Hegskolen i Telemark

Telemark University College
Department of Electrical Engineering, Information Technology and Cybernetics

[Tutorial]

Database Communication
in LabVIEW

HANS-PETTER HALVORSEN, 2011.02.11

B=1Ed

£ SQL - Example1.vi Block Diagram

File Edit Wew Project Operate Tools Window Help IE‘
@E o[/ | 4 [L3pt Didlog Fort v! e~ @

A

EaL Query
[abel
SRl S0l . =
|PROVIDER=S5QLOLEDE; DATA SOURCE=xxx;UID=2000PWD=xxx DATABASE=TEST I-E ZEleor FLosE
4

I~

mFaculty of Technology, Postboks 203, Kjzlnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 3557 50 00 Fax: +47 35 57 54 01

Preface

This document explains the basic concepts of a database system and how to communicate with a
database from LabVIEW.

You should have some basic knowledge about LabVIEW, e.g., the “An Introduction to LabVIEW”
training. This document is available for download at http://home.hit.no/~hansha/.

In addition to LabVIEW Professional Development System, you need to install the “LabVIEW
Database Connectivity Toolkit”.

For more information about LabVIEW and Databases, visit my Blog: http://home.hit.no/~hansha/

Some text in this document is based on text from www.wikipedia.org and “LabVIEW Database
Connectivity Toolkit User Manual”.

http://home.hit.no/~hansha/
http://home.hit.no/~hansha/
http://www.wikipedia.org/

Table of Contents

=Y - [ol T T PP UO PPN 2
TabIE OF CONTENES ...ttt ettt et sae e sttt e e bt e sb e sbeesaeesmteeabeenbeens iii
1 INtroduction tO LADVIEWooiiiiiiiiieeee ettt ettt s 1
1.1 DatafloWw ProgramiMINgcoccciiiieeiiiiee et et e e e re e e e st e e e e e bte e e e e areeesenreeeeentaeeeennrenas 1
1.2 Graphical Programming..........coieeiiiiiie e e e eree e e e e bae e e e et e e e e eabae e e e nbe e e e e earaeas 1
0 T 21T T 1 T OO TP PP PRI 2

2 DY] o R Iy YA (=] 1 4 [UUN 3
2.1 RDBIMS COMPONENTS «.oeeieeeeeeeeeeeeeeee ettt ettt eeeaeeeas 3
2.2 DAta WarENOUSEcoiiiiiieciieeite ettt sttt ettt bt e st st st e b e bt e s bt e sbeesateebeesbeesaeesanenas 4
2.3 Relational Database......c.coiieiiiiieiieeeee e st 4
2.4 Real-time databasesoc.eii ittt e 4
2.5 Database Management SYSTEMS ...c...uuiiieciiiee ettt e et e e e et e e e e are e e s e nree e e enraeesenreeas 5
2.6 IVIDAC . ..ttt ettt ettt ettt et e e e ettt e e e e e e e b bttt e e e e e e e b b beeeeeee e e e bbb aeeeeeeeaaannrrneeeeeeeaaaan 5
2.6.1 ODBC ...ttt ettt a ettt et b e e h e s h e e s a bt st et e e bt e b e e e b e e ehe e ehee et e eteenbeenteesheesaneeas 5
2.6.2 OLE DB ..ttt ettt ettt e e e e e et e e e e e e e b bttt e e e e e e e b e be e e e e e e e e e nrereeeeeeeeaaan 5
2.6.3 ADO (ActiveX Data ODJECES)uviiiiciiieieciiie ettt ettt et e e e rre e e e b e e e eaaaeeeeas 6

3 Relational Databasescoveeecuiiiiiie e s saree s 7
20 A I o =TT PP ST OPPRRRON 7
3.2 Unique Keys and Primary KEY.... ..ottt ettt e e e e e e scanaee e e e e e e e ennsraneeaaeeennas 7
3.3 (o] =14 0 I =LY R 9
314 VIBWS ittt e e e e e e e e e e e e e e e et e e e r e et e s nr e e e e s reneesannreeenan 9
3.5 U1 ot o TSP TSR 10

S ST} o] =Y W o] o Yol [V T S PPRRRRNE 10

iv Table of Contents
3.7 7<= =] ST TP PP PTTPPPPPTTN 11

4 Structured QUEry Language (SQL) ...ccccueeeeueeeiiieeieeestee et e estteeeeeeseteesteeestae e s teeesaaeesreeeraeesnneeenns 12
4.1 QUUETIES ettt ettt et ettt e s ettt e s e bt e e s e b et e e s sab e e e e s saneeeesaane e e e s e beeeeseaneneeseneneesaanee 12
4.2 Data ManiPUIGLION .. .eiiii et e e s ee e e s e e s e e e e rre e e e nareeas 13
4.3 Data definitioNceeiiieeiee et st ar e snee e saree s 14
4.4 DAt LY P e e e e e e e e e e e e e e e e ns 14
44.1 (0 0T = Tt = gy T =PSRN 14
4.4.2 2T V=4 PP PP PPPPPPPPPPORPR 15
443 NUMIDEES <.ttt ettt e st e s bt e e sabe e sbte e abeesabeeesanes 15
444 DAt @nd TIME coueeieiiee ettt ettt e st e st e e st e s bt e e sabeesbeeesnreesabeeesanes 15

5 Database MOEIING......uuiiiiiiiie e e e e e e e st e e e e s nbee e e e eabaeeeenareeas 16
51 2 DT =1 - | o 4 O PP PPPPP PP 16
5.2 IMIICTOSOTE ViSTO 1. uutteiiiieiiee ettt ettt ettt st et e st e s bt e e sabeeesbbeesabeesaneeesareeas 17
5.3 EXERCISES ...ttt ettt sttt ettt st ettt e r e sane e n e e ne s 18

6 MICTOSOFE SOL SEIVET ...ttt ettt s sttt b e s reesar e sneeneesneennes 20
70 R 101 1 o T [0 o1 o o F PSP PP PR PRV 20
6.2 REGUITEIMENTS ceeiiiii ittt e e s s sttt e e e e e s s s bbb e e e e e esssssssbbaaaeeeesssanssnneeaeeess 20
6.3 SQL SEIVEE EXPIESS evvvveveviiiturereitttietuttrererateuararaseseeeserarararasaaaaaaaeaaaeaeeeaeaaaeasssasssssnsssasssnsnsssnssnns 20
6.4 AdVENTUIEWOIKS ...eeieiieeee et 21
6.5 SQL Server Management StUIOcoiiiviiiiiiiiiie ettt ree e e e 21
6.6 Create @ NEW Database ...c.cooe i e s 22
6.7 BACKUD/RESTOIE ...ttt ettt ettt ettt ettt et e et ev e et e esbeesteesabesabeeabeenbeenbeesasesaseenreenses 24
6.8 EXAMPIE DAtAb@aseceecuiiiiiciiiiee et e re e et e e e e a e e e e nnraeas 25
6.9 EXEICISES uuviiiiiiiiii ittt e 27

7 MiICrOSOTt OFfiCE ACCESS ..ottt ettt et sbe e s st et er e e sbeesieesane e 28
% R 1311 o o [0 o1 o o DT PSP PRSPPI 28

Tutorial: Database Communication in LabVIEW

v Table of Contents

7.2 EXAMPIE Databasecciiiiiiii et e e e 28
7.3 =T o] =TT UPRPR 30

8 (015 21 GO PPNt 32
8.1 WAt IS ODBC?.. . uiiiiiieiieee ettt ettt e ettt e ettt e e ettt e e e s b bt e e ssataeeessbaeeessraeeeessaaeesansaaeesnnssenennn 32
8.2 Create an ODBC Connection in “ODBC Data Source Administrator”cceceeviieerieeennenn. 32
8.3 Get data into Excel using your ODBC CONNECLIONvvieeiiiiiei ettt eeiieeeeeeee e eiree e 34

9 LabVIEW Database Connectivity TOOIKIt........cueiiiiiiiiiiiiiei e 38
9.1 ConNect to the Database.......cocuieiiiiiiiierie ettt s 39
9.1.1 DN eaaaaaaeaaanns 40
9.1.2 UD L e aaaaaaaaaaaaaaaans 41
9.1.3 CONNECTION STIINE .ettiiiiiiiiiiiteee ettt e e e e s s s e e e e e e s s ssbbbtaeeeeesssasssnnaeeeeas 42

9.2 Reading Data from the Databasecoccviiiiiiiii i 42
9.3 Writing Data to the Database.........ueiiiiiiiiiciiie e 46
9.4 Creating and Dropping TABIESccccuuiiiiiiiiieeccee ettt e s aree e e s eareeas 48
9.5 Using the Database Connectivity Toolkit Utility VIScccceviieiiiiiiiiiee e, 49
9.6 Performing Advanced Database Operations.......ccccceeeeciieieiiiieee e e e 50
10 Creating and USING TabIESuuviiiiiiiieciee ettt e tee e s abee e e s aaee e s s abeee e eeareeas 52
LO.1 EXEICISES weveririiiiiiiiiie ittt saa e b s ba e sab e e s ba e s ar e e sra e e saneesane 55
11 Creating and USING VIBWS ..ccc.uuiiiiiiiieeciiee e ette e estee s ettt e e et e e e aaae e e s stae e e sabaeessnssaaeeesseaeeennsenas 56
L1 EXEICISES weiirriiiiiiiiiie ittt et b e s ba e e e e s r e sba e e aae e st 59
12 Creating and USINg StOred ProCEAUIESccccuiiieeiiiiee ettt et eesee e e ree e s ree e e s abae e e e abaeas 60
0 R b (<] o] =L PP PPTR PP 62
13 Creating and USING TrigGEIS ...uuui i iieeeeiiieeeeiite e e ettt e e esire e e e stte e e ssbaeeeesnsbaeeessbaeeesnraeeeassaaesenssenas 63
0t R b (<] o] =3P PPTR PP 66
14 Creating and USING FUNCLIONS ...eiiiiiiiiiciiie ettt e e tee e e tee e e s abe e e e s abae e e e abaeeeeeaneeas 67
I R b (=] o 1] =3P PPTR PP 67

Tutorial: Database Communication in LabVIEW

vi Table of Contents

1T @ | I o Yo] 1< PO TUTRRRR 68

0 R 1 011 =] | =1 4 o o FR U 68

Tutorial: Database Communication in LabVIEW

1Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and
development environment for a visual programming language from National Instruments. The
graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is
commonly used for data acquisition, instrument control, and industrial automation on a variety of
platforms including Microsoft Windows, various flavors of UNIX, Linux, and Mac OS X. The latest
version of LabVIEW is version LabVIEW 2009, released in August 2009. Visit National Instruments at

WWW.ni.com.

The code files have the extension “.vi”, which is a abbreviation for “Virtual Instrument”. LabVIEW
offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming
language. Execution is determined by the structure of a graphical block diagram (the LV-source code)
on which the programmer connects different function-nodes by drawing wires. These wires
propagate variables and any node can execute as soon as all its input data become available. Since
this might be the case for multiple nodes simultaneously, G is inherently capable of parallel
execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in
scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a
block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block
diagrams of other, calling VlIs. Controls and indicators on the front panel allow an operator to input
data into or extract data from a running virtual instrument. However, the front panel can also serve
as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front
panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel
defines the inputs and outputs for the given node through the connector pane. This implies each VI
can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and
dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW

http://www.ni.com/

2 Introduction to LabVIEW

programming environment, with the included examples and the documentation, makes it simple to
create small applications. This is a benefit on one side, but there is also a certain danger of
underestimating the expertise needed for good quality "G" programming. For complex algorithms or
large-scale code, it is important that the programmer possess an extensive knowledge of the special
LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW
development systems offer the possibility of building stand-alone applications. Furthermore, it is
possible to create distributed applications, which communicate by a client/server scheme, and are
therefore easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for accessing
instrumentation hardware. Drivers and abstraction layers for many different types of instruments
and buses are included or are available for inclusion. These present themselves as graphical nodes.
The abstraction layers offer standard software interfaces to communicate with hardware devices.
The provided driver interfaces save program development time. The sales pitch of National
Instruments is, therefore, that even people with limited coding experience can write programs and
deploy test solutions in a reduced time frame when compared to more conventional or competing
systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded
components with only a few register calls through NI Measurement Hardware DDK (Driver
Development Kit) functions, provides platform independent hardware access to numerous data
acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on
Windows, Mac OS X and Linux platforms.

Tutorial: Database Communication in LabVIEW

2Database Systems

A database is an integrated collection of logically related records or files consolidated into a common
pool that provides data for one or more multiple uses.

One way of classifying databases involves the type of content, for example: bibliographic, full-text,
numeric, and image. Other classification methods start from examining database models or database
architectures.

The data in a database is organized according to a database model. The relational model is the most
common.

A Database Management System (DBMS) consists of software that organizes the storage of data. A
DBMS controls the creation, maintenance, and use of the database storage structures of
organizations and of their end users. It allows organizations to place control of organization-wide
database development in the hands of Database Administrators (DBAs) and other specialists. In large
systems, a DBMS allows users and other software to store and retrieve data in a structured way.

Database management systems are usually categorized according to the database model that they
support, such as the network, relational or object model. The model tends to determine the query
languages that are available to access the database. One commonly used query language for the
relational database is SQL, although SQL syntax and function can vary from one DBMS to another. A
great deal of the internal engineering of a DBMS is independent of the data model, and is concerned
with managing factors such as performance, concurrency, integrity, and recovery from hardware
failures. In these areas there are large differences between products.

2.1 RDBMS Components

A Relational Database Management System (DBMS) consists of the following components:

o Interface drivers - A user or application program initiates either schema modification or
content modification. These drivers are built on top of SQL. They provide methods to prepare
statements, execute statements, fetch results, etc. An important example is the ODBC driver.

e SQL engine - This component interprets and executes the SQL query. It comprises three
major components (compiler, optimizer, and execution engine).

e Transaction engine - Transactions are sequences of operations that read or write database
elements, which are grouped together.

e Relational engine - Relational objects such as Table, Index, and Referential integrity
constraints are implemented in this component.

e Storage engine - This component stores and retrieves data records. It also provides a
mechanism to store metadata and control information such as undo logs, redo logs, lock
tables, etc.

2.2 Data warehouse

A data warehouse stores data from current and previous years — data extracted from the various
operational databases of an organization. It becomes the central source of data that has been
screened, edited, standardized and integrated so that it can be used by managers and other end-user
professionals throughout an organization.

2.3 Relational Database

A relational database matches data using common characteristics found within the data set. The
resulting groups of data are organized and are much easier for people to understand.

For example, a data set containing all the real-estate transactions in a town can be grouped by the
year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be
grouped by the buyer's last name; and so on.

Such a grouping uses the relational model (a technical term for this is schema). Hence, such a
database is called a "relational database."

The software used to do this grouping is called a relational database management system. The term
"relational database" often refers to this type of software.

Relational databases are currently the predominant choice in storing financial records,
manufacturing and logistical information, personnel data and much more.

Strictly, a relational database is a collection of relations (frequently called tables).

2.4 Real-time databases

A real-time database is a processing system designed to handle workloads whose state may change
constantly. This differs from traditional databases containing persistent data, mostly unaffected by
time. For example, a stock market changes rapidly and dynamically. Real-time processing means that
a transaction is processed fast enough for the result to come back and be acted on right away.
Real-time databases are useful for accounting, banking, law, medical records, multi-media, process
control, reservation systems, and scientific data analysis. As computers increase in power and can
store more data, real-time databases become integrated into society and are employed in many
applications

Tutorial: Database Communication in LabVIEW

2.5 Database Management Systems

There are Database Management Systems (DBMS), such as:

e Microsoft SQL Server

e Oracle
e Sybase
e dBase

e Microsoft Access

e MySQL from Sun Microsystems (Oracle)
e DB2from IBM

e etc.

This document will focus on Microsoft Access and Microsoft SQL Server.

2.6 MDAC

The Microsoft Data Access Components (MDAC) is the framework that makes it possible to connect
and communicate with the database. MDAC includes the following components:

e ODBC (Open Database Connectivity)
e OLEDB
e ADO (ActiveX Data Objects)

MDAC also installs several data providers you can use to open a connection to a specific data source,
such as an MS Access database.

2.6.1 ODBC

Open Database Connectivity (ODBC) is a native interface that is accessed through a programming
language that can make calls into a native library. In MDAC this interface is defined as a DLL. A
separate module or driver is needed for each database that must be accessed.

2.6.2 OLE DB

OLE allows MDAC applications access to different types of data stores in a uniform manner.
Microsoft has used this technology to separate the application from the data store that it needs to
access. This was done because different applications need access to different types and sources of
data, and do not necessarily need to know how to access technology-specific functionality. The
technology is conceptually divided into consumers and providers. The consumers are the applications

Tutorial: Database Communication in LabVIEW

6 2

that need access to the data, and the provider is the software component that exposes an OLE DB
interface through the use of the Component Object Model (or COM).

2.6.3 ADO (ActiveX Data Objects)

ActiveX Data Objects (ADO) is a high level programming interface to OLE DB. It uses a hierarchical
object model to allow applications to programmatically create, retrieve, update and delete data from
sources supported by OLE DB. ADO consists of a series of hierarchical COM-based objects and
collections, an object that acts as a container of many other objects. A programmer can directly
access ADO objects to manipulate data, or can send an SQL query to the database via several ADO
mechanisms.

Tutorial: Database Communication in LabVIEW

3Relational Databases

A relational database matches data using common characteristics found within the data set. The
resulting groups of data are organized and are much easier for people to understand.

For example, a data set containing all the real-estate transactions in a town can be grouped by the
year the transaction occurred; or it can be grouped by the sale price of the transaction; or it can be
grouped by the buyer's last name; and so on.

Such a grouping uses the relational model (a technical term for this is schema). Hence, such a
database is called a "relational database."

The software used to do this grouping is called a relational database management system. The term
"relational database" often refers to this type of software.

Relational databases are currently the predominant choice in storing financial records,
manufacturing and logistical information, personnel data and much more.

3.1 Tables

The basic units in a database are tables and the relationship between them. Strictly, a relational
database is a collection of relations (frequently called tables).

] EMPLOYEE] EMP_DATA
FK_EMP_ID 1
ID : NUMBER e == EMP_ID : NUMBER
F_NAME : VARCHAR | MGR_ID : NUMBER
L_NAME : VARCHAR YEAR_OF_SERV : NUMBER

SALARY : NUMEBER
ADDRESS_D : MUMEER

3.2 Unique Keys and Primary Key

In relational database design, a unique key or primary key is a candidate key to uniquely identify
each row in a table. A unique key or primary key comprises a single column or set of columns. No two
distinct rows in a table can have the same value (or combination of values) in those columns.
Depending on its design, a table may have arbitrarily many unique keys but at most one primary key.

8 Relational Databases

A unique key must uniquely identify all possible rows that exist in a table and not only the currently
existing rows. Examples of unique keys are Social Security numbers or ISBNs.

A primary key is a special case of unique keys. The major difference is that for unique keys the
implicit NOT NULL constraint is not automatically enforced, while for primary keys it is enforced.
Thus, the values in unique key columns may or may not be NULL. Another difference is that primary
keys must be defined using another syntax.

Primary keys are defined with the following syntax:

CREATE TABLE table name (
id col INT,
col2 CHARACTER VARYING (20),
CONSTRAINT tab_pk PRIMARY KEY(id_col),

)

If the primary key consists only of a single column, the column can be marked as such using the
following syntax:

CREATE TABLE table name (
id_col INT PRIMARY KEY,
col2 CHARACTER VARYING (20),

The definition of unique keys is syntactically very similar to primary keys.

Likewise, unique keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE table name (
id col INT,
col?2 CHARACTER VARYING (20),
key col SMALLINT,

CONSTRAINT key unique UNIQUE (key col),

)

Or if the unique key consists only of a single column, the column can be marked as such using the
following syntax:

CREATE TABLE table name (
id col INT PRIMARY KEY,
col2 CHARACTER VARYING (20),

key col SMALLINT UNIQUE,

Tutorial: Database Communication in LabVIEW

9 Relational Databases

3.3 Foreign Key

In the context of relational databases, a foreign key is a referential constraint between two tables.
The foreign key identifies a column or a set of columns in one table that refers to a column or set of
columns in another table. The columns in the referencing table must be the primary key or other
candidate key in the referenced table. The values in one row of the referencing columns must occur
in a single row in the referenced table. Thus, a row in the referencing table cannot contain values
that don't exist in the referenced table. This way references can be made to link information
together and it is an essential part of database normalization. Multiple rows in the referencing table
may refer to the same row in the referenced table. Most of the time, it reflects the one (master
table, or referenced table) to many (child table, or referencing table) relationship.

The referencing and referenced table may be the same table, i.e. the foreign key refers back to the
same table. Such a foreign key is known as self-referencing or recursive foreign key.

A table may have multiple foreign keys, and each foreign key can have a different referenced table.
Each foreign key is enforced independently by the database system. Therefore, cascading
relationships between tables can be established using foreign keys.

Improper foreign key/primary key relationships or not enforcing those relationships are often the
source of many database and data modeling problems.

Foreign keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE table name (
id INTEGER PRIMARY KEY,
col2 CHARACTER VARYING (20),
col3 INTEGER,

CONSTRAINT col3 fk FOREIGN KEY (col3)
REFERENCES other table(key col),
)

If the foreign key is a single column only, the column can be marked as such using the following
syntax:

CREATE TABLE table name (
id INTEGER PRIMARY KEY,
col2 CHARACTER VARYING (20),
col3 INTEGER REFERENCES other table(column name),

)

3.4 Views

Tutorial: Database Communication in LabVIEW

10 Relational Databases

In database theory, a view consists of a stored query accessible as a virtual table composed of the
result set of a query. Unlike ordinary tables in a relational database, a view does not form part of the
physical schema: it is a dynamic, virtual table computed or collated from data in the database.
Changing the data in a table alters the data shown in subsequent invocations of the view.

Views can provide advantages over tables:

e Views can represent a subset of the data contained in a table

e Views can join and simplify multiple tables into a single virtual table

e Views can act as aggregated tables, where the database engine aggregates data (sum,
average etc) and presents the calculated results as part of the data

e Views can hide the complexity of data; for example a view could appear as Sales2000 or
Sales2001, transparently partitioning the actual underlying table

e Views take very little space to store; the database contains only the definition of a view, not
a copy of all the data it presents

e Views can limit the degree of exposure of a table or tables to the outer world

Syntax:

CREATE VIEW <ViewName>
AS

3.5 Functions

In SQL databases, a user-defined function provides a mechanism for extending the functionality of
the database server by adding a function that can be evaluated in SQL statements. The SQL standard
distinguishes between scalar and table functions. A scalar function returns only a single value (or
NULL), whereas a table function returns a (relational) table comprising zero or more rows, each row
with one or more columns.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

Syntax:

CREATE FUNCTION <FunctionName>
(QParameterl <datatype>,
@ Parameter2 <datatype>,
w.)

RETURNS <datatype>
AS

3.6 Stored procedures

Tutorial: Database Communication in LabVIEW

11 Relational Databases

A stored procedure is executable code that is associated with, and generally stored in, the database.
Stored procedures usually collect and customize common operations, like inserting a tuple into a
relation, gathering statistical information about usage patterns, or encapsulating complex business
logic and calculations. Frequently they are used as an application programming interface (API) for
security or simplicity.

Stored procedures are not part of the relational database model, but all commercial
implementations include them.

Stored procedures are called or used with the following syntax:

CALL procedure (..)

or

EXECUTE procedure (..)

Stored procedures can return result sets, i.e. the results of a SELECT statement. Such result sets can
be processed using cursors by other stored procedures by associating a result set locator, or by
applications. Stored procedures may also contain declared variables for processing data and cursors
that allow it to loop through multiple rows in a table. The standard Structured Query Language
provides IF, WHILE, LOOP, REPEAT, CASE statements, and more. Stored procedures can receive
variables, return results or modify variables and return them, depending on how and where the
variable is declared.

3.7 Triggers

A database trigger is procedural code that is automatically executed in response to certain events on
a particular table or view in a database. The trigger is mostly used for keeping the integrity of the
information on the database. For example, when a new record (representing a new worker) added to
the employees table, new records should be created also in the tables of the taxes, vacations, and
salaries.

The syntax is as follows:

CREATE TRIGGER <TriggerName> ON <TableName>
FOR INSERT, UPDATE, DELETE
AS

Tutorial: Database Communication in LabVIEW

4Structured Query
Language (SQL)

SQL (Structured Query Language) is a database computer language designed for managing data in
relational database management systems (RDBMS).

4.1 Queries

The most common operation in SQL is the query, which is performed with the declarative SELECT
statement. SELECT retrieves data from one or more tables, or expressions. Standard SELECT
statements have no persistent effects on the database.

Queries allow the user to describe desired data, leaving the database management system (DBMS)
responsible for planning, optimizing, and performing the physical operations necessary to produce
that result as it chooses.

A query includes a list of columns to be included in the final result immediately following the SELECT
keyword. An asterisk ("*") can also be used to specify that the query should return all columns of the
queried tables. SELECT is the most complex statement in SQL, with optional keywords and clauses
that include:

e The FROM clause which indicates the table(s) from which data is to be retrieved. The FROM
clause can include optional JOIN subclauses to specify the rules for joining tables.

e The WHERE clause includes a comparison predicate, which restricts the rows returned by the
query. The WHERE clause eliminates all rows from the result set for which the comparison
predicate does not evaluate to True.

e The GROUP BY clause is used to project rows having common values into a smaller set of
rows. GROUP BY is often used in conjunction with SQL aggregation functions or to eliminate
duplicate rows from a result set. The WHERE clause is applied before the GROUP BY clause.

e The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY
clause. Because it acts on the results of the GROUP BY clause, aggregation functions can be
used in the HAVING clause predicate.

e The ORDER BY clause identifies which columns are used to sort the resulting data, and in
which direction they should be sorted (options are ascending or descending). Without an
ORDER BY clause, the order of rows returned by an SQL query is undefined.

Example:

12

13 Structured Query Language (SQL)

The following is an example of a SELECT query that returns a list of expensive books. The query
retrieves all rows from the Book table in which the price column contains a value greater than
100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list indicates that
all columns of the Book table should be included in the result set.

SELECT *

FROM Book

WHERE price > 100.00
ORDER BY title;

The example below demonstrates a query of multiple tables, grouping, and aggregation, by returning
a list of books and the number of authors associated with each book.

SELECT Book.title,count (*) AS Authors

FROM Book

JOIN Book author ON Book.isbn = Book author.isbn
GROUP BY Book.title

Example output might resemble the following:

Title Authors
SQL Examples and Guide 4
The Joy of SQL 1
An Introduction to SQL 2
Pitfalls of SQL 1

4.2 Data manipulation

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete data.

The acronym CRUD refers to all of the major functions that need to be implemented in a relational
database application to consider it complete. Each letter in the acronym can be mapped to a
standard SQL statement:

Operation sqQL
Create INSERT
Read (Retrieve) SELECT
Update UPDATE
Delete (Destroy) DELETE

Example: INSERT

INSERT adds rows to an existing table, e.g.,:

Tutorial: Database Communication in LabVIEW

14

Structured Query Language (SQL)

INSERT INTO My table fieldl, field2,
VALUES ('test', 'N', NULL)

Example: UPDATE

UPDATE modifies a set of existing table rows, e.g.,:

UPDATE My table
SET fieldl = 'updated value'
WHERE field2 = 'N'

Example: DELETE

DELETE removes existing rows from a table, e.g.,:

DELETE FROM My table
WHERE field2 = 'N'

4.3 Data definition

The Data Definition Language (DDL) manages table and index structure. The most basic items of DDL

are the CREATE, ALTER, RENAME and DROP statements:

e CREATE creates an object (a table, for example) in the database.

e DROP deletes an object in the database, usually irretrievably.

e ALTER modifies the structure an existing object in various ways—for example, adding a

column to an existing table.

Example: CREATE

Create a Database Table

CREATE TABLE My table
(
my fieldl INT,
my field2 VARCHAR (50) ,

my field3 DATE NOT NULL,

PRIMARY KEY (my fieldl)

4.4 Data types

Each column in an SQL table declares the type(s) that column may contain. ANSI SQL includes the

following datatypes.

4.4.1 Character strings

Tutorial: Database Communication in LabVIEW

15 Structured Query Language (SQL)

e CHARACTER(n) or CHAR(n) — fixed-width n-character string, padded with spaces as needed

e CHARACTER VARYING(n) or VARCHAR(n) — variable-width string with a maximum size of n
characters

o NATIONAL CHARACTER(n) or NCHAR(n) — fixed width string supporting an international
character set

e NATIONAL CHARACTER VARYING(n) or NVARCHAR(n) — variable-width NCHAR string

4.4.2 Bit strings

BIT(n) — an array of n bits
BIT VARYING(n) — an array of up to n bits

443 Numbers

INTEGER and SMALLINT
FLOAT, REAL and DOUBLE PRECISION
NUMERIC(precision, scale) or DECIMAL(precision, scale)

444 Date and Time

e DATE

e TIME

e TIMESTAMP
e |NTERVAL

Tutorial: Database Communication in LabVIEW

5Database Modelling

5.1 ER Diagram

In software engineering, an Entity-Relationship Model (ERM) is an abstract and conceptual
representation of data. Entity-relationship modeling is a database modeling method, used to
produce a type of conceptual schema or semantic data model of a system, often a relational
database, and its requirements in a top-down fashion.

Diagrams created using this process are called entity-relationship diagrams, or ER diagrams or ERDs
for short.

4, Sl

P A, O
> = ~—=- i s
e . TR R g =
| himtigetn s T_—) Lo i, Cosbiwm) —
i) .

Accoust | W | Chuarmcaer |} K\L\a\vﬂ—’; Region |

R
i Scheillsl i

e S, L]

‘:\\'\._\-:,’Il') -
b -
. *‘3;? { e | W
\._E__.-'
> . By

There are many ER diagramming tools. Some of the proprietary ER diagramming tools are ERwin,
Enterprise Architect and Microsoft Visio.

Microsoft SQL Server has also a built-in tool for creating Database Diagrams.

16

http://en.wikipedia.org/wiki/File:ER_Diagram_MMORPG.png

17

Database Modelling

rosoft SQL Server Management Stud

Fle Ed iew Debuy TableDesigner DatabaseDiagram Tools Window Communty Help
ANencuery [y (3 5 3 2
== alb | TableView~ | %x 33 1) |1 41 39 | 100% -8 a2 EE,,
Object Explorer ~ # X | PC88235.TEST - Customer | Table Seript.sa.. 5. TEST (sa (§4)) | SQLQuery3.sdl .. TEST (sa (S2))* Detals ~ X | |Properties > X
Connect - | @3 43 | togm1 customer .
= [PCaB235 (SQL Server 10.0.2531 - 33) CUSTOMER PRODUCT
El g Datasha;zes s s CTT o il Colurnn Name Data Typs, alow Nulls B (tentity)
B Bysten Dotaboses ¥ customertd int Productid int
= [master
5 [Tables Firsthiame varchar(sn) Productiiame varchar(S0y O Bl Database Designer
(3 System Tables Lasthiame varchar(st) ProductDescription varchar(0y
3 views Address varchar(S0) Price float
(3 Synonyms Productcode varchar(s0y
5 Programmabity Phans varchan(S0)
(3 Service Broker PostCode varchar(st)
(3 security Postaddress varchar(sn)
[wadel
g msc < | @
[tempds |3 = =
a g e 5 fﬁ
1 [Database Diagrams
=23 dbo. Customer
= [Tables ORDER ORDER_DETATL
g 2;5‘2(”&;5‘;; Column Name Data Type Alow Nuls Colun Name Data Type Alow Nulls
o
3 dhoORDER 7 orderd irt] @ orderDetaitd int (]
1 cho.ORGER_DETALL Orderhiumber varchar(S0)] Crdertd int (]
3 dba.PRODUCT OrderDescription varchari(50) Productld int [m]
(2 views
Customertd 3
e e ustomer n & O
(2 Programmabilty [o
(23 Service Broker
(2 sty
(3 Securty < |8
(3 Server Objects
[Replcation
(3 Managemert
(Tdentity)
Item(s) Saved

5.2 Microsoft Visio

Microsoft Visio is a diagramming program for creating different kinds of diagrams. Visio have a

template for creating Database Model Diagrams.

B wicrosoft Visio

File Edt Vew Insert Format Tooks Dsta Shape Window Hslp Adobe PDF Type a question for help |+
N-EHS &0 B X F| SR LA B Gl]
- I u A - - Dr - [Thene -E=- L
=l
Template Categories =
Software and Database
[Getting Started
(3 Samples
Featured Templates ~
[Business
(23 Engineering
(23 Flowchart D
[General
(23 Maps and Floor Flans
[Metwark = ——
[Schedule
| 5oftware and Database Database Model Diagram UML Moded Diagram Windows P User
Interface
Other Templates
Database Modeling Template
Document;, design, generate®, and update™ databasss, Supporks IDEFLY
and relational notations. *Generate and update are features of the Visual
Studio edition.
oM and OLE Conceptusl Web Site Data Flow Model Disgram Enterprise Application MR s (JUEnS (6T
[I g i
[— =
Express-G Jacksan GRM Diagram Program Structure
v

Tutorial: Database Communication in LabVIEW

18

Database Modelling

In the Database menu Visio offers lots of functionality regarding your database model.

& Database Model.vsd - Microsoft Visio

EI_U] File Edit Miew Insert Format Tools Data

Database hghape Window Help

N-=E-H _-.j hgh I\ 4 ﬁ ¥ Ba @ ™ Reverse Engineer. ..

" Avial - 12pt . rug = Show Relabed Tables

: Refresh Maodel, ..
Wiew

Shapes * =

Search Far Shapes:

Type vour search here

8

H Entity Relationship (Mekrich

E Entity

TRV]

category

Category

Relations,..

e

Impork

User Defined Types...

Coptions

L A
K- -

MG

Customerld

FirstName
LastMame
Address

“Reverse Engineering” is the opposite procedure, i.e., extraction of a database schema from an
existing database into a database model in Microsoft Visio.

5.3 EXERCISES

Exercise: Database Diagram

Create the following tables in an ER Diagram using MS Visio.

e CUSTOMER
o Customerld (PK)
FirstName
o LastName
o Address
o Phone
o PostCode
o PostAddress
e PRODUCT
o Productld (PK)
o ProductName
o ProductDescription
o Price
o ProductCode

Tutorial: Database Communication in LabVIEW

19 Database Modelling

e ORDER
o Orderld (PK)
o OrderNumber
o OrderDescription
o Customerld (FK)

e ORDER_DETAIL
o OrderDetailld (PK)
o Orderld (FK)
o Productld (FK)

Database Diagram:

Database Model.vsd - Microsoft

I_] Fie Edit WView Insert Format Tools Data Dafabase Shape Window Help Type & questionFor help = o @ X
EHS R TH ABAX S 9-0 -85 CL A G| S o
A - Z - O - [Theme

shapes x

Search for Shapes:
Type your search here v

.

] Entity Relationshin (Metric) s CUSTOMER PRODUCT

E Enty ﬂlﬁ = PK | Customerld Productid

B view ¢ Pantie FirstName ProductName

= EE g LastName ProductDescription
- Category Address Price

i R Phone ProductCode

[T Dumarnic PostCode Yy

i connector 2 PostAddress

ORDER_DETAIL

rderl: PK | OrderDetailld

Orderld

OrderNumber
v Productld

OrderDescription
Customerld

L4
4 b M[Page 1 1< >
9 Cotegories:
2|, Definiton
g | Colmns Physical Name DataType | Regd | PK Notes | add
A ey iD [¥|Customertd TNTEGER CustomerTd identifies CUSTOMER. I
i T"ﬂ;;:é || Firstame VARCHAR(10) [FirstName is of CUSTOMER | Remave
B| Cheek | |Lastitame YARCHAR(10) [LastMame is of CUSTOMER —
< Extended [|address YARCHAR(10) O [0 Address is of CUSTOMER '
L Notes [|Phone YARCHAR(10) O [Phoneis of CUSTOMER
[_|PostCode YARCHAR(10) O [0 PostCode is of CUSTOMER
| |Postaddress YARCHAR(SO) O [Postaddress is of CUSTOMER +| MoveDonn
| S
~ Show: (" Portabledatatype @ Physical datatype (Microsoft Access)
[Ohject Relational (Metrich | x
Wickh = 32,565 mn Height = 43,747 mm #ngle =0 deg Page 1/1

Tutorial: Database Communication in LabVIEW

6Microsoft SQL Server

6.1 Introduction

Microsoft SQL Server is a relational model database server produced by Microsoft. Its primary query
languages are T-SQL and ANSI SQL.

The latest version is Microsoft SQL Server 2008.

Microsoft SQL Server homepage: www.microsoft.com/sglserver

The Microsoft SQL Server comes in different versions, such as:

e SQL Server Developer Edition
e SQL Server Enterprise Edition
e SQL Server Web Edition

e SQL Server Express Edition

e Etc.

The SQL Server Express Edition is a freely-downloadable and -distributable version.

6.2 Requirements

In order to install SQL Server 2008, you need:

e Microsoft .NET Framework 3.5 SP1
e Windows Installer 4.5
e Windows PowerShell 1.0

Note: You must have administrative rights on the computer to install Microsoft SQL Server 2008.

6.3 SQL Server Express

The SQL Server Express Edition is a freely-downloadable and -distributable version.

However, the Express edition has a number of technical restrictions which make it undesirable for
large-scale deployments, including:

20

http://www.microsoft.com/sqlserver

21 Microsoft SQL Server

e Maximum database size of 4 GB per. The 4 GB limit applies per database (log files excluded);
but in some scenarios users can access more data through the use of multiple interconnected
databases.

e Single physical CPU, multiple cores

e 1 GB of RAM (runs on any size RAM system, but uses only 1 GB)

SQL Server Express offers a GUI tools for database management in a separate download and
installation package, called SQL Server Management Studio Express.

6.4 AdventureWorks

The AdventureWorks is a sample Database with lots of examples, etc.

You should install this sample Database because some of the examples in this document will use the
AdventureWorks database.

6.5 SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring, managing, and
administering all components within Microsoft SQL Server. The tool includes both script editors and
graphical tools that work with objects and features of the server. As mentioned earlier, version of
SQL Server Management Studio is also available for SQL Server Express Edition, for which it is known
as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the user to
browse, select, and act upon any of the objects within the server. It can be used to visually observe
and analyze query plans and optimize the database performance, among others. SQL Server
Management Studio can also be used to create a new database, alter any existing database schema
by adding or modifying tables and indexes, or analyze performance. It includes the query windows
which provide a GUI based interface to write and execute queries.

Tutorial: Database Communication in LabVIEW

22

Microsoft SQL Server

licrosoft SQL Server Management Studio

Fle Edt View Debug Tools

Qewauer |0 (56 4 5

Window Community Help

r SQLQuery1.sql -.aster (sa (52)) - > || Properties -1 x
—
@ a e TES ~| | current conmection parameters =
= |5 PCBA235 (SOL Server 10.0.2531 - 5a) INl=]
(= [Databases
5 [System Databases El Aggregate Status
= | master
B Connection
Connection name PCBE235 (sa)
[tempdt B Connection Details
(3 Security
[Server Objects
[(3 Replication
[# [Management
¥ Name
< | 3 The name of the connection.
) connected. (1/1) PCBE235 (10.05P1) saiS2) master DO:00:00 Orows
Ready

6.6 Create a new Database

It is quite simple to create a new database in Microsoft SQL Server. Just right-click on the
“Databases” node and select “New Database...”

Tutorial: Database Communication in LabVIEW

23 Microsoft SQL Server

=+ Microsoft SQL Server Management Studio

File Edit Wiew Debug Tools wWindow Community Help

Shewouery | [0y | [y |5 = 2 | &

=

=3 141 ! 4

Cbject Explorer _/Em
Connect~ &d & 5 7 [F] ﬁ

= | PCBE23S (SCL Server 10.0.2531 - sa)
=3
Cas Mew Database. ..
= TE - -
= Attach. ..
= Restore Database. .,
= Restore Files and Filegroups. ..
O
O Skart PowerShell
O
Ga Reports 3
[Secur
T3 Serve Refresh
[Replication
[Management

There are lots of settings you may set regarding your database, but the only information you must fill
in is the name of your database:

Tutorial: Database Communication in LabVIEW

24 Microsoft SQL Server

F New Database E]

Selectapage I .
Scrpt = Hel
24 General = sowt - [BHeb
4 Dptions
%7 Filegroups Database name: | |
Owner: |<defaull> | E
Dratabaze files:
Logical Mame File Type Filegroup Initial Size [MB] | Autogrowth
Rows Data FRIMARY By 1 ME, unresticted growth
_log Log Mot Applicable 1 By 10 percent, unresticted ar

Server,
PCEEZIE

Connection:
53

3} Wiew connection propertiss

Ready < bd
Add Femove
[Ok, l ’ Cancel

6.7 Backup/Restore

An important task in database systems is to take backup of the database with regular intervals, e.g.,

during the night when the system is not in use.

Database backup and Restore:

Tutorial: Database Communication in LabVIEW

25 Microsoft SQL Server

LB PCEE235 (301 Server 10.0,2531 - 5a)
= [Databases
[System Databases

= O I

= CH Mew Database, .
[ew Query
= CH
Script Database as 3
| Tasks] Detach. ..
Policies 4 Take Cffline
Ea Facets Bring Cnline
g Start Powershell Shrink, r
Ca Feparts 4 Back Up...
=
2 3 Securit Renanme Restare L4
g ;':' Delete Generate Scripts. ..
1=
Cm Crd Refresh Publish using Web Service, ..
= 3 Server Properties Import Data. ..
(3 Bt Export Data
[Linked Servers £
epp—

Back Up Database - TEST

%4 Dptions
Source
Database: v
Recovery model: |SIMF'LE |
Backup type: | Full w |
[] Copy Only Backup
Backup component:
(&) Database
Files and filegroups: |
Backup set
Mame: |TEST-FuII Databaze Backup |
Description: | |
Backup set will expire:
. @) After: |D s | days
O on (02112009 |

Server. L

PCogzas Destination

Cannestion: Back up to: ® Disk Tape

= Add..

_\!} “igw connection properties

Feady < 3 Contents
[Ok] [Cancel]

6.8 Example Database

Tutorial: Database Communication in LabVIEW

26

Microsoft SQL Server

Examples and exercises in this training are based on some basic tables. The Example Database

consists of the following Tables:

e CUSTOMER
Customerld (PK)

o FirstName
o LastName
o Address
o Phone
o PostCode
o PostAddress

e PRODUCT
o Productld (PK)
o ProductName
o ProductDescription
o Price
o ProductCode

e ORDER
o Orderld (PK)
o OrderNumber
o OrderDescription
o Customerld (FK)

e ORDER_DETAIL

O

O

O

OrderDetailld (PK)
Orderld (FK)
Productid (FK)

Tutorial: Database Communication in LabVIEW

27 Microsoft SQL Server

CUSTOMER PRODUCT
Colurnn Name Data Type Al Mulls Calurmn Mame Data Type Allowy Mulls
R Customerld ink F ¥ Productld int O
FirstMarnme warchar{50 n ProductMare varchar(50) |
Lasthame warchar(50) n ProductDescription varchar(50)
address varchar(50) Frice Float
Phane varchar(50) ProductCode varchar(s0)
PostCode varchar(50) O
PostAddress varchar(50)
O
< >
< > %
ORDER ORDER _DETAIL
Calumn Mame Data Type Allow Mulls Calumn Mame Data Type Allow Mulls
7 OrderId ink | ® OrderDetailld ink |
OrderMumber varchar(50) O OrderId int O
OrderDescription varchar(S0) ProductId ink |
CustomerId ink | |
O leced
< >

6.9 Exercises

Exercise: New Database

Create a new Database in MS SQL Server called TEST_SQLSERVER.

Exercise: Database Diagram

Create the tables in the Example Database using the Diagram Designer Tool in Microsoft SQL Server.

Exercise: Database Script

Create the tables in the Example Database Tables using SQL Code. Save the Tables as a SQL Script file
(.sql). Use The Query Tool in Microsoft SQL Server.

Exercise: ODBC

Create an ODBC connection for the Database.

Tutorial: Database Communication in LabVIEW

7Microsoft Office Access

7.1 Introduction

Microsoft Office Access, previously known as Microsoft Access, is a relational database management
system from Microsoft that combines the relational Microsoft Jet Database Engine with a graphical
user interface and software development tools. It is a member of the Microsoft Office suite of
applications and is included in the Professional and higher versions for Windows. Access stores data
in its own format based on the Access Jet Database Engine.

Microsoft Access is used by programmers and non-programmers to create their own simple database
solutions.

Microsoft Access is a file server-based database. Unlike client-server relational database
management systems (RDBMS), e.g., Microsoft SQL Server, Microsoft Access does not implement
database triggers, stored procedures, or transaction logging. All database tables, queries, forms,
reports, macros, and modules are stored in the Access Jet database as a single file. This makes
Microsoft Access useful in small applications, teaching, etc. because it is easy to move from one
computer to another.

7.2 Example Database

| will present an example database in Microsoft Access 2007 which will be used in some of the
examples and exercises in this document.

The database consists of the following tables:

e CUSTOMER
o Customerld (PK)
o FirstName
o LastName
o Address
o Phone
o PostCode
o PostAddress
e PRODUCT

o Productid (PK)
o ProductName

28

29 Microsoft Office Access

o ProductDescription
o Price
o ProductCode

e ORDER
o Orderld (PK)
o OrderNumber
o OrderDescription
o Customerld (FK)

e ORDER_DETAIL
o OrderDetailld (PK)
o Orderld (FK)
o Productid (FK)

Relationship Tools | TEST : Database (Access 2007)

Database Tools Acrobat Design
3 it e | New = Totals S| /; Selection _Jlj lac Replace
23 Copy v =Hsave ¥ speling || | 7] Advanced = GoTo
view || Paste I u|[A =] a7 ||| Refresh) Filter Find
Format Painter ||| ® L3l Jl& -2 1 | X Delete ~ F={ More - 7 Toggle Filter ; Select
] i
@ Security Warning Certain content in the database has been disabled | Options...
CUSTOMER £ 4 | Table: CUSTOMER Refresh
B CUSTOMER: Table S| ® objects that cepend onme
PRODUCT 2 O Objects that I depend on
3 PRODUCT: Table CUSTOMER PRODUCT &l Tebles
o A ¥ Customerld ¥ Productld Mane
Firstame ProductName 5 Queries
E orpER: Table Lastiame ProductDescription Mane
ORDER_DETAIL 2 Address Price B Forms
. Phone PraductCads Tone
FE] ORDER_DETAIL: Table e e S Reports
PostAddress Hone
ORDER ORDER_DETAIL
W ordend ¢ OrderDetailld
Orderflumbar Orderld
OrderDescription Productid
Customerld
Help
+| @ Things that cause
TP » dependencies

ODBC Connection:

Administrative Tools - Data Sources (ODBC)

Tutorial: Database Communication in LabVIEW

30 Microsoft Office Access

&1 DDBC Data Source Administrator

LserDSH - System DSH] File DSM] Drivers] Tracing] Connectian F'u:noling] About]

System Data Sources:

M arne | Drriver Add...

Default_Databaze Mational Instrumentz Citadel 5 [

LabWIEW Microzoft Access Driver [“.mdb’ Remowve
Microzoft Acceszs Driver [*.mdb,

Htreme Sample Database 2008 Microzoft Acceszs Driver [*.mdb’

|~

)

An ODBC System data source stores information about how to connect to
the indicated data provider. & Swstem data source is visible to all users
on thiz machine, including MT services.

0k Ayt Hielp

7.3 Exercises

Exercise: Database

Create a new Database in MS Access called TEST.

@ .. - TableTools | TEST : Database (Acces:
Home Create External Data Database Tools Acrobat

Datasheet
=, 4 v 5 a
M #-Cut Ifon -] d | = New = Totals Al | {7 selection j‘j e Replace
T 32 copy =l Hse % spaing || £} i ¥ advancea - & GoTa-
View || Paste -2 - [EE- | [a ||| Refresh Filter ind
- # Format painter ||| B <1 [|22 -/ [BH-[=5 E [P T et - ERwore - |45 7 Toggle Fiter Iy select-
& G
x
@ security Warning Certain content inthe database has been disabled | Options..
All Tables @) «[[a3 Re\at\unimqu CUSTOMER x
CUSTOMER 3 Customerld - | FirstName - | LastName -| Address +| Phone - | PostCode - |PostAddres: - |Add Nq Tabe: customer Refresh
1 CUSTOMER: Table * @ Objects that depand onme
PRODUCT 2 O Objects that I depend on
1 PrODUCT: Table 5 s
None
LTI = Bl Queries
=] ORDER: Table None
ORDER DETAIL 2 & Forms
= Nene
ORDER_DETAIL : Table B reports
None
Help
@ Things that cause
Recora 4 1 RS T Qlr—— o| - dependences
b B]

Exercise: Database Tables

Tutorial: Database Communication in LabVIEW

31

Microsoft Office Access

Create the tables in the Example Database Tables using the Diagram Designer Tool in Microsoft SQL

Server.

¥ Productld
Productiame
ProductDescription
Price
ProductCade

% Customerld
Firsthame
LastMame
Address
Phane
FostCode
PostAddress

¥ Orderld
OrderMumber

ZrderDescription
Customerld

Exercise: ODBC

Create an ODBC connection for the Database.

¥ OrderDetailld
Crderld
Productld

Tutorial: Database Communication in LabVIEW

8ODBC

8.1 What is ODBC?

In computing, Open Database Connectivity (ODBC) provides a standard software APl method for
using database management systems (DBMS). The designers of ODBC aimed to make it independent

of programming languages, database systems, and operating systems.

8.2 Create an ODBC Connection in “ODBC

Data Source Administrator”

Follow these steps:

Add a new Data Source and select the SQL Server driver:

#71 DDBC Data Source Administrator,

User SN | System DSM | File DSM | Drivers | Tracing | Connection Fooling | About |

.
Remove
Configure...

User Data Sources: 1

| Drrivver
Microzoft dB ase Driver [*.dbi]
icrozoft Ewcel Driver [* xls]

M ame

Excel Files
M5 Access Databaze Microzoft Access Driver [*.mdb)

AnODBC User data source stores information about how to connect ba
the indicated data provider. A User data source is only wisible to pou,
and can only be used on the curent machine

=]

Awvbryt Hielp

@)X

Data Source

Select a driver for which you want to zet up a data source.

Mame |
Microsoft Parado=-Treiber [*.db |

Microsoft Text Driver [*tat; " cav]

Microsoft Text-Treiber [*tat: *.cav]

Microsoft Visual FoxPro Driver

Microzoft Vizual FoxPro-Treiber

u_m:@adel 5 Databaze

~

[AL I S P

54l

&

Type a Name for your Connection and your SQL Server Name. You find your Server name as shown

below:

32

33 ODBC

Creale a New Daia Source to SQL Se| El Microsoft SO Server Management Studio

File Edit “iew Tools “Window Community Help
Thiz wizard will help you create an ODEC data source that you can use to
connect to SOL Server. :J_ Tevs Query L-Ej Dﬂ ="~ =

What hamne do pou want to use tﬁel?r to the data source?

Mame: |TEST

How do pou want to dezcribe the data zource?

[System Datahase!

Description: ‘

= | TeEsT
. [Database Diagrams
‘whhich SOL Server do you want to connect to? 3 Tables
Server [PCE3Z35\DEVELOPMENT] =] 3 views

[Synaryms
=3 pogranmatiy . YOU find your Server
[Service Broker
Bn socurty Name here!
| Security
[Server Objects
[Replication
[Management

Fullfar | Neste > Buhirpt Hielp

Select SQL Server authentication and type your sa password (System Administrator). You defined
the password for the sa user during the setup procedure of SQL Server:

Create a New Data Source to SQL Server [g\ Create a Mew Data Source to SQL Server

[+ Charge the default database to: (.

[Altach database filename:

Haow should SOL Server wverify the authenticity of the login [D?

7 wiith windows MT authentication using the network login [D

& With SOL Server authentication using a login ID and passward
entered by the user.

waid Tochange the network library used to communicate with SOL Server, "
o v 7o click Client Canfiguration.
croazl -
Client Configuration...
~
v Connect to SOL Server to abtain default settings for the o
additional configuration options. ¥ Use AN quoted identifiers.
W Use AMSI nulls, paddings and wamings.
7 Login [D: ‘sa P 9 9
OPassword: [r~

< Tilbake Meste » | Avbryt Hielp < Tibake | Meste » | Awbryt Hielp

Complete your configuration and Test your data source to see if its OK:

Create a New Data Source to SQL Server, | ODBC Microsoft SQL Server Setup |

A new ODBC data source will be created with the fallawing

[~ Change the language of SOL Server system messages to: configuration:
| J Microsaft SUL Server ODBC Driver Wersion 03.85.1132
Data Source Mame: TEST
™ Use strong encryption for data Data Source Description:
. Server: PCO3230\DEVELOPMENT
Iv Perform hanslation for character data Database: TEST
r Use regional settings when outputting currency, numbers, dates and Language: [Defaul]
times. Trarslate Character Data: Yes
. . § Log Long Running Queries: No
[~ Save long running queries ta the log file: Log Driver Statistics: Mo
Use Integrated Security: Mo
| Use Regional Settings: Mo
Prepared Statements Option: Drop temporary procedures on

Long query time [milizeconds): disconnect

Use Failower Server: No
I” Log ODBC driver statistics ta the lag file: Usze ANS| Quoted |dentifiers: Yes

Use ANSI Null, Paddings and Warnings: Yes
| Data Encryption: Mo

< Tibake Fulfar dabt | Hielo | Test Data Source oK Cancel

Tutorial: Database Communication in LabVIEW

34 ODBC

If you get this message you have succeeded:

SOL Server ODBC Data Source Test

X

Test Results

icrozoft SOL Server ODBC Driver Wersion 03.85.1132
Running connectivity tests..

Attermnpting connechion

Connection establizhed

Werifying option settings

Digconnecting from sarver

TESTS COMPLETED SUCCESSFULLY!

8.3 Get data into Excel using your ODBC
Connection

The purpose is to use Excel as a client and get data into Excel from your SQL Server.

Step 1: Open Excel and go to the Data section:

Tutorial: Database Communication in LabVIEW

35 ODBC

Bookl - M

Review View Developer Add-Ins Acrobat Team @

#= show Detail

: " 0 & = % SrE ar -
E T K [I& W g el
L 3 1 Properties -':., Reapply S== = — b t “= Hide Detail
From From Existing Refresh . gi Sort Filter v Textto Remove Data Consolidate What-If Group Ungroup Subtotal
Access Web Sz Connections All- =2 Edit Links 7 Advanced || Columns Duplicates Validation ~ Analysis ~ - -
Get Ext e H From SQL Server ort & 2
G4 =h Create a connedtion to a SQL Server table. Import data v
into Excel as a Table or PivotTable report. i
A 8| 7= From Analysis Services H | 3 K L M N o o Q R M

’ Create a connedtion to a SQL Server Analysis Services cube. [
Import data into Excel as a Table or PivotTable repart.
El From XML Data Import
-
|5f#] Open armap 3 XML file into Excel.

From Data Connection Wizard

1 Import data i
l_‘j mection Wizard and OLEDE.

& From Microsoft Query >

< |55 Import data for an unlisted farmat by using the Microsoft
Query Wizard and QDBC.

[using the Data

e e e e
GIRB(R|IE B[v|n|~ o lwv|&|wiv=|g

16
17
13

Home Insert Page Layout Formulas Review View Developer Add-Ins A

¥ é # # Evl L, ‘ By @ @ Connedions T . Clear
[=8 l—u \—u = “ Properties 'l;r Reapply
From From From From Other Existing Refresh - Z| sort Filter

Access Web Text Sources+ | Connections || All= = EditLinks X7 Advanced

| A B C D E F G H | J

1

2

3

a Databases | Queries I OLAP Cubes |

=
<Mew Data Source:

6 AocessTest® ﬂl
dBASE Files™

7 Defaul_D atabase” Browse... |

38 Excel Files*

5 LabWIEw= Options.. |
M5 Access Database™

10 Delete

L Fireme Sample Databaze 2008+ 4'

E @I IV Uge the Query Wizard to create/edit queries

13

14

15

Step 3: Select your Table(s)

Tutorial: Database Communication in LabVIEW

36 ODBC

Home Insert Page Layout Formulas Review View Developer Add-Ins
5 B AL R 1 ~ |Co] connections || 4 5 4 Clear =
- = AlZ)
=) < | @ Zl Z|A
I_[E\f Es &r ‘ =i LR IS Properties R & Reapply || =
From From From From Other Existing Refresh o i¢ Sort Filter 7 Text to
Actess Web Text SourcesT | Connections || an- = EditLinks 2 Advanced || column

A A B C D E F G H I J
1
2 Query Wizard - Choose Columns
3
a What columns of data do pou want to include in your queny?
5 Available tables and columns: Columns in your query:
= A > | Studentld d
6 Classld B StudentN ame j
<
7 STUDENT_COURSE < Sudenthumber
2 syrmetric_keys =] « | Phone
g SYNORYME
1 snsalifiles b
10 < | 3
L Presviews of data in selected column:
12 I
13
14
15) . .
Preview Mo Optians... < Tilbake I Meste » I Aot
17
18

Step 4: Insert Data into Excel

Query Wizard - Finish

—wWhat would you like ta do nest?

& Return Data to Microsoft Office Excel Save Query... |

" Yiew data or edit query in Microsoft Querny

EI| <Tilbake| Fullfar I Avbiyt

The results should look something like this:

Tutorial: Database Communication in LabVIEW

ODBC

Hame Insert Page Layout Formulas Data Review View Developer Add

:l ‘ =1 Wrap Text [

#=|| =5 Merge & Center ~ |||

H Calibri lu -la Sf|=
ot 153 Copy
a's : fFormat Painter

A B C D E; IF G
3 Barak Obama 33333333333 White House 12 45667722
2 lens Stoltenberg 2222232323222 Pilstredet 45 66773899
1 John Cleese 11111111111 Pilstredet 12 12343678
4 Kurt Nilsen P e KarlJohan 34 44332277,

=
DLDDDH-JCI‘-M&LUMHK

Tutorial: Database Communication in LabVIEW

9LabVIEW Database
Connectivity Toolkit

LabVIEW offers an additional Toolkit called “LabVIEW Database Connectivity Toolkit”. With this
toolkit you can communicate with different databases, such as SQL Server, Oracle, etc.

Functions Palette: Connectivity - Database

V1 T

[~ ree—
Choowe MBI ™

== = = = T M
@l ool OE EEE i1 5] &
DE Toaols Ope... DB Toals Clas,., DB Toals Inse... DB Toals Sele... LIkl
EEiE] R %-EI E
OE (EEH] el g e &
DB Tools Cre.,, DB Tools Dra,,, Database Yar.., Advanced

The following list describes the main features of the Database Connectivity Toolkit:

e Works with any provider that adheres to the Microsoft ActiveX Data Object (ADO) standard.

e Works with any database driver that complies with ODBC or OLE DB.

e Maintains a high level of portability. In many cases, you can port an application to another
database by changing the connection information you pass to the DB Tools Open Connection
VI.

e Converts database column values from native data types to standard Database Connectivity
Toolkit data types, further enhancing portability.

e Permits the use of SQL statements with all supported database systems, even non-SQL
systems.

e Includes VIs to retrieve the name and data type of a column returned by a SELECT statement.

e Creates tables and selects, inserts, updates, and deletes records without using SQL
statements.

Some of the text in this chapter is based on the “LabVIEW Database Connectivity Toolkit User

III

Manua

38

39 LabVIEW Database Connectivity Toolkit

9.1 Connect to the Database

Before you can access data in a table or execute SQL statements, you must establish a connection to
a database. You may use different methods in order to connect to the database:

e ODBC Data Source Name (DSN)
e Universal Data Link (UDL)
e Connection String

These different methods are explained below.

For all of these methods, you will use the same VI:

>

DB Tools Open Connection.vi

userlD

connection information =]
prompt? (Fy -

BETOF N (N0 error) e
passwiord

conneckion reference

errar out

Opens a database connection using the connection information
path and returns a connection reference. If prompk? is set ko
TRUE, LabYIEW displavs a dialog box to set up the conneckion,
Wire data ko the connection information input to determine
the paolymorphic instance to use or manually select the inskance,

Detailed help 3

Connecting to a database is where most errors occur because each database management system
(DBMS) uses different parameters for the connection and different levels of security. The different
standards also use different methods of connecting to databases. For example, ODBC uses Data
Source Names (DSN) for the connection, whereas the Microsoft ActiveX Data Object (ADO) standard
uses Universal Data Links (UDL) for the connection. The “DB Tools Open Connection.vi” VI supports
all these methods for connecting to a database.

When you are finished with reading from the database and writing to the database, you should
always close the Connection. Use the “DB Tools Close Connection.vi”.

Tutorial: Database Communication in LabVIEW

40 LabVIEW Database Connectivity Toolkit

~

DB Tools Close Connection.yi

=
DE%

connection reference

Error in (No error) == error out

loses a dakabase connection by destroving its
associated connection reference,

Detailed help v

9.1.1 DSN

A DSN (ODBC Data Source Name (DSN)) is the name of the data source, or database, to which you
are connecting. The DSN also contains information about the ODBC driver and other connection
attributes including paths, security information, and read-only status of the database. Two main
types of DSNs exist: machine DSNs and file DSNs. Machine DSNs are in the system registry and apply
to all users of the computer system or to a single user. DSNs that apply to all users of a computer
system are system DSNs. DSNs that apply to single users are user DSNs. A file DSN is a text file with a
.dsn extension and is accessible to anyone with proper permissions. File DSNs are not restricted to a
single user or computer system. Use the ODBC Data Source Administrator to create and configure
DSNss.

In the Control Panel, Administrative Tools, you find the ODBC Data Source Administrator tool.

€ ODBC Data Source Administrator

User DSH Spstem DSM l File DSM] Dirivers] Tracing] Connection F'u:u:uling] About]

System Data Sources:

N arne | Driver Add...
Default_Databaze Mational [nstruments Citadel 5 L
Labts | Ehw Microzoft Access Dnver [“.mdb’

Htreme Sample Databaze 2008 Microsaft Access Driver [F.rdb

ik

An ODBC System data zource ztores information about how to connect o
the indicated data provider. & System data zource iz vizible to all uzers
an thiz machine, including MT services.

| 0k, | Skt Hielp

Tutorial: Database Communication in LabVIEW

41 LabVIEW Database Connectivity Toolkit

Example: DSN

This Example specifies a DSN called MS Access to open a connection to that specific database.

DE Tools Open Simple Errar
conneckion information Canneckion. i Handler . wi

ﬁ‘
o ()

Example: DSN from File

You can use a path to specify a file DSN. This example specifies a path to a file DSN called
“access.dsn” to open a connection to the database.

DE Tools Open Simple Errar
connection infarmation Conneckion, vi Handler, vi

5 C:Program Filest Common Files),

QDEC\Daka Sourcestaccess. dsn

7

Example: DSN with Userld and Password

Most Database systems (DBMS — Database Management Systems) also require a Userld and a
Password.

userlD

abc K

o] DB Tools Open Simple Error
conneckion information Cdrnection. vi Handler . vi

[orcL - 1=g=
fE
passwaord m““"ﬁ@
||E [}

9.1.2 UDL

Whereas you must create a DSN to connect to a database using ODBC, you use UDL (Universal Data
Link) to connect to databases that use ADO and OLE DB.

A UDL is similar to a DSN in that it describes more than just the data source. A UDL specifies what
OLE DB provider is used, server information, the user ID and password, the default database, and
other related information.

In order to create a new UDL file, create an empty text file and change the file extension of this
document from .txt to .udl. You then can double-click the UDL file to display the Data Link Properties
dialog box.

Tutorial: Database Communication in LabVIEW

42

LabVIEW Database Connectivity Toolkit

B3 Datakoblingsegenskaper,

Tieneste | Tikobling | Avansert | &t |

Yelg dataene du vil koble til:

OLE DB-leverandarer)

MediaCatalogDB OLE DE Provider
MediaCatalogMergedDB OLE DB Provider
MediaCatalogw'ebDE OLE DB Provider
Microzoft Jet 4.0 OLE DB Provider

Microzoft Office 12.0 Access Databaze Engine

Microzoft OLE DB Provider For Data Mining Ser
Microzaft OLE DB Prosider for Indesing Service

M OLE DE Provider for ODBC Drivers

Micrazoft OLE DB Provider for Analysiz Services 9.0

Microzoft OLE DB Provider far Internet Publizhing

Microzoft OLE DB Provider for OLAF Services 8.0
ticrozoft OLE DB Provider for Oracle
ticrozoft OLE DE Provider for Search
ticrozoft OLE DE Provider for SOL Server
Microzoft OLE DB Simple Provider

ME D ataShape

3

OLE DE Proe

VICES

Neste »>

()8 | Awbryt

| Hielp ‘

Example: UDL

Connect to a Database using UDL:

DE Toals Open

conneckion information Conneckion, vi

|%Cdatabaset access, udl

ol

Sirple Errar
Handler i

9.1.3 Connection String

Rather than including an existing UDL in an application, you also can use an ODBC connection string

with the Microsoft ActiveX Data Object (ADO) standard.

A connection string is written like this:

PROVIDER=SQLOLEDB; DATA

SOURCE=server name;UID=user name;PWD=password; DATABASE=database name;

You could use more parameters, but the parameters used above are the most common ones.

9.2 Reading Data from the

Database

Reading data from a database table is similar to writing data to the database. You open a connection

to the database, select the data from a table, and then close the connection.

Tutorial: Database Communication in LabVIEW

43 LabVIEW Database Connectivity Toolkit

The “DB Tools Select Data.vi" is used to read data from the Database:

DB Tools Select Data.vi

conneckion reference out

data
etror auk

connection reference
table -

1]
columns mjmﬂ

error in {no error)

Selecks data From the table in the database identified by connection
reference using the columns supplied in the columns array,

Detailed help 7

Example: Select Data from MS Access

The following example gets data from the CUSTOMER table in MS Access.

data
]
BSM] . [OB Tools Open Connection.wi] DE Tools Seleck Data,vi DE Tooks Close Connection.wi] (simple Error Handler vi]
=hCcessTesk i I [FZEL
e [cosTomer =z 0
ol on o (8

The Front Panel looks like this:

data
? -ralue =1 || Malue -= Per || Malug -= Milsen | Malue -= Vipeveien 51 -
]

H(¥ < ? < ? < ?
[]

| |
alue -= 2 || Walue -= Tor -~ || Walue -= Jensen « | Malue -= Kiglnesveien 12 ~
b w w w
< > < ¥ < > < >

Notice in Figures 5-4 and 5-5 that the database data is returned as a two-dimensional array of
variants. As the name implies, the Microsoft ActiveX Data Object (ADO) standard is based on ActiveX,
which defines variants as its data types. Variants work well in languages such as Visual Basic that are
not strongly typed. Because LabVIEW is strongly typed, you must use the Database Variant To Data

Tutorial: Database Communication in LabVIEW

44 LabVIEW Database Connectivity Toolkit

function to convert the variant data to a LabVIEW data type before you can display the data in
standard indicators such as graphs, charts, and LEDs.

Example: Select Data from MS Access

The following example gets data from the CUSTOMER table in MS Access and converts the data to
text.

DS

DB Tools Open Conneckion.wii DE Tools Select Data,vi] DF Tools Close Connection.wi| |[Simple Error Handler. vi
AccessTest {=T=] =T | =
ICUSTOMERI‘ "
o nsg\iﬂ@ oeliB
N
M
I%_ZI
Bl %_.IEI [faodlinannnt Kabc]
ostE)
[l a
[l)
The Front Panel looks like this:
Database Data
1 Per Milsen Vipeveien 51 12345678 1234 Parsgrunn A
2 Tor Jensen Kjglnesveien 12 45673932 SoEa Eergen

You may read from more than one table if you use a comma-delimited string to specify multiple table
names:

Tutorial: Database Communication in LabVIEW

45 LabVIEW Database Connectivity Toolkit

DM DE Tools Open Connection. vi DE Tools Select Data,wil
ArccessTast =@=| =

R
DB@ DB@

QCLISTC|I"-‘1EI-'-LJ PRODUC@—

You may select which columns you want to read by using the “Columns” input:

LM DE Tools Open Connection, vi DE Tools Seleck Data, il
AccessTest =@=| ICLISTOMER __'@izu.
DE@ DBEE

ustormerTd
FirstMarme Jpesp=s

You may also restrict which data to receive using the “optional Clause” input:

Qwhere LastMame="Milsen'

.DEL.__ DE Tools Open Connection. vi| DE Tools Seleck Data, vi
jiccessTesti™ =@=| [cisromer [R

el
CustornetId
Firskhame casad

—=—F

Example: Read Data

Using some VIs from the “Advanced” palette, create the following example:

Tutorial: Database Communication in LabVIEW

46

LabVIEW Database Connectivity Toolkit

DE Tools Open Connection, vi| [DB Tools Execute Query v
==

AccessTest

e
A i

Simﬁle Error Handler i

select CustomerId, FirstMame, Lasthame
From CUSTOMER.

where

LastMame="Tlsen'

9.3 Writing Data to the Database

Writing data to a database with the LabVIEW Database Connectivity Toolkit is similar to reading data
to a file. You open a connection, insert the data, and close the connection when you are finished.

The “DB Tools Insert Data.vi" is used to write data to the Database:

create table? (F)

data

connection reference
table

colurns

error in {no error)
Flatten cluster? {F)

connection reference.

DB Tools Insert Data.vi

Inserts a new row inko the table in the database identified by the

conneckion reference out

error ouk

Detailed help

[£

RS

Example: Write Data

Create the following block diagram:

Tutorial: Database Communication in LabVIEW

47 LabVIEW Database Connectivity Toolkit

DSH DE Tools Open Connection, vi] DE Tools Insert Data,vi] [DE Tools Close Connection.vi] — [Simple Error Handler vl

[t Tesk I =i
ceess Tes =@=‘ [CEToMER s 0=
oe o [

i:]

o FirstMarne
LastManie
Address
Fhone
PostCode
Postaddress

Front Panel:

Data

Skogweien 12

F7E89933

455

rondheinm

Example: Write Data

Create the following block diagram using some VIs from the “Advanced” palette.

Ii_nsert into CUSTOMER. (FirstMame, LastNaLni_e, address, Phone, PostCode, Postaddress) values ('%hs', 'S’ 'Yhs', 'Yos', %S, "Yos') |
]

Firsthlame
m LastMarne
[t Address
Phone
PostCode
Postaddress

(=] DE Tools Open Connection.vi| |DB Tools Execute Query.vi| |DE Tools Free Object.vi| |DE Tools Close Connection. vi] Simﬁle Error Handler,wi

AccessTest =®=| (- X e ==
DB& i &

DB

Tutorial: Database Communication in LabVIEW

48 LabVIEW Database Connectivity Toolkit

9.4 Creating and Dropping Tables

You may use standard SQL syntax in order to create:

CREATE TABLE <TableName> (..)

Or you may use the “DB Tools Create Table.vi” in order to create a table.

Context Help

DB Tools Create Table.vi
connection reference B conneckion reference ouk
table - e
column infarmation fﬂ DE}? error out

Errar in (no error)

Creates a new table in the database identified by connection
reference. The table and column information inputs describe the
name aof the table and the properties of each column in the kable,
respeckively,

Detailed help

&[5]2 < >

[

You may use standard SQL syntax in order to drop tables (delete tables):

DROP TABLE <TableName>

Or you may use the “DB Tools Drop Table.vi” in order to drop/delete a table.

Context Help

DB Tools Drop Table.vi

connection reference | conneckion reference out
table - ol
errorin (no errar) ==t error ouk

Deletes the specified table From the database identified by
connection reference,

Detailed help

[

Tutorial: Database Communication in LabVIEW

49 LabVIEW Database Connectivity Toolkit

9.5 Using the Database Connectivity Toolkit
Utility VIs

In the “Utility” palette there are several useful Vs for getting more information about tables, saving
to text files, etc.

4 I (&, Search l o MiE i

FHLsT B st [l EET [T,
el O L el oo

DE Tools Lisk ... DB Tools List ... DB Tools Set ... DB Tools Gek ...
[FEE]IE] MRS H+[F] B+
ne: O LB ne: (S O LEEH

DE Toals For,.. DB Tools Dat.., DB Tools Sav... DB Taoals Loa...

Here is a short description of the Vs located in the “Utility” palette:

DE Tools List Tables,wil

=
1)
-

This VI lists the tables in the database identified by connection reference.

DE Tools List Columns. v |
B st

=
m

This VI lists the columns present in table. The column information includes the
name, the data type, and the defined size of the column.

B Tools Sek Properties. vi|

[

2 [
(GIE

This VI sets properties on the object as determined by the inputs.

[

B Tools Gek Properties, vi

=_[4]
BE

This VI gets properties of the object as determined by the inputs.

B Tools Formak Datekime Str.vil

[

This VI Returns a string containing the formatted date and time, and
identifies the string as a date/time string so other Vls can interpret it.

DE Tools Database Transaction. vi

MRS
@ This VI begins, commits, or rolls back a transaction for any type of
reference.

Tutorial: Database Communication in LabVIEW

50 LabVIEW Database Connectivity Toolkit

DE Tools Save Recordset To File, vil

This VI saves the recordset identified by the recordset reference to
either an XML or ADTG file. The ADTG file format is a proprietary format that only the LabVIEW
Database Connectivity Toolkit can interpret. The ADTG format results in a smaller file than the XML
format.

DE Tools Load Recordset From File, vi

This VI loads a recordset from a file and returns a recordset
reference that identifies this recordset. You can retrieve data from this recordset like any other
recordset, but some properties might not be available on this recordset.

9.6 Performing Advanced Database
Operations

When creating real programs you will soon need some of the Vs in the “Advanced” palette.

X

‘[]‘ I QSEarEh I B Wigw i

E{E;EE EFETEH E=ITH ™ FREE
oeliE OE o OE DE e

DE Tools Exe,.. DB Tools Feke,.. DB Tools Fetc,., DB Tools Fetc,.. DB Tools Free. ..
‘_HH "rnu ‘_H
el el el
DE Toals Maovw,., DB Tools Mavw,., DB Tools Mavw, ..
DE tEtE ol DE tetH
DE Toals Sek .., DB Toaols Gek .., DB Toals RUL., ..

Here is a short description of some of the Vs located in the “Advanced” palette:

[DE Tools Execute Query.vi
o= EXE
el

This VI Executes an SQL query and returns a recordset reference that you
must eventually free with the DB Tools Free Object VI.

DE Tools Fetch Recordset Data,vil

FETCH
EEr\ ALL|

DB@

This VI retrieves the data in the recordset identified by the recordset
reference input. You can convert each element in the array to its native LabVIEW data type using the
“Database Variant To Data function”.

Tutorial: Database Communication in LabVIEW

51 LabVIEW Database Connectivity Toolkit

DE Tools Free Objeck, vil

M- FREE
@ This VI frees an object by destroying its associated reference and returns a
different reference object.

Tutorial: Database Communication in LabVIEW

10 Creating and Using

Tables

The SQL syntax for creating a Table is as follows:

CREATE TABLE <TableName>

(
<ColumnName> <datatype>

The SQL syntax for inserting Data into a Table is as follows:

INSERT INTO <TableName> (<Columnl>, <Column2>,
VALUES (<Data for Columnl>, <Data for Column2>,

Example: Insert Data into Tables

We will insert some data into our tables:

CUSTOMER FRIELLEL
Column Name Data Type Al huls Column Name Data Type Allows Mulls
7 CustomerId ink O B Froductld int O
Firsthame varchar(S0) 0 ProductMame warchar{50) H
L asthame varchar(S0) 0 ProductDescription warchar{50)
Address wvarchar{50) Price float
Phone varchar(50) ProductCode warchar{50)
PostCode wvarchar{50) O
Postaddress wvarchar{50)
O
< | >
< I - % -
ORDER ORDER._DETAIL
Colurnn Mame Data Tvpe Al Mulls Column Mame Data Tvpe Allows Mulls
7 Orderld int O 7 OrderDetailld int O
OrderMumber warchar(50} O Orderld ink O
OrderDescription varchar{50} ProductId int O
Customnerld int O O
O [
< I

52

53 Creating and Using Tables

The following SQL Query inserts some example data into these tables:

-—-CUSTOMER

INSERT INTO [CUSTOMER]

([FirstName], [LastName], [Address], [Phone], [PostCode], [PostAddress]) VALUES
('"Per', 'Nilsen', 'Vipeveien 12', '12345678', '1234', 'Porsgrunn')

GO

INSERT INTO [CUSTOMER]

([FirstName], [LastName], [Address], [Phone], [PostCode], [PostAddress]) VALUES
('"Tor', 'Hansen', 'Vipeveien 15', '77775678', '4455', 'Bergen')

GO

INSERT INTO [CUSTOMER]

([FirstName], [LastName], [Address], [Phone], [PostCode], [PostAddress]) VALUES
('"Arne', 'Nilsen', 'Vipeveien 17', '12345778', '4434', 'Porsgrunn')

GO

—-—-PRODUCT

INSERT INTO [PRODUCT]

([ProductName], [ProductDescription], [Price], [ProductCode]) VALUES ('Product
A', 'This is product A', 1000, 'A-1234")

GO

INSERT INTO [PRODUCT]

([ProductName], [ProductDescription], [Price], [ProductCode]) VALUES ('Product
B', 'This is product B', 1000, 'B-1234")

GO

INSERT INTO [PRODUCT]

([ProductName], [ProductDescription], [Price], [ProductCode]) VALUES ('Product
C', 'This is product C', 1000, 'C-1234")

GO

--0ORDER

INSERT INTO [ORDER] ([OrderNumber], [OrderDescription], [CustomerId]) VALUES
('10001', 'This is Order 10001', 1)

GO

INSERT INTO [ORDER] ([OrderNumber], [OrderDescription], [CustomerId]) VALUES
('10002', 'This is Order 10002', 2)

GO

INSERT INTO [ORDER] ([OrderNumber], [OrderDescription], [CustomerId]) VALUES
('10003', 'This is Order 10003', 3)

GO

-—-ORDER DETATL

INSERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (1, 1)
EESERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (1, 2)
§§SERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (1, 3)
§;SERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (2, 1)
§§SERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (2, 2)
§§SERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (3, 3)
EESERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (3, 1)
§§SERT INTO [ORDER DETAIL] ([OrderId], [ProductId]) VALUES (3, 2)
GO

Tutorial: Database Communication in LabVIEW

54

Creating and Using Tables

GO

INSERT INTO [ORDER DETAIL] ([OrderId], [ProductId])

VALUES (3, 3)

Executing the following Queries then gives:

select * from CUSTOMER

1 Results | [y Messages

Cuztornerld | FirstMame | LaztMame = Addressz Fhone FoztCode = Postiddress
1 i - Per Milsen Vipeveien 12 12345678 1234 Porzgrunn
2 Tor Hanzen Wipeveien 15 Y7FAEST 4455 Bergen
Arne Milzen Wipevelen 17 12345778 4434 Farzgrunn
select * from PRODUCT
] Results | 7y Messages
Productld | Productdame | ProductDescription | Price | ProductCode
1 i1 - Product & Thisis product & 1000 41234
2 2 Froduct B Thiz iz product B 1000 B1234
3 3 Product C Thiz iz product C 100 C-1234
select * from [ORDER]
1 Results |y Messages
Orderld OrderfMumber | OrderD escription Custamerld

1 Thig iz Order 10001 1
2 2 10002 Thiz iz Order 10002 2
3 10003 Thiz iz Order 10003 3

select * from ORDER DETAIL

Tutorial: Database Communication in LabVIEW

55 Creating and Using Tables

T Results I;'j Meszages
OrderDetailld Orderld | Productld

5 2 1 5
3 3 1 3
4 4 2 1
] 5 2 2
E E 3 K]
7 7 3 1
a 8 3 2
9 3 3 3

10.1 Exercises

Run the queries above from LabVIEW.

Tutorial: Database Communication in LabVIEW

11 Creating and Using
Views

In database theory, a view consists of a stored query accessible as a virtual table composed of the
result set of a query. Unlike ordinary tables in a relational database, a view does not form part of the
physical schema: it is a dynamic, virtual table computed or collated from data in the database.
Changing the data in a table alters the data shown in subsequent invocations of the view.

Views can provide advantages over tables:

e Views can represent a subset of the data contained in a table

e Views can join and simplify multiple tables into a single virtual table

e Views can act as aggregated tables, where the database engine aggregates data (sum,
average etc) and presents the calculated results as part of the data

e Views can hide the complexity of data; for example a view could appear as Sales2000 or
Sales2001, transparently partitioning the actual underlying table

o Views take very little space to store; the database contains only the definition of a view, not
a copy of all the data it presents

e Depending on the SQL engine used, views can provide extra security

e Views can limit the degree of exposure of a table or tables to the outer world

Just as functions (in programming) can provide abstraction, so database users can create abstraction
by using views. In another parallel with functions, database users can manipulate nested views, thus
one view can aggregate data from other views.

Syntax:

CREATE VIEW <ViewName>
AS

Create a VIEW:

Step 1: Create a new View

56

57 Creating and Using Tables

Microsoft SQL Server, Management S5tu

File Edit WYiew Tools ‘“Window Community Help

o Mew Query | Ly |3y | (5 1 4 i
I] | o
Connect A4 4J = °F B @

= [B PCEEZ35IDEVELOPMEMT (SOL Server 10.0,2531 - 5a)

PCaE:
(= [Databases
[System Databases Name
= | TEST 7]
[Database Diagrams
= [Tahles
[System Tables

= dbo.CLASS

= dbo.SCHOOL

[Pra Fileer 4
S
= g S: Start PowerShell
3 Security Reports v
L3 Server Obij
3 Replication Refresh

3 Managemerit

Step 2: Add your tables

r Management Studio

Step 3: Add your columns

Fle Edt View Debug QueryDesigner Tools Window Commurity Help

Anewouer [y [y (5 0 o

EEEIEEET =M

Chject Explorer

Connect ~ | 43 &) = T O

= 1 X PC88235\DEVEL..T - dbo.view_1| Object Explorer Datals |

(= [Databases
(3 System Databases
= [TEST
[Database Diagrams
= [Tables
[System Tables
3 dbo.CLass
3 dbo.5CHOOL
= [Views
L3 System Yiews
3 Synonyms
(1 Programmability
{1 Service Broker
1 Security
3 Security
(3 Server Objects
3 Replication
(3 Management

= | b PCABZIS\DEVELOPMENT (SQL Server 10.0,2531 - sa)

Add Table

Tables | views | Functions | Synanyms

SCHOOL

~

¥

output | Sort Type
=
=

=

Sort O A

3

[mefresh [add][Close

)

<
1]

s

Qutput

Ready

Tutorial: Database Communication in LabVIEW

58 Creating and Using Tables

rosoft SQL Server Management Studio =]
Fle Edt View Debug QueryDesigner Took ‘Window Community Help
w0 25 I 4B
0 EE T EET .
Object Explorer ~ B X PCBB235YDEVEL...- dbo.¥iew_1*| Chbject Explorer Details | ~ X | Properties ~ 1 x
Connert~ 33 3 w T OF [Col] ClassName
© [PCEB2IS|DEVELOPMENT (SQL Server
= [Databases LI* (il Columns)
3 System Databisses ClassId Schoolid B (Identity)
& [TesT chociblame (Hame} Classhiams
[Datahase Diagrams B view Designer
= [Tables Allowtills Yes
[System Tables Collation Danish_Norwegiar
= dbo.CLASS &| DataType varchar
3 dbo.sCHOOL 2| g | Lenoth 50
& [Views = — Fredsion 0
[System Views Column alias Table OutpLt | Sort Type Sort Order Fiter or.. scale -
[Synonyms 13 SchoolName SCHOOL Size 50
(3 Programmabiliy Classhame CLASS
[Service Broker |
@ [Security < T | £
L3 Security SELECT dbo.5CHOOL. SchoolName, dbo,CLASS.Classhame
[Server Objects FROM dbo.CLASS INMER JOIN
[Repiication dbo,SCHOGL GN dho.CLASS, Sthoold = dho,5CHOGL Schoolid
[Management
< i I El
- i)
Output -1 X
(1dentity)
Ready

Step 4: Save it

T... Microsoft SQL Server Management Studio

File Edi WYiew Debug Q) er Tooks Window Communky Help
L Mewouery [y | [z@ B
=y PN ==
Object Explarer PC88235\DEVEL...- dbo.¥iew_1*| Cbject Explorer Detais | ~ X | Froperties ~ 1 x
Connect~ | @3 43 o 7 G #| | [coll ClassName -
i [CLASS _| | SCHOOL _|
= | {§ PCBBZISIDEVELOPMENT (SOL Server
© [Databases * (Al Columns) [/ (Al Colurnns)
[System Databases Schoolld B (Identity)
= 0 TesT (Name) Classhiame
[Database Diagrams (= v b=
o £3 Tables Allow bulls — Ves
[System Tables Collation Danish_Norwegiar
3 dbo.CLasS &|| DataType varchar
3 dbe.sCHOOL /) 3 || Llenath 50
= [Views = — Precision 0
3 System views Column Filter o, Bl .. B
(3 Synonyms 3 Schoalame Al see 50
(23 Programmability Classhame
[Service Broker Enter a name for the view:)
[0 Security < Il =]
03 Securiy SELECT dbo,5CHOOL Schoolial
& [Server Cbjects FROM dbo. CLASS INNER. 1O
[Replication dbo. 5CHOOL ON db
[Management
] I | 3
< Til J (4 4 Dafu L3N 1 4 n
Output -1 x
(Identity)
=]

Using the VIEW in a Query:

Tutorial: Database Communication in LabVIEW

59

Creating and Using Tables

K. Microsoft SQL Server Management Stud

File Edit View Query

Debug

Tools

window Community Help
Anewquery | [1y | [= S B
42 fgd | TEST v ¥ Exeate b v 33 A
Obiject Explarer -« 1 X

Cornect~ | @7 & w 7 5§

PCEE23ISWDEVEL...T - dbo.CLASS

= [Databases
3 System Databases

= [TEST

(= [Tables

[System Tables

3 dbo.CLASS

3 dbo.5CHOOL

= [Views

| System Views

dba. Myview
[Synonyms
3 Programmability
[Service Broker
|4 Security

1 Security

[Server Objects

[Replication

1 Management

<

=] us PCEE23SIDEVELOPMENT (SQL Server

[Database Diagrams

select * from Hyvlem‘i

S0LQueryl.sql .. TEST {sa (52))*] PCE3235\DEVEL. .. T - dbo. Myview E Properties > 3 X

X
—
A Current connection parameters -
A

4 El

B Aggregate Status

¥ | |E Connection
Connection n: PCEE235DEVELO
E Connection Details

< >
(3 Results ||:j Messages |
SchoolMame | ClassName
1 SCE
2 SCE2

> @ Query executed successfully, PCB88235\DEYELOPMEMT (10,0 SP1) sa(52) TEST 00:00:00 2 rows
Dutput - 1 X
Name
The name of the connection,
Ready Ln1 Col 21 ch 21 NS

11.1

Exercises

Create a simple view based on the example tables and run the view from LabVIEW.

Tutorial: Database Communication in LabVIEW

12 Creating and using
Stored Procedures

A stored procedure is a subroutine available to applications accessing a relational database system.
Typical uses for stored procedures include data validation (integrated into the database) or access
control mechanisms. Furthermore, stored procedures are used to consolidate and centralize logic
that was originally implemented in applications. Large or complex processing that might require the
execution of several SQL statements is moved into stored procedures, and all applications call the
procedures only.

A stored procedure is a precompiled collection of SQL statements and optional control-of-flow
statements, similar to a macro. Each database and data provider supports stored procedures
differently. Stored procedures offer the following benefits to your database applications:

Performance—Stored Procedures are usually more efficient and faster than regular SQL queries
because SQL statements are parsed for syntactical accuracy and precompiled by the DBMS when the
stored procedure is created. Also, combining a large number of SQL statements with conditional logic
and parameters into a stored procedure allows the procedures to perform queries, make decisions,
and return results without extra trips to the database server.

Maintainability—Stored Procedures isolate the lower-level database structure from the application.
As long as the table names, column names, parameter names, and types do not change from what is
stated in the stored procedure, you do not need to modify the procedure when changes are made to
the database schema. Stored procedures are also a way to support modular SQL programming
because after you create a procedure, you and other users can reuse that procedure without
knowing the details of the tables involved.

Security—When creating tables in a database, the Database Administrator can set EXECUTE
permissions on stored procedures without granting SELECT, INSERT, UPDATE, and DELETE
permissions to users. Therefore, the data in these tables is protected from users who are not using
the stored procedures.

Stored procedures are similar to user-defined functions. The major difference is that functions can be
used like any other expression within SQL statements, whereas stored procedures must be invoked
using the CALL statement.

The syntax for creating a Stored Procedure is as follows:

CREATE PROCEDURE <ProcedureName>
@<Parameterl> <datatype>

60

61 Creating and using Stored Procedures

Example: Create a Stored Procedure

This Procedure gets Customer Data based on a specific Order Number.

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'sp CustomerOrders'
AND type = 'P')
DROP PROCEDURE sp CustomerOrders
GO

CREATE PROCEDURE sp CustomerOrders
@O0rderNumber varchar (50)

AS
L ——
Last Updated Date: 2009.11.03

Last Updated By: hans.pr.halvorsen@hit.no

Description: Get Customer Information from a specific Order Number

SET NOCOUNT ON
declare @CustomerId int

select @CustomerId = CustomerId from [ORDER] where OrderNumber = @OrderNumber

select CustomerId, FirstName, LastName, [Address], Phone from CUSTOMER where
CustomerId=Q@CustomerId

SET NOCOUNT OFF
GO

Example: Using a Stored Procedure

Using the Stored procedure like this

exec sp CustomerOrders '10002'

gives the following result:

] Results |;'_=] Meszages

Customnerld FirztMame | LaztMame | Address Phone

1 2 fTar Hanzen ‘ipeveien15 77775678

Tutorial: Database Communication in LabVIEW

62 Creating and using Stored Procedures

12.1 Exercises

Run the Stored Procedure created above from LabVIEW.

Tutorial: Database Communication in LabVIEW

13 Creating and Using
Triggers

A database trigger is procedural code that is automatically executed in response to certain events on
a particular table or view in a database. The trigger is mostly used for keeping the integrity of the
information on the database. For example, when a new record (representing a new worker) added to
the employees table, new records should be created also in the tables of the taxes, vacations, and
salaries.

Triggers are commonly used to:

e prevent changes (e.g. prevent an invoice from being changed after it's been mailed out)

e log changes (e.g. keep a copy of the old data)

e audit changes (e.g. keep a log of the users and roles involved in changes)

e enhance changes (e.g. ensure that every change to a record is time-stamped by the server's
clock, not the client's)

e enforce business rules (e.g. require that every invoice have at least one line item)

e execute business rules (e.g. notify a manager every time an employee's bank account
number changes)

e replicate data (e.g. store a record of every change, to be shipped to another database later)

e enhance performance (e.g. update the account balance after every detail transaction, for
faster queries)

The major features of database triggers, and their effects, are:

e do not accept parameters or arguments (but may store affected-data in temporary tables)

e cannot perform commit or rollback operations because they are part of the triggering SQL
statement

e can cancel a requested operation

e can cause mutating table errors, if they are poorly written.

Microsoft SQL Server supports triggers either after or instead of an insert, update, or delete
operation.

The syntax is as follows:

63

64 Creating and using Stored Procedures

CREATE TRIGGER <TriggerName> on <TableName>
FOR INSERT, UPDATE, DELETE

AS

. Create your Code here

GO

e Replace <TriggerName> with the Name of your Trigger
e Replace <TableName> with the Name of your Table

Define when the Trigger should be execute

o |[f the Trigger should be executed only when you insert data into the table: FOR INSERT
e |[f the Trigger should be executed only when you update data into the table: FOR UPDATE
e If the Trigger should be executed only when you delete data into the table: FOR DELETE

e If the Trigger should be executed when you insert and update data into the table: FOR
INSERT, UPDATE

e Etc.

Example: Trigger

The Example above change the “below” in the Table “SCHOOL” from ‘TUC’ to ‘Telemark University
College’

CREATE TRIGGER CheckSchoolData on SCHOOL
FOR INSERT, UPDATE
AS

DECLARE
@SchoolName varchar (50)
select @SchoolName=SchoolName from INSERTED
If @SchoolName="'TUC'
update SCHOOL set SchoolName='Telemark University College' where

SchoolName=@SchoolName

GO

Note! Note the use of a temporary table called “INSERTED”. This temporary table contains the last
inserted record into the SCHOOL table

Note! In SQL you define a variable like this

DECLARE
@myVariable <datatype>

Example:

DECLARE
@SchoolName varchar (10)

Tutorial: Database Communication in LabVIEW

65 Creating and using Stored Procedures

Note! You have to use the symbol “@"” before the name of the variable!!!

Below we see how we create a Trigger from the “SQL Server Management Studio”:

£ Microsoft SQL Server Management Studio

Fle Edt View Query Debug Tools ‘Window Commurity Help

Snewouery [[W G E ¢ (2) Insert the Trigger in your Database system by clicking Execute

44 {3 | TEsT v | 1 Executs m 8 :gi 37 iy | gylEnlEy | = S A
Object Explorer ~ 4 x PCEB23S|DEVEL .. T - dbo.SCHOOL | SQLQuery2.sal ... TEST (sa (54))* ;quueryl.sql...m v X | Properties -1 x
Comnect~ | 4 41 = =3 £ CREATE TRIGGER CheckSchoolData on SCHOOL = current cennection parameters -

FOR INSERT, UPDATE
AS

© [b PCEEZIS\DEVELOPMENT (SCL Server 10.0.2531 - 5
= [Datahases
[System Databases
& (J TEST
[Database Diagrams
= [Tables

[0 System Tables
1 dbo.CLASS
= & dbo.3CHOOL

[Columns

@ Define your Trigger 1 =

B Aggregate Status

DECLARE y
& ~varchar (50)

BSchog Lk
chnnlNamES:hnDlNamE from INSERTED

If @SchoolName='TUC!

[keys update SCHOOL set $choolNawe='Telemark University College' where SehoolNewe=-BSchoolName B Connection
[Constraint: 4 Connection ni PCEEZ3S|DEVELON
= [Triggers fete] B Connection Details

[F] checkschoolData

X¥dft-Trigger will be

avews located here
L3 Synonyms

v
[Programmabilicy < | s
[Service Broker — -
[Security L1 Messages \
[Security Command(s) completed successfully.
[Serwer Objects
3 Replication
[Management 3) I everything is OK you get this message
< | 3 @Query exacuted successfully. PC8823S\DEVELOPMENT (10,0 SP1) sa (53) TEST 00:00:00 O rows
Output - 1 %
Auto-artach £o process '83] [SQL] PCABZ35' on machine 'BCESZ3S' succesdad.
The thread 'PCSSZ3SVDEVELOPMENT [53]' (0xZZe8) has exited with code 0 (0x0).
The program '[836] [SQL] PCEEZ35: PCESZIS\DEVELOPMENT' has exitad with code O (0x0).
Name
The name of the connection,
Ready Lnl4 Cal3 h3 NS

Check if the Trigger is working as expected:
Procedure:

Step 1: Check the data in your table before you do anything, e.g.:

select * from SCHOOL

Step 2: Insert some test data into your table, e.g.:

insert into SCHOOL (SchoolId, SchoolName) values (5, 'TUC'")

Step 3: Check the data has been updated according to your code in the Trigger:

select * from SCHOOL

Tutorial: Database Communication in LabVIEW

66 Creating and using Stored Procedures

SQLQuery3.sql ...TEST (sa (52))*| PCS5235\DEVEL...T - dbo.SCHOOL SQLQueryz.sal ...
gelect # from 3ICHOOL

4

1 Resuls -3 Messages
Schoolld = SchoolMame

1 i1 P MIT

2 2 ---------------------- Harvard

K] K] MHTHU

4 4 il /
3 5

Telemark University College

- As you see the data you inserted into the table has been automatically been changed by the
Trigger

13.1 Exercises

Create a Trigger that adds “+47” to all Phone numbers in the CUSTOMER table.

Test and see if the Trigger works properly by inserting and updating some data in the CUSTOMER
table.

Tutorial: Database Communication in LabVIEW

14 Creating and using
Functions

In SQL databases, a user-defined function provides a mechanism for extending the functionality of
the database server by adding a function that can be evaluated in SQL statements. The SQL standard
distinguishes between scalar and table functions. A scalar function returns only a single value (or
NULL), whereas a table function returns a (relational) table comprising zero or more rows, each row
with one or more columns.

Stored Procedures vs. Functions:

e Only functions can return a value (using the RETURN keyword).

e Stored procedures can use RETURN keyword but without any value being passed[1]

e Functions could be used in SELECT statements, provided they don’t do any data manipulation
and also should not have any OUT or IN OUT parameters.

e Functions must return a value, but for stored procedures this is not compulsory.

e Afunction can have only IN parameters, while stored procedures may have OUT or IN OUT
parameters.

o Afunction is a subprogram written to perform certain computations and return a single
value.

e Astored procedure is a subprogram written to perform a set of actions, and can return
multiple values using the OUT parameter or return no value at all.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

14.1 Exercises

Create a simple function that finds number of order for a specific customer and use it in the following
query:

“Select FirstName, LastName, fn NumberOfOrders (CustomerId) from CUSTOMER”

67

15 SQL Toolkit

| have made a simple and easy to-use SQL Toolkit. The SQL Toolkit is available for download from my
Blog: http://home.hit.no/~hansha/

15.1 Installation

The installation procedure is as follows:

Download the zip file SQLToolkit.zip from my Blog

Unzip the file

Copy "SQLToolkit.mnu" to ...\LabVIEW 2009\menus\Categories\

Copy "SQLToolkit.llb" to ...\LabVIEW 2009\vi.lib\

The SQL Toolkit is ready to use and in the Functions palette in LabVIEW a new palette named
"sQL" will appear.

O s

vk wN e

The SQL Toolkit palette in available in LabVIEW:

B | g
e MBI

S0l S0l =N Sl

OFEH ZELECT HECUTE CLOSE

S0L Open. i 0L Seleck,wi 0L Execute.vi SOL Close, i

The SQL Toolkit contains the following Vils:

=ie

P | “SQL Open.vi” - This VI open a connection to the database specified in the Connection string.
The connection string may be as follows:

“PROVIDER=SQLOLEDB; DATA SOURCE=xxx;UID=xxx; PWD=xxx; DATABASE=xxx"

You need to replace the “xxx” with the parameters from your database.

SRL
SELECT

“SQL Select.vi” -This VI get data from the database specified in the SQL Query. The output is a
2D string array with data.

68

http://home.hit.no/~hansha/

69 SQL Toolkit
T
[“SQL Execute.vi” - This VI executes a Query with no return Data, e.g., an INSERT statement
T
"] “sqL Close.vi” - This VI Close the connection to the database opened by "SQL Open.vi"

Two examples are also included:

En-1

Select.vi” in order to get data from the database.

Front panel:

“SQL — Example 1.vi” — This example selects data from a table. The example uses “SQL

P SOL - Example.vi Front Panel
File Edit Wew Project Operate Tools MWindow Help

OIE ‘ 13pt Application Font vl :mvi '._u:vi ﬁvl

Hans-Petter Halvorsen
hans.p.halvorsen@hit.no
Telernark University College Hegskolen i Telemark|
Departrnent of Electrical Engineering, Information Technology and Cybernetics

SEL Guery Data
3eiect = from CLSTOMER 9 0 1 Per Milszn Yipeveisn 12 12345678
9 0 Z Tor Hansen Yipeweien 15 FITOETE
3 Arme Milsen Yipeweien 17 12345778
4 Jonr EBlund Vipewveien 14 12366675

Block Diagram:

[SQL - Example1.vi Block Diagram

File Edit Yew Project Operate Tools Window Help

@)@ bu||E" o4 |[13t Dialog Fort v||;mv1|ﬁv||c§1v||1sjj

EEL Guery
[Labeh

P =eL |
[FROVIDER=SGLOLEDE; DATA SOURCE=s0:; LID=ro0g PWD =0 DA TABASE=TEST - . -------------------

|~

Ex-2

Execute.vi” in order to insert data into the database. No data is returned.

Front panel:

“SQL — Example 2.vi” — This example inserts data into a table. The example uses “SQL

Tutorial: Database Communication in LabVIEW

70 SQL Toolkit

! SQL - ExampleZ2.vi Front Panal

File Edit Wiew Project Cperate Tools Window Help IE‘
OIE | 13pt Application Fank |« ll :mvi ﬂ]:v'- |C§3v|
-~
Hans-Petter Halvorsen
hans. o halvarsen@hit.no .
Telernark University Colege Hagskolen i Telemark
Ciepartrment of Electrical Engineering, Inforrnation Technology and Cybernetics
SEL Query
INSER.T INTO [CUSTOMER] ([Firsthame], [LastMame],[Address],[Phone],[PostCade],[PostAddress])
WALUES ("ont', 'Blund', Wipeveien 14, '12366678", '1234', 'Porsgrunn’)
b
< | >

Block Diagram:

B SQL - Example2.vi Block Diagram

File Edit Wew Project Operate Tools ‘Window Help |E|
@)@ |..u||5|' o[Lt Disleg Fart ~|[3][1=~] |c§:v||1sdj
~
[T
|FROWIDER=30LOLEDE; DATA SOURCE=xxx;UID=1xxx; PWD=XXX;DATP«BASE=TEST|‘@ xz:::: ch:I;
A
< >

Example: Get Data into LabVIEW using SQL Toolkit

Download the SQL toolkit from the Homepage of the Database Lab and follow the instructions in the
ReadMe file.

On the Functions palette on your Block Diagram the following palette should appear:

Sound and Yibration k

Statechart r

=1 saL

Sl S0l Sl Sl

OFEH SELECT EHRECUTE GLOSE

QL Cpen.vi 3L Select,wi SQL Execute.wi 3QL Close, vi

Here is a simple example of how you get data from the database into LabVIEW:

Tutorial: Database Communication in LabVIEW

http://home.hit.no/~hansha/?lab=database

71 SQL Toolkit

Sl L SRl
SCHOOLTEST 2 o fab<] GLosE

OFEM

ls=lect * From STUDENT |-

The procedure is as follows:

Step 1:
EJ Untitled 1 Block Diagram *
File Edit Project Ope ools Window Help
QE@ 13pt Dialog Font vl :Dv! Tﬁv! eg'iv“@l
[[Queanltoven-]
SQL Open.vi SOL Select.vi SOL Executewvi SQL Close.vi
A
l @
Drag the "SQL Open.vi" into
your Diagram
2
< [T
Step 2:

Tutorial: Database Communication in LabVIEW

72

SQL Toolkit

Step 3 and 4:

Step 5:

& Untitled 1 Block Diagram *

Ele Edit Wew Project Operste Tools Window Help

DnolE o e r— e e

SQLOpen.vi SQLSelect.vi SQLExecute.si SQL Close.vi

@
.

TEST @

Right-click on the "Connection string input™ and
select "Create->Contant” and type the Name of
your ODBC Connection

|~

) Untitled 1 Block Diagram *

Fle Edt Vi

Project Qperat

[m][¢]

Tools sindow Help

Dj} [13pt Dilog Font

==

|~

=L | | o

Y B N

SQLopenvi SQLSelect.vl SQL Execite.vi SQL Close.wi

@ Drag the "SQL
Select” Vl into your
diagram

Connect the "SQL
Open.vi" and "SQL
Select.vi" together

£

Tutorial: Database Communication in LabVIEW

73

SQL Toolkit

Step 6:

Step 7:

B! Untitled 1 Block Diagram *

W

Project Operste Toolks ‘Window Help

O[m][%]

uﬂ IB;I Dislog Font \v] :Dvl .u.vl &vl@

4 I O‘Eear(hl ;:mewvl

L

SQLOpenvl SGLSelectwi SQLEsecute.vi

SQL Close,vi

Jselect * from SCHOCL

=

Right-click on the input of the "SQL

Select.vi" and select Create->Contant.

Then type your query, e.g., "select *

from SCHOOL"

B Untitled 1 Block Diagram *

File Edt View Project Operate Tools Window Help

= @IEI uj] \ 13pt Dialog Font

e

?IQsaanhL, " l

[

SQLopensi SOLSelectvi SOLExecute.

SQL Close.vi

=

Right-click on
the output and
select Create->

Indicator

Tutorial: Database Communication in LabVIEW

74 SQL Toolkit

B! Untitled 1 Block Diagram *
File Edit Wiew Project Operate Tools Window Help

(2]®] @ [0][] 28] fal]t [120t oot |- 1[50 [a~] [5+][><] :

B l QSearchI o Wiew ™ I

iz = =] =]
[) W, [}

SOL Open.wi SOL Seleck.wi SOL Execute.vi SQL Close.vi

7
Drag the "SQL
Close.vi" and
connect them
together

(%

|~
~

Step 8:

¥ Untitled 1 Front Panel *

Eile Edit \Miew Project Operate Tools Window Help
8~qu> |{§}I ©|E | 13pt Application Fank
4(J o
Data
;
gt i TUC
9 1] z MIT
Run yoyr program and the data will
appear in the array on your Front
Panel
v
< [

Tutorial: Database Communication in LabVIEW

L= [

i
Heagskolen i Telemark

Telemark University College
Faculty of Technology
Kjolnes Ring 56
N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

Room: B-237a

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

