
CS351 Spring 2004, Project 1
The Bayesian Spam Filter

MondoSoft, Inc.

January 26, 2004

STATUS Specification and requirements document

VERSION 1.0

DATE Jan 26, 2004

0 Changelog

Version 1.0 Initial release. Jan 26, 2004.

1 Summary

In response to rising complaints about Unsolicited Bulk Email (UBE, also known as “spam”), Mon-
doSoft Inc.1 has decided to market a spam filter program,SpamBGon(TM), based on Bayesian
statistical decision-making technology. To ensure interoperability of this filter program with other
software, it must be capable of interfacing with standard UNIX mail program tools such asprocmail
(1) . Furthermore, MondoSoft has recognized the business opportunity to remarket a sub-component
of this program as a high-performance standalone software module. Therefore, this project also in-
cludesMondoHashTable , a fully functional hashtable implementation of thejava.util.Map
interface. To improve marketability and demonstrate these programs’ superior performances, both
components (the hashtable and the fullSpamBGonsuite) will also be accompanied by rigorous
scientific empirical performance evaluations2.

2 Definitions

ANALYZABLE The sections of an email message subject to tokenization and statistical analysis.
The ANALYZABLE section consists of the BODY, plus the FIELD-BODY of the HEAD-
ERS “From”, “To”, and “Subject”.

1Your employer.
2Unfortunately, because MondoSoft’s VCs pulled out during the bubble burst, MondoSoft is a bit strapped for cash

to cover independent laboratory certification, so you get stuck with this job too.

1

BODY The main body of an email message; the part of an email message outside the HEADERs.
Refer to RFC822 for details.

CLASSIFICATION The process of using statistics accumulated during TRAINING to label an
UNLABELED message as SPAM or NORMAL.

EVIL See SPAM.

FEATURE Some measurable characteristic of an email message, such as the presence or absence
of a specific word, the length of a line, etc.

FIELD-BODY The contents of a HEADER, following the FIELD-NAME. Refer to RFC822 for
details.

FIELD-NAME The sequence of characters that identifies a field (i.e., specific HEADER) within
the HEADERS section of an email message.

HEADER An email header or field, specifing information such as routing, date and time, subject,
etc. Refer to RFC822 for details.

MAILBOX A folder format for storing multiple email messages that is widely used under Unix
(e.g., bymail , mailx , pine , mutt , etc.). A MAILBOX consists of zero or more email
messages concatenated together, separated by (single) blank lines. Each new email message
is recognized by the presence of the token “From ” at the beginning of a line. No other
structure or control information is imposed on the file.

MAY A requirement that the product can choose to implement if desired. Can also indicate a
choice among acceptable alternatives (e.g., “The program MAY do x, y, or z.” indicates that
the choice of behavior x, y, or z is up to the designer.)

MUST A requirement that the product must implement for full credit.

MUST NOT A behavior or assumption that must not be violated. Violating a MUST NOT re-
striction will result in a penalty on the assignment.

NORMAL Email that the USER wishes to receive.

PRIOR Or prior frequency estimate. The expected frequency of SPAM or NORMAL emails after
TRAINING but beforelooking at a specific email message. Represents the proportion of
SPAM and NORMAL email messages in the training data. Equivalent to the termsPr[CS]
andPr[CN].

POSTERIOR Or posterior frequency estimate. The conditional probability estimate of a specific
message being SPAM or NORMALafter analyzing the contents of the message. Equivalent
to the termsPr[CS|X] andPr[CN |X].

PUNCTUATION Punctuation characters. For the purposes of this project, the punctuation char-
acters are considered to be any characters other than WHITESPACE, letters, or digits.

2

RECOVERABLE ERROR An error condition that the software can ignore, correct, or otherwise
recover from. The program MUST produce a warning message and then cleanly continue
with no corruption or loss of valid data.

RFC822 Document that specifies the syntax of standard internet email messages. Refer to this
document for all specifications related to the format of email messages. Available athttp:
//www.ietf.org/rfc/rfc0822.txt .

SPAM Email that the USER does not wish to receive.

TRAINING Mode or stage in which the software compiles statistics from data that is known to
be SPAM or NORMAL.

UNLABELED An email message whose content (SPAM or NORMAL) is unknown.

UNRECOVERABLE ERROR An error condition from which recovery is impossible. The pro-
gram MUST produce an error message describing the condition and then cleanly halt.

USER A single computer user or email recipient (potentially a mailing list).

WHITESPACE Non-printable characters including (but not limited to) space, horizontal and ver-
tical tabs, newlines, and carriage returns. C.f., the Java JDK API callCharacter.isWhitespace() .

3 Requirements

This section describes the elements that MUST be developed as part of this project. The designer
MAY also choose to implement additional Java source files, programs, and/or shell scripts in sup-
port of the following items. This section only describes the general performance requirements for
each element; for specific deliverable requirements, please refer to Section 5.

3.1 Hashtable

The fundamental unit of statistical analysis for the Bayesian spam filter is the statistic for an in-
dividual token, which boils down to counts of the number of occurrences of each distinct token
seen in the TRAINING data (see Appendix A for details). To track the mapping between to-
kens and their counts, theSpamBGonsuite will use a hash mapping, specifically, a from-scratch
implementation of thejava.util.Map interface, as documented in the Java 1.4.1 API spec-
ification. This module will be namedMondoHashTable.java and MUST support the com-
plete java.util.Map interface and contract specification. TheMondoHashTable imple-
mentation MUST NOT use, access, refer to, or rely on theAbstractMap or any other im-
plementation of theMap interface. TheMondoHashTable implementation MAY employ the
java.util.AbstractSet implementation to support theMap.keySet() and/orMap.values()
operations.

As part of the project deliverables, the developer MUST demonstrate the performance of the
MondoHashTable and show that it meets the quantitative requirements given in Section 4. To
do so, it will probably be necessary to provide additional data members, methods, or subclasses

3

to track quantities such as number of allocations and reallocations, number of accesses, wall clock
time, etc. The choice of which data/methods/subclasses to provide is up to the developer, but all
such entities MUST be documented in the API documentation (c.f., Section 5.1).

The MondoHashTable will form the core of the first milestone submission; refer to Sec-
tion 5.1 for details on the full submission requirements.

3.2 Tokenizers

The job of a tokenizer is to split the ANALYZABLE sections of an email message into small
chunks, called tokens, which are the basic units of analysis. Many different types of tokens are
possible—individual words, words plus punctuation characters, short strings of characters, HTML
entities, MIME attachments, etc. A program can obtain different streams of tokens and, thus,
different statistics from the same email message by changing the definition of a token (i.e., by
changing the tokenizer module that turns an email message into tokens).

TheSpamBGonsoftware suite MUST provide at least three tokenizers:

NGramTokenizer This tokenizer splits the ANALYZABLE section of an email message into
tokens ofn contiguous characters, wheren is a parameter to the tokenizer. This tokenizer
MUST be able to omit WHITESPACE and PUNCTUATION characters. It MAY also pro-
vide user-selectable functionality to include WHITESPACE and/or PUNCTUATION char-
acters.

WhiteSpaceTokenizer This tokenizer splits the ANALYZABLE section of an email mes-
sage at WHITESPACE characters. Essentially, the goal of this tokenizer is to split out indi-
vidual “words”. This tokenizer MUST discard WHITESPACE and PUNCTUATION char-
acters, though it MAY also provide a user-selectable option to preserve PUNCTUATION
characters.

One other tokenizer Choice of this tokenizer is a design decision, but it MUST be documented,
described, motivated (i.e., a rationale given for why it might be a useful tokenizer), and
empirically tested. Possibilities for this tokenizer include (but are not limited to) a recognizer
for dates and times (from theDate header), a tokenizer that recognizes HTML tags and their
contents, a tokenizer that recognizes MIME messages as single entities, a tokenizer based on
n-grams of words (rather than characters), etc.

These tokenizers MUST be interchangable; the USER MUST be able to select among the
tokenizers at the command line during TRAINING and CLASSIFICATION. When a tokenizer
requires additional parameters (e.g., the parametern for the NGramTokenizer), the program
MUST provide a command-line interface to set such parameters.

3.3 Spam Filter

The Bayesian Spam Filter program suite MUST provide at least two client programs,BSFTrain
andBSFTest . The suite MAY also provide additional programs for additional functionality, at
the designer’s option. Each program’s interface is described below, followed by common options
that MUST be supported by both programs.

4

BSFTrain This client is responsible for analyzing known examples of NORMAL and SPAM
emails, building the näıve Bayes statistical models for each, and saving a durable copy of those
models. This program also provides an interface to display a summary of the contents of the two
näıve Bayes models.

This program MUST accept email inputs in the format specified by RFC822 as training input. It
MUST also accept MAILBOX format files as training input, and recognize the individual messages
that occur within the file as separate email entities. It MUST correctly handle zero-length input
files.

This program MAY accept its training data files from standard input, but MAY provide direct
file access to them (via an appropriately chosen command-line option). It MUST support some
form of durable storage for the statistical models. The developer MAY use the Java serialization
mechanism to implement this durable storage.BSFTrain MAY save its statistics in a single,
combined file or in two separate files. This program MUST be capable of loading previously pro-
duced statistics files, updating them with new data, and saving the new updated files. This program
MUST NOT lose data from previous TRAINING sessions during this operation—it MUST only
add new data to existing.

BSFTrain MUST maintain two statistical models—one for SPAM and one for NORMAL
email. When this program is initially run (i.e., if no statistics files exist at first), it MUST construct
new, default statistics tables. The designer MAY choose to require a separate, “initialization”
invocation to create and initialize the statistics files before TRAINING, or MAY choose to have
that operation happen transparently.

This program MUST be capable of producing a human-readable dump of the current (possibly
default) statistical models. The designer MAY choose any reasonable format for the dump, but
the dump MUST, at the minimum, provide information about the relative frequency of all known
tokens under both SPAM and NORMAL classes, the class PRIORs, and the total number of tokens
read.

TheBSFTrain client MUST support the following command-line options:

-s Treat input data as SPAM.

-n Treat input data as NORMAL.

-t Run in TRAINING mode. Compiles input data into statistics and updates the existing statistics
tables (if any) with the new data.

-d Run in dump statistics mode. Produce a summary report that gives the statistics for both SPAM
and NORMAL email. This report MAY be printed to standard output or MAY be written
to a log file. If BSFTrain supports writing the dump to a log file, it MUST provide a
command-line option for choosing that output file.

This program MUST also support the options listed below underCommon Options.
BSFTrain MAY implement additional command-line options of the designer’s choice, but

such options MUST NOT conflict with the options given above or the options listed below under
Common Options.

5

BSFTest This client is responsible for analyzing a single, UNLABELED email message and
labeling it as SPAM or NORMAL.

This program MUST read its email message from standard input and write its (normal) output
to standard output. Its assessment of the label for the email (either SPAM or NORMAL) MUST
be written as an “X-Spam-Status: ” HEADER, including the tokenSPAMor NORMALand the
likelihoods for each class. For example,

X-Spam-Status: NORMAL, ll(SPAM)=-2478.34, ll(NORMAL)=-1893.28
or

X-Spam-Status: SPAM, ll(SPAM)=-3789.6, ll(NORMAL)=-4279.62
BSFTest MAY also emit additional “X- ” headers of the designer’s choice. All such headers

MUST be fully documented in the user documentation.
This program MUST accept the options listed below underCommon Options. It MAY also

accept other options that do not conflict with those, at the designer’s option.
If BSFTest is invoked with no previously trained model (i.e., no statistics file(s) generated by

BSFTrain), it MAY treat this as a RECOVERABLE or UNRECOVERABLE error, or it MAY
silently initialize the appropriate statistics internally. If it chooses to initialize the statistics, it MAY
write them out to file analysis or it MAY discard them.

Common Options Both client programs MUST support the following command-line options:

-m modelFileName Load/save SPAM/NORMAL statistical models from/to the specified file-
name. IfBSFTrain saves all statistical models to a single file, the filename should be
modelFileName.stat ; if it uses separate files for SPAM and NORMAL statistics, their
respective file names should bemodelFileName.sstat andmodelFileName.nstat .

-k tokenizerName This selects the type of tokenizer to be used in the current analysis. The
program MAY also require additional command-line arguments specific to each tokenizer
(e.g., theNGramTokenizer requires that the parametern be set). Failyure to provide a
necessary tokenizer-specific option MAY be treated as a RECOVERABLE or UNRECOV-
ERABLE ERROR.

If a program detects a discrepency between the type of tokenizer specified by-k and the type
of tokenizer previously used to construct the saved statistics tables (if any), it MAY choose to
interpret this as a UNRECOVERABLE or (if possible) a RECOVERABLE ERROR. It MUST
NOT crash or produce incorrect results because of this condition. It MUST NOT destroy, corrupt,
or overwrite previously existing saved statistics file(s).

4 Quantitative Requirements

This section describes the performance and IP requirements for theSpamBGonsoftware suite.

• All programs MUST NOT crash, core dump, dump a stack trace, or throw an exception on
any input.

6

• In the case of a RECOVERABLE ERROR, a program MUST issue a warning statement and
continue processing. The program MAY choose to issue the warning statement to standard
error or to a log file. If the warning is issued to a log file, the log file name and location
MUST be a user-specifiable parameter to the program.

• In the case of an UNRECOVERABLE ERROR, a program MUST issue an error statement
and terminate with a non-zero error condition. The program MAY use different exit codes to
indicate different error conditions, but such codes MUST be documented in the user manual.
The error message MUST be logged to the same destination that warning messages (from
RECOVERABLE ERRORS) are.

• In the case of any ERROR, a program MUST NOT delete, corrupt, or damage existing
statistics model files or any other “stateful” files employed by the program suite.

• The MondoHashTable.java module MUST NOT use or reference theHashtable ,
HashMap, AbstractMap , HashSet , TreeSet , or any of their subclasses.

• For (substantially) reduced credit,BFSTrain andBFSTest MAY use theHashMap class
in place ofMondoHashTable . Note that this requirement exists only as an aid in case
the programmer has difficulty gettingMondoHashTable to work properly; for full credit
the entireSpamBGonsuite MUST employMondoHashTable and MUST NOT employ
or refer to any of the classes listed in the previous bullet point.

• The entire program suite MUST NOT employ or refer to theStreamTokenizer class.

• The programs MAY provide additional output for debugging purposes,butsuch output must
bedisabled by default. Any program MAY provide a command-line switch to enable debug-
ging support when desired.

• TheSpamBGonsuite MAY use thegnu.getopt.Getopt andgnu.getopt.LongOpt
classes to assist in handling command-line options.

• The programmer MAY ask permission of the instructor or the TA to use any classes outside
the JDK that have not already been mentioned. The final programs MUST NOT use any
class outside the JDK that have not been explicitly allowed.

• TheSpamBGonsuite MAY assume that all valid input is standard ASCII text in the range
(char)0 –(char)127 , inclusive. If a program encounters a character outside this range,
it MAY treat it it as a RECOVERABLE or UNRECOVERABLE ERROR or silently ignore
it. If such characters are treated as RECOVERABLE or ignored, they MUST NOT disrupt
the otherwise normal functioning of the program.

• All programs MUST NOT assume that all input is validly structured email. If a program
encounter non-email input (e.g., lacking or corrupted HEADERS, invalid character sets,
improper MIME boundaries, etc.) it MAY produce a RECOVERABLE or UNRECOVER-
ABLE ERROR, but it MUST NOT crash, corrupt the statistics files, etc. If a program chooses
to RECOVER from an ill-formed email, it MUST NOT corrupt the statistics tables with in-
formation from the illegal input; it MUST wait for the next valid input before continuing to
update statistics tables.

7

• Both BFSTrain and BFSTest programs MUST run in amortizedO(n) time for email
input of sizen.

• TheMondoHashTable MUST supportget() , put() , remove() , size() , andisEmpty()
in amortizedO(1) time. The table MAY support key/value iteration in time proportional to
thecapacityof the table. For extra credit, it MAY support key/value iteration in time propor-
tional to the number of keys/values (respectively). To receieve the extra credit, the designer
must demonstrate this convincingly in the performance documentation.

• TheMondoHashTable MUST NOT consume more thanO(n · s) memory forn distinct
keys, wheres represents the combined size of a key/value pair.

• TheMondoHashTable MUST support thekeySet() andvalues() operations with
only O(1) space above that required by the hashtable itself. Specifically, these operations
MUST NOT replicate the underlying hashtable, nor duplicate any keys or values.

• All user documentation MUST be grammatically correct and include correct spelling and
usage. Notably, “Bayes” was a real person so all terminology including his name must be
capitalized. E.g., “Bayesian spam analysis”, “naı̈ve Bayes”, etc.

• The programmer MUST document any areas in which her or his software suite does not meet
this specification.WARNING!The grade penalty will be higher if the instructors discover an
undocumented program shortcoming or bug than if it is documented up front.

5 Deliverables

This section describes the content to be delivered at each stage of the project (one milestone and a
final rollout). For the deadlines of these stages, please refer to Section 6.

5.1 Milestone 1:MondoHashTable

The first project component due is theMondoHashTable implementation. The deliverables for
this milestone are:

MondoHashTable.java The main class file for theMondoHashTable implementation.

Other Java source filesAny other supporting code files necessary to compile, load, and use the
MondoHashTable module.

API documentation The handin MUST also include the full, compiled JavaDoc documentation
for the MondoHashTable implementation. This documentation MUST include full de-
scriptions of every public or protected method, field, sub-class, enclosed class, or constructor
employed byMondoHashTable . This documentation hierarchy MUST be included in a
sub-directory nameddocumentation/ within the submission tarball package.

8

Performance documentation The handin submission MUST include a document describing the
performance of the hashtable implementation and demonstrating (via empirical experiments)
that it meets the quantitative performance goals established in Section 4 of this document.
The designer MAY choose any tests that he or she desires to establish the performance of
his/herMondoHashTable , but MUST describe all tests and why they lead to the stated
conclusions about performance. This document MUST be namedPERFORMANCE.extension ,
but it MAY be a plain text, HTML, PDF, or PostScript document (with the appropriate
extension). It MUST NOT be a Microsoft Word or other nonportable format document.

Test casesThe submission tarball MUST include a subdirectory namedtests/ that includes all
of the test data used to demonstrate the performance of the hashtable implementation.

CVS log file(s) For each Java source file, the submission tarball MUST include a corresponding
.log file including the CVS log for that sourcecode. E.g., for the fileMondoHashTable.java ,
the following CVS command will produce the appropriate log output:

cvs log MondoHashTable.java > MondoHashTable.log

At the programmer’s option, this submission MAY also include:

BUGS.TXT This file documents any known outstanding bugs, missing features, peformance prob-
lems, or failures to meet specifications of your submission. Note that the penalty for such
problems will be smaller if they’re fully documented here than if the instructors discover
them independently.

The submission directory MUST be namedlastname_p1m1 and the submission tarball
MUST be namedlastname_p1m1.tar.gz .

5.2 Rollout: The SpamBGonSuite

The second and final stage of the project is the rollout of the completed project. The deliverables
for this stage are:

BSFTrain.java and BSFTest.java The two primary programs of theSpamBGonsuite.

Other Java source filesAny other supporting code files necessary to compile, load, and use the
BSFTrain andBSFTest programs.Note: if these programs depend on external library
code other than the Java JDK or thegnu.getopt suite, the submission tarball MUST
either include the library whole or provide easy and explicit instructions on how and where
to access such libraries. This documentation MUST be provided in theREADME.TXTfile.
The designer is responsible for ensuring that all copyright and distribution conditions are
adhered to.

README.TXTThis file MUST describe how to compile, configure, and install theSpamBGon
suite. It MUST also list any dependencies on additional software support libraries.

9

Internal documentation The handin MUST also include the full, compiled JavaDoc documenta-
tion for all Java source files in the submission tarball. This documentation MUST include
full descriptions of every public or protected method, field, sub-class, enclosed class, or
constructor employed by the code. This documentation hierarchy MUST be included in a
sub-directory nameddocumentation/ within the submission tarball package.

User documentation The handin submission MUST include complete user-level documentation
for the SpamBGonsuite. This documentation MUST include instructions on how to use
both BSFTrain andBSFTest including the functionality of all command-line options.
The documentation MUST also describe the function and use of any additional programs
included in the submission. User documentation MUST include information on the expected
inputs and outputs of all programs, how to read and interpret the output, and information on
all status and error messages that the programs could produce. This documentation MUST
also include at least one example of how to run each program and how to interpret the output.
This document MUST be namedUSERDOC.extension , but it MAY be be a plain text,
HTML, PDF, or PostScript document (with the appropriateextension). It MUST NOT
be a Microsoft Word or other nonportable format document.

Performance documentation The handin submission MUST include a document describing the
performance of theSpamBGonsuite, including its ability to differentiate SPAM from NOR-
MAL email under different amounts of TRAINING data and under different tokenizers (in-
cluding a small range of reasonable parameters for each parameterized tokenizer). This
document MUST also include the designer’s assessment of which tokenizer is superior and
why or, if different tokenizers are superior under different conditions, what conditions are
important to the success of each. The designer MAY choose any tests that she or he desires to
establish the performance of her/hisSpamBGonsuite, but MUST describe all tests and why
they lead to the stated conclusions about performance. Finally, this document MUST include
the designer’s assessment of how to improve the performance of the system (e.g., what other
kind of tokenizer might be helpful, how to change the probability equations to improve ac-
curacy, etc.) This document MUST be namedPERFORMANCE.extension , but it MAY
be a plain text, HTML, PDF, or PostScript document (with the appropriateextension). It
MUST NOT be a Microsoft Word or other nonportable format document.

Test casesThe submission tarball MUST include a subdirectory namedtests/ that includes all
of the test data used to demonstrate the performance of theSpamBGonsuite.

CVS log file(s) For each Java source file, the submission tarball MUST include a corresponding
.log file including the CVS log for that sourcecode.

At the programmer’s option, this submission MAY also include:

BUGS.TXT This file documents any known outstanding bugs, missing features, peformance prob-
lems, or failures to meet specifications of your submission. Note that the penalty for such
problems will be smaller if they’re fully documented here than if the instructors discover
them independently.

10

Note that if theMondoHashTable code is not fully functional for Milestone 1, a revised
version MAY be submitted in this handin. IfMondoHashTable has been revised for this version,
this submission tarball MUST include the necessary supporting documentation described under
Milestone 1, as well as notes describing the added functionality/improvements between Milestone
1 and this handin.

6 Timeline

Jan 26 Project specification handed out.

Feb 6, 5:00 PM MondoHashTable component due.

Feb 20, 5:00 PM Full project due.

Appendix A: Bayesian Spam Analysis

The spam classification method you will be using is based on a Bayesian statistical model known
as the “näıve Bayes” model. It’s based on estimating the probabilities that a given UNLABELED
message is either SPAM or NORMAL. More specifically, for an UNLABELED message,X, you
must evaluate the quantitiesPr[CN |X] andPr[CS|X], whereCN denotes the class of NORMAL
email messages andCS is the class of SPAM email messages. If you find that

Pr[CN |X] > Pr[CS|X] (1)

, you can label the messageX NORMAL, otherwise you label it SPAM.
The trick is findingPr[Ci|X]. Your program (specifically,BSFTrain) will estimate them by

looking at a great many NORMAL and SPAM emails, called TRAINING DATA. The problem is
that, even given a bunch of example emails, it’s not immediately obvious what this conditional
probability might be. Through the magic of Bayes’ rule, however, we can turn this around:

Pr[Ci|X] =
Pr[X|Ci] Pr[Ci]

Pr[X]
(2)

The quantitiesPr[CN |X] andPr[CS|X] are calledposterior probability estimates—posterior
because they’re the probabilities you assignafter you see the data (i.e., after you get to look at
X). The quantityPr[Ci] is called theprior probability of classi, or simply the prior. This is the
probability you would assign to a particular message being SPAM or NORMALbeforeyou look
at the contents of the message. The quantityPr[X] is the “raw” data likelihood. Essentially, it’s
the probability of a particular message occuring, across both SPAM and NONSPAM. The quantity
Pr[X|Ci] is called thegenerative modelfor X given classi.

It seems like we’ve taken a step backward. We now have three quantities to calculate rather
than one. Fortunately, in this case, these three are simpler than the original one. First off, if all
we want to do isclassifythe data, via Equation 1, then we can discard the raw data likelihood,
Pr[X] (to see this, plug Equation 2 into 1). Second, the termPr[Ci] is easy—it’s just the relative

11

probability of a message being SPAM or NORMAL, i.e., the frequency of SPAM or NORMAL
emails you’ve seen:

Pr[CN] =
NORMAL emails

total # emails

=
NORMAL emails

SPAM+ # NORMAL

Pr[CS] =
SPAM emails
total # emails

=
SPAM emails

SPAM+ # NORMAL

That leaves the generative model. Note that if I hand you a message and say “that’s spam”,
you have asampleof Pr[X|CS]. Your job is to assemble a bunch of such samples to create a
comprehensive model of the data for each class. Essentially,Pr[X|Ci] tells you what the chance is
that you see a particular configuration of letters and words within the universe of all messages of
classCi.

Here we make a massive approximation. First, let’s break up the messageX into a set of lower
level elements, calledfeatures: X = 〈x1, x2, . . . , xk〉. In the case of email, a feature might be a
single character, a word, an HTML token, a MIME attachment, the length of a line, time of day the
mail was sent, etc. For the moment, we won’t worry about what a feature is (it’s the tokenizer’s job
to determine that—see Section 3.2 for details); all we’ll care is that you havesomeway to break it
down into more fundamental pieces. Now we’ll write:

Pr[X|Ci] = Pr[x1, x2, . . . , xk|Ci] (3)

≈ Pr[x1|Ci] Pr[x2|Ci] · · ·Pr[xk|Ci] (4)

=
k∏

j=1

Pr[xj|Ci] (5)

This is called thenäıve Bayes approximation. It’s näıve because itis a drastic approximation
(for example, it discards any information about the order among words), but it turns out to work
surprisingly well in practice in a number of cases. You can think about more sophisticated ways to
approximatePr[X|Ci] if you like (I welcome your thoughts on the matter), but for this project it’s
sufficient to stick with näıve Bayes.

Ok, so now we’ve blown out a single term that we didn’t know how to calculate into a long
product of terms. Is our life any better? Yes! Because each of those individual terms,Pr[xj|Ci], is
simply an observed frequency within the TRAINING data for the tokenxj—you can get it simply
by counting:

Pr[xj|Ci] =
of tokens of typexj seen in classCi

total # of tokens seen in classCi

For example, suppose that your tokens are individual words. When you’re analyzing a new
SPAM message during TRAINING, you find that thejth token is the word “tyromancy”. Your

12

probability estimate for “tyromancy” is just:

Pr[“tyromancy”|CS] =
“tyromancy” instances in all SPAM

total # of tokens in all SPAM

So when you’re TRAINING, every time you see a particular token, you increment the count of
that token (and the count of all tokens) for that class. When you’re doing CLASSIFICATION, you
don’t change the counts when you see a token. Instead, you just look up the appropriate counts and
call that the probability of the token that you’re looking at. So to calculate Equation 5, you simply
iterate across the message, taking each token, and multiplying its class-conditional probability into
your total probability estimate for the corresponding class. In pseudo-code,

Given: an email message,X, and a labelCi ∈ {CN , CS},
1. breakX into its tokens,〈x1, . . . , xk〉
2. for each token,xj

(a) Increment the counter for tokenxj for classCi

(b) Increment the count of total tokens in classCi

3. Increment the total number of email messages for classCi

Figure 1: TRAINING pseudo-code

Given: an UNLABELED email message,X

1. pN := Pr[CN]

2. pS := Pr[CS]

3. breakX into its tokens,〈x1, . . . , xk〉
4. for each token,xj

(a) pN := pN · Pr[xj|CN]

(b) pS := pS · Pr[xj|CS]

5. if pN > pS then return NORMAL

6. else return SPAM

Figure 2: CLASSIFICATION pseudo-code

And you’re done. There are, of course, an immense number of technical issues in turning this
into a real program, but that’s the gist of it. One practical issue, however, is underflow—if the
product in Equation 5 has very many terms, your probability estimates (pN andpS) will quickly
become 0 and it will be impossible to tell the difference between the two classes. To overcome this,

13

instead of working directly with theprobabilitiesof tokens, we’ll work with thelog likelihoodof
the tokens. I.e., we’ll replace Equation 5 withlog(Equation 5). (Question 1: how does this change
the algorithm in Figure 2? Question 2: does this leave the final classification unchanged? Why or
why not?)

A second critical issue is what to do if you see a token in an UNLABLED message that you’ve
never seen before. If all you’re doing is usingPr[xj|Ci] =

xj

total tokens, then you have thatPr[xj|Ci] =
0 if you’ve never seen tokenxj before in your TRAINING data. This is bad. (Question: why is
this bad? Hint: consider what happens to Equation 5 if one or more terms are 0.) So instead, we’ll
use an approximation toPr[xj|Ci] that avoids this danger:

Pr[xj|Ci] ≈ (# xj tokens in classCi) + 1

(total # of tokens in classCi) + 1

This is called aLaplace correctionor, equivalently, a Laplace smoothing. (It also happens to be a
special case of a Dirichlet prior, but we won’t go into that here.)

Now you have enough mathematical background and tricks to implement the SPAM filter. The
rest is Java...

14

