
PLE Server Application Development Kit

User's Manual

Andrei Birjukov, Ivari Horm

© Artec Group LLC, 2010

PLE Server Application Development Kit
User's Manual

Table of Contents
About This Document...3

Intended Audience..3

Required Skills...3

Conventions..3

References..3

Vocabulary..4

1. Introduction..5

2. Package Contents..6

2.1. System Requirements...6

3. Installing SADK..7

4. PLE Terminal Application Concept..8

5. Running Demo Applications..8

6. Architecture of SADK...9

6.1. Application Framework...10

6.2. Server Design...12

6.3. Server Configuration..13

7. Developing New Applications..15

7.1 Using Java Persistence API..17

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 2 of 19

PLE Server Application Development Kit
User's Manual

About This Document

This manual describes the development kit components and server application development process for

Artec Triskan TS8 mobile data terminal.

Intended Audience

This document is intended for software engineers and system integrators who are planning to develop

PiccoLink ™ compatible applications running on terminal server and hosting Triskan TS8 devices equipped

with PLE firmware.

Required Skills

To use this development kit, a developer must be familiar with the following issues and possess the

following skills.

• General principles of client-server software architecture and TCP/IP communication

• Java SE skills and knowledge of API for Java 6

Conventions

This document uses the following conventions.

Courier Used to identify source code samples, commands and their parameters,

expressions, data types, etc.

Italic Used for emphasis and identification of file names and new terms.

References

The following documents are referenced from this document.

1. SADK library API documentation.

2. PLE Protocol Specification.

PiccoLink ™ is a trademark of Nordic Identification OY.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 3 of 19

PLE Server Application Development Kit
User's Manual

Vocabulary

Term Definition

JDT Java Development Tools, refers to the Eclipse IDE JDT distribution.

PLE PiccoLink™ Emulation, refers to a compatible implementation of a terminal

protocol.

RFID Radio Frequency Identification, refers to RFID reader function of the Triskan TS8

terminal.

SADK Server Application Development Kit, a library provided by Artec to help

implementing server-side applications for Triskan TS8 terminals.

SIM Subscriber Identification Module, refers to the GSM SIM card.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 4 of 19

PLE Server Application Development Kit
User's Manual

1. Introduction

Basic Triskan TS8 unit comes with the PLE firmware that integrates a terminal emulation application

running a PiccoLink-compatible protocol stack. The Triskan terminal communicates with a server backend

application via GPRS or WLAN bearers. The backend application implements a customer specific business

logic and a database, and provides the presentation interface to Triskan terminals by means of specially

crafted forms sent over a binary PiccoLink compatible PLE protocol.

Server Application Development Kit (SADK) is designed to simplify the development of server applications,

enabling for a rapid deployment of Triskan PLE terminals. The following principles are followed throughout

the development cycle.

• Simplicity. The server architecture was designed from scratch, allowing for a clean and modular

implementation. The developer is conveniently served with a small number of well-documented

interfaces that are exposed by the SADK.

• Rapid development. Comfortable Eclipse IDE, local and remote debugging support, Java type

safety, object and interface oriented approach of SADK simplifies development of server

applications.

• Cross-platform. Being completely portable, the server supports Windows, Linux, Mac OS X and

other OS-es capable of running Java SE virtual machine.

• UI abstractions. Application developer is not burdened with internals of the communication

protocol. Instead, SADK provides convenient abstractions for application forms and input fields.

• Multiple online terminals. The server is multi-threaded, enabling for a large quantity of

simultaneous connections without a significant performance penalty. Each Triskan terminal

connection is isolated: incoming data is processed separately, keeping the terminal context on per-

connection basis.

• Context persistence. Application instance with user data may be preserved on the server when a

terminal is disconnected unexpectedly (e.g. due to coverage issues). Upon reconnection, current

form and associated data will be restored automatically.

• Multiple applications, single server. The server supports many different applications available

simultaneously on one TCP port. Before launch, the specific application is looked up from the

database basing on the terminal serial number.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 5 of 19

PLE Server Application Development Kit
User's Manual

• Self-contained. Java SE runtime and MySQL database driver are integrated into SADK, no other

dependencies are required.

2. Package Contents

SADK is distributed as a ZIP archive file containing all necessary documentation, source code, libraries and

samples. Given below is the list of files included with SADK.

File Description

doc/manual.pdf PLE Server Application Development Kit User's Manual (this document)

doc/ple_protocol.pdf PLE Protocol Specification

doc/sadk-doc.zip Full documentation for SADK classes.

doc/license.txt SADK distribution license (MIT license)

src/pleSADK-nn.zip SADK Java source code with examples

jar/pleSADK-nn.jar Pre-built SADK library JAR without source code.

jar/pleServer.ini Server configuration file for stand-alone daemon setup

2.1. System Requirements

Given below are technical requirements for development of server based applications with SADK.

• PC running Windows XP/Vista/7, Linux (32-bit, 64-bit) or Mac OS X

• Java 6 SE Development Kit (http://java.sun.com/javase/downloads)

• NetBeans IDE for Java SE (http://www.netbeans.org/downloads)

-or-

• Eclipse IDE for Java Developers (http://www.eclipse.org/downloads)

The following is also required to deploy and test developed applications:

• Triskan TS8 mobile data terminal with integrated GPRS communication module.

• Operator contract or a prepaid GSM SIM card with GPRS traffic allowed.

• External IP address with possibility of mapping an inbound TCP port to your development machine

(or private network agreement with a cellular operator).

-or-

• Triskan TS8 mobile data terminal with integrated WLAN communication module.

• Standard IEEE 802.11b/g/n access point or router.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 6 of 19

http://java.sun.com/javase/downloads
http://www.eclipse.org/downloads
http://www.netbeans.org/downloads

PLE Server Application Development Kit
User's Manual

• Possibility of mapping an inbound TCP port to your development machine.

3. Installing SADK

Extract the provided redistributable package (sadk-revnn.zip) to any suitable location on your development

machine. Further, extract the SADK source code package located under src/pleSADK-nn.zip. Extract the

library API documentation located under doc/sadk-doc.zip.

Finally, import the SADK projects into your Java development IDE.

For NetBeans IDE for Java SE:

• Select File New Project→

• Choose the option “Java Project with Existing Sources”

• Browse to the location where you extracted the SADK source code (pleSADK-nn.zip).

• Check the Open as Main Project option and click Open Project

• Explore the newly appeared pleSADK project – the IDE builds it automatically.

• The following compile-time libraries must be available for a successful build (Select File Project→

Properties Libraries): →

◦ MySQL JDBC connector (mysql-connector-java-NNN.jar)

◦ EclipseLink(JPA 2.0)

• Note that default installation from Linux repositories (i.e. Ubuntu) does not include the EclipseLink

nor MySQL JDBC connector.

For Eclipse JDT IDE:

• Select File Import General / Existing Projects into Workspace→ →

• Click Next and browse to the location where you extracted the SADK source code (pleSADK.zip)

• Click Finish and explore the newly appeared pleSADK – the IDE builds it automatically.

For further development, you might not need the complete source code of SADK classes. In such case, feel

free to create separate projects for your applications and link them to the pre-built JRE library version of

SADK (pleSADK-nn.jar).

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 7 of 19

PLE Server Application Development Kit
User's Manual

4. PLE Terminal Application Concept

From a general point of view, an application that employs PLE protocol is based on a client-server model.

The data model and complete business logic of the PLE application reside on the server. User interface of

the application is based on text forms and is rendered on remote Triskan terminals via special messages of

the PLE protocol. The Triskan device thus acts as a simple terminal interpreting server messages and

displaying text as instructed. Also, user input from both terminal keypad and integrated readers is sent

back to the server for further processing.

The following constraints apply to PLE based applications.

• All applications are inherently on-line, assuming that network connection is available at all times.

• Server implements full business logic of the application: processes data and makes decisions.

• All application data is stored in a server database.

• Terminal screen contains text, rendered via fixed width font.

• Visible size of the terminal screen contains 20 rows and 8 columns of characters, total buffer size

is 20x12, vertical scrolling is allowed.

• 1D/2D scanner and RFID reader input is redirected to on-screen form fields.

• Server has limited control of Triskan peripherals.

• Local storage of Triskan terminal is not accessible to applications.

Firmware of the Triskan terminal takes care of power management and networking, keeping a connection

to server established. These and other basic tasks are running in the background of the terminal and do

not interfere with user applications. Developer does not need make modifications to Triskan firmware and

may concentrate on the application functionality instead; only connectivity related parameters may need

changing.

5. Running Demo Applications

All example application code is located in the ple.application package. There are two samples provided with

this version of SADK.

• Default application launcher: ple.application

Provides menu entries to launch different applications located in subpackages under this package.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 8 of 19

PLE Server Application Development Kit
User's Manual

• Hotel check-in demonstration: ple.application.checkin

This application implements a simple guest check-in screen. User scans a guest's badge and the

status is sent back to the terminal and reflected in the table of a GUI front-end.

• Ticket control demonstration: ple.application.checkticket

This application implements a simple ticket validation routine. User scans a ticket ID and the ticket

status is sent back to the terminal. GUI front-end allows adding new tickets.

• Warehouse inventory demonstration: ple.application.warehouse

Implements a simple inventory solution. Items can be added to warehouse both from the terminal

and GUI front-end. The inventory can later be performed by scanning the item entering the proper

quantity. The checkout routine enables to quickly scan items and reduce their quantity in the

warehouse.

• Field test demonstration: ple.application.fieldtest

Shows different input fields and their behaviour provided by PiccoLink protocol and implemented in

Triskan TS8 firmware.

• Protocol test demonstration: ple.application.protocoltests

Provides demos for testing various PiccoLink protocol capabilities.

The source code of provided demo applications is organized as follows.

• <PackageName> class – provides the entry point to the application. This class should be specified

in configuration file or called dynamically from another applicaton in order to launch the launch

the application instance.

• Database class – implements simple data model pattern. If application uses a database the

database to object model mapping is done here.

• DefaultForm class – the main form that is loaded in Triskan terminal when the application is first

started.

• Form classes – implement PLE input forms and contain application business logic.

6. Architecture of SADK

SADK library is built in a modular fashion. It provides a number of classes to build a PLE application server

that hosts a user application. Also, user is provided with flexible forms and plugin libraries that create a

foundation for building diverse hosted applications. The diagram below illustrates a top-level overview of

the SADK stack with relationship to external Java VM and SQL database.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 9 of 19

PLE Server Application Development Kit
User's Manual

Figure 1. General architecture of SADK.

Listed below are packages that the SADK library consists of.

• ple.server – contains classes and interfaces required to run the PLE server and manage

connections to remote Triskan terminals.

• ple.data – contains server data related classes: configuration and logging facilities and general

database connector handler that encapsulates Java Persistence routines.

• ple.protocol – contains classes and interfaces required to decode binary PLE protocol and create

protocol frames.

• ple.plugin – contains foundation classes and interfaces used to develop user applications hosted

by the PLE server.

• ple.application – contains examples of PLE applications. Developers may use this package for

own applications as well.

6.1. Application Framework

Triskan SADK proposes an event and form based approach to the application design. The most important

classes of the application framework are FormApplication and Form. All PLE applications are created by

the PLE server and implement a certain interface (CommandHandler). Through this interface, applications

react to events submitted by the PLE server. Further, the form abstraction layer is added, and protocol

command events are translated to form events and routed to form elements implemented by the Field

class and its subclasses.

Given below is a class diagram illustrating the internal design of the PLE application framework. For

simplicity, class methods and attributes are omitted and only the most important relationships are shown.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 10 of 19

PLE Server Application Development Kit
User's Manual

Figure 3. PLE application framework simplified class diagram.

• Application class provides the base for implementation of all applications hosted by PLE server

which should inherit from this class. Application receives raw protocol command events from the

remote terminals relayed by the PLE server via the CommandHandler interface.

• FormApplication class builds a form abstraction on top of the Application basis. FormApplication

encapsulates a number of user-defined forms that implement both presentation and business

logic layers of a PLE application. Also, FormApplication transparently calls rendering functions of

contained fields to generate appropriate PLE protocol commands and display forms on the screen

of a Triskan terminal. It is recommended that all user applications are inherited from this class, as

the developer is not bothered with internals of the PLE communication protocol in such case.

• Form class implements an input form displayed on the screen of a remote Triskan terminal. The

form may contain a number of input fields. The instance of the Form class receives events from an

associated remote terminal translated to a convenient format by FormApplication. All forms of a

form-based application should inherit from this class.

• Field class implements a base for user input controls of a form displayed on the screen of a

remote terminal. Subclasses of the field class implement buttons (Button), submit buttons

(SubmitButton), command buttons (CommandButton), text labels (TextField), input fields

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 11 of 19

PLE Server Application Development Kit
User's Manual

(InputField) and RFID input fields (RfidField). Fields implement functions to “render” themselves on

the screen by creating a sequence of terminal protocol commands.

6.2. Server Design

Given below is a class diagram illustrating the internal design of the PLE application server. For simplicity,

class methods and attributes are omitted and only the most important relationships are shown.

Figure 2. PLE server simplified class diagram.

Normally, a developer does not need to go into details of the PLE server implementation. The server is

started by instantiating the PleServer class and calling initialize() method. The server has configuration

stored to an external file .

Developer may use a stock application factory, such as SingleApplicationFactory or SqlApplicationFactory.

Alternatively, developer may implement a custom application factory and instruct the PLE server to use it

instead.

When using multiple applications, developer can use SqlApplicationFactory to instruct the server to load

the proper application based on the Triskan station ID. To provide access to multiple applications the

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 12 of 19

PLE Server Application Development Kit
User's Manual

default loader menu can be developed. It is possible to switch applications run-time by calling the special

method.

6.3. Server Configuration

The server reads its configuration from the pleServer.ini file located in the current working directory.

Samples of configuration files are provided in the distributed package. The format of the configuration file

is described below.

Parameter Description

serverPort Specifies the TCP port that the PLE server listens on.

idleTimeout Specifies the idle timeout of a connected PLE terminal, in seconds. The

terminal is disconnected if no new data is received within this time interval.

logFile Server log file name or full path to file.

applicationMode Specifies server application hosting mode, applies only to stand-alone daemon

setup. Supported modes are "single" (use one type of applications for all

terminals) and "multi" (use different applications basing on terminal serial

number, look up from SQL database).

applicationClass Contains the application class for a single application mode. Also specifies the

"default" fallback application class if the server fails to find a matching

application for a connected terminal. When changing applications dynamically,

this is also the default application which is loaded if no application name is

specified for the application switcher.

persistTimeout Context persistence timeout of a disconnected PLE terminal, in seconds. NB!

This option is only available to applications that use application factories with

persistent pools (e.g. MemoryPersistentPool).

sqlUrl Contains the JDBC URL pointing to a server database for application class

lookup. Applicable only to the multi-application mode of operation and when

using Java Persistence API.

sqlUser Contains a user name for authorization to the JDBC database.

sqlPasswd Contains a password for authorization to the JDBC database.

charMapMid Sets the character map to use for codes (128...159).

charMapCode Sets the character map to use for codes (160...255).

• Character map settings do not change the character map in the terminal but provide reasonable

defaults for custom character map configurations.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 13 of 19

PLE Server Application Development Kit
User's Manual

• SQL settings specified here are used both when application mode is set to “multi” as well as for

Java Persistence API. Note that when developing database applications the Java Persistence API is

configured using the META-INF/persistence.xml file. Nevertheless, the database server name,

user name and password can also be obtained from the pleServer.ini file.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 14 of 19

PLE Server Application Development Kit
User's Manual

7. Developing New Applications

The class diagram below illustrates the structure of a sample ticket validation application (see

ple.application.ticket package). This example is reviewed here for better understanding of the PLE

application design.

Follow the steps below to build a new integrated application hosted by the PLE server.

1. Create a new application class (e.g. YourApplication) and derive it from FormApplication.

import ple.plugin.FormApplication;

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 15 of 19

PLE Server Application Development Kit
User's Manual

public class YourApplication extends FormApplication {

}

2. Create a new initial form class (e.g. MainForm) and derive it from Form. Create a suitable

constructor to instantiate the form with a concrete identifier. The form identifier must be unique

for each kind of form.

import ple.plugin.Form

public class MainForm extends Form {

private static final int FORM_ID = 1;

public MainForm(FormApplication app) {

super(FORM_ID, app);

}

}

3. Override the processInitial() function in YourApplication class to create and render MainForm.

@Override
public void processInitial() {

Form f = new YourForm(this);
f.render();

}

4. Override the onInitialize() function in MainForm class to create user interface fields.

@Override

private inputField;

protected void onInitialize() {

addField(new TextField(0, " -- Welcome -- "));

addField(new TextField(60, "Enter text:"));

addField(inputField = new InputField(80, 16));

addField(new Button(148, "[OK]"));

}

5. Override the processFieldData() function or processComplete() function in MainForm class to

respond to terminal input events.

@Override

protected void processFieldData(Field f) {

if (f == inputField) {

// process data here

String data = f.getData();

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 16 of 19

PLE Server Application Development Kit
User's Manual

}

}

6. Instruct the PLE server to launch your application by defining the application class in the server

configuration file.

applicationMode=single

applicationClass=your.package.YourApplication

If you prefer to run your application stand-alone as a desktop program, follow the steps below to build a

GUI front-end for the PLE server.

1. Create a new desktop application class with main() entry point.

2. Develop your GUI front-end class using Java Swing, AWT or any other GUI toolkit.

3. Launch the PLE server by creating an instance of PleServer class and calling its initialize()

function.

private PleServer pleServer;

try {

pleServer = new PleServer();

pleServer.initialize();

} catch (PleServer.ServerException e) {

// error processing

}

7.1 Using Java Persistence API

The Java Persistence API (JPA) can be used to provide database storage for the applications.

1. Create the META-INF/persistence.xml file with the proper configuration:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="default" transaction-type="RESOURCE_LOCAL">

<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

<class>ple.application.MyPackage.EntityClassName</class>

<properties>

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 17 of 19

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence

PLE Server Application Development Kit
User's Manual

<property name="javax.persistence.jdbc.driver"

value="com.mysql.jdbc.Driver"/>

<property name="javax.persistence.jdbc.url"

value="jdbc:mysql://localhost:3306/table_name"/>

<property name="javax.persistence.jdbc.user" value="db_user"/>

<property name="javax.persistence.jdbc.password"

value="db_password"/>

</properties>

</persistence-unit>

</persistence>

2. Note that the persistence unit name must be used below to select proper database connection. The

persistence unit with name “default” can be used as a fallback solution when actual unit is not

found. The server connection URL, user name and password fields are optional. If the pleServer.ini

file contains valid credentials they will be used instead.

3. Create entity classes that provide object-relational mappings. Note that all entity classes that have

JPA annotations mus be specified by <class></class> attributes:

@Entity

@Table(name="badges")

public class Badge implements Serializable {

@Id

@Column(name="id", nullable=false)

private String id;

@Column(name="checkInDate")

@Temporal(TemporalType.TIMESTAMP)

private Date checkInDate;

@Column(name="checkOutDate")

@Temporal(TemporalType.TIMESTAMP)

private Date checkOutDate;

@Column(name="description")

private String description;

public Badge() { }

public Badge(String id) {

this.id = id;

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 18 of 19

PLE Server Application Development Kit
User's Manual

}

}

4. Create the database model class that implements database-to-object mapping:

import ple.plugin.Application;

import ple.data.DBConnector;

public class Database {

private DBConnector db;

public Database(Appliction app) {

}

}

5. Get the database connector instance from the terminal session and store it inside the class. Also

select the proper persistence identity from META-INF/persistence.xml to use with the application.

Example applications use package name as the identity string. The package name can be obtained

using the this.getClass().getPackage().getName() call.

public class Database {

private DBConnector db;

public Database(Appliction app) {

db = app.getTerminal().getDB();

db.selectDB(getClass().getPackage().getName(),”database_name”);

}

}

The selectDB() method accepts the database name as a last argument. If the database name is

specified, the server properties in META-INF/persistence.xml are ignored and database settings

from pleServer.ini will be used instead.

6. Create the methods to retrieve the data from database and store them with entity models (e.g

Badges) etc.

© Artec Group, 2010 Phone: +372 671 8550
Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 19 of 19

	About This Document
	Intended Audience
	Required Skills
	Conventions
	References
	Vocabulary
	1. Introduction
	2. Package Contents
	2.1. System Requirements

	3. Installing SADK
	4. PLE Terminal Application Concept
	5. Running Demo Applications
	6. Architecture of SADK
	6.1. Application Framework
	6.2. Server Design
	6.3. Server Configuration

	7. Developing New Applications
	7.1 Using Java Persistence API

