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Abstract

An access control system regulates the rights of users to gain access to resources in accordance with a
specified policy. The rules in this policy may interact in a way that is not obvious via human inspection;
there is, therefore, a need for automated verification techniques that can check whether a policy does indeed
implement some desired security requirement.
Thirty years ago, a formalisation of access control presented a model and a safety specification for which
satisfaction is undecidable. Subsequent research, aimed at finding restricted versions that obtain the decid-
ability of this problem, yielded models without satisfactory expressive power for practical systems.
Instead of restricting the model, we reexamine the safety specification. We develop a new logic that can
express a wide variety of safety properties over access control systems, and show that model checking is
decidable for a useful fragment of this logic.

Keywords: Access control, model checking, temporal logic, CSP.

1 Introduction

Motivation. An access control system is a mechanism which regulates the rights

of a set of users to gain access (e.g. to read or write) to some resources (e.g. secret

files). This is done according to an access control policy, a set of rules which indicates

in which circumstances a particular user may obtain a particular permission to a

particular resource.

These policies can be large and dynamic, for example they might be updated

every time a user or resource is created or deleted. For these reasons it is generally
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not clear exactly which behaviours a policy permits at any given time, and whether

the policy does in fact implement some desired security specification. For example,

a system administrator would want to be sure that the policy rules do not interact

in any way which allows unrestricted users to gain access to restricted resources.

There is, therefore, a need for automated tools that help an administrator assess

the impact of an access control policy on the security of his system.

The Problem. In the seminal paper by Harrison, Ruzzo and Ullman [7], a

formal model of access control was presented which has become known as HRU. A

state of an HRU system is denoted by a set of objects, some of which are subjects,

and a protection matrix giving the current access rights between pairs of subjects

and objects. A policy is a set of commands, each parameterised by objects and

specifying some possible transformation on the access matrix. Their language is

able to express naturally the behaviour of real-world access control systems (e.g.

UNIX).

They considered the following safety problem: given a set of policy rules, a

generic access right a and an initial matrix, is it possible to reach a state in which

a is granted to any subject. They then showed that this problem is undecidable

using an encoding of a Turing machine tape into the matrix.

Attempted solutions. Since then, research has concentrated on finding re-

stricted models for which this problem is decidable with minimum diminution of

expressive power. For example, insisting that each command is mono-operational

[7] (may only perform one single action, e.g. it may create an object, or grant an

access right, but cannot do both in the same atomic step) or mono-conditional [6]

(the enabling condition for each command is a single cell of the access matrix).

In [18], Sandhu and Suri introduced the non-monotonic transformations model,

which is subsumed by [13]’s condition that allows object creation but forbids the

creation of new subjects. Koch et al. [9] analysed a similar restriction of their

graph-based access control framework.

Our observation. Although all these models obtain decidability of the HRU

safety problem, unfortunately none of them is powerful enough to fully express many

practical systems. This is because they gain decidability by placing restrictions on

the type of policies that can be considered.

We instead reexamine the original problem in [7]. One source of undecidability

is that the safety question is a property of an access control policy plus an initial

matrix. It asks questions that always begin, ‘From a given initial state, is it pos-

sible. . . ’ We believe that initial states are not so important when assessing the

security of a policy. More common questions administrators ask about their access

control systems are ‘If a user doesn’t have permission a, can he somehow obtain

permission b?’ and ‘From any state with at least three users, can some user x grant

a permission to some user y?’ In other words, they tend to implicitly assume the

system is already up and running.

Also, answering these questions can be viewed as answering the HRU safety

problem for a whole range of initial states. For example, if we show that any user
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without right a cannot obtain right b, and if we know that the initial state of our

access control system does not have a granted to any user, then we know that the

system does not allow users to obtain right b.

This paper. We present a protection matrix model of access control similar

to HRU. Policy rules are expressed as parameterised commands that, provided

some specified permissions meet some precondition, may create/destroy objects and

grant/take permissions.

We then introduce a first-order linear temporal logic which is interpreted over

finite runs of the access control system. The logic can quantify over all currently

existing objects and possesses the temporal operator ‘always.’ The atomic proposi-

tions can make assertions about the state of particular permissions on the quantified

variables or equality relationships between the variables. We call this logic Safety

Access Temporal Logic (SATL) because it can express a variety of safety properties

over access control systems.

The model checking problem for the whole logic is undecidable because it can

express the HRU safety problem [7]. However, we show that the problem is decidable

for a fragment of the logic which we call Universal SATL. Formulas in this fragment

only have quantifiers ∀ which may only appear at the outermost level.

We have a prototype implementation of the finite abstract model used in the

proof of decidability. It is written in CSP [15] for use in the model checker FDR

[4]. We also give an example to illustrate the effectiveness of our approach.

Contributions. We describe a model of access control which is more expressive

than that given in [7] because we allow testing for the absence of permissions,

but technically simpler because we group atomic series of commands into single

actions. We introduce a temporal logic that is able to express a wide range of safety

properties over such models. The model checking problem for the entire logic is

undecidable, but we believe this provides a framework for investigating what kinds

of useful safety problems can be decided for access control policies.

This paper makes a significant start on that investigation. We present a frag-

ment of this logic that is able to pose practical questions about access control policies

such as those suggested above; another example is ‘If there are at least three un-

privileged users and one administrator, can the users conspire so that one of them

is elevated into a privileged state?’ We show that there exists an algorithm for

the model checking problem over this fragment, and have built a proof-of-concept

implementation.

As remarked above, this result also provides a procedure for checking the HRU

safety problem for certain sets of initial states. This can be turned into an incom-

plete (but sound) procedure for checking the original HRU safety problem (i.e. for a

single specified initial state) by attempting to find a set of initial states containing

the specified state which is expressible in Universal SATL and for which the check

succeeds.

Organisation. In Section 2 we present our formal model of access control. In

Section 3 we introduce our temporal logic SATL, and demonstrate the undecidability
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of the model checking problem for the whole logic. This problem is shown to

be decidable over the fragment Universal SATL in Section 4. In Section 5 we

briefly describe our implementation. Conclusions, related work and future work are

presented in Section 6.

2 A Model for Access Control

We assume an infinite universe of objects Σ and a finite set of access rights A. A state

is a pair (O,M), where O is a finite subset of Σ and represents the set of currently

existing objects, and M is a subset of O × O × A representing the permissions

which are currently granted. For example, a permission (Frank, passwd, x) represents

whether object Frank has access right x to object passwd, and might model whether

a user called Frank is able to execute a program that changes his password.

An access control policy P is a finite set of commands, where a command

c(x1, . . . , xn) is a 6-tuple of finite sets:

(con, coff , ccreate, cgrant, ctake, cdestroy)

Intuitively, the first two components represent the precondition of the command

(permissions that must be on and off) and the last four components represent the

atomic action of the command (objects to create, permissions to grant and take,

and objects to destroy). More formally, each of con, coff , cgrant, ctake are subsets

of F × F × A, and ccreate, cdestroy are subsets of F . Here, F is the set of formal

parameters {x1, . . . , xn}, i.e. symbols which denote objects by which a command is

parameterised. An instance of a command replaces each formal parameter in the

command with a distinct 3 object from Σ.

We now formally specify the transition relation induced by an access control

policy P over states as follows. (O,M) → (O′,M ′) iff there exists some instance c

of a command in the policy such that all of the following hold:

(i) The command is applicable:
• con ∪ coff ⊆ O × O × A.

(Conditional permissions fall within the scope of the current state.)
• ccreate ∩ O = {}.

(Objects to be created do not already exist.)
• cgrant ∪ ctake ⊆ O′′ × O′′ × A, where O′′ = O ∪ ccreate.

(Permissions to be altered exist after ccreate has been applied.)
• cdestroy ⊆ O′′.

(Objects to be destroyed exist after ccreate has been applied.)

(ii) The guard of the command is met:
• con ⊆ M .
• coff ∩ M = {}.

3 The ‘distinct’ restriction does not affect expressiveness. If one wanted to allow that two parameters
mentioned in a command could represent the same object, one would add a similar command in which the
two formal parameter names are identified.
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(iii) The next state predicates are satisfied:
• O′ = (O ∪ ccreate) \ cdestroy.
• M ′ = ((M ∪ cgrant) \ ctake) ∩ (O′ × O′ × A).

Observe that a newly created object has no permissions associated with it by default,

but the command may specify permissions to grant to the object in cgrant. Observe

also that we do not include any initial state in the transition system. We take the

view that a policy in fact has many possible initial states, and we allow the policy

designer to specify constraints or assumptions about initial states within our logic.

Our formalisation of access control differs from HRU in some ways that we hope

simplifies our model. We make no distinction between subjects and objects: by

giving a permission (o, o,Subject) to objects o that should be regarded as subjects,

one can generate the same expressive power. We also collect together all the sequen-

tial primitive operations that make up an atomic command in HRU and assume a

command is a single structure that specifies the total effect. Finally, as it creates

no extra technical overhead, we also allow commands to be enabled by permissions

being off as well as on.

Example 2.1 We reproduce an example given in [22] called the Employee Informa-

tion System. It features the employees of a company, some of whom are managers

and/or directors and may award bonuses to other employees. We will use access

rights Manager, Director, and Bonus.

on off create grant take destroy

c1(x, y) (x, x, Director) (x, y, Bonus)

c2(x, y) ′′ (x, y, Bonus)

c3(x, y) (x, x, Manager) (y, y, Manager) (x, y, Bonus)

(y, y, Director)

c4(x, y) ′′ ′′ (x, y, Bonus)

c5(x, y) (x, x, Director) (y, y, Manager) (y, y, Manager)

c6(x, y) (x, x, Director) (y, y, Manager)

(y, y, Manager)

c7(x, y) (x, x, Manager) y

c8(x, y) (x, x, Manager) (y, y, Manager) y

(y, y, Director)

Fig. 1. Employee Information System.

The company’s policy states that directors can give out bonuses. This is ex-

pressed in Fig. 1 by the command c1(x, y) where a director x signals that he’s

awarded a bonus to an employee y. The command c2(x, y) shows that directors

can also remove bonuses they have awarded. Similarly, c3(x, y) and c4(x, y) dictate

that a manager may give or take bonuses to any employee who isn’t a manager or

a director. Commands c5(x, y) and c6(x, y) say that a director can demote from or

promote to manager.

The original example in [22] included the ability for an employee x to appoint

another employee y as his advocate. We omit this for simplicity but could easily
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π |= o = o′ iff o = o′

π |= (o, o′, a) iff (o, o′, a) ∈ M1

π |= ¬φ iff not π |= φ

π |= φ ∨ ψ iff π |= φ or π |= ψ

π |= ∃x.φ iff there exists some o ∈ O1 such that π�o |= φ[o/x]

π |= ∀x.φ iff for all o ∈ O1 we have π�o |= φ[o/x]

π |= �φ iff for all i = 1, . . . , n we have πi |= φ

Fig. 2. Satisfaction.

model it by setting a permission (x, y,Advocate). A feature not permitted in [22]

but allowed in our framework is the ability to let the set of existing objects grow

and shrink. Commands c7(x, y) and c8(x, y) expresses that managers may hire and

fire employees.

3 Safety Access Temporal Logic

The formulas of Safety Access Temporal Logic (SATL) are:

φ ::= x = y | x 
= y | (x, y, a) | ¬φ | φ ∨ φ | φ ∧ φ | φ ⇒ φ | ∃x.φ | ∀x.φ | �φ

where x, y are drawn from some set of variables and a is an access right. To save

ourselves exploring cases, we consider that x 
= y is ¬(x = y), φ∧ ψ is ¬(¬φ∨ ¬ψ),

and φ ⇒ ψ is ¬φ ∨ ψ. We will sometime refer to formulas where variables have

been instantiated with actual object names, i.e. the formula might have atomic

propositions of the form o = o′ or (o, o′, a) for o, o′ ∈ Σ. When there are no

quantifiers and all variables have been instantiated with object names we call it a

propositional formula. Remember these are not formulas in SATL.

For a finite non-empty sequence of states π = (O1,M1), . . . , (On,Mn), we say π

is a path of P if (O1,M1) → · · · → (On,Mn). We write πi (where i ∈ {1, . . . , n}) for

the suffix of π starting at position i, i.e. πi = (Oi,Mi), . . . , (On,Mn). We write π�o

(where o ∈ O1) for the longest prefix of π (possibly all of π) which has o ∈ Oj for

every state (Oj ,Mj) in the prefix. Satisfaction between a sequence of states π and

a formula is defined in Fig. 2. The notation φ[o/x] denotes a formula φ with all free

occurences of x replaced by o. In this way, when satisfaction is applied to closed

formulas, all variables will have been substituted with actual objects by the time

they are evaluated, hence satisfaction finds object names o, o′ in atomic propositions

rather than variables.

Note that quantifiers range over currently existing objects only, and their tem-

poral scope is restricted to the lifetime of the selected object. This is necessary to

prevent the logic from being able to test properties of objects that do not exist,
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but produces a quirk of this logic: quantifiers do not distribute over the temporal

operator, e.g. in general ∀x.�φ 
≡ �∀x.φ.

We say that a formula φ satisfies a policy P, written P |= φ, when every path

of P satisfies φ. The model checking problem for (some fragment of) SATL is the

following: given any formula φ from the logic and any policy P, does P |= φ? We

will also require the notation P�C |= φ which means all paths of P that have all

objects in the set C in continual existence satisfy φ.

The model checking problem for the whole of SATL is undecidable. This is

because we are able to express the HRU safety problem which is shown in [7] to be

reducible to the halting problem for Turing machines. The HRU safety problems

asks: assuming a single fixed initial state, can a certain access right be eventually

granted. We express such problems using a SATL formula:

∀x1, . . . , xn.( ψ(x1, . . . , xn) ∧ (∀y.y = x1 ∨ · · · ∨ y = xn)

⇒ � ∀y1, y2.¬(y1, y2, a) ).

Here, ψ expresses the exact state of the permissions between xi variables in the

initial state, and the (∀y . . .) clause says that initially there are no other objects.

The � clause asserts that no right a should ever be granted between two objects.

4 Universal SATL

We define Universal SATL as the fragment of SATL which only contains the quan-

tifier ∀ which may only occur at the outermost level, i.e. formulas of the form

∀x1, . . . , xn.φ where φ is quantifier free. After looking at an example we will prove

some propositions about our framework with the eventual goal of showing that the

model checking problem for Universal SATL is decidable.

Example 4.1 The manager conspiracy scenario problem considered in [22] was:

‘Can two managers conspire such that one of them gives a bonus to the other?’ We

can express that the scenario is not possible in Universal SATL with the formula

∀x, y.( (x, x,Manager) ∧ (y, y,Manager) ∧ ¬(x, y,Bonus) ∧ ¬(y, x,Bonus)

⇒ �¬((x, y,Bonus) ∨ (y, x,Bonus)) ).

Our semantics for access control systems exhibits data independence [20] (or

parametric polymorphism) with respect to the ‘type’ of objects Σ. This is because

the only operation we assume on this type is equality testing. This induces a

symmetry on objects which implies a bisimilarity on the transition system.

Proposition 4.2 For all states (O,M) and (O′,M ′) and for all bijections σ on Σ,

we have

(O,M) → (O′,M ′) iff σ(O,M) → σ(O′,M ′)

where σ is lifted to states in the obvious way.
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Proof. Straightforward from the definition of →. �

We now reduce the problem involving a Universal SATL formula to a set of

problems involving propositional SATL formulas. This allows us to henceforth re-

strict our attention to a single propositional formula involving object constants

from a finite set C ⊂ Σ, and paths of the system that have objects C in continual

existence.

Proposition 4.3 The model checking problem P |= ∀x1, . . . , xn.φ is equivalent to

the conjunction of a finite number of model checking problems of the form P�C |= ψ,

where ψ is a propositional formula referring only to objects in a finite set C.

Proof. Take any n distinct objects C = {o1, . . . , on}. We show that it is sufficient

to consider the ∀ quantifier ranging over this finite set, thus reducing the first-

order problem to a finite set of propositional problems. We can temporarily invent

notation and write

P |= ∀x1, . . . , xn.φ iff P |= ∀x1 : C, . . . , xn : C.φ.

Proving the forward direction is trivial. The backwards direction can be proved as

follows. Take any path π of P, and any objects o′1, . . . , o
′
n as instances for x1, . . . , xn.

By Proposition 4.2 we know that for every bijection σ, σπ is also a path of P, so

we find such a σ that maps each o′i into C. Assuming the right-hand side we

know that σπ |= φ[σo′
1
,...,σo′

n/x1,...,xn
]. Apply structural induction on φ to deduce

π |= φ[o
′

1
,...,o′n/x1,...,xn

].

Finally, notice that P |= ∀x1 : C, . . . , xn : C.φ is equivalent to P�C |= ∀x1 :

C, . . . , xn : C.φ because ∀ only inspects paths where its instance object is in contin-

ual existence. �

To check the propositional formula on the system we employ an abstract tran-

sition system, where an abstract state records only relationships between the finite

set of objects C; thus an abstract state is a subset of C ×C ×A and represents any

concrete state containing that exact relationship between the objects in C. Pre-

cisely, we use an abstraction function which takes a state (O,M) with O ⊇ C and

maps it to

α(O,M) = M ∩ (C × C × A).

Note that this mapping is not total — states that do not have all objects C in

existence do not have abstractions.

We need a notion of transitions on our abstract systems. The usual require-

ment is that an abstract transition exists exactly when there is some corresponding

concrete transition. This is not desirable as a definition because it is not directly

computable: each abstract state represents an infinite number of concrete states

and we cannot check them all.

Instead we use the following observation. Because our abstract states record

no information about objects outside of C and because our systems are data in-

dependent with respect to objects, we can consider all objects outside of C to be

homogeneous. Furthermore, each command only inspects and/or changes a finite
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number of objects. In a manner similar to [14], this allows us to ‘collapse’ the

infinite set of objects to a finite set of objects, the size of which depends on the

maximum number of such objects that might be required for any single transition.

This idea suggests that we compute transitions on the abstract state space by

computing concrete transitions on a ‘reduced’ state space (C ∪C ′)× (C ∪ C ′)×A.

Here, C ′ is a subset of Σ\C of size m, where m is the the greatest number of formal

object parameters in any one command (i.e. the most objects that can be ‘involved’

in any one transition).

To make this more formal, we define a translation from abstract states to con-

crete states:

γ(Q) = {(O,M) | O ⊇ C,O ⊆ C ∪ C ′,

M ⊆ O × O × A,

M ∩ (C × C × A) = Q}.

We define a transition → to exist between two abstract states Q and Q′ exactly

when there is some concrete transition from any state in γ(Q) to any state in γ(Q′).

This is computable because it deals only with finite structures. This allows us to

talk about abstract traces Q1 → · · · → Qn.

To relate the abstract and concrete systems we say that each path (O1,M1) →

· · · → (On,Mn) of P�C (i.e. a path of P with Oi ⊇ C for all i = 1, . . . , n) implies a

concrete trace α(O1,M1) → · · · → α(On,Mn). We will show that the two systems

have equivalent traces. 4

Proposition 4.4 All concrete traces are abstract traces

Proof. We show this by proving (O1,M1) → (O2,M2) implies α(O1,M1) →

α(O2,M2) and the result follows by induction.

Suppose the command c that generated the transition (O1,M1) → (O2,M2) was

instantiated with objects C ∪ D ⊆ Σ, where D is some set of objects disjoint from

C. Let σ be any injection from C ∪ D to C ∪ C ′ which preserves C. We know

such an injection exists because |D| ≤ m = |C ′|. We lift this injection to states as

follows:

σ(O,M) = ( {σ(o) | o ∈ O and o ∈ dom σ},

{(σ(o1), σ(o2), a) | (o1, o2, a) ∈ M and o1, o2 ∈ dom σ} ).

It now follows that σ(O1,M1) → σ(O2,M2) using the same command c except we

instantiate with objects C∪C ′ instead of C∪D. This can be seen from the definition

of → by detailing cases. It can be seen also by the more informal observation that

σ only removes objects which are not inspected/updated by the command instance,

and renames other objects uniformly. We also have σ(Oi,Mi) ∈ γ(α(Oi,Mi)) for

i = 1, 2 as required. �

4 They are not bisimilar, a stronger equivalence between transition systems. For example, an abstract
system might have an infinitely long behaviour which destroys an infinite number of objects; this could
never happen in any concrete system.
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Proposition 4.5 All abstract traces are concrete traces.

Proof. Now let’s suppose we have a sequence of abstract transitions Q1 → . . . →

Qn. We know that each transition exists because there is a concrete transition

from some state Si ∈ γ(Qi) to some state S′
i ∈ γ(Qi+1). We call the command

instance that creates this transition ci(C ∪ C ′) to highlight that it is instantiated

only with objects from C ∪ C ′. Our aim is to show that there is a concrete trace

(O1,M1) → · · · → (On,Mn) with (Oi,Mi) ∈ γ(Qi) for each i.

In a reversal of the previous construction, we map the objects in C ′ back out

into the whole of Σ, and we want to do this in such a way that each new command

instance uses objects that do not overlap with those used by any other new command

instance in the path. We therefore require a different injection σi : C ′ → Σ \ C for

each command ci(C ∪ C ′) which we use to form a new sequence of commands:

(O1,M1)
c1(C∪σ1C′)

−→ (O2,M2) · · ·
cn−1(C∪σn−1C′)

−→ (On,Mn).

We need to set up each state (Oi,Mi) in the trace in such a way that it captures

the initial conditions on objects σi(C
′) expected by each command ci(C ∪σiC

′) yet

to be executed (we obtain these values from the states Si) and the final conditions on

objects σi(C
′) expected by each command already executed (we obtain these values

from the states S′
i). This can be done because the injections σi do not overlap, so

the proposed states are:

(Oi,Mi) = Qi ⊕ σ1S
′
1 ⊕ · · · ⊕ σi−1S

′
i−1 ⊕ σiSi ⊕ · · · ⊕ σn−1Sn−1.

Above, each injection σj applies to objects outside of C and permissions which are

not just between C, so σjS returns a structure 5 (O,M) with

O ∩ C = {},

M ∩ (C × C × A) = {}, and

M ⊆ (C ∪ σC ′) × (C ∪ σC ′) × A.

The operator ⊕ combines these structures (using union) to form a state, using Qi

to fill in the C × C × A part.

The reader might notice that there are parts of the matrices in the final trace

which are always blank (e.g. σ1C
′ × σ2C

′ × A) — they do not directly correspond

to any information that could be extracted from states Si and S′
i. While there is

some freedom about what values these permissions can have, it is safest to set all

these permissions off. This is because if one of these o ∈ σiC
′ objects is destroyed,

we would need (o, o′, a) and (o′, o, a) to be off in subsequent states for all objects

o′. Conversely, if one was created, we’d need these permissions to be off in previous

states. (Contrast this with destroying objects in C discussed below.)

5 We cannot call these states, as we do not necessarily have M ⊆ O × O × A.
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It can be seen readily from the definition that α(Oi,Mi) = Qi. It remains to

show that:

Qi ⊕ σ1S
′
1 ⊕ · · · ⊕ σiS

′
i−1 ⊕ σiSi ⊕ σiSi+1 ⊕ · · · ⊕ σn−1Sn−1

ci(C∪σiC
′)

−→
Qi+1 ⊕ σ1S

′
1 ⊕ · · · ⊕ σiS

′
i−1 ⊕ σiS

′
i ⊕ σiSi+1 ⊕ · · · ⊕ σn−1Sn−1

Because of the underlined terms, this can be deduced from Si → S′
i by checking the

cases in the definition of →. Notice that no o ∈ C ever appears in the destroy field

of a command instance because the resulting state would not have an abstraction.

This is important because otherwise we would require all permissions in the row

and column of that object to be off in the subsequent state which is not guaranteed

by our definition of (Oi+1,Mi+1). Otherwise the proof is straightforward. �

We now want to show that the trace equivalence between the abstract and

concrete systems means that checking the abstract system will give us the same

results as checking the concrete system. Note first that satisfaction can be applied

to traces as well as paths.

Proposition 4.6 The abstract and concrete systems are indistinguishable by any

propositional formula φ mentioning only objects in C.

Proof. Observe that checking an atomic proposition used in φ on a concrete state

returns the same truth value as checking it on the representative abstract state.

This means that checking φ on a path returns the same truth value as checking φ

on the associated trace. The result now follows from the trace equivalence of the

abstract and concrete systems (Propositions 4.4 and 4.5). �

Theorem 4.7 Model checking for Universal SATL is decidable, i.e. there exists

a procedure that, given an access control policy P and a closed Universal SATL

formula φ, answers whether P |= φ.

Proof. Proposition 4.3 means we can instead consider the model checking problem

P�C |= φ for a propositional formula φ mentioning only objects in the finite set

C. By Proposition 4.6 we can check the finite computable abstract system using

traditional model checking algorithms for linear temporal logic [19] to deduce the

truth of φ on the concrete system P�C. �

5 Automation

We can model the abstraction described in the proof of Theorem 4.7 in the process

algebra CSP [15]. The CSP events represent commands instantiated by objects from

C ∪C ′. We model each permission in (C ∪C ′)× (C ∪C ′)×A as a separate process,

each able to accept events if they meet the precondition of the associated command

and change state if appropriate. Processes representing permissions outside of C ×

C × A do not retain state but remain in a permanent nondeterministic state in

accordance with γ. All these permissions are then combined using the CSP parallel

E. Kleiner, T. Newcomb / Electronic Notes in Theoretical Computer Science 185 (2007) 107–120 117



operator, and the refinement checker FDR [4] can be used to explore which states

are reachable. More details are provided in [8]

Example 5.1 We complete our running example of the Employee Information Sys-

tem. We set C = {ox, oy} to represent the two managers mentioned in the spec-

ification formula, and C ′ = {o′1, o
′
2} because the maximum number of parameters

in any one command is two. The abstraction was coded in CSP and checked using

the refinement checker FDR. It gave a counter-example 〈c6(o
′
1, ox), c3(oy, ox)〉. We

interpret this as the scenario where some director o′1 demotes ox; then oy can give

a bonus to ox.

Removing c6 from the system gives us a check that succeeds. Using our theorem,

this proves the following about the Employee Information System: regardless of the

number of employees, if directors cannot demote managers then it is not possible

for two managers to conspire so that one of them awards the other a bonus.

6 Conclusions

Summary. We have introduced a first-order temporal logic for a protection

matrix model of access control. Although the model checking problem for the whole

logic is undecidable, we have identified a useful fragment of the logic for which the

problem is decidable. This allows us to check practical requirements of such systems

without having to restrict the policy language.

We described how the HRU safety problem can be reduced to our decidable

problem in some cases. We have also built a prototype implementation of the

model checking procedure.

Related Work Guelev, Ryan and Schobbens [5] presented the RW formalism

based on propositional logic for expressing access control policies and queries. The

paper also presents an algorithm implemented in Prolog for calculating the ability

of a fixed number of agents to achieve a certain goal in the presence of a fixed

number of resources. In addition, a tool was provided which takes an RW script as

input and converts the policy description into XACML [21]. Universal SATL can

be compared to RW formulas which only use existential quantification.

Another related work is [2] where it is shown how access control mechanisms

with a bounded number of subjects and resources can be expressed in CSP. The

CSP models we use are to some extent similar.

Both these works reason only about bounded systems. They are therefore usable

only for finding flaws and cannot provide general proofs of safety. Our result shows

that RW formulas with only existential quantification can be checked on unbounded

systems.

Future Work In practice, it is often not possible to prove security requirements

like the ones we consider without also assuming that the system can never enter

some inconsistent state. In such cases, one would like to ‘strengthen’ the check

by specifying that, for example, ‘there is never more than one administrator’ or

‘every file always has a unique owner.’ Universal SATL is unable to express these
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invariants, but we are currently preparing decidability results about larger fragments

of SATL containing formulas like

∀x1, . . . , xn.( (φ ∧ INV ) ⇒ �(ψ ∧ INV ) ),

where INV expresses a desired global invariant of the system via restricted use of

quantifiers.

The results presented in this paper were possible thanks to the fact that the

model is data-independent with respect to the type of objects. This observation

allowed us to use techniques developed for data-independent systems with arrays

[10,14] and apply them to access control matrices. There are other results about

array systems that we believe can be leveraged to analyse access control policies, in

particular results about arrays with reset [16,11].

Writing CSP scripts for analysing access control polices manually might be te-

dious and error-prone. We therefore intend to develop a compiler which will produce

CSP scripts from a more abstract description.

We are also interested in RBAC (role based access control) which are Turing-

complete [3]. We believe our decidability results can be extended to model some

RBAC polices in which the system is limited to a fixed number of roles but unre-

stricted otherwise.

Lastly, we hope that our results can shed more light on verification of Trust

Management systems [1]. The results we present here, together with knowledge

gained in the security protocols field [17], can be combined in order to reason about

such systems and hopefully strengthen existing decidability results [12].
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[10] Lazić, R., T. Newcomb and A. Roscoe, On model checking data-independent systems with arrays without
reset, Theory and Practice of Logic Programming: Special Issue on Verification and Computational
Logic 4 (2004).
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