

The 5DT Data Glove Driver

Reference Manual

55DDTT

Version 1.00

January 2000

Table of Contents

1. INTRODUCTION... 1

2. USING THE GLOVE DRIVER ... 1

2.1 WINDOWS 95/98/NT.. 1

2.2 LINUX ... 1

2.2.2 SETTING UP ACCESS TO THE SERIAL PORT... 2

2.2.3 THE HEADER FILE ... 2

2.3 SAMPLE SOURCE CODE .. 2

3. SUPPORTED GLOVES... 3

3.1 SENSOR MAPPINGS FOR THE 5DT DATA GLOVE 5... 3

3.2 SENSOR MAPPINGS FOR THE 5DT DATA GLOVE 16... 4

4. FUNCTION REFERENCE .. 5

5. GESTURE DEFINITIONS... 16

6. AUTO-CALIBRATION ... 19

1

1. Introduction

The 5DT Data Glove Driver provides access to the 5DT range of data gloves at an
intermediate level.

The Windows 95/98/NT version is provided in the form of a C/C++ header (.h) file, a
Microsoft Visual C++ library (.lib) file and a dynamic link library (.dll) file.

The Linux version is provided in form of a C/C++ header (.h) file, and a dynamic library (.so)
file.

The driver functionality includes:

• Multiple instances
• Easy initialization and shutdown
• Basic (raw) sensor values
• Scaled (auto-calibrated) sensor values
• Calibration functions
• Basic gesture recognition
• Cross-Platform Application Programming Interface

2. Using the glove driver

The 5DT Data Glove Driver is easy to implement. Use the following guidelines:

2.1 Windows 95/98/NT

i. Make sure that the header file fglove.h, the library file fglove.lib and the
dynamic link library file fglove.dll reside in the current (application) directory, or
somewhere that they can be found. The file fglove.dll may be copied into your
Windows system directory.

ii. Include the header file fglove.h in the application where necessary.
iii. Add the library file fglove.lib to the link process.

There is a also a debug version of the driver (fgloved.lib, fgloved.dll) which
outputs debug messages to the debugger.

2.2 Linux

The driver requires the Linux Posix threads library libpthread.so, which is usually
installed with Linux. The driver is linked to libc6.

2.2.1 Installing the library

The driver is a dynamic library file (libfglove.so) which must be installed somewhere
where applications can find it. If you have root access to the system, the easiest method is to
copy the file into the /usr/lib directory, e.g.:

2

cp libfglove.so /usr/lib

If you do not have root access to the system, you should place the library somewhere in your
home directory, and then set the LD_LIBRARY_PATH environment variable to include the
full path of the directory in which you have placed the library. This will indicate to the
dynamic library loader where to find the file. For example:

$ mkdir /home/yourhomedir/libs
$ cp libfglove.so /home/yourhomedir/libs
$ export LD_LIBRARY_PATH="/home/yourhomedir/libs"

In the above example, replace "yourhomedir" with your own home directory name.

2.2.2 Setting up access to the serial port

The 5DT Data Glove accesses the serial port using the standard Unix/Linux device files in the
/dev directory. Applications that use the glove should typically give the user the option of
specifying which device to check, such as /dev/ttyS1. It is recommended that you create a
symbolic link /dev/fglove to your device file, e.g:

cd /dev
ln -s ttyS1 fglove

This may make the setup of applications easier should you need to change the port that the
glove is connected to.

It is also required that the user of the glove has read/write access to the serial port device file.
By default, normally only the root user has these rights. If non-root users on the system will
be using the glove, the root user must grant access rights to the device file. For example, the
following command will give everyone on the system full access to the serial port
/dev/ttyS1:

chmod 777 /dev/ttyS1

2.2.3 The header file

The header file (fglove.h) should be copied somewhere where your compiler can find it. If
you have root access, the easiest is to copy it to /usr/include. If not, then just place the
header file in the same directory as your application.

2.3 Sample source code

Sample source code that makes use of the glove driver is distributed with the driver.

3

3. Supported gloves

The glove driver supports all 5DT Data Gloves. The current version implements 18 possible
sensors, and includes the roll and pitch sensors of the original 5DT Data Glove 5. The driver
attempts to map values to all sensor outputs. If it is unable to do so the sensor value defaults
to a sensible value. This value can be adjusted by forcing a specific value. To the application
programmer the driver therefore appears the same regardless of the type of glove that is
connected.

3.1 Sensor mappings for the 5DT Data Glove 5

The sensors on the 5DT Data Glove 5 are positioned as in Fig. 1.

Sensor Driver Sensor Index Description
A 0,1* Thumb flexure
B 3,4* Index finger flexure
C 6,7* Middle finger flexure
D 9,10* Ring finger flexure
E 12,13* Little finger flexure
F 16 Pitch angle of tilt sensor
G 17 Roll angle of tilt sensor

Table 1 - Sensor mappings for 5DT Data Glove 5

* Both these driver sensor indices will return the same value when the 5DT Data Glove 5 is

used.

B

A

C

D

E

G

F

Tilt sensor

Top of hand
Right handed glove

Figure 1 - Sensor positions for the 5DT Data Glove 5

4

3.2 Sensor mappings for the 5DT Data Glove 16

The sensors on the 5DT Data Glove 16 are positioned as in Fig. 2

Sensor Driver Sensor Index Description
0 0 Thumb flexure (lower joint)
1 1 Thumb flexure (second joint)
2 2 Thumb-index finger abduction
3 3 Index finger flexure (at knuckle)
4 4 Index finger flexure (second joint)
5 5 Index-middle finger abduction
6 6 Middle finger flexure (at knuckle)
7 7 Middle finger flexure (second joint)
8 8 Middle-ring finger abduction
9 9 Ring finger flexure (at knuckle)
10 10 Ring finger flexure (second joint)
11 11 Ring-little finger abduction
12 12 Little finger flexure (at knuckle)
13 13 Little finger flexure (second joint)
14 14 Thumb translation [not yet implemented]
15 15 Wrist flexure [not yet implemented]

Table 2 - Sensor mappings for 5DT Data Glove 16

3

15

6

9

12

Top of hand
Right handed glove

1

2

4

5

7
8

10 11

13

0

14

Figure 2 - Sensor mappings for the 5DT Data Glove 16

5

4. Function reference

The following functions are provided by the driver:

__
fdGlove *fdOpen(char *pPort)

Initializes the glove device on the specified port.

Return value
Returns a pointer to the glove device (fdGlove *). NULL is returned if an error occurred.

Parameter
pPort
Pointer to a zero terminated ASCII string containing the name of the communication port.
Valid values on Windows range from "COM1" to "COM8". Unix/Linux port names will
differ.

Remarks
Do not attempt to alter the contents of the returned pointer directly, use the functions provided
instead.

__
int fdClose(fdGlove *pFG)

Frees the glove device and communications port.

Return value
Returns nonzero if successful, zero if an error occurred.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
It is important to call this function when you are finished using the glove.

__
int fdGetGloveHand(fdGlove *pFG)

Obtains the handedness (left or right handed) of the glove.

Return value
Returns either FD_HAND_LEFT or FD_HAND_RIGHT, as defined by the enumerated type
EfdGloveHand.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
None.

6

__
int fdGetGloveType(fdGlove *pFG)

Obtains the type of the currently connected glove.

Return value
Returns one of FD_GLOVENONE, FD_GLOVE7, FD_GLOVE7W, FD_GLOVE16 or
FD_GLOVE16W, as defined by the enumerated type EfdGloveTypes.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
FD_GLOVE7 and FD_GLOVE7W refer to the original 5+2 (tilt angles) sensor glove (5DT
Data Glove 5). The W suffix indicates a wireless model. FD_GLOVE16 and FD_GLOVE16W
refer to the 16 sensor glove. In order to accommodate both glove types the
fdGetNumSensors() function currently returns 18 sensors. The additional two sensors
are defined as the original tilt angles that are not present in the 16-sensor glove. See the
description of fdGetNumSensors()for more details.

__
int fdGetNumSensors(fdGlove *pFG)

Obtains the number of available sensors values the driver can make available.

Return value
Returns the number of sensors. Currently it is fixed at 18, but future driver releases may
differ.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
Although the 5-sensor glove can measure only average flexure, the driver will attempt to fill
in missing values. The number of sensors returned can therefore be of a higher dimension.
The enumerated type EfdSensors defines the finger mapping for each sensor.

__
void fdGetSensorRawAll(fdGlove *pFG, unsigned short *pData)

Obtains the most recent raw sensor values from the currently connected glove.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

7

pData
Pointer to an array of 16-bit integers that will contain the raw sensor values. The size of the
array must always match the value returned by fdGetNumSensors().

Remarks
Currently the raw sensor samples are all 12 bit unsigned values. The range is therefore from 0
to 4095. Note that this is not the dynamic range of the sensors. There can be severe offset
values associated with each sensor. The enumerated type EfdSensors defines the finger
mapping for each sensor.

__
unsigned short fdGetSensorRaw(fdGlove *pFG, int nSensor)

Obtains the most recent raw sensor value for a specific sensor from the currently connected
glove.

Return value
Returns a 16-bit integer. See fdGetSensorRawAll() for details.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

Remarks
The enumerated type EfdSensors defines the finger mapping for each sensor.

__
void fdSetSensorRawAll(fdGlove *pFG, unsigned short *pData)

Forces the raw value for all the sensors.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pData
Pointer to an array of 16-bit integers that will contain the raw sensor values. The size of the
array must always match the value returned by fdGetNumSensors().

Remarks
Currently the raw sensor samples are all 12 bit unsigned values. The range is therefore from 0
to 4095. The enumerated type EfdSensors defines the finger mapping for each sensor.
Forcing a sensor value will result in a raw and scaled output other than the default zero.
Values that can be mapped will be overwritten, rendering the forced value void.

8

__
void fdSetSensorRaw(fdGlove *pFG, int nSensor, unsigned short
nRaw)

Forces the raw value for a specific sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

nRaw
16 bit raw value of the sensor. If the sensor is unmapped, the scaling calculations will proceed
as normal.

Remarks
The enumerated type EfdSensors defines the finger mapping for each sensor. This
function is only useful for sensors that cannot be mapped by a specific hardware device.
Forcing a sensor value will result in a raw and scaled output other than the default zero.
Values that can be mapped will be overwritten, rendering the forced value void.

__
void fdGetSensorScaledAll(fdGlove *pFG, float *pData)

Obtains the most recent scaled (auto-calibrated) sensor values from the currently connected
glove.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pData
Pointer to an array of floating point numbers that will contain the scaled sensor values. The
size of the array must always match the value returned by fdGetNumSensors().

Remarks
The sensor range is a value from zero to the value defined by the fdSetSensorMax()
and fdSetSensorMaxAll() functions. The glove driver defaults to a range of [0...1]. The
automatic calibration process is described in section 6. The enumerated type EfdSensors
defines the finger mapping for each sensor.

9

__
float fdGetSensorScaled(fdGlove *pFG, int nSensor)

Obtains the most recent scaled (auto-calibrated) value for a specific sensor from the currently
connected glove.

Return value
Returns a floating point sensor value.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

Remarks
The sensor range is a value from zero to the value defined by the fdSetSensorMax()
and fdSetSensorMaxAll() functions. The glove driver defaults to a range of [0...1]. The
automatic calibration process is described in section 6. The enumerated type EfdSensors
defines the finger mapping for each sensor.

__
int fdGetNumGestures(fdGlove *pFG)

Obtains the number of available gestures that can be recognized by the glove driver.

Return value
Returns the number of available gestures. Currently 16 different gestures are supported. Refer
to section 5 for details.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
None.

__
int fdGetGesture(fdGlove *pFG)

Obtains the current gesture being performed.

Return value
Returns the current gesture being performed. Refer to section 5 for details.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

10

Remarks
None.

__
void fdGetCalibrationAll(fdGlove *pFG, unsigned short *pUpper,
unsigned short *pLower)

Obtains the current auto-calibration settings of the driver.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pUpper and pLower
Arrays of 16 bit unsigned integers that will contain the maximum and minimum raw sensor
values. The size of each array must always match the value returned by
fdGetNumSensors(). Refer to section 6 for details.

Remarks
None.

__
void fdGetCalibration(fdGlove *pFG, int nSensor, unsigned
short *pUpper, unsigned short *pLower)

Obtains the current auto-calibration settings of the driver for a specific sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

pUpper and pLower
Pointers to 16 bit unsigned integers containing the maximum and minimum raw sensor
values. Refer to section 6 for details.

Remarks
None.

__
void fdSetCalibrationAll(fdGlove *pFG, unsigned short *pUpper,
unsigned short *pLower)

11

Resets the current auto-calibration settings of the driver to user defined values.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pUpper and pLower
Arrays of 16 bit unsigned integers containing the maximum and minimum raw sensor values.
The size of each array must always match the value returned by fdGetNumSensors().
Refer to section 6 for details.

Remarks
For unmapped sensors it would be sensible to set the upper and lower calibration settings
above and below the raw value forced with fdSetSensorRaw()and
fdSetSensorRawAll().

__
void fdSetCalibration(fdGlove *pFG, int nSensor, unsigned
short nUpper, unsigned short nLower)

Resets the current auto-calibration settings of the driver for a specific sensor to user defined
values.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

nUpper and nLower
16 bit unsigned integers containing the maximum and minimum raw sensor values. Refer to
section 6 for details.

Remarks
For unmapped sensors it would be sensible to set the upper and lower calibration settings
above and below the raw value forced with fdSetSensorRaw()and
fdSetSensorRawAll().

__
void fdResetCalibration(fdGlove *pFG)

Resets the internal auto-calibration settings of the driver to appropriate default values.

12

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

Remarks
This function is similar to the fdSetCalibrationAll() function with each of the upper
and lower calibration array values set to 0 and 4095 respectively. This function, or any of the
other calibration functions, should be called whenever the application starts up or the glove
changes users during run-time. For unmapped sensors the upper and lower calibration values
are set to 4095 and 0 respectively, which is the inverse of the auto-calibration settings.

__
void fdGetSensorMaxAll(fdGlove *pFG, float *pMax)

Obtains the maximum scaled value for each sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pMax
Array of floating point values that will contain the maximum scaled sensor values. The size of
the array must always match the value returned by fdGetNumSensors().

Remarks
The glove driver defaults to a maximum scaled value of 1 for each sensor.

__
float fdGetSensorMax(fdGlove *pFG, int nSensor)

Obtains the maximum scaled value for a specific sensor.

Return value
Returns the maximum scaled values of the sensor.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being queried. The value must lie in the range given by the
enumerated type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

Remarks

13

The glove driver defaults to a maximum scaled value of 1 for each sensor.

__
void fdSetSensorMaxAll(fdGlove *pFG, float *pMax)

Sets the maximum scaled value for each sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pMax
Array of floating point values that contains the maximum scaled sensor values. The size of the
array must always match the value returned by fdGetNumSensors().

Remarks
The glove driver defaults to a maximum scaled value of 1 for each sensor.

__
void fdSetSensorMax(fdGlove *pFG, int nSensor, float fMax)

Sets the maximum scaled value for a specific sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

fMax
A floating point value that contains the maximum scaled sensor value.

Remarks
The glove driver defaults to a maximum scaled value of 1 for each sensor.

__
void fdGetThresholdAll(fdGlove *pFG, float *pUpper, float
*pLower)

Obtains the current gesture recognition threshold settings of the driver.

Return value
None.

14

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pUpper and pLower
Arrays of floating point numbers that will contain the maximum and minimum threshold
values. The size of each array must always match the value returned by
fdGetNumSensors(). Refer to section 6 for details.

Remarks
None.

__
void fdGetThreshold(fdGlove *pFG, int nSensor, float *pUpper,
float *pLower)

Obtains the current gesture recognition threshold settings of the driver for a specific sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being queried. The value must lie in the range given by the
enumerated type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

pUpper and pLower
Pointers to floating point numbers that will contain the maximum and minimum threshold
values. Refer to section 6 for details.

Remarks
None.

__
void fdSetThresholdAll(fdGlove *pFG, float *pUpper, float
*pLower)

Sets the current gesture recognition threshold settings of the driver.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pUpper and pLower

15

Arrays of floating point numbers that contains the maximum and minimum threshold values.
The size of each array must always match the value returned by fdGetNumSensors().
Refer to section 6 for details.

Remarks
None.

__
void fdSetThreshold(fdGlove *pFG, int nSensor, float fUpper,
float fLower)

Sets the current gesture recognition threshold settings of the driver for a specific sensor.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

nSensor
Index of the sensor that is being set. The value must lie in the range given by the enumerated
type EfdSensors, or alternatively from zero to the value returned by
fdGetNumSensors() minus one.

fUpper and fLower
Floating point numbers that contain the maximum and minimum threshold values. Refer to
section 6 for details.

Remarks
None.

__
void fdGetGloveInfo(fdGlove *pFG, unsigned char *pData)

Obtains the information data block of the currently connected glove.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pData
Array of 32 bytes that will contain the information data.

Remarks
The information data is specified in the glove user's manual. The size of the information block
is always 32 bytes.

__

16

void fdGetDriverInfo(fdGlove *pFG, unsigned char *pData)

Obtains the information data block of the driver.

Return value
None.

Parameters
pFG
Pointer to a glove device. This is the value returned by fdOpen().

pData
Array of 32 bytes that will contain the information data.

Remarks
The information data is a zero terminated string that contains driver information. The size of
the information block is always 32 bytes.

5. Gesture definitions

The currently defined set of gestures is comprised of binary open/close configurations of the
fingers excluding the thumb. There are 24 = 16 such possible combinations. Gesture number 0
is defined as all the fingers (excluding the thumb) being closed, and gesture number 15 as all
the fingers open. The index finger indicates the least significant bit. For example, the index
finger point gesture will therefore be number 1, and the little finger point gesture number will
be 8. An invalid (unrecognizable) gesture is defined as the value -1.

A scaled sensor value of higher than the upper threshold setting will indicate a closed finger,
while a scaled sensor value of lower than the lower threshold setting will indicate an open
finger. A value in-between is invalid and will result in an invalid gesture. In the case of
multiple finger joint angle measurements (such as the 16 sensor glove), the maximum of the
individual joint sensor values is taken to obtain a closed gesture and the minimum to obtain an
open gesture. Closed gestures take precedence, in other words, bending only one joint of a
finger will count as a closed gesture.

The built-in gesture recognition capabilities of the glove driver is limited in scope and user
independence. High level gesture recognition algorithms that rely on training sequences are
suggested for advanced applications.

17

Finger: Little Ring Middle Index

5DT Data Glove 5
sensor:

E D C B

5DT Data Glove 16
sensor:

12,13 9,10 6,7 3,4

Driver sensor index: 12,13# 9,10# 6,7# 3,4#

 Gesture
Number Flexure (0=flexed, 1=unflexed) Gesture Description Fig.

 0 0 0 0 0 Fist 3.0

 1 0 0 0 1 Index finger point 3.1

2 0 0 1 0 Up yours 3.2

3 0 0 1 1 Two finger point 3.3

4 0 1 0 0 Ring finger point 3.4

5 0 1 0 1 Ring index point 3.5

6 0 1 1 0 Ring middle point 3.6

7 0 1 1 1

Three finger point
(or not little point)

3.7

8 1 0 0 0 Little finger point 3.8

9 1 0 0 1 Howzit 3.9

10 1 0 1 0 Little middle point 3.10

11 1 0 1 1 Not ring finger point 3.11

 12 1 1 0 0 Little ring point 3.12

13 1 1 0 1 Not up yours 3.13

14 1 1 1 0 Not index finger point 3.14

15 1 1 1 1 Flat hand 3.15

Table 3 - Gesture definition scheme as implemented for the 5DT Data Glove Driver

When the 5DT Data Glove 5 is used, both these driver sensor indices will return the same

value.
When the 5DT Data Glove 16 is used, the driver sensor indices will return different values.
The maximum of the two values will be used to test for a flexed (closed) gesture, and the
minimum value of the two will be used to test for an unflexed (open) gesture.

18

The following gestures are currently defined (right hand shown):

0) Fist 1) Index finger point
2) Up Yours (Middle finger

point)
3) Two finger point

4) Ring finger point 5) Ring-index finger point 6) Ring-middle finger point
7) Three finger point (or not

little finger point)

8) Little finger point
9) Howzit (index and little

finger point)
10) Little-middle finger

point
11) Not ring finger point

12) Little-ring finger point 13) Not up yours 14) Not index finger point 15) Flat hand

Figure 3 - Gesture Illustrations

19

6. Auto-calibration

The driver can provide sensor outputs in an automatic, linearly calibrated fashion. During
every update, the raw value read from the sensor is compared to the current minimum and
maximum raw values (rawmin and rawmax) as set by the functions
fdSetCalibrationAll(), fdSetCalibration()or fdResetCalibration().
If the current minimum and maximum values are exceeded, they are overwritten. The upper
and lower calibration values are therefore continuously pushed "outwards". The normalized
output is given by the first order equation

,.
minmax

min Max
rawraw

rawraw
out val

−
−

=

which is in [0...Max]. The value of Max is set by the functions
fdSetSensorMaxAll()and fdSetSensorMax(). Doing a few flexing movements
with the hand quickly sets the operating values for rawmin and rawmax, and calibrates the
glove.

The auto-calibration process can be ignored by simply regarding only the raw sensor outputs.
It would be up to the application developer to provide a suitable calibration process. Note that
calibration is mandatory, especially with the 16 sensor glove which contains no hardware
calibration possibilities (miniature preset potentiometers).

