
EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING

DESIGN AUTOMAnON GROUP

THE BUTTER PROJECT,

A TEST CASE.

WJ.M. Philipsen

Master thesis
reporting on graduation work

perfonned from 01.12.87 to 24.08.88
by order of prof. dr. ing. J.A.G. Jess

and supervised by ir. G.L.J.M. Janssen

The Eindhoven University of Technology is not responsible
for the contents of training and thesis reports.

ABSTRACT

This report present a test-case for the design tools present at the Design Automation Group. We designed a
blitter, graphic processor, with these tools, and evaluated the use and the results obtained with them. Blitter
stands for Bit BLock Image TransfERrer. It can move large blocks of bitplane image data from one
location in memory to an other. We give a description of the blitter, and a description of the design process.
The blitter is not yet finished, but most parts are ready.

In the second part, there is a description of each tool and a report of the problems we encountered,
designing the blitter. It appeared that parts of the blitter were hard examples. We discovered some bugs in
the tools. But most of the problems have been solved.

CONlENTS

1. Introduction • • • • • • • • .

2. The Blitter • • • • • • • • •
2.1 A short description of the bit blitter.
2.2 The design path.
2.3 The Blitter Features. • • •

2.3.1 Data copying. 6
2.3.2 Pointers and modulos. 6
2.3.3 Ascending and descending addressing. 7
2.3.4 Shifting. 7
2.3.5 Logic operations. 8
2.3.6 Masking. 9
2.3.7 Area filling. 9

2.4 A formal description of the blitter. • • • • • • • • • • • • • • • • • •
2.4.1 The main loop. 11
2.4.2 The blitting part. 12
2.4.3 Logic operations 14
2.4.4 The Communication protocol. 14

2.5 Escher+ simulation.
2.5.1 The Escher+ scheme 17
2.5.2 The control unit. 18
2.5.3 Registers. 18
2.5.4 The behaviour of mask. 19
2.5.5 Logop. 19
2.5.6 Shift. 19
2.5.7 Display. 20

2.6 Final design.
2.6.1 The main controller. 22
2.6.2 Address generator. 25
2.6.3 Logic unit. 34
2.6.4 The size controller. 35
2.6.5 The register address decoder. 36

3. The ES design system.
3.1 ESKISS • • •
3.2 EUCLID

3.2.1 LOG_SIM The logic simplifier. 41
3.2.2 LOG_DECOM 41
3.2.3 LOG_MAPPER 44
3.2.4 Cell generation. 46

3.3 Placement and routing. ••.••
3.3.1 MACPLACE The Pluri-cell Placer 47
3.3.2 The floor planner. 49
3.3.3 ROCOCO The Router. 49

3.4 ESCHER+ Schematic Editor and Behaviour Evaluator. • • • . • • • • . • •
3.4.1 Introduction to escher. 52
3.4.2 The escher + simulator. 52

3.5 EULER The Layout Editor.
3.6 SLS Switched Level Simulator.
3.7 DALI Delft Advanced Layout Interface.

A. The C-source.

B. Eskiss input for the main controller.

REFERENCES • • • • • • •

- 1 -

1

2
3
5
6

11

17

21

38
40
41

47

52

54
55
57

58

67

70

LIST OF FIGURES

Figure 1. The Direct Memory Access system.

Figure 2. The addresses of an image in memory.

Figure 3. A window within a larger image.

Figure 4. example of shifting. . • . .

Figure 5. The minterms selected by LF control.

Figure 6. An example of masking. . • . •

Figure 7. An example of the filling facility.

Figure 8. The main loop. •

Figure 9. The blitting part.

Figure 10. logic operations.

Figure II. Reading from memory.

Figure 12. Reading with validation. •

Figure 13. Writing to memory.

Figure 14. Escher+ simulation scheme.

Figure 15. The blitter circuit. • • •

Figure 16. Behaviour to ESKISS translation example.

Figure 17. State machine for the main controller.

Figure 18. Get data state machine.

Figure 19. pUCdata state machine.

Figure 20. address generator . •

Figure 21. boolean description of a full adder.

Figure 22. Boolean description for the adder.

Figure 23. Gate description for one d flip flop.

Figure 24. Boolean description for a 2-channel4-bit multiplexer.

Figure 25. Layout for a small multiplexer. • • • • • •

Figure 26. State machine for the address generator controller.

Figure 27. ESKISS description for the address generator controller.

Figure 28. SLS simulation output for the controller. •

Figure 29. The logic unit.

Figure 30. One bit mask.

Figure 31. One cell for logop.

Figure 32. The size controller.

Figure 33. The connection between the tools.

- iii -

3

6

7

8

8

9

10

11

13

14

15

16

16

17

21

22

24

24

25

26

27

28

29

29

29

30

32

33

34

34

35

36

39

Figure 34. Inputfile for ESKISS.. • • • •

Figure 35. An example of the file decom_config.

Figure 36. Input example for lo&-decom. • •

Figure 37. Output of lo&-decom for the little example.

Figure 38. Example of the output of lo&-mapper.. •

Figure 39. Lay-out for a cell generated by log_celgen.

Figure 40. Places of the intervals in the interface file.

Figure 41. Routing examplefor a supply net. • • •

- iv -

40

42

42

43

45

47

. . . . 47

50

- 1 •

1. Introduction

Vast developments in the Integrated Circuit technology, increased the need for Computer Aided Design
tools. In the Design Automation Group of the department of Electrical Engineering of Eindhoven
University of Technology several tools have been developed. The goal of this project was to test these

tools, by designing a chip with them. The chip to be designed was a blitter, a graphics processor. The

specifications of an existing blitter have been used to design our own chip.

This report consists of two parts. In the first there is a description of the blitter, and its design. In the second
part We alloted each tool a section

-2-

2. The Slitter

In this chapter we discuss the bliuer. After a short description of a blitter,

and a bird's-eye view of the tools used for the design, there is a

description of the design process of the blitter.

- 3 -

2.1 A short description of the bit blitter.

Bliner is an abbreviation for block image transferrer. It is a graphics processor whose main application is

movement of large blocks of bitplane data. It can perform such operations, after a set-up of its registers,

considerably faster than an ordinary processor. It includes features to facilitate copying and processing of

"rectangular" regions of memory. Typically, these regions are areas within graphics images. The process of

performing a blitter operation is also called a blit.

The blitter uses up to four DMA (Direct Memory Access) channels. Of the four DMA channels, three are
dedicated to retrieving data from memory to the blitter. These are known as source A, source B and source

C. The one destination DMA channel is designated source D. It is not always necessary to use all the

channels. Each channel may independently be enabled. All three sources are fetched from memory in a

pipelined fashion and held in registers for logic combination before being send to destination.

Figure I shows the DMA-system. The DMA-controller distributes the memory cycles between the blitter
and the processor. If the blitter uses the memory while the processor works up it is last instruction, it
doesn't hold up the processor. The 68000 processor has been the example when processor dependent
features had to be defined.

Processor

DMA
controller

Memory

Slitter

Figure 1. The Direct Memory Access system.

A summary of the blitter features and operations:

• Data copying. The blitter can copy bit-plane image data, from one location to an other.

• Multiple pointers and modulos. Each ctllmnel has it is own pointer and modulo registers. This allows
the blitter to operate upon identical windows within larger images, with different sizes.

• Ascending and descending addressing. The blitter can address in two directions, it can either start at the
bottom or at the top of the window.

-4-

• Logic Operations. The blitter can perfonn a logic operation upon the data of the three sources before
transferring the result to the target. Before a blit is started, the blitter is set up to perfonn one of the

logic operations on the three data sources when preparing the output.

• Shifting. The blitter can shift one or two of its data sources up to 15 bits before applying the logic

operation. This is necessary when you want to move images across word boundaries.

• Masking. The blitter can mask the leftmost and the rightmost data word from each horizontal line of a

window.

• Area-filling. The blitter can perfonn hardware-assisted area fill between predrawn lines.

- 5 -

2.2 The design path.

In this section we will give an overview of the design system. To comprehend the discussion about the
blitter, it is necessary to know the design system in general. A thorough description of each tool can be

found in part two of this report.

This chip has been designed for the nmos process available at EFFIC (Eindhoven Fabrication Facility for

Integrated Circuits), using the 6\J. design rules.

We started with a thorough description of the functionality of the blitter in plain English, with the
description of the blitter in the Commodore Amiga personal computer(l] as an example. This description in

words was refined by writing a computer program, with the same functionality as the blitter, but that writes

it output to a terminal. The program was written in "C". We tried to make the C description as close as

possible to the functionality of the blitter. Non blitter functions, as writing to the screen, were placed in

separate functions.

Using this formal description of the blitter, it was divided into several high level blocks. For drawing the

pictures we used ESCHER (Eindhoven SCHematic EntRy). With the ESCHER+ simulator, an extension of
ESCHER, it is possible to add to each module a description of its behaviour, and to simulate the resulting

design. With these high level simulations one already encounters specific hardware problems, as for

example the communication between the different parts.

Stepwise refinement of the schematic with ESCHER, dividing large modules into smaller ones, finally

leads to two basic kind of modules: controllers and others. For the controller we made state machine

descriptions, using the behaviour descriptions from the ESCHER+ simulation. With ESKISS the

controllers have been converted into modules of the second kind. ESKISS computes a state encoding for

the state machine. The output is a boolean specification of the controller. For the other modules we

manually made boolean descriptions.

These logic specifications were optimized with EUCLID. The optimized logic specifications were prepared
with the technology mapper for the pluri-cell generator. The output of the technology mapper is a gate file.

The cell generator generates layout for these cells. and a netlist with the connections between the cells.

From the gatefile a SLS description can be made with the tool "lo&-sls". SLS is an abbreviation of

Switched Level Simulator, a logic simulator. These simulations proved to be useful, design errors could be
found in a very early stage.

The cells obtained with the cell generator were placed and routed with MACPLACE and ROCOCO. The

result is a pIuri-cell layout. The cells are placed in columns, and between the columns there are the routing
channels. MACPLACE computes a placement for the cells, and the connections were made by ROCOCO.

With the ftoorplanner, we made a ftoorplan for these modules, using the network we made with ESCHER.
The ftoorplan also was routed with ROCOCO.

From this final layout the circuit could be extracted again, and simulated with SLS.

-6-

2.3 The Slitter Features.

2.3.1 Data copying.

The most important function of a blitter is copying large blocks of image data from one location in memory

to an other. Bitplane images are usually stored in a linear way in memory. Each word is stored at the
address of it is left neighbour plus one. And the first word of a line is stored at the address of the last word
of the previous line plus one.

Figure 2 shows an example of a representation of a bit-plane. Each address accesses one 16 bit word. The

blitter needs only to know the starting point, the width and the height (in the example 10, 7 and 5). After

the processor has loaded the registers of the blitter, the blitter perfonns the transfer independently of the
processor. To get access to the memory it claims DMA cycles from the DMA manager. When it has

finished the blit operation the blitter signals this to the processor by setting an interrupt flag.

10 11 12 13 14 15 16

17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 32 33 34 35 36 37

38 39 40 41 42 43 44

Figure 2. The addresses of an image in memory.

2.3.2 Pointers and modulos.

In a pointer register the blitter stores the address of the next data word to fetch from memory. The 19-bit

addresses are divided in two parts. The upper 3 bits are stored in the PTH register, and the lower 16 in the

PTL register. In most systems, the memory will be divided in bytes, although the processor uses word (one

word is two bytes), addressing. For this reason the least significant bit will always be zero, and is in general

not implemented.

Our 19 bit address bus enables our bUtter to address the lower 512k word (= 1024 kbyte) of memory, twice

as much as the amount of the Amiga blitter.

Because each channel has its own pointer and modulo registers, each channel can address a bitplane with

different sizes, and at different locations.

When the blitter has to perfonn an operation on a part of an image, the bliuer uses the modulo registers.

The modulo is the difference of the width of the larger image and the smaller window, that the blitter
should operate upon. The modulo is added to address, at the end of each line. Because each channel has its

own modulo register, each channel may address a window within a larger bit-plane, with different sizes.

- 7 -

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31 32 33 34 35 36 37

38 39 40 41 42 43 44

Figure 3. A window within a larger image.

Figure 3 shows an example of an image larger as the window used. To operate upon the smaller window

only. the address sequence must be as follows:

19.20.21.26.27.28.33.34.35

This requires a nonnal increment of two each time. and at the end of each window line the additional jump

value. the modulo. to bring the pointer to the start of the next window-line. The module is 8 in this case. so

the original width of the image was 7 words.

2.3.3 Ascending and descending addressing.

It is important to be able to control the direction of addressing. when source and destination areas overlap.

When you want to move the data to a lower address in memory. you use ascending. and and when you

want to move the data to a higher address you use descending addressing. Otherwise it is possible that the

blitter writes to an address that is not yet read. With the fill operation only descending addressing is

available.

Also with shifting the direction of addressing is important. because a certain direction of addressing implies

a certain direction for shifting. The addressing direction is controlled by the bit desc in the CONI register.

2.3.4 Shifting.

In order to be able to shift an image any number of bits. and not just multiples of 16. there is a separate

shift facility. to shift words across word boundaries.

The shifter has the two last read words for one channel as input. These two words are put in one 32 bit

wide bit vector. For ascending addressing the oldest word is put at the most significant places. The output

will be bits (16-sh) through (31-sh). Sh is the number of bit to be shifted.

- 8 -

ASCENDING ADDRESSING

new

output

DESCENDING ADDRESSING

new

output
Figure 4. example of shifting.

When descending addressing is used, the words are placed the other way around in the vector. In this way

we will always have the word with the lowest address at the most significant place. In this case the output is

bits sh through (15+sh). Figure 4 shows a 4 bit shifting operation for both descending and ascending

addressing.

2.3.5 Logic operations.

Three sources are available to the blitter logic unit. These sources are usually one bit-plane from each of

three separate graphics images. While each of these sources is a rectangular region composed of many

points, the same logic function is performed to each point throughout the rectangular region.

The logic function performed on each point is chosen by the LF control byte in the BLTeONO register. For

each bit all possible minterms (8) are constructed. Each bit in the LF control byte enables one minterm.

Table I shows them. This gives 256 logic functions.

enable bits

minterms

7

ABC
6

ABC
5

ABC
4

ABC
3

ABC
2

ABC
I

ABC
o

ABC

Figure S. The minterms selected by LF control.

As an example I will derive the value for LF for the "cookie-cut" operator. The formula for the function is:

D=AB+AC

This is equal to:

D=ABC+ABC+ABC+ABC

Thus bits 7, 6, 3 and 2 should be high in LF to select the "cookie-cut". In [1] an other method can be found

to calculate the value for the logic function, a more confusing method.

- 9-

2.3.6 Masking.

All blitter operations are done upon words. To do operations on windows with a boundarys within a word,

the masking facility is available. Two masks can be defined. One the FWM (First Word Mask) will be laid

on the first word of each line. If a mask is laid on a word, all bits of the word, whose corresponding bit in

the data word is zero, will be treated as is they were zero's during further processing. The other mask,

LWM the Last Word Mask, will be apUied on the last word. Figure 6 gives an example.

input word

mask

result

oo111סס111001111 I

0ooooo111111111ס

ooסס0ooooo11ס 111

Figure 6. An example of masking.

2.3.7 Area filling.

The blitter can perform a hardware assisted area fill, between predrawn lines. It scans each word from

right to left for bit that are one. If it finds a one, it inverts its fill state. The output bit is always the fill state.

There are two filling modes:

• Inclusive fill

• Exclusive fill

If the input bit is one and the fill state changes from zero to one, the output bit will be zero in the exclusive

fill mode, and one in the inclusive fill mode. In other cases, the output will always be equal to the filling

state. The filling modes are enabled respectively with the bits !FE and EFE in the register CONI. The user

has to take care that only one of the modes is enabled.

The initial fill state, at the beginning of each line is equal to the bit FCI in CONI. Within a line the fill state

is passed as a kind of carry bit from one word to an other. The filling is done after the logic operation has

been applied upon the data.

Because words are scanned from right to left, filling can only be used in the descending addressing mode.

- 10-

Figure 7. An example of the filling facility.

- 11 -

2.4 A formal description of the blitter.

For further design we need a more precise description of the blitter. To get a formal description of the

circuit we wrote a C program with same functionality as the blitter. I this way we got an exact description

of what the blitter should do.

We will discuss only the major procedures of the program. The complete source text can be found in

AppendixA.

2.4.1 The main loop.

After a reset the blitter waits until it is addressed to load one of its registers. This is the case if the pin ce

(chip select) becomes high. The addressed register is loaded with the data on the databus, and the blitter

starts scanning ce again. This cycle is repeated until the blitter register BLTSIZE is loaded. This register

contains the size of the window. the blit has to be performed upon. If this register has been loaded the

procedure blit is started to perform the blitter operation.

ma i n ()

wh i I e (TRUE)

reg_address = get(reg_addr_port);
if (get(chip_select)) "wait until ce high"

data = get(data_bus);
write_register(reg_address, data);
if (reg_address BLTSIZE)

I
bl it(); " start processing "
putt interrupt, 1);

Figure 8. The main loop.

After the blit has finished the blitter will start loading its registers again. Most of the registers will still

contain their old value. It is possible and allowed to use them again, without reloading them.

- 12-

2.4.2 The blitting part.

There are two loops. The first is done for each line, and the second for each word within a line. At the start

of each line the data registers and the fill carry bit are reset. The first data words are read, and masking is

applied upon the A source. The shifter has to read two words read from each channel, before the first

output word can be calculated The second for-loop is limited to have always two words in the pipeline.

After the last word has been read, there is one word left in the pipeline. It is shifted with the other word put

to zero. The if statement is necessary to be able to handle windows that have a width of only one word.

Finally the pointers are adjusted to point to the next addresses. If the bit DESC in the register CONI is

high, the modulos are added, else they are subtracted. The procedures "gecdata" and "pUCdata" take care

of the additional decrease or increase after each word.

b I i I ()

I
\\ORO I ogop();

in Ii, j, I co;

lor (i = HE I GHT (b I lsi ze); i >0 ; i - .

/' Ihe slarl of a new line '/

/' resel regislers '/

bllAdal 0;

bllBdalO;

bllCdal 0;

/' resel the fill carry in bi I '/

Ico = BIT(FCI, bltcon1);

/' get Ihe first dala word 01 this line '/

get_data() ;

/' apply the mask on Ihe A and B channel '/

bltAdal = bltAdal & bltAfwm;

lor (j = WIDTH (b I lsi ze) • 2; j >0 j - -

I
gel_dala();

bllDdat = logop(SHIFT(bltAold, bltAdat,

SH(bl IconO),

BIT(DESC, bltcon1)),

SH I FT (b I I Bo I d, bit Bd a I ,

SH(bllcon1),

BIT(DESC, bllcon1)),

bltCold, Ico);

·13 -

i I (W I DTH (b I lsi ze) > 1)
{

gel_dala() ;
bllAdal bllAdal & bllAlwm;
bllDdal = logop(SHIFT(bllAold, bllAdal,

SH(blleonO),
BIT(DESC, blleon1)),

SH IFT (b I I Bo I d, b I IBd a I ,
SH(blleon1),
BIT(DESC, blleon1)),

b II Co Id, I co);

I
else

bllAdal = bllAdal & bllAlwm;
bllDdal = logop(SHIFT(bllAdal, 0,

SH (b I leo nO) ,
BIT (DESC, b I leo n1)),

SH I FT (b I I Bd a I, 0,
SH(blleon1),
BIT(DESC, blleon1 I),

bltCdal, leo);
pUI_dala();
i I (BIT(DESC, blleon1))

{

b I IApl bllAmod;
b I IBpl b II Bmod ;
b I ICpl bllCmod;
b I IDpl b I IDmod;

I
else

b I IApl += b I IAmod;
b I IBpI += b I I Bmod;
bllCpl += b I ICmod;
b I IDpl += b I IDmod;

Figure 9. The bliuing part.

- 14 -

2.4.3 Logic operations

This procedure calculates all minterms, and uses them if the corresponding bit in the CONI register is one.

Mter that one of the two filling modes is applied, if necessary. Note that the words are scanned from right

to left, thus filling only makes sense if using descending addressing.

\\ORD logop(Adala, Bdala, Cdala, Ico)

\\ORD Adala, Bdala, Cdata;

{
\\ORD dda I;

in I j;

ddal ((BIT(7, bllconO). Adala & Bdala & Cdala)

(BIT(6, bllconO) • Adala & Bdala & -Cdala) I
(BIT(5, bllconO) • Adala & -Bdala & Cdala) I
(BIT(4, bllconO) • Adala & -Bdala & -Cdala) I
(BIT(3, bllconO) • -Adala & Bdala & Cdala) I
(BIT(2, bllconO) • -Adala & Bdala & -Cdala) I
(BIT(1, bllconO) • -Adala & -Bdala & Cdala) I
(BIT(0, bllconO) • -Adala & -Bdala & -Cdala));

il(BIT(IFE, bllcon1 I (BIT(EFE, bllcon1)))

lor(j=O; j<16; j++

(

Ico = Ico' BIT(j, ddal);

i I BIT(EFE, bllcon1

{

i I (Ico == 1

ddal dda I MASK(j) ;

else

ddal ddal & -MASK(j) :
}

il BIT(IFE, bllcon1)

{
i I (Ico I BIT(j, ddal))

ddal ddal I MASK(j) ;

else

ddal ddal & -MASK(j) ;

relurn(ddal);

Figure 10. logic operations.

2.4.4 The Communication protocol.

There are three types of communication. First in the set-up phase the blitter reads the contents of the

register bus and the databus, to get the register address and the value to be stored in the register. During the

- 15-

blit, the blitter can read data from memory, or write data to memory.

Because there was no clear description of the protocols used by the Amiga blitter, we made some for our
selves. We used for the program a protocol that was easy to implement in C. It is always possible to alter
afterwards the protocol, because it is not a real part of the blitter. Any other protocol can be implemented

without dramatic changes of the blitter.

2.4.4.1 Loading the registers,

The code for the first kind is included in the main loop, see section 2.4.1. The blitter keeps reading the

reg_address port until it is chip select is high. At that moment it reads the word from the data bus, and

transfers that word into the addressed register. It repeats this cycle until the register BLTSIZE is loaded
with a value. When the processor has written a value to the BLTSIZE register the blitter starts the blit
defined by the contents of it is registers. There is no acknowledgement from the blitter to the processor, but

because the blitter is at that moment only reading, it will not be difficult to define a certain data valid

period. If this solution is impossible it is always possible to use the request lines for validation.

2.4.4.2 Reading from memory,

This is the piece of code in the program that takes care of reading one word from the address stored in

'addr' in memory.

'" reading from memory"'

WORD getword(addr

ADDRESS addr:

put(data_bus_req, 1); '" request for cycle"

wh i Ie (get (dma_ r eq) == 0); ," eye I e ava i I ab Ie? "'
put (r am_wr i t e, 0); '" se lee t rea d " ,
put(reg_addr_port, REG_ADDR(addr I); '" write address"'
put(ram_addr_port, RAM_ADDR(addr I):
return(get(data_bus)); '" read data "'

Figure 11. Reading from memory.

When the blitter wants to read from memory, it puts the data bus request line high. After the dma_req line

is pulled down, it puts the ram_write to 0 and loads the address into re!Laddr_port and ram_addr_port.

Then it reads the data_bus.Put and get do nothing but reading the value of the port addressed. So there is

no check if the data available at the data bus is good or not, nor is there a signal to the processor to validate
the address. This means that there has to be an exact timing schedule for reading and writing. Infonnation

concerning the speed of the memory has To be available when designing the timing for the blitter.

It is possible to use the dma request line and data bus request line for the validation. In this case the only

time that the data is valid at the data bus should be defined. Then getword would become:

• 16-

" rea din 9 from memo r y wi I h val ida I ion 0 f I he da I a "

(

WORD gelword(addr)

ADDRESS addr;

(

puI(dala_bus_req, 1);

while(gel(dma_req) == 0);

puI (ram_wr i Ie, 0);

pu I (r eLad dr_po r I, REG_ADDR (
puI(ram_addr_port. RAt,tADDR(
puI(dala_bus_req, 0);

while(gel(dma_req) == 1);

relurn(gel(dala_bus));

" requesl for cycle"

" cycle available? "

" selecl read "

addr)); "wrile address

add r));

" addr val id

" dala val id?

" read dala "

, ,
, ,
, ,

Figure 12. Reading with validation.

2.4.4.3 Writing to memory.

There is only a small difference in the signals, ram_write becomes 1 and the data is put on the data bus,

instead of read from it Timing is the same, with the same remarks. Also for writing it is possible to use the

existing request lines for validation.

" wr i ling 10 memory"

pUlword(addr, data

ADDRESS add r ;

WORD data;

(

put(data_bus_req, 1);

whi le(get(dma_req) == 0);

put (ram_wr i te, 1);

pu t (reg_add r _po r t, REG_ADDR(
put(ram_addr_port, RAM_ADDR(
put(data_bus, data);

" request for cycle"

" cycle available? "

" select write

addr));" write address

ad dr));

" write data

, ,
, ,
, ,

Figure 13. Writing to memory.

- 17 -

2.5 Escher+ simulation.

2.5.1 The Escher+ scheme

For a part of the C-description an Escher+ simulation was made. At the time the simulations were done, it

was not yet possible the use multiple levels. Each instance in the current template had to have its own

behaviour description. Simulating the complete blitter would have led to very complicated behaviour

descriptions. Therefore we simulated only a part of the blitter. Loading of the registers was left out in this

simulation.

The display replaces the memory. All blitter operations are done upon a memory, with start address $00,

and that contains 32 words. It represents a 8 lines high image, with 4 4-bit words in a line.

The blitter consists of two shifters, the masking hardware, logop (the logic operations block), some

registers and a control unit. The next sections will give an explanation of the behaviour of the different

blocks.

~ ~

~ D
0 Lj.

- LJ
CONTROL

~
L...

• UNIT
• 1

LOG OP•

'-

8 LIT T E R•

DISPLAY.
Figure 14. Escher+ simulation scheme.

- 18 -

2.5.2 The control unit.

2.5.2.1 The behaviour or cotr.

Most of the registers have been included in the control unit, and not been implemented as real registers, to

simplify the design.

During the first simulation at simtime is 0, the initializations in lines 53 through 63 are evaluated. These are

resets of control lines, the state register is set to zero and the interrupt line ready is set to one. The ready

line has two functions. First it is connected to the interrupt block, it signals when the blitter operation is

finished. Second, it is used to start the blitter again. By putting a one on this line during the initialization the

blitter is prevented from starting a random blitter operation.

When all control inputs have their values the blitter can be started by setting the ready line to O. Then the

block of line 63 is evaluated. The control inputs are passed to their corresponding output lines. That are ife,

efe, logfun, sha, shb, lwm and fwm. This block will be evaluated each new blitter operation. At the end of

the block the local wait is set to zero, and trigger is triggered.

The local wait insures that only one block is evaluated each time the control unit is evaluated. With the

delay of the trigger we can evaluate the unit, immediately or at a time in future, again, when it is ready for

the next step. All statements are almost a one to one projection of the C-document in the Lisp-like code,

with a state added when a delay was necessary, and at destinations of jump statements. Whenever possible

we put the corresponding C statements as comment in the behaviour description.

The difference between byte_cntr and byte_cntr_desc is the last can also use descending addressing. When

using this possibility the shift_desc and reg_Ioad_desc should be used.

2.5.2.2 The behaviour or load_big.

This template just loads the control unit with new blitter operations, and starts it with setting the ready line

to O. The blitter should not be started at simtime is 0, because of the initialization in the control unit at that

time. The user should use this block to edit the blitter operations.

2.5.3 Registers.

2.5.3.1 The behaviour or delay.

The delay templates are used to offer the shift templates both the old and the new data word of the A or B

source. The contents of re!Lnew is transferred to re!Lold, and re!Lnew is loaded within. Then the re!Lold

is transferred to the output.

2.5.3.2 The behaviour or dhold.

This is a special register that transfers the output of the logic unit to the data bus. It converts the 4-bit input

bus into an output integer.

- 19 -

2.5.3.3 The behaviour of big_hold.

The input value is stored in reg. Then the right bit is delayed to the corresponding output line, and reg is

shifted one bit right by dividing it by 2. This is done for every output line.

2.5.4 The behaviour of mask.

If the first word timer (fwt) is false, the registers are loaded with the input values. Otherwise the first word

mask (fwm) is put on the input lines first. If the last word timer (lwt) is false, the registers are transferred to

the out lines, when not the the last word mask (lwm) is put on it first.

2.5.5 Logop.

In lines 28 through 62, the value of each bit is computed from the three sources, and the logfun input lines.

The results are stored in reg. The values stored in reg are transferred, direct or after further processing,

depending on if one of the fill enable lines is high. For efe the carry, computed by taking the exclusive or of

the bit and the old carry, taken as output. For inclusive fill the result of an or opemtion on the carry and bit

When filling the last carry is transferred to fco. It's the users responsibility that only one fill enable is high.

2.5.6 Shift.

The shift template gets two words as input, old and new, and the shift value sh. These two words are put

into a bit-vector that is twice as long as a word, with the old word left. E.g. for a 4 bit word:

old
3 2 1 0
765 4

new
3 2 1 0
3 2 1 0

<.. the wo r ds
<-- the bit-vector

When the addressing is ascending, thus desc =0, the output has to be bit (7 - sh) through (4 - sh). This is

done by setting offset to 4-sh, en the using bits offset through offset+3.

But when addressing is descending the words should be put the other way around. E.g.:

new
321 0
765 4

old
321 0
321 0

< - - the wo r ds
<.- the bit-vector, the other way around.

We now have to take bits (3+sh) through sh. This means bits sh through 0 from new, and 3 through sh from

old. That are bits sh through 0 and 7 through 4+sh from the old bit-vector. That is the same as 8+sh mod 8

through 4+sh mod 8. In the behaviour description this means setting the offset to 4+sh. and using bit

i+offset mod 8. The modulo 8 has no influence when addressing the other way. When using an other

word-length as 4, modulo (2*width) should be used, instead of the modulo 8.

- 20-

2.5.7 Display.

2.5.7.1 The behaviour of mem_big.

The memory is divided in 8 rows of 4 words, that are 4 bits wide. R_w is the read/write control line. It

should be 0 for reading, and I for writing. This line is also used to trigger this block. The control unit first

set the right values for address and data, when writing, on the input lines, and then writes on the r_w line.

RowO through row7 are the rows. Each row is a four words bus. When reading, the wanted value is put on

the data line. When writing, the value of the data line is stored in the right word The right word is selected

by a block of if else statements.

The behaviour of first_ and othecpix.

In other-pix in_O through in_2 are put to the output. In_3 is divided by 2 and put to the output, after color

is set to first bit of in_3.

In first-pix, the pixel at the right edge of a word, in_O is passed to oucl, and so on, to have the right word

in_3 in the next word.

It would be much nicer to be able to use a part of the pixels of the screen directly, but it is possible to work

with this solution.

- 21 -

2.6 Final design.

For further design we will not use the same scheme as we used for the Escher+ simulations. In this case the
bliner has been split up in 9 blocks. The address generator calculates at witch address the next data word is

located for each channel. The logic unit takes care of preparing the data. It includes the masking hardware,

shifting and the logic operations. Size control keeps track of the number of lines and words, and signal at

the end of a line, and at the end of the window. In the set-up phase the decoder chases the destination for
the data. And finally, four of the blitter registers, and the main controller for all other jobs.

"~e..
'"""uu
In
rw

J.L

loun2

I

l'""-'r--r---, I
y

d

TTrT~
Rainl I "!.:!. I ~

d Wi] I :;
,

~
I--

r ~ [~ I-- ~

;l-
I--

~ -;:::::== ~
r--

f-

~'--- ~

dec1 n f--

II

Figure 15. The blitter circuit.

- 22-

2.6.1 The main controller.

The main controller has been constructed using the behaviour description of the controller from the

Escher+ simulation. This behaviour description proved to be very useful for constructing the controller.

From the behaviour 01 byte_cntr:

(set q wa i t 1))

(i I (a nd (= s tat e 4) (= wa itO))
(progn

(setq x (+ xl))
(il « x size_1)

(setq state 2)
(setq state 5))

(delay 0 trigger state 2)
(set q wa i t 1))

(il (and (= state 5) (= wai to))
(progn

(delay 0 data 0 1)
(delay 1 en_ahold 1 2)
(delay 1 en_bhold 1 2)
(setq return 6)
(setq state putdata)
(delay 2 trigger state 2)
(set q wa i t 1))

; lor .. ; .. : x++

; lor .. ; x < 5 IZE_W:

;next eval this cycle

;next eval alter 2 cycles

The lin esIr om the ma inc 0 nt r0 I Ie r E5K 155 des crip t ion.

0-------

1--------
000000000000000000 # get next data
000010000000000000 # trigger y count
000000000000000000 # put data

save last data word 01 this line
_ _ _ _ _ _ ~ A _ I _put I -wt _pt _d 000000000000000000 # wai t logop finished
-------0- I -wt _pt I-wt _pt_ d 000000000000000000 # wai t un til pt
- - - - - - - 1 - I _wt _pt I-en- d 000000000000000110 # enable ddat and d-address
___ A _ • A __ I - en -d I -wr - d 000000000000000111 # start wr i t e cycle
- - - - - - - - 0 I-wr - d I -wr - d 000000000000000110 # wai t unti I ready
--------1 I_wr -d t r-y 000010000000000000 # t r i gge r y count
0-------- t r-y Id - x 010000000000000000 # put last word
1-------- t r-y wai to 000000000000000000 # ready

Figure 16. Behaviour to ESKISS translation example.

The controller has been implemented using ESKISS. First an ESKISS description of the controller has been

made. ESKISS generated automatically a boolean description for the controller.

- 23-

get dat

x=o

Figure 17. State machine for the main controller.

- 24-

Because I had already introduced states in the ESCHER+ behaviour of my controller, it was easy to

translate this behaviour into an ESKISS description. Here are some lines of the behaviour description, and

their corresponding lines in the ESKISS description. For example the command (setq x (+ 1 x)) will be
implemented by setting the output pin tr_x high and low again. And the following if statement, by jumping

to 2 different states depending on the in the value on the input line zero_x.

The communication with the outside has been described poor in the behaviour description. That is why this
part a completely different form the Escher+ behaviours. For the communication in the set-up phase,

loading the blitter registers, we now use the protocol described in the C-document, in section 2.4.4. Figure

17, 18 and 19 show the state machine, resulting from this approach. The parts to get and put data have been

put in separate figures, because the total figure would have become to big.

get data

END

Figure 18. Get data state machine.

- 25 -

Put Data

END

Figure 19. pUUlata state machine.

The way the blitter reads and writes to memory during the blit is the same as the 68000[2J processor. This

will make it easier to find a suitable DMA-manager for the system. If a particular DMA manager is to be

used, the blitter can always be changed. The communication protocols are completely enclosed in the main

controller, and can be changed by changing its ESKISS description.

To simplify adjusting the controller, not everything has been "squeezed" out of the controller. It will

possible to make the controller more compact, but this will be bad for the readability of the description.

The controller has not been tested yet, due to time limitations. Testing may show the need for "wait" states.

If modules connected to the controller have very long delay times, it may be necessary to stop the

controller for some clock cycles, to allow the module to finish its operations. For example logop, with a fill

operation is in use, will take a lot of time.

The complete ESKISS input file is to be found in appendix B.

2.6.2 Address generator.

Each channel has its own pointer and modulo. During the blit, we always have to add 1 in the ascending

mode and subtract 1 in descending mode. At the end of a line we have an additional increase or decrease of

the modulo. We wanted to use only one ALU to calculate the addresses. We also wanted the addresses to

·26 -

calculated, while the rest of the blitter was reading the data from memory, or processing it. Therefore this

module has it own controller. It enabled the right registers for calculations, and stores the new calculated

values.

d..odtr

ptaltr ptahtr ptbltr ptbhtr ptcltr ptchtr ptdltr ptdhtr

0:1

,_-+--+---'-__0; 15~ II; 1.5,+--l.....-_..JJ.

one al'lodtr ~ c..odtr

csub

...--H--+---++--Y;18-H+t---+-....------Ut-

Figure 20. address generator

The modulos can be stored in a 16 bit register. The data input is connected to the data bus. The trigger is

available for the main controller. With this line it can load the modulo registers in the set-up phase.

2.6.2.1 The Adder.

The adder takes care of the calculation of the address pointers. It has to add one to the address to get lhe

next address within a line, or the contents of the modulo register at the and of a line. We will use the "last

word timer" line to indicate the end of a line. Depending on the ascending or descending mode it has to

subtract or add. If the DESC bit is high it has to subtract. Thus the adder can be in 4 different states. Table

1 gives the function for each state.

Because overflows of the adder can only occur in the case of errors, we can can neglect their effects. Then

subtracting is the same as adding the 2·complement The 2-complement of a value is equal to the inverted

value plus one. This gives to the 2-complement functions for the adder (where mod' is the bitwise inverted

of mod).

- 27-

The third function reduces to pt + mod'. We can now implement the adder using full-adders. The carry-in

bit for the first adder can be used to add one. One input channel for the adder is always the pointer. We get

the input for the other and the state of the carry-in bit of table 1.

desc one function 2-eomplement input carry in

0 0 pt+mod + 1 pt+ mod + 1 mod 1

0 1 pt + 1 pt+ 1 0+ 1

1 0 pt - mod - 1 pt + (mod' +1) - 1 mod' 0

1 1 pt - 1 pt - 1 1+ 1

TABLE 1. Adder states and functions.

In [3) we found this circuit for a full adder, rewritten the "logic_syntax,,[4).

s : e' b ci' + e' b' ci + e b' ci' + a b ci:

cou n t : a c i + b c ie' + c i' 8 b;

Figure 21. boolean description of a full adder.

Using this description we get the boolean specification for our adder by making a chain of full adders, and

adding the special features we wanted. In the first line, the carry in for the first full adder is defined. The

"x" intermediate represents the function stated if table 1. For the upper 3 bits the "b" value is always zero,

because the modulos are only 16 bit Thus we can suffice with a simplified version of a full adder.

- 28-

ci one' desc;

xO bO' 6U b one' + bO sub' one' + desc one;
sO aD' xO c i ' + aD' xO' ci + aD xO' c i ' + aD xO c i ;
cO aD ci + xO c i aD' + c i ' aD xO;

x1 b1 ' sub one' + b1 sub' one' + one desc
s 1 a1 ' x1 cO' + a1 ' x1 ' cO + a1 x1 ' cO' + a1 x1 cO;
c1 a1 cO + x1 cO a1 ' + cO' a1 x1 ;

x15 b15' sub one' + b15 sub' one' + one desc ;
s15 a15' x15 c14' + a15' x15' c14 + a15 x15' c14' + a15 x15 c14;
c15 a15 c14 + x15 c14 a15' + c14' a15 x15;

x16 one desc ;
616 a16' x16 c15' + a16' x16' c15 + a16 x16' c15' + a16 x16 c15;
c16 a16 c15 + x16 c15 a16' + c15' a16 x16;

x17 one desc ;
s17 a17' x17 c16' + a17' x17' c16 + a17 x17' c16' + a17 x17 c16;
c17 a17 c16 + x17 c16 a17' + c16' a17 x17;

x18 one de6c
s18 a18' x18 c17' + a18' x18' c17 + a18 x18' c17' + a18 x18 c17;

Figure 22. Boolean description for the adder.

2.6.2.2 Registers

The pointers are 19 bit wide. The least significant 16 bit are stored in a 16 bit register, and the others in a 3

bit register. Their input is connected to the internal register bus. In the set-up phase the low and the high

part can be controlled separately. The data bus will be connected to the register bus and the controller can
load the registers with the value. During the blit the address generator controller can load the pointer with a

newly calculated address.

We used 2-phase non-overlapping clock flip-flops for the registers. The registers were made by writing a

gate description. There is a separate tool that generates a layout description for registers. But these static

registers are easier in the simulations. For the dynamic registers a certain clock speed is needed, and they

don't work without their gate capacities. So SLS simulations, without taking the delays in account, would

be much more difficult.

These registers don't provided a scan path,like those generated by the register generator do. This scan path

should be implemented in a real design.

- 29-

qO' -(qO + xxO);
qO -(qO' + yyO);
xxO -(dO + ell;
yyO -(dO' + el);
dO' -(dO);

Figure 23. Gate description for one d flip flop.

2.6.2.3 The multiplexers.

The boolean description for the multiplexers has been made, and layout was generated for them. In figure

24 there is a listing of the boolean description of the small multiplexer.

2-ehannel multiplexer 4-bit wide

version

outO aO aen + bO aen' ;
out1 a1 aen + b1 aen' ;
out2 a2 sen + b2 sen' ;
out3 s3 aen + b3 aen' ;

Figure 24. Boolean description for a 2-channel 4-bit multiplexer.

Figure 25 shows the pluri-cell layout for this multiplexer.

Figure 25. Layout for a small multiplexer.

2.6.2.4 The controller

The controller has to wait until it gets a signal from the main controller that the next address has to be
calculated, and the one now present in the selected pointer has to be put on the address bus. If the

- 30-

calculations are finished, it signals this to the main processor by putting a PT line high.

The input for ESKISS is to be found in fig.26.

Figure 26. State machine for the address generator controller.

- 31 -

• State table for the address generation controller.

• INPUTS:
• usea

• useb
• usec

• used

• trsta

•
• OUTPUTS:
• en ad r
• t r pt a
• t r pt b

• t r pt c
• t r pt d

• aen

• ben

• cen
• den

ABCDt r

'stay in starl
-----1

----00 start

----10 start

unti I
s tar t

start

AO

eABCDabcd

triggered (data
000001000

000001000

000001000

ready)

'calculate A addr
'enable b-channel
0- - - - 0 AO BO

1-- - - 0 AO A1

only if needed

registers is necessary
000000100

100001000

.delay to allow adder to finish calc. not yet implemented

'update pointer register, and signal main controller that
.address is val id

-----0 A1 A2 010001000

'wa i t for next
----00 A2

-- -- 10 A2

trigger signal from main controller

A2 010001000

• the pt signal stays high.

BO 000000100

'the same cycle for B-channel
-0---0 BO CO 000000010

-1---0 BO B1 100000100

-----0 B1

- - - - 00 B2

-" -10 B2

B2

B2
CO

001000100

001000100

000000010

'the same cycle for C-channel

- 32-

--0--0 CO 00 000000001
- - 1 - -0 CO C1 100000010

-----0 C1 C2 000100010

- - - - 00 C2 C2 000100010
----10 C2 00 000000001

#t he sarne cy c I e for O-channel

---0-0 00 s tar 1 000001000
---1-0 00 01 100000001

-----0 01 02 000010001

- - - - 00 02 02 000010001
----10 02 s 1a r 1 000001000

Figure 27. ESKISS description for the address generator controller.

Pluri-celliayout has been generated for this module, using the register generator of "log_mapper". Both the

gate file and the extracted layout have been simulated with SLS.

den
cen L.J..II___ rITlL...-__--::
ben LLII '--- n'--- '-- '----- '-----
aen 11lJ,-;:;:==
trptd II
trptc II n'- _
trptb IL- L- -,- -'-:- _

trpta II 1'------==-:--'-------==-:------==-:------
PHI2

PHI1

trsta L..JLJLILLILI
reset n

enadd ·I--=-----:=__----:=__--=----=-----=----=-~=--~=__-_=_--_=_-

used

usec

useb

usea

vdd

vss

1--'-'--'--L.....L...l'I-,----,---,-,.!-,1 ' , , ,

o 200e-6

" 1--'-'...&...-'.l........L...J...............'--'-,-+-1.1-1''-'----'-'.1-11 -'----'-'-'-;'I--'-'...&...-'........' ,--'--'-..........''-'-,I

400e-6 600e-6 8009-6 1000e-6

Figure 28. SLS simulation output for the controller.

- 33-

In this simulation the lines USEA and USED were high. These addresses are calculated with enabling the
the register (AEN or DEN high), and then storing the next address (1RPTA or TRPTB high). There are
still many spikes on the output lines. They are generate when after a change of the inputs, the system is not
yet settled. They can be removed by latching the outputs.

- 34-

2.6.3 Logic unit.

The logic unit contains everything concerned with processing of the data. When comparing the Escher+
scheme with this on, we see one major difference. Because layout for the shifters became very large, we
decided to use one shifter to shift both the A and B channel. This cost some additional multiplexers and
registers, but saves one (large) shifter.

The registers and multiplexers used are in principle the same as those from the address generator.

useb.---+-----+----er-1 usec

cdattr

bdattr
L---~----boldtr

bshtr+----+---

Figure 29. The logic unit

2.6.3.1 mask

For the mask, the boolean description is obvious. Figure 30 gives the boolean description for one bit The
complete mask consists of 16 such bits.

kO : fwmO + fWI';
nO: IwmO + IWI';
aulO : kO nO inO;

Figure 30. One bit mask.

This boolean description will give a masking unit described in section 2.3.6 and 2.5.4. A pluri-celliayoul
has been generated. After an extraction we simulated the mask with SLS, to verify the layout.

- 35-

2.6.3.2 shirter

Shifting is done in stages. First we do an 8 bit shift, or not, depending on the most significant bit of the shift
value. With this new bit vector we do 4 bit shift, followed by a 2 and a 1 bit shift The generated layout for
the shifter has been simulated with SLS. the line "desc" has a very large fanout The value of "desc" will
only change in the set-up phase, so this won't cause many problems.

2.6.3.3 logop

The logop consist as the masking unit of 16 equal cells. Figure 31 shows one such cell. XO is the result of
the boolean function chosen with sO-s7. With this value the filling is performed, if necessary. The output
variable "fcO" has to be connected to the "fei" of the next cell.

xO s7 aO bO cO + s6 aO bO cO' + s5 aO bO' cO + s4 aO bO' cO' +
s3 aO' bO cO + s2 aO' bO cO' + s1 aO' bO' cO + sO aO' bO' cO'

leO xO lei' + xO' lei;
dO ale leO + ila xO + ila leO + ale' ila' xO;

Figure 31. One cell for logop.

We made one file with the boolean description of the complete logop, and generated layout for it. The
simulations showed, what we already expected, that the settle times for fill and no fill differ very much.

2.6.4 The size controller.

The size controller takes care that the blitter stays in its window. During the set up phase the register SIZE
is loaded. The upper 10 bits contain the number of lines, and the others the number of words in one line.
The main controller can load the counters with its value. When the controller now triggers the counter, it
will decrease the value in the counter. The output lines Y_ONE and X_ONE will become high if the value
in the corresponding counter becomes one. This line will also be used as last word timer.

The registers used here are the same as the registers described in section 2.6.2.2.

- 36-

datin (11)]

~:15
l

trsize
[ll)]v~d- .. cl -- . -size vss --.(11)] q

~. 11\

_G: 5 A.: 5

~ l:5~. ~ • •.. • ~Ir

ldy ~ ~- ... ld [10]vss lvdd .. ld [I)] vss vdd
- try" ..
- ... tr ycnt_O

~~tr
xcnt_O- ..

~7~ro .z.ero one
ldx-- trx-- yzero xzero xone

II I. I.

vdd

vss

Figure 32. The size controller.

The counters have not yet been implemented. The counter will be triggered by the main controller during
the blit, and have to signal to the main controller whether, the end of a line is reached or not. This leads to
the following features:

• load facility

• one comparison or zero comparison

or:

• reset facility

• comparison

2.6.5 The register address decoder.

The purpose of the address decoder is simple. It selects the right register during the set-up phase. The bit
needed from the address bus, and the selected register will enabled.

The minterms of the combinations of the input bits have been used directly as a boolean description, and a
pluri-celliayout has been generated for it.

- 37-

We have thought about giving the register other addresses. It might be for example useful if two specific bit
are always the code for the A, B, C or D channel. This appeared not to be necessary, and we chose the keep
the addresses compatible with the Amiga blitter.

- 38-

3. The ES design system.

In this chapter we will give a short description of each tool, used to
design the blitter. In section 2.2 we already explained each tool
briefly. Now we will discuss for each tool in detail: input, output,
and the problems we encountered during the blitter design.

text
editor

- 39-

espresso
~ eskiss

fsm_convert

log_mapper
log_euler

log_celgen

macplace

sls_mkdb
I------;~ sls_exp

SLS

floor
cldm -0

escher+
planner

rococo makeboxl extract
makevln

\ /
from_ldm

euler dali

Figure 33. The connection between the tools.
Figure 33 shows the connections between the tools. Only the tools that have been used in this project are
shown. The arrows represent a data streams. An arrow from the text editor, indicates that the intennediate
files have to be edited.

- 40-

3.1 ESKISS

This is a set of tools that generate a boolean description for a state machine. The description of the state
machine has to be prepared with espresso, before eskiss can process it The syntax for the input file can be
found in the the manual for espresso. The order of the lines is important. The lines with the keywords
inputvars, outputvars, mv, type and kiss have to be in the same order as in figure 34.

00000
00000
00000
00000
10000
11000
00000
00000
00000
10000
10100
00000
00000
00000
10000
10010
00000
00000
00000
10000
10001

s I a r I
s I a r I
AO
BO
A1
BO
CO
B1
B1
B2
CO
DO
C1
C1
C2
DO
s I ar I
01
01
02
s I a r I

. inpulvars usea useb usee

.OUlpUlvars enadder Irpla

.mv 9 6 -12 -12 5

.Iype Ir

.kiss
----1- -
- - - - 00 s I a r I
----01 slarl
O---O-AO
1---0-AO
----0-A1
-0- -0- BO
-1--0-BO
----00B1
----01B1
----0-B2
- -0-0- CO
--1-0-CO
----00C1
----01C1
----0-C2
---00-00
---10-00
----0001
----0101
- - - - 0- 02
.end

used resel Irslale
Irplb Irple Irpld

Figure 34. Inputfile for ESKISS.

The numbers after the ".mv" key have the following meaning:

• The number of input variables plus 3.

• The number of input variables.

• The number of different states in the second collumn (a "don't care" is not counted as a state).

• The number of different states in the third collumn.

• number of output variables.

The 3th and 4th entry are preceded with a "-" (minus).

First the input has to be prepared with espresso, using the .kiss entry. Then the program ESKISS can
compute a state encoding for state machine. The output of espresso and ESKISS put together, and changed
a little. These changes are done with an "awk,,[51. The resulting boolean description in espresso format has
to be simplified again with espresso, before it can be converted to the logic syntax with fsm_conv.

All these programs are called by a script, "state_enc", that should do the whole procedure. But this script
doesn't work properly. Instead of the "awk", it uses a program with a bug.

- 41 -

3.2 EUCLID

3.2.1 LOG_81M The logic simplifier.

LolLSim does a simplification and minimization of the input. It handles an expression given as a sum of
minterms. The used syntax is the "logic_syntax".

The input is read from standard input The output are two files:

"listing", contains a listing of the input, and error messages, if there are any,

"data_sim", contains the simplified output

As an example of the results and the used syntax. The input file:

a c b + b'
dec b

The output: "data_sim"

a :c +b'
d :c b e

The file listing, for a different input, with some error messages:

1 a: c b + b'
2d:ecb;

##REMARK: "14,15
##REMARK: '13

••••• Error Summary· ••••

Number of errors in this compilation: 3
13 : ":" expected; inserted
14 : ";" expected; inserted
15 : identifier expected

Number of lines processed : 2

If there is already a file "listing", then this file will not be removed. This can be confusing when IOlLsim
reports an error, but you can't find it in the listing. Remove the file listing, and run IOlLsim again.

If you have big input files, with many different variables, pay attention. If the number variables in the
input exceeds a certain number (something between 30 and 40), IOlLSim will generate bad, but syntactic
good, output. A solution for this program is to split the input file into pieces, and run IOlLsim on each
piece separately. Since log_sim can only find simplifications within a line, the results will be the same.

LolLsim doesn't accept the comment in the form of a line starting with an "#". Runtimes for IOlLsim are
small. Up to a few minutes for very large examples.

3.2.2 LOG_DECOM

Decomposition and minimization of boolean expressions." IOlLdecom decomposes a set of boolean

- 42-

expressions. A boolean expression is a non redundant set of cubes, a cube is a product tenn. To obtain a
nonredundant set of cubes "lo&-sim" can be used. lo&-decom tries to find all the common subexpressions
in the given boolean expressions. For each common subexpression a new intennediate variable "intxxx" is
created.

It has to be called with:

log_decom <inputfile> [<outputfile> <configurationfile>]

When no output file is specified, the output is written to the file decam.out The default configuration file is
decom.config. If this file isn't present it uses a default set of parameters. In general these values are good.
The default values are listed int the manual page. The expressions must be given as a sum of products. The
expressions must be represented by a minimum prime irredundant cover. This can be achieved by the
program "lo&-sim".

min_kerneLsize 2
min_kemeLamount 2
min_cube_size 2
min_cube_amount 2
max_kemeLsubst 5
max_kernels 100
maxdelaytime 100

Figure 35. An example of the file decom_config.

Finally a small example:

F1 :a c' g' +e f' +8' b' e g' +a' d' e g' +b e' f 9 +a e' f 9 +c d e' f 9 ;
F2 :b e' f g' +a e' f g' +a c' b d f g' +a b' d' f g' +a' c' b' e' f +a' b' d' e' f

+a c b e f' +a c f' 9 +a b f' 9 +e f' 9 ;

Figure 36. Input example for lo&-decom.

And the results:

- 43-

a b' + c, schedl ime 0, delay 6
d b c e, sched 1 i me 0, delay 4
f a + c e, schedl ime = 6, delay 4
F1 e g' in 11 0' + f g inl10 e' + a c' g' + e fO + e a' dO g' + c d f 9 eO

c' e' inl10' + inl10 e' g' + a b d f CO g' +
+ abc e f' + a c 9 f' + a b 9 f' + e 9 f'

6
4
6

76

10
5

in I 10' +
b' d' g'

10
5

, sched 1ime
, delay
F2:fd'e'

a f
, schedl ime
, delay
inl10 : b + a ;
, sched 1ime
, delay
, galecounl
, lorcounl

Figure 37. Output of IOLdecom for the little example.

Cyclic expressions can cause a crash. You'll probably get this error message:

unable to unwind stack because of invalid stack frame (process
manager/process fault manager)

Runtimes are small. Up to a few minutes for very large examples.

- 44-

3.2.3 LOG_MAPPER

Lo!Lmapper maps the input-file, which must be in 'logic- syntax' format, onto a set of standard cells[61.
The standard cell to chose from are: "aoi" (and-or-invert gates), "nor", "nand" or "ao" (and-or) gates. The
user can also specify the size of the gates. The default values are right for the standard NMOS process.

There are a number of different functions the user can chose from. Some of these functions can lead to very
long runtimes. The functions are described in the manual page.

Lo!Lmapper has to be called with:

log_mapper <input-file> [options]

The output are files, <filenarne>.db and <filenarne>.gf. The file <filenarne>.db contains a readable
description of what 10!Lmapper has done, and some debugging information. The file <filenarne>.gf
contains a description of the circuit in "logic_syntax", and can be used as input for 10!Lcelgen.

With the options the users can chose between the different optimizations, the kind of cells to be used, and
the size of those cells. Default type is the aoi-cell with a size of 3, 3.

Lo!Lmapper also computes the inputs and outputs of the circuit. If no inputvars or outputvars are specified,
they will be listed after the entries "# inputvars" and "# outputvars". If they are already specified,
10!Lmapper will give a warning if there are differences between the calculated lists and the specified lists.
The list specified by the user will be put in the outputfile. These entrys are not standard "logic_syntax". If
the user specifies for one input both the not inverted and the inverted signal, then those signals will be used,
and there will not be made an inverter for that signal. Also for the outputs, if the user specifies also the
inverse of a variable, then 10!Lmapper will also generate this inverse.

Figure 38 is the output for the example of 10!Ldecom.

a + e' int10
g' + f') ;

- 45-

, gate-type AOI
, inputvars b c e 9
, outputvars F1 F2
'functions
sub10' : -(b + c) ;
sub9' : - (c e) ;
sub8 - (c + d') ;
sub 7 - ((s ub9 b + 9 sub 10) a + 9 e) ;
sub6 - (d' + c') ;
subS - (i n t1 0' e')
sub4 -((sub8 b + d' b'
sub3 -((a' d' + int10'
sub2 -(c d + int10) ;
sub1 -(g f
int10' : '(c + b' + b) ;
F2 -((sub7 + f) ((sub4 + 9) (subS + sub6) + f')) ;
F1 : -((sub3 + e') (g + c + a') (sub1 + sub2 + e)) ;
f' : -(e c + c + b') ;
d' : -(b c e
a : • (b c')
g' - (g)
e' - (e)
c' - (c)
b' - (b)
a' - (a)
d : - (d ')
f : - (f ')
int10 : '(int10')
sub9 : -(sub9') ;
sub10 : -(sub10')

Figure 38. Example of the output of lo~mapper.

The register generator.

Lo~mapper can add master-slave registers for a two phase non-overlapping clock for you. This is only
possible if you use "aoi" gates. To use the build-in register generator, include the following line in the
inputfile:

'register <inputvar> <outputvar>

Lo~mappernow automatically includes a register in the outputfile. The clock signals will have the names
"PHIl" and "PHI2".

An example of a register declaration:

'register 5N4 054

The corresponding output lines for one of the registers:

- 46-

, register
054 - (G21 (PH 11' + G22)):
G21 -(054 (PHil' + G23)):
G22 -(G23 (PHI2' + 5N4));
G23 -(G22 (PHI2' + 5N4'));

An other facility is a comparison and a tautology test of two sets of boolean functions.

The inverter optimalization is sensitive to long carry paths. For example my function logop, which has a
very long carry path took over half an hour. But the shifter, with even more transistors, takes only five
minutes.

Lo&-mapper was written in Lisp. There were some problems because the lisp system needs a lot of
memory. If there are cyclic definitions in the input, you will get a lisp stack overflow. The machine then
enters the lisp debugger. You can kill the debugger with the command "(quit)".

If the delay times estimated by lo&-mapper are compared with those calculated with extraction and
simulation, Lo&-mapper seems to be rather optimistic.

3.2.4 Cell generation.

3.2.4.1 Log_euler

Lo&-euler is the next step towards a pluri-cell layout The piuri-cells consist of a column of transistors for
one cell, or a linear transistor array. Lo&-euler finds a transistor ordering for this linear transistor array. The
input for the program is a file with gate description in the gate_syntax format. Lo&-euler also determines
the width of each driver transistor. The result is such that for each input pattern for the cell, the resulting
low output voltage will be smaller then 0.5 Volt.

Lo&-celgen has to be called with:

log_euler <inputfile>

The transistor ordering is written to standard output, and can be redirected, or piped into log_celgen.
Lo&-celgen generates from this output the layouts of the cells. This output contains some control
characters, which complicates reading. In general this isn't a problem, because the user can't do anything
with the intermediate results between lo&-euler and lo&-celgen.

Lo&-euler writes to stder, the name of the input file, the error messages, and whether the inputfile contained
errors or not.

The version installed now is from April 1988. When it was installed, it still contained a nasty bug. The
output generated was syntactic all right, but not correct

3.2.4.2 log_celgen

Lo&-celgen reads the transistor ordering made by log_euler, and generates layout descriptions in Idm for
the cell, and a netlist

The format of the netlist is a simplified version of the standard network format (for example used by
Escher). In the netlist written by lo&-celgen, a connection has the following format

- 47-

<net name> <instance name> <pin name>

It has to be called with:

log_celgen <filename>

The input is read from standard input The layout will be in the file "<filename>.ldrn", and the netlist in
"<filename>.nlt"

The output of lo&-euler will usually be piped into lo&-celgen, there are no other programs that can deal
with output of lo&-euler, and the user can't use it because of the control characters.

Figure 39 shows the lay-out of a cell generated by lo&-celgen.

Figure 39. Lay-out for a cell generated by lo&-celgen.

The layout description generated by log_celgen contains errors. In some of the "box" declarations the
coordinates are swapped, the first is larger then the second figure. This is not allowed in the ldrn syntax!
Such an error has already been deleted once. These errors were re-introduced when a new version of the
program was installed, end of April. Already in March I discovered the same kind of error in the old
version of lo&-celgen.

·47 -

3.3 Placement and routing.

After lo~celgen, we have layout for the modules. But these module are not yet placed and routed. This can
be done with macplace and rococo. When the layout for a module is ready, if can be placed in a floorplan,
with the floorplanner, and routed with rococo.

3.3.1 MACPLACE The Pluri-cell Placer

Macplace computes a placement for the cells generated by lo~celgen. The input for macplace is the
netlist, in general the netlist generated by lo~celgen, and an interface file. The interface file has to have the
following format

module <module name>
shape <width> <height>
pin <name> <interval>
pin
end

After the keyword "module" the user has to give the name of the module. With "shape", the user can
control the aspect ratio. The width and height should be given in "layout units". If the given area is to
small, macplace will give a warning, and generate a module with the desired aspect ratio.

With the "pin" definitions, the interval in which the pin has to be placed, can be defined. The interval is two
floats in the range from 0 to 4 that describe the preferred placement of the terminal:

e.g. upper side: 2 3
left up : 3 3.5

3 north 2

wes:Oeast

south 1

Figure 40. Places of the intervals in the interface file.

The interfacefile ends with the keyword "end".

The netlist generated by lo~celgen is not complete. Nets for the connection of the terminals have to be
added. An item in the netlist has this format:

<netname> <modulename> <pinname>

Typically you have for each pin entry in the interface file one extra line in the netlist. With the
<modulename> the same as in the interface file and <netname> and <pinname> equal to the name of the
pin in the interface file. Supply pins are treated differently way by the router. It requires two pins for each
supply net, thus we also need two nets in the netlisl for each supply net.

Macplace is called with:

- 48-

macplace <options> <netlist file> <interface file>

Different aspect ratios will lead to different areas. The differences can be very large. Table 711 shows the
results for a rather small example. This causes the strange effects for lx3 and 3xl. The layout for 2xl was
much higher than necessary.

aspect ratio width height area
1/3 444 1098 487512
1/2 426 917 390642
1/1 756 789 596484
2/1 972 1678 1631016·
3/1 1050 571 599550

TABLE 2. The areas of pluri-celllayout for a small multiplexer for different aspect ratios.

For a larger circuit the results are stated in table 3.

normal
aspect ratio width height area width height area

4/1 11016 1865 20544840 10124 2011 20359364
3/1 8840 2041 18042440 8520 1969 16775880
2/1 6178 2587 15982486 6310 2561 16159910
1 /1 3752 4132 15503264
1 /2 2755 7669 21128095 2786 6979 19443494
1/3 2189 10184 22292776 2579 11006 28384474
1 /4 2195 12317 27035815 2243 12643 28358249

TABLE 3. The areas of pluri-celliayout for the shifter for different aspect ratios.

The placement generated by macplace often show a "hill" in the center, The columns in the center are
much higher as those at the left and right sides. The option"-f' helps. See the results of table 3. Sometimes
the layout with this option will become smaller. Because it adds extra width, it can also give a larger
layout.

If there is no place for a pin in the specified interval the router will respond with something like: "too much
south terminals".

If Macplace responds with the error message: "interface pin not found in the netlist", it is also possible that
the module name in the interface file is not the same as the <module name> used in the netlist for the
interface pins.

The placer takes quite a lot of time. To place an example with about 100 transistors it took about half an
hour.

- 49-

3.3.2 The floor planner.

The floorplanner computes a plan for the floor. It chooses a shape for the modules to be placed in the
floorplan, and a placement of the modules. Then the modules with the wanted shape have to be generated,
and the floorplan can be routed with rococo. Due to time limitations, the floorplanner has not been tested
thorough in this project. We didn't use the possibility to let the floorplanner choose from different shapes
for the modules. This resulted in a non optimal layout Using all possibilities of the floorplanner will
probably give a better layout.

The netlist has been generated from the escher connection file of the corresponding scheme. For this
conversion a emacs-lisp function has been written. This also changes the names of the supply nets into their
proper names. In the current escher, it is not possible to give a net a specific name. This will be possible in
the new versions of escher.

The placer consists of several programs, to be executed through a make-file. They are not easy to use.
Many programs operate upon absolute file names, and error handling is not poor.

All programs were encoded in Pascal. Net and modules are generally stored in arrays. When placing large
circuits, it is possible that the arrays are not big enough, and thus they have to be recompiled with larger
constants. In one case, the nets were stored in a set. Because in the Apollo Pascal the number of elements
in a set is limited to 256 (in other dialects it might even be less). This puts an absolute limit to the number
of nets of 256. With Pastoc (pAScal TO C compiler), a C version was made, that allows far more.

3.3.3 ROCOCO The Router.

After all modules have been placed they have to be connected. Rococo (Routing with Contour
Compaction) takes care of this[7]. To do this it needs four files:

- <technology file>

- <ldm file>

- <netlist>

- <interface file>

In the technology file there has to be a description of the used technology. The technology file in
"/usr/local/lib" for the nmos process, is nearly all right Only the at the tag "NAMES", the name of the
floorplan has to be added at the end of the line. Default this is "root" for the placements made by macplace,
and "floor" for those by the floorplanner. Thus default it is not possible to use always the same technology
file. In the Cakefile used by us the name "root" is alway replaced by "floor", to be able to use always the
same technology file.

The ldm-file has to contain layout descriptions of all the used models, and a description of the floorplan.
The floorplan has to be the last module in the ldm-file.

For placements made by macplace the same netlist can be used as for macplace. For a placement made
with the floorplanner, the nets for the tenninals have to be added to the file "tenninal". This has to be done
after the the floorplan has been made, because the floorplanner can't cope with these nets.

The interface file is similar to the one used by macplace. When you use the floorplanner, it has to be made
manually, else the file made for macplace can be used here also. In our cake system, this file will be
generated fonn the escher interface file.

Rococo has to be called with:

- 50-

rococo -t<tech file> <ldm file> <netlist> <interface file>

There is not yet a manual page. Run times are small. For my largest examples it took up to 10 minutes.

The supply nets are routed in a special way. They are the only nets which will be implemented completely
in metal. All other nets will routed using both metal and poly. To route the supply nets, the router starts
searching from the left bottom point for one supply net, and at right top point for the other. From those
points it starts to grasp around the modules (see figure 40).

To be able to guarantee successful routing of the for general ftoorplans, this means that every module has
to have two terminals at opposite sides for each supply net, as in the figure. For placements made with
macplace this is not necessary. The modules generated by lo&-celgen have only single supply pins, but the
placement by macplace guarantees reachability.

When routing a ftoorplan with modules, made with macplace and rococo, rococo can provide this special
supply pin placement, when making the modules. To do this, there have to be two pins in the interface file
for each supply net. The names of these pins may only differ in the last character, and that character has to
be a letter, e.g. vssA and vssB. These pins have to be connected to the suply nets, in entering for each an
entry in the netlist. Rococo should now provided a proper placement of the pins.

.
~
~

Figure 41. Routing example for a supply net

It took a lot of time to get this working properly. The main problem was that formerly the supply pins were
not always placed on the side of a box by the router, because this was not always necessary, and it saves
area. But the router itself has to determine to witch side the terminal belongs, to be able to determine if it is
possible to reach the terminal or not. In the old version the terminal belonged to the side closest to a
terminal side. This could be wrong if the supply terminal was not at the bounding box. This has been fixed
by putting the terminal at the bounding box, and adding a piece of metal from the old position to the new
position. Also an other another way to determine to which side terminal belongs has been added, to handle

- 51 -

the problems that occur if a tenninallies exactly in the comer.

There are still troubles with the supply pin placement. Some times. the terminal will not be situated at the
box side. and the router will add a description for a piece of metal with a negative size. The main problem
is the piece of metal because this not according to the ldm-syntax. and it causes other programs trouble.

Also the the layout, generated by rococo. is much to "high". At the top of a module there is a large gap.
filled only with lines to the terminals connected to the upper side. the possibility that this will happen is
very small. but if it does. the only cure is to change the aspect ratio in the interface file.

In the ldm syntax nested modules are not allowed. All modules names are known globally. This can cause
problems. if pluri-<:ell modules are enclosed in a f1oorplan. If a name for a module occurs more then once.
this will be fatal for the router. These names can be changed, and rococo started again. but there is an other
solution. There is a tool that can make a module flat. It deletes all hierarchy. It is called "flat". and has to be
called with:

/usr/local/bin/flat /usr/local/lib/nmos. tech < <input-file> > <output
file>

There have been many problems with this rococo. The version installed is still an old Pascal
implementation of the program. A C version of the program is ready (but not yet installed). When using
this new implementation we encountered many bugs. But is seems that most of them have been found and
removed.

- 52-

3.4 ESCHER+ Schematic Editor and Behaviour Evaluator.

3.4.1 Introduction to escher.

Escher is a schematic entry program. The network drawn will be saved in the standard database format,
and can be used by other programs. It is completely menu driven, and all menus are obvious, and explained
• [8]m .

For each module there is a directory in the escher library. Two environment variables control the name and
location of the escher library. There are several versions of escher. The main difference between them is
the way they store their graphics data. The version used for the blitter design, saves its graphics in a binary
file, called "escher_data". When the circuit was correct at the time of saving, it also saved the network data
files.

The network will be stored in three files. The file "connection", contains the nets, in the file "interface"
there is a list of the tenninals of the module. And the file "call" has a list of the instances of modules in this
module. If the file "escher_data" becomes corrupt (it occurred a few times with our design) the circuit is
lost. Saving modules with an other name can cause such an error. It is very dangerous to copy or rename
modules with UNIX commands.

Escher has the tendency to crash sometimes for unknown reasons, especially on the HP system. Due to
many checks if the circuit is still legal, escher will become very slow, for large circuits.

It is not yet possible to give a net a user specified name. For example in combination with the router, the
supply nets have to have very specific names.

3.4.2 The escher + simulator.

After escher was finished, the behaviour evaluator has been added. It is also menu driven, and all menus
are clear. Under Escher+ the user has the possibility to add a behaviour description to each template. The
circuit can now be simulated.

These behaviour descriptions have a lisp-like syntax. In v.d. Steen [9] there is a syntax description. The
command list is not complete any more. Several commands have been changed of added since then.

The syntax of the behaviour description are not checked thorough. So if there are syntax errors in your
descriptions escher+ crashes. If Escher+ does complain about an error, it does not say where it is. Because
of this bad error handling, it is difficult to get acquainted with the syntax.

User interrupt handling has been improved recently. Fonnerly it was impossible the interrupt the simulator
when there was a infinite loop in one of the behaviour descriptions. This will not cause no problems any
more. The simulation can be interrupted by pushing any key.

It is only possible to do simulations on one level, for all modules in one scheme there has to be a
description. This is awkward, because in most cases the user will want to have the possibility to define the
behaviour of a module on a lower level also.

Using Escher+ we came to the following list of things that could be improved:

• Simulations can only be done on one level.

• There should be a syntax check of the behaviour files.

• It should be possible to define functions.

- 53-

• Global variables and constants should be added.

• The e"or messages you get now do not say in which template the error is.

At the time of writing, two new versions of Escher were nearly ready. Most of the problems are likely to
have been solved in the new ones.

- 54-

3.5 EULER The Layout Editor.

Euler accepts only <filename>.lay files. The conversion of a ldm file can be done with from_Idm:

from ldm <filename without extension>

For the nmos process respond to both questions" I". It will create <filename>.lay file that can be viewed at
and changed with euler. It can be converted back to an ldm file with "to_ldm":

to_ldm <filename without extension>

Euler has problems with the names for modules generated automatically. Names with control characters or
longer than 6 characters aren't allowed by euler. Euler allows no underscores or names that start with
capital letter. It will try to find other, legal, names. While doing this it sends a lot of errors and warnings.
When working on the Apollo you even don't have enough time read them.

If a .lay file is loaded the first time with euler, it often crashes. It will quit with the message "segmentation
violation" or just hang up. Kill it and start again.

For very large layout both from_Idm and euler will become very slowly. For the floorplan of the logic unit,
from_Idm took 4 days, and euler 30 minutes (only for starting up).

- 55-

3.6 SLS Switched Level Simulator.

SLS simulate the logical behaviour and the timing of digital MOS circuits. A user manual is enclosed in the
leo book[lOI. SLS needs two files, a description of the network and file with the simulation commands.
The network description can be extracted from a layout See the manual for the syntax of the circuit
description and the command file.

The simulator uses the Delft database. Here is step by step how to build one. Do it manually the first time,
to know each program, and write a shell script to do it for you the second time. Because of all those sub
directories it will be impossible to comprehend the intennediate results anyway!

mkpr <project name>

It is not allowed to have a file or directory <project name> in the current directory. Now you an amount of
empty directories and sub-directories. You can chose any project name, it isn't used elsewhere.

cd <project name>

cldm <ldm file>

makeboxl <module name>

makevln <module name>

extract -L <module name>

Use the -L option to get a SLS network description. The <module name> has to be the same as you used
with macplace. Afterwards the file <module name>.sls will contain the description. If you want to change
the description, do it in this file.

sls_mkdb <module name>.sls

sls_exp <module name>

When sls_exp responds:

"circuit/test/me", item NNN: integer expected

you probably have a transistor with width or length "10" as NNN-th item. For some curious reasop this is
not allowed, change it into "9" or "11", and try it again.

After writing the command file you are ready to start the simulation with:

sIs <module name> <command file>

SIs produces two files. The file <module name>.out with the results in a readable format, and <module
name>.res, which contains the result in a fonnat suitable for further processing, with for example
"slsmenu" or "lpsig". For examples I have done up till now (with a few hundred transistors) the runtime

- 56-

for the creation of the database is about 20 minutes, and for the simulation itself about 20 seconds.

For each program there is a manual page.

In the output of the extractor, the vss and vdd were interchanged. All depletion transistors wece connected
to vss. Check this in the file <module name>.sls.

I also tried the postprocessing tools Ipsig and slsmenu. Slsmenu is easy to use and all menus are clear.
Figure 28 is an example of the output of Ipsig.

- 57-

3.7 DALI Delft Advanced Layout Interface.

Before DALI can be used to view or edit an ldm file, the layout has to be converted to a "Delft Database".
This involves the steps executing the programs: "mkpr" , "cldm", "makeboxl", and "makevln". In the
section about SLS there is a description of these steps. So if you want to look at a piece of layout. for which
a SLS simulation has to be made anyway. this doesn't involve extra work. when not, this means a lot of
extra work.

For smal1layouts, EULER is almost always faster, and easier. For large pluri cell modules, it depends if the
module is flat or not If it is flat it doesn't make much difference. If not, the performance is poor compared
to EULER, due to the enormous amount of directories in the database.

For "big" floorpIans, many large modules, DALI beats EULER. In this case both take their time to show
the layout on the lowest level, but you can't see anything in it anyway. DALI has, in contrary to EULER,
the possibility to show also a limited number of modules on a lower level. With DALI you can also zoom
in on a small part of the floorplan very quickly (EULER not).

In general the menu's are clear, but it is strange the the item to leave the editor is not located at the top
level. It is located in a sub menu called "dm_menu".

A.

- 58-

The C-sQurce.

#include <stdio.h>

Idefine BIT(i,a) «(a)>> (i» & 1)

typedef unsigned short WORD;

typedef unsigned char VB YTE;

typedef unsigned long ADDRESS;

1* defining the width and the hight of the screen ..,

Idefine SCR_W

Idefine SCR_H

Idefine MEM_SIZE

typedef stNct PORT

{

4 , .. byte count I! ..,

20

SCR_W"SCR_H

short tildes;

short size; 1* byte count " ..,

char "name; 1* port name ..,

} PORT;

1*----------------------- INTI1ALISING PORT --------------------------------..,

PORT "port(size , name)

short size;

char "name;

char"callocO;

PORT "newport;

if (newport =(poRT ..) calloc(I, sizeof(PORT »)

{

- 59-

newport->size = (size+7)/8;

newport->fi1des = 0;

newport->name = name;

retum(newport);

printf("Cannot allocate port: size = %dO, size);

exit(I);

r ----------------------- GET ---------------------------------- -----------*/

unsigned int get(port)

PORT *port;

(

unsigned int data;

printf("-->% I5s" , port->name);

scanf("%x" ,&data); r input is supposed to hexadecimal!! */

printf(" %uO, data);

r read(port->fildes, «char *) (&data+ I» -port->size. port->size);

*/

retum(data);

r ----------------------- PUT --*/

put(port, data)

PORT *port;

int data;

printf("<--% I5s %uO , port->name , data);

r write(port->fi1des, «char *) (&data+ I» - port->size, port->size);

*/

r---------------------- DISPLAY --*/
WORD mem{ MEM_SIZE];

displayO

(

inl x I Yt i;
printf("This is in memory:O);

for(y = 0; y < SCR_H; y++)

(

printf("0);

for(x = 0; x < SCR_W; x++)

for(i = 15; i >= 0; i--)

printf("% Id" , BIT(i ,mem{ y * SCR_W + x] »;
printf("%Id" ,y % 10);

}

printI("0);

- 60-

~----------------------LOAD MEMORY FROM THE FTI..E "SCREEN" ----------------../

loadrnemO

{

FILE "fp, "fopmO;

int ij;

if«fp =fopen("screen" , "r" » = 0)

(

printf("can't open file' screen'0);

exit(l);

else

for (i =0; i < MEM_SIZE; i++)

(

fscanf(fp, "%d" , &j);

mem{i] =j;

#include <stdio.h>

#include "blitter.h"

~-----------------------BUTTER REGISTERS --------------------------------../

~ (see Appendix-A page 2-4) ../

WORD bltconO =0;

WORD bltcoo I = 0;

WORD bltsize = 0;

/ .. control register 0 ../

/ .. control register I ../

/ .. size of window, if written starts blit ../

ADDRESS bltCpt = 0;

ADDRESS bltBpt =0;

ADDRESS bltApt =0;

ADDRESS bltDpt = 0;

~ highllow source C pointer"/

~ highllow source B pointer"/

~ higMow source A pointer"/

~ higMow destination D pointer ../

~ firstllast word masks for A ../

~ modulo's for C, B, and A respectively"/

~ modulo for destinatioo D ../

~ source data registers ../

/ .. destination data register ../

WORD bltAfwm =65535,

bltAlwm =65535;

WORD bltCmod =0,

bltBmod =0,

bltAmod =0;

WORD bltDrnod = 0;

WORD bltAdat = 0,

bltBdat= 0,

bltCdat =0;

WORD bltDdat =0;

~ ----------------------- SCREEN MEMORY -----------------------------------../

WORD mem[MEM_SIZE];

~----------------------- AUXIllARY REGISTERS ------------------------------../

~ (see Blitter schema fig 6-15, page 196) ../

·61 -

WORD bltAold; bltBold. bltCold; r" source data registers .,

r"----------------------- I/O PORTS --------------------------------------.,
r" (see Appendix-C page C-2) .,

PORT ·relLaddr..JlOn. ,. R/W pon: R register address; W pan RAM address .,

·ram_addr..JlOn. r" W pon: rest RAM address .,

·data_bus. r" R/W pon: data reading and writing .,

·data_bus_req. r" W pon: request for data bus .,

·dma_req. ,. R pon: acknowledge from DMA controller .,

• ram_write. r" W pon: selects read/write from/to RAM .,

·chip_select. ,. R pon: register read enable .,

• interrupt; ,. W pon: interrupt when blit completed .,

PORT·ponO;

lUlsigned int getO;

loadmemO;

r"----------------------- MAIN ROUTINE ------------------------------------.,

mainO

(

UBYTE relLaddress;

WORD data;

r" these should be declarations actually·'

relLaddr..JlOn =pon(8 • "relLaddr..JlOn");

ram_addr..JlOn = pon(10 • "ram_addr..JlOn");

data_bus = pon(16. "data_bus");

data_bus_req = pon(I • "data_bus_req");

dma_req = pon(I • "dma_req");

ram_write = pon(I • "ram_write");

chip_select =pon(1 • "chip_select");

interrupt = pon(1 • "interrupt");

r" initialisation of the screen memory .,

loadmemO;

while (TRUE)

(

relLaddress =get(relLaddr..JlOn);

if (get(chip_select»

(

data = get(data_bus);

write_register(relLaddress. data);

if (relLaddress = BLTSIZE)

(

blitO;

put(interrupt. 1);

)

r"----------------------- WRITING A REGISTER ------------------------------.,

- 62-

write_register(addr. data)

UBYTE addr;

WORD data;

{

switch (addr)

(

case BLTCONO: blteonO =data; break;

case BLTCONI: blteonl = data; break;

case BLTSIZE: bltsize =data; break;

case BLTAFWM: bltAfwrn =data; break;

case BLTALWM: bltAlwrn =data; break;

case BLTAPTL: PUTLOW(bltApt. data); break;

case BLTAPTH: PUTIUGH(bltApt. data); break;

case BLTBPTL: PUTLOW(bltBpt. data); break;

case BLTBPTH: PUTlllGH(bltBpt. data); break;

case BLTCPTL: PUTLOW(bltCpt, data); break;

case BLTCPTH: PUTlllGH(bltCpt, data); break;

case BLTDPTL: PUTLOW(bltDpt. data); break;

case BLTDPTH: PUTIUGH(bltDpt, data); break;

case BLTAMOD: bltArnod =data » I; break;

case BLTBMOD: bltBmod =data» I; break;

case BLTCMOD: bltCmod =data» I; break;

case BLTDMOD: bltDmod = data» 1; break;

case BLTADAT: bltAdat =data; break;

case BLTBDAT: bltBdat = data; break;

case BLTCDAT: bltCdat = data; break;

case BLTDDAT: bltDdat =data; break;

)

1"----------------------- ACTUAL BIlTTlNG ---------------------------------*/

blitO

(

WORD logop();

int i. j. feo;

for (i =HEIGHT(bltsize); i>O ; i--)

(

bltAdat = 0; /* reset registers at the start of a */

bltBdat = 0; I" new line. */

bltCdat = 0;

feo =BIT(FCi. blteon I); I" reset the fill carry bit */

get_dataO;

bltAdat =bltAdat & bltAfwrn;

for (j = WIDTH(bltsize) - 2; j>O ; j --)

[

get_dataO;

bltDdat =logop(SHIFT(bltAold. bltAdat.

-63 -

SH(blteonO), BIT(DESC ,blteonl)),

SHIFf(bItBold, bltBdat, SH(bltconl),

BIT(DESC, blteonl », bltCold, feo);

put_data();

if (WIDTH(bltsize) > 1)

(

get_dataO;

bltAdat =bltAdat & bltAlwm;

bltDdat = logop(SHlFT(bltAold, bltAdat,

SH(bltconO), BIT(DESC , bltconl »,
SHIFf(bltBold, bltBdat, SH(bltconl),

BIT(DESC, bltconl », bltCold, feo);

else

bltAdat =bltAdat & bltAlwm;

bltDdat = logop(SHIFf(bltAdat, 0, SH(blteonO),

BIT(DESC, blteonl)), SHIFT(blLBdat, 0,

SH(blteonl), BIT(DESC, blteonl », bltCdat,

feo);

put_data();

if (BIT(DESC, blteonl »
(

bltApt -= bltAmod;

blLBpt -= blLBmod;

bltCpt -= bltCmod;

bltDpt -= bltDmod;

else

bltApt += bltAmod;

blLBpt += blLBmod;

bltCpt += bltCmod;

bltDpt += bltDmod;

~-----------------------LOGIC OPERAnON ---------------------------------*'

WORD logop(Adata, Bdata, Cdata, feo)

WORD Adata, Bdata, Cdata;

{

WORDddat;

int j;

ddat = ((BIT(7, bltconO) * Adata & Bdata & Cdata) I

(BIT(6, blteonO) * Adata & Bdata & -Cdata) I

(BIT(5, blteonO) * Adata & -Bdata & Cdata) I

(BIT(4, blteonO) * Adata & -Bdata & -Cdata) I

(BIT(3, blteonO) * -Adata & Bdata & Cdata) I

(BIT(2, blteonO) * -Adata & Bdata & -Cdata) I

- 64-

(BIT(I, blteonO) • -Adata & '"Bdata & Cdata) I

(BIT(0, blteonO) • -Adata & '"Bdata & -Cdata »;
if(BIT(IFE, bltcon1) I (BIT(EFE, bltcon1 »)

forO=O; j<16; j++)

(

feo = feo' BIT(j, ddat);

if BIT(EFE, blteon 1)

(

if(feo= I)

ddat =ddat I MASK(j);

else

ddat =ddat & '"MASK(j);

)

if BIT(IFE, blteonl)

(

if (feo I BIT(j, ddat »

ddat =ddat I MASK(j);

else

ddat = ddat & -MASK(j);

)

retum(ddat);

~---------------------- READING MEMORY -----------------------------------.,

WORD gelword(addr)

ADDRESS addr;

(

~reading from memory is done in the array mern .,

~ put(data_busJeq, 1); .,

~ while(get(dma_req) = 0); .,

~ put(ram_write, 0); .,

~ put(re&....addr4lOn., REG_ADDR(addr)); .,

~ put(ram_addr~,RAM_ADDR(addr)); .,

~ retum(get(data_bus »; .,

retum(mem[addr I);

bltAold =bltAdat;

bltBold =bltBdat;

bltCold =bltCdat;

if (BIT(USEA, blteonO»

bltAdat =getword(bltApt);

if (BIT(USEB, blteonO »

bltBdat = getword(bltBpt);

if (BIT(USEC, bltconO »

bltCdat =getword(bltCpt);

if (BIT(DESC, blteon1 »
(bltApt--; bltBpt--; bltCpt--;)

- 65-

else

(bltApt++; bltBpt++; bltCpt++;)

r'----------------------- WRITING MEMORY ----------------------------------*'

putword(addr, data)

ADDRESS addr;

WORD data;

(

r' writing inmemory is done in the arraymem *'
r' put(data_bus_req, I); *'
r' while(get(dma_req) = 0); *'
r' put(ram_write, I); *'
r' put(re&....addr...JlOn. REG_ADDR(addr)); *'
r' put(ram_addr...JlOn, RAM_ADDR(addr)); *'
r' put(data_bus. data); *'

mem[addr 1= data;

put_dataO

{

if (BIT(USED, bltconO »

pUlword(bltDpl, bltDdat);

if (BIT(DESC, bltcon I »

b1tDpt--;

else

bltDpt++;

#include <stdio.h>

#define 1RUE 1

#define FALSE 0

#define PORT unsigned int 1* just to fool the compiler *'
typedefunsigned shon WORD;

typedefunsigned char UBYTE;

typedefunsigned long ADDRESS;

#define MIN(a,b) «(a)<(b»?(a):(b»

I#define MAX(a,b) «(a»(b»?(a):(b»

I#define BIT(i,a) «(a)>> (i» & I)

#define SHIFf(a,b,n,d) (WORD)(d) ?

««Wong) (a)« 16) I (b»« (n»» 16) & OxFFFF) :

««Wong) (b)« 16) I (a»» (n» & OxFFFF»

#define MASK(i) «(1)« (i»

r' Reading shift values from the control registers. rest is extracted using BIT *'
I#define SH(a) «(a)>> 12) & Oxf)

I#define USEA II

-66 -

/#define USEB 10

/#define USEC 9

/#define USED 8

/#define EFE 4

Ndefine IFE 3

/#define FCI 2

/#define DESC 1

/#define LINE 0

,. Reading sizes from size register *'
/#define WIDTII(a) «a) & Ox3f)

/#define HEIGHT(a) «(a)>> 6) & Ox3ff)

,. On input addresses written in two parts: bilS 1-15 (LOW). 16-18 (HIGH) *'
/#define PUlLOW(a,d) «a) = «a) & '"Ox7fff) I «(d)>> 1) & Ox7fff»

Ndefine PUTHIGH(a,d) «a) =«a) & Ox7fff) I «(d) & Ox7)« 7»

,. Addresses are written to two address ports: reg (1-8) and ram (9-17) *'
/#define REG_ADDR(a) «a) & Oxff)

/#define RAM_ADDR(a) «(a)>> 8) & Oxlff)

/#define A 0

/#define B 1

/#define C 2

/#define D 3

/#define BLTCONO Ox40

/#define BLTCONI Ox42

/#define BLTAFWM Ox44

/#define BLTALWM Ox46

/#define BLTAPTH Ox50

/#define BLTAPTL Ox52

/#define BLTBPTII Ox4c

/#define BLTBPTL Ox4e

/#define BLTCPTII Ox48

Ndefine BLTCPTL Ox4a

/#define BLTDPTH Ox54

/#define BLTDPTL Ox56

/#define BLTAMOD Ox64

/#define BLTBMOD Ox62

/#define BLTCMOD Ox60

Ndefine BLTDMOD Ox66

/#define BLTADAT Ox74

/#define BLTBDAT Ox72

/#define BLTCDAT Ox70

Ndefine BLTDDAT OXO

Ndefine BLTSIZE Ox58

,. defining the width and the hight of the screen *'

#define SCR_W 4 '* byte count II *'

#define SCR_H 20

#define MEM_SIZE SCR_W*SCR_H

#include <stdio.h>

#define SCR_H 20

#define SCR_W 4

#define MEM_SIZE SCR_W*SCR_H

#define BIT(i,a) «(a)>> (i» & I)

int it

MainO

I

loadmemO;

for(i = 0; i < MEM_SIZE; i++)

printf("Ij\,d", meml i]);

displayO;

}

loadmemO

I
Fll..E *fp, *fopmO;

int ij;

if«fp =fopen("screen" , "r" » = 0)

(

printf("can't open file 'screen'O);

exit(l);

else

for (i = 0; i < MEM_SIZE; i++)

I
fscanf(fp, "<rod" , &j);

memli] =j;

displayO

I
int x t Y1 i;

printf("This is in memory:O);

for(y = 0; y < SCR_H; y++)

I
printf("0);

- 67-

- 69-

A. Eskiss input for the main controller.

, this state machine controls the the blitting process.

, Wim Phi I ipsen July 19 1988.

, It takes care of loading the x and y counters,

, and 0 f the firs t wo rd time r. The coun ter is supposed to take care
, of the last word timer.

, To this controller belongs a logic circuit with 2 downcounters,
, one lor x and one for y. And a register containing the size

, value. The x counter has an output I ine that is high il the contence of
, the register is one. This line is used as last word timer.

x zero flag

y one Ilag

chip enable

size addressed by the decoder? 1 i I yes

, inputs,,,,,,,,
, outputs,,,,,,,,,

zero_x

one_y

ce

size
usea

useb

usec

pt
read_ready

load_y

load_x
fwt

t r_x
t r_y

tr_aold

tr_bold

zero 8=b=O
addr_en_r

addr_tr

(re) load y counter
(re)load x counter

Ii r s two r d time r

trigger x counter
trigger y counter

load aold register
load bold register

do not use a and b

read from address port

trigger address bus latches

,,,,,,,,

data_en_r
da ta_t r
dec_en
tr_sta
read_start
ada t_tr
bdat_t r
cda t_ t r

-70 -

read from data port
trigger data bus latches
enable address decoder (for register load)
address generator can calculate the next adderss
start the read cycle
store a data
store b data
store c data

xycsabcpr
- - 0 - - - - - -
- -1-- - ---

- - - 0- - - --

-- -1-- ---

, get the
- - - - 1 - - - -

- - - - 01 - --
- - - -001 - -
----000--

wai to
wai to
getdat
load_reg
load_reg

fi r s t da t a wo r ds ,
fi r s t

fi r s t

Ii r s t

fi r s t

wai to
getdat
load_reg
wai to
fi r s t

and load x
f_wt_a_pt
f_wt_b_pt
f_wt_c_pt
new_wr d

yxfxyabzaadddtrabc
000000001010000000 , wait unti I chip addressed
000000001111000000 , go get data from the bus
000000001010100000 , load the registers
000000001010000000 'wait for next data
100000000000000000 , start the bl i tter, because

, sizereg has been loaded
, load y

010000000000000000 , go get A
010000000000000000 , go get B
010000000000000000 , go get C
010000000000000000 , do nothing

, pt = pt8+ptb+ptc+ptd, signal that
, the last calculation is finished.
-------0- f_wt_a_pt f_wt_a_pt
-------1- f_wt_a_pt f rd a

, get data first
, wa i tun til da t a ava i I ab Ie
, And if avai lable load a_data
--------0 f_rd_a f_rd_a
-----1--1 f_rd_a f_wt_b_pt
-----01-1 f_rd_a f_wt_c_pt
-----00-1 f rd a new_wrd

, for the B-channel

000000000000000000 'wai t unt i I pt = 1
000000000000001000 'start read-cycle

000000000000000000 , wai t unt i I pt=1
000000000000000100 , save adat and go get B
000000000000000100 , save adat and go get C
000000000000000100 , save adat and goto end

, pt = pt8+ptb+ptc+ptd, signal that the last calc is finished

- - - - - - -0-

- - - - - - - 1 -

f_wt_b_pt
f_wt_b_pt

000000000000000000 , wai t unt i I pt = 1.
000000000000001000 , start read-cycle

, wa i tun til da ta ava i I ab I e

- - - - - - - - 0

- - - - - - 1 - 1

- - - - - - 0 - 1

f_rd_b
f_rd_b
f rd b

f_rd_b
f_wt_c_pt
new_wr d

000000000000000000 , wai t unt i I read
000000000000000010 , save bdat and go get C
000000000000000010 , save bdat and goto new_wrd

, pt = pt8+ptb+ptc+ptd, signal that
'the last calculation is finished

- - - - - - -0-

- - - - - - -1 -

f_wt_c_pt
f_wt_c_pt

000000000000000000 'wa i t un til Pt = 1
000000000000001000 , start read-cycle

, wait until data available

--------0 f rd c f_rd_c

--------1 f rd c new_wrd

·71 -

000000000000000000 , wai t unt i I read

000000000000000001 , save c_dat and goto new_wrd

'get dala
----1----

----01---
----001--
----000--

new_wrd

new_wrd

new_wrd

new_wrd

wt_a_pt

wt_b_pt

wt_c_pt

calc

000000000000000000 , load x. goto getdata_first

000000000000000000 , go get B

000000000000000000 , go get C
000000000000000000 , do nothing

, pt = pta+ptb+ptc+ptd,
, the last calculation

-------0- wt_a_pt

- - - - - - - 1 - wt _ a_p t

signal that

is finished.

wt_a_pt

rd_a
000000000000000000 'wai t unt i I pt = 1
000000000000001000 'start read-cycle

, wa i tun til da t a ava i I ab Ie

, And i I avai lable load a_data

--------0 rd_a rd_a
-----1--1 rd_a wt_b_pt

-----01-1 rd_a wt_c_pt

-----00-1 rd_a calc

, lor lhe B-channel

000000000000000000 , wa it un til Pt =1
000000000000000100 , save adat and go get B

000000000000000100 , save adat and go get C
000000000000000100 , save adat and goto calc

, pt = pta+ptb+ptc+ptd. signal that the last calc is finished

-------0-

- - - - - - - 1 -

000000000000000000 , wai t unt i I pt = 1.
000000000000001000 , start read-cycle

, wai t unt i I data avai lable

--------0
------0-1
------1-1

000000000000000000 , wa it un til read

000000000000000010 , save bdat and goto calc

000000000000000010 , save bdat and go get C

, pt = pt8+ptb+ptc+ptd, signal that

, the last calculation is finished

-------0-

-------1-

, wa it un til

--------0

--------1

-------0-
-------1-

--------0
--------1

0--------

data avai lable

rd_c

rd_c

calc

put

wt_pt

wt_pt

en_d

wr_d

wr_d

wt_pt_d

wt_pt_d

en_d

wr_d

wr_d

t r_x

other

000000000000000000 'wait unti I pt = 1
000000000000001000 , start read-cycle

000000000000000000 , wait unti I data read

000000000000000001 , save c_dat and goto calc

000000000000000000 , data loaded, wait or calculations

000000000000000000 , wa it logop fin i shed

000000000000000000 , wai t unt i I pt

000000000000000110 , enable ddat and d-address

000000000000000111 , start write cycle

000000000000000110 , wa it un til ready

001100000000000000 , d saved

000000000000000000 , get next data

-72 -

1-------- I r - x I r_'I 000010000000000000 , I rigger 'I count
~~~~~~--. I r -'I I _pul 000000000000000000 , pUI dala

, save lasl dala word of Ihis line

--------- I _pul I _WI _pl-d 000000000000000000 , wai I logop finished

-------0- I _wI _pI I _WI _pl-d 000000000000000000 , wai I un I i I pI

-------1- I _wI _pI I-en-d 000000000000000110 , enable ddal and d-address

--------- I-en-d I _wr - d 000000000000000111 , slarl write cycle

--------0 I _wr - d I _wr -d 000000000000000110 , wa i I un I i I ready

--------1 I _wr - d I r -'I 000010000000000000 , I rigger 'I count

0-------- I r -'I Id- x 010000000000000000 , pUI I as I wo r d

1-------- I r -'I wai 10 000000000000000000 , ready



-70 -

REFERENCES

1. Commodore Business Machines, Inc., "Amiga Hardware Reference Manual", Addison-Wesley, 1986.

2. William Cramer, Gerry Kane, "68000 Microprocessor Handbook.", Osborne McGraw-Hill, 1986.

3. M.E. Sloan, "Computer Hardware and Organization", Science Research Associates, Inc. 1983.

4. J.T.H. Verhoeven, "A Software Inter..."

5. "unix reference manual"

6. M.R.C.M. Berkelaar, "Technology Mapping from Boolean expressions to Standard Cells", EUT
Research Report, 1987.

7. L.P.P.P. van Ginneken, "Gridless Routing for Generalized Cell Assemblies", EUT Research Report.

8. A. Lodder, M.T. van Stiphout, J.TJ. van Eijndhoven, "Eindhoven SCHematic EditoR, Reference
ManuaL", EUT Research Report.

9. H.LJ. van der Steen, "Interactive Event-driven Simulation", Master thesis TIlE.

10. P. Dewilde, "The Integrated Circuit Design Book", Delft University Press, 1986.


	Voorblad
	Abstract
	Contents
	List of Figures
	1 Introduction
	2 The Blitter
	3 The ES design system
	Appendix
	References

