_STDV 1 0.05 # standard deviation of soft-sphere repulsion

34 REAL VIOL_REPORT_CUT 35 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 999 999 999 999 4.5 4.5 4.5 4.5 4.5 4.5 999 6.5 4.5 4.5 4.5 4.5 4.5 999 999 999 4.5 4.5 # cutoffs for reporting relative violations

35 REAL DEBUG_FUNCTION_CUTOFF 3 0.01 0.001 0.1 # cutoffs for reporting differences between

# numerical and analytical derivatives: absolute,

# relative errors, factor_for_indiv_rstrs

36 REAL TRANSLATION 3 0.0 0.0 0.0 # translation vector for MODEL

37 REAL SA_STEP 1 0.2 # amplitude of the Monte Carlo steps

38 REAL SA_MVFRACT 1 0.8 # fraction of accepted Monte Carlo steps

39 REAL SA_TFACTR 1 0.9 # factor for temperature deacrease in MC SA

40 REAL SA_T0 1 40.0 # starting SA temperature

41 REAL SA_TMIN 1 0.01 # final SA temperature

42 REAL MIN_ATOM_SHIFT 1 0.010 # minimal atomic shift for the optimization convergence test

43 REAL DEVIATION 1 0.0 # coordinate randomizaton amplitude in angstroms
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44 REAL RMS_CUTOFFS 11 3.5 3.5 60 60 15 60 60 60 60 60 60 # cutoffs for RMS, DRMS,

# Alpha Phi Psi Omega chi1 chi2 chi3 chi4 chi5

45 REAL TEMPERATURE 1 293.0 # temperature for MD simulation in K

46 REAL MD_TIME_STEP 1 4.0 # time step for MD in fs

47 REAL RADII_FACTOR 1 0.82 # factor for van der Waals radii

48 REAL LENNARD_JONES_SWITCH 2 6.5 7.5 # the range for Lennard-Jones interaction smoothing to 0

49 REAL COULOMB_SWITCH 2 6.5 7.5 # the range for Coulomb interaction smoothing to 0

50 REAL ROTATION_MATRIX 9 1 0 0 0 1 0 0 0 1 # rotation matrix for MODEL

51 REAL BASIS_RELATIVE_WEIGHT 1 0.05 # the cutoff weight of basis pdf’s for their removal

52 REAL SYMMETRY_WEIGHT 1 1.0 # the weight of the symmetry objective function term

53 REAL MAXIMAL_DISTANCE 1 999. # maximal distance for distance restraints

54 REAL RESTRAINTS_FILTER 35 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 # keep restraints?

55 REAL RESTRAINT_PARAMETERS 0 3 1 3 3 4 2 0 0.0 0.087 # restraint parameters

56 REAL SPHERE_RADIUS 1 10.0 # sphere radius for atoms selection

57 REAL SELECTION_SLAB 5 -9999 9999 0 0 0 # slab for atoms selection:

# \Z{dz1} \Z{dz2} \Z{xtrans} \Z{ytrans} \Z{ztrans}

58 REAL PICK_HOT_CUTOFF 1 4.0 # radius for picking hot atoms

59 REAL CAP_ATOM_SHIFT 1 0.2 # limit for atomic shifts in optimization

60 REAL MOLPDF 1 0.0 # value of objective function

61 REAL GAP_PENALTIES_3D 2 0.0 1.75 # gap creation and extension penalties for

# structure/structure superposition

62 REAL CONTACT_SHELL 1 4.0 # distance cutoff for calculation of the non-bonded

# pairs list

63 REAL RESTRAINT_STDEV 2 0.0 1.0 # transforming factors for standard deviations

# (y=a+bx) in models 1--6 or standard deviation

# for model 7 (a)

64 REAL PMF_GRID 8 2.0 0.5 20 36 18 0 180 1 # translation and rotation

# grid for PMF calculation

65 REAL RELATIVE_DIELECTRIC 1 1.0 # relative dielectric constant

66 REAL ROTATION_ANGLE 1 0.0 # rotation of MODEL around axis [degrees]

67 REAL ROTATION_AXIS 3 1.0 0.0 0.0 # rotation axis for MODEL

68 REAL SPLINE_DX 1 0.5 # interval size for splining restraints

69 REAL SPLINE_RANGE 1 4.0 # range of the splines

70 REAL GAP_PENALTIES_2D 9 0.35 1.2 0.9 1.2 0.6 8.6 1.2 0. 0. # gap penalties for

# sequence/structure alignment: helix, beta,

# accessibility, straightness, and CA--CA distance

# factor, dst min, dst power, t, structure_profile ;

# best U,V=-450,0

71 REAL SCHEDULE_SCALE 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# factors for physical restraint types in scaling the schedule

72 REAL CLUSTER_CUT 1 -1.0 # definition of a cluster

73 REAL GAP_PENALTIES_1D 2 -900 -50 # gap creation and extension penalties for

# sequence/sequence alignment

74 REAL FAST_SEARCH_CUTOFF 1 1.0 # if FAST_SEARCH is ON only sequences with database scan

# significance higher than this value are considered for

# randomization significance

75 REAL VIOL_REPORT_CUT2 35 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

76 REAL SIGNIF_CUTOFF 2 4.0 5.0 # cutoff for adding sequences to alignment, max

# difference from the best

77 REAL SEGMENT_CUTOFF 1 999999 # cutoff for writing out an alignment in SEGMENT_MATCHING

78 REAL FIX_OFFSETS 5 0. 1000. 2000. 3000. 4000. # offsets of the ALIGN2D alignment

# score for "fixed" positions indicated by ’ 123456789’

# in line ’_fix_pos’

79 REAL PSA_INTEGRATION_STEP 1 0.1 # integration step for WRITE_DATA

80 REAL ATOM_ACCESSIBILITY 1 1.0 # accessible atoms for MAKE_REGION

81 REAL PROBE_RADIUS 1 1.4 # probe_radius for WRITE_DATA

82 REAL REFERENCE_DISTANCE 1 3.5 # cutoff for selecting reference positions in SUPERPOSE

83 REAL SUBOPT_OFFSET 1 2.0 # offset for residue-residue score in getting

# suboptimals in ALIGN/ALIGN2D

84 REAL SMOOTH_PROF_WEIGHT 1 10 # for smoothing the profile aa frequency with a prior

85 REAL NEIGHBOR_CUTOFF 1 6.0 # for defining atom-atom contacts in WRITE_DATA
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86 REAL MINIMAL_RESOLUTION 1 99.0 # for MAKE_CHAINS

87 REAL GAP_PENALTIES 2 2. 0.5 # gap creation and extension penalties for SALIGN

88 REAL FEATURE_WEIGHTS 6 1. 0. 0. 0. 0. 0.# feature weights for SALIGN

89 REAL GAP-GAP_SCORE 1 0. # dissimilarity score for aligning gap with gap, in SALIGN

90 REAL GAP-RESIDUE_SCORE 1 0. # dissimilarity score for aligning gap with residue,

# in SALIGN

91 REAL GRID_UNIT 1 1. # grid size for cavities calculation in WRITE_DATA

92 REAL MIN_ALN_SEQ_ID 1 40. # minimal alignment sequence identity in BUILD_PROFILE

93 REAL RCUTP 1 3.0 # Radius of cut-off for a short sphere of atoms

94 REAL RCUTL 1 5.0 # Radius of cut-off for a long sphere of atoms

95 REAL RESTRAINT_STDEV2 3 0. 0. 0. # transforming standard deviation in models

# 3--6: S’ = S + [ a + b max(0, c-g) ]

96 REAL MAX_ALN_EVALUE 1 0.1 # Max. E-value of alignments to include in BUILD_PROFILE

97 REAL VMIN 1 7.5 # Minimum volume [A^3] of a cluster of internal cavities

98 REAL RLINK 1 1.2 # Radius of cut-off to link in a cluster of internal cavities

99 REAL MATRIX_SCALING_FACTOR 1 0.0069 # substitution matrix scoring parameters, lambda

# and kappa - used by build_profile

100 REAL FILTER_VALUES 2 0. 0. # filter parameters for EM_GRID_SEARCH

101 REAL VOXEL_SIZE 1 0 # EM density map voxel size for EM_GRID_SEARCH

102 REAL RESOLUTION 1 0 # EM density map resolution for EM_GRID_SEARCH

103 REAL ANGULAR_STEP_SIZE 1 0 # Angular search step size in degrees for EM_GRID_SEARCH

104 REAL ALN_SCORE 1 -999 # Alignment score out put from the alignment routines

1 INTEGER IO_UNIT 1 21 # IO unit for file operations

2 INTEGER ID1 1 1 # ID1 for filename construction

3 INTEGER ID2 1 1 # ID2 for filename construction

4 INTEGER NUMBER_PLACES 2 5 2 # pre- and post-decimal point places

5 INTEGER FILE_EXISTS 1 0 # an output flag: 0 | 1

6 INTEGER OUTPUT_CONTROL 5 1 0 1 1 0 # selects output, flow-control msgs, warnings,

# errors, dynamic mem msgs

7 INTEGER STOP_ON_ERROR 1 1 # whether to stop on error

8 INTEGER ERROR_STATUS 1 0 # application error status

9 INTEGER NUMBER_LINES 1 0 # number of lines in the newly opened file

31 INTEGER SCHEDULE_STEP 1 1 # schedule step for optimization

32 INTEGER ROUTINE_TYPE 1 1 # generic routine type for a miscellaneous command

33 INTEGER NLOGN_USE 1 15 # number of residues at which to begin using the

# N Log N non-bonded pairs routine

34 INTEGER SA_MOVSPERATM 1 30 #

35 INTEGER RESIDUE_GROUPING 1 1 #

36 INTEGER MAX_ITERATIONS 1 200 # maximal iterations in optimization

37 INTEGER RAND_SEED 1 -8123 # random seed from -50000 to -2

38 INTEGER COMPARE_MODE 1 3 # selects the type of comparison: 1 | 2 | 3

39 INTEGER EXTEND_HOT_SPOT 1 0 # whether to extend hot spots

40 INTEGER TOPOLOGY_MODEL 1 3 # selects topology library: 1--10

41 INTEGER RENUMBER_RESIDUES 0 # starting residue index for renumbering residues

42 INTEGER N_SCHEDULE 1 1 # the number of steps in the optimization schedule

43 INTEGER DISTANCE_RSR_MODEL 1 1 # the model for calculating distance restraints: 1--7

44 INTEGER ACCESSIBILITY_TYPE 1 8 # type of solvent accessibility: 1--10

45 INTEGER RESIDUE_SPAN_RANGE 2 0 99999 # range of residues spanning the allowed distances;

# for MAKE_RESTRAINTS, PICK_RESTRAINTS, non-bonded

# dynamic pairs

46 INTEGER MAX_GAP_LENGTH 1 999999 # maximal length of gap in protein comparisons

47 INTEGER OPTIMIZATION_METHOD 1 -999 # type of optimization method: 1 | 3

48 INTEGER GAP_EXTENSION 2 2 1 # extend insertions/deletions for that many residues,

# in PICK_ATOMS; don’t select loops longer than i3

49 INTEGER NUMB_OF_SEQUENCES 1 1 # number of sequences in the alignment

50 INTEGER TRACE_OUTPUT 1 0 # modulus for writing information about optimization

# iterations: 0 for nothing

51 INTEGER SEARCH_TOP_LIST 1 20 # the length of the output hits list

52 INTEGER EQUILIBRATE 1 999999 # equilibrate during MD every that many steps

53 INTEGER MAX_GAPS_MATCH 1 1 #

54 INTEGER ALIGN_BLOCK 1 0 # the last sequence in the first block of sequences
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55 INTEGER PICK_ATOMS_SET 1 1 # index of the selected atoms set: 1 | 2 | 3

56 INTEGER PMF_INDICES 0 0 0 0 0 #

57 INTEGER SEARCH_RANDOMIZATIONS 1 0 # number of randomizations for calculating the

# significance of a sequence/sequence similarity

58 INTEGER OFF_DIAGONAL 1 100 # to speed up the alignment

59 INTEGER RESTRAINT_GROUP 1 26 # physical restraint group

60 INTEGER OVERHANG 1 0 # un-penalized overhangs in protein comparisons

61 INTEGER SPLINE_SELECT 3 4 1 9 # specification of the restraints to be splined:

# {\tt form feature group}

62 INTEGER LIBRARY_SCHEDULE 1 1 # selects schedule from the $SCHED_LIB library

63 INTEGER NONBONDED_SEL_ATOMS 1 1 # a non-bonded pair has to have at least as many

# selected atoms

64 INTEGER SPLINE_MIN_POINTS 1 5 # have at least as many intervals in a spline

65 INTEGER SHEET_H-BONDS 1 7 # specify hydrogen bonds in a beta-sheet

66 INTEGER SMOOTHING_WINDOW 1 3 # profiles are smoothed over 2*SW + 1 residues

67 INTEGER RESTRAINT_SEL_ATOMS 1 1 # a restraint other than non-bonded pair has to have at

# least as many selected atoms

68 INTEGER N_SUBOPT 1 1 # number of optimal and suboptimal alignments ALIGN/ALIGN2D

69 INTEGER PROFILE_2D_PHYS 1 35 # 1 ... 35 physical type to be presented as 2D

# energy profile2

70 INTEGER MIN_LOOP_LENGTH 0 # inter-segment minimal lengths in SEGMENT_MATCHING

71 INTEGER SEGMENT_SHIFTS 0 # segment shifts +- in SEGMENT_MATCHING

72 INTEGER SEGMENT_REPORT 1 1D6 # for SEGMENT_MATCHING

73 INTEGER MNCH_LIB 1 1 # which MNCH lib to use in MAKE_RESTRAINTS

74 INTEGER SEGMENT_GROWTH_N 0 # reducing/growing segment N-termini in SEGMENT_MATCHING

75 INTEGER SEGMENT_GROWTH_C 0 # reducing/growing segment C-termini in SEGMENT_MATCHING

76 INTEGER EXPAND_CONTROL 5 9999 9999 1 10 0 # for controlling EXPAND_ALIGNMENT

77 INTEGER NUMB_OF_SEQUENCES2 1 0 # number of sequence in ALIGNMENT2

78 INTEGER MAXRES 0 0 # user specified maximal number of residues

79 INTEGER REGION_SIZE 1 20 # size of exposed region in MAKE_REGION

80 INTEGER MINMAX_LOOP_LENGTH 2 5 15 # minimal/maximal length of a loop in PICK_ATOMS

81 INTEGER MINIMAL_CHAIN_LENGTH 1 30 # for MAKE_CHAINS

82 INTEGER MINIMAL_STDRES 1 30 # for MAKE_CHAINS

83 INTEGER NUMBER_OF_STEPS 1 1 # for calculating cavity volume

84 INTEGER MINMAX_DB_SEQ_LEN 2 0 999999 # minimal/maximal database sequence length

85 INTEGER N_PROF_ITERATIONS 1 3 # number of iterations in PROFILE_SEARCH

86 INTEGER MIN_ALN_LEN 1 50 # minimal number residues in alignment for BUILD_PROFILE

87 INTEGER MAXSEQ 1 0 # lower limit on the maximal number of sequences in alignment

88 INTEGER END_OF_FILE 1 0 # 0 | 1 whether or not reached end of file

# during READ_ALIGNMENT

89 INTEGER MIN_BASE_ENTRIES 1 1 # minimal number of templates in EDIT_ALIGNMENT

90 INTEGER SURFTYP 1 1 # Surface Type for accessibility calculations

# 1= contact; 2=surface

91 INTEGER SEQID_CUT 1 95 # Sequence Identity cut-off for SEQFILTER

92 INTEGER MAX_DIFF_RES 1 30 # Length cut-off for SEQFILTER

93 INTEGER MAX_UNALIGNED_RES 1 10 # Cut-off for number of unaligned residues in SEQFILTER

94 INTEGER MAX_NONSTDRES 1 10 # for MAKE_CHAINS

95 INTEGER EM_MAP_SIZE 1 0 # size of the electron density map, for EM_GRID_SEARCH

96 INTEGER NUM_STRUCTURES 1 1 # number of structures to dock in EM_GRID_SEARCH

97 INTEGER BEST_DOCKED_MODELS 1 1 # number of best docked models to keep in EM_GRID_SEARCH

1 STRING OBJECTS 0 ’’ # variable names or constants

2 STRING VARIABLES 0 ’’ # variable names

3 STRING ROUTINE 1 ’’ # subroutine name

4 STRING ROOT_NAME 1 ’undf’ # root of a filename for filename construction

5 STRING DIRECTORY 1 ’’ # directory list (e.g., \Z{dir1:dir2:dir3:./:/})

6 STRING FILE_ID 1 ’default’ # file id for filename construction

7 STRING OPERATION 1 ’SUM’ # operation to perform: \Z{SUM} | \Z{MULTIPLY}

# | \Z{DIVIDE} | \Z{POWER} | \Z{MOD}

8 STRING RESULT 0 ’’ # variable name for the result of operation

9 STRING STRING_ARGUMENTS 0 ’’ # arguments for string operation

10 STRING OBJECTS_FILE 1 ’top.out’ # filename
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11 STRING INCLUDE_FILE 1 ’__mod’ # include file name

12 STRING FILE 1 ’default’ # partial or complete filename

13 STRING RECORD 1 ’undefined’ # contents of the input line

14 STRING THEN 1 ’undefined’ # statement when IF evaluates to T

15 STRING ELSE 1 ’undefined’ # statement when IF evaluates to F

16 STRING COMMAND 1 ’nothing’ # Unix or DOS command

17 STRING FILE_EXT 1 ’’ # file extension for filename construction

18 STRING OUTPUT_DIRECTORY 1 ’’ # output directory

19 STRING FILE_ACCESS 1 ’SEQUENTIAL’ # file access: \Z{SEQUENTIAL} | \Z{APPEND}

20 STRING FILE_STATUS 1 ’UNKNOWN’ # file status: \Z{UNKNOWN} | \Z{OLD} | \Z{NEW}

31 STRING BUILD_METHOD 1 ’INTERNAL_COORDINATES’ # method for building coordinates:

# \Z{INTERNAL_COORDINATES} | \Z{ONE_STICK}

# | \Z{TWO_STICKS} | \Z{3D_INTERPOLATION}

32 STRING DIHEDRALS 0 ’PHI’ ’PSI’ ’CHI1’ ’CHI2’ ’CHI3’ ’CHI4’ # dihedral angle type

# selection: \Z{phi} | \Z{psi} | \Z{omega} | \Z{chi1}

# | \Z{chi2} | \Z{chi3} | \Z{chi4} | \Z{chi5} | \Z{alpha}

33 STRING RES_TYPES 1 ’ALL’ # residue type selection

34 STRING ATOM_TYPES 1 ’ALL’ # atom type selection

35 STRING VARIABILITY_FILE 1 ’undefined’ # output filename

36 STRING ALIGN_CODES 0 ’all’ # codes of proteins in the alignment

37 STRING ATOM_FILES 0 ’’ # complete or partial atom filenames

38 STRING OUTPUT 1 ’LONG’ # what and/or how to output

39 STRING CHANGE 1 ’RANDOMIZE’ # what to do: \Z{RANDOMIZE} | \Z{OPTIMIZE}

40 STRING FIT_ATOMS 1 ’CA’ # atom type(s) being superposed

41 STRING MODEL_FORMAT 1 ’PDB’ # selects input atom file format:

# \Z{PDB} | \Z{CHARMM} | \Z{UHBD}

42 STRING SEQUENCE 1 ’undefined’ # protein code in the alignment whose

# topology is constructed

43 STRING RESTRAINT_TYPE 1 ’STEREO’ # restraint type to be calculated:

# \Z{STEREO} | \Z{BOND} | \Z{ANGLE} | \Z{IMPROPER}

# | \Z{DIHEDRAL} | \Z{MRFP_STEREO} | \Z{MRFP_BOND}

# | \Z{MRFP_ANGLE} | \Z{MRFP_DIHEDRAL} | \Z{SPHERE}

# | \Z{SPHERE14} | \Z{LJ} | \Z{LJ14} | \Z{COULOMB}

# | \Z{COULOMB14} | \Z{ALPHA} | \Z{STRAND} | \Z{SHEET}

# | \Z{DISTANCE} | \Z{USER_DISTANCE}

# | \Z{NONB_PAIR_SPLINE} | \Z{PHI-PSI_BINORMAL}

# | \Z{PHI-PSI_CLASS} | \Z{PHI_DIHEDRAL}

# | \Z{PSI_DIHEDRAL} | \Z{OMEGA_DIHEDRAL}

# | \Z{CHI1_DIHEDRAL} | \Z{CHI2_DIHEDRAL}

# | \Z{CHI3_DIHEDRAL} | \Z{CHI4_DIHEDRAL}

44 STRING ALIGNMENT_FORMAT 1 ’PIR’ # format of the alignment file: \Z{PIR} | \Z{PAP}

# | \Z{QUANTA} | \Z{INSIGHT} | \Z{FASTA}

45 STRING undefined81 1 ’’

46 STRING ALIGNMENT_FEATURES 1 ’INDICES CONSERVATION’ # what alignment features to write out:

# \Z{ACCURACY} | \Z{HELIX} | \Z{BETA}

# | \Z{ACCESSIBILITY} | \Z{STRAIGHTNESS}

# | \Z{CONSERVATION} | \Z{INDICES} | \Z{ALL} | \Z{GAPS}

47 STRING RESIDUE_TYPE 1 ’undefined’ #

48 STRING MATRIX_FILE 1 ’family.mat’ # the filename of the pairwise distance matrix

49 STRING BASIS_PDF_WEIGHT 1 ’LOCAL’ # a method for calculation of basis pdf weights:

# \Z{LOCAL} | \Z{GLOBAL}

50 STRING DISTANCE_ATOMS 2 ’CA’ ’CA’ # atom types for distance generation

51 STRING REFERENCE_ATOM 1 ’’ # reference atom name in SUPERPOSE

52 STRING undefined91 1 ’’

53 STRING ATOM_IDS 0 ’’ # atom ids: \Z{atom:residue_id[:chain_id]}

54 STRING SPHERE_CENTER 2 ’undefined’ ’undefined’ # ’\#RES1:C’ ’ATOM_NAME’

55 STRING SELECTION_MODE 1 ’ATOM’ # selecting what: \Z{ATOM} | \Z{RESIDUE}

56 STRING SELECTION_SEARCH 1 ’SEGMENT’ # search method: \Z{SPHERE} | \Z{SEGMENT}

# | \Z{SPHERE_SEGMENT}

57 STRING SELECTION_STATUS 1 ’INITIALIZE’ # what to do with selected atoms:

# \Z{ADD} | \Z{REMOVE} | \Z{INITIALIZE}
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58 STRING SELECTION_SEGMENT 2 ’’ ’’ # \Z{RES:CHN} ids for the first and last residues

# in a chain/segment; or ’LOOPS’

59 STRING SELECTION_FROM 1 ’ALL’ # selecting from: \Z{ALL} | \Z{SELECTED}

60 STRING ALIGN_CODES2 0 ’all’ # align codes for alignment2

61 STRING MD_RETURN 1 ’FINAL’ # return MODEL with \Z{MINIMAL} energy or \Z{FINAL} MODEL

62 STRING ATOM_CLASSES_FILE 1 ’$(LIB)/atmcls-melo.lib’ # library with atom class definitions

# for MODELLER non-bonded restraints

63 STRING RR_FILE 1 ’$(LIB)/as1.sim.mat’ # input residue-residue scoring file

64 STRING SEQ_DATABASE_FILE 1 ’$(LIB)/CHAINS_all.seq’ # file with a list of sequence codes

65 STRING MODEL_SEGMENT 2 ’FIRST:@’ ’LAST:’ # segment to be read in

66 STRING MODEL2_SEGMENT 2 ’FIRST:@’ ’LAST:’ # segment to be read in

67 STRING ATOM_FILES_DIRECTORY 1 ’./’ # input atom files directory list

# (e.g., \Z{dir1:dir2:dir3:./:/})

68 STRING SEARCH_SORT 1 ’LONGER’ # which sequence to use for normalization when

# sorting the hit list: \Z{SHORTER} | \Z{LONGER}

69 STRING RESTRAINTS_FORMAT 1 ’MODELLER’ # format of the restraints file:

# \Z{MODELLER} | \Z{USER}

70 STRING CHAINS_LIST 1 ’$(LIB)/CHAINS_3.0_40_XN.cod’ # file with sequences

71 STRING SEGMENT_IDS 0 ’’ # new segment ids

72 STRING RESIDUE_IDS 0 ’’ # residue id (number:chnid)

73 STRING ALIGN_WHAT 1 ’BLOCK’ # what to align in ALIGN; \Z{BLOCK} | \Z{ALIGNMENT}

# | \Z{LAST} | \Z{PROFILE}

74 STRING CLUSTER_METHOD 1 ’RMSD’ # what distance function to use;

# \Z{RMSD} | \Z{MAXIMAL_DISTANCE}

75 STRING SEARCH_GROUP_LIST 1 ’$(LIB)/CHAINS_3.0_40_XN.grp’ # file with 40\% groups of

# sequences

76 STRING RESTYP_LIB_FILE 1 ’$(LIB)/restyp.lib’ # residue type library

77 STRING SWAP_ATOMS_IN_RES 1 ’’ # minimize RMS by swapping atoms in these residues

# (1 char code: ’DEFHLNQRVY’)

78 STRING ATOM_FILES2 0 ’’ # complete or partial atom filenames for ALIGNMENT2

79 STRING INPUT_WEIGHTS_FILE 1 ’’ #

80 STRING OUTPUT_WEIGHTS_FILE 1 ’’ #

81 STRING INPUT_PROFILE_FILE 1 ’’ #

82 STRING OUTPUT_PROFILE_FILE 1 ’’ #

83 STRING STRUCTURE_TYPES 1 ’structure’ # ’structure structureX structureN structureM

# structureF structureE structureU’

84 STRING SEQ_DATABASE_FORMAT 1 ’PIR’ # ’PIR’ ’FASTA’ ’BINARY’; for READ/WRITE_SEQUENCE_DB

85 STRING PROFILE_FORMAT 1 ’TEXT’ # ’TEXT’ | ’BINARY’ ; for READ/WRITE_PROFILE

86 STRING PROFILE_LIST_FILE 1 ’’ # list of profiles for PROFILE_PROFILE_SCAN

87 STRING EDIT_ALIGN_CODES 0 ’last’ # codes of proteins in the alignment to be edited

88 STRING BASE_ALIGN_CODES 0 ’rest’ # codes of proteins in the alignment to be used as the base

89 STRING COMPARISON_TYPE 1 ’MAT’ # ’MAT’ or ’PSSM’ for comparing matrices or PSSMs when

# profiles are compared

90 STRING MATRIX_COMPARISON 1 ’CC’ # ’CC’, ’MAX’, ’AVE’, - kinds of matrix comparisons

91 STRING TREE_TYPE 1 ’DEFAULT’ # ’DEFAULT’, ’BUILD’ - seq.tree types

# (default = malign)

92 STRING EDIT_FILE_EXT 2 ’.pdb’ ’_fit.pdb’ # old and new file extensions for filename

# construction in MALIGN3D

93 STRING ALIGNMENT_TYPE 1 ’PROGRESSIVE’ # ’PAIRWISE’ ’TREE’ ’PROGRESSIVE’ for SALIGN

94 STRING RESIDUE_TYPE2 1 ’REGULAR’ # ’REGULAR’ for 20 residues of ’GENERALIZED’ otherwise

95 STRING WEIGHTS_TYPE 1 ’SIMILAR’ # or ’DISTANCE’ -> for the kind of substitution values

96 STRING OUTPUT_GRP_FILE 1 ’seqfilt.grp’ # output file for seqfilter groups

97 STRING OUTPUT_COD_FILE 1 ’seqfilt.cod’ # output file for seqfilter representative groups

98 STRING OUTPUT_SCORE_FILE 1 ’default’ # output file for writing out individual scores in seqfilter

99 STRING EM_DENSITY_FORMAT 1 ’XPLOR’ # input electron density map file format for

# EM_GRID_SEARCH; \Z{MRC} | \Z{XPLOR}

100 STRING DOCK_ORDER 1 ’INPUT’ # order to dock proteins in EM_GRID_SEARCH;

# \Z{INPUT} | \Z{SIZE}

101 STRING START_TYPE 1 ’CENTER’ # how to start EM_GRID_SEARCH;

# \Z{CENTER} | \Z{ENTIRE} | \Z{SPECIFIC}

102 STRING TRANSLATE_TYPE 1 ’NONE’ # how to perform translations during EM_GRID_SEARCH;
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# \Z{NONE} | \Z{RANDOM} | \Z{EXHAUSTIVE}

103 STRING FILTER_TYPE 1 ’NONE’ # how to filter the density during EM_GRID_SEARCH;

# \Z{NONE} | \Z{THRESHOLD} | \Z{THRESHOLD2} |

# \Z{SQUARE}

104 STRING EM_FIT_OUTPUT_FILE 1 ’’ # output file for EM_GRID_SEARCH

105 STRING EM_PDB_NAME 0 # PDB files to read for EM_GRID_SEARCH

106 STRING TARGET_PROFILE_FILE 1 ’’ # target_profile for profile_profile_scan

107 STRING DENSITY_TYPE 1 ’SPHERE’ # Function used to calculate density map cross-correlation

# in EM_GRID_SEARCH; \Z{SPHERE} | \Z{GAUSS} | \Z{HYBRID} |

# \Z{GAUSS_NORM} | \Z{TRACE}

108 STRING BKGRND_PRBLTY_FILE 1 ’$(LIB)/blosum62_bkgrnd.prob’ # background probability values for a

# residue-residue substitution matrix

109 STRING RR_IJ_FILE 1 ’$(LIB)/blosum62.qij.mat’ # input residue-residue target frquency file

110 STRING ALN_BASE_FILENAME 1 ’alignment’ # basename for construction of alignment filenames

# used by PROFILE_PROFILE_SCAN

31 LOGICAL FIT 1 on # whether to do pairwise least-squares fitting or

# ALIGN2D alignment

32 LOGICAL SUPERPOSE_REFINE 1 off # whether to refine the superposition

35 LOGICAL DYNAMIC_SPHERE 1 on # whether to use dynamic soft-sphere repulsion terms

36 LOGICAL DYNAMIC_LENNARD 1 off # whether to use dynamic Lennard-Jones energy terms

37 LOGICAL DYNAMIC_COULOMB 1 off # whether to use dynamic Coulomb energy terms

38 LOGICAL WRITE_FIT 1 off # whether to write out fitted coordinates to .fit files

39 LOGICAL ASGL_OUTPUT 1 off # whether to write output for ASGL

40 LOGICAL ADD_RESTRAINTS 1 off # whether to add new restraints to existing restraints

41 LOGICAL ADD_SEGMENT 1 off # whether to add the new segments to the list of segments

42 LOGICAL REMOVE_GAPS 1 on # whether to remove all-gap positions in input alignment

44 LOGICAL LOCAL_ALIGNMENT 1 off # whether to do local as opposed to global alignment

45 LOGICAL WATER_IO 1 off # whether to read water coordinates

46 LOGICAL HETATM_IO 1 off # whether to read HETATM coordinates

47 LOGICAL HYDROGEN_IO 1 off # whether to read hydrogen coordinates

48 LOGICAL INITIALIZE_XYZ 1 on # whether to use IC entries to calculate all coordinates

49 LOGICAL ADD_SEQUENCE 1 off # whether to add the new sequences to the existing alignment

50 LOGICAL ALIGN3D_TRF 1 off # whether to transform the distances before

# dynamic programming

51 LOGICAL PATCH_DEFAULT 1 on # whether to do default NTER and CTER patching

52 LOGICAL INTERSEGMENT 1 on # whether to restrain inter-segment non-bonded pairs

53 LOGICAL ALIGN3D_REPEAT 1 off # do several starts to maximize number of

# equivalent positions

54 LOGICAL ALIGN_ALIGNMENT 1 off # writing out an alignment of alignments (for *)

55 LOGICAL INIT_VELOCITIES 1 on # whether to initialize velocities before MD

56 LOGICAL ADD_SYMMETRY 2 off on # whether to add segment pair, add atoms to segment pair

57 LOGICAL SPLINE_ON_SITE 1 off # whether to convert restraints to splines

58 LOGICAL ADD_PARAMETERS 1 off # whether to add new parameters to existing ones

59 LOGICAL ADD_TOPOLOGY 1 off # whether to add new residue topologies to existing ones

60 LOGICAL WRITE_WHOLE_PDB 1 on # whether to write out all lines in the input PDB file

61 LOGICAL WRITE_ALL_ATOMS 1 on # whether to write all atoms, even if unselected

62 LOGICAL CURRENT_DIRECTORY 1 on # whether to write output .fit files to current directory

63 LOGICAL DETAILED_DEBUGGING 1 off # whether to evaluate energy and derivatives wrt

# each restraint

64 LOGICAL DYNAMIC_PAIRS 1 off # whether to do dynamic pairs irrespective of anything

65 LOGICAL DYNAMIC_MODELLER 1 off # whether to use dynamic MODELLER non-bonded restraints

66 LOGICAL FAST_SEARCH 1 off # whether to use fast sequence search or not

67 LOGICAL DATA_FILE 1 off # whether results go to a separate file or not

68 LOGICAL NORMALIZE_PROFILE 1 off # whether to normalize energy/violations profiles or

# not, by the number of terms per residue

69 LOGICAL not-used 1 off #

70 LOGICAL RESIDUE_SPAN_SIGN 1 on # whether to do N*(N-1)/2 loop for atom pairs in

# MAKE_RESTRAINTS RESTRAINT_TYPE = ’distance’

71 LOGICAL COVALENT_CYS 1 off # whether to consider SG-SG covalent bond similar to

# polypeptide chain when proximity of residues along

# the sequence is considered. If PATCH_SS_MODEL is
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# done, then make it ON.

72 LOGICAL READ_WEIGHTS 1 off # whether to read the whole NxM weight matrix for ALIGN*

73 LOGICAL DYNAMIC_ACCESS 1 off # whether to use dynamic accessibility energy terms

74 LOGICAL DIH_LIB_ONLY 1 off # whether to use only library, not homologs for

# dihedral angle rsrs

75 LOGICAL NO_TER 1 off # whether to not write TER into PDB

76 LOGICAL WRITE_WEIGHTS 1 off # whether to write the whole NxM weight matrix for ALIGN*

77 LOGICAL EXCL_LOCAL 4 on on on on # whether to exclude bonds, angles, dihedrals,

# explicit excl pairs from the homology-derived distance rsrs

78 LOGICAL READ_PROFILE 1 off # whether to read str profile for ALIGN2D

79 LOGICAL WRITE_PROFILE 1 off # whether to write str profile for ALIGN2D

80 LOGICAL WEIGH_SEQUENCES 1 off # whether or not to weigh sequences in a profile

81 LOGICAL FOLLOW_TREE 1 off # whether or not to follow a tree for MALIGN3D

82 LOGICAL CHOP_NONSTD_TERMINII 1 on # whether or not to chop non-standard N- and/or

# C-terminal residue in MAKE_CHAINS

83 LOGICAL NORMALIZE_PP_SCORES 1 off # whether or not to normalize position-position

# scores in SALIGN

84 LOGICAL IMPROVE_ALIGNMENT 1 on # whether or not to optimize alignment in SALIGN

85 LOGICAL FIT_ON_FIRST 1 off # whether or not to optimize alignment in SALIGN

86 LOGICAL FIT_PDBNAM 1 on # whether or not to add _fit to the PDB file name

# in output alifile by SALIGN

87 LOGICAL ORIENT 1 off # whether or not to orient structure before volume

# calculation in WRITE_DATA

88 LOGICAL CLEAN_SEQUENCES 1 on # whether or not clean non-standard residues

89 LOGICAL CLOSE_FILE 1 on # whether or not to close the alignment file at the

# end of READ_ALIGNMENT

90 LOGICAL REWIND_FILE 1 off # whether or not to rewind the alignment file at the

# start of READ_ALIGNMENT

91 LOGICAL ACCURACY_BORDER 1 off # whether or not the closure on the surface accepts

# diagonal cords

92 LOGICAL GAP_FUNCTION 1 off # whether or not to switch on functional gap penalty

# in salign

93 LOGICAL SUBSTITUTION 1 off # whether to use the background in PSSM comparison

94 LOGICAL CHECK_PROFILE 1 on # whether to monitor profile degenration

95 LOGICAL OUTPUT_SCORES 1 off # whether to output individual scores in a build_profile scan

96 LOGICAL GAPS_IN_TARGET 1 off # whether to include gaps in target when using build_profile

97 LOGICAL APPEND_ALN 1 off # whether to append profiles to existing alignment arrays

98 LOGICAL SIMILARITY_FLAG 1 off # when turned on, the SALIGN command does not convert numbers

# into a distance sense.

99 LOGICAL SCORE_STATISTICS 1 on # PROFILE_PROFILE_SCAN: if turned off, the

# length-normalized z-scores are not computed

100 LOGICAL OUTPUT_ALIGNMENTS 1 on # PROFILE_PROFILE_SCAN: if turned off, no alignments will be

# written out.

--- END OF FILE

The third column contains a number of values for each of the options if this

number is fixed, otherwise it contains 0.

You can change any command or variable name without changing the source code

relying on this file, but you can not change the order of the lines.
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