
Observability of power systems based on fast
pseudorank calculation of sparse sensitivity matrices

Jochen Alber
DIgSILENT GmbH
Heinrich-Hertz-Str. 9

D-72810 Gomaringen, Germany
Email: j.alber@digsilent.de

Markus P̈oller
DIgSILENT GmbH
Heinrich-Hertz-Str. 9

D-72810 Gomaringen, Germany
Email: m.poeller@digsilent.de

Abstract— This paper describes a novel approach for the
observability analysis in state estimation of large-scale power sys-
tems. We draw a one-to-one correspondence of the observability
of a network to the rank of a corresponding sensitivity matrix.
This general framework is not purely based on topological
aspects, but takes into account all electrical quantities of the
network and turns out to be very generic and flexible. In order
to solve the observability problem, a novel algorithm for very fast
”pseudorank” calculations on sparse matrices is developed. This
approach allows, on the one hand, to identify equivalence classes
of redundant measurements. On the other hand, the algorithm
can detect all observable islands and group unobservable states
according to their ”observability deficiency.” Our algorithm bares
high potential in coping with unobservable areas: a method is
described which incorporates a minimum number of pseudo-
measurements to yield observability. The performance of the
algorithm is tested on real-world network (with data gained
from an underlying ABB MicroSCADA system) and compared
to common rank calculation with singular value decompositions
on sparse matrices.

I. I NTRODUCTION

State estimation is the task to provide consistent load
flow results for an entire power system, based on real time
measurements, manually entered data and the network model.
The problem has been studied in great detail over the last years
(see [3], [5], [6] and the references therein for a comprehensive
overview). A general input instance for a state estimation
algorithm includes a set of measurements located in the
network and a selection of states that should be estimated
using the given measures.1

Observability analysis is a fundamental part of state esti-
mation. A necessary requirement for an observable system is
that the number of available measurements is equal or larger
than the number of estimated variables. But it can also happen
that only parts of the network are observable and some other
parts of the system are not observable even if the total number
of measurements is sufficient. Hence, it is not only important
that there are enough measurements, but also that they are
well distributed in the network. The entire network is said to
be observable if all states can be estimated based on the given

1In principal, a measurement could be any measured value in the network
(branch power flows, current magnitudes, voltages, etc.). Similarly, one might
be interested in estimating any quantity (such as power flows at injections
and consumers, tap positions of transformers or shunts, etc.).

measurements. If a network is not observable, it is still useful
to determine the islands in the network that are observable.

Three main approaches for observability analysis are dis-
tinguished in the literature: topological, numerical, and hybrid
methods (see [5]).

We present a concept which is closely related to the numeri-
cal approach, since it also takes into consideration all electrical
parameters of the network. However, we purely focus on the
network’s sensitivities of all measured values with respect to
the estimated states. This framework turns out to be extremely
generic and flexible: It intrinsically allows to incorporate
all sorts of measurements, including, e.g., current magnitude
measurements (see [1], [2]), and a wide range of estimated
states, such as tap positions of transformers and shunts (see [4],
where such issues were dealt with individually).

The core part for our approach is to compute the rank of a
corresponding sensitivity matrix. Since rank calculations on
large systems, in general, are time-consuming, we propose
the notion of ”pseudorank” which yields an upper bound on
the rank. We demonstrate a simple algorithm to compute the
pseudorank of a given matrix. This computation scheme may
highly profit from the matrix’ sparsity and is proven to be
extremely efficient. The performance of the pseudorank calcu-
lation is exhibited exemplarily on the Namibian network model
as operated by NamPower. In the presented test scenarios,
the pseudorank calculation clearly outperforms an ordinary
rank calculation using singular value decomposition on sparse
matrices.

Furthermore, our approach allows for a very detailed ob-
servability report:
• We do not only identify, for each state whether it is

observable or not. We also subdivides all unobserv-
able states into so-called ”equivalence-classes.” Each
equivalence-class has the property that it is observable as
a group, even though its members (i.e., the single states)
cannot be observed.

• We additionally determine redundant and non-redundant
measurements. Moreover, we subdivides all redundant
measurements according to their information content for
the system’s observability status. In this sense, we are
able to calculate a redundance level which then indicates
how much reserve the network measurements provides.

This helps the system analyst to precisely identify weakly
measured areas in the network.

The paper is organized as follows. In a first introductory
section, we classify the role of observability analysis in the
general framework of state estimation. In the two subsequent
sections III and IV, we provide the theoretical part for our new
algorithmic approach to compute the system’s observability
(namely ”sensitivity matrices” and ”fast rank calculations on
sparse matrices”). The results are summarized in Section V.
Finally, the algorithm’s behavior on a practical example is
discussed in Section VI.

II. COMPONENTS OF ASTATE ESTIMATOR

Before presenting our algorithmic approach for the observ-
ability analysis, we will have a brief glance at the complete
framework of state estimation. We summarize the various
components of a State Estimator (following our implemen-
tation in the power system analysis software DIgSILENT
PowerFactory[7]):

1) Plausibility Check
2) Observability Analysis
3) State Estimation (Non-Linear Optimization)

Figure 1 illustrates the algorithmic interaction of the different
components.

In a first phase, thePlausibility Checkis sought to detect
and separate out, all measurements with some apparent error in
order to avoid any heavy distortion of the estimated network-
state due to completely wrong measurements. Various test
criteria can be thought of (such as checking for large measured
branch flows on open ended branches; checking for consistent
measured power flow directions at each side of the branch
elements; checking for reasonably measured node sums, etc.).

In a second phase, the network is checked for itsObserv-
ability. Roughly speaking, a region of the network is called
observable, if the measurements in the system provide enough
(non-redundant) information to estimate the state of that part
of the network.

Finally, theState Estimationitself evaluates the state of the
entire power system. Mathematically speaking, the objective
is to minimize the weighted square sum of all deviations
between calculated and measured branch flows and bus bar
voltages whilst fulfilling all load flow equations. This can
be expressed with a weighted square sum of all deviations
between calculatedcalVal and measuredmeaVal branch flows
and bus bar voltages

f(x) =
n∑

i=1

ωi · |calVali(x)−meaVali|2.

The state vectorx contains all voltage magnitudes, voltage
angles and also all variables to be estimated, such as active
and reactive power injections at all bus bars.

Because more accurate measurements should have a higher
influence to the final results than less accurate measurements,
every measurement error is weighted with a weighting fac-
tor ωi to the standard deviation of the corresponding mea-
surement device.

Plausibility Check

State Estimation
(non-linear Optimization)

Observability Analysis

“Repair” Unobservability”

Bad Data Detection

No Bad Measurements Exists

Still Unobservable? Observable?

Eliminate Errornous
Measurements

OK

E
lim

in
a

te
B

a
d

M
e

a
s
u

re
m

e
n

ts

Fig. 1. Scheme of thePowerFactory state estimator algorithm.

Our implementation uses an iterative Newton approach to
solve the minimization problem based on Lagrange multipli-
ers. Here, all load flow equations are formulated as equality
constraints for the optimization problem. If the observability
analysis in the previous step indicates that the entire power
system is observable, convergence (in general) is guaranteed.

In order to come up with a solution for a non-observable
system, various strategies can be followed: One option is
to reset all non-observable states, such that some manually
entered values or historic data is used for these states. An
alternative option is to use so-called pseudo-measurements
for non-observable states. A pseudo-measurement basically
is a measurement with a very poor accuracy. These pseudo-
measurements force the algorithm to converge.

In order to improve the quality of the result, observability
analysis and state estimation should be run in a loop. Here,
at the end of each state estimation, the measurement devices
undergo a so-called ”bad data detection”: the error of every
measurement device can be estimated by evaluating the dif-
ference between calculated and measured quantity. Extremely
distorted measurements (i.e. the estimated error is much larger
than the standard deviation of the measurement device) are not
considered in the subsequent iterations. The process is repeated
until no bad measurements are detected any more.

Since observability analysis is performed very often in this
framework, we have the requirement that the observability
analysis should serve as an accurate and fast preprocessing
step for the state estimation.

III. A LGORITHMIC APPROACH FOR OBSERVABILITY

ANALYSIS

Formally speaking, the problem of analyzing the observ-
ability of a network can be described as follows. Assume that

we are given an ordered set ofn measured quantitiesM =
(m1, . . . , mn) in the network and, in addition, an ordered set
of r statesX = (x1, . . . , xr). The question is, whether the
states can be ”observed” by the given measurements.

Definition 1. For a given statex, define thesensitivity vector
with respect to the measured quantitiesM to be

sensM (x) := (
∂m1

∂x
, . . . ,

∂mn

∂x
).

Here ∂mi

∂x denotes the sensitivity ofmi with respect tox.
Similarly, let

sensX(m) := (
∂m

∂x1
, . . . ,

∂m

∂xr
)

denote the sensitivity for a measured valuem with respect to
the state setX.

The following two basic observations are the core part of
our algorithmic approach:
• Redundance of measurements

1) If, for two distinct measured valuesmi1 ,mi2 ∈ M ,
the sensitivity vectorssensX(mi1) andsensX(mi2)
are linearly dependent, thenmi1 andmi2 carry the
same ”information content” in order to distinguish
between the statesX. This implies that — in terms
of the system’s observability status — one of the
two measurements is redundant.

2) Generally speaking, each subsetmi1 , . . . , mij

of M has non-redundant measurements if and
only if the corresponding sensitivity vectors
sensX(mi1), . . . , sensX(mij) are linearly indepen-
dent.

• Observability of individual states
1) On the other hand, if, for two distinct

states xi1 , xi2 ∈ X, the sensitivity vectors
sensM (xi1) andsensM (xi2) are linearly dependent,
then the given set of measurementsM does not
allow to distinguish between the statesxi1 and
xi2 . In other words, the statesxi1 andxi2 are only
observable as a group, but not individually.

2) Again, a subset of statesxi1 , . . . , xij of X is (indi-
vidually) observable if and only if the corresponding
sensitivity vectorssensM (xi1), . . . , sensM (xij) are
linearly independent.

Summarizing these ideas, we gain information about the
observability of the network by considering the following
matrix:

Definition 2. For given sets of measured valuesM and
statesX, we call

SM
X :=




sensX(m1)
. . .

sensX(mn)




=
[
sensM (x1)T . . . sensM (xr)T

]

the sensitivity matrix ofM with respect toX.

Load 2 (L2)

T
ra

fo

Load 1 (L1)

External Grid

Term 2

Term 1

D
Ig

S
IL

E
N

T

P,Q

P,Q

P,Q P,Q

P,Q

V

V

Tap

estimated states
measurements P (L1) Q (L1) Tap P (L2) Q (L2)
V (Term 1) 0 0 0 0 0
P (Trafo; Term 1) 1 0 0 1 0
Q (Trafo; Term 1) 0 1 0 0 1
P (Trafo; Term 2) -1 0 0 -1 0
Q (Trafo; Term 2) 0 -1 0 0 -1
V (Term 2) 0 0 -1 0 0
P (Load 1) 1 0 0 0 0
Q (Load 1) 0 1 0 0 0

Fig. 2. Trivial example network together with its sensitivity matrix to
illustrate the construction according to Def. 2: Here, five states of the network
are to be observed by eight measurements. The estimated states are the
active and reactive powers in loads ”Load 1” and ”Load 2” and the tap
position ”Tap” of the transformer. In total, three measurements for active
power flow, three measurements for reactive power flow (located at both sides
of the transformer and at Load 1, respectively) and two voltage magnitude
measurements (located at the two terminals) are distributed in the network.
For simplicity, the sensitivity matrix was discretized to the range{−1, 0, 1}.
Clearly, the matrix has full rank, i.e., all five states can be observed. In this
simple setting, the two P- and two Q-measurements (at ”Load 1” and at ”Trafo;
Term 1”), respectively, and the additional V-measurement at ”Term 2” would
have sufficed for observability of the network.

From the outline above we get the following core statement.

Claim 1. A given set ofr statesX in a network is observable
by a set ofn measured valuesM if and only if then × r-
sensitivity matrixSM

X has rankr.

The sensitivity matrix can be numerically computed by
infinitesimal disturbances of the corresponding states. The
computation basically relies on a backsubstitution of a modi-
fied Jacobian matrix which needs to be extended by setpoints
for each estimated state.

For an algorithmic treatment of rank calculations and linear
dependencies, it is essential that the matrices and vectors
are discrete. Hence, letD : R → N be some discretizing

function. We denote byD(sensM (x)) and D(sensX(m))
the coordinatewisely discretized sensitivity vectors. Similarly
D(SM

X) is the discretized sensitivity matrix. Our algorithm was
tested using various kinds of such functions, ranging from a
very coarse- to a very fine-grained discretization.

As a very simple example for the construction of the
sensitivity matrix consider the network in Figure 2 with the
corresponding{−1, 0, 1}-discretized matrixD(SM

X).

IV. FAST RANK-CALCULATION ON SPARSE MATRICES

The sensitivity matrix turns out to be sparse in most practi-
cal settings. Clearly, the sparsity of the discretized sensitivity
matrix D(SM

X) depends on both, the discretizing functionD
and the problem setting (i.e., the network topology as well as
the location of both, measurements and states to be estimated).

We now turn our attention to fast rank calculations for
sparse matrices as required by Claim 1 in order to check
observability of the network. It is important to note that
determining the rank of a discrete matrix can be done using
the singular value decomposition or the Gaussian elimination
scheme which requiresO(n3) running time. For sparse ma-
trices, one encounters the problem of generating fill-ins along
the elimination.

However, since the sensitivity matrix—in practical setting—
may be large, we are interested in much faster computations.

The key observation is the following: It turns out that
in practical settings—instead of determining the rank of the
sensitivity matrix—it is sufficient to (only) check for pairwise
linearly dependent rows and columns of the sensitivity matrix.
Hence, instead of determining the rank of the sensitivity ma-
trix, we compute a so-called ”pseudorank,” which formally is
an upper bound on the rank. However, in most of the sensitivity
matrices drawn from practical settings this ”pseudorank” turns
out to be equal to the rank.

More formally, we give the following definition:

Definition 3. Let A be ann× r-matrix. Assume thatA has a
pair of linearly dependent rows. Removing fromA one of these
rows is called anelimination of pairwise linearly dependent
rows. Similarly, one defines anelimination of p.w. linearly
dependent columnsto be the removal of all but one columns
among a set of pairwise linearly dependent columns.

Let A′ be the resultingn′ × r′-matrix after successively
applying eliminations of p.w. linearly dependent rows and
columns until no further such elimination is possible.

Defineprank(A) = min(n′, r′) to be thepseudorankof A.

It is easy to see thatprank(A) is well-defined (i.e., inde-
pendent of the elimination scheme). Moreover, it holds that
prank(A) ≥ rank(A).

For an algorithmic approach of computing the pseudorank,
it is necessary to implement a fast check which determines
whether two (sparse) vectors are linearly dependent.

Lemma 1. It can be checked in timeO(n), whether two given
sparse vectorsv1 and v2 are linearly dependent. Here,n =
min(n1, n2) and ni is the number of stored non-zeros of the
vectorsvi.

-2 4

-2

-6

31

-2

1

0 1 2 3 4 5 6

p2

p1

Index

V2

V1

Fig. 3. Algorithm to determine linear dependencies of two sparse vectors.
In this example, while sweeping over the two vectorsv1 andv2, the constant
ratio λ = −2 is detected up to row index3. In the following step, the pointers
p1 andp2 will be advanced to indices6 and5, respectively. For these indices
do not coincide, the sweep will stop and return that the vectors are linearly
independent.

Proof: The vectors are linearly dependent if there exists
someλ, such thatv1 = λv2. The corresponding algorithm
sweeps over the non-zero elements of the sparse vectorsv1 and
v2 as depicted in Figure 3. We use two pointersp1 andp2 that
simultaneously proceed through the entries from left to right.
If the pointers point to elements with equal row index, the
ratio of the corresponding values determinesλ. The algorithm
stops if at some step during the simultaneous sweep either

1) the coordinate index of the two elements differs, or,
2) the coordinate index coincides, but the corresponding

values have a ratio different thanλ.

In these cases the vectors are linearly independent. Otherwise,
i.e., if the sweep of the pointers simultaneously reaches the
end of both vectors, the vectors are linearly dependent.¤

This simple computation can be used to determine the
pseudorank of a given matrixA:

Proposition 1. The pseudorank of a (sparse)n× r-matrix A
can be determined by the algorithm in Figure 5. An upper
bound on the worst-case running time of this pseudorank-
calculation is given byO(1

2 (n+r)2·`), where` is the maximum
number of non-zero elements in a row or a column.

Consider the algorithm in Figure 5. It very closely follows
the definition of the pseudorank (see Def. 3), i.e., it suc-
cessively eliminates all pairwise linearly dependent rows and
columns of the matrix until no further elimination is possible.

We remark that our algorithm behaves very well in practice
(i.e., for sensitivity matrices drawn from real-world scenarios).
Moreover, we observed that our algorithm outperforms a full
rank calculation on sparse matrices which uses singular value
decomposition by far (see Section VI). This is due to the fact
that the sub-procedure ”Eliminate” (see Fig. 4)—and, hence,
the overall algorithm—is extremely fast in the following two
opposing situations:

a) If many rows (columns) are linearly dependent this results
in a fast reduction of the matrix which implies that the
outer loop in the sub-procedure ”Eliminate” is rarely
called.

b) If, on the other hand, most rows (columns) are linearly

procedure Eliminate (Z = {z1, . . . , zm}) {
for i = 1 to m do

if (zi not eliminated)then
for j = i + 1 to m do

if (zi andzj are linearly dependent)then
eliminatezj

od
fi

od
end

Fig. 4. Subroutine ”Eliminate” using the check for pairwise linear depen-
dence as described in Lemma 1.

procedure PseudoRank (A ∈ Nn×r)
begin

do
Eliminate (row1, . . . , rown)
Eliminate (col1, . . . , colr)

while (further rows and columns are eliminated)
A′ ← n′ × r′-submatrix ofA after elimination
return min{n′, r′}

end

Fig. 5. Computing the pseudorank of ann × r-matrix A. The algorithm
uses the subroutine ”Eliminate” as specified in Fig. 4.

independent, the check for pairwise linear dependence
(see Lemma 1) will profit, since the sweep over the two
vectors will be aborted very soon. This implies that the
inner loop in the sub-procedure ”Eliminate” is extremely
fast.

V. DETAILED OBSERVABILITY ANALYSIS

Putting our results together, we have a fasttest to determine
the observability of a network with n measured valuesM
andr statesX:

1) determine then × r-sensitivity matrixSM
X of M with

respect toX (see Definition 2).
2) choose an appropriate discretizing functionD : R → N.
3) compute the pseudorankprank(D(SM

X)) of the dis-
cretized matrixD(SM

X) (see Proposition 1).
4) if prank(D(SM

X)) � |X|, the network is not observable.
Under the assumption thatprank(D(SM

X)) = rank(D(SM
X))

(which is most often the case in practical settings), the inverse
also holds true: ifprank(D(SM

X)) = |X|, the network is
observable.

Besides determining the system’s observability, our ap-
proach even offers a much moredetailed description of the
system’s observability status: On the one hand, the algorithm
is able to determine redundant measurements and group them
into ”redundance classes.” On the other hand, we explicitly
find all individual non-observable states and can group them
according to their lack of deficiency.

A. Equivalence classes for redundant measurements

If we simply label each group of p.w. linearly dependent
rows during our pseudorank computation, then we get the more

fine-grained information on the redundance of measurements.
If, from each group, we eliminate all but one measurements,
the observability status of the system will not change. In
this sense, the cardinality of each group indicates the degree
of redundance of the measurements inside that ”redundance
class.”

B. Equivalence classes for non-observable states

Similarly, we may group (during the pseudorank calcu-
lation) all p.w. linearly dependent columns. The system is
observable if each such group is a singleton. Otherwise, the
system is unobservable. If in case of unobservability, from
each group with more than one members, all but one corre-
sponding states were neglected to be estimated, the system
would be observable. In this sense, the states of each group
are ”observable as a whole,” but not individually.

In order to reestablish full observability of the whole
system, so-called pseudo-measurements can be introduced at
the location of each non-observable state. This corresponds to
inserting a unit row vector in the sensitivity matrix. Processing
in this way at all unobservable states, a minimum number of
pseudo-measurements is incorporated to yield observability.

VI. PERFORMANCE TESTS ON REAL-WORLD DATA

The presented algorithms were implemented as part of the
state estimator package in the power system analysis software
DIgSILENT Power Factory[7]. We tested the implementation
on the Namibian network as operated by NamPower.

The modeled network consists of 1400 nodes. It uses
approximately 200 lines, 140 2-winding transformers and 41 3-
winding transformers. A total of around 370 loads are modeled
in the network.

Our implementation in the software packagePowerFac-
tory [7] is fully integrated to NamPower’s ABB MicroSCADA
central master system, which collects over a communication
network the measured values sent by the installed Remote
Telemetry Units (RTUs). This allows, at any time, to directly
populate the measurement models with the actually measured
values. For test purposes, we randomly used the NamPower
system’s snapshot taken on August 18th, 2004 at 5pm.

A. Test scenario I

A total of 435 measurements are physically installed in the
network. Among which we have 161 active power measure-
ments (P-meas), 121 reactive power measurements (Q-meas),
11 current magnitude measurements (I-meas), and 142 voltage
magnitude measurements (V-meas). In the given model, we
selected a total of 164 states to be estimated. More precisely,
we were interested in 79 active power states and 79 reactive
power states (of selected loads and generator injections),
respectively. In addition, 6 tap positions of 2- and 3-winding
transformers were included in the set of states to be estimated
(see ”Scenario I” in the table of Fig. 6).

The given dimensions resulted in a corresponding435×164-
sensitivity matrix. The continuous matrix was discretized to
the range[−100, 100]. We detected high sparsity (only 3.09 %

non-zero elements). Our method computes the pseudorank
in 2ms, whereas an ordinary rank computation (performed
by MATLAB) is more than 20 times slower. Even if we
use MATLAB to perform sparse rank calculations (based
on a singular value decomposition for sparse matrices), the
pseudorank-calculation is 16 times faster (see the last three
rows of the table in Fig. 6).

In addition, our investigations revealed 184 redundant mea-
surements (among which we found 39 P-meas, 23 Q-meas,
10 I-meas, and 112 V-meas). The redundant measurements
could be grouped into 62 redundance classes. The highest level
of redundance detected for such a class was6.

B. Test scenarios II and III

This speed-up pays off in particular for larger systems.
In order to obtain sensitivity matrices of higher dimensions,
we fully supplied the network with further artificial measure-
ments: we additionally introduced P-, Q-, and I-measurements
at each side of any branch, and V-measurements at each node.
This resulted in a total of 4397 measurements. Moreover, we
increased the number of states to be estimated to813. In this
setting, we estimated all possible transformer taps (of 2- and 3-
winding transformers) and all active and reactive power flows
at each consumer and at each injection.

We combined the various settings to obtain two further test
scenarios (see Fig. 6). Scenario II uses all 4397 measurements
to estimate the restricted set of 164 states, whereas Scenario III
combines both, the full set of 4397 measurements and the full
set of 813 states to be estimated. In each of the scenarios, our
pseudorank-calculation, which is performed in a small fraction
of a second, considerably outperform the calculation of the
rank, which takes up to a few seconds (see Fig. 6).

The test were performed on a HP workstation wx8000 with
two 3.2 GHz HPTC Xeon CPUs.

VII. C ONCLUSION

We demonstrated a novel approach for observability analysis
in large-scale networks. The core part of the presented algo-
rithm is to perform fast rank calculations on a corresponding
sparse sensitivity matrix which is drawn from the location of
the measurements and the states to be estimated. Our imple-
mentation of the corresponding algorithm—which intrinsically
uses the notion of the ”pseudorank”—yields very encouraging
results for practical settings. The presented approach has the
advantage of being extremely flexible, since it is possible to
take into account any measured quantity and any possible
state to be estimated. In addition, a very detailed observability
report (redundancy of measurements, detection of individual
unobservable states) can be derived from our computations.

Further investigations on this topic might focus on an
extension of our notion of the pseudorank: To get a closer
match to the rank of a matrix, it could be of interest not only
to take into consideration the pairwise linear dependencies of
rows and columns of the sensitivity matrix, but investigate the
linear dependencies of any fixed numberc of row and column
vectors. In this sense, we could analogously to the casec = 2

test scenarios Scen. I Scen. II Scen. III

no. of measurements 435 4397 4397
P-meas 161 1070 1070

Q-meas 121 1070 1070

I-meas 11 1070 1070

V-meas 142 1187 1187

no. of estimated states 164 164 813
P-states 79 79 307

Q-states 79 79 307

Tap pos.-states 6 6 199

sensitivity matrix
size 435×164 4397×164 4397×813
sparsity 3.09 % 2.74 % 2.81 %

rank (full) (MATLAB) 41 ms 422 ms 6437 ms
rank (sparse) (MATLAB) 32 ms 218 ms 1344 ms
pseudorank (Prop. 1) 2 ms 31 ms 250 ms

Fig. 6. Test results on the network model as operated by NamPower, Namibia.
Three different scenarios with varying dimension of the sensitivity matrix
were investigated. The last three rows compare the running times of rank
calculations of the sensitivity matrix by MATLAB (full matrix mode, and
sparse matrix mode) with our pseudorank algorithm (Prop. 1). In each of the
scenarios, our algorithm to compute the pseudorank considerably outperforms
the computation of the rank of the sensitivity matrix. We gain speed-ups by
a factor ranging from 5 up to 20.

define the c-pseudorankc−prank(A) of a matrix A. It then
holds, forc1 ≥ c2 ≥ 2, that

rank(A) = ∞−prank(A) ≤ · · ·
· · · ≤ c1−prank(A) ≤ c2−prank(A) ≤ · · ·

· · · ≤ 2−prank(A) = prank(A).

In other words, the higher the value ofc, the more accurate
the observability analysis will be. On the other hand, the
running time for computingc−prank(A) will increase for
higher values ofc. The task then is to find a suitable trade-
off between accuracy and running time. The question remains
whether, there are (like for the casec = 2) also fast algorithms
to compute thec−prank(A) (on sparse matrices) for any
fixed c, which outperform the computation ofrank(A).

ACKNOWLEDGMENT

The authors would like to thank NamPower, Namibia, for
providing the network specifications of their model.

REFERENCES

[1] A. Abur, and A. G. Exposito.Detecting multiple solutions in state
estimation in the presence of current magnitude measurements.IEEE
Transactions on Power Systems 12(1):370–375, 1997.

[2] A. G. Exposito, an A. Abur.Generalized observability analysis and
measurement classification.IEEE Transactions on Power Systems
13(3):1090–1095, 1998.

[3] J. J. Graininger, and W. D. Stevenson.PowerSystem Analysis.McGraw-
Hill Series in Electricacl and Computer Engineering, 1994.

[4] G. N. Korres, P. J. Katsikas, and G. C. Contaxis.Transformer tap setting
observability in state estimation.IEEE Transactions on Power Systems
19(2):699–706, 2004.

[5] A. Monticelli. State Estimation in Electric Power Systems. A Generalized
Approach.Kluwer Academic Publishers, 1999.

[6] A. Monticelli. Electric power system state estimation.Proceedings of the
IEEE 88(2):262–282, 2000.

[7] DIgSILENT GmbH.DIgSILENT PowerFactory V13, User Manual.2005.

