

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01

Database Communication

in LabVIEW
HANS-PETTER HALVORSEN, 2011.02.11

2

Preface

This document explains the basic concepts of a database system and how to communicate with a

database from LabVIEW.

You should have some basic knowledge about LabVIEW, e.g., the “An Introduction to LabVIEW”

training. This document is available for download at http://home.hit.no/~hansha/.

In addition to LabVIEW Professional Development System, you need to install the “LabVIEW

Database Connectivity Toolkit”.

For more information about LabVIEW and Databases, visit my Blog: http://home.hit.no/~hansha/

Some text in this document is based on text from www.wikipedia.org and “LabVIEW Database

Connectivity Toolkit User Manual”.

http://home.hit.no/~hansha/
http://home.hit.no/~hansha/
http://www.wikipedia.org/

iii

Table of Contents

Preface ... 2

Table of Contents .. iii

1 Introduction to LabVIEW .. 1

1.1 Dataflow programming ... 1

1.2 Graphical programming ... 1

1.3 Benefits .. 2

2 Database Systems ... 3

2.1 RDBMS Components ... 3

2.2 Data warehouse .. 4

2.3 Relational Database ... 4

2.4 Real-time databases .. 4

2.5 Database Management Systems ... 5

2.6 MDAC ... 5

2.6.1 ODBC .. 5

2.6.2 OLE DB ... 5

2.6.3 ADO (ActiveX Data Objects) .. 6

3 Relational Databases .. 7

3.1 Tables... 7

3.2 Unique Keys and Primary Key .. 7

3.3 Foreign Key .. 9

3.4 Views ... 9

3.5 Functions ... 10

3.6 Stored procedures ... 10

iv Table of Contents

Tutorial: Database Communication in LabVIEW

3.7 Triggers .. 11

4 Structured Query Language (SQL) .. 12

4.1 Queries .. 12

4.2 Data manipulation ... 13

4.3 Data definition ... 14

4.4 Data types .. 14

4.4.1 Character strings.. 14

4.4.2 Bit strings ... 15

4.4.3 Numbers .. 15

4.4.4 Date and Time ... 15

5 Database Modelling .. 16

5.1 ER Diagram .. 16

5.2 Microsoft Visio ... 17

5.3 EXERCISES .. 18

6 Microsoft SQL Server .. 20

6.1 Introduction ... 20

6.2 Requirements .. 20

6.3 SQL Server Express .. 20

6.4 AdventureWorks ... 21

6.5 SQL Server Management Studio ... 21

6.6 Create a new Database ... 22

6.7 Backup/Restore ... 24

6.8 Example Database ... 25

6.9 Exercises .. 27

7 Microsoft Office Access .. 28

7.1 Introduction ... 28

v Table of Contents

Tutorial: Database Communication in LabVIEW

7.2 Example Database ... 28

7.3 Exercises .. 30

8 ODBC ... 32

8.1 What is ODBC?... 32

8.2 Create an ODBC Connection in “ODBC Data Source Administrator” 32

8.3 Get data into Excel using your ODBC Connection ... 34

9 LabVIEW Database Connectivity Toolkit ... 38

9.1 Connect to the Database ... 39

9.1.1 DSN .. 40

9.1.2 UDL .. 41

9.1.3 Connection String .. 42

9.2 Reading Data from the Database .. 42

9.3 Writing Data to the Database .. 46

9.4 Creating and Dropping Tables ... 48

9.5 Using the Database Connectivity Toolkit Utility VIs .. 49

9.6 Performing Advanced Database Operations ... 50

10 Creating and Using Tables .. 52

10.1 Exercises .. 55

11 Creating and Using Views ... 56

11.1 Exercises .. 59

12 Creating and using Stored Procedures ... 60

12.1 Exercises .. 62

13 Creating and Using Triggers .. 63

13.1 Exercises .. 66

14 Creating and using Functions ... 67

14.1 Exercises .. 67

vi Table of Contents

Tutorial: Database Communication in LabVIEW

15 SQL Toolkit .. 68

15.1 Installation ... 68

1

1 Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and

development environment for a visual programming language from National Instruments. The

graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is

commonly used for data acquisition, instrument control, and industrial automation on a variety of

platforms including Microsoft Windows, various flavors of UNIX, Linux, and Mac OS X. The latest

version of LabVIEW is version LabVIEW 2009, released in August 2009. Visit National Instruments at

www.ni.com.

The code files have the extension “.vi”, which is a abbreviation for “Virtual Instrument”. LabVIEW

offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming

language. Execution is determined by the structure of a graphical block diagram (the LV-source code)

on which the programmer connects different function-nodes by drawing wires. These wires

propagate variables and any node can execute as soon as all its input data become available. Since

this might be the case for multiple nodes simultaneously, G is inherently capable of parallel

execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in

scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.

LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a

block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block

diagrams of other, calling VIs. Controls and indicators on the front panel allow an operator to input

data into or extract data from a running virtual instrument. However, the front panel can also serve

as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front

panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel

defines the inputs and outputs for the given node through the connector pane. This implies each VI

can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and

dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW

http://www.ni.com/

2 Introduction to LabVIEW

Tutorial: Database Communication in LabVIEW

programming environment, with the included examples and the documentation, makes it simple to

create small applications. This is a benefit on one side, but there is also a certain danger of

underestimating the expertise needed for good quality "G" programming. For complex algorithms or

large-scale code, it is important that the programmer possess an extensive knowledge of the special

LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW

development systems offer the possibility of building stand-alone applications. Furthermore, it is

possible to create distributed applications, which communicate by a client/server scheme, and are

therefore easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for accessing

instrumentation hardware. Drivers and abstraction layers for many different types of instruments

and buses are included or are available for inclusion. These present themselves as graphical nodes.

The abstraction layers offer standard software interfaces to communicate with hardware devices.

The provided driver interfaces save program development time. The sales pitch of National

Instruments is, therefore, that even people with limited coding experience can write programs and

deploy test solutions in a reduced time frame when compared to more conventional or competing

systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded

components with only a few register calls through NI Measurement Hardware DDK (Driver

Development Kit) functions, provides platform independent hardware access to numerous data

acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on

Windows, Mac OS X and Linux platforms.

3

2 Database Systems

A database is an integrated collection of logically related records or files consolidated into a common

pool that provides data for one or more multiple uses.

One way of classifying databases involves the type of content, for example: bibliographic, full-text,

numeric, and image. Other classification methods start from examining database models or database

architectures.

The data in a database is organized according to a database model. The relational model is the most

common.

A Database Management System (DBMS) consists of software that organizes the storage of data. A

DBMS controls the creation, maintenance, and use of the database storage structures of

organizations and of their end users. It allows organizations to place control of organization-wide

database development in the hands of Database Administrators (DBAs) and other specialists. In large

systems, a DBMS allows users and other software to store and retrieve data in a structured way.

Database management systems are usually categorized according to the database model that they

support, such as the network, relational or object model. The model tends to determine the query

languages that are available to access the database. One commonly used query language for the

relational database is SQL, although SQL syntax and function can vary from one DBMS to another. A

great deal of the internal engineering of a DBMS is independent of the data model, and is concerned

with managing factors such as performance, concurrency, integrity, and recovery from hardware

failures. In these areas there are large differences between products.

2.1 RDBMS Components

A Relational Database Management System (DBMS) consists of the following components:

 Interface drivers - A user or application program initiates either schema modification or

content modification. These drivers are built on top of SQL. They provide methods to prepare

statements, execute statements, fetch results, etc. An important example is the ODBC driver.

 SQL engine - This component interprets and executes the SQL query. It comprises three

major components (compiler, optimizer, and execution engine).

 Transaction engine - Transactions are sequences of operations that read or write database

elements, which are grouped together.

 Relational engine - Relational objects such as Table, Index, and Referential integrity

constraints are implemented in this component.

4 2

Tutorial: Database Communication in LabVIEW

 Storage engine - This component stores and retrieves data records. It also provides a

mechanism to store metadata and control information such as undo logs, redo logs, lock

tables, etc.

2.2 Data warehouse

A data warehouse stores data from current and previous years — data extracted from the various

operational databases of an organization. It becomes the central source of data that has been

screened, edited, standardized and integrated so that it can be used by managers and other end-user

professionals throughout an organization.

2.3 Relational Database

A relational database matches data using common characteristics found within the data set. The

resulting groups of data are organized and are much easier for people to understand.

For example, a data set containing all the real-estate transactions in a town can be grouped by the

year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be

grouped by the buyer's last name; and so on.

Such a grouping uses the relational model (a technical term for this is schema). Hence, such a

database is called a "relational database."

The software used to do this grouping is called a relational database management system. The term

"relational database" often refers to this type of software.

Relational databases are currently the predominant choice in storing financial records,

manufacturing and logistical information, personnel data and much more.

Strictly, a relational database is a collection of relations (frequently called tables).

2.4 Real-time databases

A real-time database is a processing system designed to handle workloads whose state may change

constantly. This differs from traditional databases containing persistent data, mostly unaffected by

time. For example, a stock market changes rapidly and dynamically. Real-time processing means that

a transaction is processed fast enough for the result to come back and be acted on right away.

Real-time databases are useful for accounting, banking, law, medical records, multi-media, process

control, reservation systems, and scientific data analysis. As computers increase in power and can

store more data, real-time databases become integrated into society and are employed in many

applications

5 2

Tutorial: Database Communication in LabVIEW

2.5 Database Management Systems

There are Database Management Systems (DBMS), such as:

 Microsoft SQL Server

 Oracle

 Sybase

 dBase

 Microsoft Access

 MySQL from Sun Microsystems (Oracle)

 DB2 from IBM

 etc.

This document will focus on Microsoft Access and Microsoft SQL Server.

2.6 MDAC

The Microsoft Data Access Components (MDAC) is the framework that makes it possible to connect

and communicate with the database. MDAC includes the following components:

 ODBC (Open Database Connectivity)

 OLE DB

 ADO (ActiveX Data Objects)

MDAC also installs several data providers you can use to open a connection to a specific data source,

such as an MS Access database.

2.6.1 ODBC

Open Database Connectivity (ODBC) is a native interface that is accessed through a programming

language that can make calls into a native library. In MDAC this interface is defined as a DLL. A

separate module or driver is needed for each database that must be accessed.

2.6.2 OLE DB

OLE allows MDAC applications access to different types of data stores in a uniform manner.

Microsoft has used this technology to separate the application from the data store that it needs to

access. This was done because different applications need access to different types and sources of

data, and do not necessarily need to know how to access technology-specific functionality. The

technology is conceptually divided into consumers and providers. The consumers are the applications

6 2

Tutorial: Database Communication in LabVIEW

that need access to the data, and the provider is the software component that exposes an OLE DB

interface through the use of the Component Object Model (or COM).

2.6.3 ADO (ActiveX Data Objects)

ActiveX Data Objects (ADO) is a high level programming interface to OLE DB. It uses a hierarchical

object model to allow applications to programmatically create, retrieve, update and delete data from

sources supported by OLE DB. ADO consists of a series of hierarchical COM-based objects and

collections, an object that acts as a container of many other objects. A programmer can directly

access ADO objects to manipulate data, or can send an SQL query to the database via several ADO

mechanisms.

7

3 Relational Databases

A relational database matches data using common characteristics found within the data set. The

resulting groups of data are organized and are much easier for people to understand.

For example, a data set containing all the real-estate transactions in a town can be grouped by the

year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be

grouped by the buyer's last name; and so on.

Such a grouping uses the relational model (a technical term for this is schema). Hence, such a

database is called a "relational database."

The software used to do this grouping is called a relational database management system. The term

"relational database" often refers to this type of software.

Relational databases are currently the predominant choice in storing financial records,

manufacturing and logistical information, personnel data and much more.

3.1 Tables

The basic units in a database are tables and the relationship between them. Strictly, a relational

database is a collection of relations (frequently called tables).

3.2 Unique Keys and Primary Key

In relational database design, a unique key or primary key is a candidate key to uniquely identify

each row in a table. A unique key or primary key comprises a single column or set of columns. No two

distinct rows in a table can have the same value (or combination of values) in those columns.

Depending on its design, a table may have arbitrarily many unique keys but at most one primary key.

8 Relational Databases

Tutorial: Database Communication in LabVIEW

A unique key must uniquely identify all possible rows that exist in a table and not only the currently

existing rows. Examples of unique keys are Social Security numbers or ISBNs.

A primary key is a special case of unique keys. The major difference is that for unique keys the

implicit NOT NULL constraint is not automatically enforced, while for primary keys it is enforced.

Thus, the values in unique key columns may or may not be NULL. Another difference is that primary

keys must be defined using another syntax.

Primary keys are defined with the following syntax:

CREATE TABLE table_name (

 id_col INT,

 col2 CHARACTER VARYING(20),

 ...

 CONSTRAINT tab_pk PRIMARY KEY(id_col),

 ...

)

If the primary key consists only of a single column, the column can be marked as such using the

following syntax:

CREATE TABLE table_name (

 id_col INT PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 ...

)

The definition of unique keys is syntactically very similar to primary keys.

Likewise, unique keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE table_name (

 id_col INT,

 col2 CHARACTER VARYING(20),

 key_col SMALLINT,

 ...

 CONSTRAINT key_unique UNIQUE(key_col),

 ...

)

Or if the unique key consists only of a single column, the column can be marked as such using the

following syntax:

CREATE TABLE table_name (

 id_col INT PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 ...

 key_col SMALLINT UNIQUE,

 ...

)

9 Relational Databases

Tutorial: Database Communication in LabVIEW

3.3 Foreign Key

In the context of relational databases, a foreign key is a referential constraint between two tables.

The foreign key identifies a column or a set of columns in one table that refers to a column or set of

columns in another table. The columns in the referencing table must be the primary key or other

candidate key in the referenced table. The values in one row of the referencing columns must occur

in a single row in the referenced table. Thus, a row in the referencing table cannot contain values

that don't exist in the referenced table. This way references can be made to link information

together and it is an essential part of database normalization. Multiple rows in the referencing table

may refer to the same row in the referenced table. Most of the time, it reflects the one (master

table, or referenced table) to many (child table, or referencing table) relationship.

The referencing and referenced table may be the same table, i.e. the foreign key refers back to the

same table. Such a foreign key is known as self-referencing or recursive foreign key.

A table may have multiple foreign keys, and each foreign key can have a different referenced table.

Each foreign key is enforced independently by the database system. Therefore, cascading

relationships between tables can be established using foreign keys.

Improper foreign key/primary key relationships or not enforcing those relationships are often the

source of many database and data modeling problems.

Foreign keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE table_name (

 id INTEGER PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 col3 INTEGER,

 ...

 CONSTRAINT col3_fk FOREIGN KEY(col3)

 REFERENCES other_table(key_col),

 ...)

If the foreign key is a single column only, the column can be marked as such using the following

syntax:

CREATE TABLE table_name (

 id INTEGER PRIMARY KEY,

 col2 CHARACTER VARYING(20),

 col3 INTEGER REFERENCES other_table(column_name),

 ...)

3.4 Views

10 Relational Databases

Tutorial: Database Communication in LabVIEW

In database theory, a view consists of a stored query accessible as a virtual table composed of the

result set of a query. Unlike ordinary tables in a relational database, a view does not form part of the

physical schema: it is a dynamic, virtual table computed or collated from data in the database.

Changing the data in a table alters the data shown in subsequent invocations of the view.

Views can provide advantages over tables:

 Views can represent a subset of the data contained in a table

 Views can join and simplify multiple tables into a single virtual table

 Views can act as aggregated tables, where the database engine aggregates data (sum,

average etc) and presents the calculated results as part of the data

 Views can hide the complexity of data; for example a view could appear as Sales2000 or

Sales2001, transparently partitioning the actual underlying table

 Views take very little space to store; the database contains only the definition of a view, not

a copy of all the data it presents

 Views can limit the degree of exposure of a table or tables to the outer world

Syntax:

CREATE VIEW <ViewName>

AS

…

3.5 Functions

In SQL databases, a user-defined function provides a mechanism for extending the functionality of

the database server by adding a function that can be evaluated in SQL statements. The SQL standard

distinguishes between scalar and table functions. A scalar function returns only a single value (or

NULL), whereas a table function returns a (relational) table comprising zero or more rows, each row

with one or more columns.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

Syntax:

CREATE FUNCTION <FunctionName>

 (@Parameter1 <datatype>,

 @ Parameter2 <datatype>,

 …)

RETURNS <datatype>

AS

…

3.6 Stored procedures

11 Relational Databases

Tutorial: Database Communication in LabVIEW

A stored procedure is executable code that is associated with, and generally stored in, the database.

Stored procedures usually collect and customize common operations, like inserting a tuple into a

relation, gathering statistical information about usage patterns, or encapsulating complex business

logic and calculations. Frequently they are used as an application programming interface (API) for

security or simplicity.

Stored procedures are not part of the relational database model, but all commercial

implementations include them.

Stored procedures are called or used with the following syntax:

CALL procedure(…)

or

EXECUTE procedure(…)

Stored procedures can return result sets, i.e. the results of a SELECT statement. Such result sets can

be processed using cursors by other stored procedures by associating a result set locator, or by

applications. Stored procedures may also contain declared variables for processing data and cursors

that allow it to loop through multiple rows in a table. The standard Structured Query Language

provides IF, WHILE, LOOP, REPEAT, CASE statements, and more. Stored procedures can receive

variables, return results or modify variables and return them, depending on how and where the

variable is declared.

3.7 Triggers

A database trigger is procedural code that is automatically executed in response to certain events on

a particular table or view in a database. The trigger is mostly used for keeping the integrity of the

information on the database. For example, when a new record (representing a new worker) added to

the employees table, new records should be created also in the tables of the taxes, vacations, and

salaries.

The syntax is as follows:

CREATE TRIGGER <TriggerName> ON <TableName>

FOR INSERT, UPDATE, DELETE

AS

…

12

4 Structured Query

Language (SQL)

SQL (Structured Query Language) is a database computer language designed for managing data in

relational database management systems (RDBMS).

4.1 Queries

The most common operation in SQL is the query, which is performed with the declarative SELECT

statement. SELECT retrieves data from one or more tables, or expressions. Standard SELECT

statements have no persistent effects on the database.

Queries allow the user to describe desired data, leaving the database management system (DBMS)

responsible for planning, optimizing, and performing the physical operations necessary to produce

that result as it chooses.

A query includes a list of columns to be included in the final result immediately following the SELECT

keyword. An asterisk ("*") can also be used to specify that the query should return all columns of the

queried tables. SELECT is the most complex statement in SQL, with optional keywords and clauses

that include:

 The FROM clause which indicates the table(s) from which data is to be retrieved. The FROM

clause can include optional JOIN subclauses to specify the rules for joining tables.

 The WHERE clause includes a comparison predicate, which restricts the rows returned by the

query. The WHERE clause eliminates all rows from the result set for which the comparison

predicate does not evaluate to True.

 The GROUP BY clause is used to project rows having common values into a smaller set of

rows. GROUP BY is often used in conjunction with SQL aggregation functions or to eliminate

duplicate rows from a result set. The WHERE clause is applied before the GROUP BY clause.

 The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY

clause. Because it acts on the results of the GROUP BY clause, aggregation functions can be

used in the HAVING clause predicate.

 The ORDER BY clause identifies which columns are used to sort the resulting data, and in

which direction they should be sorted (options are ascending or descending). Without an

ORDER BY clause, the order of rows returned by an SQL query is undefined.

Example:

13 Structured Query Language (SQL)

Tutorial: Database Communication in LabVIEW

The following is an example of a SELECT query that returns a list of expensive books. The query

retrieves all rows from the Book table in which the price column contains a value greater than

100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list indicates that

all columns of the Book table should be included in the result set.

SELECT *

FROM Book

WHERE price > 100.00

ORDER BY title;

The example below demonstrates a query of multiple tables, grouping, and aggregation, by returning

a list of books and the number of authors associated with each book.

SELECT Book.title,count(*) AS Authors

FROM Book

JOIN Book_author ON Book.isbn = Book_author.isbn

GROUP BY Book.title

Example output might resemble the following:

Title Authors

SQL Examples and Guide 4

The Joy of SQL 1

An Introduction to SQL 2

Pitfalls of SQL 1

4.2 Data manipulation

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete data.

The acronym CRUD refers to all of the major functions that need to be implemented in a relational

database application to consider it complete. Each letter in the acronym can be mapped to a

standard SQL statement:

Operation SQL

Create INSERT

Read (Retrieve) SELECT

Update UPDATE

Delete (Destroy) DELETE

Example: INSERT

INSERT adds rows to an existing table, e.g.,:

14 Structured Query Language (SQL)

Tutorial: Database Communication in LabVIEW

INSERT INTO My_table field1, field2, field3)

VALUES ('test', 'N', NULL)

Example: UPDATE

UPDATE modifies a set of existing table rows, e.g.,:

UPDATE My_table

SET field1 = 'updated value'

WHERE field2 = 'N'

Example: DELETE

DELETE removes existing rows from a table, e.g.,:

DELETE FROM My_table

WHERE field2 = 'N'

4.3 Data definition

The Data Definition Language (DDL) manages table and index structure. The most basic items of DDL

are the CREATE, ALTER, RENAME and DROP statements:

 CREATE creates an object (a table, for example) in the database.

 DROP deletes an object in the database, usually irretrievably.

 ALTER modifies the structure an existing object in various ways—for example, adding a

column to an existing table.

Example: CREATE

Create a Database Table

CREATE TABLE My_table

(

 my_field1 INT,

 my_field2 VARCHAR(50),

 my_field3 DATE NOT NULL,

 PRIMARY KEY (my_field1)

)

4.4 Data types

Each column in an SQL table declares the type(s) that column may contain. ANSI SQL includes the

following datatypes.

4.4.1 Character strings

15 Structured Query Language (SQL)

Tutorial: Database Communication in LabVIEW

 CHARACTER(n) or CHAR(n) — fixed-width n-character string, padded with spaces as needed

 CHARACTER VARYING(n) or VARCHAR(n) — variable-width string with a maximum size of n

characters

 NATIONAL CHARACTER(n) or NCHAR(n) — fixed width string supporting an international

character set

 NATIONAL CHARACTER VARYING(n) or NVARCHAR(n) — variable-width NCHAR string

4.4.2 Bit strings

 BIT(n) — an array of n bits

 BIT VARYING(n) — an array of up to n bits

4.4.3 Numbers

 INTEGER and SMALLINT

 FLOAT, REAL and DOUBLE PRECISION

 NUMERIC(precision, scale) or DECIMAL(precision, scale)

4.4.4 Date and Time

 DATE

 TIME

 TIMESTAMP

 INTERVAL

16

5 Database Modelling

5.1 ER Diagram

In software engineering, an Entity-Relationship Model (ERM) is an abstract and conceptual

representation of data. Entity-relationship modeling is a database modeling method, used to

produce a type of conceptual schema or semantic data model of a system, often a relational

database, and its requirements in a top-down fashion.

Diagrams created using this process are called entity-relationship diagrams, or ER diagrams or ERDs

for short.

There are many ER diagramming tools. Some of the proprietary ER diagramming tools are ERwin,

Enterprise Architect and Microsoft Visio.

Microsoft SQL Server has also a built-in tool for creating Database Diagrams.

http://en.wikipedia.org/wiki/File:ER_Diagram_MMORPG.png

17 Database Modelling

Tutorial: Database Communication in LabVIEW

5.2 Microsoft Visio

Microsoft Visio is a diagramming program for creating different kinds of diagrams. Visio have a

template for creating Database Model Diagrams.

18 Database Modelling

Tutorial: Database Communication in LabVIEW

In the Database menu Visio offers lots of functionality regarding your database model.

“Reverse Engineering” is the opposite procedure, i.e., extraction of a database schema from an

existing database into a database model in Microsoft Visio.

5.3 EXERCISES

Exercise: Database Diagram

Create the following tables in an ER Diagram using MS Visio.

 CUSTOMER

o CustomerId (PK)

o FirstName

o LastName

o Address

o Phone

o PostCode

o PostAddress

 PRODUCT

o ProductId (PK)

o ProductName

o ProductDescription

o Price

o ProductCode

19 Database Modelling

Tutorial: Database Communication in LabVIEW

 ORDER

o OrderId (PK)

o OrderNumber

o OrderDescription

o CustomerId (FK)

 ORDER_DETAIL

o OrderDetailId (PK)

o OrderId (FK)

o ProductId (FK)

Database Diagram:

20

6 Microsoft SQL Server

6.1 Introduction

Microsoft SQL Server is a relational model database server produced by Microsoft. Its primary query

languages are T-SQL and ANSI SQL.

The latest version is Microsoft SQL Server 2008.

Microsoft SQL Server homepage: www.microsoft.com/sqlserver

The Microsoft SQL Server comes in different versions, such as:

 SQL Server Developer Edition

 SQL Server Enterprise Edition

 SQL Server Web Edition

 SQL Server Express Edition

 Etc.

The SQL Server Express Edition is a freely-downloadable and -distributable version.

6.2 Requirements

In order to install SQL Server 2008, you need:

 Microsoft .NET Framework 3.5 SP1

 Windows Installer 4.5

 Windows PowerShell 1.0

Note: You must have administrative rights on the computer to install Microsoft SQL Server 2008.

6.3 SQL Server Express

The SQL Server Express Edition is a freely-downloadable and -distributable version.

However, the Express edition has a number of technical restrictions which make it undesirable for

large-scale deployments, including:

http://www.microsoft.com/sqlserver

21 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

 Maximum database size of 4 GB per. The 4 GB limit applies per database (log files excluded);

but in some scenarios users can access more data through the use of multiple interconnected

databases.

 Single physical CPU, multiple cores

 1 GB of RAM (runs on any size RAM system, but uses only 1 GB)

SQL Server Express offers a GUI tools for database management in a separate download and

installation package, called SQL Server Management Studio Express.

6.4 AdventureWorks

The AdventureWorks is a sample Database with lots of examples, etc.

You should install this sample Database because some of the examples in this document will use the

AdventureWorks database.

6.5 SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring, managing, and

administering all components within Microsoft SQL Server. The tool includes both script editors and

graphical tools that work with objects and features of the server. As mentioned earlier, version of

SQL Server Management Studio is also available for SQL Server Express Edition, for which it is known

as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the user to

browse, select, and act upon any of the objects within the server. It can be used to visually observe

and analyze query plans and optimize the database performance, among others. SQL Server

Management Studio can also be used to create a new database, alter any existing database schema

by adding or modifying tables and indexes, or analyze performance. It includes the query windows

which provide a GUI based interface to write and execute queries.

22 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

6.6 Create a new Database

It is quite simple to create a new database in Microsoft SQL Server. Just right-click on the

“Databases” node and select “New Database…”

23 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

There are lots of settings you may set regarding your database, but the only information you must fill

in is the name of your database:

24 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

6.7 Backup/Restore

An important task in database systems is to take backup of the database with regular intervals, e.g.,

during the night when the system is not in use.

Database backup and Restore:

25 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

6.8 Example Database

26 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

Examples and exercises in this training are based on some basic tables. The Example Database

consists of the following Tables:

 CUSTOMER

o CustomerId (PK)

o FirstName

o LastName

o Address

o Phone

o PostCode

o PostAddress

 PRODUCT

o ProductId (PK)

o ProductName

o ProductDescription

o Price

o ProductCode

 ORDER

o OrderId (PK)

o OrderNumber

o OrderDescription

o CustomerId (FK)

 ORDER_DETAIL

o OrderDetailId (PK)

o OrderId (FK)

o ProductId (FK)

27 Microsoft SQL Server

Tutorial: Database Communication in LabVIEW

6.9 Exercises

Exercise: New Database

Create a new Database in MS SQL Server called TEST_SQLSERVER.

Exercise: Database Diagram

Create the tables in the Example Database using the Diagram Designer Tool in Microsoft SQL Server.

Exercise: Database Script

Create the tables in the Example Database Tables using SQL Code. Save the Tables as a SQL Script file

(.sql). Use The Query Tool in Microsoft SQL Server.

Exercise: ODBC

Create an ODBC connection for the Database.

28

7 Microsoft Office Access

7.1 Introduction

Microsoft Office Access, previously known as Microsoft Access, is a relational database management

system from Microsoft that combines the relational Microsoft Jet Database Engine with a graphical

user interface and software development tools. It is a member of the Microsoft Office suite of

applications and is included in the Professional and higher versions for Windows. Access stores data

in its own format based on the Access Jet Database Engine.

Microsoft Access is used by programmers and non-programmers to create their own simple database

solutions.

Microsoft Access is a file server-based database. Unlike client-server relational database

management systems (RDBMS), e.g., Microsoft SQL Server, Microsoft Access does not implement

database triggers, stored procedures, or transaction logging. All database tables, queries, forms,

reports, macros, and modules are stored in the Access Jet database as a single file. This makes

Microsoft Access useful in small applications, teaching, etc. because it is easy to move from one

computer to another.

7.2 Example Database

I will present an example database in Microsoft Access 2007 which will be used in some of the

examples and exercises in this document.

The database consists of the following tables:

 CUSTOMER

o CustomerId (PK)

o FirstName

o LastName

o Address

o Phone

o PostCode

o PostAddress

 PRODUCT

o ProductId (PK)

o ProductName

29 Microsoft Office Access

Tutorial: Database Communication in LabVIEW

o ProductDescription

o Price

o ProductCode

 ORDER

o OrderId (PK)

o OrderNumber

o OrderDescription

o CustomerId (FK)

 ORDER_DETAIL

o OrderDetailId (PK)

o OrderId (FK)

o ProductId (FK)

ODBC Connection:

Administrative Tools → Data Sources (ODBC)

30 Microsoft Office Access

Tutorial: Database Communication in LabVIEW

7.3 Exercises

Exercise: Database

Create a new Database in MS Access called TEST.

Exercise: Database Tables

31 Microsoft Office Access

Tutorial: Database Communication in LabVIEW

Create the tables in the Example Database Tables using the Diagram Designer Tool in Microsoft SQL

Server.

Exercise: ODBC

Create an ODBC connection for the Database.

32

8 ODBC

8.1 What is ODBC?

In computing, Open Database Connectivity (ODBC) provides a standard software API method for

using database management systems (DBMS). The designers of ODBC aimed to make it independent

of programming languages, database systems, and operating systems.

8.2 Create an ODBC Connection in “ODBC

Data Source Administrator”

Follow these steps:

Add a new Data Source and select the SQL Server driver:

Type a Name for your Connection and your SQL Server Name. You find your Server name as shown

below:

33 ODBC

Tutorial: Database Communication in LabVIEW

Select SQL Server authentication and type your sa password (System Administrator). You defined

the password for the sa user during the setup procedure of SQL Server:

Complete your configuration and Test your data source to see if its OK:

34 ODBC

Tutorial: Database Communication in LabVIEW

If you get this message you have succeeded:

8.3 Get data into Excel using your ODBC

Connection

The purpose is to use Excel as a client and get data into Excel from your SQL Server.

Step 1: Open Excel and go to the Data section:

35 ODBC

Tutorial: Database Communication in LabVIEW

Step 2: Select your ODBC connection

Step 3: Select your Table(s)

36 ODBC

Tutorial: Database Communication in LabVIEW

Step 4: Insert Data into Excel

The results should look something like this:

37 ODBC

Tutorial: Database Communication in LabVIEW

38

9 LabVIEW Database

Connectivity Toolkit

LabVIEW offers an additional Toolkit called “LabVIEW Database Connectivity Toolkit”. With this

toolkit you can communicate with different databases, such as SQL Server, Oracle, etc.

Functions Palette: Connectivity → Database

The following list describes the main features of the Database Connectivity Toolkit:

 Works with any provider that adheres to the Microsoft ActiveX Data Object (ADO) standard.

 Works with any database driver that complies with ODBC or OLE DB.

 Maintains a high level of portability. In many cases, you can port an application to another

database by changing the connection information you pass to the DB Tools Open Connection

VI.

 Converts database column values from native data types to standard Database Connectivity

Toolkit data types, further enhancing portability.

 Permits the use of SQL statements with all supported database systems, even non-SQL

systems.

 Includes VIs to retrieve the name and data type of a column returned by a SELECT statement.

 Creates tables and selects, inserts, updates, and deletes records without using SQL

statements.

Some of the text in this chapter is based on the “LabVIEW Database Connectivity Toolkit User

Manual”.

39 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

9.1 Connect to the Database

Before you can access data in a table or execute SQL statements, you must establish a connection to

a database. You may use different methods in order to connect to the database:

 ODBC Data Source Name (DSN)

 Universal Data Link (UDL)

 Connection String

These different methods are explained below.

For all of these methods, you will use the same VI:

Connecting to a database is where most errors occur because each database management system

(DBMS) uses different parameters for the connection and different levels of security. The different

standards also use different methods of connecting to databases. For example, ODBC uses Data

Source Names (DSN) for the connection, whereas the Microsoft ActiveX Data Object (ADO) standard

uses Universal Data Links (UDL) for the connection. The “DB Tools Open Connection.vi” VI supports

all these methods for connecting to a database.

When you are finished with reading from the database and writing to the database, you should

always close the Connection. Use the “DB Tools Close Connection.vi”.

40 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

9.1.1 DSN

A DSN (ODBC Data Source Name (DSN)) is the name of the data source, or database, to which you

are connecting. The DSN also contains information about the ODBC driver and other connection

attributes including paths, security information, and read-only status of the database. Two main

types of DSNs exist: machine DSNs and file DSNs. Machine DSNs are in the system registry and apply

to all users of the computer system or to a single user. DSNs that apply to all users of a computer

system are system DSNs. DSNs that apply to single users are user DSNs. A file DSN is a text file with a

.dsn extension and is accessible to anyone with proper permissions. File DSNs are not restricted to a

single user or computer system. Use the ODBC Data Source Administrator to create and configure

DSNs.

In the Control Panel, Administrative Tools, you find the ODBC Data Source Administrator tool.

41 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

Example: DSN

This Example specifies a DSN called MS Access to open a connection to that specific database.

Example: DSN from File

You can use a path to specify a file DSN. This example specifies a path to a file DSN called

“access.dsn” to open a connection to the database.

Example: DSN with UserId and Password

Most Database systems (DBMS – Database Management Systems) also require a UserId and a

Password.

9.1.2 UDL

Whereas you must create a DSN to connect to a database using ODBC, you use UDL (Universal Data

Link) to connect to databases that use ADO and OLE DB.

A UDL is similar to a DSN in that it describes more than just the data source. A UDL specifies what

OLE DB provider is used, server information, the user ID and password, the default database, and

other related information.

In order to create a new UDL file, create an empty text file and change the file extension of this

document from .txt to .udl. You then can double-click the UDL file to display the Data Link Properties

dialog box.

42 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

Example: UDL

Connect to a Database using UDL:

9.1.3 Connection String

Rather than including an existing UDL in an application, you also can use an ODBC connection string

with the Microsoft ActiveX Data Object (ADO) standard.

A connection string is written like this:

PROVIDER=SQLOLEDB;DATA

SOURCE=server_name;UID=user_name;PWD=password;DATABASE=database_name;

You could use more parameters, but the parameters used above are the most common ones.

9.2 Reading Data from the Database

Reading data from a database table is similar to writing data to the database. You open a connection

to the database, select the data from a table, and then close the connection.

43 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

The “DB Tools Select Data.vi" is used to read data from the Database:

Example: Select Data from MS Access

The following example gets data from the CUSTOMER table in MS Access.

The Front Panel looks like this:

Notice in Figures 5-4 and 5-5 that the database data is returned as a two-dimensional array of

variants. As the name implies, the Microsoft ActiveX Data Object (ADO) standard is based on ActiveX,

which defines variants as its data types. Variants work well in languages such as Visual Basic that are

not strongly typed. Because LabVIEW is strongly typed, you must use the Database Variant To Data

44 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

function to convert the variant data to a LabVIEW data type before you can display the data in

standard indicators such as graphs, charts, and LEDs.

Example: Select Data from MS Access

The following example gets data from the CUSTOMER table in MS Access and converts the data to

text.

The Front Panel looks like this:

You may read from more than one table if you use a comma-delimited string to specify multiple table

names:

45 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

You may select which columns you want to read by using the “Columns” input:

You may also restrict which data to receive using the “optional Clause” input:

Example: Read Data

Using some VIs from the “Advanced” palette, create the following example:

46 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

9.3 Writing Data to the Database

Writing data to a database with the LabVIEW Database Connectivity Toolkit is similar to reading data

to a file. You open a connection, insert the data, and close the connection when you are finished.

The “DB Tools Insert Data.vi" is used to write data to the Database:

Example: Write Data

Create the following block diagram:

47 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

Front Panel:

Example: Write Data

Create the following block diagram using some VIs from the “Advanced” palette.

48 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

9.4 Creating and Dropping Tables

You may use standard SQL syntax in order to create:

CREATE TABLE <TableName> (…)

Or you may use the “DB Tools Create Table.vi” in order to create a table.

You may use standard SQL syntax in order to drop tables (delete tables):

DROP TABLE <TableName>

Or you may use the “DB Tools Drop Table.vi” in order to drop/delete a table.

49 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

9.5 Using the Database Connectivity Toolkit

Utility VIs

In the “Utility” palette there are several useful VIs for getting more information about tables, saving

to text files, etc.

Here is a short description of the VIs located in the “Utility” palette:

 This VI lists the tables in the database identified by connection reference.

 This VI lists the columns present in table. The column information includes the

name, the data type, and the defined size of the column.

 This VI sets properties on the object as determined by the inputs.

 This VI gets properties of the object as determined by the inputs.

 This VI Returns a string containing the formatted date and time, and

identifies the string as a date/time string so other VIs can interpret it.

 This VI begins, commits, or rolls back a transaction for any type of

reference.

50 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

 This VI saves the recordset identified by the recordset reference to

either an XML or ADTG file. The ADTG file format is a proprietary format that only the LabVIEW

Database Connectivity Toolkit can interpret. The ADTG format results in a smaller file than the XML

format.

 This VI loads a recordset from a file and returns a recordset

reference that identifies this recordset. You can retrieve data from this recordset like any other

recordset, but some properties might not be available on this recordset.

9.6 Performing Advanced Database

Operations

When creating real programs you will soon need some of the VIs in the “Advanced” palette.

Here is a short description of some of the VIs located in the “Advanced” palette:

 This VI Executes an SQL query and returns a recordset reference that you

must eventually free with the DB Tools Free Object VI.

 This VI retrieves the data in the recordset identified by the recordset

reference input. You can convert each element in the array to its native LabVIEW data type using the

“Database Variant To Data function”.

51 LabVIEW Database Connectivity Toolkit

Tutorial: Database Communication in LabVIEW

 This VI frees an object by destroying its associated reference and returns a

different reference object.

52

10 Creating and Using

Tables

The SQL syntax for creating a Table is as follows:

CREATE TABLE <TableName>

(

<ColumnName> <datatype>

…

)

The SQL syntax for inserting Data into a Table is as follows:

INSERT INTO <TableName> (<Column1>, <Column2>, …)

VALUES(<Data for Column1>, <Data for Column2>, …)

Example: Insert Data into Tables

We will insert some data into our tables:

53 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

The following SQL Query inserts some example data into these tables:

--CUSTOMER

INSERT INTO [CUSTOMER]

([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress]) VALUES

('Per', 'Nilsen', 'Vipeveien 12', '12345678', '1234', 'Porsgrunn')

GO

INSERT INTO [CUSTOMER]

([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress]) VALUES

('Tor', 'Hansen', 'Vipeveien 15', '77775678', '4455', 'Bergen')

GO

INSERT INTO [CUSTOMER]

([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress]) VALUES

('Arne', 'Nilsen', 'Vipeveien 17', '12345778', '4434', 'Porsgrunn')

GO

--PRODUCT

INSERT INTO [PRODUCT]

([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES ('Product

A', 'This is product A', 1000, 'A-1234')

GO

INSERT INTO [PRODUCT]

([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES ('Product

B', 'This is product B', 1000, 'B-1234')

GO

INSERT INTO [PRODUCT]

([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES ('Product

C', 'This is product C', 1000, 'C-1234')

GO

--ORDER

INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES

('10001', 'This is Order 10001', 1)

GO

INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES

('10002', 'This is Order 10002', 2)

GO

INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES

('10003', 'This is Order 10003', 3)

GO

--ORDER_DETAIL

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 1)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 2)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 3)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (2, 1)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (2, 2)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 3)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 1)

GO

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 2)

GO

54 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 3)

GO

Executing the following Queries then gives:

select * from CUSTOMER

select * from PRODUCT

select * from [ORDER]

select * from ORDER_DETAIL

55 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

10.1 Exercises

Run the queries above from LabVIEW.

56

11 Creating and Using

Views

In database theory, a view consists of a stored query accessible as a virtual table composed of the

result set of a query. Unlike ordinary tables in a relational database, a view does not form part of the

physical schema: it is a dynamic, virtual table computed or collated from data in the database.

Changing the data in a table alters the data shown in subsequent invocations of the view.

Views can provide advantages over tables:

 Views can represent a subset of the data contained in a table

 Views can join and simplify multiple tables into a single virtual table

 Views can act as aggregated tables, where the database engine aggregates data (sum,

average etc) and presents the calculated results as part of the data

 Views can hide the complexity of data; for example a view could appear as Sales2000 or

Sales2001, transparently partitioning the actual underlying table

 Views take very little space to store; the database contains only the definition of a view, not

a copy of all the data it presents

 Depending on the SQL engine used, views can provide extra security

 Views can limit the degree of exposure of a table or tables to the outer world

Just as functions (in programming) can provide abstraction, so database users can create abstraction

by using views. In another parallel with functions, database users can manipulate nested views, thus

one view can aggregate data from other views.

Syntax:

CREATE VIEW <ViewName>

AS

…

Create a VIEW:

Step 1: Create a new View

57 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

Step 2: Add your tables

Step 3: Add your columns

58 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

Step 4: Save it

Using the VIEW in a Query:

59 Creating and Using Tables

Tutorial: Database Communication in LabVIEW

11.1 Exercises

Create a simple view based on the example tables and run the view from LabVIEW.

60

12 Creating and using

Stored Procedures

A stored procedure is a subroutine available to applications accessing a relational database system.

Typical uses for stored procedures include data validation (integrated into the database) or access

control mechanisms. Furthermore, stored procedures are used to consolidate and centralize logic

that was originally implemented in applications. Large or complex processing that might require the

execution of several SQL statements is moved into stored procedures, and all applications call the

procedures only.

A stored procedure is a precompiled collection of SQL statements and optional control-of-flow

statements, similar to a macro. Each database and data provider supports stored procedures

differently. Stored procedures offer the following benefits to your database applications:

Performance—Stored Procedures are usually more efficient and faster than regular SQL queries

because SQL statements are parsed for syntactical accuracy and precompiled by the DBMS when the

stored procedure is created. Also, combining a large number of SQL statements with conditional logic

and parameters into a stored procedure allows the procedures to perform queries, make decisions,

and return results without extra trips to the database server.

Maintainability—Stored Procedures isolate the lower-level database structure from the application.

As long as the table names, column names, parameter names, and types do not change from what is

stated in the stored procedure, you do not need to modify the procedure when changes are made to

the database schema. Stored procedures are also a way to support modular SQL programming

because after you create a procedure, you and other users can reuse that procedure without

knowing the details of the tables involved.

Security—When creating tables in a database, the Database Administrator can set EXECUTE

permissions on stored procedures without granting SELECT, INSERT, UPDATE, and DELETE

permissions to users. Therefore, the data in these tables is protected from users who are not using

the stored procedures.

Stored procedures are similar to user-defined functions. The major difference is that functions can be

used like any other expression within SQL statements, whereas stored procedures must be invoked

using the CALL statement.

The syntax for creating a Stored Procedure is as follows:

CREATE PROCEDURE <ProcedureName>

@<Parameter1> <datatype>

61 Creating and using Stored Procedures

Tutorial: Database Communication in LabVIEW

…

Example: Create a Stored Procedure

This Procedure gets Customer Data based on a specific Order Number.

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = 'sp_CustomerOrders'

 AND type = 'P')

 DROP PROCEDURE sp_CustomerOrders

GO

CREATE PROCEDURE sp_CustomerOrders

@OrderNumber varchar(50)

AS

/*---

Last Updated Date: 2009.11.03

Last Updated By: hans.pr.halvorsen@hit.no

Description: Get Customer Information from a specific Order Number

---*/

SET NOCOUNT ON

declare @CustomerId int

select @CustomerId = CustomerId from [ORDER] where OrderNumber = @OrderNumber

select CustomerId, FirstName, LastName, [Address], Phone from CUSTOMER where

CustomerId=@CustomerId

SET NOCOUNT OFF

GO

Example: Using a Stored Procedure

Using the Stored procedure like this

exec sp_CustomerOrders '10002'

gives the following result:

62 Creating and using Stored Procedures

Tutorial: Database Communication in LabVIEW

12.1 Exercises

Run the Stored Procedure created above from LabVIEW.

63

13 Creating and Using

Triggers

A database trigger is procedural code that is automatically executed in response to certain events on

a particular table or view in a database. The trigger is mostly used for keeping the integrity of the

information on the database. For example, when a new record (representing a new worker) added to

the employees table, new records should be created also in the tables of the taxes, vacations, and

salaries.

Triggers are commonly used to:

 prevent changes (e.g. prevent an invoice from being changed after it's been mailed out)

 log changes (e.g. keep a copy of the old data)

 audit changes (e.g. keep a log of the users and roles involved in changes)

 enhance changes (e.g. ensure that every change to a record is time-stamped by the server's

clock, not the client's)

 enforce business rules (e.g. require that every invoice have at least one line item)

 execute business rules (e.g. notify a manager every time an employee's bank account

number changes)

 replicate data (e.g. store a record of every change, to be shipped to another database later)

 enhance performance (e.g. update the account balance after every detail transaction, for

faster queries)

The major features of database triggers, and their effects, are:

 do not accept parameters or arguments (but may store affected-data in temporary tables)

 cannot perform commit or rollback operations because they are part of the triggering SQL

statement

 can cancel a requested operation

 can cause mutating table errors, if they are poorly written.

Microsoft SQL Server supports triggers either after or instead of an insert, update, or delete

operation.

The syntax is as follows:

64 Creating and using Stored Procedures

Tutorial: Database Communication in LabVIEW

CREATE TRIGGER <TriggerName> on <TableName>

FOR INSERT, UPDATE, DELETE

AS

… Create your Code here

GO

 Replace <TriggerName> with the Name of your Trigger

 Replace <TableName> with the Name of your Table

Define when the Trigger should be execute

 If the Trigger should be executed only when you insert data into the table: FOR INSERT

 If the Trigger should be executed only when you update data into the table: FOR UPDATE

 If the Trigger should be executed only when you delete data into the table: FOR DELETE

 If the Trigger should be executed when you insert and update data into the table: FOR

INSERT, UPDATE

 Etc.

Example: Trigger

The Example above change the “below” in the Table “SCHOOL” from ‘TUC’ to ‘Telemark University

College’

CREATE TRIGGER CheckSchoolData on SCHOOL

FOR INSERT, UPDATE

AS

DECLARE

@SchoolName varchar(50)

select @SchoolName=SchoolName from INSERTED

If @SchoolName='TUC'

 update SCHOOL set SchoolName='Telemark University College' where

SchoolName=@SchoolName

GO

Note! Note the use of a temporary table called “INSERTED”. This temporary table contains the last

inserted record into the SCHOOL table

Note! In SQL you define a variable like this

DECLARE

@myVariable <datatype>

Example:

DECLARE

@SchoolName varchar(10)

65 Creating and using Stored Procedures

Tutorial: Database Communication in LabVIEW

Note! You have to use the symbol “@” before the name of the variable!!!

Below we see how we create a Trigger from the “SQL Server Management Studio”:

Check if the Trigger is working as expected:

Procedure:

Step 1: Check the data in your table before you do anything, e.g.:

select * from SCHOOL

Step 2: Insert some test data into your table, e.g.:

insert into SCHOOL (SchoolId, SchoolName) values (5, 'TUC')

Step 3: Check the data has been updated according to your code in the Trigger:

select * from SCHOOL

66 Creating and using Stored Procedures

Tutorial: Database Communication in LabVIEW

→ As you see the data you inserted into the table has been automatically been changed by the

Trigger

13.1 Exercises

Create a Trigger that adds “+47” to all Phone numbers in the CUSTOMER table.

Test and see if the Trigger works properly by inserting and updating some data in the CUSTOMER

table.

67

14 Creating and using

Functions

In SQL databases, a user-defined function provides a mechanism for extending the functionality of

the database server by adding a function that can be evaluated in SQL statements. The SQL standard

distinguishes between scalar and table functions. A scalar function returns only a single value (or

NULL), whereas a table function returns a (relational) table comprising zero or more rows, each row

with one or more columns.

Stored Procedures vs. Functions:

 Only functions can return a value (using the RETURN keyword).

 Stored procedures can use RETURN keyword but without any value being passed[1]

 Functions could be used in SELECT statements, provided they don’t do any data manipulation

and also should not have any OUT or IN OUT parameters.

 Functions must return a value, but for stored procedures this is not compulsory.

 A function can have only IN parameters, while stored procedures may have OUT or IN OUT

parameters.

 A function is a subprogram written to perform certain computations and return a single

value.

 A stored procedure is a subprogram written to perform a set of actions, and can return

multiple values using the OUT parameter or return no value at all.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

14.1 Exercises

Create a simple function that finds number of order for a specific customer and use it in the following

query:

“Select FirstName, LastName, fn_NumberOfOrders(CustomerId) from CUSTOMER”

68

15 SQL Toolkit

I have made a simple and easy to-use SQL Toolkit. The SQL Toolkit is available for download from my

Blog: http://home.hit.no/~hansha/

15.1 Installation

The installation procedure is as follows:

1. Download the zip file SQLToolkit.zip from my Blog

2. Unzip the file

3. Copy "SQLToolkit.mnu" to ...\LabVIEW 2009\menus\Categories\

4. Copy "SQLToolkit.llb" to ...\LabVIEW 2009\vi.lib\

5. The SQL Toolkit is ready to use and in the Functions palette in LabVIEW a new palette named

"SQL" will appear.

The SQL Toolkit palette in available in LabVIEW:

The SQL Toolkit contains the following VIs:

 “SQL Open.vi” - This VI open a connection to the database specified in the Connection string.

The connection string may be as follows:

“PROVIDER=SQLOLEDB; DATA SOURCE=xxx;UID=xxx;PWD=xxx;DATABASE=xxx”

You need to replace the “xxx” with the parameters from your database.

 “SQL Select.vi” -This VI get data from the database specified in the SQL Query. The output is a

2D string array with data.

http://home.hit.no/~hansha/

69 SQL Toolkit

Tutorial: Database Communication in LabVIEW

 “SQL Execute.vi” - This VI executes a Query with no return Data, e.g., an INSERT statement

 “SQL Close.vi” - This VI Close the connection to the database opened by "SQL Open.vi"

Two examples are also included:

 “SQL – Example 1.vi” – This example selects data from a table. The example uses “SQL

Select.vi” in order to get data from the database.

Front panel:

Block Diagram:

 “SQL – Example 2.vi” – This example inserts data into a table. The example uses “SQL

Execute.vi” in order to insert data into the database. No data is returned.

Front panel:

70 SQL Toolkit

Tutorial: Database Communication in LabVIEW

Block Diagram:

Example: Get Data into LabVIEW using SQL Toolkit

Download the SQL toolkit from the Homepage of the Database Lab and follow the instructions in the

ReadMe file.

On the Functions palette on your Block Diagram the following palette should appear:

Here is a simple example of how you get data from the database into LabVIEW:

http://home.hit.no/~hansha/?lab=database

71 SQL Toolkit

Tutorial: Database Communication in LabVIEW

The procedure is as follows:

Step 1:

Step 2:

72 SQL Toolkit

Tutorial: Database Communication in LabVIEW

Step 3 and 4:

Step 5:

73 SQL Toolkit

Tutorial: Database Communication in LabVIEW

Step 6:

Step 7:

74 SQL Toolkit

Tutorial: Database Communication in LabVIEW

Step 8:

Telemark University College

Faculty of Technology

Kjølnes Ring 56

N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

Room: B-237a

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

