The LXR Developer’'s Manual

for version 2.0

This manual is released under |GFDL _r

Revision history

Author Date Rev Comment

P. Gerlier 2013-11-25 |1.0 |Initial version (for release 2.0.0)

Licence statement

This manual is released under GNU FDL (GNU Free Documentation License) v1.3. It is available at
http://www.gnu.org/licenses/fdl-1.3.txt.

LXR itself is distributed under GNU GPLv2 (or higher) license (http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt).
The code examples in this manual are also released under GNU GPL v3 (or higher) to permit their free reuse.

Copyright © 2013-2013 P. Gerlier

® Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

¢ A copy of the license is included in the section entitled "GNU Free Documentation License".

This manual is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The LXR logo on the cover page is © 2012 A. Littoz and released under Creative Commons Attribution-Share Alike 3.0
licence (CC-BY SA).

Document name

The file name for this document is structured as T-SR-L-DR. f where:
® Tisashort title (like LXRUserManual),

® SRis the software release number associated with this document (like 0 . 10), may be omitted if the document
is not related to a specific release,

® L isthe ISO 639 alpha 2 language code with optional country variant (like €n_UK),
® DR is the document revision number (like 1. 0),

® f is the file format or file name extension (like 0dt for Open Document Format or pdf).

http://http://www.gnu.org/licenses/fdl-1.3.txt
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

I would like to express my gratitude to Patrick Gerlier who spent a lot of
time writing the LXR manuals One of the major failures of Open Source
Software is lack of providing adequate documentation. He bridged that gap
first with the User's Manual and now with the Developer's Manual. I wish [
could qualify it as “wonderful” but since neither he nor I are native English
speakers, we cannot objectively assess the quality of this work. He also had
the courage to thoroughly read LXR code and put in writing his forensic
analysis. When [remember my hard time understanding LXR internals when
I took over maintenance responsibility from Malcom, I thank him for that
invaluable help for those wishing to put their hands under the hood. May
their learning curve be very steep!

André J. Littoz

I appreciate greatly André's kindness and, in my turn, I would like to point
out his patience and art of explanation. When I wanted to dig into LXR, I
contacted him to get information. Despite my numerous e-mails and my
somewhat frequent dumb remarks, he always answered, trying to explain in
simple words why I was wrong or what I should do to get what I intended. |
believe that, in fact, he likes being in that position. I am convinced that
rewording a user's problem helped him to discover lurking bugs and also to
improve LXR usefulness. I hope my contribution will appeal to LXR users,
but as we learn from SourceForge statistics, less then 40% of LXR users
download the User's Manual, though the download ratio improves with the
release number.

Patrick Gerlier

Table of Contents

1 LXR Components 1
1.1, GlODAL OULINE. ... eviieeiiiiiee ettt ee e et e e ettt e e e et e e e s s aabaeeeentaaeeeeeeaeeeseesssssnnnnnnnns 1
1.2. DIreCtOry OTZANISATION.eevuvieerurieeririeertteesteeertteeseuteesstteestteesaateesnsteesaseeessseeessseeessaesssnnseeeessnnns 2
1.3. Internal infOrMAtION.vvveiiiieiiieiiiieieeee e eeeeirree e e e e e eeeetrrreeeeeeeeeestarereeseeeeeeesnsrrreeeeeeeennnnnns 4

2 LXR Engine TR |
2.1. PrincCiple Of OPETAtION.cccuiieiiiieiiieeiiee et e eciteeeteeeetteesbee e s aeeestaeesabeessaaeesnsaeeeesnsasneeesesnnssees 7
2.2. Preserving state betWeen INVOCALIONS.c...eeruiiriiiriieiiee sttt ettt ettt e e e e 8
2.3. URL parsing and HTTP management.............ccccueeruiiiniieiniieeiieeeiee ettt e sieeesieeeee e 8

2.3.8 TIHATISAION. ...ttt ettt b et bbb bbb et e b e bt st e bt bea e e b et bt b et e bt st e bt e bt e st et ebeennen 8
2.3.D. SUPPOTT TOUTINES.veevreererieeieeieriettetetestestesteseesteseeseeseeseeseaseasesseeseeseeseeseeseeseeseesesseeseesessessesseeseesessessesseeseeseenseesseens 10
2.3.C. INLEINAL TOULIMES.ceuveeuteiietieiterte ettt ettt ettt ettt s bt e e e b e s bt et e e st e s bt et e es b e sae et e eabesbe e beeabesabbeesabeeeeaseeennnees 11
2.4. Configuration file ManagemMEeNL..........ccceouieiiiiriiriieiieeeeee et 12
24,8, TNIHATISALION. ... eevteeieiieiieiteieie ettt ettt et e e et e st et et e s te st e st esse st estensensensensansensensensansensensansansenssesnseenseeseenseeen 12
24D, APL .tttk h btk bk h ekttt b kRt bk bttt ettt ettt b nten 13
2.4.c. unmMAaPPAth @lZOTIERIMoiuiiiiiiiei ettt ettt ettt et et e e st st eneebe e e be e et e saeneenteeneeneeneens 15
2.4.c.]1. Replacement tranSfOrMationN.c.coieruirrieiientieieeite sttt ettt ete sttt et e st e et s ate s bt ebesetesbeenbeeneesnbeeennseesnnees 15
2.4.c.2. Pattern tranSfOrmMatiON.evereririririerieriererie sttt sb e bbb bbbt bbbt st ebeeneee 15
2.4.C.3. INVETHNZ SEBP.cuvteuteteetieiterteete et st ettt st et sate s bt et sht e bt eabeshe e bt eabesht e bt eabesheeabesabesbeenbeeabesbeembeeanesabeeenabaeenanes 16

2.5. HTML stream generation ManageImeNt..........c.ueeeureerueeerureenueernieeesnieeesseeesasnreeeessnnmsseeeessnnnes 17
2.5.8. BASIC FOULINES.....coveuetenietiieicieiitctetctetc ettt ettt ettt b et e b et eb et et e b st e bt eb e s e bt s e st et et ebessebenseneensenbeennenns 17
2.5.5. Page SIITUCTUIE ULIIEIES. .. ceveeueeuieiietieiieiieiietteitettet ettt ettt ettt ettt ettt et e bt e bt e bt e bt e bt e bt e bt ebeebe e bt ebesbeeseebeeseeseesaesasesasean 18
2.5.c. Template editing fUNCLIOMNS.ccuiiiiitieit ettt ettt ettt et ettt e s te e bt et e sat e beentesseenseentesaeenseentessseeensneennneas 18
2.5.c.1. Functions for headers and fOOLETS.c..eeruiiiiriiriiiierieeie ettt sttt ettt e st e st e e sanees 19
2.5.C.2. FUNCHIONS fOI TItIE QIA.......euteuieuieuieieietetetete ettt ettt ettt ettt ettt et e et et et e sbeesaneen 19
2.5.¢.3. FUNCHONS fOr dEVEIOPETS........oouiiuiiiiiiiiiiiee e 23
2.5.C.4. FUNCHIONS fOI CONEEIIE AL ... c..eeuteruietieieeitenttete ettt ettt ettt e e st e e ettesbe et e eabesbeenbeestesbeenbeestesseesabeeesnbeeanns 23

2.6. Markup mManagemeNnt............cooueeeiieriieriieiee ettt et st sre e st e et e e es 23
2.6.8. DITIVET TOULIMES.cuveuveuienieietetestetetetetestestestestetesessestassassensensensansensansensensensansensansensensensansansansansenseesssesnsesnseenses 23
2.6.D. SUPPOIT TOULINES. c....cuvtenteiireeiieteatetet ettt ettt et ettt etestetestebe b ettt es e et estebeateb et eb e st e st sbestebestebetebeetesesteneesentenensennens 24
2.7 FALE PATSINE.ccuviieiiieeiiie ettt ettt ettt e e e e st e e st e e sate e e s beeeabee e sbeeenabaeessanssbeeeesannnsaaeeeennns 25
2.7.8. SUPPOTE TOULIMES.vevieveevieteetieteeteeteeteeteeteeteeteetestestesseeseeseesesseeseaseeseaseasesseaseaseeseeseeseesseseeseeseeseeseeseeseaseensaesssenssenssas 25
2.7.D. ParSing Al@OTTERIML .. .etitiieteteteteste ettt ettt et e st et et e st et et et e be st e sbesbesbesbesbe b enbesbesbesbesbeenbeenbeennes 26
2.7.C. AlOTItRIM TIMILATIONS. c...veuieiieiieiieieieie ettt ettt ettt et e st e st e st e st es b e st estestententententententenbeesssennsesnsean 31
2.8, LaNUAZE PATSIINEeeeeuiieiriiieenieeenieeeetteesitee ettt e stteeeatteesabtessabeesabeesbteesbaeesasteesasaeesaseeennseeeens 32
2,88 TNIHAIISALION. ...ttt ettt ettt b et b e bt st e st b e bt b e et bt s b e st b et bt eb e e ben e eneenbeebe et e nteeae 32
2.8.D. PUDIIC MENOMS.tiiiiiiiiieie ettt ettt ettt et e et e st e e s abe e seeeabeeeaseasaseesnseesaeenseesnseesnseasnseenseeennns 32
2.8.C. SUPPOIT TOULINES.cuiuiiniiiiiiiiieiet ettt ettt s a e s bbb b s b e s b e s b e s b e b e s b e saesae s b e besaeenesnesneemaeeaneenne 33
2.9. File access MANAZEIMENL.ccc.utiiiiieiiiieeiieeeiiteeeitee ettt e ebteeebte e e bt e e sabteesabeeesssabbeeeesesabbaeeeeens 34
2.9.8. PUDIC METNOAS.oiiuiiiiiiii ettt ettt ettt et ettt e b e et eete e b e eabesteeaseeaseeteeaseeesesteenseetsesseenseeaseseeennns 34
2.9.b. SUPPOIt METNOMS. ..ottt a e s s eseene e e saeeaeenne 36
2.10. Database Mana@emENL...........ccovuueeriuieeriiieiniieertieeeiee et ettt e ettt e e bb e e ettt e sbeeesabee e sabeeesareeeneee 37
2.10.8. SUPPOTE IELAOAS. ..c.veutiietiiestetetest ettt ettt sttt s b e s be st e sbesbesbe st eebesbesbesbesbesbesbenbessessessessesbessesseenen 38
2.11. LOCAl CUSTOMISALION.cuviiiiieiieeiieeteeeite ettt ettt et sttt et ebeesbeesabeesbe e e bt e saeesaneesabneeenans 41
2.12. Derived Jan@UagE PATSETS.cc.ueeueirterieeniieeieesiteeteesiteeteesite e bt esiteesseesateebeessseesbeesbaeeesneeees 43
2.12.8. GENETIC PAISET....uveuverveierresetestessessessessessessessessessassessessessessessessessessessessessessessessensensensessessessensessessessssssseessesssesssens 43
202D € PALSET.....eiiiiciiie ettt 44
2.12.0. COBOL PALSET.....cuiiiiiiiiiiite ettt sttt sttt ettt b s ae st a e s a e a e s ae bt eaeeae e e saesae e b eaesaeenesaeeaeeae e 44
2.12.0. HTIML PAISET.....veuveueeuienienienientestentestestestestessessessessessessensensessassensessessessessensensensensessessensensensessensessensensensensensensensenes 45

B W T AT o T2 1<) OO 45
2028 IMIAKE PATSET.....cuiiiiiiiiiiete ettt s b e bbb h e s b e bbb bbb 45

202, PASCAL PATSET ...ttt a e e a e a e e a e ae e a e a e s 45

2020 PEIL PAISEI....c.eiiiiiiiiieicciiee ettt 45
2120, PYLNON PATSET ... eeuvenventeieietetertestetestestestestessestessessessessessassassesensesensasansansensensensensensensansensensansensesnseenseesssesnsesnses 45
2.12.]. RUDY PAISEL....uitietietieiietietieteeteeteeteeteeteeteeseeteeseeseesesseeseesesseeseeseeseeseeseeseeseesesseeseeseeseeseeseeseeseeseeseeseeseansesnseenseenssesssas 45
2.13. Specialised file aCCESS MANAZETS......ccevuvierrurieriiiieeiieeeiteeeieeerieeesteeesbeeestbreeeeessnseeeessennenees 46
2.13.2. BitKEEPEI MANAZET.......c.uiiiiiiiiiiieiieteetett ettt ettt et s ettt s bt e bt st e s bt eabesat e s bt eabesatesbeeaseseeenbeensesaeennreesanees 46
2.13.D. CVS MANAZET......eeuieueeuieiieiieiieiteiteeteetettettetettetteseesteseeseeseeseesteseeseesteseeseeseesteseeseeseeseeseeseeseeneestesteseenseeseseensesnseensens 46
2.13.C. GIT MANAZET......eeveetietietietietiettete ettt ettt ete ettt e bt ebe et e e bt e bt e st ebeeseeseebeebeeseeseeseeseesteseeseestenteseeneesteseeseeneeneeneeneeneeneeneense 49
2.13.d. MEICUITAL INANAZET ... ccveevietietietieteeteeteeteeteeteeteetesteesesseeseesessessesseesesseasessessessessessesseasessesseaseasessessessesseensessssenssensss 50
2.13.€. Plain {1188 IMANAZET.......ccuieuieiieeieiieiietieteeteete et et eteeteete e e eteeteetesteeseeseeseeseeseaseeseeseeseeseeseeseeseeseeseaseeseeseaseessesssennsesnses 52
2.13.£. SUDVETSION MIANMAZETeeteeuteieteieeteeitente ettt et et sbe e bt eateshe e bt eabesbe e bt eabe s bt eabesabesbeeatesasesbe e bt eatenbeenbesmaenbeeenbneenanee 52
2.14. Specialised database MANAZEIS.......ccccueeeriiieriieeiiieeeitee ettt e et e et e e sbteeeeeibbreeeeesiabneeeeens 54
204,28, IMIYSQL....eiiieiieiieiteitetete ettt et et e e et et et e e st et e e e s e st e st e st e st e Rt e Rt e Rt e Rt e st e Rt e Rt e st e st e st e st e st ententententententense st enneeenee 54
24D, OTACIE.... vttt ettt ettt ettt et e st e st e st e st e st e st essestessestensessessessessessessessententensentensententententententeeebeenbeenseentes 54
2.14.0. POSEZIESQL.....ooiiiiie ettt e 54
B d BN 0I5 OSSP 55

3 INAEX GENETALOT .cuveierrreicssrnicssarecssanesssaresssasssansssssssssssssssssssnans 57
3.1, PrOCESS OULIINE. ...cceiiiiiiieeciiiie et e ettt e ettt e e ettt e e e eaa e e e e e naaeeeesnaaeeaeeeeessnnnnnssssseneeeeens 57
3.2. Internal SUPPOIT TOULINES.eevrureerruiieiiieeeiteeeiteesteeestteestteesteeesabeeesaseeensseeensseessseesnsseesnsseeens 58
3.3. EXternal SUPPOIT TOULIMES.eeeuieeriieerieeerieeeeieeenieeesteeesiteeesateessareessseessseesssseesneeessseesssseens 60
TR JF T VA LT oY TCN o) U 60
330D, TAGEOIPIM. ..ttt ettt ettt a sttt e st e st e st e st e st e st ea e e st e st e st e st e st e st e st e st e st e st e st eh e e st e st e Rt ene e st e st ene e st e st eneenbesates 61
3.3.C. MUlti-thread@d Qtt@IMPL.......ceeeuieieiieiieiieiieteit ettt ettt ettt et et s et e st et e st e st e st e st estestesteseesteste st eseesteneententenseesanes 61

4 Database ATCHILECLUTE.....ccccrerercreressseresssercssenessssssssssssssasssssasssssssssssssssssssssssssssassssssssssssssssssssassasss 63
T T 0] (OO TSR PP 63
4.1.2. fIles ANd STALUS TADIES......eeuieieieietieieeieeietiet et et et et et et eseesee st eseeseeseesseseessessessessessessessessessessessessessensensensessensensenen 64

T o TR S [T R T v 1) USRS 64
4.1.0. JANGLYPES TADIE....c..oiiiiiiiii ettt s 65
4.1.d. SYMDOIS TADIE......c.veienienieieietetete ettt ettt et et e et e st et et essensessessessentensensensessensessensensensensenaensensensensessessesseseeen 65
4.1, dEfINItIONS TADIE.......eveieieieieteiet ettt ettt e et e et et et et et e st e s te b e besbesbensensansesasesensensansesassessenseenseenseeen 65
AL USAZES LADIC... ..ttt ettt a ettt ettt e e s et e st e n et et s e s s e s e Rt et en et et e e et eae et eneenneeneeneen 66
4.1.2. Unique NUMDETING tADIES.c..ouiieiiiieiirteieteiete ettt ettt ettt et et se s esesaese et et et e e esesenseseeneensenseeneans 66
L O 1 1<) o U PPRRRPPRPRNS 66
4.3. Database engine SPECITICS.ciiiuiiiriiiiiiieeiiie ettt ertteertee et e et e st e st e e st e e sbeeesabeeesibeeeesnanns 67
430 MYSQLo oo eeeee e e eeeeeeeeeseee e e e e st e e e e e e e e e e ee s e e e eeeeeeeeeen 68
4.3.D. POSEZIESQL.....cueiieieietetete et e et et et et et et et e be st esbestessessesbessessessesbesse st ensessesbe st ensessensens et enbensensensensentensaenreenne 68
3.0, SQLAtE.ueiuiiieiie ettt et eett ettt e et e et e e e e et e eete e e ae e e aeeeteeetteeaateebeeebeeeabeeatteeabteebeeebeeeateeatteeteeereeetreeeeeantes 68
B30 OTACIE ...ttt ettt a e a e a e h e eh e h e bbbt e bt e bt bbbt e h e bt e bt e bt e bbb e e bt e bt eheebeebeebeebeebeenee 69

5 LXR Main SCIIPLS.cccccrrcccsrcsssaresssanessssnesssssssssssssssssssssssssassassss 71
5.1 SOUICTE SCIIPL..veeiuiiieaiiieeeite e ettt e ettt e et e ettt e et e et e e e bt e e eabte e ettt e eabteesabteesabeeenabeeeeeesabbaeeeeennnseeeas 71
T U 1S5 1 LA & o PP PR PP 73
TG TR 1 e o | o PO OO SRPPSRRRPR 74
5.4, SEATCH SCTIPL....eeueieiiieiieeieeee ettt ettt ettt et et e st e b e et e e st e e s e e e 75
5.5. SHOWCONTIZ SCTIPL.....eeuiiiiiiiiieiieeteeete ettt et 76
6 Configuration WizZard........eeeceeeicnseccssnccssencsssascssssscsssssessssssssssssssasssssasssssasssssassssssssssasssssasssssssasse 79
6.1. PrOCESS OULIINE.eiieiiiiieeiiieecite ettt ettt e et e st e e s ebee et ee e aabtaeeeesnnssbaeaessnnnns 79
6.2, SUPPOTE LIDTATYeeiiiiieiiiiieeiieeee e et e ettt e et e e st e e s bt eesnbaeesnsaeesnseeennseeean 80
(O T 0] 115> 4317 Foa o) 1 | WO PP PP P PO PTOPROPR 80
0.2.D. LCLINIETPIOLET. PIML......eeuteiiententenientententententestestestestestestestestestestenseenseenseesseens 81
6.2.C. QUESLIOMANISWELPIML..c..ceutieitittenieriteetteteettesttesteeutesteeaaesatesbeesseeaee bt easeebeebeeasesht e bt eabeebt e bt easeebtenbeeusesseenbesaseeenbeeenaee 87
6.3. LXR Configuration Language (LCL)......c.coviiiiiiiiiniieiiieeiee ettt 89

6.3.8. SYMEAX.....eiuiiiiitiiiiitiitee et et a e a e h e h e h e a e b a e a e e h e h e a e Rt e a e a e a e e a e a e a e bt s he e s ane e eans 89

6.3.D. LCL COMIMANGS.....ceoutieiiiiiieeiieetieete ettt te et e st e sttt e tteetteeastesabeessaeesseeaaseesaseasaseasseenseasnseesnseanssaeessnssaeesesnnsneens 92
6.3.D.1. EITOT SUPPIESSION. ...c.cuteutintententententetetetet ettt ettt et et et estestententententententententententententententententensentensensees 92
6.3.b.2. Shell COMMANA INSEITION.eiirtieetieiiieriterieertieeeiteeteesteesteeesseesseessseessaeesseessseessseessseenssesseesnseesseensseenses 92
6.3.0.3. MESSAZE QISPIAY....ettiiieiiiitietieiteeteet ettt sttt ettt ettt e b et e eateeb e e bt e et e s bt e bt eateeh e e bt enbesbe e bt e e sabeeenabeeenas 92
6.3.D.4. USET INEETACTION. 1. .euteeuteetieieeieeetesteeteettesteesteestesseesseessesseenseessesseanseassasssenseasseseenseessenseensenssesseensennsensseesnseannn 93
6.3.b.5. Conditional INtEIPIELALION.ccutetiriiertieteritenttete ettt et ettt et st e bt eabesbtesbeebesatesbeeasessbesseebesseenbeesnbeesabeeens 97
6.3.D.6. AITAY CONENE INSEITION.iiutiitiertieteetieiteet et et et ettt ettt e st e e bt eatesbeesbesatesbeenbeeatesbeensesatesbbeesnbeeenaneesnnseenns 98
6.3.5.7. Variable aSSTZMIMEIL. ..c..couerteteierietetetet ettt ettt ettt ettt et e et et et e st eat et e st e st e st esbesabe e beenbeenaeeeas 99
6.3.0.8. FHIE INCIUSION. ..c..eitiiniiiiiitieteet ettt ettt ettt e b e et b et e e st s bt et e e st e sb e e beeabesbeenseeasenaseeenneenn 100
6.3.D.9. PaSs 2 INEEIPIELATION. .. .eeutirutetieteeiiesteeteeite st et ete st e bt eate s bt esbeeatesbee bt eatesbeenteeaeesbeenbesasesueenbeesseesabaeesnbeeannne 101

6.3.c. Standard SYMDOL QICTIONATYccecveirieieieieieietetetetetet et ere et et eeeeseeseeseeseeseeseeseeseeseeseeseeseeseeseeseeseesesseeseensenn 101

6.4, Standard LEMPIALES.cccuueiiriiieiiiie ettt ettt et e et e et eertbee et e e eabeeebaeeebreeeeeannnbaeaeeeanns 103
7 Auxiliary Scripts SR (|
7.1. Linux kernel eXploration SCIIPL.......c.eiirueeiriieriiiieeiieeeieeeeieeesieeeseteeeseteeeireesareesnsneesnseeeaesnnns 105

7.1.8. PTOCESS OULINE.cvietietietietietietietietietteteetee e e e eteeteeteeseeseeseeseeseeseesaesaesaessesaesaessesseseassessassassasseseessessessessesseansesssessns 105

7.1.D. SUPPOIE FOULINES. ...c..evivieeieieetieteeteeteeteeteeteeteetestestestestessestessessesseesesbeesessesseesesbestesbesbesbesbesbesbesbesbesbesbesbesbessessessennns 105

7.1.c. Interaction With IXTKEINELCONT........ccoiiiiiiiiiieieeteeee ettt ettt sbe e s et e enbeennes 106

7.2. Database réCONSIUCTION SCIIPL.....veerurieririeriieerieeenieeesteeesiteeesiteeeseaeessareessnseseeessssnsseeeessnnnns 108

7.2.8. PIOCESS OULINE.veuveureeieieietetetetetetet et estesteseestesteseeseeseeseeseessessesseseessessessessesseseesseseeseessessessesseseeseassesseseeseenses 108

7.2.D. MAINEEIIAIICE ISSUE......evevetitietertietietiettettetteteetteteetteseestesteteeseeseestes e e st estesteseesteseestes e e st esteseesteste st estestestenbeanseesaeesane 108

8 RelEaSE TOO0....uuuiiireiiirrninssanicssnicssanisssanesssancssssnesssnssssssessssssssssssssssssssssssssssssssasssssasssssassssssssssassssss 109
8.1, COMMANA TINE....ccoiiiiiiiiiiiiieiite ettt ettt sat e et eesate e e s s eabbeeeeesssbaeeeeeas 109
8.2, PrOCESS OULIINE.coouiiiiiiiiiiiiie ettt ettt ettt e st e st e s et e e e e sabaaaeee s 109
8.3, SUPPOIT TOULIMES.vvieeitiieeiieeeiieesieeesiieeesteeesiteeetreeeaseeessseeeasseesasseessseesssaesnsssaaessnnssseeeeeannns 110

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 | LXR Components Document revision 1.0

n LXR Components

The goal of LXR is to display a source file with symbol highlighting in an
HTML browser. Highlighting encompasses both visual appearance and
hyperlink creation to benefit from the browser ability to navigate from one
page to another through a single click.

Features and operation are described in the LXR User's Manual which
should be read before this manual.

I.1. Global outline

LXR is presently composed of a set of specialised Perl scripts (diff for difference display, ident for
identifier search, search for free-text search, showconfig for monitoring configuration and source for
display) and a support library also written in Perl.

These scripts are driven from a URL (in the browser address bar) describing the intended action.
LXR eventually retrieves a source file from the source-tree repository and merges cross-reference
data from its internal database into an HTML stream representing the edited file. Identification of
the data sources come from the configuration file Ixr.conf.

This is summarised in the following figure:

http://host/Ixr_service/script/args

i

Source-tree) LXR HTML
repository engine > output
Ixr.conf XRef
!) DB

Drawing 1: Data sources in LXR

The cross-reference database has been previously created by script genxref in two internal passes
over the source-tree:

* the first pass collects symbol definitions with help of ctags;

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 | LXR Components Document revision 1.0

* the second pass enters all occurrences to the previous symbols.

This process can be slightly adapted through command line arguments. See the following flow
diagram:

Command line arguments

'

—» genxref XRef

T DB

Ixr.conf

Source-tree
repository

Drawing 2: Database creation process

The LXR engine receives control in one of the externally visible scripts, namely diff, ident, search,
showconfig or source, which dispatches calls to services:

URL decoding to understand what is expected and configuration file parsing to retrieve the
parameters implied by the request (always done);

access to a source file or source directory through an abstraction layer hiding the differences
between real filesystem or version control system (diff and source);

Usually, this means also parsing the source file. Although functionally related, this service is
independent from source access. It is also an abstraction layer hiding the differences between the
source languages.

access to the cross-reference database in order either to highlight a symbol (source or diff) or to
dump the references (ident);

eventually, if the feature is enabled in configuration, access to auxiliary database for free-text
search (search);

HTML stream generation (always done).

1.2. Directory organisation

Source code for LXR is contained in a directory called LXR root directory in the User's Manual. Its
organisation is fit both for run time and development. This comes from the fact that LXR is written

in an interpreted language which does not need compilation and linking. This may not remain true
in the future.

This root directory contains the externally visible scripts, i.e. commands, and sub-directories for the
support library:

Project LXR

Software release 2.0

The LXR Developer's Manual
| LXR Components

Language en_UK

Document revision 1.0

* diff, ident, search, showconfig, source: the user commands issued through a browser

* genxref. database content initialisation script

Since this is not a browser “command”, this script would be better located in the scripts/
directory but it uses the common support library which expects the “master” script being
launched from the LXR root directory. The support library retrieves this LXR root directory
path from the OS-absolute path of the “master” script. If the script is launched from
somewhere else, computing the library location fails.

* robots.txt: web crawling security file to prevent spider robots from indexing the source-tree

This file is effective only if it is located at the root of the web site.

* LXRimages/: graphics stuff for insertion into HTML pages

* doc/: traditional summary information for installation (changes, licence, installation notes, ...)

* [ib/: support library, containing

o Local.pm: custom description extracting functions to comment directory listings; intended to

be adapted by every tree manager to suit his needs

Not in LXR/ because it is not strictly part of the standard support library: it is supposed to be
written by the end-user though it has seldom been.

magic.mime: a 2004-hacked version of magic numbers for binary file detection, to be used by
Perl module File::MMagic

Could this file be deleted since it is rather old? Change log does not tell what was added or
modified to improve the test. A more recent and comprehensive file ships with the file
package in every distribution (located at /usr/share/misc/magic in Fedora).

Location of this file can be given in 'magicmime’' configuration parameter.

LXR/: the support library, strictly speaking; its content is detailed below

The support library is isolated in a directory because it used to be copied into Per! library in
the Apache 1 era. Being contained in a directory, it did not mess up the system library and it
was easy to remove it. This is no longer necessary with the newer version (and has never been
with other web servers). We could thus spare one directory level.

® scripts/: directory containing various utility scripts (configuration wizards, maintenance
functions, ...)

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 | LXR Components Document revision 1.0

* templates/. templates for creating configuration files and HTML pages; some are used only
during initial configuration, others (like those in html/) are routinely used by the LXR engine

CAUTION:
@ The structure of this directory and the names of the contained files are known to the
configuration wizard. Consequently, any change must be forwarded to the wizard.

The support library LXR/ provides the services needed by the browser “commands”. The files
related to the abstraction layers are “linked” to directories containing the implementations.
Currently, three layers are defined:

* Files.pm and Files/: access to source repositories;

* Index.pm and Index/: access to the cross-reference database;

* Lang.pm and Lang/: language parsing.

The other files provide the following services:

* Common.pm: URL parsing and HTTP management

Used to be the only non-specialised file in the library, but grew so much it was decided to split
it into smaller more manageable units; however it kept its original name which could cause
now confusion.

* Config.pm: access and management of [xr.conf configuration data

* Markup.pm: highlighting of file, string, ...; needs language parsing service

SimpleParse.pm: rudimentary context free parser based on pattern matching

* Template.pm: HTML stream generator expanding page templates

All these services are detailed in the following chapters.

1.3. Internal information

Many Perl source files contain POD (plain old documentation) blocks describing the package and
its routines. This documentation can be extracted to be displayed by a browser. A typical command
(set on several lines for readability but it is a single logical line) is:

$ pod2html --htmlroot=hr
--infile=LXR/root/directory/documented_file
--outfile=html_file
--title="File extracted documentation"

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 | LXR Components Document revision 1.0
where:
hr
base URL for the resulting pages (used to cross-link the pages),
documented_file
an LXR source file, such as lib/LXR/Common.pm,
html_file

the output HTML documentation page,

title
some fancy title for the HTML page.

For instance, to collect the documentation from lib/LXR/Common.pm into subdirectory LXRdoc/ of
your personal home directory, with this subdirectory being the HTML document root, launch the
following command:

$ # As usual, current working sirectory is supposed to be LXR root
$ cd LXR_root_directory

$ pod2html --infile=1ib/LXR/Common.pm --outfile=~/LXRdoc/common.html
--title="Common package"

The last command is split by the word processor but it is written as a single line.

Open the web browser and point it to the appropriate URL. In case the LXRdoc/ directory is not
integrated into the web server document root, it may however be displayed with an address of the
form:

file:///home/myself/LXRdoc

and follow the links for the different files.

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

a LXR Engine

2.1. Principle of operation

LXR operation is based on interpreting the request URL.
Schematically, an LXR URL has the following structure:

http://host_name/web_path/script/tree/source_tree_path?arguments
—————— web server realm ------ === LXR control parameters ===

Of course, https can be used instead of http.

The first part http://host_name/web_path/script is used by the web server to route the
request to the appropriate script. host_name is associated with the computer through DNS (the
alternative to directly reference the computer makes use of a numeric IP address). The association
between web_path/script and the LXR root directory and a script is defined in the web server
configuration file.

The second part tree/source_tree_path?arguments drives script processing. The role of
subparts is:

* tree: identifies the source-tree to manage (may be omitted if a single tree is handled by LXR);

* source_tree_path: designates the source file to process (relevant only for scripts diff and
source);

* arguments: optional key-value pairs modifying a script default behaviour (such as choice of
version to display)

Many variations are possible. Notably, the tree designation has not always been positioned after the
script name.

1. Tree-specific host name: alias to host_name but not to be considered for DNS translation if
many trees are served since it involves too many manual steps;

2. Tree prefix for host name: easy with external DNS but tedious for localhost;

3. Tree name embedded in web_path: needs a tweak in web server configuration, but this restricts
the choice of web servers because the tweak cannot always be ported from one to another.

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.2. Preserving state between invocations

HTTP is a stateless protocol; a script invocation must therefore completely describe in arguments
what is indented. This is where LXR stores its internal state when an action is split into a series of
script invocations or simply to remember some user choices. The state consists of:

* ‘'variables' values (if different from default values) as

var_name=value

* “Remembered” 'variables' current values (this is necessary for diff because it uses a “hop” to
select the second file to compare to)

~var_name=value

* Overriding 'variables' values (this argument category defers variable update from value
selection in a menu to next script invocation; it simplifies change of value by overriding a
variable value after the “standard” argument has been taken into account)

'var_name=value

* Internal parameters (they may or may not have an equivalent configuration parameter)

_parm_name=value

2.3. URL parsing and HTTP management

This service resides in file Common.pm. It aims at extracting the semantic components from the
URL and identify the relevant tree description in configuration file [xr.conf.

2.3.a. [Initialisation

The very first function called is httpinit. Using the environment variables, it builds a safe
canonical representation of the URL.

hostname is reconstructed from variables SERVER_NAME and SERVER_PORT and stored in an LXR-
normalised form in $HTTP->{'host_access'}. web_path/script is supposed safe (i.e. URL
%-encoded) and copied from SCRIPT_NAME. The target virtual root is computed by removing the
script name and stored in $HTTP->{"'script_path'}. This will later allow to define the HTML
<base> element.

PATH_INFO (containing web_path) is checked for possibly offending characters (which could

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

cause cross-site attack XSS) and truncated at the first unauthorised character'. Eventually, path
segments /./ are replaced by /.

The reconstructed host name and the virtual root are passed to configuration service to identify the
target source-tree.

Parameters and their values are extracted from QUERY_STRING. If they correspond to “variables”,
the current value of those “variables” is updated and the parameter deleted.

The remaining parameters will be blindly copied when an URL needs to be generated, thus
preserving the internal state or user environment from one request to the other.

Since this service is always called first and only once, it launches initialisation for other services:
access to repositories and cross-references database.

Global variables are set to their value for general access by other services:

$HTTP “hash” containing the decoded URL
"host_access' is http://hostname:port.
"'script_path' is web_path without script name.
"path_info"' is the path following the script name.
"path_root"' is the first segment of 'path_info', i.e. possibly the
tree name.
"this_url"' is the full reconstructed URL.
"param' is a “hash” of parameter/value extracted from the query
string. Note that some parameters are removed from this “hash”
(namely those corresponding to “variables” and argument _1i) to avoid
later duplications in the generated link URLs.

$releaseid internal version identifier (may be different from the URL _v)

$pathname path to the required file (relative to sourceroot)

$identifier key for identifier search (cleaned URL _1)

$config “hash” containing the relevant configuration parameters from /xr.conf
merged from the global and tree-specific parameters

$files “object” for source repository access

$index “object” for cross-reference database access

$HTMLheadOK set to 1 when HTML headers have been successfully generated

Finally, HTTP headers (presently Last-Modified: and Content-Type:) are emitted by
printhttp and mode is switched from headers to content by emitting an empty line.

Package-private variables are:

$wwwdebug if set to 1, messages from fatal and warning are also emitted as
HTML (they are always entered into the error log).

$HTTP_inited set to 1 when HTTP headers have been sent

$tmpcounter unique counter for temporary files

' This has not yet caused any malfunction. At least, no user complained.

Project LXR

Software release 2.0

The LXR Developer's Manual
2 LXR Engine

Language en_UK

Document revision 1.0

TODO:

Remove limitations on file names (notably special URL characters); improve URL %-encoded
strings (may need updates to other functions); check possible XSS gaps.

Unreserved characters: A-Z a-z -9 - _ . ~

General delimiters: : / ?#[] @
Sub delimiters: ' * ' () ; &=+9%,

2.3.b. Support routines

Routine name Arguments Description

http_wash URL fragment Returns its argument HTTP %-decoded

http_encode String Returns its argument HTTP %-encoded

fixpaths File path Prefixes its argument with / and removes all directory/../ or /./
segments; if repository service tells it is a directory, suffixes
argument with /

httpminimal Emits a minimal set of HTTP headers, sufficient to display error
information

printhttp Emits HTTP headers for the current file

httpinit Basic initialisation (see above)

clean_release Release id Returns its argument if that release (version) exists in the repository

or the default one otherwise
Note: this protects against maliciously crafted version in the URL

clean_identifier

Search name from
URL

Returns its argument with “stray” characters removed (outside the
alphanumeric set plus _ : . , - ~ and space) from the identifier
name passed through the URL

Note: the set of allowed characters must be consistent with
language lexical definition.

Note: this protects against maliciously crafted identifier in the URL

clean_path

File path

Returns its argument with “stray”” and following characters (outside
the alphanumeric set plus spacers _ + . , - %/ !)and all //
segments removed

httpclean

Disposes of allocated data structures $config, $files and
calls final_cleanup for $files (protection against
memory leak, important under FastCGI, not fundamental under
CGlI but it is good programming practice)

tmpcounter

Returns a unique counter (useful for creating temporary files)
Counter is kept in package-private global variable
$tmpcounter

nonvarargs

Returns an array of variable=value strings for URL arguments
which are not configuration variables (arguments are taken from

10

Project LXR

The LXR Developer's Manual

Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
$HTTP hash)
urlargs Extra argument array | Returns a string suitable as a query string from configuration
(format of each variables and optional argument array
element is
var=value)
fileref Description Returns an <a> HTML element to invoke display of a directory or
CSS class file (may scroll to a line within a file); line number and argument
File path array optional
Line number Path name is URL %-encoded
Extra argument array | HTML delimiters in description are replace by their entity
references (CAUTION! This means HTML elements cannot be
embedded in the description unless special precaution is taken)
diffref Description Returns an <a> HTML element to invoke difference markup of a
CSS class file; argument array optional
File path See remarks in fileref
Extra argument array
idref Description Returns an <a> HTML element to invoke identifier lookup;
CSS class argument array optional
Identifier name See remarks in fileref
Extra argument array
incref Name to display Returns fileref(arguments) if incfindfile succeeds,
CSS class undef otherwise
File path
Extra argument array
2.3.c. Internal routines

These routines are not exported. They are invoked from the hooks for warn and die statements.
They intercept warnings and errors to log them into the web server journal file and display them on
screen if requested by variable $wwwdebug. They return no value.

They are protected against HTML attack by transforming all < > characters in the message by their
equivalent entity references. If multi-line messages are needed, lines are separated with \n which
will be transformed into
 elements.

Routine name Arguments Description
warning Message Inserts its argument into the error log and optionally prints it on
screen as an <h4> HTML element if debugging mode is enabled
fatal Message Inserts the internal state and argument into the error log, optionally

prints it on screen as an <h4> HTML element if debugging mode
is enabled and aborts processing

Note: can be used before initialisation is complete because it cares
for HTTP headers

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.4. Configuration file management

This service resides in file Config.pm. It aims at collecting the set of configuration parameters
relevant for a given source-tree (union of global tree-specific parameters). It offers a simple API for
dealing with 'variables'.

CAUTION!

@ This service is also used by traditional command line scripts for which the web server
environment variables are not defined. Consequently, you must not rely on implicit

values for optional arguments to functions.

Name of configuration file [xr.conf is defined by global variable $confname. This variable can be
modified to point to a different default location, such as /etc.

2.4.a. [Initialisation

The very first function called is new. It creates the “object” accessing configuration data. Its first
two arguments represent the actual URL (host name and script path) used to activate a script. A
third optional argument is a potential candidate for the tree name. A fourth optional argument
contains the name of an alternate configuration file to replace the default name from variable
$confname. It branches to internal function _initialize and returns its value (configuration
object).

Arguments to _initialize are optional. Default values are computed if they are missing. Missing
host name and script path are replaced based on server variables SERVER_NAME, SERVER_PORT and
SCRIPT_NAME. No surrogate value is computed for a missing tree name. A missing configuration
filename is replaced by the OS-absolute path of the executing script with the last segment
substituted with the value of $confname (if $confname starts with a /, it is considered an OS-
absolute path and used as is?).

The full configuration file is read and evaled. The first element of the resulting array is transferred
into the created object as it applies to all trees.

If global parameter 'routing' exists (new in release 2.0), extra checks are made. 'single'
routing must be applied only on a configuration file describing a single tree. In 'argument'
routing, not requested from genxref, a manual selection is offered if no tree name was defined.

The remaining configuration elements are examined in a loop to find a match on host name (without
port’) in 'host_names' and virtual root in 'virtroot' against the script path (final script name
element removed). For backward compatibility, if there is no 'host_names', match is checked
between 'baseurl' or 'baserurl_aliases' and 'virtroot'. On match, the element is

This makes provision for installing LXR through a package with the scripts in some “system” directory and
configuration file in /efc.

This choice has been made by the maintainer to allow to serve simultaneously the same source-tree by different web-
servers connected on different ports. To use port in the comparison, just remove a single line.

12

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

transferred into the created object with duplicate key/value automatically overriding the global ones.

If no match, the process is aborted; recovery is dependent on catching this exception in an outer
handler.

After a match, various tests are made to insure critical parameters are present (only presence, not
semantics or sensible test).

To avoid subsequent problems with dedicated LXR servers (where 'virtroot' reduces to '/"'),
the virtual root kept in the created object is enclosed* in HTML path separators /. The resulting

virtual root can then be used as a raw prefix, without the need to add a / separator when composing
URL.

2.4.b. API

The other functions implement the API.

The following methods are for special access to the configuration file.

Routine name Arguments Description
emergency Configuration file Similar to New but never returns undef; instead, returns whatever
can be grabbed from configuration file (at least the global
parameters)

To be used as an a fallback initialisation (if N€W failed) to allow to
emit HTML code with the “standard” templates

readconfig Returns the content of the configuration file in a array; this is the

same configuration file as the one scanned by N€W (name store in
the configuration object)

To be used when there is a need to access other elements than the

active one
treeurl Tree-specific parameters | Tries to return a URL for the tree described by the first argument.
Global parameters Both arguments are usually obtained from readconfig. If

undef is returned, this means HTML-relative references may be
used; otherwise, the returned URL is the base for an absolute
reference.

The algorithm may fail to give the correct answer. Read the caveats
in the code.

readfile File path Returns in an array the words (delimited by spacers) in the file
This is not a method but a regular SUD for use in custom functions
in the configuration file. File path may be relative to LXR root
directory or absolute.

The 'variables' can be manipulated through the following methods.

Routine name Arguments Description

allvariables Returns an array containing the names of all variables

4 A '/1xr' virtual root becomes ' /1Xr/'. When LXR service is at the server root, care is taken to obtain ' /"'
and not ' // ' which would be understood as the beginning of an host name, giving an erroneous link.

13

Project LXR

The LXR Developer's Manual

Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
variable Name If second argument present, set the variable to its value; return the
Value current value of the variable
vardefault Name Returns default value for the variable
vardescription Name If second argument present, set the variable ' name ' element to its
Value value; returns variable “description” (value for key 'name')
varrange Name Returns an array of the explicit allowed values (value for key
"range') or a reference to the function computing this array
varexpand String All occurrences of $name are replaced by the variable current value
No test is made to see if the variable exists
value Parameter name Returns the value of the configuration parameter where all occurrences

Other miscellaneous services are:

of $name are replaced by the variable current value
No test is made to see if the variable exists

Routine name

Arguments

Description

AUTOLOAD

At least one

Magic Perl method to instantiate barewords (useful mainly for
dynamic Subs)

It provides a shorthand notation for value (arg) when arg is a
configuration parameter. If this arg is a SUb, it is applied to its
arguments.

When writing new code for LXR, it should be better to avoid it so
that intent of the word is immediately apprehended.

mappath

File path

Extra argument array

Applies the 'maps ' rules to the file path; a local
'variables' environment may be created with the optional
argument array

unmappath

File path

Extra argument array

Tries to reverse the effect of the 'maps ' rules on the file path
Proceeds by dynamically computing a pseudo-inverse of the
replacements

CAUTION! It might not be possible to invert the rules if they
destroy information, consequently, the result must be considered
unreliable.

_ensuredirexists

Directory path

AUTOLOAD
Presently, the 'variables' expansion feature is used for parameters 'sourcerootname'’
(custom path root in banner) and 'incprefix' (list of “include” directories).

Checks that the final and all intermediate directories exist and
eventually creates them (roughly equivalent to mkdir -p)
Created directories have write-access enabled for everybody.
This is not a method by a regular Sub.

If needed, it could also be activated for 'ignoredirs' (list of directories to ignore).

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Is it meaningful to allow variable substitution in 'ignoredirs'? What kind of application
would need it?

2.4.c. unmappath algorithm

The basic idea is to try to “invert” a rule pattern => replacement by creating a new regular
expression based on replacement which leads to a substitution based on pattern. Since every rule
destroys some information (i.e. the replaced part of the original string), this “inverse” formally does
not exist, but any element of an appropriate equivalence class will do. LXR only needs to revert a
file name to some generic form before applying again the rules.

unmappath is only used in script diff to find the common “stem” of both file names.

The rules are scanned in the reverse order of their application (last used, first reversed or stack
order).

2.4.c.l. Replacement transformation

First, all occurrences of $variable are expanded to the current variable value by varexpand. Thus,
replacement looks like its final result and can match the file name.

Second, replacement may contain “capture substitution” $number (e.g. $1, $2, ...). The exact
original content does not matter. Every occurrence is replaced by .+?, meaning any MINIMAL run
of characters. The minimal attribute (?), non-greedy in Perl parlance, is needed to avoid merging
possible “interesting” sequences.

Last, if the original pattern is anchored either to the start or end of the string, the corresponding
anchor A and/or $ is set into replacement.

2.4.c.2. Pattern transformation

1. Pattern is scanned for optional sequences which are removed. Since they are optional, the pattern
will match on a string not containing these optional sequences. Such a string is a “minimal”
element of the equivalence class of all possible matching strings. The form of the optional
elements is x* or x? possibly followed by ? or +.

o To cope with possible nested sub-patterns with () or [] delimiters, a coarse-grained regular
expression captures everything from the current position up to quantifiers. If no quantifier is
found, this step stops.

o If the character preceding the quantifiers is a right parenthesis), a group must be removed.
Innermost nested groups (not containing another parenthesised group) as well as the rightmost
unnested group are repeatedly erased. A last erasure is made on the group matching the
ending parenthesis.

Project LXR

s

Software release 2.0

The LXR Developer's Manual
2 LXR Engine

Language en_UK

Document revision 1.0

CAUTION!

The algorithm does not manage extended patterns (?...). Regular expressions for paths
are supposed to be rather simple.

Special care is taken for escaped characters (\x); the pair is processed as a whole. So, when a
left parenthesis is found, it is a real grouping one (not an escaped one, equivalent to an

arbitrary character).

There is no need to pay attention to quantifiers for nested groups or literal content since
everything inside the external group will be erased. The goal of this sub-step is only to match
the ending right parenthesis with the correct left parenthesis.

o If the character preceding the quantifiers is a right square bracket], it is associated with the
nearest unescaped left square bracket and the group is erased.

CAUTION!

legal unescaped [.

The algorithm does not manage POSIX character classes [[:...:]] nor does it handle a

o Otherwise, the preceding escaped or single character is erased.

2. Empty capture groups () are removed.

3. + quantifiers (and their optional sub-quantifiers) are removed since a single occurrence is a
“minimal” element of the equivalence class.

4. The remaining parenthesised groups are replaced by their first alternative.

© Scanning from left to right, if no left parenthesis (is found, this sub-step stops.

o Proceeding from innermost unnested parenthesised group, only the first alternative is kept.
This leaves a single group with the outermost parentheses. A last iteration keeps the
(expanded) first alternative.

5. Sets of characters [...] are replaced by the first character of the set. In case this is a “negation”
set [A...], a % is tentatively used”.

6. Finally, character classes \x are replaced by an arbitrary character of the class.

2.4.c.3. Inverting step

After these transformations, a new rule is applied to the file path with the roles of pattern and

replacement exchanged: transformed replacement => transformed pattern.

After all applications, it is hoped that the path is reverted to a reasonable “template” path on which
the original rules can be applied again with a different set of 'variables' values resulting in a

realistic path.

> This is not guaranteed to work in all circumstances, especially if % was excluded, but this is better than nothing.

16

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.5. HTML stream generation management

This service resides in file Template.pm. It retrieves HTML templates and manages their expansion.

Special sequences in the templates are considered macro invocations:

$macro_name{...argument_to_macro ...}

macro_name is composed of alphanumeric characters only. The symbol is associated to a service
function.

argument_to_macro is a sequence of characters passed to macro_name. For instance, this allows
conditional insertion of the sequence or provides a sub-template for every element of an array.

The argument may contain properly nested macro invocations. But argument expansion is
under macro control, i.e. the macro must request expansion.

There are no spaces between macro_name and the left curly bracket.

No escape mechanism is provided to allow a right curly bracket within the argument.

In case argument is empty, the curly brackets may be omitted; both forms are equivalent:

$macro_name{}

$macro_name

2.5.a. Basic routines

Two basic routines are provided.

Routine name Arguments Description
gettemplate File name Returns the template from the designated file.
Default prefix If not found, returns the concatenation of prefix and suffix. An
Default suffix eventual warning message is issued with a warn statement.
expandtemplate Template Scans the template for $macro_name and executes the associated
Function directory function

expandtemplate first removes “non sticky” comments® and multiple newlines from the template
string. This is done in order to minimise the the amount of transmitted characters by not sending
information meaningless to the browser.

6 A sticky comment is an HTML comment <! - - ... - -> whose opening delimiter is not followed by a spacer. The
closing delimiter must also be preceded by a spacer due to the nature of the detecting regular expression.

|7

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

An inefficient algorithm, based on pattern matching (that's Perl!), is used to match opening curly
brackets and define the extent of the arguments.

A finite state automaton would definitely do better but implementation is tedious in Perl.

The function directory is a hash with keys equal to macro_name and values equal to a sub
reference. If macro_name exists, the associated function is called with the extracted argument. The
returned string replaces the whole sequence. If it does not exist, the sequence is left unmodified.

2.5.b. Page structure utilities

They use the previously described basic routines.

Routine name Arguments Description

makeheader Originator Will try to find template orignatorhead, otherwise htmlhead;
then expands the template and sends the result
This routines builds the header area of all pages.

makefooter Originator Will try to find template orignatortail, otherwise htmltail,;
then expands the template and sends the result
This routines builds the footer area of all pages.

makeerrorpage Originator Retrieves the designated templates and sends the expanded result as
a full page (no calls to makeheader nor makefooter).

The function directory for expandtemplate is minimal since
LXR initialisation could not be completed.

Originator is an identification transmitted by the caller. It is usually equal to the LXR script name
(diff, ident, search or source); the exceptions are config for showconfig, sourcedir for source on
a directory and htmlfatal when calling makeerrorpage This allows the called functions to
behave differently according to context.

Template.pm source text is different in CVS/Git from the release version. In the three
preceding routines, substitution value for $LXRversion is %$LXRVERSIONNUMBER% in the
source management tool (universal form), whereas it is set to the specific version number
when it is publicly released. Customisation is made by script set-Ixr-version.sh during the
release process.

2.5.c. Template editing functions

All the functions listed in the following table are associated with a macro_name. Unless otherwise
noted, they have two arguments: the first is the argument sequence of characters extracted from the
template; the second is originator (see above).

Macros marked 1 in the following tables request expansion of their arguments through a call to
expandtemplate, which means their argument may contain further macros.

Project LXR

The LXR Developer's Manual

Software release 2.0

2.5.c.l.

2 LXR Engine

Information for <HEAD> section:

Language en_UK

Document revision 1.0

Functions for headers and footers

Routine name

Macro name

Description

titleexpand title Returns a string suitable for use in a <TITLE> element,
describing the current operation.
baseurl baseurl Returns the URL %-encoded base URL, suitable for use in a
Does not use arguments <BASE> element.
Anonymous, encoding Returns the value of parameter ' encoding'
no arguments
stylesheet stylesheet Returns the URL %-encoded file name in parameter
Does not use arguments 'stylesheet' suitable foruse ina <LINK href=..
rel="stylesheet"> element.
altstyleexpand alternatestyle |Returns repeated expansions of its argument for every file listed in
parameter 'alternate_stylesheet'
2.5.c.2. Functions for title area

Data for composing page title:

Routine name

Macro name

Description

targetexpand

target

Extracts the intended tree name from the URL; parameter
'routing’' tells where to look for the tree name.

If this parameter does not exist, tree name is supposed to precede
script name (compatibility with previous versions)

This routine is only directly called by makeerrorpage;
otherwise, it is indirectly called by captionexpand.

captionexpand

caption

Returns the value of parameter 'caption' or an internal string
if it does not exist.

bannerexpand

banner

For scripts involving a file operation (i.e. source and diff), returns a
sequence of <A> links to every component of $pathname file
path, preceded by the expanded value of parameter
'sourcerootname’.

The components are separated by zero-width space so that the
browser knows where to break a long line without splitting a
component. Zero-width avoids the annoying visual effect of visible
spaces in a path.

The whole sequence is class-tagged banner.

Anonymous,
no arguments

pathname

Returns the current file path (global variable $pathname)
CAUTION! Special characters are not protected; to be used only in
context where a file name is expected; do not use for display.

Anonymous,
no arguments

path_escaped

Returns the current file path (global variable $pathname) with
“special” characters HTML-escaped.
Can be safely used for display purpose.

o

Project LXR

Software release 2.0

The LXR Developer's Manual

2 LXR Engine

Language en_UK

Document revision 1.0

Routine name

Macro name

Description

Anonymous,
no arguments

LXRversion

LXRversion:

The version string is not protected against special HTML characters; it is supposed that the
local LXR administrator knows what he is doing when altering the version string (with script

set-Ixr-version.sh) and does not compose foolish names.

Tree enumeration:

Returns LXR version

Routine name

Macro name

Description

forestexpand

forest’

Returns an empty string if less than 2 shareable trees are found;
otherwise returns its expanded argument

A shareable tree is tree for which parameter ' shortcaption' has been defined.

CAUTION!

Implementation is not correct when a single shareable tree has been found because it
does not test if this shareable tree is the current one (where it makes sense not to build a
switching link to itself). If the current tree is not a shareable tree, the switching link
should be displayed.

Within the $forest argument, the following macro can be used:

Routine name

Macro name

Description

treesexpand

treest

Applies its argument to every shareable tree and returns the
concatenation of all expansions

Fixed text may precede and follow $trees{...}. The argument is expanded for every shareable
tree; the intent is to make a link or button to jump to this tree, or whatever the designer wants.
Every expanded instance is wrapped inside a element with class attribute equal to
tree-sel or treelink depending whether it is applied to the currently displayed tree or not.

The $trees argument may contain the following macros:

Routine name

Macro name

Description

Anonymous, caption Returns the value of parameter ' shortcaption'
no arguments Do not use! Semantics is not yet defined.

Anonymous, link Do not use! Semantics is not yet defined.

no arguments

Anonymous, treelink Returns an <A> element to jump to the designated tree.

20

Project LXR

Software release 2.0

Routine name

‘ Macro name ‘

The LXR Developer's Manual
2 LXR Engine

Language en_UK

Document revision 1.0

Description

no arguments

Mode buttons or links:

Routine name

Macro name

Description

modeexpand modes’ Returns a set of buttons or links to switch between LXR operating
modes (source, diff, ident and search)
atticlink atticlink Returns an <A> element show/hide attic files only for source mode

and if files are stored in a CVS repository.

Within the $modes argument, the following macros can be used:

Routine name Macro name Description

Anonymous, modelink Returns <A> element to switch to the mode.

no arguments

Anonymous, modecss Returns a class attribute for the node (modes-sel or modes

no arguments depending on whether this is the current mode or not).

Anonymous, modeaction Returns an URL for use in the action attribute of the <FORM> tag.

no arguments

Anonymous, modeoff Returns an attribute for the <BUTTON> (disabled or empty

no arguments depending on whether this is the current mode or not).

Anonymous, modename Returns a string for use as the button name in the <BUTTON>

no arguments element.

urlexpand urlargst” Returns the internal LXR state as a sequence of variable=value
definitions to be used in a URL query string.

If you prefer links interface, use only $modelink. The other five macros provide the
necessary building blocks for the <FORM> button elements in the buttons-and-menus interface.

'variables' buttons or links:

Routine name Macro name Description
varexpand variables’ Returns a set of buttons or links to set the variables.
Conditional variables are not returned if their expression evaluates
to false.
varbtnaction varbtnaction |Returns an URL for use in the action attribute of the <FORM> tag.
urlexpand urlargs Returns the internal LXR state as a sequence of variable=value
definitions to be used in a URL query string.

Within the $variables argument, the following macros can be used:

21

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Macro name Description

varlinks varlinks? Returns a sequence of <A> elements for all possible values of the

One extra argument variable passed as third argument.

Anonymous, varid Returns the machine name of the variable.

no arguments

Anonymous, varname Returns the human-friendly description of the variable

no arguments ('description').

Anonymous, varvalue Returns the current value of the variable.

no arguments

varmenuexpand varmenu’ Returns a sequence applied to all possible values of the variable

One extra argument passed as third argument.
Usually, the template develops in content of a <SELECT>
element.

If you prefer links interface, use $varlinks while $varid and $varmenu are specific to
buttons-and-menus interface. The other macros are common to both interfaces.

Formatting the $varlinks argument is done with the following macro:

Routine name Macro name Description

Anonymous, varvalue Returns an <A> element for a value of a variable.
no arguments

Formatting the $varmenu argument is done with the following macros:

Routine name Macro name Description
Anonymous, itemclass Returns a c1ass attribute suitable for a <SELECT> tag
no arguments (varlink or var - sel for any/selected value).
Anonymous, itemsel Returns selected for the current value, empty otherwise. This is
no arguments a suitable attribute for a <SELECT> tag.
Anonymous, varvalue Returns the current value of the variable
no arguments

Various URL (there is probably no use for them):

Routine name Macro name Description
thisurl thisurl Returns the URL-%-encoded current URL
Does not use arguments
dordotsurl dotdoturl Returns the URL-%-encoded base URL with the last segment
Does not use arguments removed.
CAUTION! Implementation is faulty because the last segment is
unconditionally removed without checking it really exists (this can

22

Project LXR

Software release 2.0

The LXR Developer's Manual

2 LXR Engine

Language en_UK

Document revision 1.0

Routine name

Macro name

Description

2.5.c.3.

Debugging information display:

erase the host name!)

Functions for developers

This will not be corrected since there is probably no use for it.

Routine name

Macro name

Description

devinfo
Uses only first argument

devinfof

Returns information for all Perl modules

Within the $devinfo argument, the following macros can be used:

Routine name

Macro name

Description

no arguments

2.5.c.4.

Functions for content area

Anonymous, moduleid Returns the $Id string set by the version control system.
no arguments

Anonymous, modpath Returns the module file name.

no arguments

Anonymous, modtime Returns the last modification time.

These functions are defined by the primary scripts (diff, ident, search, showconfig and source) for
their own usage. See the primary scripts descriptions.

2.6. Markup management

This service resides in file Markup.pm. It acts as a driver for syntax-highlighting files or strings.

2.6.a.

Driver routines

There are only three accessible service functions. All others are support routines.

Routine name Arguments Description
markupfile File handle The first argument is a filehandle for the file to syntax-highlight.
Output function The markup result is processed, piece after piece, by the second
argument which is a reference to a one string-argument procedure.
This procedure is called from scripts source and diff.
markupstring String This function is intended to be used for “local” highlighting rules
Virtual root (defined in file Local.pm). It tries to build hyperlink after having

23

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Routine name Arguments Description

detected URL (server access or mail addresses), identifier-like
symbols or some files. The second argument provides (HTML) base
directory for files.

freetextmarkup String This function is used to markup URL in comments or plain text
(passed in the string argument).

Its only out-of-module use is in the HTML parser to hyperlink non-
file URL. It should be considered a support routine as much as
possible.

markupfile tries to find a language parser for the file.

If the call to the parsing service succeeds, the fragment parser is initialised and the file is split into
homogeneous fragments. According to the category, the fragment is handed over to the processing
method of the language parser.

Images (categorised by their extension filtered by configuration parameter 'graphicfile') are
tentatively sent as an element. The success depends on the browser capabilities.

Supposed unidentified text files are scanned with freetextmarkup for URL.

“Binary” files are associated with an hyperlink allowing to dump them in raw mode. It is unlikely to
work always unless printhttp in HTTP management service Common.pm is changed to handle
more file extensions.

The output function may “write” into a string instead of a standard file if display needs to be
deferred such as in the diff case.

markupstring is a convenience function to help highlight URL encountered in file or directory
“descriptions”. These descriptions are built or extracted when script source calls functions dirdesc
or descexpand to insert some sort of comment in directory listing. Both functions reside in
Local.pm and are supposed to be freely adapted to suit local needs.

2.6.b. Support routines

The last two routines are very short and could be inlined for performance. But, having them as
individual pieces of code ensures that a consistent policy is enforced.

Routine name Arguments Description

is_linkworthy String The argument is a symbol found in plain text (usually a comment).
The function decides if further highlighting should be attempted.
The decision is made on symbol length (at least 6 characters) and
on appearance (if _ or capital letters after initial character are used,
it may be an identifier).

Names containing README are excluded.

For performance, database is not interrogated, which means many
unknown symbols are given a “green light”.

24

Project LXR

The LXR Developer's Manual

Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
Result is 1 for “go ahead” and 0 for “discard”.
markspecials String Meaningful HTML characters in the string (<, > and &) are
prefixed with a NUL character (\Q) to be later identified.
htmlquote String The previously marked characters (see markspecials) are

replaced by their entity names (&1t ;, > ; and &). Since
this function is called before outputting the marked-up stream, it
also removes the special “start-of-line” flags.

2.7. File parsing

This is a generic context free parser based on pattern matching. The service resides in file
SimpleParse.pm as a set of procedures or functions.

2.7.a. Support routines
There are an initialisation routine, the parsing function and two auxiliary routines.
Routine name Arguments Description
init Filehandle This routine initialises the package global variables. The first
Tab hint argument is a filehandle pointing to the source file. The second
Array of references to | argument is the default tab width. The third argument, usually
key/value pairs extracted from file generic.conf, defines the specific parsing rules
to apply.
nextfrag Returns a pair of strings. The first one is the fragment category, the
second one the sequence of characters for the fragment.
To be called repetitively until it returns undef.
untabify String Returns its argument where TAB (\t) characters are replaced by an
appropriate number of spaces.
requeuefrag String Stores it argument so that its content will be scanned first on next

The package-private global variables are:

$fileh
@frags

$next

@bodyid

call to nextfrag. It acts as a stack; it can then be called multiple
times with the effect of considering the strings in reverse order of
their entry.

filehandle to the scanned source file

queue for strings waiting to be processed; those extracted from the file
are entered at the tail, while those requeued are entered at the head.
current run of characters under scrutiny (in fact, it is a cache for the
first string in @frags to avoid pushing and popping it repetitively,
thus achieving some speed optimisation)

list of category names (comment, ...)

25

oy

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

@open list of all opening delimiter regular expressions

@term list of all closing delimiter regular expressions

@stay list of all escape regular expressions

$split regular expression consisting of the union of elements of @open
(separated by the | alternative operator)

$open regular expression similar to $split but arranged so that the
matching delimiter can be identified

$continue the special 'atom' regular expression

$tabwidth tabulation spacing for this file

There is also a package public variable:
$dountab flag requesting to expand tab characters
Their use is explained below.

2.7.b. Parsing algorithm

LXR does not try to parse source files as a compiler would do it. Though it could benefit from fine-
grained parsing, notably improving detail and accuracy of symbol description, two factors must be
accounted for.

1. Perl is targeted at regular expression processing and is not really fit for efficiently and easily
implementing finite state automata.

2. A framework common to all languages is desired.

Consequently, a two-tier parsing strategy is implemented. The parser will recognise abstract items,
namely comments, strings and include constructs. These items are then handed over to language-
specific sub-parsers.

CAUTION!
genxref performance depends heavily on the parser efficiency. It is the most frequently
called procedure during this phase and every modification has a direct noticeable impact
on total running time (for good or evil). It is also very easy to get it wrong, as has
experienced the main developer while adding new features, even without optimisation
goal.

Therefore, if you want to implement the super-smart lightning-fast algorithm, check first
that it still provides the intended result in ALL circumstances.

The item classes are defined as delimiter-bounded runs of characters. The delimiters are described
by regular expressions. See the 'spec' arrays in generic.conf for examples. Code (also named
unclassified below) consists of everything which cannot be classified in those three classes.

To avoid memory flooding, the source file is read one line at a time when data is needed. Tab
characters are expanded to their equivalent number of space characters if variable $dountab is

26

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

true’. Due to progressive processing, a line may be split into smaller chunks which are queued in
array @frags, waiting to be parsed. Similarly classified chunks are concatenated into local variable
$frag which is one of the two output variables (the other one is $btype).

Parsing proceeds through pattern-matching to find the bounds of the runs in the file. But there is no
notion of left-to-right processing or precedence between the regular expressions (other than order of
applications). Consequently, special attention must be paid to the limits of regular expression
application when escape or lock regular expressions are present (stored in the @stay array).

On each invocation, the parser initialises its default state and enters a parsing loop. This loop is
iterated as long as the category for the run of characters remains the same. When a border delimiter®
is detected, the collected fragment is returned. The loop is travelled under a single [parsing] state.
State transition is allowed only during the first iteration when the output buffer is empty and an
open delimiter lies at the head of the input buffer.

The figure below is provided as an aid in trying to follow the algorithm on C-style string discovery.
Look at the two backslashes. C-string definition says a backslash is an escape character INSIDE the
string. When parsing the second string has started, pattern-matching will tell it sees two of them, but
it sees also an end delimiter (in fact it sees two, read below how the algorithm handles this
ambiguity). A backslash is indeed an escaped character only if it is located before the end delimiter.

... unclassified unclassified ... | “def\” ghi “ ~o\ne

start delimiter stop delimiter stay delimiter

Drawing 3: Parsing issue

* The “parser” is initialised in the unclassified state, i.e. local variables $term (closing delimiter
regular expression) is undefined, $stay (escape delimiter regular expression) is set to the
'atom' regular expression and $btype (returned class or category) is undefined.

The unclassified run of characters may be empty. This is the case when an opening
delimiter is located at the current scanning position in the source file.

* The rest of the processing steps takes place inside a main “infinite loop” (it is left only on a
parsing event, before a state transition).

o The processing buffer ($next), if empty, is loaded from queued strings in array @frags or,
when exhausted, from a new line of the source file.

When the first two lines of the file are read, they are scanned for an Emacs tabulation
definition. If one is found, it overrides the tab hint passed through an argument.

$dountab is set false by genxref to increase speed by avoiding this expansion. genxref does not record column
numbers where symbols are found and does not display files, consequently visual fidelity is unnecessary.

Here, the term border delimiter is used for short. Usually, a category fragment is delimited by its end delimiter.
However, some categories, notably the unclassified (or code) one have no end delimiter. They are implicitly
terminated on encountering a start delimiter for any other category.

27

Project LXR

Software release 2.0

The LXR Developer's Manual
2 LXR Engine

Language en_UK

Tab characters in the line are expanded if variable $dountab requests it.

First, if escape delimiters may be encountered
($stay is defined), a loop is entered to check
the position of this escape delimiter relative to
other delimiters. See flowchart at right.

This loop terminates when no more border
delimiter can be found or the position of one is
known, meaning we already went through the
loop without doing something useful.

If one is found, its position must be repetitively
compared with the position of all subsequent
stay delimiter. This is the job of second nested
loop, entered on detection of a stay delimiter.

The inner loop is left as soon as a stay delimiter
starts at the right of the border delimiter, i.e.
lies outside the currently scanned fragment.

A valid stay fragment causes concatenation into
the output buffer ($frag) of the beginning of
the processing buffer ($next) up to and
including the complete sfay delimiter. The
processing buffer is then truncated and the
position of the border delimiter updated.

If this position becomes non-positive, it is set
undefined and the inner loop is exited to start
another iteration of the outer loop.

At this point, the current chunk no longer
contains “active” escape delimiters. The stay
regular expressions will not be considered for
the rest of the main loop.

$stay?

Document revision 1.0

not defined

v

‘ $opos < undef ‘

v

$opos not defined
> and any border delim

#ves

$opos « position
of border delimiter

no

none
ouna

Match a
$stay delimiter?

v

4‘7
v

$spos < end position
of stay delimiter

yes

v

Start position
> $0pos?

+no

Stuff head into $frag
Update $next
Decrease $opos

v
—{ $opos — undef M—SO $opos 20

Beginning of the current chunk (up to a border

delimiter if one is present, the complete chunk ves C'aSSiﬁtedth‘J)“ence
Startea-

otherwise) must be added to the output buffer. Two

cases are considered.

no

If the output buffer already contains meaningful
data’, the initial part is added as a continuation of the

current fragment (case A)

9

So-called meaningless data is composed exclusively of empty lines. This is an optimisation choice to decrease the
number of calls to the parser. Without it, a code fragment without real significance would be returned to the caller
for second-level parsing. It is more efficient to keep the empty lines as a prefix for another category. This prefix can

be very easily processed with low overhead in Markup.pm.

28

Project LXR

Software release 2.0

The LXR Developer's Manual
2 LXR Engine

Language en_UK

Document revision 1.0

Otherwise, we begin a new fragment and must determine its category (case B).

yes

Named fragment no

with end delimiter?

< Closing delimiter? -

\L}//es

no

Open delimiter?

¢yes

Split chunk and store
head into output buffer

Split chunk and store
head into output buffer

3

ex)'t:main ,Iéop

exit.main Joop

v

Store chunk
into output buffer

o Case A, the output buffer is not empty.

See flowchart at left.

The pending fragment may be terminated
either by a closing delimiter if its
specification defines one, or implicitly by
any opening delimiter for a new fragment
(as is the case for unclassified or code
fragment). This is the purpose of the
initial test.

If such a delimiter is present, the fragment
is augmented with the appropriate run of
characters, the rest is requeued and the
main loop is terminated for return
processing.

In the absence of delimiter, the full chunk
1s added to the output buffer.

Since delimiter detection gives a wealth of information, we care to prepare variable $next to
avoid pushing the full unused chunk part into @frags to pop it back upon next parser call.

Case B, the output buffer is
empty. See flowchart at left.

A new sequence is started, but

no

=

es

y
Open delimiter? T

the current chunk may contain

Store chunk
into output buffer

no Something yes

an opening delimiter pertaining
or not to this new sequence.

If there is no opening delimiter,
the full chunk is added to the
output buffer and we proceed to
fragment identification.

Depending on its location, an
opening delimiter is either the
effective beginning of the new
sequence (if at the very chunk
beginning) or the end of a short
non-classified (aka. code)
segment.

The first case is processed like
the previous no-delimiter case.

f before delim? l

o Requeue delimiter
_ Store delimiter S S hEEn
into output buffer

v

Output buffer empty or no opening delimiter

yes Output buffer
meaningful?
v
_____Match output against
open delimiters
+ eX‘itkmain”[obp
Identify category

no

s

exit.main [60p

End delimiter?

;yes

Set $term
and $stay
\

29

o

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

The second case must split the chunk at the delimiter and store the initial part into the output
buffer. The delimiter and the end of the chunk are requeued (more precisely, for optimisation
sake, the delimiter is kept in $next to avoid a push-pop sequence). If the output buffer
contains meaningful data, exit from the main loop is forced to return the short assembled
fragment.

The new sequence category is identified through a very Perl-ish trick retrieving the index of
the delimiter in @open into variable $btype. If no delimiter was found (unclassified case),
$btype will be undefined.

CAUTION!
If you want to modify this section, read at least ten times the grep line and be sure you
understand all its implications.

If the current category is defined only by its opening delimiter', exit from the main loop is
forced.

Variables $term and $stay are loaded with the regular expressions for the closing and
escape delimiters respectively setting up the parser state for the next iteration through the
main loop.

To be able to cope with some context-sensitive environment, $term may be provided as a
sub. This is detected here. The sub is invoked and its result evaled (computed) to give the
actual regular expression.

* The main loop is exited when there is a change in the sequence category. Then, $btype is
changed from numeric value to the symbolic category name in @bodyid. Both $btype and the
sequence in $frag are returned to the caller.

Lines are prefixed with an \XFF byte to mark the beginning of a line. This is necessary since
the start anchor A in regular expressions is supposed to point to the start of the line, which
may not coincide with the first character in the buffer (and the first character in the chunk
buffer is not always the first character of a line). This special sentinel should be tested for
start-of-line in regular expressions instead of start anchor A. For the same reason, end-of-line
should be checked with \n instead of end anchor $.

\FF is erased before returning to caller

CAUTION!
This marker may conflict with Unicode y U+00FF (Latin small letter y with diaeresis).

10 Apart from this specific case, all categories described in ' Spec ' have a closing delimiter. Distinction between
implicit unclassified (or code) category which has neither opening nor closing delimiters is made here. For this
reason, test at the beginning of case A could be simplified. However, profiling showed no gain.

30

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.7.c. Algorithm limitations

As can be seen from the preceding descriptions, regular expressions for the delimiters match against
the current chunk. This chunk contains at most one line. This means that constructs extending
further than the current end-of-line can never be matched. Any “remarkable” delimiter must be
completely developed in the current chunk.

This is not an issue for single-character delimiters or the usual “escaped” character pairs.
However, it is impossible to capture a sequence spanning several lines if it is defined by the single
opening delimiter (special case without ending delimiter). This is also true for 'atom' definition: if
the construct to keep inside the unclassified sequence crosses a line boundary, the end of 'atom'
regular expression will never match because no extra data is read at this time beyond the chunk
end.

IMPORTANT!
This limitation applies only to 'spec' regular expressions. It does not apply to
@ "include' generic processing (do not mistake this hash with the classification vector of
the same name in 'spec') because the internal buffer contains the complete include
statement loaded by the parser.

Some language construct definitions need to be anchored at the beginning of a line. Since the
beginning of the chunk is not necessarily the same as the beginning of the line, a special character
(X\FF) is inserted when lines are read to remember the position.

CAUTION!
Depending on the order of the definitions in generic.conf, a Latin small letter y with
@ diaeresis (Unicode U+00FF) in column 1 may be erroneously mistaken for a start-of-line
and erased. This mishap is very difficult to notice if you do not know what to expect in
this line.
TODO:

Use a longer unlikely sequence for start-of-line.

The algorithm is absolutely context-free. This is the main cause of out-of-sync situations.

Take HTML as an example. HTML tags may have attributes whose values are strings. But data text
(anything outside the <elements>) may contain string delimiters quote and double quote as normal
punctuation or grammar diacritic marks. In human languages, they do not necessarily occur in
pairs and will cause out-of-sync situation through tag attribute interference.

Lastly, performance is very poor because characters are scanned several times before being sent to
the output buffer. This is inherent to pattern-matching and requeueing of unused chunk bits.

31

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.8. Language parsing

This service resides in file Lang.pm and in directory Lang/. It complements the file parsing service
with language-specific editing actions on the classified runs of characters extracted by
SimpleParse.pm nextfrag.

2.8.a. [Initialisation

The language object is created by method new. Its arguments are:

* astring containing the name of the file to parse;

* astring containing the version for this file;

Considering how this initialisation method is used, global variable $releaseid could be
used as well and this argument could be dropped.

* an array containing 3 strings to generate the <A> links for the identifiers found in the file (the
identifier name is simply inserted between every pair of elements to obtain the effective link).

Selection of an appropriate language manager is driven by data from file filetype.conf. It is first
attempted by matching the file name against one of the file patterns in the 'filetype"' list (second
item in element). If none is found, the first line of the file is read to check for a shebang (#!)
defining an interpreter, which can eventually be linked to a language through the 'interpreters'
configuration parameter. The last fallback is to scan this first line for an emacs-style mode:
definition which is compared against an interpreter name.

In case of match, the language manager named in the third item in element is activated.

'filetype' and 'interpreters' parameters are listed in file filetype.conf.

2.8.b. Public methods

Some of these methods are “dummy” or skeletal stubs which print an error message for an
unimplemented language-specific mandatory method.

Routine name Arguments Description
processcomment String reference Highlight the string as comment withmultilinetwist
processstring String reference Highlight the string as String withmultilinetwist
processextra String reference Highlight the string as extra withmultilinetwist
processinclude String reference Stub

Directory name The string contains the full “include” statement.
Supposed to create the hyperlink for an included file from the

32

Project LXR

Software release 2.0

The LXR Developer's Manual

Language en_UK

Document revision 1.0

2 LXR Engine

Routine name

Arguments

Description

directory argument if file name has none.

processcode String reference Stub
The string contains the full “code” block which is not synchronised
with statement boundaries.
Supposed to create hyperlinks for the identifiers and highlighting
for keywords.
processreserved |String reference Stub
Initially supposed to create highlighting for keywords.
Not used because keyword are handled in processcode.
indexfile LXR file name Stub
For genxref use OS file path Supposed to parse a file and collect the definitions.
File id LXR file name and OS file path differ when files are stored in a
Reference to DB VCS (in this case OS path is a temporary file).
object

Reference to
configuration object

referencefile
For genxref use

LXR file name

OS file path

File id

Reference to DB
object

Reference to
configuration object

Stub

Supposed to parse a file and collect the references. Returns the
number of lines or 0 if file not processed.

LXR file name and OS file path differ when files are stored in a
VCS (in this case OS path is a temporary file).

language

Stub

Supposed to return the language name associated with the object.
It can then be used to reference the correct descriptor in
"langmap' if the object is derived from the generic parser
Generic.pm.

Remember that comment, extra and string are prefixes for families of category.

2.8.c.

Support routines

These functions offer various services related to language handling.

Routine name Arguments Description
parseable File name Simplified version of initialisation method New without object
creation; this function returns 1 if some language parser could
handle the file content, 0 otherwise
multilinetwist String reference Returns the string argument inside a block

CSS class name

with the given CSS class attribute name. If the block spans several
lines, the block is closed before the end of line and reopened after
the end of line. The eventual final empty block is removed.

This creates the HTML highlighting.

33

Project LXR

The LXR Developer's Manual

Language en_UK

File name (encoded)
Language-specific
path separator

File path (encoded)
Directory name

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
_linkincludedirs |File link Returns the link argument modified to hyperlink every directory

comparison of the path. The file name argument is written
following the rules of the language, with the separator defined by
the next argument. The file path argument is URL %-encoded so
that it can be directly used in the <A> tags. The directory argument
is the default directory for file-only paths.

Note that the file name, file path and directory arguments are used
tocall incdirref.

_incfindfile
Also used by incref
Jfrom Common.pm

File/directory flag
File path
Extra directory array

Tries to resolve the file path argument as a file (flag 1) or a
directory (flag 0) among the directories given or those of
"incprefix' configuration parameter. The resolved path is
returned or undef.

incdirref

Name to display
CSS class

Directory path

Extra argument array

Returns Tfileref(first three arguments) if incfindfile
succeeds, the name to display otherwise

2.9. File access management

This service resides in file Files.pm and in directory File/s. It provides an abstraction layer for file
access, no matter how they are stored.

Initialisation new is only a dispatcher towards the specialised new methods of the specific managers.
The appropriate manager is selected based on the prefix in the first argument:

rep_type:absolute_0S_path_to_repository

where

* rep_type is one of CVS, git, svn, hg or bk for CVS, GIT, Subversion, Mercurial or BitKeeper"..
For plain files, no prefix is needed and the colon (:) separator is also omitted.

* absolute_OS_path_to_repository is the source tree repository. For plain files, it is the master
level directory containing the version subdirectories.

The second optional argument is a hash reference for key/value pairs passing options to the specific
manager. This hash is usually taken from 'sourceparams' in Ixr.conf.

2.9.a.

Public methods

The following methods are generally meant to be overridden in the specific managers.

I Usage of BirKeeper is discouraged because the module has not been updated since at least 2005 and not even tested
because it is now proprietary.

34

Project LXR The LXR Developer's Manual Language en_UK
Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
getdir File name Stub
Version Supposed to return an array enumerating the directory content or
undef if the directory does not exist in this version
getfile File name Returns the content of the designated file in the requested version
Primarily used by genxref and | Version as a long string or undef if the file does not exist.
by some specific managers This method should be avoided as much as possible since it
when there is no other means imposes a heavy load on memory.
to compute file size
getnextannotation File name Stub
Version Supposed to return the annotation™ for the next line
truncateannotation |String reference |The string contains an annotation (as retrieved from the previous
Length method) which must be truncated to the number of screen positions
given by the length argument. Extra characters on the left side are
replaced by a truncation indicator; the truncated annotation
occupies length+1 screen positions!
The returned value is the final number of screen positions.
The length argument unit is screen positions, not “computer”
characters, which means that HTML editing tags or elements can be
added freely since they use no screen positions.
This method must be overridden if the most meaningful characters
are on the left-hand side and truncation must be done at right.
getauthor File name Stub
Version Supposed to return the name of the annotation committer
Annotation
filerev File name Stub
Version Supposed to return the latest file revision
A revision is more specific than a version and uniquely identifies a
file content.
getfilehandle File name Stub
Version Supposed to return a handle to the requested file for further content
access, or undef if the file does not exist
getfilesize File name Stub
Version Supposed to return the file size in bytes
For some SCM, this may require to extract the file
getfiletime File name Stub
Version Supposed to return the file latest modification time
For some SCM, this may require to extract the file
isdir File name Stub
Version Supposed to return “true” if the designated file name is an existing
directory
Note:

Testing for directory is rather time-consuming; consequently, after
LXR initialisation in ht tpinit, directory paths are suffixed
with / so that a trailing slash is a signature for a directory

12" An annotation is whatever information kept with a line, usually the revision number the line was entered into the

file.

35

Project LXR The LXR Developer's Manual Language en_UK
Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
afterwards.

This method is used to check a path other than the currently
displayed file, for example an include directory.

isfile

File name
Version

Stub

Supposed to return “true” if the designated file name is an existing
file

Notes:

This method is used to check a path other than the currently
displayed file, for example an included file.

If the file should subsequently be accessed, it is simpler and more

efficient to call getfilehandle.

realfilename

File name
Version

Returns the name of a real file with the same content as the
designated path or undef if the copy operation failed.

File content is extracted from the repository and copied into a
temporary file.

This method should be overridden if plain files can be accessed
without the copy operation.

releaserealfilename

2.9.b. Support methods

File name

Erases the designated file.

The method attempts to assert that the file name looks like it has
been created by realfilename but this is not 100%
guaranteed.

IMPORTANT!

Ifrealfilename has been overridden, override this method
also to revert accurately the actions; otherwise you risk destroying
an original file.

These methods offer various services related to language handling.

Routine name

Arguments

Description

getannotations File name
Deprecated Version

Stub

Supposed to return an array of all annotations, each element
corresponding to a line

To preserve memory, source uses now getnextannotation;
from release 1.1 on, this method is considered “internal” in a
specific manager when the underlying SCM provides only file
annotations and cannot provide individual line annotation.

_ignoredirs Directory path

Node

Processes ' ignoredirs' parameter against node and
'filterdirs' against directory and node; returns 1 if the
directory should be ignored, 0 otherwise.

Node is the last segment of the full path (i.e. a name relative to the
directory argument).

This filter is to be called from method getdir to filter out
unwanted nodes.

_ignorefiles Directory path

Processes ' ignorefiles’' parameter against node and

36

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Routine name Arguments Description

Node 'filterfiles' against directory and node; returns 1 if the
file should be ignored, 0 otherwise.

Node is the last segment of the full path (i.e. a name relative to the
directory argument).

This filter is to be called from method getdir to filter out
unwanted nodes.

2.10. Database management

This service resides in file Index.pm and in directory Index/. It provides an abstraction layer for
database access, no matter the underlying engine. Query language is SOL. As long as a database
engine is standard-compliant, there is no need to override a method. The main reason to do so is
related to auto-increment features.

Method new initialises the database object. Its argument is a reference to the configuration object
(so that the module may access any needed parameter).

It routes the call to the appropriate specialised database manager which creates a self object
containing engine-specific transaction templates. This object is augmented with generic transaction
templates (independent of the underlying engine), taking care not to erase an overridden template.

Global variables implement caches to avoid frequent accesses to the database thus improving
performance at the cost of larger memory footprint.

%files remembers the unique file identifications (internal base version
designation) for a version of a file;

Disabled in release 2.0:
It does not look really necessary since a file is met only twice (collecting the definitions then
the references). In the case of the kernel, this ends up with a huge hash (%files) putting a
heavy stress on memory. On small test cases, there seem to be no difference in indexing time,
or maybe a little advantage when the cache is disabled.

%symcache remembers the unique internal symbol identification to avoid database
lookup (the value may be undef for symbols without declaration);
used in setsymreference, issymbol, symid, flushcache and
purgefile, checked for consistency in setsymdeclaration;

%cntcache remembers the reference count for the symbol (to spot changed values,
reference counts are negated when read from the database and set back
positive ~ when incremented or decremented); used in
setsymdeclaration, setsymreference, issymbol, symid,
flushcache and purgefile:

37

Project LXR

Software release 2.0

The LXR Developer's Manual Language en_UK

2 LXR Engine Document revision 1.0

As a trade-off between performance, memory footprint and database consistency, it is
suggested to flush the symbol caches %symcache and %cntcache at the end of every file

processing.

$database_id

running counter incremented by genxref every time it opens a new
database (also done by httpinit but this less important because an
HTTP request sees only one database); this can be used by any module
needing to initialise or inspect the database once only.

This is used by Generic.pm initialisation routine to write the types mapping into the database
on its first instantiation with this database.

$fileini, $symini, $typeini

value of the counters at the beginning of the session

$filenum, $symnum, $typenum

running counters incremented every time it opens a new file, symbol
or language type is entered into the database. If they differ from their
initial value at the end of the session, their final value is recorded in
the database for later use by another session.

2.10.a. Support methods

These methods offer various services related to manipulate the database.

Routine name

Arguments Description

uniquecountersini
t

DB table prefix Retrieves the latest stored values for file, symbol and type ids
To be used when the built-in features for fields with unigque
attribute lead to poorer performance.
uniquecounterssave writes back the final values to the
database.

fileid
fileidifexists

File name Returns a unique id for a file with a given revision. fileid
Revision creates this record if it does not exist, while fileidifexists
would return undef.

CAUTION!

Revision is the kind of data returned by function filerev from
the file management service, not a “user-visible” version.

getallfilesinit

Version Initialises an internal iterator for retrieving all files present in the
requested version through execution of the al1lfiles_select
transaction.

Individual records are retrieved with nextfile method.

nextfile

This an iterator running over all files making up a version of the
source-tree. Each call retrieves a file description until it returns
undef, at which time it must no longer be called.

The returned record is a list containing a file id, a filename, a
revision (remember, NOT a version!) and the number of versions

38

Project LXR

The LXR Developer's Manual

Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
associated with this revision.
setfilerelease File id Associates the given version with the file id.
Version Version is any tag by which the file in this state is known by the
VCS. As noted in fileid description, a file id is a canonical
unique identification of a state of the file, but this state may be
shared by several versions of the source-tree.
removerelease File id Removes the given version from the association list to file id
Version
fileindexed File id Returns 1 if the file id has been “indexed”, otherwise 0
Indexation is the definitions collecting phase
setfileindexed File id Marks the file id as been indexed
filereferenced File id Returns 1 if the file id has been “referenced”, otherwise 0
Referencing is the references collecting phase
setfilereferenced |Fileid Marks the file id as been referenced
This method also updates the indexing time-stamp.
filetimestamp File id Returns the time when this file was referenced
symdeclarations Symbol name Returns an array containing the set of declarations for the given
version symbol.
Every element is list consisting of a file name, a line number, a
string describing the type and an eventual symbol id if this
declaration is nested in another one (such as a field of a structure).
setsymdeclaration |Symbol name Records this declaration as described by the arguments
File id Related symbol is omitted if this declaration is not part of a larger
Line number one.
Language id Reference counts to the symbols are automatically updated.
Symbol type id
Related symbol
symreferences Symbol name Returns an array containing the set of declarations for the given
Version symbol.
Every element is list consisting of a file name and a line number.
setsymreference Symbol name Records this usage as described by the arguments
File id If the symbol does not exist in the database (no declaration for it
Line number has been encountered), nothing is recorded.
issymbol Symbol name Returns 1 if the symbol exists in the database for the given version,
Version 0 otherwise
IMPORTANT!
This method is intended only to decide symbol highlighted. It
MUST NOT be used during indexation.
symid Symbol name Returns a unique id for the symbol, entering it into the database if it
is unknown.
symname Symbol id Returns the symbol name corresponding to the given id
decid Language id Returns an integer identifying the text for a type declaration
Text If the record does not exist in the database, create it and return its

39

Project LXR

Software release 2.0

Routine name

The LXR Developer's Manual

Arguments

Language en_UK

Document revision 1.0

2 LXR Engine

Description

integer code.

Note:

There is no id to text retrieval function because it is coded inside
symdeclarations method, its only meaningful use.

commit

Secures the last set of operations in the database and starts a new
transaction

forcecommit

Commits the database now, even if auto commit mode is in effect
IMPORTANT!
This method should not be overridden in specific managers.

emptycache
Deprecated

Erases the internal symbol cache (without writing to the database)

flushcache

Full flush flag

Flushes the cached symbol reference counts to the database
Method to be called at the end of each file processing
Implementation:

To minimise I/O when adding declarations or references, initial
reference counts are negated when entered into the cache. They are
turned back positive when they need to be incremented. Strictly
positive values show which symbols have been referenced. Only
these are flushed to the DB.

However, when deleting symbols, the reference count may
eventually decrement to zero. In this case, it is necessary to also
write back zero-reference symbols otherwise the database loses its
integrity. The flag is set to 1 to request full cache write-back.

The cache is erased before returning to the caller.

purgefile

File id
Version

Deletes data associated with the given version of the base file
(designated by its id)

The method carefully decrements first the reference counts in the
higher-level symbols (the related symbols). Then the definitions
and references in this file can be deleted in any order.

purge

Version

Deletes all data pertaining to a version

purgeall

Completely wipes out the database

uniquecountersres
et

Forced initial value

Resets the counters to 0

Initial counters are forced to the argument value. If it is different
from 0, it will cause automatic write to the database in the
following method.

Note: it is recommended to call this method with argument O to
disable the feature after the save to the database.

uniquecounterssav
e

Writes in the database the final value of the “unique” counters if it
differs from the stored value

dropuniversalquer
ies

Deactivates the query handles defined in New to avoid warning
messages about still active SQL statements before disconnecting
from the database.

Called from final_cleanup.

Note: the warning message is harmless but may disturb the casual
user.

40

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
final_cleanup Commits the pending transactions, cleans up internal DBD state
and disconnects from the database
IMPORTANT!
MUST be called before the object disappears.

2.11. Local customisation

File Local.pm is the home for (limited) local customisation of directory listing. What is presently
inside was contributed by Dawn Endico (aka. dme) a long time ago. Code targets C and Java source
files.

The two exported support functions are template editing functions (see 2.5 HTML stream generation
management) which are referenced from template text as:

Routine name Macro name Description
dirdesc description Returns a description for a directory; if none can be found, returns
or desctext at least a non-breaking space to force the browser not to skip this

element (otherwise it may mess up screen lay-out)

filedesc desctext Returns a description for a file; if none can be found, returns at least
a non-breaking space to force the browser not to skip this element
(otherwise it may mess up screen lay-out)

descexpand is a dispatching routine selecting the final editing function depending on the file or
directory nature of the node. It expands $desctext in its template argument with dirdesc for a
directory and fdescexpand for a file. The returned string is provided by the called function.

Arguments for this function are:

* the template string (should contain $desctext to have an effect),
* file or directory name (last path segment only),
* parent directory name,

® version name.

dirdesc may be called as a result of expanding either $description" in a header area above the
directory content area or $desctext in a $description template block in subdirectory context.
Arguments for this function are:

* full directory path,

® version name.

13 To be honest, it should rather be considered an implicit expansion of $desctext. The expansion rule might be
modified in a future release to unify both contexts.

41

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

filedesc is called as a result of expanding $desctext in a $description template block in file
context. Arguments for this function are:

* file name (last path segment only),

* parent directory name,

® version name.

To disable this feature which may be time-consuming or too difficult to implement/customise,
write functions returning only string ' ' (a single non-braking space).

filedesc reads a reasonable amount of lines at the beginning of a Java or C-family file. If this is a
Java file, it keeps only the last comment before declarations. It looks in the remaining lines for the
file name or Description: marker. In this case, the corresponding paragraph is returned after
elementary editing. Otherwise, common text usually present (such as licence, copyright, ...) is
removed. What is left after other filtering is returned.

dirdesc looks for different flavours of README files and hands it over to descreadmehtml or
descreadme.

Internal support routines are:

Routine name Arguments Description
descreadmehtml Directory name Returns a description from the HTML file; see below for the
File name definition of this description
File handle
descreadme Directory name Tries to discover descriptive text in this text file and returns it as an
File name HTML element.
File handle
convertwhitespace |String This auxiliary routine helps to preserve text lay-out when mapped
to HTML
Line breaks become
.
Bullet-list paragraphs (which, by convention, start with lowercase
letter O followed by whitespace) are rendered with
, two non-
breaking spaces and lowercase letter.

Within README.html files, a element is considered description
intended to be displayed by LXR. However, the scanner is very simplistic and stops at the first
 tag. This means no block can be nested inside the LXR description, with the
exception of a element. If a nested is detected, nothing
will be displayed. Priority is given to the “short” description if it is present.

42

Project LXR Language en_UK

The LXR Developer's Manual
2 LXR Engine

Software release 2.0 Document revision 1.0

2.12. Derived language parsers

The specific parsers are stored in directory Lang/. They are derived classed of Lang.pm.

Presently, there is only one derived parser Generic.pm" which is table-driven to parse many
languages. The tables come from file generic.conf. Specialised versions are derived from it to
provide an easier handling of some language constructs, mostly include statements.

As hinted in section 2.8.b Public methods, new and stub methods must be overridden (i.e. all except
processcomment, processextra and processstring). new is a special case because it is
referenced indirectly through Lang.pm new and has different arguments from the latter.

2.12.a. Generic parser

The private global variable $generic_config contains a complete copy of file generic.conf once
initialised. This allows to avoid reading again the configuration file when several instances of the
parser are simultaneously created.

The second private global variable $seenDB contains a copy of the global counter $database_id
(located in Index.pm and incremented by genxreef or httpinit). If both values are equal, the
database did not change since last invocation and no initialisation is needed. If they disagree, a full
initialisation is necessary if $generic_config is undefined, otherwise only the types table is
written to the database; finally, $seenDB is updated to the counter current value.

The generic parser overrides the following methods:

Routine name Arguments Description
new File name Returns the object structure with the complete configuration file

Version content.

Language name In the present implementation, argument file name is not used. To
spare memory, only the language relevant part of the configuration
file could be kept in the object structure.

indexfile LXR file name Launches ctags to collect the declarations and enters them into the
For genxref use OS file path database

File id

Reference to DB

object

Reference to
configuration object

processinclude

String reference
Directory name

Splits the string according to the 'include’ definition in file
generic.conf and changes it with keyword highlighting and
hyperlink insertion

Uses _linkincludedirs for hierarchical link editing

Note:

If no 'include’ definition is supplied in the configuration file, default
statement syntax is supposed to be “keyword file-without-

14 All other parsers in directory Lang/ are derived from Generic.pm.

43

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Routine name Arguments Description

delimiters”. If a statement terminator follows file without
intervening spaces, it is considered part of the filename.

processcode String reference Highlights all reserved keywords and hyperlinks the known
symbols

referencefile LXR file name Using SimpleParse.pm nextfrag, it scans unclassified

For genxref use OS file path fragments non-reserved symbols which are entered into the
File id database
Reference to DB Reminder: symbols which were not entered during the declaration
object phase are filtered out by set symreference; consequently,
Reference to there is no need to look up the database before submitting the

configuration object | symbol.

language Returns the effective language name

Auxiliary methods are:

Routine name Arguments Description

read_config This internal sub (not a method) reads into global variable
$generic_config the complete content of file generic.conf
and stuffs into the database the human-readable type declarations
corresponding to the ctags one-letter types found in the
'typemap' sections.

parsespec Returns an array containing the category definitions as found in the
'spec' section of generic.conf for this language

flagged Flag name Returns the value (0/1) of the given flag from the ' flags'
section OF generic.conf for this language

isreserved Symbol name Returns 1 if the symbol is a reserved word
Reserved words are listed in the ' reserved' section of
generic.conf for this language

langinfo Item name Returns the requested item of the ' langmap ' section of
generic.conf for this language

2.12.b. C parser

Derived from the generic parser, C.pm only reimplements method processinclude for syntax
accuracy and speed performance.

2.12.c. COBOL parser

Derived from the generic parser, Cobol.pm is yet in an experimental state. In particular, code layout
(margins A and B) is not taken into account. It reimplements referencefile as an empty method
and processcode for case-insensitivity keyword and identifier detection.

44

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

2.12.d. HTML parser

Derived from the generic parser, HTML.pm only reimplements method processinclude for
handling targets in <A> or tags. If targets are URL, i.e. they start with scheme:, the target is
handed over to freetextmarkup which will highlight the URL.

2.12.e. Java parser

Derived from the generic parser, Java.pm only reimplements method processinclude for
processing package and import statements. Both variants of import are handled. The tail is
requeued for eventual extra Java code.

2.12.f. Make parser

Derived from the generic parser, Make.pm only reimplements method processinclude for speed
efficiency and iterating on the file list.

2.12.g. Pascal parser

Derived from the generic parser, Pascal.pm reimplements methods new and processinclude.

Method new calls the generic method and the captures the file extension which varies with OS and
compiler. This extension will be added to the Pascal-filename designation to obtain the OS-
filename in USES statements (include feature name in Pascal).

Method new iterates on the USES file list and suffixes the Pascal filename with the current
extension before creating an hyperlink.

2.12.h. Perl parser

Derived from the generic parser, Perl.pm only reimplements method processinclude to cope
efficiently with both variants of the statements. The tail is requeued for eventual extra Perl code.

2.12.i. Python parser

Derived from the generic parser, Python.pm only reimplements method processinclude for
handling import statement efficiently. Unfortunately, the from ... import ... variant is processed
in two independent passes: the first one deals correctly with from; the second one manages the
requeued import tail (having “forgotten” the directory defined in the from part). This results in
incorrect hyperlinks being created if any.

2.12.j. Ruby parser

Derived from the generic parser, Ruby.pm only reimplements method processinclude for speed
efficiency.

45

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Be aware that due to the very dynamic nature of Ruby LXR does not manage accurately Ruby
syntax.

2.13. Specialised file access managers

The specific managers are stored in directory Files/. They are all derived classed of Files.pm.

The oldest managers are Plain.pm for ordinary files and CVS.pm for CVS repositories. BK.pm is
no longer maintained because BitKeeper changed to proprietary licence around 2005.

2.13.a. BitKeeper manager

Derived from Files.pm, BK.pm implements all stub methods. Its private support methods are:

openbkcommand (command)
Executes command and returns a handle to the pipe result

insert_entry(..) Inserts an entry in the internal cache (sub, not method)
fill cache(version) Fills the internal cache with directory contents
get_tree(version) Returns the entire tree as an array

cachename (version) Returns the cache file name

canonise(file name) Returns the file name with initial / removed (sub, not method)
file_exists(file name, version)

Returns 1 if file exists (checking data in the internal cache)
get_fileinfo(file name, version)

Fills the internal cache and returns cached data for the file

2.13.b. CVS manager

Derived from Files.pm, CVS.pm implements all stub methods.

Method new checks that res diff is GNU compliant because retrieving differences requires GNU
arguments. The boolean result is kept in global variable $gnu_diff.

Method getdir handles the case of the Attic/ directories, the location where CVS keeps
removed files.

Method getannotations builds the annotation for the designated file in global array @anno. It
proceeds by reading the file, keeping only the number of lines. It tells which version a line was
entered by scanning the difference directives between older and older versions. It must both read
CVS internal data and diff output. This method should be considered “internal” only called from
getfilehandle).

Method getnextannotation only pops the head element of array @anno.
Method getauthor retrieves the author from CVS internal data.

Method filerev returns “standard” numeric revisions (but for “import” branches folded to 1.1
because they cause problems) or translate version symbols to revisions through internal data

46

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

scanning.

Method getfilehandle proceeds through checking out the requested file.
Method getfilesize reads the file to compute its length.

Method getfiletime retrieves the commit time from CVS internal data.

Its private support methods are:

Routine name Arguments Description
toreal File name Returns the name of a real file containing the change history of the
Version requested file (usually just suffixed with , V but may be located in

an Attic/ directory)

This involves decoding C'VS internal data with par Secvs to
check if this revision is dead.

Virtually called by all other methods.

getdiff File name Returns a file handle to the patch directives transforming version 1
Version 1 into version 2 with resdiff
Version 2
dirempty Directory name Returns 1 if directory is “empty”
Version Here, empty means directory contains only “empty” subdirectories
or files not belonging to the designated version.
cleanstring String Returns a string with all “dangerous” characters removed
Candidate for deletion Dangerous characters are those allowing an XSS attack or
otherwise disturbing LXR operation. This, of course, limits the set
of possible filenames.

This method is used only to prune a file name before launching a
shell command (no XSS risk). It has been commented out to
experiment.

allreleases File name Returns a list of all release tags of which this file is a member
A release tag is a symbolic identifier, not a numeric revision
number.

allrevisions File name Returns a list of all revision numbers of which the file is a member

byrevision Comparison function (not a method) to sort according to revision
numbers

parsecvs File name Method to parse internal CVS data

Note:

Since this method is called from many other methods, among which
toreal which calls parsecvs, and it itself calls toreal,
global variable $cache_filename is used as a cache to
prevent unneeded parsing AND infinite recursion.

The method read change history data and stores it in global hash
%CVS.(see below).

CVS change history files are composed of paragraphs: a paragraph is a group of non-empty lines or
@-delimited strings” (which may span several lines and contain blank lines). Paragraphs are

15 @ inside strings are written @@.

47

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

separated from each other by blank lines.

Paragraphs start with a tag and consist of a list of items (keyword followed by an optional list of
tags or values and terminated by a semicolon ;). If a value needs to span several lines or may
contain a semicolon, it is coded as an @-string.

The first paragraph is a header (keyword head'®). The items are:

* the latest revision number (considered as item head);

* access (not used by LXR);

symbols defining the correspondence between release tags and revision numbers as a list of
tag :revision, stored in {'header'}{'symbols'}{tag} with revision value:

An undocumented feature allows to customise the release tags for display purpose in the
version list (variable 'v'). Configuration function 'cvsversion' (in file Ixr.conf) is applied
to tag (passed as an argument) and returns an alias to be used from now on. Example to
replace hyphens by spaces:

'cvsversion' => sub
{ my ($tag) = @_
; $tag =~ s/-/ /g
; return $tag
}
* locks (not used by LXR);
* strict (not used by LXR);

* comment (not used by LXR), value is an @-string.

With the exception of symbols, all item values end up stored in {'header ' }{tag}.
The following paragraphs describe the revisions. Their keyword is the revision number. They
contain the following items:
¢ date with commit time and date;
®* author;
* state (only dead value tested);
* branches giving the revision numbers of the lateral branches stepping out of this revision;

* next giving the “ancestor” revision number (this defines a reverse chronological order of the
revision or describes the tree “upside-down” starting from the leaves and ending in the root).

All item values end up stored in {'branch'}{revision}{tag}.

16 Not sure if the header should not be considered as an “anonymous” paragraph starting immediately with items.
Nevertheless, it works well as is.

48

o

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

CAUTION!
The next relation on a lateral branch points in the opposite direction compared to the
main trunk: from the branching point to the leaves. Consequently, {'header'}
{'symbols"'}{branch symbol} is modified to retain the latest revision number on the
branch so that selecting this symbol will list the file in a different revision than that of
the branching point.

This may eventually give an inaccurate result if other tags have been added later on the
branch.

The next paragraph desc contains a description in an @-string. There is no terminating semicolon.
This string is not used by LXR.

The following paragraphs with keyword equal to the revision number contain the needed
information to rebuild the file as it was was in the revision state. The items' are:
* log containing the commit message in an @-string;

* text being either the file original content for the head revision or the patch directives for
transforming a revision into the next (according to the tree relationship from the header.

These paragraphs are not recorded in the %cvs hash. A standard check-out is done when a file
revision is needed.

2.13.c. GIT manager

Derived from Files.pm, Git.pm implements all stub methods.
Method getdir builds the content array with data returned from command git ls-tree.

Method getnextannotation pops the head element of array @{ 'annotations'}, eventually
causing it to be refilled by 1loadline.

Method truncateannotation is reimplemented for truncation at right.

Method getauthor pops the head element of array @{'authors'}, eventually causing it to be
refilled by loadline.

Method filerev relies on command git rev-1list to return the latest revision id.

Method getfilehandle returns a “file handle” to the designated file version. It is a usual file
handle as returned by command git cat-file if no annotations are required. If annotations are
requested, it is a fake file handle because annotation, author and source content are all presented
in a unique line. This requires processing to separate information. An ad hoc get1line method is
added to this fake file handle (the GIT object itself) to transparently simulate a standard file
handle behaviour.

17" Here, the items are not terminated by a semicolon.

49

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Method getfilesize reads the result of command git cat-file -s.
Method getfiletime extracts the commit time from command git cat-file commit.
Methods isdir and isfile rely on command git 1s-tree.

Its private support methods are:

Routine name Arguments Description

loadline Strictly internal method to grasp the next annotated line and split it
into annotation, author and line respectively queued into object
arrays { 'annotations'}, {'authors'} and
{'nextline'}. Onend of file, array { 'nextline'} and
the real file handle (to the GIT pipe) are deleted.

getline Method used to make the GIT object a pseudo-file handle when
annotated source is required.

The “next” line is taken from array { ' nextline'}. End of file
causes undef to be returned.

_git_cmd Command Returns a handle to a pipe from which command output can be read
Argument array GIT directory location is forced with a - -gQit-dir option.
IMPORTANT!
The returned pipe must be explicitly closed by the caller.
_git_oneline Command Wrapper method for cases when a single line is expected from the
Argument array GIT command

The pipe is closed by the method before returning the result.

loadline and the three object arrays simulate three independent files (namely annotation, author
and source) from a single physical source.

All paths in LXR are relative to the repository directory defined by configuration parameter
'sourceroot'. Since this directory is passed to GIT commands with option --git-dir,
paths MUST look like relative paths and the initial slash is removed from the names in these
commands.

2.13.d. Mercurial manager

Derived from Files.pm (and similar to GIT.pm), Mercurial.pm implements all stub methods.
Method getdir builds the content array with data returned from command hg ls-onelevel.

Method getnextannotation pops the head element of array @{'annotations'}, eventually
causing it to be refilled by loadline.

Method getauthor pops the head element of array @{'authors'}, eventually causing it to be
refilled by 1oadline.

Method filerev relies on command hg id -n and hg log to find the requested revision. If
an exact match is not found, it returns the time-closest revision number.

50

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Method getfilehandle returns a fake “file handle” to the output pipe of command hg cat
which returns “decorated” lines (complete with annotation and author). This requires processing
the lines to separate information. An ad hoc getline method is added to this fake file handle
(the Mercurial object itself) to transparently simulate a standard file handle behaviour.

Method getfilesize reads the result of command hg fsize.

Method getfiletime extracts the commit time through parsing the output of command hg
log with method parsehg.

Methods isdir and isfile check the last character in the file name argument for the presence
of /.

Its private support methods are:

Routine name Arguments Description

loadline Strictly internal method to grasp the next annotated line and split it
into annotation, author and line respectively queued into object
arrays { 'annotations'}, {'authors'} and
{'nextline'}. Onend of file, array { 'nextline'} and
the real file handle (to the Mercurial pipe) are deleted.

getline Method used to make the Mercurial object a pseudo-file handle.
The “next” line is taken from array { ' nextline'}. End of file
causes undef to be returned.

parsehg File name Builds the object hashes { ' changeset '} and
{'date2rev' }which give respectively the commit date for a
revision and the revision for a commit date

loadline and the three object arrays simulate three independent files (namely annotation, author
and source) from a single physical source.

All paths in LXR are relative to the repository directory defined by configuration parameter
'sourceroot'. The current directory is switched to the latter before launching any
Mercurial commands. Paths MUST also look like relative paths and the initial slash is
removed from the names in these commands.

To check:
Directory listing incurs very poor performance. The cause has not yet been identified. Since
directory listing is the only context where many files are interrogated, could the
implementation of parsehg be blamed? {'changeset'} and {'date2rev'} are never
erased, thus resulting in bigger and bigger hashes, which may also cause erroneous answers
for filerev.

Complimentary methods for version selection in configuration file:

51

Project LXR

The LXR Developer's Manual

Language en_UK

2.13.e. Plain files manager

Derived from Files.pm, Plain.pm implements all stub methods.

Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
alltags File name Returns a list of all tags valid for the designated file
The list is built with command hg tags.
allbranches File name Returns a list of all branches valid for the designated file
The list is built with command hg branches.

Method getdir builds the content array with data returned from standard Perl function

readdir.

Method getnextannotation returns undef because plain files have no VCS attributes.

Method getauthor returns undef because plain files have no VCS attributes.

Method filerev returns a kind of “signature” made of the file size and its last modification

time.

Method getfilehandle returns a real file handle to the source file.

Method getfilesize uses standard Perl function -s.

Method getfiletime does a stat on the source file.

Methods isdir and isfile use standard Perl function -d and -f.

Method realfilename is reimplemented to return the true source file name.

Method releaserealfilename is reimplemented to do nothing, so it does not destroy the

source file.

Its private support methods are:

Routine name Arguments Description
toreal File name Returns the real OS file name associated with the arguments, i.e.
Version value(' sourceroot ')/ Version/ File name

2.13.f. Subversion manager

Derived from Files.pm (and similar to GIT.pm), Subversion.pm implements all stub methods.

Method getdir builds the content array with data returned from command svn list.

Method getannotations returns an array containing annotations for all lines of the source file
as retrieved from command svn blame. (deprecated)

Method getnextannotation pops the head element of array @{'annotations'}, eventually
causing it to be refilled by loadline.

52

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Method getauthor pops the head element of array @{ 'authors'}, eventually causing it to be
refilled by loadline.

Method filerev returns the numeric part of the version argument if it is not head. In this latter
case, command svn info is used to retrieve the revision.

Method getfilehandle returns a fake “file handle” to the output pipe of command svn
blame which returns “decorated” lines (complete with annotation and author). If no annotations
are required, the command is svn cat. This requires processing the lines to separate
information. An ad hoc getline method is added to this fake file handle (the Subversion object
itself) to transparently simulate a standard file handle behaviour.

Method getfilesize reads the result of command svn list -v.

Method getfiletime extracts the commit time through parsing the output of command svn
info.

Methods isdir and isfile use command svn info to check the presence of directory or
file respectively.

Its private support methods are:

Routine name Arguments Description

loadline Strictly internal method to grasp the next annotated line and split it
into annotation, author and line respectively queued into object
arrays { 'annotations'}, {'authors'} and
{'nextline'}. Onend of file, array { ' nextline'} and
the real file handle (to the Mercurial pipe) are deleted.

getline Method used to make the Mercurial object a pseudo-file handle.
The “next” line is taken from array { ' nextline'}. End of file
causes undef to be returned.

revpath File name Converts the LXR file designation (name and version) into a
Internal revision Subversion location

This involves selecting the appropriate subdirectory of the
repository (such as trunk/, branches/, ...) and setting the revision
number. The returned string is used as the file designation in hg
commands.

loadline and the three object arrays simulate three independent files (namely annotation, author
and source) from a single physical source.

Complimentary methods for version selection in configuration file:

Routine name Arguments Description
allreleases File name Returns a list of all tags valid for the designated file
The list is built with command SVN 10g on the file in the trunk/
subdirectory.
alltags File name Returns a list of all tags valid for the designated file
The list is built with command svn 1ist on the tags/
subdirectory.

53

Project LXR The LXR Developer's Manual Language en_UK
Software release 2.0 2 LXR Engine Document revision 1.0
Routine name Arguments Description
allbranches File name Returns a list of all branches valid for the designated file
The list is built with command Svn 1isSt on the branches/
subdirectory.

2.14. Specialised database managers

The specific managers are stored in directory Index/. They are all derived classed of Index.pm.

2.14.a. MySQL

Method new connects to the Perl DBI module and overrides transactions files_insert,
symbols_insert and langtypes_insert.

Nothing else is modified.

2.14.b. Oracle

This manager has been blindly updated to parallel the organisation of other managers. It has not
been tested because Oracle has a proprietary licence.

Method new connects to the Perl DBI module and overrides transactions files_insert,
symbols_insert, langtypes_insert and purge_all.

Nothing else is modified.

2.14.c. PostgreSQL

PostgreSQL has no auto-increment attribute for fields in tables. It offers however a sequence
feature associated with a nextval function which can be called to provide a sequence-unique
running counter. Transactions are added and others modified to use this feature.

Experiments showed that further performance improvement was possible adopting the same
incrementation method as in SQLite. Consequently, the same variant was implemented.

Method new connects to the Perl DBI module, sets explicit commit mode'®, creates transactions
filenum_nextval, symnum_nextval, typeid_nextval, reset_filenum, reset_symnum
and reset_typenum and overrides transactions files_insert, symbols_insert,
langtypes_insert, delete_definitions and delete_usages.

18 Several parameters seem to determine global performance. However, setting commit mode looks like the most
reasonable way to achieve good performance without resorting to writing sophisticated transactions. This results in a
10-times improvement over basic auto-commit mode.

54

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 2 LXR Engine Document revision 1.0

Other methods need to be overridden to make use of the new transactions: fileid (unique internal
file identification), symid (unique internal symbol identification) and decid (unique language type
declaration identification). purgeall is overridden to reset the counters. commit does nothing (to
suppress the “auto commit” warning message). final cleanup is updated to clean the new
transactions.

2.14.d. SQLite

SQLite has no auto-increment attribute for fields in tables and does not offer any substitute feature.
Consequently, unique numbering must be simulated through incrementation of an independent
counter stored in a dedicated table (so that numbering sequence remains consistent across
executions).

Method new connects to the Perl DBI module, sets explicit commit mode”, creates transactions
filenum_newval, symnum_newval and typenum_newval and overrides transactions
files_insert, symbols_insert and langtypes_insert.

Methods fileid, symid and decid are overridden to use the specific numbering transactions.

Since there is no truncate statement in the SQL, method purgeall must be reimplemented with
new transactions purge_definitions, purge_usages, purge_langtypes, purge_symbols,
purge_releases, purge_status and purge_files based on delete statements.

final_cleanup is updated to clean the new transactions.

19 This results in 40-times performance improvement factor!

55

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 3 Index Generator Document revision 1.0

Index Generator

Indexing a source-tree is done with script genxref. It shares as much code as
possible with the LXR engine to remain consistent with it.

3.1. Process outline

The script first reads the LXR configuration file. Its file name is retrieved from Config.pm.
Part 1

It then checks different software tools needed to use LXR. The Perl interpreter is a special case
because the script already runs inside it. It is easy to test the version number to insure all syntactic
constructs will be correctly understood. The other tools are checked with subroutine check_tool.
The arguments are:

* configuration file parameter name containing the path to the executable, e.g. 'ectagsbin';

* tool name (without directory), e.g. ctags: used to search for the tool in the standard system
locations;
If the configuration parameter does not exist, check_tool tries to find the tool in the system in
order to proceed as much as possible with indexing. In case of success, this is called a “forced”
tool situation.

* tool option to print version, e.g. - -version;
* minimal version required if not '0'

* optional additional constraint on tool name

If present, this is a regular expression which must be satisfied by the tool name as returned by
version printing (see third argument). This test is checked before version number.

Example:
Some Linux distributions still use plain ctags instead of exuberant ctags. This goes
unnoticed, unless regular expression qr/exuberant/i or equivalent is passed as fifth
argument. It results in a [FAILED] status if Exuberant is not present in the resulting line.

Status of the tool is printed on standard output and a numeric result is returned for decision making:

-2 = version too low for a “forced” tool,
-1 = version too low,

0 = tool not found,

1 = OK, “forced” tool,

2 =0K.

The tested tools are ctags, glimpse (and its buddy glimpseindex) and swish-e. Global consistency is

57

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 3 Index Generator Document revision 1.0

checked according to the values returned by check_tool.

If genxref runs in checking mode (option --checkonly), it stops here. It also stops if fatal errors
were encountered unless “recovery” attempts are accepted (option --accept). The recovery is
limited to using the locations suggested for missing tools (as discovered by check_tool).

Part 2
Indexing the source-tree(s) begins here.

Processing option --allurls implies looping on all tree sections in configuration file (or
equivalently on all elements of array @config since the global section was removed in part 1). On
the contrary, option --url= means to process the option value without looping (this ensures that a
typo will be reported as a missing source-tree). In order to merge both cases in a single block, array
@config is changed to single-element list (1) in the --url case. It is not void then the loop is
executed once and the element is not a reference to a tree section but this is irrelevant according to
the initial statements in the loop.

At the head of the loop, a distinction is made between both cases to call Config->new with the
correct parameters. Minimal checks are made, namely existence of parameters 'sourceroot' and
{'variables'}{'v'} before creating files and database objects. The running counter
$database_id is incremented so that modules may detect a change of database.

The set of versions to index is then defined by checking options - -version and --allversions
(default if nothing specified) taking into consideration the C'VS case.

Indexing for CVS and --allversions is special because CVS offers no centralised version list
and every source file version will have to be collected and the final set can be dumped to build a
static list.

Otherwise, the first task is to determine how to purge the database to prevent stale data from
remaining in the tables. This also avoids useless database growth. Preference is given to total
database erasure whenever possible (i.e. --reindexall on all existing versions) with
purge_all(). For a one-version --reindexall, a flag is set for a purge. In a one-version
incremental indexation, another flag is set for a careful examination of all tables.

An internal loop on the selected versions is started. The above flags select the purge method, either
database management purge (version name) or support routine cleanindex(version name). If
enabled, the plain text search index is built with gensearch(version name). Declarations are
collected with directorytreetraversal(...) applied with processfile. Usages are collected
with directorytreetraversal(...) applied with processrefs.

A call to database management final_cleanup() at the end of the outer loop resets everything
for a new iteration.

3.2. Internal support routines

The following support routines are written inside file genxref:

58

Project LXR

Software release 2.0

3

The LXR Developer's Manual

Index Generator

Language en_UK

Document revision 1.0

Routine name Arguments Description
check_tool Parameter Described in previous section
Executable name
Version option
Minimal version
Additional constraint
dirbannerprint Bullet string Prints the arguments to monitor progress across the source-tree
Version name To spare screen space, this line is overwritten if no files were
Directory name processed in the previous directory.
File name
directorytreetra |Processing function |Recursive routine!
versal Version name If “file” is a directory, do a directorytreetraversal on
Directory name this directory with adapted arguments. Commit changes to database
“File” name before returning to caller (to “freeze” the new records from this
directory.
If “file” is really a file, the processing function is called. For a CVS
repository in automatic version enumeration mode, configuration
function varrange('v') is called and the processing function
is iterated on every version.
The processing function must return undef in case it was unable
to handle the file (e.g. no parser could be found) or 1 otherwise.
gensearch Version name Driver routine to generate free-text search indexes.
For glimpse engine, hand over the task to glimpseindex.
For swish-e engine, open a pipe to swishbin and traverse the source-
tree with feedswish.
feedswish Current path If the current path names a directory, feedswish is iterated on
Version name every member.
swishbin pipe If the current path names a text file®, it is sent to the pipe prefixed
File handle with an HTTP-like set of headers.

The fourth argument is a handle to a file where processed file
names are written for later use by swish-e.

dump_versionset

Prefix string
Hash reference

Writes into custom.d/ a file enumerating the CVS version set. The
versions are the keys to the hash reference (a hash is used to obtain
easily a list without duplicates). The file name is built with the
prefix, virtual root and tree name. The last two items are URL-
encoded to avoid possible issues with path separators.

cleanindex

Version name

Scans all files in this version to determine if it is up-to-date. The list
is obtained from getallfilesinit.

If the file is member of only one version of the source-tree (the
present one), definitions and usages can be erased. In the other
case, this information must be kept and the file is skipped.

Erase is done by purgefile and the version descriptor can then
be removed.

Note:

Symbols are not erased, nor the file descriptor because it is

20 This is where File: :MMagic is used. The criteria file name is taken from configuration parameter
'magicmime’' or lib/magic.mime if the parameter does not exist (backward compatibility with previous releases.

59

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 3 Index Generator Document revision 1.0

Routine name Arguments Description

expected that the removal is caused by a newer version of the file
which will be indexed again. This saves time to erase and recreate
symbols and file descriptor for the most frequent case. File erasure,
renaming or replacement is considered less frequent.

Progress is monitored through printing various lines. The most obvious is the currently scanned file.
But its name is directory-less to spare space and avoid as much as possible multi-line printing
because it is easier to read information on a single line when it has a semi-organised lay-out.
Directory name is printed by dirbannerprint when it is entered and repeated every so often.

To spare space again, a directory line is overwritten when none of its files are processed. This is
controlled by variable $printdirbanner. Set to 1, it forces a full line while when undefined the
cursor backs up a line and the last path segment is replaced by the new directory name. When a full
line is printed, variable $printdirbanner is then forced to undefined value. Also, the counter
$repeatbannercountdown is reset to its initial value $repeatbannerevery. The control
variable $printdirbanner is set to a defined value after every successful file processing. This is
necessary in order not to overwrite a file status line.

To cause repetition of the directory line, $repeatbannercountdown is decremented after every
successful file processing. When its value is detected as zero or negative before file processing,
variable $printdirbanner is forced to 1 and dirbannerprint is called.

Directory name printing is also needed when processing a file after exiting a subdirectory (this is an
implicit directory change). In the directory loop (map function), variable $needbanner keeps track
that a subdirectory was entered (which caused printing its name). When a file is encountered, if this
variable is still defined, dirbannerprint is called and $needbanner is reset to undefined value.

3.3. External support routines

These routines (files) are located in the scripts/ directory.

3.3.a. VTescape.pm

This file defines ANSI escape codes (also called VT100 codes very long ago) as a set of variables
for static sequences or functions when dynamic parameters need be inserted. All names are prefixed
with VT. Function names use the official acronym, e.g. VTCUU for CUrsor Up CUU except when
there is none: VTprRM private Reset Mode, VTprRSM private ReStore Mode, NTprSM private Set
Mode, VTprSVM private SaVe Mode, VTSSR Set Scrolling Region.

This simplifies message editing on the Linux console.

@ CAUTION!
Not all ANSI codes are implemented.

60

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 3 Index Generator Document revision 1.0

3.3.b. Tagger.pm

This file contains the processing functions passed as references in the first argument to recursive
function directorytreetraversal. Their returned value is undef if something prevents
processing a file (no parser, unknown revision, ...). It is 1 if a file has been successfully processed™.

The main role of these functions is to call the parser-specific processing method.

Changes to the database are committed after processing.

Routine name Arguments Description
processfile File name Records in the database definitions obtained from parser method
Version name indexfile

Configuration object
Files object
Database object

processrefs File name Records in the database symbol usages obtained from parser
Version name method referencefile

Configuration object
Files object
Database object

Presently, the configuration object argument is not used but it is offered in case the functions
would need to access configuration parameters.

Performance issues:
The definition collecting pass (processfile) is currently implemented in Generic.pm
with exuberant ctags. This utility provides compiled parsers for most of the supported
languages. The exceptions are Ant, COBOL, HTML, Matlab, S-lang and overridden or
added languages (SQL and Virtual BASIC) which are parsed with regular expressions.

The reference collecting pass (processrefs) ends up in the same parsers as those used
for file highlighting. They are derived from Generic.pm and reference SimpleParse.pm
which is based on regular expressions. The speed can be considered acceptable when file
display is requested, though some delay may be seen on long files. But it clearly results
in low performance when huge trees are scanned (e.g. the Linux kernel). It could be
improved only through the implementation of compiled automaton-based parsers similar

to exuberant ctags.

3.3.c. Multi-threaded attempt

In the hope to improve performance, an experimental development implemented multi-threading for
both definition and reference collecting passes. This required dispatching the work through a queue

2l To be honest, it rather means something has been printed on screen and the fact that the file has already been
processed is not considered an error (it adds to an existing message only).

61

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 3

Index Generator Document revision 1.0

to subordinate workers. To avoid database inconsistency, workers locked the database while they
were batch-writing to it and committing changes was necessary after each file processing.

It was quite successful in parsing simultaneously several files (temporarily storing the symbols in an
array) but database locking resulting in serialisation of access. Moreover, the commit high
frequency finally gave a poorer global performance than single-thread processing.

This optimisation track was given up.

62

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

Database Architecture

For performance reason, cross-reference data is kept in a database instead
of a set of files”. As long as the database engine is SQL-compliant, only
minor adjustments are needed to cope with SQL dialect differences.

4.1. Tables

Tables store the various entities relevant in cross-references. A symbol is declared somewhere in a
file and is used in files. A file comes in different flavours: it is part of releases (or more commonly
version) corresponding to different base revisions. When several releases map to a single base
revision, reindexing is avoided when another release in the set is encountered. A release is a user-
visible name for a file version while the base revision is an internal unique name given to this file
state.

The base revision name may or may not be related to the version name, depending on the
repository type.

Relations between tables are summarised in the following figure:

status — files 4— releases ﬁ
\
[
definitions usages ﬁ
\
[
langtypes symbols
typenum symnum filenum

Drawing 4: Relationship between DB tables

status and files tables logically make up a single table. status has been isolated because it contains
only a small amount of mutable data while files contains (long) text immutable data. When file
name is not relevant to the current task (which is the most frequent case), it is thus more efficient
and memory-friendly to load only status data.

22 The initial LXR releases used files but that did not scale very well: indexing big projects resulted in huge files;
accessing data meant reading the whole file into memory; selective random access was not easy and not optimised
for large reference data. All this ended up in poor performance when project size grew.

63

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

langtypes provides human-readable text for a declaration type.

filenum, symnum and typenum are optional tables depending on the selected strategy for uniquely
numbering files, symbols and language types respectively.

A table is made of fields to store project information. In some tables, database functions may be
associated with fields to automate tasks. Fields and functions are described in the following
sections.

Special sequence-simulating tables may be added in some database engines.

4.1.a. files and status tables

These two tables describe a unique base revision file. No other file is the source-tree has an
identical content.

files is the master table:

fileid internal unique number identifying this file (primary key)
filename file path in the source-tree, maximum 255 characters®
revision unique revision string (provided by repository support method

filerev), maximum 255 characters®
Combination of filename and revision form a secondary key with uniqgue attribute.

status 1s the associated table:

fileid internal unique number identifying a file (primary key), identical to
files value

relcount number of releases associated with this revision

indextime time of last indexation on this file revision (allows to detect stale
reference data when displaying a file)

status only two bits of this integer are of interest: bit 0 (value 0/1) for “file

has been scanned for declarations” and bit 1 (value 0/2) for “file has
been scanned for usages”

An automatic function remove_file is triggered by deletion of a status record. It causes deletion
of the files record with same fileid key.

4.1.b. releases table

This table enumerates the different user-visible version names mapping to a base revision file.

fileid internal unique number identifying a file in the files table
releaseid version name, maximum 255 characters

Combination of fileid and releaseid form a primary key. fileid creates the link with the files
table.

23 This may need to be increased in some deeply nested projects with long subdirectory names. Unfortunately, there is
no truncation warning during indexation.
24 This should not be a problem since revisions tend to be rather short.

64

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

Two automatic functions maintain consistency of the relcount counter in the status table.
add_release is called after insertion of a releases record to increment the relcount counter.

remove_release is called after deletion of a releases record to decrement the relcount counter.

4.1.c. langtypes table

This table records text for a declaration type in a given language.

typeid internal unique number identifying this type (primary key)

langid language identifier (usually taken from genric.conf parameter
'"langid'

declaration free descriptive text, maximum 255 characters

Combination of typeid and langid form the primary key.

4.1.d. symbols table

This table records all unique symbols names.

symid internal unique number identifying this name (primary key)

symcount counter for definitions and usages records referencing this name
(protection against in-use name purge)

symname symbol name, maximum 255 characters

Function decsym decrements the symcount counter. It is used in the automatic functions
associated with definitions and usages tables.

4.1.e. definitions table

This table is the list of variable, function or otherwise interesting entity declarations.

symid numeric identifier for the name

fileid numeric identifier for the file where the declaration appears
line line number of the declaration

typeid numeric identifier for the type

langid numeric identifier for the language

relid optional numeric identifier for an outer symbol name

Two indexes are built to speed up access, one on symid, the other one on a combination of typeid
and langid.

Links to other tables are created through the following fields: symid and relid to the symbols
table, fileid to the files table, combination of typeid and langid to the langtypes tables.

Field relid is used when the current declaration is in “relation” with another one. Think for
example of the sub declarations of a struct record in C.

An automatic function remove_definition is triggered after a definition deletion to call function
decsym which maintains reference counter consistency in symbols table.

65

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

4.1.f. usages table

This table is the list of variable, function or otherwise interesting entity usages.

symid numeric identifier for the name
fileid numeric identifier for the file where the declaration appears
line line number of the declaration

An index on symid is built to speed up access.

Links to other tables are created through the following fields: symid to the symbols table, fileid
to the files tables.

An automatic function remove_usage is triggered after an usage deletion to call function decsym
which maintains reference counter consistency in symbols table.

4.1.g. Unique numbering tables

These tables are present with SQLite and with other engines if user management is chosen for
unique numbering of files, symbols and languages types. They do not appear if unique numbering
relies on internal algorithms.

Experiments have shown a performance boost with the user management method. This
improvement comes from the decrease of commits to the database. It is possible because the
only genxref needs write access and multi-threading has been dropped.

CAUTION!

@ If any of these requirements are violated, database integrity is lost. Never attempt to
refresh the same tree cross-references from two sessions, it results in garbage. There

should be only one LXR administrator responsible for LXR server maintenance.

The tables contain a single record:

rcd record number (equal to 0)
xid running counter

xid is fid, sid and tid for the filenum, symnum and typenum tables respectively. These counters
are cached in memory, incremented when a new associated record is created and saved to the
database when the session terminates.

4.2. Queries

The elementary queries defined in Index.pm will not be commented. A query is considered
elementary if it involves a single table. In this context, files and status are parts of a single logical
table.

66

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

The descriptions below refer to arguments. These positional anonymous arguments are part of
the Perl DBI calling interface. In case query source lines are modified, take great care to
check that the order in which arguments are evaluated did not change vis-a-vis the argument
list.

allfiles_select is used to retrieve the files which are members of a version (passed as
argument to the query). The version argument filters the releases records on field releaseid. Field
fileid indirectly selects the files records on the corresponding key field.

related_symbols_select is used to retrieve the “outer” declaration symbol before deleting a
file to correctly maintain reference count integrity. The argument is the internal identifier of the to-
be-deleted file. The file identifier argument filters the definitions records on field fileid. Field
relid indirectly selects the symbols records on key field symid. Note that a relid equal to 0
means “no relation to an outer definition” and that no symbol has a symid key equal to O.

definitions_select is used to find definitions for an identifier (first argument) in a version
(second argument). First argument filters the symbols records on field symname which gives the key
value symid. Second argument filters the files records on field releaseid which gives the key
value fileid. Finally, both keys filter the definitions records on fields symid and fileid.

delete_definitions is used to delete all definitions records pertaining to a version (database
purge with --reindexall option). The set of records to delete is computed by a nested selection
query. The version argument filters the releases records on field releaseid. Field fileid
indirectly filters the status records on the corresponding key field with the condition that the release
counter relcount is equal to 1 (no other version references the base revision, it is thus safe to
delete data). The definitions records are then selected on field fileid.

usages_select is used to find usages for an identifier (first argument) in a version (second
argument). First argument filters the symbols records on field symname which gives the key value
symid. Second argument filters the files records on field releaseid which gives the key value
fileid. Finally, both keys filter the usages records on fields symid and fileid.

delete_usages is used to delete all usages records pertaining to a version (database purge with
--reindexall option). The set of records to delete is computed by a nested selection query. The
version argument filters the releases records on field releaseid. Field fileid indirectly filters
the status records on the corresponding key field with the condition that the release counter
relcount is equal to 1 (no other version references the base revision, it is thus safe to delete data).
The usages records are then selected on field fileid.

4.3. Database engine specifics

Differences in underlying concepts and SQL implementation between database engines lead to
adjustments of architecture and queries.

The most divergent area is the auto-numbering of records. This implied the inability to define a

67

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 4 Database Architecture Document revision 1.0

common query to insert files, symbols and langtypes records into the database. These are the only
operations involving such controlled value assignment to fields.

Thanks to LXR limitations (it is a read mostly process), auto-numbering was fully simulated in
memory with the advantage of drastically decreasing the number of commits. However, it is
possible to revert to built-in mechanisms by uncommenting the relevant lines in the database-
specific interfaces and commenting out the common simulation lines which was initially developed
for SQLite.

4.3.a. MySQL

files_insert, symbols_insert and lang_types rely on auto-increment feature.

Foreign key constraints remain active in truncate table statements, thus preventing from using
the common purgeall() method. The method is overridden to temporarily disable foreign key
checks while erasing the database.

For performance reason, table descriptions force engine MyISAM.

4.3.b. PostgreSQL

Auxiliary table indexes must be explicitly created with create index statements.

PostgreSQL has no auto-increment feature but it offers sequence objects from which a running
value can be retrieved through function nextval. Three “sequences” are created in the database
description: filenum, symnum and typenum for numbering files, symbols and langtypes records
respectively. In parallel, new queries are defined for retrieving the current number
(filenum_nextval, symnum_nextval and typeid_nextval) and resetting the numbers after a
purge (reset_filenum, reset_symnum and reset_typenum).

Queries files_insert, symbols_insert and langtypes_insert are adapted to this
mechanism.

Queries delete_definitions and delete_usages must be rewritten due to a difference in
syntax (no nested select allowed).

Trigger functions need also some adjustments: Functions increl, decrel and decsym are used by
trigger functions to increment/decrement database counters.

Methods involving auto-numbering (fileid, symid and decid) are overridden to use the
appropriate queries.

4.3.c. SQLite

Aucxiliary table indexes must be explicitly created with create index statements.

SQLite has neither auto-increment feature nor truncate statement. The latter issue is solved by
substituting a set of purge_xxx (with xxx equal to a table name) to purge_all. These queries use a
delete statement without record target, which completely erases the table. The solution to the

68

Project LXR The LXR Developer's Manual Language en_UK

o

Software release 2.0 4 Database Architecture Document revision 1.0

former issue is simulation of auto-increment.

Three new tables are added to the database: filenum, symnum and typenum which will remember the
highest number reached for files, symbols and declaration types during the last execution. These
tables contain a single record which is cached in memory while connected to the database. Queries
filenum_lastval, symnum_lastval and typenum_lastval are used only during initialisation
to retrieve the previous values into the cache. Queries filenum_newtval, symnum_newval and
typenum_newval are used only during disconnection to store the current values into the database.

Queries files_insert, symbols_insert and langtypes_insert are adapted to this
mechanism.

Methods involving auto-numbering (fileid, symid and decid) use the internal caches to generate
numbers.

4.3.d. Oracle

CAUTION!
Since Oracle is released under a proprietary licence, the implementation has not been
tested on a real case. It is a “best guess” based on publicly available documentation,
comparison with other databases and evolution of “historical” code. Global changes are
translated in a generic way.

Please report your experience if you ever install LXR under Oracle.

Auxiliary table indexes must be explicitly created with create index statements.

Oracle has no auto-increment feature but it offers sequence objects from which a running value
can be retrieved through special variable nextval. Three “sequences” are created in the database
description: filenum, symnum and typenum for numbering files, symbols and langtypes records
respectively. Queries files_insert, symbols_insert and langtypes_insert are adapted to
this mechanism.

It is very likely that this implementation is incomplete. Some common methods need probably to be
customised.

69

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 5 LXR Main SCI"iptS Document revision 1.0

LXR Main Scripts

The so-called “main” scripts are the driver scripts diff, ident, search,
showconfig and source which are the entry gates into LXR realm.

5.1. source script

This is the most used script. It implements source display.
It initialises the LXR engine through a call to httpinit.

An undocumented filter is applied on the file name to discard unwanted files.

This undocumented feature has been present for ages. It is associated with configuration
parameter 'filter' whose final value is a regular expression describing which file (or
directory) names should be kept. Final value means it can be a literal regular expression or a
sub returning such a regular expression.

Since it is quite difficult to set it right (because it is ALWAYS applied to the raw path taken
from the URL — both to directories AND files), do not use it. Configuring parameters
'ignorefiles' and 'ignoredirs' (or their respective regular expression counterparts
'filterfiles' and 'filterdirs') lead to the same effect.

If URL parameter _raw is defined, printfile(1) is called to display the file “as is”; otherwise,
header and footer are built around printfile(0).

Finally, the LXR engine is cleared through a call to httpclean.

Dedicated support routines are:

Routine name Arguments Description
iconlink HTML element Wrapper function around fileref to allow insertion of a real
Path name HTML element (which would otherwise be disabled in fileref

as protection against XSS). Note that the first argument is passed
without < > delimiters (internally added).
Used by diricon and fileicon only.

diricon Template string Expands to an <A> link around an element for the
Directory name directory icon
Parent directory

dirname Template string Expands to an <A> link around the name of the subdirectory
Directory name
Parent directory

fileicon Template string Expands to an <A> link around an element for the file icon
File name

71

Project LXR

Software release 2.0

The LXR Developer's Manual
5 LXR Main Scripts

Language en_UK

Document revision 1.0

Routine name

Arguments

Description

Parent directory

filename Template string Expands to an <A> link around the name of the file
File name
Parent directory
filesize Template string This template function expands its argument, substituting markers
File name $bytes, $kbytes or $mbytes with the file size
Parent directory Note:
The present implementation makes no distinction between the
preceding markers; the file size is internally scaled based on its
string length.
_edittime UTC time in seconds |Returns a human readable date/time string or a single dash if the
argument is undefined
modtime Template string Expands to the last modification time of the file
File name
Parent directory
indextime Template string Expands to the last indexation time of the file
File name
Parent directory
descexpand Template string This template function expands its argument, substituting marker
Node name $desctext with a description for the node (a file or directory)
Parent directory The called function is either filedesc or dirdesc depending
Version number on the nature of the node. These functions are located in Local.pm.
They should return at least a non-breaking space to force the
browser to keep the element when laying out the page.
rowclass Template string Expands to a CSS class name for this line in the directory listing
Line number
direxpand Template string This template function expands its argument to create a directory
Directory name listing, calling the editing functions for the various markers, making
a difference between a file and a subdirectory
It takes care to force head version for a CVS repository since
CVS does not manage directory version.
printdir Directory name Driver routine for directory listing

It retrieves template 'htmldir' and expands it, associating
markers $description and $files to functions dirdesc
and direxpand respectively.

next_annot

Version number
Previous version
Background flag

Returns a decorated HTML block containing revision and
author information

Version number is the requested revision; lines belonging to this
revision have their annotation specifically highlighted.

Previous version is the revision for the previous line. If the previous
and current lines share the same revision, annotation is suppressed
in order not to clutter screen (however, the background has the
correct colour).

Background flag toggles between 0 and 1 between consecutive
change sets to use different highlighting colours.

72

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 5 LXR Main SCI"iptS Document revision 1.0

Routine name Arguments

Description

The last two arguments are references to caller variables so that
their values survive across calls.

printfile Raw flag

The node to display is defined by global variable $pathname
and version by $releaseid

Dispatches to printdir for a directory.

If raw flag is 1, the requested file is sent “as is” to the browser.
Otherwise, a file handle for the requested version is retrieved from
the repository manager and passed to markupfile for
highlighting. An output function is built to merge annotations with
lines.

5.2. ident script

This is the second most used script. It implements identifier search.

It initialises the LXR engine through a call to httpinit.

The value of $defonly (display only definitions) is determined from URL variables or
configuration parameter 'identdefonly’.

Header and footer are built around printident.

Finally, the LXR engine is cleared through a call to httpclean.

Dedicated support routines are:

Routine name Arguments Description
varinputs Expands to a sequence of <INPUT> element describing the
current value of all 'variables'
This is part of the state preserving feature between invocations.
countfiles Search result array | Expands to the number of files in the result
checkvalidref File name Expands to CSS class name identinvalid if the file has been
changed since last indexation
Side effect: increments global variable $bad_refs
expandwarning Template string Expands its templates argument if global variable $bad_refs is
non zero; returns an empty string otherwise
ref_in_file Description Front-end to fileref (same arguments)
CSS class Line numbers are set negative on a case-approximative match. Line
File path numbers are then corrected and CSS class name is augmented with
Line number identapprox.
For exact matches (positive line numbers), arguments are simply
forwarded to Fileref.
refsexpand Template string This template function has two expansion variants for its argument:
Search result array | several references per line if marker $1ines is present, single
reference per line otherwise

73

Project LXR

Software release 2.0

The LXR Developer's Manual
5 LXR Main Scripts

Language en_UK

Document revision 1.0

Routine name

Arguments

Description

Every reference is inserted in the expanded template argument by
an appropriate loop.

cmprefs

Two array arguments

Comparison function for sorting search results

The arguments are arrays. The elements are taken in order: O file
name, 1 line number and for definitions 2 type, 3 higher level
definition.

The last comparison may not be human-meaningful since the data
is an index into the database.

defsexpands

Template string

Expands its template argument for every definition of the identifier
defined by global variables $identifier and $releaseid
Definitions are retrieved both against “native” case and uppercase
versions of the identifier. The lists are merged, removing duplicates,
and the remaining occurrences are sorted with cmprefs.
Template expansion for marker $refs is done by refsexpand.

usesexpands

Template string

Expands its template argument for every usage of the identifier
defined by global variables $identifier and $releaseid
Usages are retrieved both against “native” case and uppercase
versions of the identifier. The lists are merged, removing duplicates,
and the remaining occurrences are sorted with cmprefs.
Template expansion for marker $refs is done by refsexpand.

printident

Retrieves the 'htmlident' template and expands it with the
previous support routines

5.3. diff script

It implements difference display between two versions of the same file. It relies on the availability

of res diff.

Since two version references are needed, two passes through this script are necessary. The first pass
will transfer the current 'variables' values into “remembered value” arguments and request the
second variant from the user. The second pass can then do the job with “current” and “remembered”

designations.

It initialises the LXR engine through a call to httpinit.

The “difference arguments” @dargs are built from URL query arguments of the form ~var_name
capturing the “remembered” (from first pass) value of the corresponding 'variables'.

Header and footer are built around printdiff.

Finally, the LXR engine is cleared through a call to httpclean.

Dedicated support routines are:

74

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 5 LXR Main SCI"iptS Document revision 1.0
Routine name Arguments Description
fflush Sets STDOUT in autoflush mode
Candidate for deletion
htmljust HTML string Returns a justified HTML string occupying exactly the requested
Maximum width width

To guarantee correctly balanced HTML, tags are copied blindly to
the output string (without checking for matching opening/closing
tags) considering they need no screen position. HTML entity
references, supposed to be one screen position wide, and ordinary
text are copied only if there is room for them.

printdiff Difference arguments | Since standard URL (in other scripts) designate only one version,
array two passes are necessary to grab versions to compare.

On first pass (where the difference array is undefined), user is
requested to name a second version. The current 'variables'
values are implicitly transferred into remembered values by the
variables link generator (see Var1inks in Template.pm). These
remembered values will be put into the difference array on re-entry.
On second pass, both versions are described by the variables value
sets but only the file name in $pathname points to an adequate
file. To get the second one, 'maps ' rules must be inverted (in the
remembered environment) and reapplied (in the current
environment).

Then, patch directives can be computed by diff (on real files).
Highlighted sources can be displayed side-by-side under control of
these patch directives.

5.4. search script

It implements free-text search. It relies on the presence of a free-text search engine, presently either
glimpse or swhish-e.

It initialises the LXR engine through a call to httpinit.
Header and footer are built around search after having checked that free-text search is allowed.
Finally, the LXR engine is cleared through a call to httpclean.

Dedicated support routines are:

Routine name Arguments Description

varinputs Template string Expands its template argument to a sequence of <INPUT>
element describing the current value of all 'variables'

This is part of the state preserving feature between invocations.
Note: implementation is different from ident and some decision
should be made in favour of one or the other for consistency sake.

filename_matches | String Returns 1 if the string is part of the file name
Pattern flag The string is a regular expression if pattern flag is non-zero, an

75

Project LXR

The LXR Developer's Manual

Software release 2.0

5 LXR Main Scripts

Language en_UK

Document revision 1.0

Routine name

Arguments

Description

Case-sensitive flag
Filename to check

ordinary string otherwise.

Case-sensitive flag, if non zero, will cause case-sensitive
comparison. Otherwise, comparison is case-insensitive.

This function is useful to discard results from files not matching the
name criterion.

glimpsesearch String to find Launches glimpse to find the string within the current version of
Filename filter the source-tree and returns an array of the resulting hits
Filename pattern flag | Search if normally made case-sensitively (flag equal to 0), but can
Case-sensitive flag | be made case-insensitively (flag non-zero).
Results can be restricted to specific files with a non-empty file
name filter. This filter is either an ordinary string (flag equal to 0)
or a regular expression (flag non-zero).
swishsearch String to find Launches swish- e to find the string within the current version of
Filename filter the source-tree and returns an array of the resulting hits
Filename pattern flag | Search if normally made case-sensitively (flag equal to 0), but can
Case-sensitive flag be made case-insensitively (flag non-zero).
Results can be restricted to specific files with a non-empty file
name filter. This filter is either an ordinary string (flag equal to 0)
or a regular expression (flag non-zero).
checkvalidref File name Expands to CSS class name searchinvalid if the file
containing a search hit has been modified since last indexation or
was never indexed
printresults Template string Expands its template argument with the results of the search
Search text Since the two supported search engine return different data,
Result array processing is adapted to the search engine (expanding appropriately
the template).
search Main driver for free-text search

It retrieves the template and the URL query parameters. It takes
care search variants: search text with or without file filter to be
handled by glimpsesearch or swishsearch, or file filter
only handled by scanning a private search engine file containing the
names of the scanned files.

Results are edited through template expansion.

5.5.

showconfig script

It allows to check the configuration file from the browser.
It initialises the LXR engine through a call to httpinit.

The parameter-group sections from the configuration file are read into array @pgs and the requested
parameter group number is determined from URL query argument _parmgroup or, if not given,
from configuration parameter 'parmgroupnr ' or defaults to 1.

URL query argument _confall controls the amount of information displayed:

76

Project LXR

Software release 2.0

The LXR Developer's Manual
5 LXR Main Scripts

Language en_UK

Document revision 1.0

* 0 or not specified: only parameters present in the current tree-specific and global sections

* 1: all parameters ever used in any tree-specific and global sections

* 2:like 1 with the addition of parameters in the configuration object

This last argument value is not disclosed in the User's Manual since it is intended for
developer's use, allowing to dump value of derived or internally generated parameters.

Template 'htmlconfig' is retrieved. Header and footer are built around the template expansion.

Finally, the LXR engine is cleared through a call to httpclean.

Dedicated support routines are:

Routine name

Arguments

Description

dumphash Reference to a hash | This recursive function returns a ready-to-display string
Left indent representing the hash key/value pairs

parmvalue Parameter name Dumps a parameter value if it exists in the parameter group
Reference to a Actual editing depends on the parameter type (hash , array or other)
parameter group Third parameter is present only for the special developer view.
hash
Reference to general
configuration object

parmexpand Template string Expands its template argument for every “authorised” parameter
Script name A parameter is “authorised” when it is present in the designated
Reference to the group. All parameters (in any group) are “authorised” when URL
parameter group query argument _forceall is non-zero.
array “Internal” parameters 'confpath' and ' parmgroupnr' are
Parameter group always skipped.
number

parmgrouplink Parameter group Expands to an <A> link to have showconfig display the parameters

number
Reference to
parameter group
array

in the designated group

77

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

aConfiguration Wizard

Configuring LXR, i.e. creating one's own lIxr.conf file, has always been a
tedious task owing to the large number of configuration parameters and
their sometimes obscure relationships. It is also very easy to forget an
important parameter. To circumvent these difficulties, a configuration
wizard is available. It handles all configuration situations, from the simplest
to the most elaborate.

The configuration wizard, written in Perl, is stored in the scripts/ directory. Its components are:

* configure-Ixr.pl: main configuration driver;

* ContextMgr.pm: context file utilities;

LCLInterpreter.pm: interpreter for the LXR Configuration Language (LCL) macro statements;
* QuestionAnswer.pm: user interaction manager;

* VTescape.pm: ANSI escape codes definitions (see 3.3.a VTescape.pm).

6.1. Process Outline

Once initialised, the wizard is driven by macro statements found in a configuration file template
(stored in the femplates/ directory). These macro statements are interpreted, some requesting input
from the user, and results may be inserted in the output configuration file.

First, its checks its command line arguments and the LXR root directory environment.

It then determines the general context of this configuration. If this is an initial run (no --add
option), the user is asked for his choice of single/multiple trees preference, web-server and database
engine. These choices are saved in a context file (extension .ctxt) for an eventual later session. If this
is an addition session (option - -add given), the previous choices are retrieved from the context file
to guarantee consistency.

A dictionary of symbols corresponding to options and context parameters is built for use by the
LCL statements.

Eventually, free-text search is disabled if the search engines cannot be found.
The effective configuration begins here.

During the initial session, web-server and SCM configuration or auxiliary files are customised and
copied into the custom.d/ directory through copy_and_configure_template procedure.

79

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

CAUTION!
@ Subdirectory and file names are hard-coded. If any modification is done in the
templates/ directory, it must be forwarded in the configuration wizard.

The main configuration file [xr.conf is built in two passes.

The first pass exists only during the initial session: it builds the global section part through a call to
procedure copy_and_configure_template.

The second pass deals with the source-trees (one iteration per tree). It starts by reinitialising a few
symbols in the dictionary to make each iteration independent. The tree section part is built through a
call to procedure pass2_hash. On return, the tree-specific parameters have been recorded in the
symbol dictionary. They can be used to customise the web-server configurations (Apache, lighttpd
and nginx need this) with a call to pass2_hash. The database description is also recorded in the
symbol dictionary. Shell and SQL statements for creating the tree database are added to the output
script with a call to expand_slash_star under control of an initdb-x-template.sql template.

After all trees are configured, the wizard ensures that all known scripts are executable.

6.2. Support library

VTescape.pm has already been described in 3.3.a.

6.2.a. ContextMgr.pm

This package manages the so-called context in which LXR is executed. The context contains
“constant” parameters, valid in any tree, describing the general behaviour of LXR. They are:

* single-tree/multiple-trees operation flag,

* URL components (host name, port and aliases),

* Jlocation of LXR service within the server document hierarchy,

* position of tree designation in URL (multiple-trees operation),

* virtual root policy (and eventually common virtual root),

* database engine and policy (single universal database or dedicated databases),

* global database parameters if any (user name, password, table prefix, flags, ...).

The context is implemented by a set of exported package-global variables. When it is necessary to
remember this context, the set is saved into a Perl source file as a sequence of assignments to the
global variables so that an eval of this file restores everything. The set is augmented with a
variable containing the context version number in order to detect incompatibilities.

80

o

Project LXR

Software release 2.0

The LXR Developer's Manual Language en_UK

6 Configuration Wizard Document revision 1.0

CAUTION!

The detailed definition of the context can change without notice. It is considered internal
to the configuration wizard and is kept in a file only to allow to split the configuration
process into multiple sessions. It is not intended to contain user-visible data. What is in
the context is not meant either to be long term information: though every reasonable
effort is made to maintain upward compatibility, context reloaded by a newer version of
the configuration wizard is likely to be rejected.

The context support routines are:

Routine name

Arguments

Description

contextReload

Verbose flag
Context filename

Reads the context file and evals its content. If no format version
check variable is found, the file is probably not a context file and
processing is aborted. If recorded and expected format versions are
beyond compatibility tolerance, processing is aborted.

Warning! The name of the output configuration file is not checked
against the recorded name. It is anticipated that the average user
will use the default names and that the power user will care not to
mess its files.

With verbose flag non zero, the decoded reloaded context is printed
on screen.

Returned value is O if context reloading succeeded or 1 if manual
context restore may be tentatively attempted.

contextSave

Context filename
Output configuration
filename

Writes context into the context file

Warning! The initial comment line containing the output filename
is parsed in contextReload. If this comment is changed, the
regular expression in contextReload must be kept in sync.

contextTrees

Asks the user for the operational mode: single or multiple trees

contextDB

Verbose flag

Asks the user for his choice of database and policy

contextServer

Verbose flag

Asks the user his URL structure (host name and aliases, document
hierarchy, tree designation policy, ...)

6.2.b. LCLinterpreter.pm

This package contains a parser and interpreter for LXR configuration-language LCL (see 6.3). LCL
is embedded in comments so that it does not interfere® with file data. Moreover, only specialised
wrapper routines are exported; they can be thought of as instantiations of two base routines
depending on the lexical appearance of comments. Two are meant for pass 1, expand_hash and
expand_slash_star, two for pass 2, pass2_hash and pass2_slash_star. They look for LCL
statements in comments started by a hash # (up to the end of line) or delimited by /* and */

respectively.

25 Really? That could probably be the case when LCL only substituted parameters for their values. But now, the macro
language offers a selection feature between exclusive alternatives. These alternatives cannot be kept simultaneously
in the output file since they have conflicting meanings.

8l

s

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

The core routine is expand. It is responsible for parsing file, locating LCL statements and
translating their semantics. The routine handles nested constructs by indirect recursive calls. The
arguments are:

$source: reference to a sub returning the next input line

A sub allows very versatile input. The most common case references a file handle (with a little
loss in efficiency due to the call overhead). But it is very easy to handle iterative constructs
where the statement block is put aside in an array when encountered and the sub returns each
line when needed. More complex constructs store their sub-blocks in arrays and the adequate
sub-block is afterwards selected according to context.

$dest: output file handle (where transformed input is written)

$markers: reference to symbol dictionary (stored in a Perl hash)

$verbose: verbose flag (0 = silent, 1 = standard verbosity, 2 = detailed verbosity)
$comstart: a regular expression defining the opening delimiter of a comment

$comend: a regular expression defining the closing delimiter of a comment or an empty string
if comment is limited by the end of line

Even if in simple cases the previous two delimiter may seem to reduce to strings, they are
regular expressions, which means characters with special semantics must be quoted. For
instance, SQL comment delimiters must be passed as '/*', "/*" or qr(/*) (and the
like for the closing delimiter).

$end_label: a regular expression describing an LCL statement where expansion stops

This regular expression is internally prefixed with the comment opening delimiter and the LCL
sentinel @.

The note about simple comment delimiters applies also here.

If interpretation of the whole input file (or stored block) is requested, use an improbable string
such as '~~~TO~EOF~~~"'. Submitting an empty string would cause stopping interpretation
on the first LCL statement.

CAUTION!
When this regular expression is applied, LCL statement parsing has not yet taken place.
It means the match target of the regular expression must be found in the initial line of the
statement and cannot be seen if it is located in continuation lines. Be careful when you
develop your template configuration files.

expand loops through its input (calling &$source() to get the next line) until input is exhausted.
Its return value is undef, though internal recursive calls to expand rely on another value. The loop

82

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

is described in the following paragraphs.

It checks for the terminating LCL statement (the associated comment MUST start at the beginning
of the line fragment®. In case of a match, it returns the value of parse_statement.

“Erasable” comments are removed. Erasable comments use delimiters extended with a dash (-), e.g.
#- and (unmodified) end of line or /*- and -*/. In the latter case, the erasable commented block
may even contain ordinary comments®’.

The GPL licence is written inside erasable comments because the templates are open-source.
However, the output file, after transformation by the configuration wizard contains user data
whose openness status is unknown. The GPL licence may no longer be applicable and is thus
removed. If this output file is released in the public domain, an adequate licence should be
added, remembering that the original template source was GPLed (v3).

“Ordinary” lines, i.e. not an LCL statement, are copied into the output file after substituting the
value for %symbol%. An unknown symbol is an error.

Lines starting with an opening comment delimiter followed by @ are LCL statements. They are
decoded by parse_statement which returns in $args, $var, $command and @labels
respectively the argument string, the associated variable, the command (statement name) and the
labels of the LCL statement. This statement is interpreted by interpret_statement. If the
statement does not need further processing, skipping symbol substitution and insertion into output is
forced with next instead of going through the end of the loop.

* Label (void command): ignored but copied to output file

This should normally not happen since a label is a target for an action and absorbed during
action processing. However, it does not harm to keep unused labels. It may even be a way to
debug a template.

* U (potentially Unknown): this is rather a warning flag

In case the line contains undefined substitution symbols, the error indication is suppressed and
the line is unchanged. If all substitutions succeed, the comment delimiters are removed, leaving
an “ordinary” data line.

Interpretation for pass 2 (and others) is launched by pass2 (from wrapper routines).. The arguments
are the same as for expand with the exception of the end label, which is always ENDP2 and is not
given.

The output file is opened for input and will be copied/changed into a temporary file with the same
name and extension .LXR. The input template file is repeatedly scrolled to the next PASS2 LCL

26 Tt is highly recommended to write any LCL statement on its own dedicated line starting it in column 1. The present

implementation for “floating” comments (such as /* ... */) accepts an LCL statement immediately after a multi-
line erasable comment, but this comes from a side-effect rather than from deliberate design.

For a tricky use of this feature, read carefully templates/initdb/initdb-m-template.sql. The LXR manager has the
possibility to create the databases either under the master account or under a user account by writing/erasing an
erasable closing delimiter - * / at the end of two lines (only one delimiter must be present).

27

83

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

statement, which is parsed with parse_statement to extract the label to use. The original output
file is copied to the temporary file until the target label is met. Interpretation of the PASS2 block is
requested through a call to expand with an ENDP2 stop label. The target label is rewritten if the
block was not marked with option R (remove).

The loop is left when reaching end-of-file on the input template file. The remaining lines from the
original output file are copied to the temporary file. The original output file is deleted and the
temporary renamed to the original file.

interpret_statement is in charge of interpreting an individual LCL statement or its subordinate
block for compound constructs.

XQT (execute): if generating a shell script, insert the rest of the line (and substitute value for
symbols); otherwise, do nothing

ERROR, REMIND, LOG and MSG: print the arguments after symbol substitution
LOG needs $verbose at least 1 and MSG at least 2.

ASK: get data from user through ask_question and store answer into symbol %var%, where var
is the variable associated to the LCL statement

KEEPON: get data from user until an empty answer and expand the block terminated by ENDK

All components of the KEEPON block are kept in hash %keep. Key g (question) contains the
argument (after symbol substitution) to pass to ask_question after ensuring an empty answer
is possible. Key v (variable) is the name of the associated variable. The block itself is scanned to
store its components under adequate keys: =none, =first and =epilog for ON NONE, ON
FIRST, ON EPILOG sub-blocks. The sub-block is delimited by an ENDON statement. The standard
body, terminated at ENDK, is stored under key =body.

The question is asked a first time to see if there is no answer at all, leading to a call to expand on
sub-block with key =none. Otherwise, sub-block with key =first is expanded. Then a loop is
entered, calling expand on sub-block with key =body for every answer to the question until a
empty string is returned. At this time, a last call to expand is made for block with key =epilog.

CANON and CANONR: apply replacement rules to a variable content

IF: conditional block interpretation

Only one of the IF, ELSEIF or ELSE blocks must be interpreted. A loop which stops on ENDIF
statement is entered. It checks if command is ELSE or if the expression is true to decide for block
interpretation. On a positive decision, expand is re-entered in function mode (to keep the
characteristics of the last LCL statement) with a stop sentinel of ELSEIF, ELSE or ENDIF. The
statements are then skipped until ENDIF if this statement has not been reached, matching any
new IF with the corresponding ENDIF. On a negative decision, skip_until is called for
ELSEIF, ELSE or ENDIF, matching any new IF with the corresponding ENDIF and the loop is
iterated again.

CASE: block selection

The argument is evaluated with evaluate_expr to give the target case. An infinite loop is then
entered.

84

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

Each iteration begins with a call to skip_until for a label, matching any new CASE with the
corresponding ENDC. Reaching statement ENDC means no label was found, which is an error
causing loop exit. If the target case matches any label of the stop statement, an extra call to
interpret_statement is made for the matching labelled one (if any). expand is re-entered in
function mode (to keep the characteristics of the last LCL statement) with a stop sentinel of label
or ENDC. After this expansion, lines are skipped until ENDC, matching any new CASE with the
corresponding ENDC unless we already reached ENDC. The loop is terminated.

ARRAY: iterate block on every element of designated array(s)

Since several arrays (with same size) can be scanned in parallel, the statement argument is parsed
for symbol names (access to the actual array through %markers dictionary) and its optional
variable name. This information is stored in hash %array with key equal to variable name and
value equal to symbol name (array name). A check is made for the existence of the arrays.

The block is scanned until ENDA to store its components in the %array hash under keys =none,
=prolog and =epilog for sub-blocks ON NONE, ON PROLOG, ON EPILOG. These sub-blocks
are terminated by ENDON. The standard body, terminated at ENDA, is stored under key =body.

All designated arrays must have the same number of elements or an error is issued.
Empty arrays cause expansion of sub-block with key =none.

For non-empty arrays, sub-block with key =prolog is interpreted by expand with all associated
variables set to the size of the array. One expansion of sub-block with key =body is done with all
associated variables set to the value of the current element. Finally, sub-block with key =epilog
is interpreted with all associated variables set to the size of the array.

DEFINE: create or change a symbol

The statement argument is split into variable (symbol) name, = operator (dropped) and
expression. If the symbol name starts with _, it is considered read-only and an error is issued.
The symbol, surrounded with % is entered into the dictionary with a value returned by
evaluate_expr.

ADD: include a file

Argument first character is examined for single quote (') or double quote ("). If this is the case,
it is retained as the file name delimiter. This quoting feature is very unusual syntactically
speaking since the parser grabs anything between the opening delimiter and the last delimiter
(preceding white space before the end of line). There is thus no need of escape mechanism, even
to include the delimiter.

The eventual substitution variables are replaced by their values with substitute_markers.

The resulting file name is used “as is” if it starts with /, ./ or ../. In the latter two cases, the file
name is relative to whatever directory is current (usually it is the LXR root directory). Otherwise,
the file is prefixed with the value of %LXRovrdir% (defined by option --tmpl-ovr=) if it exits,
or with the value of %LXRtmpldir% (defined by option --tmpl-dir= with default value
templates/).

The designated file is scanned with expand and closed on return.

PASS2: block for later execution

85

Project LXR

Software release 2.0

The LXR Developer's Manual
6 Configuration Wizard

Language en_UK

Document revision 1.0

Location in the output file is marked with a label generated from the command argument unless
this is a pass in an additional session and option R (Remove) is set on the statement.

Lines are skipped without interpretation until the next ENDP2 statement.

* Unmatched block delimiters (ELSE, ELSEIF, ENDIF, ENDA, ENDC, ENDK, ON, ENDON, ENDP2) and
unknown commands give an error message.

The support routines are:

Routine name

Arguments

Description

parse_statement

Reference to input
function

Line to parse
Comment start
Comment end

Assembles the statement from continuation lines and splits the line
into its components: labels, command name, associated variable or
option, argument string (i.e. rest of the line after command)
Returned value is a list: argument, variable, command, labels in this
order. Note there may be no labels. By default, variable is A.

interpret_statem
ent

Reference to input
function

Output file handle
Reference to symbol
dictionary
Verbose flag
Comment start
pattern

Commend end
pattern

Reference to line
LCL argument
LCL variable
LCL command

Interprets an LCL statement and eventually causes a block to be
expanded

The first set of arguments is needed to call expand.

Reference to the current line allows to transform it for insertion into
the output file.

The last set of arguments comes from parse_statement and
drives interpretation.

Returned value is 1 if the statement has been fully interpreted (and
can be “forgotten” by caller) or undef if the current line should
be further processed/

substitute_marke
rs

Reference to line
Reference to symbol
dictionary

Comment start
Comment end

All %name% symbols are replaced by their value from the
dictionary

An error is issued if name does not exist in the dictionary, unless
the line is an U LCL statement in which case the line is left
unmodified. The U command (and comment delimiters) are erased
if no errors are reported.

evaluate_expr

Expression string
Reference to symbol
dictionary

Submits the expression string to €val after some transformations
Sub-expressions involving %symbols% should be limited to
comparisons for equality/inequality (€q or ne for string, == or ! =
for numbers). Since the implementation does not strictly enforce
this rule, other operators may work but this is not supported.

A list of all %symbols% is collected. With it, a sequence of Perl
variable definitions is built as my $_symbols = value; . Value is
taken from the dictionary. If the symbol is an array, its value is the
number of array elements. This sequence is followed by the
expression string where every %symbols% is replaced by
$__symbols and then passed to eval which checks the expression
correctness and computes it, using Per! rules.

The function returns the computed value.

skip_until

Reference to input

Skips lines until condition is met

86

Project LXR

Software release 2.0

The LXR Developer's Manual
6 Configuration Wizard

Language en_UK

Document revision 1.0

Routine name

Arguments

Description

function

Stop sentinel pattern
Begin nesting
command pattern
Ending nesting
command pattern
Comment start
pattern

Commend end
pattern

The stop, begin and end patterns are converted into regular
expressions matching on complete LCL lines.

Lines are read in a loop. If a begin nesting command is
encountered, nesting level is incremented and stop sentinel
identification is disabled. When an ending nesting command is
encountered, nesting level is decremented and stop sentinel
identification is re-enabled if level is zero. The loop is exited either
on recognising the stop sentinel or an ending nesting command at
level O (this is based on the assumption that a stop sentinel is an
internal “command” of a begin/ending nesting block).

The returned value is computed by parse_statement on the
command causing loop exit.

Restriction:

This procedure does not handle ADD commands to get input from
another file. Also, if the stop sentinel is not found before the end of
the current input file, no attempt is made to pop the input file stack.
Consequently, the skip target must be located within the current
file.

grab_block

See skip_until

Returns an array of lines from current position to the stop sentinel
This function is similar to SKip_until. The lines are stored in
an array instead of being skipped. When the stop sentinel is found,
the lines are returned. Finding an ending nesting command at level
0 is an error.

The same restriction applies.

ask_qguestion

LCL argument string

Interface to get_user_choice

The argument string is split at ; into question, default answer,
optional choices and optional normalised answers. The last two
components are split at , to be stored into arrays.

These components become arguments of get_user_choice.

6.2.c.

QuestionAnswer.pm

This package offers a simplified interface to ask a question on the terminal and get an answer.
Question may be closed, if answer must be taken from an exhaustive list of choices, or open, when
answer is not constrained. Closed questions may have a default answer which is selected when the
user just hits “return” (empty answer).

The exported function is get_user_choice. It returns the user answer (string). Arguments are:

* $question: a string containing the question to ask

* $default: an integer describing the default answer as

-3 open question, empty answer allowed,
-2 open question, no default answer, empty answer not allowed (user answer mandatory),
-1 open question with default answer,

87

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0
0 closed question, no default answer (user answer mandatory),
>0 closed question, position of default answer in list (first is 1).

* $choices: optional reference to list of answers (not present for open question, mandatory for
closed question)

Open question have no limited choice. $choices becomes a reference to a list of even number of
strings. The first string in a pair is a regular expression (without delimiters) to match the answer.
The second string is a message to print if the answer does not match. The list may contain several
criteria which are tested one after the other. Any failure causes the question to be asked again.

* S$answers: optional reference to list of “normalised” answers

This argument is present for closed question when a “normalised” answer is desired and for open
question to define the default answer. The choices may then be written in a user-friendly style
while the more processing-oriented associated “answer” is returned to caller. For example, the
choices may describe in detail the resulting effects and the answers return a mnemonic, like:

Choices of databases:
MySQL, Oracle, PostgreSQL, SQLite

Normalised answers:

m, 0, p, S
In practice, $answers is systematically specified, notably in LCL, because a choice can be
selected with the smallest unique prefix, leading to unpredictable answer length. Perl processing
can use substr function to keep only the prefix (though its length may vary with the specific
answer) but this cannot be done in LCL.

Quick checks are made to insure consistency between the arguments. Fatal errors cause process
termination with status 2.

The choices for a closed question are transformed into a list of regular expressions, one for each
choice, by function find_unique_prefix. The choices are then converted to lowercase into a
local array.

Since $choices is a reference, this conversion modifies the original list (side-effect!). It does
not matter in the current implementation since all arguments are not named variables but
dynamic anonymous arrays which are recomputed on every call.

In the case of an open question with default answer, the local array contains the default answer.

The string corresponding to the default answer is converted to uppercase and prefixed with an ANSI
escape sequence to display it green.

The ask-and-check infinite loop is entered. $question is printed “as is” on the terminal; no
highlighting is done and nothing is suffixed to the string (any needed punctuation must be provided
in the string). The list of choices is printed between square brackets, separating each item with a
solidus (/). Items are highlighted yellow, the optional default choice green. Finally a yellow
blinking > prompt is sent. User entry is read and checked.

88

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

If it is void and a default answer is allowed, the default normalised string is returned. An empty
string is returned for an open question with empty answer allowed. Otherwise, the empty answer is
illegal and a new iteration is started.

A non-void answer to an open question is first checked against the validation regular expressions
and is returned as is if it passes the tests. Otherwise, a new iteration is started.

Lastly, the regular expressions for the closed answers are taken one at a time. If the user entry
matches the expression, the corresponding normalised answer is returned. If no match occurred, the
answer is invalid and a new iteration is started.

Function find_unique_prefix computes the shortest unique prefix for each element of its array
argument (it is a reference to a choice list).

The list is first “flattened” to the concatenation of all its elements, everyone prefixed with #*. This
string will be a test case for the candidate regular expressions.

A loop examines each choice string in its turn. A prefix, starting with #, is progressively extended
with the next character of the choice. As each character is added, a match is attempted against the
flattened string. If there is a single match, the remaining characters of the choice are added as
optional match®, the initial # is replaced by anchor 7, the regular expression is stored in a list and
the loop proceeds with the next choice. When the characters are exhausted without a single match,
no valid unique prefix exist for this choice set; this is a fatal error.

The function returns the list of computed regular expressions.

Example:
Choices are between file and function. The computed regular expressions will be:

Afi(1l(e)?)? and Afu(n(c(t(i(o(n)?)?)?)?)?)?

6.3. LXR Configuration Language (LCL)

This rudimentary macro language is used to drive substitutions in the configuration templates based
on input from the user. This way, rather elaborate configurations can be constructed and the
resulting file is not cluttered by unused options.

6.3.a. Syntax

LCL statements are found inside comments. The comments follow the syntax of the language for
the generated data, e.g. from # to end of line for Perl, web server configuration or shell, from /* to
*/ for SOL or C.

28 CAUTION! This pound character # is supposed never to occur in the strings. If this is not the case, another
delimiter should be chosen.

29 Strictly speaking, there is no need to match beyond the shortest unique prefix because all choices can be
differentiated with these head characters. However, this is a fool-proof safety measure. If a legal choice is file
with unique prefix T1 and user types find, maybe he is thinking to something else. Matching only i would not
detect a possible error.

89

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

Some comments are erasable: they are not copied to the output file. They are identified with an
hyphen (-) immediately following the comment start delimiter. If comment syntax needs an ending
delimiter, the matching delimiter is immediately preceded by an hyphen.

Examples;

#- Erasable comments when comment ends at end of line
#- The - marker must be repeated on every erasable line

/*- With comments capable of extending

-*- on multiple lines, strictly only the delimiters
-*- need to bear the - marker

_*/

If an erased comment leaves a blank line (no other data remains after erasure), the blank line is also
removed to avoid excessive vertical spacing.

A comment is an LCL statement if it starts in column 1 and the statement marker @ immediately
follows the comment start delimiter. No other non-comment data may be present after the comment.

Examples:

#@MSG This is an LCL statement

/*@MSG This is also an LCL statement */

Non-LCL examples:

some data #@MSG This is a standard comment
#@MSG This is not an LCL statement
@MSG neither this one

some data /*@MSG standard comment*/
/*@MSG comment not LCL */
/* @MSG comment also */
/*@MSG message */ This data cause downgrading to ordinary comment

When needed, LCL statements may span several lines. The form is slightly different depending on
the existence of a closing comment delimiter.

For shell-style comments, a backslash (\) immediately preceding newline (no whitespace allowed)
requests continuation. Continuation lines start with #@ but are not anchored to column 1. The
statement is continued starting with the first non-whitespace character after the statement marker.

#@MSG Beginning of \
#0O message (note: initial \

30 This marker has been chosen as a tribute to a famous (and remarkably efficient) OS and hardware line of the '70s
and '80s. Do the old-timers remember?

90

file:///*@MSG

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

#@ spaces on continuation lines \
#@ are dropped and continuation \
#@ are not anchored to column 1.)

For C-style comments, no special arrangement is necessary. The statement ends at comment
terminator. Initial whitespace in continuation lines is dropped.

/*@MSG Beginning of message
(note that a space
precedes newline to allow word separation)*/

Though it is not directly part of LCL, any sequence %name% found anywhere is replaced by the
value of name from the symbol dictionary. Name is a run of alphanumeric or underscore (_)
characters.

An LCL statement is either a label or a command. Labels and commands are made of a sequence of
alphanumeric or underscore characters.

A label statement is written without any space as:

@name:

Several labels can be specified on the same same statement without separating spaces as
@namel :name2 :name3: .

A command statement has a more elaborate structure:

@ command_name, var_name rest of line

@name: command_name,var_name rest of line

There may be spaces between @ (or @label:) and command_name. command_name is case-
insensitive.

, var_name is optional. If present, there is no space between command_name and the comma, nor
between the comma and var_name. The result of the command, if any, will be stored in variable
var_name (by default, A like Answer). For some commands, this is an option field and every
character designates an option.

Spaces separate the command field from the eventual arguments in rest of line.

Some commands are not allowed to be labelled: ON, PASS2 and all those beginning with END
and ELSE because it does not make sense or would break correct nesting.

91

Project LXR

Software release 2.0

The LXR Developer's Manual
6 Configuration Wizard

Language en_UK

Document revision 1.0

6.3.b. LCL commands

6.3.b.1. Error suppression

@U data line with %symbols%

%symbols% are replaced by their values. If all substitutions were made, the data line (without @U) is
inserted into the output file. If some substitution is impossible, the full command is inserted as a
comment into the output file. No error is reported to the user.

Tip:

. This is useful when some symbol is known to have no value. For instance, when using
6 glimpse, parameter ' swishbin' is not defined. An alternate way of doing the same would be
to use @IF, @ELSE, @ENDIF but this become tedious even with a small number of %symbols%

in a line.

CAUTION:
@ This statement is not a real LCLL command. It should be considered as a “protected” data

line and, as such, cannot have a label.

6.3.b.2. Shell command insertion

@XQT shell command

Insert shell command into output file if generating a shell script; otherwise do nothing.

6.3.b.3. Message display

@ERROR error text

Print unconditionally the error text prefixed with ERROR:.

@REMIND advisory text

Print unconditionally the text prefixed with Reminder:.

@LOG message

Print the message under any verbosity (message not printed if no -v or - -verbose options).

@MSG message

92

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

Print the message only under full verbosity (-vv or - -verbose options).

6.3.b.4. User interaction

@ASK, var question;dft;choice,list;answer,list

Ask a question and get answer from user.

var is the variable name where the answer is stored., A (case significant) if not specified.

The four command arguments are separated from each other by a semicolon (;).

question is the text displayed to the user.

dft defines the type of query and the default answer:

-3 open question (no choice list nor answer list), empty answer allowed

-2 open question (no choice list nor answer list), non-empty answer mandatory

-1 open question (no choice list) with default answer (defined in answer list, choice list is empty)
0 closed question (both lists present), non-empty answer mandatory

>0closed question (both lists present) with default answer (dft value is the default answer index
in the lists; first one has index 1)

choice list is a comma-separated (,) list of human-readable proposals; the items are displayed
lowercase with the default answer highlighted uppercase.

Tip:
For an open question (dft negative), choice list may be replaced by a list with an even number
of elements to drive a validation filter for the answer. The first string of the pair is a regular
expression without delimiters, the second string is a message to print if the regular expression
did not match. If the answer does not pass the test, the question is asked again until it is valid.

* answer list 1s a comma-separated (,) list of “normalised” answer to be returned in variable var.

choice list may contain lengthy descriptive text because it is intended to be read and understood by a
human while answer list contains only abbreviated symbols intended for processing.

Examples:

#@ASK,C Enter a comment ;-3
#@ASK, N Enter your name ;-2
#@ASK Host name? ;-1;;http://localhost

#@ASK Processor variant? ;0;32 bits, 64 bits;5,6

93

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

#@ASK Database engine? ;1;MySQL,Oracle,PostgreSQL,SQLite;m,0,p,s

The first command requests a comment in variable C. An empty comment is accepted.
The second command requests the user's name into N. The user cannot elude the question.

The third command requests a host name into A. The answer is arbitrary. But if the user just
hits “return”, http://localhost is entered into A.

The fourth command requests the width of processor bus into A. Since there is no obvious
default, the user must explicitly choose one of the proposed values. The power of two of the
bus width will be returned into A.

The fifth command requests a database engine name from the list. The corresponding single
letter is returned into A. If the user just hits “return”, MySQL is chosen and m is returned.

Examples of validating open questions:

#@ASK Host name? ;-1;A(https?:)?//,not an HTTP URL;http://localhost

This is a variant of the third command above. The answer is accepted now only if it begins
with //, http:// or https://. More than one validation may be requested, as in:

#@ASK Host name?; -1\

#0O ;A(https?:)?//\

#@ ,not an HTTP URL\

#@ L/ \W-T+H(N L [\w-T+)*(:\d+)?2/28\
#@ ,invalid URL host syntax\
#@ ;http://localhost

The second validation criterion tells the answer must end in a dot-separated host name with
optional port number and optional final solidus (/).

CAUTION!
The argument set is split at semicolon (;) and then the bits at comma (,). If you need
these characters inside the strings, protect them with an escaping backslash (\).

@KEEPON, var question
@ON none

@ENDO“II\I
@ON first

@ENDO"Il\I
@ON epilog

@END(;I;I
(loop body block)

@ENDK

94

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

Ask a question and process the answer until an empty answer is given. See @ASK for the command
arguments.

Note:

From a logical point of view, @KEEPON is an iterated @ASK with dft equal to - 3. This selector
is the only possible one (any other would not allow to exit from the loop).

The optional @ON/@ENDON are interpreted under specific circumstances. They may be listed in any
order but must precede the loop body block.

@ON none is interpreted if the first answer is empty, then the @KEEPON block is left.
@ON first is interpreted before the first loop iteration (non-empty first answer).

@ON epilog is interpreted after the empty answer requesting loop exit. The main loop body in not
interpreted.

The loop body block is interpreted for each new answer which is stored into variable var (by default
A).

Tip:
Since @KEEPON is strictly equivalent to an iterated @ASK, answers may also pass through a
validation filter with the same syntax as @ASK (but is restricted to -3 selector).

Example:

#@KEEPON Alias;-3 \

#0@ ;A(https?:)?//,not an HTTP URL\

#@ /7 \w-1+(N . [\w-T+)*(:\d+)?/?$,invalid URL host syntax
"%A% "'

#@ENDK

This insures that the generated list contains only valid URL host names.

Tip:
@KEEPON implements the 0 or more instances paradigm. If you want the / or more instances
paradigm instead, precede the @KEEPON block with an @ASK statement with a -1 or -2 selector
(i.e. open question with mandatory answer implicit or not), like:

#@ASK, vn ---Version name? ;-2
%VN%

#@KEEPON,vn ---Version name? (hit return to stop)
%VN%

#@ENDK

After receiving data from the user, it is usually good practice to “canonise” or slightly transform it
into a standard expected form. For instance, some parts of the answer may be omitted (such as the
http: prefix in an URL) but it is more comfortable for the LXR processing scripts to always deal

95

wrr
s

Project LXR The LXR Developer's Manual

Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

with the full format. Another important case is adaptation from human expression to supporting
machine language (Perl in Ixr.conf case), inserting escape characters where necessary. This is

possible with @CANON and/or @CANONR.

@CANON, var pattern,replacement

@CANONR, var pattern,replacement

Apply transformation rules to a variable content (default variable is A).

@CANON rules are applied to the first occurrence of the patterns, while @CANONR (R for Repeat)
applies them to all occurrences. If a pattern does not match against variable text, the variable is not

changed and the next rule is tried.

* pattern is a regular expression without delimiters.

* replacement is the string to substitute when pattern is found.

CAUTION!

cannot begin with significant whitespace.

ALL characters are significant after the first non-whitespace character following the
command name. Do not use spaces to pretty write your rules: these spaces will be taken
literally in the patterns or replacements. The first sentence also means the first pattern

Tips:

If you need a first (or single) pattern starting with a literal space escape it with a backslash.

To erase the run matched by the pattern, do not write any replacement,
separating commas.

but leave the

Examples:

Prepare answer in default variable A to be inserted in a single-quote delimited Perl string (all

single quotes must be backslashed-escaped):

#@CANONR ', \'

Erase trailing slashes in directory name and make sure there is one initial slash:

#@CANON /*$, ,A/*,/

Note that if the rules were applied in reverse order, we could end up with an empty string

instead of a single /.

Replace spaces with underscores:

96

o

Project LXR

Software release 2.0

The LXR Developer's Manual
6 Configuration Wizard

Language en_UK

Document revision 1.0

#@CANONR \ , _

6.3.b.5. Conditional interpretation

@IF expression
@ELSEIF expression
@ELSE

@ENDIF

Interpret only one of the blocks depending on the value of expressions.

The alternative test command is @ELSEIF, not @ELSIF as in Perl or C.

Presently,the expression is evaluated by Perl but it is highly recommended to use only simple
expressions. A single %symbol% is a test for existence. If %symbol% is used with an operator like eq
or ne, it is a comparison to a value® or to another %symbol% and an error is issued if the symbol is
unknown. An array %symbol% has the number of elements for its value. These primary expressions
can be combined with “or” (||) and “and” (&&) operators and organised for precedence with

parentheses. A non-zero final value means “true” and a zero value “false”.

CAUTION!

%symbol% are symbolically substituted in the expression text before Perl eval
processing. This substitution is not delimited by any specific character. This will very
likely lead to syntax errors when decoded. To avoid such errors, put single or double
quotes around %symbol% because a string is usually the desired substitution result.

Example:

#@ASK Hide LXR release number? ;2; yes,no; y,n

#OIF %A% eq 'n'

, 'release' => '2.0'

#@ENDIF

is wrong because the expression passed to Perlisy eq 'n' and y is neither a variable nor a

string. You must write:

#@ASK Hide LXR release number? ;2; yes,no; y,n

#OIF '%A%' eq 'n'

, 'release' => '2.0'

#@ENDIF

3L A value may be a single-or double-quote delimited string. The difference is only relevant to the Perl evaluation.

97

Project LXR The LXR Developer's Manual Language en_UK

e

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

The expressionisnow 'y' eq 'n', a comparison between constants.

@CASE expression
@label:label:

@labéi:label:

@ENDC

Select one the cases conditioned by an expression value matching a label.

IMPORTANT:

Since label may only contain alphanumeric and underscore characters, take care that the
expression, usually a %symbol% value, does not introduce “foreign” characters which
cannot be matched to a label.

The preferred layout style is to write the labels on their own line, especially if the
corresponding case consists of several lines.

6.3.b.6. Array content insertion

@ARRAY arrayl,varl array2,var2..
@ON none

@ENDdh
@ON prolog

@ENDdh
@ON epilog

@ENDdh
(loop body block)
@ENDA

Retrieve array content in a variable and use it for expanding a block of statements for each element.
The elements of several arrays may be retrieved simultaneously if they are declared on the @ARRAY
command. They must all have the same size.

If a variable name is not specified, the element is stored into E (Element). All variable names must
be different lest some array content becomes inaccessible.

The optional @ON/@ENDON are interpreted under specific circumstances. They may be listed in any
order but must precede the loop body block.

@ON none is interpreted if the array is empty, then the @ARRAY group is left.

@ON prolog is interpreted before the first loop iteration (non-empty array).

98

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

@ON epilog is interpreted after the iteration on the last array element.

The loop body block is interpreted for each element set where the elements are stored into the
variable associated with each array.

Example:

, 'host_names' =>
['%scheme%//%hostname%
#@ARRAY schemealiases,S hostaliases,A portaliases,P
#@ ON none
Put here aliases for host name, such as
'//localhost'
, 'https://192.168.1.1"
, 'http://mycomputer.outside.domain:12345"'
#0 ENDON
, ' %S%/ /%A% : %P%'
#@ENDA

]

Note the difference between array or variable specification/declaration (without % characters)
and usage of the value (with % characters).

6.3.b.7. Variable assignment
@DEFINE var = expression

Define a new scalar variable and set it to the value of an expression. Can also be used to change the
value of an existing scalar variable.

There is no way to change the value of an array element, nor to define new arrays.

As previously stated, do not write too complex expressions. The expression evaluator might someday
be internally coded instead of handing over the computation to Perl eval.

Avoid using Perl concatenation operator (.). If you need to glue together two variables A and B,
write it as:

#@DEFINE result = '%A%%B%'

To keep a user answer, do not write:

#@ASK Which colour? ; 0; diamonds, clubs, hearts, spades; d,c,h,s
#@DEFINE colour = '%A%'

but write:

99

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Conﬁgu ration Wizard Document revision 1.0

#@ASK, colour Which colour? ; 0; diamonds, clubs, hearts, spades; d,c,h,s

It is simpler, more elegant and more efficient.

6.3.b.8. File inclusion

@ADD file_name

Continue interpretation in the designated file.

t32

The argument™ is interpreted as a file name according to the following rules:

* if the name begins with /, ./ or ../, it is used “as is”’;

CAUTION!
Use the ./ and ../ variants at your own risk because it depends on the current working
@ directory setting. The configuration wizard may be launched in many different ways,

while the template designer has rather precise (and often implicit) ideas on its template
usage.

* otherwise, the file name is prefixed with the directory defined by option --tmpl-ovr=, the
secondary template repository, or else by the standard template directory (whether the default
one or defined by option - -tmpl-dir=).

@ADD may be dynamically nested up to an implementation-defined limit. A minimum of 5 is
guaranteed.

Important semantic restriction:

@ This command is not interpreted when skipping lines (hunting for the active @IF or
@CASE part or exiting these constructs after successful interpretation) or when

collecting code samples (RARRAY and @KEEPON sub-blocks).

This has severe consequences.

1. When looking for a specific command in compound constructs (@QELSEIF, @ELSE or @ENDIF;
label or @ENDC; @ENDP2), the target command must be found in the current input file or its
parents and cannot be located in any @ADD'ed file.

2. The sentinels for parts of differed constructs (@0ON, @ENDON, @ENDA or @ENDK) must also be found
in the current input file or its parents and cannot be located in any @ADD'ed file.

3. After the initial pass (during the “passes 2”), @PASS2 commands can be found only in the
original input file since input is fully reinitialised.

These restrictions do not prohibit @ADD usage in compound or differed constructs, it only means

32 Actually, the first word of the argument. If the file name is expected to contain spaces, it should be surrounded by

single- or double-quotes but no mechanism is offered to “escape” any character identical to a delimiter.

100

Project LXR Language en_UK

The LXR Developer's Manual
6 Configuration Wizard

Software release 2.0 Document revision 1.0

@ADD commands are active when statements are interpreted. @ADD commands present in @ON
blocks are stored in the sample and rightfully interpreted when the @ON block is activated.

To be considered:
The restrictions can be removed if @ADD processing is done in an input layer (with a
performance penalty because every command would then be parsed and the result discarded
most of the time).

6.3.b.9. Pass 2 interpretation

@PASS2,R name

@ENDP2

Mark a group of lines for interpretation during pass 2.

During the initial pass, label @name: (with comment delimiters) is inserted into the output file and
the block is skipped.

When a pass 2 is started, the input file is scanned for @PASS2 commands. When one is found, the
output file is “scrolled” to the corresponding label. If option R (Remove) is specified, the label is
erased. Input lines are interpreted until @ENDP2. When this command is reached, search for @PASS2
is resumed.

6.3.c.

The dictionary is initially loaded with symbols describing the environment and the context of
execution. All symbols are kept in a “ready-to-substitute” form, i.e. ad %name%. If name begins with
an underscore (_), the symbol is read-only and its value cannot be changed with @DEFINE.

Standard symbol dictionary

Options and environment:
%_add% 1 if adding a tree (either second tree in configuration or --add

session), O for the initial tree

%_shell%
%_singlecontext%
%_createglobals%

%_dbengine%
%_dbpass%
%_dbprefix%
%_dbuser%
%_dbuseroverride%

%_globaldb%

1 if generating a shell output file (presently only used for initdb.sh)

1 if in single tree context; 0 in multiple-trees context

1 to tell the database templates to generate the global (shared by all
trees) tables, parameters or database

name of database engine asm, o, p or s

password common to all databases

table prefix common to all databases

user common to all databases

set to 1 before pass 2 on initdb.sh if another user/password should be
used for this tree

1 if all trees share the same database, 0 if every tree has its own
database

101

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0
%_nodbuser% 1 if user name is not shared among the databases, undefined otherwise
%_nodbprefix% 1 if table prefix is not common to all databases, undefined otherwise
%_routing% how the URL is parsed to route requests to LXR as A (argument), E

(embedded in section name), H (specific host name), P (prefix in host
name), S (section name) or N (none, i.e. single tree)

%_shared% 1 if LXR is part of a wider server; O if server is dedicated to LXR

%_virtrootpolicy% defined only if %_routing% is equal to E, value is b for built-in URL
decoding and c for custom decoding

%_commonvirtroot% non zero if virtual root in URL common to all trees

Most of the above symbols have a boolean nature. Their value should not be compared to
constant 0 or 1 since truth may be implemented in many ways; falsehood itself may be
represented by O or undef. The correct way to use the symbols in expressions are:

%_add% is true if the symbol is true,

I %_add% (logical negation) is true if the symbol is false.

String content environment:

%LXRconfuser% login name of the user configuring LXR (supposed to be the same as
the one initialising the databases)

%LXRroot% LXR root directory

%LXRtmpldir% templates directory

%LXRovrdir% templates override directory (from - -tmpl-ovr option)

%LXRconfdir% output directory for configuration (relative to $LXRroot%)

%scheme% scheme for URL (http: or https:)

%hostname% primary host name

%portk% TCP port (numeric only, without colon)

%schemealiases% array of scheme for aliases

%hostaliases% array of aliases for host name

%portaliases% array of port for aliases

%virtrootbase% virtual root base in URL

%glimpse% path to glimpse executable

%glimpseindex% path to glimpseindex executable

%glimpsedirbase% directory for glimpse internal databases

%swish% path to swish-e executable

%swishdirbase% directory for swish-e internal databases

%search_engine% selected search engine as glimpse or swish

%Cctags% path to ctags executable

%DB_name% common database name

%DB_user% shared user name for database access

%DB_password% share database password

%DB_globalprefix% common database table prefix

%DB_tree_user% if %DB_user% has been overridden during tree description in [xr.conf,

102

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 6 Configu ration Wizard Document revision 1.0

passes this user name to initdb.sh generator

%DB_tree_password% if %DB_password% has been overridden during tree description in
Ixr.conf, passes this password to initdb.sh generator

%DB_tbl prefix% if %DB_globalprefix% has been overridden during tree description
in Ixr.conf, passes this table prefix to initdb.sh generator

These symbols are not protected read-only with an initial underscore, but they should be
considered as such lest the configuration process becomes unreliable.

6.4. Standard templates

Templates used by the configuration wizard are stored in the templates/ directory. Those involved
with server configuration are fairly simple:

in Apache/ directory: apache-Ixrserver.conf (server configuration), apache2-require.pl (Perl
library initialisation) and htaccess-generic (model for .htaccess)

in Mercurial/ directory: hg.rc (declaration of Mercurial plugin for LXR)

in Nginx/ directory: nginx-Ixrserver.conf (server configuration) and nginx-fastcgi.conf.part
(@ADD'ed part for FastCGI parameters)

in initdb/ directory: initdb-x-template.sql where x covers the set of values of % dbengine%
(shell script for creating the databases) and eventual files @ADD'ed by the previous templates

in lighttpd/ directory: lighttpd-Ixrserver.conf (server configuration)
thttpd-Ixrserver.conf (server configuration)

Ixr.conf: driver for user source-tree configuration

Ixrkernel.conf: driver for Linux kernel source-tree configuration

files to be @ADD'ed by the previous driver templates: global.conf.part (global parameters section),
tree-serverl.conf.part (specific URL description for a tree), tree-server2.conf.part (final URL or
HTML parameters for a tree), tree-ignore.conf.part (ignored directories for a tree) ,
datastorage.conf.part (database description for a tree)

103

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 7 Auxiliary SCf'iptS Document revision 1.0

Auxiliary Scripts

These scripts are stored in the scripts/ directory. They provide convenience or complementary
services in order to facilitate configuration or maintenance of an LXR deployment.

7.1. Linux kernel exploration script

This is a shell script. Its components are:

* kernel-vars-grab.sh: main driver;

* ANSI-escape.sh: ANSI escape codes definitions (does not contain all possibilities offered by
3.3.a VTescape.pm).

The script purpose is to gather the 'range' of values for 'v' (version), 'a' (architecture) and sub-
architectures or variants 'variables'. The sets are stored in custom.d/ files which are later read in
from [xr.conf by procedure readfile.

CAUTION!

@ This script is not guaranteed to give the expected result. It has been crafted by A. Littoz
after pragmatic observation of a 3.1 kernel. Using it on another kernel release surely

needs some adaptation.

7.1.a. Process outline

The script target is an LXR source-tree with a subdirectory for each version.
The version list is built from the names of the subdirectories.

Looping from this list, the subdirectory names in each version arch/ directory are added to the list of
architectures. Some subdirectories, known to contain sub-architectures, are scanned for nested
directories matching some pattern. Those found are stored in a specific file corresponding to a sub-
architecture or variant 'variables'.

Finally, the files are sorted and duplicates are removed.

7.1.b. Support routines

The functions in the script are:

Routine name Arguments Description

scan_one_version | Version directory Checks that the version directory has roughly the expected
organisation for a Linux kernel
Enumerates the subdirectories in arch/ of the version directory

105

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 7 Auxiliary SCf'iptS Document revision 1.0

Routine name Arguments Description

Calls collect_sub_arch on a selected list of subdirectories

collect_sub_arch | Version directory In the arch/ subdirectory, keeps only the directories whose name
arch/ subdirectory begins with the given prefix followed by a dash (-). The tail of the
Prefix name is added into a custom.d/ file. The name of this file is
composed of the arch/ subdirectory name, an underscore (_) and
the prefix.

7.1.c. Interaction with Ixrkernel.conf

Ixrkernel.conf prepares [xr.conf based on several assumptions.

The following items must be checked in the script:

List of versions

The 'range' of variable 'v' is read from file version_list.txt. The content may need to be
updated if version directories are manually erased after script execution. 'default' may also
need an update.

List of architectures

The 'range' of variable 'a' is read from file arch_list.txt. The content of this file is reliable
(no assumption needs to be made about kernel source organisation except for the existence of the
arch/ directory).

Sub-architectures

There is no automatic method to identify architectures with variants. The structure of variant
name vary from one architecture to the other. Some architectures may contain several variant
families. This is determined only through human scrutiny of the architecture directories.

The names of the relevant architectures are hard-coded in the script.
There is one call to collect_sub_arch per variant.
The arguments describing the variant are hard-coded in the script.
Example:
The mnl0300 architecture exhibits variants in processors and units. Code for them is

contained in subdirectories proc-mnl03e010/, proc-mn2ws050/, unit-asb2303/, unit-asb-2305
and unit-asb2364/. Two calls are necessary to enumerate the value ranges.

collect_sub_arch "$1" "mn10300" "proc"
collect_sub_arch "$1" "mn10300" "unit"

$1 is the first argument to scan_one_version, i.e. the version directory. The collected list
will be stored into custom.d/mnl10300_proc_list.txt and custom.d/mnl10300_unit_list.txt.

The following items must be checked in Ix7.conf:

106

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 7 Auxiliary SCf'iptS Document revision 1.0

Sub-architecture 'variables'
They must be hard-coded in the template.

Their name is composed of the architecture, an underscore (_) and the variant. It is the same as
the filename without the _[list.txt suffix.

To reduce screen cluttering, display is filtered by a 'when' clause testing the architecture.

Example with the mn10300 architecture:

, 'mn10300_proc' =>
{ 'name' => 'MN10300 processor'
, 'when' => '"$a" eq "mn10300"'
, 'range' => [readfile('custom.d/mn10300_proc_list.txt')]

3
, 'mn10300_unit' =>

{ 'name' => 'MN10300 unit'

, 'when' => '"$a" eq "mn10300"'

, 'range' => [readfile('custom.d/mn10300_unit_list.txt')]
¥

Mapping include directories

The '"maps' transformation rules make use of the sub-architecture 'variables' to point to the
correct subdirectory. There is one rule for each variant family.

'A/arch/architecture/%=LVL2x=%/"
=> '/arch/architecture/variant-${var_name}/'

where:

o architecture is the architecture name (e.g. mn10300)
© xis a running letter starting from A for the first rule in this architecture
o variant is the directory prefix, e.g. proc or unit

© var_name is the corresponding 'variables', e.g. mn10300_proc or mn10300_unit

CAUTION!

Due to 'maps' implementation limitations (cumulative effect without backtracking),
there must be one 'incprefix' path for each %=LVL2x=% template name.

There are presently only two (A and B) because no architecture had more than two
variant families. If it happened that a new architecture contained more than two, new
lines should be added into the 'incprefix' list to match the number of variant
families:

, '/arch/%=ARCH=%/%=LVL2C=%/include"

107

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 7 Auxiliary SCf'iptS Document revision 1.0

7.2. Database reconstruction script

This script is written in Perl. Its components are:

* recreatedb.pl: main driver;
* ContextMgr.pm: context file utilities;
* LClLInterpreter.pm: interpreter for the LXR Configuration Language (LCL) macro statements;

* VTescape.pm: ANSI escape codes definitions (see 3.3.a VTescape.pm).

It also references LXR/Files.pm and LXR/Common.pm only to prevent errors when evaluating
Ixr.conf in the event the configuration file contains 'range' functions using built-in

procedures from LXR library.

7.2.a. Process outline

Schematically, this script is a simplified configuration wizard where the interactive phase is
replaced by reading a configuration file.

The global parameters are used to initialise global database context symbols in the dictionary.

Each tree section is scanned for its database definition and symbols are updated or created. Shell
and SQL statements for creating the tree database are then added to the output script with a call to
expand_slash_star under control of an initdb-x-template.sql template, where x is obtained from
the database driver name.

7.2.b. Maintenance issue

Every time the configuration wizard is updated or improved, the database reconstruction script
should be checked for a parallel update.

108

Project LXR The LXR Developer's Manual Language en_UK

Software release 2.0 8 Release Tool Document revision 1.0

Release Tool

The release tool, makerelease.pl, a small Perl script to automate the release
procedure with SourceForge, is part of module lxr-tools. It must be
explicitly downloaded since it is separate from the public LXR release.

8.1. Command line

$ makerelease.pl --option ..

When launching the script, the current working directory should be an LXR directory.

Note:
From code analysis, this is not the correct criterion. The script needs a ../Ixr-tools/tests/
directory to run the tests and command ./scripts/set-Ixr-version.sh. It will also create a source
release directory as ../[xr-x.y.z/, which means the current directory cannot be the personal user
directory but at least a sub-directory.

Options are:

--help print help text and exit

- -cvsuser=name name of a SourceForge CVS user allowed to make release (write
permission granted on CVS repository)

--devel create a development tarball without tagging the CVS repository, nor
uploading it

--noex “dry-run” mode, commands are not executed

--notest skip the tests

- -tag=tag_name define the C'VS release tag (must be in the form release-x-y-z)

devel, noex and notest are flags defining the tool sub-tasks.

cvsuser and tag, if not provided on the command line, are requested from the user.

8.2. Process outline

The file environment is first checked to make sure the test suite and script set-Ixr-version.sh can be
reached. If this is not the case, some fall-back processing may be attempted but, most of the time,
the process is terminated, leaving to the user the responsibility to fix the problem.

Tests are run unless option - -notest was specified. Tests have not been updated for long but they

109

Project LXR

Software release 2.0

The LXR Developer's Manual

8 Release Tool

still make a good checking base.

Language en_UK

Document revision 1.0

For a public release, a tag is created from - -tag or from user entry and marks the CVS repository.
The change log is computed. The CVS repository is exported into a “parallel” directory and the
change log is added to it. The directory is then compressed as a “tarball” and uploaded to

SourceForge stable/ directory using rsync.

For a development (intermediate) release, when option - -devel is provided, The CVS repository is
exported from head (the current most recent state) and compressed as a “tarball”. There is no
tagging, change log nor upload.

8.3. Support routines

All specific support routines are written in the script file.

Routine name

Arguments

Description

get_tags

Returns a list of all symbols found in cvs rlog output for module
Ixr
Called from get_all_release_tags

tag_to_val

Tag name

Returns a list of the 3 numbers in the tag, which must be in the
form release-x-y-z, otherwise the list is (0, 0, 0)
Called from get_last_release_tagand tag_release

make_release_tag

Major
Minor
Point

Returns a tag in the form release -x-Y -z from the 3 integer
arguments (inverse of tag_to_val)
Called from tag_release

get_last_release_
tag

Returns the highest release-x-y-z tag

The release tags are read from CVS with get_tags and compare
to the current target tag with the help of tag_to_val.

Called from tag_release

check_environment

Checks the file environment to see if the required constraints are
met or dependencies present

run_tests

Launches ../Ixr-tools/tests/TestRunner.pl as an independent process
to run the tests
Aborts if any test fails

tag_release

If - -tag= is not specified, suggests a release tag based on
get_last_release_tag, tag_to_val and
make_release_tag and requests confirmation from user
Tags the repository with cvs tag

create _release_ta
rball

Tag name
Version string

Creates a release directory, exports CVS with cvs export into it, add
to it ChangeLog unless - -NOeX or - -devel, sets the version
string into Template.pm with scripts/set-Ixr-version.sh and
compresses the release directory in a tarball

Version string is a “classical” human-readable version which may
or may not be related to the tag name. Tag name is the internal
CvSrelease-x-y-z

110

Project LXR The LXR Developer's Manual Language en_UK
Software release 2.0 8 Release Tool Document revision 1.0
Routine name Arguments Description
create_changelog |Tagname Creates the change log with cvs2cl
Version string Arguments not used
upload_release Tag name Uploads the resulting tarball to SourceForge
Version string /home/frs/project/Ixr/stable/ directory using the version argument
Important! - -CVSUSer= must be granted write access.

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or non commercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

I. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not

Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

¢ Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,

LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG.

Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgments"”, "Dedications", "Endorsements”, or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non commercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opagque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

State on the Title Page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

mm o n

Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgments" or "Dedications", Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-
Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a

cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgments"”, and any sections Entitled
"Dedications”. You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgments", "Dedications", or "History", the requirement (section 4) to

Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under
this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for
any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy
of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

I1. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means
any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had
no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

¢ Copyright (©) YEAR YOUR NAME.

¢ Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

¢ A copy of the license is included in the section entitled "GNU Free Documentation License".
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line with this:
¢ with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives
to suit the situation.

If your document contains non trivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

