
The <bigwig> Project

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach
BRICS, Department of Computer Science

University of Aarhus, Denmark
{brabrand,amoeller,mis}@brics.dk

Abstract

We present the results of the <bigwig> project, which aims to design
and implement a high-level domain-specific language for programming
interactive Web services.

A fundamental aspect of the development of the World Wide Web
during the last decade is the gradual change from static to dynamic gen-
eration of Web pages. Generating Web pages dynamically in dialog with
the client has the advantage of providing up-to-date and tailor-made in-
formation. The development of systems for constructing such dynamic
Web services has emerged as a whole new research area.

The <bigwig> language is designed by analyzing its application domain
and identifying fundamental aspects of Web services inspired by problems
and solutions in existing Web service development languages. The core
of the design consists of a session-centered service model together with a
flexible template-based mechanism for dynamic Web page construction.
Using specialized program analyses, certain Web-specific properties are
verified at compile time, for instance that only valid HTML 4.01 is ever
shown to the clients. In addition, the design provides high-level solutions
to form field validation, caching of dynamic pages, and temporal-logic
based concurrency control, and it proposes syntax macros for making
highly domain-specific languages.

The language is implemented via widely available Web technologies,
such as Apache on the server-side and JavaScript and Java Applets on the
client-side. We conclude with experience and evaluation of the project.

1 Introduction

The <bigwig> project was founded in 1998 at the BRICS Research Center at the
University of Aarhus to design and implement a high-level domain-specific lan-
guage for programming interactive Web services. Such services are characterized
by involving multiple interactions with each client, mediated by HTML forms
in browsers. In the following we argue that existing Web service programming
languages in various ways provide only low-level solutions to problems specific to
the domain of Web services. Our overall ambitions for the project are to identify

1

the key areas of the Web service domain, analyze the problems with the existing
approaches, and provide high-level solutions that will support development of
complex services.

Motivation

Specifically, we will look at the following Web service technologies: the HTTP/
CGI Web protocol [18], Sun’s Java Servlets [27] and their JavaServer Pages
(JSP) [28], Microsoft’s Active Server Pages (ASP) [19], the related Open Source
language PHP [4], and the research language MAWL [3, 2, 21].

CGI was the first platform for development of Web services, based on the
simple idea of letting a script generate the reply to incoming HTTP requests
dynamically on the server, rather than returning a static HTML page from a
file. Typically, the script is written in the general-purpose scripting language
Perl, but any language supported by the server can be used. Being based on
general-purpose programming languages, there is no special support for Web
specific tasks, such as generation of HTML pages, and knowledge of the low-
level details of the HTTP protocol are required. Also, HTTP/CGI is a stateless
protocol that by itself provides no help in tracking and guiding users through
a series of individual interactions. This can to some degree be alleviated by
libraries. In any case, there are no compile-time guarantees of correct runtime
behavior when it comes to Web-specific properties, for instance ensuring that
invalid HTML is never sent to the clients.

Servlets are a popular higher-level Java-specific approach. Servlets, which
are special Java programs, offer the common Java advantages of network sup-
port, strong security guarantees, and concurrency control. However, some sig-
nificant problems still exist. Services programmed with servlets consist of col-
lections of request handlers for individual interactions. Sessions consisting of
several interactions with the same client must be carefully encoded with cook-
ies, URL rewriting, or hidden input fields, which is tedious and error-prone even
with library support, and it becomes hard to maintain an overview of large ser-
vices with complex interaction flows. A second, although smaller, problem is
that state shared between multiple client sessions, even for simple services, must
be explicitly stored in a name–value map called the “servlet context”, instead
of using Java’s standard variable declaration scoping mechanism. Thirdly, the
dynamic construction of Web pages is not improved compared to CGI. Web
pages are built by printing string fragments to an output stream. There is no
guarantee that the result will always become valid HTML. This situation is
slightly improved by using HTML constructor libraries, but they preclude the
possibility of dividing the work of the programmers and the HTML designers.
Furthermore, since client sessions are split into individual interactions that are
only combined implicitly, for instance by storing session IDs in cookies, it is not
possible to statically analyze that a given page sent to a client always contains
exactly the input fields that the next servlet in the session expects.

JSP, ASP, PHP, and the countless homegrown variants were designed from
a different starting point. Instead of aiming for complex services where all parts

2

of the pages are dynamically generated, they fit into the niche where pages have
mostly static contents and only small fragments are dynamically generated. A
service written in one of these languages typically consists of a collection of
“server pages” which are HTML pages with program code embedded in special
tags. When such a page is requested by the client, the code is evaluated and
replaced by the resulting string. This gives better control over the HTML
construction, but it only gives an advantage for simple services where most of
every page is static.

The MAWL language was designed especially for the domain of interactive
Web services. One innovation of MAWL is to make client sessions explicit in
the program logic. Another is the idea of building HTML pages from templates.
A MAWL service contains a number of sessions, shared data, and HTML tem-
plates. Sessions serve as entry points of client-initiated session threads. Rather
than producing a single HTML page and then terminating as CGI scripts or
Servlets, each session thread may involve multiple client interactions while main-
taining data that is local to that thread. An HTML template in MAWL is an
HTML document containing named gaps where either text strings or special
lists may be inserted. Each client interaction is performed by inserting appro-
priate data into the gaps in an HTML template and then sending it to the client,
who fills in form fields and submits the reply back to the server.

The notions of sessions and document templates are inherent in the language
and, being compilation-based, allow important properties to be verified stati-
cally, without actually running the service. Since HTML documents are always
constructed from the templates, HTML validity can be verified statically. Also,
since it is clear from the service code where execution resumes when a client
submits form input, it can be statically checked that the input fields match what
the program expects. One practical limitation of the MAWL approach is that
the HTML template mechanism is quite restrictive, as we cannot insert markup
into the template gaps.

We describe more details about the existing languages in the following sec-
tions. By studying services written in any of these languages, some other com-
mon problems show up. First of all, often surprisingly large portions of the
service code tend to deal with form input validation. Client-server interaction
takes place mainly through input forms, and usually some fields must be filled
with a certain kind of data, perhaps depending on what has been entered in
other fields. If invalid data is submitted, an appropriate error message must
be returned so that the client can try again. All this can be handled either
on the client-side—typically with JavaScript [16], in the server code or with a
combination. In any case, it is tedious to encode.

Second, one drawback of dynamically generated Web pages compared to
static ones is that traditional caching techniques do not work well. Browser
caches and proxy servers can cause major improvements in saving network band-
width, load time, and clock cycles, but when moving towards interactive Web
services, these benefits disappear.

Third, most Web services act as interfaces to underlying databases that, for
instance, contain information about customers, products, and orders. Accessing

3

databases from general-purpose programming languages where database queries
are not integrated requires the queries to be built as text strings that are sent
to a database engine. This means that there is no static type checking of the
queries. As known from modern programming languages, type systems allow
many programming bugs to be caught at compile time rather than at runtime,
and thereby improve reliability and reduce development cost.

Fourth, since running Web services contain many concurrently executing
threads and they access shared information, for instance in databases on the
server, there is a fundamental need for concurrency control. Threads may re-
quire exclusive access to critical regions, be blocked until certain events occur,
or be required to satisfy more high-level behavioral constraints. All this while
the service should run smoothly without deadlocks and other abrupt obstacles.
Existing solutions typically provide no or only little support for this, for instance
via low-level semaphores as Perl or synchronized methods in Servlets. This can
make it difficult to guarantee correct concurrent execution of entire services.

Finally, since Web services usually operate on the Internet rather than on
secure local networks, it is important to protect sensitive information both from
hostile attacks and from programming leaks. A big step forward is the Secure
Sockets Layer (SSL) protocol [17] combined with HTTP Authentication [5].
These techniques can ensure communication authenticity and confidentiality,
but using them properly requires insight into technical protocol and implemen-
tation details. Furthermore, they do not protect against programming bugs
that unintentionally leak secret information. The “taint mode” in Perl offers
some solution to this. However, it is runtime based so no compile-time guaran-
tees are given. Also, it only checks for certain predefined properties, and more
specialized properties cannot be added.

The <bigwig> Language

Motivated by the languages and problems described above, we have identified
the following areas as key aspects of Web service development:

• sessions : the underlying paradigm of interactive Web services;

• dynamic documents : HTML pages must be constructed in a flexible, effi-
cient, and safe fashion;

• concurrency control : Web services consist of collections of processes run-
ning concurrently and sharing resources;

• form field validation: validating user input requires too much attention
from Web programmers so a higher-level solution is desirable;

• database integration: the core of a Web service is often a database with a
number of sessions providing Web access; and

• security: to ensure authenticity and confidentiality, regarding both mali-
cious clients and programming bugs.

4

To attack the problems, we have designed from scratch a new language called
<bigwig>, as a descendant of the MAWL language. This language is a high-
level, domain-specific language [30], meaning that it employs special syntax and
constructs that are tailored to fit its particular application domain and allow
specialized program analyses, in contrast to library-based solutions. Its core is
a C or Java-like skeleton, which is surrounded by domain-specific sub-languages
covering the above key aspects. A notion of syntax macros tie the sub-languages
together and provide additional layers of abstraction. This macro language,
which operates on the parse tree level, rather than the token sequence level as
conventional macro languages, has proved successful in providing extensions of
the core language. This has helped each of the sub-languages remain minimal,
since desired syntactic sugar is given by the macros. Syntax macros can be
taken to the extreme, where they, with little effort, can define a completely
new syntax for very-domain-specific languages tailored to highly specialized
application domains.

It is important that <bigwig> is based on compilation rather than on inter-
pretation of a scripting language. Unlike many other approaches, we can then
apply type systems and static analysis to catch many classes of errors before
the service is actually installed.

The <bigwig> compiler uses common Web technologies as target languages.
This includes HTML [24], HTTP [5], JavaScript [16], and Java Applets [1].
Our current implementation additionally relies on the Apache Web server. It
is important to apply only standard technologies on the client-side in order
not to place restrictions on the clients. In particular, we do not use browser
plug-ins, and we only use the subset of JavaScript that works on all common
browsers. As new technologies become standard, the compiler will merely obtain
corresponding opportunities for generating better code. To the degree possible,
we attempt to hide the low-level technical details of the underlying technologies.

We have made no effort to contribute to the graphical design of Web services.
Rather, we provide a clean separation between the physical layout of the HTML
pages and the logical structure of the service semantics. Thus, we expect that
standard HTML authoring tools are used, conceivably by others than the Web
programmer. Also, we do not focus on efficiency, but on providing higher levels
of abstraction for the developers. For now, we regard it as less important to
generate solutions that seamlessly scale to thousands of interactions per second,
although, of course, scalability is an issue for the design.

The main contributions of the <bigwig> project are the following results:

• The notion of client sessions can and should be made explicit in Web
service programming languages;

• dynamic construction of Web pages can at the same time be made flexible
and fast, while still permitting powerful compile-time analyses;

• form field validation can be made easier with a domain-specific language
based on regular expressions and boolean logic;

5

• temporal logic is a useful formalisms for expressing concurrency constraints
and synthesizing safety controllers; and

• syntax macros can be used to create very-domain-specific high-level lan-
guages for extremely narrow application domains.

We focus on these key contributions in the remainder of this article, but also
describe less central contributions, such as a technique for performing client-
side caching of dynamically generated pages, a built-in relational database, and
simple security mechanisms. The individual results have been published in
previous more specialized articles [25, 26, 8, 7, 9, 6, 10]. Together, these results
show that there is a need for high-level programming languages that are tailor-
made to the domain of Web service development.

Overview

We begin in Section 2 by classifying the existing Web service languages as script-,
page-, or session-centered, arguing for the latter as the best choice for complex
services. In Section 3, we show how the HTML template mechanism from
MAWL can be extended to become more flexible using a notion of higher-order
templates. Using novel type systems and static analyses, the safety benefits
of MAWL templates remain in spite of the increased expressibility. Also, we
show how our solution can be used to cache considerable parts of the dynami-
cally generated pages in the browser. In Section 4, we address the problem of
validating form input more easily. Section 5 describes a technique for generat-
ing concurrency controllers from temporal logic specifications. Section 6 gives
an introduction to the syntax macro mechanism that ties together the sub-
languages of <bigwig>. In Section 7, we mention various less central aspects
of the <bigwig> language. Finally, in Section 8 we describe our implementa-
tion and a number of applications, and evaluate various practical aspects of
<bigwig>.

2 Session-Centered Web Services

Web programming covers a wide spectrum of activities, from composing static
HTML documents to implementing autonomous agents that roam the Web.
We focus in our work on interactive Web services, which are Web servers where
clients can initiate sessions that involve several exchanges of information medi-
ated by HTML forms. This definition includes large classes of well-known ser-
vices, such as news services, search engines, software repositories, and bulletin
boards, but also covers services with more complex and specialized behavior.

There are a variety of techniques for implementing interactive Web services,
but they can be divided into three main paradigms: the script-centered, the
page-centered, and the session-centered. Each is supported by various tools and
suggests a particular set of concepts inherent in Web services.

6

The Script-Centered Approach

The script-centered approach builds directly on top of the plain, stateless HTTP/
CGI protocol. A Web service is defined by a collection of loosely related scripts.
A script is executed upon request from a client, receiving form data as input
and producing HTML as output before terminating. Individual requests are tied
together by explicitly inserting appropriate links to other scripts in the reply
pages.

Perl is a prototypical scripting language, but almost any programming lan-
guage has been suggested for this role. CGI scripting is often supported by a
large collection of library functions for decoding form data, validating input,
accessing databases, and realizing semaphores. Even though such libraries are
targeted at the domain of Web services, the language itself is not. A major prob-
lem is that the overall behavior is distributed over numerous individual scripts
and depends on the implicit manner in which they pass control to each other.
This design complicates maintenance and precludes any sort of automated global
analysis, leaving all errors to be detected in the running service [15, 2].

HTML documents are created on the fly by the scripts, typically using print-
like statements. This again means that no static guarantees can be issued about
their correctness. Furthermore, the control and presentation of a service are
mixed together in the script code, and it is difficult to factor out the work of
programmers and HTML designers [12].

The Java Servlets language also fits this category. The overall structure of a
service written with servlets is the same as for Perl. Every possible interaction
is essentially defined by a separate script, and one must use cookies, hidden
input fields, or similar techniques to connect sequences of interactions with the
clients. Servlets provide a session tracking API that hides many of the details
of cookies, hidden input fields, and URL rewriting. Many servlet servers use
cookies if the browser supports them, but automatically revert to URL rewriting
when cookies are unsupported or explicitly disabled. This API is exemplified
by the following code inspired by two Servlet tutorials:1

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HTML><HEAD><TITLE>Servlet Demo</TITLE></HEAD><BODY>");

if (session.isNew()) {

out.println("<FORM ACTION=SessionServlet>" +

"Enter your name: <INPUT NAME=handle>" +

"<INPUT TYPE=SUBMIT></FORM>");

session.putValue("state", "1");

} else {

1http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ and
http://java.sun.com/docs/books/tutorial/servlets/

7

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("Hello " + name + ", you are user number " + users);

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}

}

out.println("</BODY></HTML>");

}

}

Clients running this service are guided through a series of interactions: first, the
service prompts for the client’s name, then the name and the total number of in-
vocations is shown, and finally a “goodbye” page is shown. The ServletContext

object contains information shared among all sessions, while the HttpSession

object is local to each session. The code is essentially a switch statement that
branches according to the current interaction. An alternative approach is to
make a servlet for each kind of interaction. In spite of the API, we still need to
explicitly maintain both the state and the identity of the session.

The model of sessions that is supported by Servlets and other script-centered
approaches tends to fit better with “shopping basket applications” where the
client browses freely among dynamically generated pages than with complex
services that need to impose more strict control on the interactions.

The Page-Centered Approach

The page-centered approach is covered by languages such as ASP, PHP, and
JSP, where the dynamic code is embedded in the HTML pages. In a sense,
this is the inverse of the script-centered languages where HTML fragments are
embedded in the program code. When a client requests a page, a specialized Web
server interprets the embedded code, which typically produces additional HTML
snippets while accessing a shared database. In the case of JSP, implementations
work by compiling each JSP page into a servlet using a simple transformation.

This approach is often beautifully motivated by simple examples, where
pages are mainly static and only sporadically contain computed contents. For
example, a page that displays the time of day or the number of accesses clearly
fits this mold. The following JSP page dynamically inserts the current time
together with a title and a user name based on the CGI input parameters:

<HTML><HEAD><TITLE>JSP Demo</TITLE></HEAD><BODY>
Hello <%

String name = request.getParameter("who");

if (name ==null) name = "stranger";

8

out. print(name);

%>!

<P>
This page was last updated: <%= new Date() %>

</BODY></HTML>

The special <%. . . %> tags contain Java code that is evaluated at the time of the
request. As long as the code parts only generate strings without markup, it is
easy to statically guarantee that all pages shown are valid HTML and other rel-
evant properties. But as the services become more complex, the page-centered
approach tends to converge towards the script-centered one. Instead of a mainly
static HTML page with some code inserted, the typical picture is a single large
code tag that dynamically computes the entire contents. Thus, the two ap-
proaches are closely related, and the page-centered technologies are superior
only to the degree in which their scripting languages are better designed.

The ASP and PHP languages are very reminiscent of JSP. ASP is closely
tied to Microsoft’s Internet Information Server, although other implementations
exist. Instead of being based on Java, it defines a language-independent con-
nection between HTML pages and scripting languages, typically either Visual
Basic Script or Microsoft’s version of JavaScript. PHP is a popular Open Source
variant whose scripting language is a mixture of C, Java, and Perl.

These languages generally provide only low-level support for tracking client
sessions and maintaining session state. Cookies, hidden input fields, and some
library support is the common solution. For other Web service aspects also,
such as databases and security, there is often a wide range of libraries available
but no direct language support.

The Session-Centered Approach

The pure session-centered approach was pioneered by the MAWL project. Here
a service is viewed as a collection of distinct sessions that access some shared
data. A client may initiate a session thread, which is conceptually a process
running on the server. Interaction with the client is viewed as remote procedure
calls from the server, as known from classical construction of distributed systems
but with the roles reversed.

The flow of an entire session is programmed as a single sequential program,
which is closer to ordinary programming practice and offers the compiler a
chance to obtain a global view of the service. Figure 1 illustrates the flow of
control in this approach. Important issues such as concurrency control become
simpler to understand in this context and standard programming solutions are
more likely to be applicable.

The following MAWL program is equivalent to the previous Servlet example:

static int users = 0;

session GreetingSession {

auto form {} -> {handle } hello;

auto string name = hello.put().handle ;

9

SESSION
THREAD

PAGE
HTML

Figure 1: Client-server sessions in Web services. On the left is the client’s browser,
on the right a session thread running on the server. The tread is initiated by a client
request and controls the sequence of interactions.

auto form {string who , int count } -> {} greeting;

users++;

greeting.put({name, users});

auto form {string who } -> {} goodbye;

goodbye.put({name});

}

The HTML templates hello , greeting , and goodbye are placed in separate files.
Here is hello.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Enter your name: <INPUT NAME=handle >

</BODY></HTML>

and greeting.mhtml:

<HTML><HEAD><TITLE>MAWL Demo</TITLE></HEAD><BODY>

Hello <MVAR NAME=who >, you are user number <MVAR NAME=count >

</BODY></HTML>

The template for goodbye is similar. A form tag and a continue button are im-
plicitly inserted. Variables declared static contain persistent data, while those
declared auto contain per-session data, also called local data. The form variables
are declared with two record types. The former defines the set of gaps that occur
in the template, and the latter defines the input fields. In the templates, gaps
are written with MVAR tags. Template variables all have a put method. When
this is executed, the arguments are inserted in the gaps, the resulting page is
sent to the client who fills in the fields and submits the reply, which is turned
into a record value in the program. Note how the notion of sessions is explicit in
the program, that private and shared state is simply a matter of variable decla-
ration modifiers, and that the templates are cleanly separated from the service

10

logic. Obviously, the session flow is clearer, both to the programmer and to the
compiler, than with the non-session based approaches. One concrete benefit is
that it is easy to statically check both validity and correct use of input fields.

The main force of the session-centered approach is for services where the
control flow is complex. Many simple Web services are in actuality more loosely
structured. If all sessions are tiny and simply do the work of a server mod-
ule from the page-centered approach, then the overhead associated with ses-
sions may seem too large. Script-centered services can be seen as a subset of
the session-centered where every session contains only one client interaction.
Clearly, the restriction in the script-centered and the page-centered languages
allows significant performance improvements. For instance, J2EE Servlet/JSP
servers employ pools of short-lived threads that store only little local state. For
more involved services, however, the session-centered approach makes program-
ming easier, since session management comes for free.

Structure of <bigwig> Services

The overall structure of <bigwig> programs is directly inspired by MAWL. A
<bigwig> program contains a complete specification of a Web service. A service
contains a collection of named sessions, each of which essentially is an ordinary
sequential program. A client has the initiative to invoke a thread of a given ses-
sion, which is a process on the server that executes the corresponding sequential
code and exclusively communicates with the originating client. Communication
is performed by showing the client an HTML page, which implicitly is made
into a form with an appropriate URL return address. While the client views
the given document, the session thread is suspended on the server. Eventually
the client submits the form, which causes the session thread to be resumed and
any form data entered by the client to be received into program variables. A
simple <bigwig> service that communicates with a client, as in the Servlet and
MAWL examples, is the following:

service {

html hello = <html >Enter your name: <input name=handle ></html >;

html greeting =

<html >Hello <[who]>, you are user number <[count]></html >;

html goodbye = <html >Goodbye <[who]></html >;

shared int users = 0;

session Hello() {

string name;

show hello receive [name=handle];

users++;

show greeting<[who =name,count =users];

show goodbye<[who =name];

}

}

11

The program structure is obviously as in MAWL, except that the session code
and the templates are wrapped into a service block. For instance, the show-
receive statements produce the client interactions similarly to the put methods
in MAWL. However, <bigwig> provides a number of new features. Most impor-
tantly, HTML templates are now first-class values. That is, html is a built-in
data type, and its values can be passed around and stored in variables like any
other data type. Also, the HTML templates are higher-order, meaning that in-
stead of only allowing text strings to be inserted into the template gaps, we also
allow insertion of other templates. This is done with the special plug operator,
x<[y=z] which inserts a string or template z into the y gaps of the x template.
Clearly, this constitutes a more flexible document construction mechanism, but
it also calls for new ideas for statically verifying HTML validity, for instance.
This is the topic of Section 3. Other new features include the techniques for im-
proving form field validation and concurrency control, together with the syntax
macro mechanism, all of which are described in the following sections.

A Session-Based Runtime Model

The session-based model can be implemented on top of the CGI protocol. One
naive approach is to create session threads as CGI scripts where all local state
is stored on disk. At every session interaction, the thread must be started again
and restore its local state, including the call stack, in order to continue execution.
A better approach is to implement each session thread as a process that runs
for the whole duration of the session. For every interaction, a tiny transient
CGI script, called a connector process, is executed, acting as a pipe between the
Web server and the session process. This approach resembles FastCGI [22], and
is described in detail in [8]. Our newest implementation is instead based on a
specialized Apache server module.2 Naturally, this is much faster than the CGI
solutions since it does not create a new process for every single interaction, but
only for the session processes.

Two common sources of problems with standard implementations of ses-
sions are history buffers and bookmarking features found in most browsers.
With history buffers and the “back” button, the users can step back to a pre-
vious interaction, and either intentionally or unintentionally resubmit an old
input form. Sometimes this can be a useful feature, but more often this causes
confusion and annoyance to the users who may, for instance, order something
twice. It is a general problem that the information shown to the user in this
way can be obsolete since it is tailor-made only for the exact time of the initial
request. Since the information was generated from a shared database that may
have changed entirely, it does generally not make sense to “step back in time”
using the history buffer. This is no different from ordinary programs. Even if
the programmer was aware of this and added serial number checks, the history
buffer will be full of URLs to obsolete requests. If the service really needs a
“back” feature, it can be programmed explicitly into the flow of the sessions.

2See http://httpd.apache.org/.

12

WWW
SESSION

PROCESS

WEB SERVER

HTML
FILE

Figure 2: Session-based runtime model with reply indirection. Each session thread is
implemented as a separate process that writes its HTML reply to a designated file.

It also becomes hazardous to try to use bookmarks to temporarily suspend a
session. Invoking the bookmark will typically cause a CGI script to be executed
a second time instead of just displaying its results again.

<bigwig> provides a simple but unique solution to these problems: Each
session thread is associated with a URL which points to a file on the server
containing the latest HTML page shown to the client. Instead of sending the
contents directly to the client at every show statement, we redirect the browser to
this URL, as illustrated in Figure 2. Since the URL serves as the identification
of the session thread, this solves the problems mentioned above: The history
list of the browser now only contains a single entry for the duration of the
session, the sessions can now be bookmarked for later use, and in addition, the
session identity URL can be passed around manually—to another browser, for
instance—without problems. When using URLs instead of cookies to represent
the session identity, it also becomes possible for a single user to simultaneously
run multiple sessions in different windows but with the same browser.

Furthermore, with this simple solution we can automatically provide the
client with feedback while the server is processing a request. This is done by,
after a few seconds, writing a temporary response to the HTML file, which
informs the client about the status of the request. This temporary file reloads
itself frequently, allowing for updated status reports. When the final response
is ready, it simply overwrites the temporary reply file, causing the reloading
to stop and the response to be shown. This simple technique may prevent the
client from becoming impatient and abandoning the session.

Additionally, the <bigwig> runtime system contains a garbage collector pro-
cess that monitors the service and shuts down session processes abandoned by
the clients. By default, this occurs if the client has not responded within 24
hours. The sessions are allowed to execute some clean-up actions before termi-
nating.

13

3 Dynamic Construction of HTML Pages

In MAWL, all HTML templates are placed in separate files and viewed as proce-
dures of a kind, with the arguments being strings that are plugged into gaps in
the template and the results being the values of the form fields that the template
contains. This allows a complete separation of the service code and the HTML
code. Two benefits are that static guarantees are possible and that the work of
programmers and HTML designers can be separated, as previously mentioned.
A disadvantage is that the template mechanism becomes too rigid compared
to the flexibility of the print-like statements available in the script-centered
languages. However, those languages permit essentially no static guarantees or
work separation. Furthermore, with the script-centered solutions the HTML
must often be constructed in a linear fashion from top to bottom, instead of
being composed from components in a more logical manner. The <bigwig>
solution provides the best of the two worlds. Higher-order HTML templates as
first-class values are in practice as flexible as print statements, and the MAWL
benefits are still preserved.

We define DynDoc as the sub-language of <bigwig> that deals with docu-
ment construction, that is, the control structures, HTML template constants,
variables and assignments, plug operations, and show-receive statements. Tem-
plate constants are delimited by <html>. . . </html>. Gaps are written with special
<[. . .]> tags. Special attribute gaps can be used in place of attribute values, as
shown in the example below. Of course, only strings should be plugged into
such gaps, not templates with markup. The plug operation x<[y=z] creates a
new template by inserting a copy of z in the y gaps of a copy of x. When used
in a show-receive statement, a template is converted to a complete document
by implicitly plugging empty strings into all remaining gaps. Also, it is auto-
matically wrapped into a form element whose action is to continue the session,
unless the session terminates immediately after. And finally, it is inserted into
an outermost template like

<html><head><title>service </title></head><body>. . . </body></html>

unless already inside a body element. The following example illustrates that
documents can be built gradually using higher-order templates:

service {

html brics = <html >

<head><title>Hi!</title></head>

<body bgcolor=[color]><[contents]></body>

</html >;

html greeting = <html >Hello <[who]>, welcome to <[what]>.</html >;

session Welcome() {

html h = brics<[contents =greeting];

show h<[color ="#9966ff",who ="Stranger",what ="BRICS"];

}

}

The construction process is shown in Figure 3. Note that gaps may be plugged
in any order, not necessarily “bottom up”. MAWL provides little functionality

14

<body bgcolor="#9966ff">

</body>

</body>

<body bgcolor= >

<head><title>Hi!</title></head>

<body bgcolor= >

<head><title>Hi!</title></head>

<head><title>Hi!</title></head>

</body>

,

.

Hello

welcome to

Hello

,

.welcome to

color

contents

.

color

cont
ents

,

welcome to

Hello who

what

greeting:

who

what

brics:

BRICS

Stranger

what

who

BRICS

h:

#9966ff

Stranger

color

Figure 3: Building a document by plugging into template gaps. The construction
starts with the five constants on the left and ends with the complete document on the
right.

beyond plugging text strings into gaps. The special MITER tag allows list struc-
tures to be built iteratively, but still precludes general tree-like structures. The
following <bigwig> example uses a recursive function to construct an HTML
document representing a binary tree:

service {

html list = <html ><[gap]><[gap]></html >;

html tree(int i) {

if (i==0) return <html >foo</html >;

return list<[gap =tree(i-1)];

}

session ShowTree() {

show tree(10);

}

}

Something similar could not be done with MAWL’s first-order templates. In
a script-centered or a page-centered language it is of course possible, but not
with such a simple program structure reflecting the logical composition of the
document, since it must be generated linearly by printing to the output stream.
An alternative is to use an HTML tree constructor library, but that forces
documents to be built bottom-up, which is often inconvenient.

The use of higher-order templates generally leads to programs with a large
number of relatively small template constants. For that reason it is convenient to
be able to inline the constants in the program code, as in these examples, rather
than always placing them in separate files. However, we do offer explicit support
for factoring out the work of graphical designers using a #include construct as
in C. Alternatively, each HTML constant in a <bigwig> program may have an
associated URL, pointing to an alternate, presumably more elaborate, version:

15

service {

session Hello {

show <html >Hello World</html > @ "fancy/hello.html";

}

}

The compiler retrieves the indicated file and uses its contents in place of the
constant, provided it exists and contains well-formed HTML. In this manner,
the programmer can use plain versions of the templates while a graphical de-
signer simultaneously produces fancy versions. The compiler checks that the
two versions have the same gaps and fields. In order to accommodate the use of
HTML authoring tools, we permit gaps to be specified in an alternative syntax
using special tags.

The DynDoc sub-language was introduced in [26] where it is also shown how
this template model can be implemented efficiently with a compact runtime
representation. The plug operation takes only constant time, and showing a
document takes time linear in the size of the output. Also, the size of the
runtime representation of a document may be only a fraction of its printed size.
For example, a binary tree of height n shown earlier has a representation of size
O(n) rather than O(2n).

Analysis of Template Construction and Form Input

We wish to devise a type checker that allows as liberal a use of dynamic docu-
ments as possible, while guaranteeing that no errors occur. More precisely, we
would like to verify the following properties at compile time:

• at every plug operation, x<[y=z], there always exists a y gap in x;

• the gap types are compatible with the values being plugged in, in partic-
ular, HTML with markup tags is never inserted into attribute gaps;

• for every show-receive statement, the fields in the receive part always
exist in the document being shown;

• the field types are compatible with the receive parts, for instance, a select
menu allowing multiple items to be selected yields a vector value; and

• only valid HTML 4.01 [24] is ever sent to the clients.

The first four properties are addressed in [26] as summarized below. The last
property is covered in the following section.

It is infeasible to explicitly declare the exact types of higher-order templates
for two reasons. First, all gaps and all fields and their individual capabilities
would have to be described, which may become rather voluminous. Second, this
would also imply that an HTML variable has the same type at every program
point, which is too restrictive to allow templates to be composed in an intuitive
manner. Consequently, we rely instead on a flow analysis to infer the types of

16

template variables and expressions at every program point. In our experience,
this results in a liberal and useful mechanism.

We employ a monovariant interprocedural flow analysis, which guarantees
that the form fields in a shown document correspond to those that are received,
and that gaps are always present when they are being plugged. This analysis fits
into standard data-flow frameworks [23], however it applies a highly specialized
lattice structure representing the template types. For every template variable
and expression that occurs in the given program, we associate a lattice element
that abstractly captures the relevant template properties. The lattice consists
of two components: a gap map and a field map. The gap map records for every
occurring gap name whether or not the gap occurs at that point, and in case
it does occur, whether it is an HTML gap or an attribute gap. Similarly, the
field map records for every occurring input field name information about the
input fields, which can be of type text, radio, select, or checkbox, representing
the different interaction methods.

Given a <bigwig> program we construct a flow graph. This is quite easy
since there are no higher-order functions or virtual methods. All language con-
structs that are not included in DynDoc are abstracted away. It is now possible
to define transfer functions that abstractly describe the effect of the program
statements. This produces a constraint system which we solve using a clas-
sical fixed point iteration technique. From this solution, we can see that the
first three properties mentioned above are satisfied, and, if not, generate error
messages indicating the cause.

With this approach, the programmer is only restricted by the requirement
that at every program point the template type of an expression must be fixed. In
practice, this does not limit the expressibility, rather, it tends to enforce a more
comprehensible structure of the programs. Also, the compiler silently resolves
conflicts at flow join points by implicitly plugging superfluous gaps with empty
content.

HTML Validity Analysis

The fifth property, HTML validity, is addressed with a similar but more com-
plicated approach, as described in [9].

The main idea is the following: We define a finite structure called a summary
graph that approximates the set of templates that a given HTML expression
may evaluate to. This structure contains the plug operations and the constant
templates and strings that are involved.

As an example, consider the summary graph in Figure 4. The nodes corre-
spond to program constants and the edges correspond to plug operations. For
instance, the li template may be plugged into the items gaps in the ul template
here. The node labeled • represents arbitrary text strings and ε is the empty
string. The root of the graph corresponds to the outermost template. By “un-
folding” this graph according to the plug edges, this summary graph defines a
possibly infinite set of HTML fragments without gaps (in this case the set of all

17

large

����

ε

kind text

textitems

items

 <[]>

kind
items

<[]>

 <[]>

<ul class=[]> text

items

Figure 4: A summary graph representing a set of HTML fragments.

ul lists of class large with one or more character data items). This structure
turns out to provide an ideal abstraction level for verifying HTML validity.

Again, we apply a data-flow analysis to approximate the flow of template
values in the program. This time we use a lattice consisting of summary graphs.
It is possible to model plug operations with good precision using transfer func-
tions; however, two preliminary analyses are required: one for tracking string
constants, and one, called a gap track analysis, for tracking the origins of gaps.
The latter tells us, for each template variable and gap name, which constant
templates containing such a gap can flow into that variable at any given program
point. Clearly, these analyses are highly specialized for the domain of dynamic
document construction and for <bigwig>’s higher-order template mechanism,
but they all fit into the standard data-flow analysis frameworks. For more details
see [9].

Once we have the summary graphs for all the show statements, we need to
verify that the sets of document fragments they define are all valid HTML ac-
cording to W3C’s official definition. To simplify the process we reformulate the
notion of Document Type Definition (DTD) as a simpler and more convenient
formalism which we call abstract DTD. An abstract DTD consists of a number of
element declarations, whereof one is designated as the root. An element declara-
tion defines the requirements for a particular type of element. Each declaration
consists of an element name, a set of names of attributes and subelements that
may occur, and a boolean expression constraining the element type instances
with respect to their attribute values and contents. The official DTD for HTML
is easily rewritten into our abstract DTD notation. In fact, the abstract DTD
version captures more validity requirements than those expressible by standard
DTDs and merely appear as comments in the HTML DTD. As a technicality,
we actually work with XHTML 1.0 which is an XML reformulation of HTML
4.01. There are no conceptual differences, except that the XML version provides
a cleaner tree view of documents for the analysis.

Given a summary graph and an abstract DTD description of HTML, validity
can be checked by a recursive traversal of the summary graph starting at the
roots. We memoize intermediate results to ensure termination, since the sum-
mary graphs may contain loops. If no violations are encountered, the summary
graph is valid. Since all validity properties are local to single elements and their
contents, we are able to produce precise error messages in case of violations.
Analysis soundness is ensured by the following property: if all summary graphs

18

corresponding to show expressions are verified to be valid with respect to the
abstract DTD, then all concrete documents are guaranteed to be valid HTML.

The program analyses described here all have high worst-case complexities
due to complex lattices. Nevertheless, our implementations and experiments
show that they work well in practice, even for large intricate programs. These
experiments are mentioned in Section 8.

Caching of Dynamically Generated HTML

Traditional Web caching based on HTTP works by associating an expiration
time to all documents sent by the servers to the clients. This has helped in
decreasing both network and server load and response times. By default, no
expiration is set, and, by using “now”, caching is effectively disabled. This
technique was designed primarily for documents whose contents rarely or never
change, not for documents dynamically generated by interactive Web services.
The gradual change from statically to dynamically generated documents has
therefore caused the impact of Web caching to degrade.

Existing proposals addressing this include Active Cache, HPP, and various
server-based techniques, as explained in the survey in [6]. Server-based tech-
niques aim to relieve the server of redundant computations, not to decrease
network load. They typically work by simplifying assumptions, for instance
that many interactions can be handled without side-effects on the global service
state, that interactions are often identical for many clients, or that the dynam-
ics of the pages is limited to, e.g., banner ad rotation. None of this applies to
complex interactive services. Active Cache is a proxy-based solution that em-
ploys programmable cache applets. This can be very effective, but it requires
both specialized proxy servers and careful programming to ensure consistency
between the proxies and the main server.

HPP tries to separate the constant parts from the dynamic parts of the
generated documents. We apply a similar technique. In contrast to HPP, our
solution is entirely automatic, while HPP requires extra programming. The
idea is to exploit the clear division between the service code and the HTML
templates in <bigwig>. In our normal implementation of DynDoc, the internal
template representation is converted to an HTML document on the server when
the show statement is executed. Instead, we now store each template constant in
a fixed file on the server, and defer the conversion to the client using a JavaScript
representation of the dynamic parts. The template files can now be cached by
the ordinary browser caches. More details of the technique can be found in [6].
We summarize our evaluation results in Section 8.

Code Gaps and Document Clusters

In the following, we describe two extensions to the DynDoc language. Occa-
sionally, the page-centered approach is admittedly more appropriate than the
session-centered one. Consider the following example, which gives the current
time of day:

19

service {

session Time() {

html h = <html >Right now, the time is <[t]></html >;

show h<[t =now()];
}

}

An equivalent but less clumsy version can be written using code gaps, which
implicitly represent expressions whose values are computed and plugged into
gaps when the document is being shown:

service {

session Time() {

html h = <html >Right now, the time is <[(now())]></html >;

show h;

}

}

Documents with code gaps remain first-class values, since the code can only
access the global scope. Note that code gaps in <bigwig> are more powerful
than the usual page-centered approach, since the code exists in the full context
of sessions, shared variables, and concurrency control. In fact, with the idea of
published documents described in Section 6, the page-centered approach is now
included as a special case of <bigwig>.

Some services may want to offer the client more than a single document
to browse, for example, the response could be a tiny customized Web site. In
<bigwig> we have experimented with support for showing such document clus-
ters. The difficulty is to provide a simple notation for specifying an arbitrary
graph of documents connected by links. For an HTML variable x, we intro-
duce the document reference notation &x, which can be used as the right-hand
side of a plug operation. It will eventually expand into a URL, but not until
the document is finally shown. Until then, the flow analysis just records the
connection between the gap and the variable. When a document is shown, the
transitive closure of document references is computed, and the resulting clus-
ter of documents is produced with references replaced by corresponding URLs.
The following example shows a cluster of two documents that are cyclically con-
nected. Notice that the cluster can be browsed freely without cluttering the
control-flow:

service {

session Cluster() {

html greeting = <html >

Hi! Click here for a kind word.

</html >;

html kind = <html >How nice to see you! Back</html >;

kind = kind<[there = &Greeting];

show greeting<[where =&kind];

}

}

The compiler checks that all cluster documents with submit buttons contain the
same form fields. It is also necessary to perform an escape analysis to ensure
that document variables are not exported out of their scope.

20

4 Form Field Validation

A considerable effort in Web programming is expended on form field validation,
that is, on checking whether the data supplied by the client in the form fields
is valid, and when it is not, producing error messages and requesting the fields
to be filled in again. Apart from details about regular expression matching, the
main problem is to program a solution that is robust, efficient, and user friendly.

One approach is server-side validation, where the form fields are validated on
the server when the page has been submitted. None of the languages mentioned
in Section 1 provide any help for this, except for the regular expression matching
in Perl. Therefore, the main logic of the service often becomes cluttered with
validation code. In a sense, every program part that sends a page to a client
must be wrapped into a while-loop that repeats until the input is valid. Other
disadvantages include wasting bandwidth and causing delays to the users.

The alternative is client-side validation, which usually requires the program-
mer to use JavaScript in the pages being generated. This permits more sophis-
ticated user interactions and reduces the communication overhead. However,
client-side validation should not be used alone. The reason is that the client is
perfectly capable of bypassing the JavaScript code, so an additional server side
validation must always be performed. Thus, the same code must essentially be
written both in JavaScript and in the server scripting language. In practice,
writing JavaScript input validators that capture all validity requirements and
at the same time are also user friendly can be very difficult, since, unfortunately,
most browsers differ in their JavaScript support. Whole Web sites are dedicated
to explaining how the various subsets of JavaScript work in different browsers.3

In <bigwig> we have introduced a domain-specific sub-language, called Pow-
erForms, for form field validation [7]. It handles complex interdependencies be-
tween form fields, and the compiler generates the required code for both client
and server. By compiling into JavaScript, only the PowerForms implementors
need to know the details of how browsers support JavaScript, rather than all
Web service programmers. Also, the programmer does not need to write essen-
tially the same code in a server-side version and a client-side version anymore.

PowerForms is a declarative language. Informally, this means that the pro-
grammer specifies what the input requirements are, not how to check them. In
its simplest form, PowerForms allows regular-expression formats to be associ-
ated to form fields:

service {

format Digit = range (’0’,’9’);

format Alpha = union (range (’a’,’z’),range (’A’,’Z’));

format Word = concat (Alpha,star (union (Digit,Alpha)));

format Email = concat (Word,"@",Word,star (concat (".",Word)));

session Validate() {

html form = <html >

Please enter your email address:

<input name=email type=text size=20>

3See e.g. http://www.webdevelopersjournal.com/articles/javascript
limitations.html or http://www.xs4all.nl/~ppk/js/version5.html.

21

<format name =Email field =email>

</html >;

string s;

show form receive [s=email];

}

}

This example shows how to constrain input in the email field to a certain regular
expression. The <bigwig> compiler generates the JavaScript code that checks
the user input on the client-side and provides help and error messages, and
also the code that performs the server-side double-check. “Traffic-light” icons
next to the input fields provide the user with continuous feedback about the
string entered so far. “Green” means valid, “yellow” means invalid but a prefix
of something valid, and “red” means not a prefix of something valid. Other
alternatives can be chosen, such as checkmark symbols, arrows, etc. We also
allow the usual UNIX-style syntax for regular expressions in the subset of our
notation that excludes the intersection and complement operators.

Formats can be associated to all kinds of form fields, not just those of type
text. For select fields, the format is used to filter the available options. For
radio and checkbox fields, only the permitted buttons can be depressed.

As noted in [14], many forms contain fields whose values may be constrained
by those entered in other fields. A typical example is a field that is not applicable
if some other field has a certain value. Such interdependencies are almost always
handled on the server, even if the rest of the validation is performed on the
client. Presumably, the reason is that interdependencies require even more
delicate JavaScript programming. The <bigwig> solution is to allow such field
interdependencies to be specified using an extension of the regular expressions:
the format tags are extended to describe boolean decision trees, whose conditions
probe the values of other form fields and whose leaves are simple formats. The
interdependence is resolved by a fixed-point process computed on the client by
JavaScript code automatically generated by the <bigwig> compiler. A simple
example is the following, where the client chooses a letter group and the select

menu is then dynamically restricted to those letters:

service {

format Vowel = charset ("aeiouy");

format Consonant = charset ("bcdfghjklmnpqrstvwxz");

html form = <html >

Favorite letter group:

<input type=radio name=group value=vowel checked>vowels

<input type=radio name=group value=consonant>consonants

Favorite letter:

<select name=letter >

<option value="a">a

<option value="b">b

<option value="c">c

...

<option value="z">z

</select>

<format field =letter>

22

<if ><equal field =group value =vowel>

<then ><format name =Vowel></then >

<else ><format name =Consonant></else >

</if >

</format >

</html >;

session Letter() {

string s;

show form receive [s=letter];

}

}

ColdFusion [13] provides a mechanism reminiscent of PowerForms. However, it
does not support field interdependencies or validation of non-text fields. Pow-
erForms is shown to be a simple language with a clean semantics that appears
to handle most realistic situations. We have implemented it both as part of
the <bigwig> compiler and as a stand-alone tool that can be used to add input
validation to general HTML pages.

5 Concurrency Control

As services have several session threads, there is a need for synchronization
and other concurrency controls to discipline the concurrent behavior of the
active threads. A simple case is to control access to the shared variables using
mutex regions or the readers/writers protocol. Another issue is enforcement of
priorities between different session kinds, such that a management session may
block other sessions from running. Another example is event handling, where a
session thread may wait for certain events to be caused by other threads.

We deal with all of these scenarios in a uniform manner, based on a central
controller process in the runtime system, which is general enough to enforce a
wide range of safety properties [25]. The support for concurrency control in the
previously mentioned Web languages is limited to more traditional solutions,
such as file locking, monitor regions, or synchronized methods.

A <bigwig> service has an associated set of event labels. During execution, a
session thread may request permission from the controller to pass a specific event
checkpoint. Until such permission is granted, the session thread is suspended.
The policy of the controller must be programmed to maintain the appropriate
global invariants for the entire service. Clearly, this calls for a domain-specific
sub-language. We have chosen a well-known and very general formalism, tempo-
ral logic. In particular, we use a variation of monadic second-order logic [29]. A
formula describes a set of strings of event labels, and the associated semantics is
that the trace of all event labels being passed by all threads must belong to that
set. To guide the controller, the <bigwig> compiler uses the MONA tool [20] to
translate the given formula into a minimal deterministic finite-state automaton
that is used by the controller process to grant permissions to individual threads.
When a thread asks to pass a given event label, it is placed in a corresponding
queue. The controller continually looks for nonempty queues whose event labels

23

correspond to enabled transitions from the current DFA state. When a match
is found, the corresponding transition is performed and the chosen thread is re-
sumed. Of course, the controller must be implemented to satisfy some fairness
requirements. All regular trace languages can be expressed in the logic.

Applying temporal logics is a very abstract approach that can be harsh on
the average programmer. However, using syntax macros, which are described
in Section 6, it is possible to capture common concurrency primitives, such as
semaphores, mutex regions, the readers/writers protocol, monitors, and so on,
and provide high-level language constructs hiding the actual formulas. The
advantage is that <bigwig> can be extended with any such constructs, even
some that are highly customized to particular applications, while maintaining a
simple core language for concurrency control.

The following example illustrates a simple service that implements a critical
region using the event labels enter and leave:

service {

shared int i;

session Critical() {

constraint {

label leave,enter;

all t1,t3: (t1<t3 && enter(t1) && enter(t3)) =>

is t2: t1<t2 && t2<t3 && leave(t2);

}

wait enter;

i = i+1;

wait leave;

}

}

The formula states that for any two enter events there is a leave event in
between, which implies that at any time at most one thread is allowed in the
critical region. Using syntax macros, programmers are allowed to build higher-
level abstractions such that the following can be written instead:

service {

shared int i;

session Critical() {

region {

i = i+1;

}

}

}

We omit the macro definitions here. In its full generality, the wait statement is
more like a switch statement that allows a thread to simultaneously attempt to
pass several event labels and request a timeout after waiting a specified time.

A different example implements an asynchronous event handler. Without
the macros, this could be programmed as

service {

shared int i;

constraint {

24

label handle,cause;

all t1: handle(t1) => is t2: t2<t1 && cause(t2) &&

(all t3: t2<t3 && t3<t1 => !handle(t3));

}

session Handler() {

while (true) {

wait handle;

i++;

}

}

session Application() {

wait cause;

}

}

This nontrivial formula allows the handler to proceed, without blocking the
application, whenever the associated event has been caused at least once since
the last invocation of the handler. Fortunately, the macros again permit high-
level abstractions to be introduced with more palatable syntax:

service {

shared int i;

event Increment {

i++;

}

session Application() {

cause Increment;

}

}

The runtime model with a centralized controller process that ensures satisfaction
of safety constraints is described in [8]. The use of monadic second-order logic
for controller synthesis was introduced in [Sandholm and Schwartzbach 1998]
where additionally the notions of triggers and counters are introduced to gain
expressive power beyond regular sets of traces, and conditions for distributing
the controller for better performance are defined.

The session model provides an opportunity to get a global view of the concur-
rent behavior of a service. Our current approach does not exploit this knowledge
of the control flow. However, we plan to investigate how it can be used in spe-
cialized program analyses that check whether liveness and other concurrency
requirements are complied with.

6 Syntax Macros

As previously mentioned, <bigwig> contains a notion of macros. Although
not specific to Web services, this abstraction mechanism is an essential part
of <bigwig> that serves to keep the sub-languages minimal and to tie them
together.

A macro language can be characterized by its level of operation which is
either lexical or syntactic. Lexical macro languages operate on sequences of

25

tokens and conceptually precede parsing. Due to the independence of syntax,
macros often have unintended effects, and parse errors are only discovered at
invocation time. Consequently, programmers are required to consider how in-
dividual macro invocations are being expanded and parsed. Syntactic macros
amend this by operating on parse trees instead of token sequences [31]. Types
are added to the macro arguments and bodies in the form of nonterminals of
the host language grammar. Macro definitions can now be syntax-checked at
definition time, guaranteeing that parse errors no longer occur as a consequence
of macro expansion. Using syntax macros, the syntax of the programming lan-
guage simply appears to be extended with new productions.

Our macros are syntactic and based entirely on simple declarative concepts
such as grammars and substitution, making them easy and safe to use by ordi-
nary Web service programmers. Other macro languages, such as MS2, Scheme
macros, and Maya, instead apply full Turing complete programming languages
for manipulating parse trees at compile time, making them more difficult to use.

As an initial example, we extend the core language of <bigwig> with a
repeat-until control structure that is easily defined in terms of a while loop.

macro <stm> repeat <stm S> until (<exp E>) ; ::= {

{

bool first = true ;

while (first || !<E>) {

<S>

first = false ;

}

}

}

The first line is the header of the macro definition. It specifies the nonter-
minal type of the macro abstraction and the invocation syntax, including the
typed arguments. As expected, the type of the repeat-until macro is <stm>,
representing statements. This causes the body of the macro to be parsed as
a statement and announces that invocations are only allowed in places where
an ordinary statement would be. We allow the programmer to design the in-
vocation syntax of the macro. This is used to guide parsing and adds to the
transparency of the macro abstractions. This particular macro is designed to
parse two appropriately delimited arguments, a statement S and an expression
E. The body of the macro implements the abstraction using a boolean variable
and a while loop. When the macro is invoked, the identifiers occurring in the
body are α-converted to avoid name clashes with the invocation context.

With a concept of packages, macros can be bundled up in collections. Our
experience with <bigwig> programming has led us to develop a “standard macro
package”, std.wigmac, that extends the sub-languages of <bigwig> in various
ways and has helped keep the language minimal. For instance, the form field
validation language is extended with an optional regular expression construct,
and database language macros transform SQL-like queries into our own iterative
factor construction. Also, various composite security modifiers are defined, and
concurrency control macros, such as the region from Section 5, gradually build
on top of each other to implement increasingly sophisticated abstractions.

26

Macros are also used to tie together different sub-languages, making them
collaborate to provide tailor-made extensions of the language. For instance, the
sub-languages dealing with sessions, dynamic documents, and concurrency con-
trol can be combined into a publish macro. This macro is useful when a service
wishes to publish a page that is mostly static, yet needs to be recomputed once
in a while, when the underlying data changes. The following macros efficiently
implements such an abstraction:

macro <toplevels> publish <id D> { <exp E> } ::= {

shared html <D>~cache;

shared bool <D>~cached;

session <D>() {

exclusive if (!<D>~cached) {

<D>~cache = <E>;

<D>~cached = true ;

}

show <D>~cache;

}

}

macro <stm> touch <id d> ; ::= {

<d>~cached = false ;

}

The publish macro recomputes the document if the cache has expired and then
shows the document, while the touch macro causes the cache to expire. The ~
operator is used to create new identifiers by concatenating others. Using this
extended syntax, a service maintaining a high-score list, for example, can look
like this:

require "publish.wigmac"

service {

shared int record;

shared string holder;

publish HiScore {

computeWinnerDoc(record, holder)

}

session Play() {

int score = play();

if (score>=record) {

show EnterName receive [holder=name];

record = score;

touch HiScore;

} else {

show <html >Sorry, no record.</html >;

}

}

}

Here the high-score document is only regenerated when a player beats the record.
This code is clearly easier to understand and maintain than the corresponding
expanded code.

The expressive power of syntax macros is extended with a concept of meta-
morphisms, as explained in [10]. This declaratively permits tree structures to be

27

transformed into host language syntax without compromising syntactic safety,
something not possible with other macro languages. Using this mechanism in an
extreme way, it is possible to define whole new languages. We call this concept
a very domain-specific language, or VDSL.

At the University of Aarhus, undergraduate computer science students must
complete a bachelor’s degree in one of several fields. The requirements that
must be satisfied are surprisingly complicated. To guide them towards this goal,
the students must maintain a so-called “bachelor’s contract” that plans their
remaining studies and discovers potential problems. This process is supported
by a Web service which, for each student, iteratively accepts past and future
course activities, checks them against all requirements, and diagnoses violations
until a legal contract is composed. This service was first written as a straight
<bigwig> application, but quickly became annoying to maintain due to constant
changes in the curriculum. It was redesigned in the form of a VDSL, where study
fields and requirements are conceptualized and defined directly in a more natural
language style. This makes it possible for non-programmers to maintain and
update the service. An small example input is

require "bachelor.wigmac"

studies
course Math101

title "Mathematics 101"

2 points fall term
...

course Phys202

title "Physics 202"

2 points spring term
course Lab304

title "Lab Work 304"

1 point fall term
exclusions
Math101 <> MathA

Math102 <> MathB

prerequisites
Math101,Math102 < Math201,Math202,Math203,Math204

CS101,CS102 < CS201,CS203

Math101,CS101 < CS202

Math101 < Stat101

CS202,CS203 < CS301,CS302,CS303,CS304

Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301

Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303

Lab101,Lab102 < Lab201,Lab202

Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"

field courses
Math101,Math102,Math201,Math202,Stat101,CS101,CS102,CS201,CS202,CS203,

CS204,CS301,CS302,CS303, CS304,Project

other courses
MathA,MathB,Math203,Math204,Phys101,Phys102,Phys201,Phys202

constraints
has passed CS101,CS102

at least 2 courses among CS201,CS202,CS203

at least one of Math201,Math202

at least 2 courses among Stat101,Math202,Math203

28

has 4 points among Project,CS303,CS304

in total between 36 and 40 points

None of the syntax displayed is plain <bigwig>, except the macro package
require instruction. The entire program is the argument to a single macro,
studies, that expands into the complete code for a corresponding Web service.
The file bachelor.wigmac is only 400 lines and yet defines a complete imple-
mentation of the new language. Thus, the <bigwig> macro mechanism offers a
rapid and inexpensive realization of new ad-hoc languages with almost any syn-
tax desired. Similar features do not occur in any of the Web service languages
mentioned in the previous sections.

7 Other Web Service Aspects

There are of course other features in <bigwig> that are necessary to support
Web service development, but for which we have no major innovations. These
are briefly presented in this section.

HTML Deconstruction

The template mechanism is used to construct HTML documents, but when
“run in reverse” it also allows for deconstruction. This is realized by using the
templates as patterns in which the gaps play the role of variables, as illustrated
in this example:

service {

html Template = <html >

<[]><[]>

</html >;

session Dilbert() {

string data = get ("http://www.dilbert.com/");
string s;

match (data,Template)[s =source];

exit Template<[source ="http://www.dilbert.com"+s];

}

}

which grabs the daily strip from the Dilbert home page. Gaps without names
serve as wildcards.

Seslets

For some interaction patterns a strict session model can be inappropriate, since
the client and server must alternate between being active and suspended. Fur-
thermore, information cannot be pushed on the server’s initiative while the
client is viewing a page. A simple example is a chat room where new messages
should appear automatically, without the client having to reload the page being
viewed, and where only the new message and not the entire new page is trans-
mitted. The essence of this concept is client-side computations, which are able
to contact the server on their own accord.

29

The <bigwig> solution is a notion of seslets. A seslet is a kind of lightweight
session that is allowed to do anything an ordinary session can do, except perform
show operations. It is invoked by the client with some arguments and eventually
returns a reply of any <bigwig> type. Typically, it performs database operations
or waits for certain events to occur, and then reports back to the client.

Since we are limited by the existing technologies on the client-side, our cur-
rent implementation is restricted to using Java applets or JavaScript. To fa-
cilitate the writing of applets, the <bigwig> compiler generates the Java code
for an abstract class extending Applet, which must be inherited from in or-
der to access the available seslets. Alternatively, we have experimented with a
JavaScript interface. However, this approach is limited by the lack of client-
server communication support from JavaScript, so we currently apply cookies
for the communication.

An important use of seslets is to allow client-side code to synchronize with
other active threads on the server. For example, the chat room solution could
employ a seslet that uses the concurrency control mechanisms of <bigwig> to
wait until the next message is available, which is then returned to the applet.
In this way, no client pulling or busy waiting is required.

Databases

Most Web services are centered around a database. In the general case, this is
an existing, external database which the service must connect to. The <bigwig>
system supports the ODBC interface for this purpose. In most other Web service
languages, database queries are built dynamically as strings that must be parsed
by the database engine. In <bigwig>, queries are not built as strings but are
written in a query language that is part of the <bigwig> syntax. This allows for
compile-time checking of the syntax and types of queries, eliminating another
source of errors. Since many smaller services use only simple data, we also offer
an internal database that is implemented on top of the file system.

Security

There are many aspects of Web service security.4 The security in <bigwig> can
be divided into two categories, depending on whether it is generically applicable
to all services or specific to the behavior of a particular service.

The former category mostly relates to the runtime environment and commu-
nication, dealing with concepts such as integrity, authenticity, and confidential-
ity. Integrity of a session thread’s local state is achieved by keeping it exclusively
on the server. Integrity of shared data is provided by the database. An inter-
action key is generated and embedded in every document shown to the client
and serves to prevent submission of old documents. Clients and session threads
are associated through a random key which is created by the server upon the
first request and carried across interactions in a hidden input field. This mech-
anism may optionally be combined with other security measures, such as SSL,

4See http://www.w3.org/Security/faq/.

30

to provide the necessary level of security. Authenticity and confidentiality are
addressed through general declarative security modifiers that the programmer
can attach on a service, session, or show basis. The modifiers ssl and htaccess

enforce that the SSL and HTTP Authentication protocols are used for commu-
nication. The selective modifier restricts access to a session to those clients
whose IP numbers match a given set of prefixes. Finally, the singular modifier
ensures that the client has the same IP address throughout the execution of a
session.

We envision performing some simple static analyses relating to the behavioral
security of particular services. Values are classified as secret or trusted, and, in
contrast to tainting in Perl, the compiler keeps track of the propagation of these
properties. Furthermore, there are restrictions on how each kind of data can
be used. Form data is always assumed to be untrusted and gaps are never
allowed to be plugged with secret values. Variables can be declared with the
modifiers secret or trusted and may then only contain the corresponding values.
The system function can only be called with a trusted string value. To change
the classification of a value, there are two functions, trust and disclose. The
programmer must make the explicit choice of using these coercions. An example
involving trust is the following service:

service {

session Lookup() {

html Error = <html >Invalid URL!</html >;

html EnterURL = <html >Enter a URL: <input type =text name=URL></html >;

string u,domain;

show EnterURL receive [u = URL];

if (|u|<7 || u[0..7]!="http://") show Error;

for (i=7; i<|u| && u[i]!=’/’; i++);

domain = u[7..i];

if (system ("/usr/sbin/nslookup ’" + domain + "’").stderr!="") {

show Error;

}

}

}

This code performs an nslookup on the URL supplied by the user to check
whether its domain exists. Since the value of domain is derived from the form
field URL it should not be trusted, and its use in the call of system will be
flagged by the compiler. And, indeed, it would be unfortunate if the client
enters "http://foo’;rm -rf /’" in the form. A similar analysis is performed for
secret. Consider the example:

service {

shared secret string password;

bool odd(int n) { return n%2==1; }

session Reveal() {

if (odd(|password|)) show <html >foo</html >;

}

}

The compiler is sufficiently paranoid to reject this program, since the branching
of the if-statement depends on a function applied to information derived from

31

a secret value. These analyses are not particularly original, but are not seen in
other Web service programming languages.

There is still much work to be done in this area. So far, we have not con-
sidered using cryptological techniques to ensure service integrity, the role of
certificates, or more sophisticated static analyses.

8 Evaluation

The <bigwig> language should be evaluated according to two different criteria.
First, the quality of our language design as seen from concrete programming
experiences. This is necessarily a somewhat intangible and subjective criterion.
Second, the performance of our language implementation as seen from observed
benchmarks.

Experience with <bigwig>

<bigwig> is still mainly an experimental research tool, but we have gained
experiences from numerous minor services that we have written for our own
edification, a good number of services that are used for administrative purposes
at the University of Aarhus, and a couple of production services on which we
have collaborated. Apart from these applications, we estimate that <bigwig>
has been downloaded roughly 2500 times from our Web site, and we have mainly
received positive feedback from the users.

One production service is the Web site of the European Association for The-
oretical Computer Science (www.eatcs.org), handling newsletters, webboards,
and several membership services. It is written in 5,345 lines of <bigwig>, using
133 HTML templates and 114 show statements. Another is the Web site of the
JAOO 2001 conference (www.jaoo.dk), handling all aspects of advertisement,
schedules, registration, and attendance services. It is written is 7,943 lines of
<bigwig>, using 248 HTML templates, and 39 show statements.

These experiences have shown that <bigwig> has two very strong points.
First, the session concept greatly simplifies the programming of complicated
control flow with multiple client interactions. Second, the HTML templates
are very easy and intuitive to use and the static guarantees catching numerous
errors, many of which are difficult to find by any other means. It is particularly
helpful that the HTML analyzers provide precise and intuitive error messages.

The JAOO application has been particularly interesting, since it involves
collaboration with an external HTML designer. This experience confirmed that
our templates are successful in defining an interface between programmers and
designers and that gaps and fields define a useful contract between the two.

The main weak point that we identified is the core language, which is of-
ten found to lack minor features. We plan to address this in future work, as
mentioned in Section 9.

The stand-alone version of the PowerForms sub-language has been surpris-
ingly popular in its own right. It has many active users, and has been integrated

32

into a proprietary Web deployment system.

Performance

When evaluating the performance of the <bigwig> implementation, we want to
focus on the areas where we tried to provide improvements. We are not aiming
for simple high-load services, but are focusing on services with intricate control-
flow. Still, informal tests show that the throughput of our services is certainly
comparable with that of straight CGI-based services or Servlet applications
running on J2SE.

The automatic caching scheme based on our HTML templates is designed
to exploit their intricate structure to cache static fragments on the client side.
We have obtained real benefits from this approach. The experiments reported
in [6] show that the size of the transmitted data may shrink by a factor of 3 to
30, which on a dial-up connection translates into a reduction in download time
by a factor of 2 to 10.

It is also relevant to evaluate the performance of the <bigwig> compiler,
since we employ a series of theoretically quite expensive static analyses. How-
ever, in practice they perform very well, as documented in [26, 9]. The EATCS
service is analyzed for HTML validity in 6.7 seconds and the JAOO service in
2.4 seconds.

9 Conclusion

The <bigwig> project has identified central aspects of interactive Web services
and provided solutions in a coherent framework based on programming language
theory. At the same time, the <bigwig> project is a case study in applications
of the domain-specific language design paradigm.

We argue that the notion of sessions is essential to Web services and should
constitute the basic structure of a Web service programming language. Together
with higher-order document templates, such as in the DynDoc sub-language, the
dynamic construction of Web pages becomes flexible at the same time, making
it easy to use, and safe by compile-time guarantees regarding document va-
lidity and the use of input forms. We have shown that form field validation,
compared to traditional approaches, can be made easier with a domain-specific
sub-language, such as PowerForms, which automatically translates high-level
specifications into a combination of more low-level server-side and client-side
code. We have examined how temporal logics can be used to synthesize concur-
rency controllers. Finally, we have demonstrated how macro mechanisms can
be made effective for extending and combining languages, in the context of the
sub-languages of <bigwig>.

Version 2.0 of the <bigwig> compiler and runtime system is freely available
from the project home page at www.brics.dk/bigwig/ where documentation and
examples can also be found.

33

Regarding the future development of <bigwig> we now move towards Java.
We are developing JWIG [11] as an extension of Java, where we add the most
successful features of <bigwig>, such as the session model, dynamic documents,
form field validation, and syntax macros. Since the design of <bigwig> has
focused on the Web specific areas, we hope that the many standard program-
ming issues of Web services become easier to develop with JWIG. However, a
number of new challenges arise. For instance, the program analyses described
in Section 3 all assume that we have access to precise control-flow graphs of the
programs. This is trivial for <bigwig>, but certainly not for Java. Other fu-
ture plans include type-safe support for XML document transformation, WML
and VoiceXML support, and broadening the view towards development and
management of whole Web sites comprising many services.

Acknowledgments

Tom Ball provided us with extensive and very helpful information about ex-
periences with the MAWL language. Anders Sandholm was a key participant
during his Ph.D. studies at BRICS. Mikkel Ricky Christensen and Steffan Ole-
sen worked tirelessly as student programmers during the entire project. Niels
Damgaard, Uffe Engberg, Mads Johan Jurik, Lone Haudrum Olesen, Christian
Stenz, and Tommy Thorn provided valuable feedback and suggestions. We also
appreciate the efforts made by the participants of the WIG Projects course in
Spring 1998. Finally, we are grateful for the insightful comments we received
from the anonymous reviewers.

References

[1] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Addison-Wesley, 3rd edition, 2000.

[2] David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns, Kenneth Cox,
Peter Mataga, and Kenneth Rehor. Experience with a domain specific
language for form-based services. In Usenix Conference on Domain Specific
Languages, October 1997.

[3] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a
domain-specific language for form-based services. In IEEE Transactions
on Software Engineering, June 1999.

[4] Leon Atkinson. Core PHP Programming. Prentice Hall, 1999.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol – HTTP/1.0. RFC1945, May 1996.
http://www.w3.org/Protocols/rfc1945/rfc1945.

[6] Claus Brabrand, Anders Møller, Steffan Olesen, and Michael I.
Schwartzbach. Language-based caching of dynamically generated HTML,
May 2001. Submitted for publication.

34

[7] Claus Brabrand, Anders Møller, Mikkel Ricky, and Michael I.
Schwartzbach. Powerforms: Declarative client-side form field validation.
World Wide Web Journal, 3(4):205–314, 2000.

[8] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I.
Schwartzbach. A runtime system for interactive Web services. Computer
Networks, 31:1391–1401, 1999. Also in Proceedings of the Eighth Interna-
tional World Wide Web Conference.

[9] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static val-
idation of dynamically generated HTML. In Proceedings of Workshop on
Program Analysis for Software Tools and Engineering, PASTE 2001. ACM,
2001.

[10] Claus Brabrand and Michael I. Schwartzbach. Growing languages with
metamorphic syntax macros. In Proceedings of Workshop on Partial Eval-
uation and Semantics-Based Program Manipulation, PEPM 2002. ACM,
2002.

[11] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Ex-
tending Java for high-level Web service construction, 2002. Submitted for
publication.

[12] K. Cox, T. Ball, and J. C. Ramming. Lunchbot: A tale of two ways to
program web services. Technical Report BL0112650-960216-06TM, AT&T
Bell Laboratories, 1996.

[13] John Desborough. Cold Fusion 3.0 Intranet Application. International
Thomson Publishing, 1997.

[14] Micah Dubinko, Sebastian Schnitzenbaumer, Malte Wedel, and Dave
Raggett. XHTML extended forms requirements. W3C Working Draft,
April 2001. http://www.w3.org/TR/xhtml-forms-req.html.

[15] Mary Fernandez, Dan Suciu, and Igor Tatarinov. Declarative specification
of data-intensive Web site. In USENIX Conference on Domain-Specific
Languages, October 1999.

[16] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, June 1998.

[17] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The
SSL protocol version 3.0. Internet Draft, November 1996.
http://home.netscape.com/eng/ssl3/draft302.txt.

[18] Shishir Gundavaram. CGI Programming on the World Wide Web. O’Reilly
& Associates, Inc., 2000.

[19] Alex Homer, John Schenken, Mathew Gibbs, Jan D. Narkiewicz, Jason
Bell, Mike Clark, Andy Elmhorst, Bruce Lee, Matt Milner, and Adil Rehan.
ASP.NET Programmer’s Reference. Wrox Press, 2001.

35

[20] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS
Notes Series NS-01-1, Department of Computer Science, University of
Aarhus, January 2001.

[21] David A. Ladd and J. Christopher Ramming. Programming the Web: An
application-oriented language for hypermedia services. In 4th Intl. World
Wide Web Conference, 1995.

[22] Open Market, Inc. FastCGI: A high-performance Web server interface,
April 1996. Technical White Paper, www.fastcgi.com.

[23] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

[24] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML
4.01 specification. W3C Recommendation, December 1999.
http://www.w3.org/TR/html401.

[25] Anders Sandholm and Michael I. Schwartzbach. Distributed safety con-
trollers for Web services. In Fundamental Approaches to Software Engi-
neering, FASE’98, number 1382 in LNCS, 1998.

[26] Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic
Web documents. In Principles of Programming Languages, POPL’00.
ACM, 2000.

[27] Sun Microsystems. Java Servlet Specification, Version 2.3, 2001.
http://java.sun.com/products/servlet.

[28] Sun Microsystems. JavaServer Pages Specification, Version 1.2, 2001.
http://java.sun.com/products/jsp.

[29] Wolfgang Thomas. Automata on infinite objects. In Handbook of Theo-
retical Computer Science, volume B, pages 133–191. MIT Press/Elsevier,
1990.

[30] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[31] Daniel Weise and Roger F. Crew. Programmable syntax macros. In Pro-
gramming Language Design and Implementation, PLDI’93, 1993.

36

