
Galil Motion Control 
Firmware Command Reference

DMC40x0
11/11/2011 10:43:45
Overview

# @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

●     - - Subtraction Operator
●     # - Label (subroutine)
●     #AMPERR - Amplifier error automatic subroutine
●     #AUTO - Subroutine to run automatically upon power up
●     #AUTOERR - EEPROM checksum error and Serial Encoder timeout error Automatic Subroutine
●     #CMDERR - Command error automatic subroutine
●     #COMINT - Communication interrupt automatic subroutine
●     #ININT - Input interrupt automatic subroutine
●     #LIMSWI - Limit switch automatic subroutine
●     #MCTIME - MC command timeout automatic subroutine
●     #POSERR - Position error automatic subroutine
●     #SERERR - Serial Encoder Error Automatic Subroutine
●     #TCPERR - Ethernet communication error automatic subroutine
●     $ - Hexadecimal
●     % - Modulo Operator
●     & - Bitwise AND Operator
●     & - JS subroutine pass variable by reference
●     ( , ) - Parentheses (order of operations)
●     * - Multiplication Operator
●     / - Division Operator
●     ; - Semicolon (Command Delimiter)
●     @ABS - Absolute value
●     @ACOS - Inverse cosine
●     @AN - Analog Input Query
●     @ASIN - Inverse sine
●     @ATAN - Inverse tangent
●     @COM - Bitwise complement
●     @COS - Cosine
●     @FRAC - Fractional part
●     @IN - Read digital input
●     @INT - Integer part
●     @OUT - Read digital output
●     @RND - Round
●     @SIN - Sine



●     @SQR - Square Root
●     @TAN - Tangent
●     [,] - Square Brackets (Array Index Operator)
●     ^a,^b,^c,^d,^e,^f,^g,^h - JS subroutine stack variable
●     ^L^K - Lock program
●     ^R^S - Master Reset
●     ^R^V - Revision Information
●     _GP - Gearing Phase Differential Operand
●     _LF - Forward Limit Switch Operand
●     _LR - Reverse Limit Switch Operand
●     | - Bitwise OR Operator
●     ~ - Variable Axis Designator
●     + - Addition Operator
●     <,>, =,<=,>=,<> - Comparison Operators
●     = - Equals (Assignment Operator)
●     AB - Abort
●     AC - Acceleration
●     AD - After Distance
●     AF - Analog Feedback Select
●     AG - Amplifier Gain
●     AI - After Input
●     AL - Arm Latch
●     AM - After Move
●     AO - Analog Output
●     AP - After Absolute Position
●     AQ - Analog Input Configuration
●     AR - After Relative Distance
●     AS - At Speed
●     AT - At Time
●     AU - Set amplifier current loop
●     AV - After Vector Distance
●     AW - Amplifier Bandwidth
●     BA - Brushless Axis
●     BB - Brushless Phase Begins
●     BC - Brushless Calibration
●     BD - Brushless Degrees
●     BG - Begin
●     BI - Brushless Inputs
●     BK - Breakpoint
●     BL - Reverse Software Limit
●     BM - Brushless Modulo
●     BN - Burn
●     BO - Brushless Offset
●     BP - Burn Program
●     BQ - Brushless Offset dual DAC
●     BR - Brush Axis



●     BS - Brushless Setup
●     BT - Begin PVT Motion
●     BV - Burn Variables and Array
●     BW - Brake Wait
●     BX - Sine Amp Initialization
●     BZ - Brushless Zero
●     CA - Coordinate Axes
●     CB - Clear Bit
●     CC - Configure Communications Port 2
●     CD - Contour Data
●     CE - Configure Encoder
●     CF - Configure Unsolicited Messages Handle
●     CI - Configure Communication Interrupt
●     CM - Contour Mode
●     CN - Configure
●     CO - Configure Extended I O
●     CR - Circle
●     CS - Clear Sequence
●     CW - Copyright information Data Adjustment bit on off
●     DA - Deallocate the Variables & Arrays
●     DC - Deceleration
●     DE - Dual (Auxiliary) Encoder Position
●     DF - Dual Feedback (DV feedback swap)
●     DH - DHCP Server Enable
●     DL - Download
●     DM - Dimension
●     DP - Define Position
●     DR - Configures I O Data Record Update Rate
●     DT - Delta Time
●     DV - Dual Velocity (Dual Loop)
●     EA - Choose ECAM master
●     EB - Enable ECAM
●     EC - ECAM Counter
●     ED - Edit
●     EG - ECAM go (engage)
●     EI - Event Interrupts
●     ELSE - Else function for use with IF conditional statement
●     EM - Cam cycles (modulus)
●     EN - End
●     ENDIF - End of IF conditional statement
●     EO - Echo
●     EP - Cam table master interval and phase shift
●     EQ - ECAM quit (disengage)
●     ER - Error Limit
●     ES - Ellipse Scale
●     ET - Electronic cam table



●     EW - ECAM Widen Segment
●     EY - ECAM Cycle Count
●     FA - Acceleration Feedforward
●     FE - Find Edge
●     FI - Find Index
●     FL - Forward Software Limit
●     FV - Velocity Feedforward
●     GA - Master Axis for Gearing
●     GD - Gear Distance
●     GM - Gantry mode
●     GR - Gear Ratio
●     HM - Home
●     HS - Handle Assignment Switch
●     HV - Homing Velocity
●     HX - Halt Execution
●     IA - IP Address
●     ID - Identify
●     IF - IF conditional statement
●     IH - Open IP Handle
●     II - Input Interrupt
●     IK - Block Ethernet ports
●     IL - Integrator Limit
●     IN - Input Variable
●     IP - Increment Position
●     IT - Independent Time Constant - Smoothing Function
●     JG - Jog
●     JP - Jump to Program Location
●     JS - Jump to Subroutine
●     KD - Derivative Constant
●     KI - Integrator
●     KP - Proportional Constant
●     KS - Step Motor Smoothing
●     LA - List Arrays
●     LB - LCD Bias Contrast
●     LC - Low Current Stepper Mode
●     LD - Limit Disable
●     LE - Linear Interpolation End
●     LI - Linear Interpolation Distance
●     LL - List Labels
●     LM - Linear Interpolation Mode
●     LS - List
●     LU - LCD Update
●     LV - List Variables
●     LZ - Inhibit leading zeros
●     MB - Modbus
●     MC - Motion Complete



●     MF - Forward Motion to Position
●     MG - Message
●     MO - Motor Off
●     MR - Reverse Motion to Position
●     MT - Motor Type
●     MW - Modbus Wait
●     NB - Notch Bandwidth
●     NF - Notch Frequency
●     NO,' - No Operation
●     NZ - Notch Zero
●     OA - Off on encoder failure
●     OB - Output Bit
●     OC - Output Compare
●     OE - Off-on-Error
●     OF - Offset
●     OP - Output Port
●     OT - Off on encoder failure time
●     OV - Off on encoder failure voltage
●     P2CD - Serial port 2 code
●     P2CH - Serial port 2 character
●     P2NM - Serial port 2 number
●     P2ST - Serial port 2 string
●     PA - Position Absolute
●     PF - Position Format
●     PL - Pole
●     PR - Position Relative
●     PT - Position Tracking
●     PV - PVT Data
●     PW - Password
●     QD - Download Array
●     QH - Hall State
●     QR - I O Data Record
●     QS - Error Magnitude
●     QU - Upload Array
●     QZ - Return Data Record information
●     RA - Record Array
●     RC - Record
●     RD - Record Data
●     RE - Return from Error Routine
●     REM - Remark
●     RI - Return from Interrupt Routine
●     RL - Report Latched Position
●     RP - Reference Position
●     RS - Reset
●     SA - Send Command
●     SB - Set Bit



●     SC - Stop Code
●     SD - Switch Deceleration
●     SH - Servo Here
●     SI - Configure the special Galil SSI feature
●     SL - Single Step
●     SM - Subnet Mask
●     SP - Speed
●     SS - Configure the special Galil BiSS feature
●     ST - Stop
●     SY - Serial encoder BiSS active level
●     TA - Tell Amplifier error status
●     TB - Tell Status Byte
●     TC - Tell Error Code
●     TD - Tell Dual Encoder
●     TE - Tell Error
●     TH - Tell Ethernet Handle
●     TI - Tell Inputs
●     TIME - Time Operand
●     TK - Peak Torque Limit
●     TL - Torque Limit
●     TM - Update Time
●     TN - Vector Tangent
●     TP - Tell Position
●     TR - Trace
●     TS - Tell Switches
●     TT - Tell Torque
●     TV - Tell Velocity
●     TW - Timeout for IN Position (MC)
●     TZ - Tell I O Configuration
●     UI - User Interrupt
●     UL - Upload
●     VA - Vector Acceleration
●     VD - Vector Deceleration
●     VE - Vector Sequence End
●     VF - Variable Format
●     VM - Vector Mode
●     VP - Vector Position
●     VR - Vector Speed Ratio
●     VS - Vector Speed
●     VV - Vector Speed Variable
●     WH - Which Handle
●     WT - Wait
●     XQ - Execute Program
●     YA - Step Drive Resolution
●     YB - Step Motor Resolution
●     YC - Encoder Resolution



●     YR - Error Correction
●     YS - Stepper Position Maintenance Mode Enable, Status
●     ZA - User Data Record Variables
●     ZS - Zero Subroutine Stack



Overview

This command reference is a supplement to the Galil User Manual. 

Resources on www.galilmc.com

Printable version

Product Manuals

Application Notes

Newest Firmware

Sample DMC code

Learning Center

Support and Downloads

What is DMC code?

DMC (Digital Motion Controller) code is the programming language used for all Galil hardware. It is a high-
level, interpreted language which is simple to learn and use, yet is surprisingly powerful. Actively developed 
and refined since 1983, DMC code provides functionality that is particularly well suited to motion control 
and PLC applications.

DMC code can be used manually from a terminal, programmatically from an external device or 
customer application, and can be fully embedded into a Galil controller's memory to leverage powerful 
"embedded-only" features and for stand-alone applications.

DMC code of course provides symbolic variables, arrays, and math support. The elegance of DMC coding 
is particularly evident when writing code for embedded applications. When running on the controller, the 
DMC language supports if-then-else conditionals, code branching, subroutines, a call stack (with 
parameter passing and local variable scope on some models), multi-threading, and automatic subroutines (i.
e. event-driven programming).

DMC code runs on the Galil Real Time Operating System (RTOS) which is specifically designed for 
Galil hardware and for motion control.

The learning curve on DMC code is quite fast, usually less than one hour to basic motion, so called, 
"spinning motors". It is the fastest to learn, the easiest, the simplest, and one of the most flexible and 
powerful languages in the industry. Don't forget, Galil's Applications Support Team is available to assist you; 
from the most basic question to the most complicated needs.

Top Down: How is a Galil system normally structured?

However you want, there are three general approaches to Galil programming.

http://www.galilmc.com/
http://www.galilmc.com/support/manuals.php
http://www.galilmc.com/support/manuals.php
http://www.galilmc.com/support/manuals.php
http://www.galilmc.com/support/application-notes.php
http://www.galilmc.com/support/firmware-downloads.php
http://www.galilmc.com/support/sample-dmc-code.php
http://www.galilmc.com/learning/overview.php
http://www.galilmc.com/support/overview.php
http://www.galilmc.com/about/contact.php


Embedded/Galil-centric Programming
In this approach, a host computer is only used during development to program the controller. The program is 
then downloaded and burned to non-volatile flash using the #AUTO automatic subroutine to indicate where 
code execution should start on boot-up. The Galil controller will now run "standalone," not requiring 
any intervention from the host. Note that for serial and Ethernet controllers, the standalone controller can 
still actively work with other controllers in a network, without host intervention.

PCI and other PC bus-based controllers support this approach, although still require the PCI bus for power.

GalilTools (GT) is provided as a programming environment for developing embedded applications.

Host-centric Programming
If a GUI or other frontend is desired to be run on a host, all development can be conducted on the host PC, with 
the architecture, operating system, and programming language of choice. In this approach, the controller 
receives every command from the host PC, nothing is running embedded. Many Galil firmware features 
are available to facilitate host-centric programming including mode-of-motion buffers, data logging 
buffers, asynchronous data record updates from the controller, PCI and UDP interrupt events, and more.

GalilTools (GT) is bundled with a programming library (API) for programming applications from a host. 
Many popular operating systems and languages are supported.

Hybrid Programming
Perhaps the most versatile approach to Galil system design, the Hybrid approach allows for both embedded 
code and host-side code to work in tandem. Typically an application is developed for embedded use in DMC 
code. The code incorporates all of the detail of an application but relies on the host to provide it data. 
Through variables, arrays, and other commands, the host is able to define the bounds of the embedded 
algorithms. The host plays a supervisory role, interrogating status, receiving asynchronous updates from 
the controller, starting and stopping threads, and so on. The controller takes care of the motion and I/
O responsibilities based on its embedded program, and the controller's real time operating system (RTOS) 
ensures that the application won't suffer from indeterminacy which is common on general purpose PC 
operating systems (e.g. Microsoft Windows). Because the controller takes care of the details, the host is able to 
use its resources on other tasks, such as complicated number crunching or user interface.

It is noteworthy that Galil Standalone controllers (e.g. DMC-40x0, DMC-41x3, DMC-21x3, RIO-47xxx) 
can leverage the Ethernet to provide powerful modularity. Using any of the above three system 
approaches, multiple controllers can work in concert to achieve an application's requirements. 
Networked controllers also provide easy scalability. Need some more digital or analog I/O? Add an RIO. 
Need another axis of control? Add another DMC to the network. Both the Galil firmware and the Galil 
software libraries provide features which allow easy use of multiple controllers on an Ethernet 
network. RS232/422/485 networks are also possible. 

Bottom Up: Anatomy of DMC code

Classification
DMC language can be broken up into the following general classifications

http://www.galilmc.com/products/galiltools.php
http://www.galilmc.com/products/galiltools.php


Classification Description Examples Example Comments

Explicit Only

The command receives its 
arguments only by 
assignment with the "=" 
operator.

IHC=192,168,1,101<1070>2

Create a TCP connection on 
Ethernet handle C to a device 
at IP address 192.168.1.101 
on port 1070

Implicit Only
The command receives its 
arguments only by an 
implicit argument order.

IA 192,168,1,102 Set the local IP address to 
192.168.1.102

Explicit or Implicit

The command receives its 
arguments either by an 
explicit assignment using 
the "=" symbol, or an 
implicit argument order.

KPA=64;KPB=32;KPH=128 
KP 64,32,,,,,,128

Assign the proportional 
constant (KP) of the PID 
filter to three different axes.

Accepts Axis Mask
The command receives its 
arguments as a string of 
valid axis names.

ST ADF Stop (ST) axes A, D and F. 
Leave other axes running.

Two Letter Only The command accepts no 
arguments BN Burn (BN) controller 

parameters to flash memory

Operator or Comparator

Operators take two 
arguments and produce a 
result. Comparators take 
two values and return a 
Boolean (1 or 0).

+,-,*,/ 
=,<,>,<=,>=,<>

Operators 
Comparators

At Function

Starting with the @ 
character, these functions 
take one argument and 
perform a function, 
returning its result

@SIN,@ASIN 
@AN,@IN 
@RND,@FRAC,@COM

Trig functions Sine and 
ArcSine  
I/O functions Analog in and 
Digital in  
Numerical functions Round, 
Fractional Part, Bitwise 
complement

Embedded Only

Not valid from the 
terminal, or from PC-side 
code, these commands are 
used in embedded DMC 
code only

IF,ELSE,ENDIF  
JS,JP  
EN, RE

IF Conditionals  
Jump commands 
End program, Return from 
Error

Operand

Operands hold values, and 
are not valid on their own. 
They can be used as 
arguments to commands, 
operators or comparators

_TPA 
_LFC 
_TC

Current position of axis A 
encoder 
Forward limit state on C axis 
Current Error code

Trippoint

Trippoints hold up a 
thread's execution (block) 
until a certain condition 
occurs. These are a special 
case of Embedded Only 
type commands.

WT 1000  
AMA  
AI1

Wait 1000 ms  
Wait until axis A completes 
profiled motion  
Wait for input one to go high



Comment Comments are used to 
document code. 'This is a comment There are three types of 

comments: REM, ', and NO

DMC code is case sensitive. All Galil commands are uppercase. User variables and arrays can be upper-case 
or lower case. Galil recommends that array and variable names contain at least one lower-case character to 
help distinguish them from commands. 

Explicit Notation
These commands specify data using an axis designator followed by an equals sign. The * symbol can be used 
in place of the axis designator. The * defines data for all axes to be the same. For example: 

Syntax Description

PRB=1000 Sets B axis data at 1000

PR*=1000 Sets all axes to 1000

Implicit Notation
These commands require numerical arguments to be specified following the instruction. Values may be 
specified for any axis separately or any combination of axes. The comma delimiter indicates argument 
location. For commands that affect axes, the order of arguments is axis A first, followed by a comma, axis B 
next, followed by a comma, and so on. Omitting an argument will result in two consecutive commas and 
doesn't change that axis' current value. Examples of valid syntax are listed below. 

Valid Syntax Description

AC n Specify argument for A axis only

AC n,n Specify argument for A and B only

AC n,,n Specify argument for A and C only

AC n,n,n,n Specify arguments for A,B,C,D axes

AC ,n,,,n Specify arguments for B and E axis only

AC ,,,n,n Specify arguments for E and F 
Where n is replaced by actual values.

Accepts Axis Mask
These commands require the user to identify the specific axes to be affected. These commands are followed 
by uppercase X,Y,Z and W or A,B,C,D,E,F,G and H. In DMC code, X,Y,Z,W and A,B,C,D are 
synonyms, respectively.

No commas are used and the order of axes is not important. When an argument is not required and is not given, 
the command is executed for all axes. 

Valid Syntax Description

SH A Servo Here, A only



SH ABD Servo Here, A,B and D axes

SH ACD Servo Here, A,C and D axes

SH ABCD Servo Here, A,B,C and D axes

SH XYZW Identical to SH ABCD

SH BCAD Servo Here, A,B,C and D axes

SH ADEG Servo Here, A,D,E and G axes

SH H Servo Here, H axis only

SH Servo Here, all axes

Two Letter Only
These commands have no options or arguments. Some examples follow.

Valid Syntax Description

BN Burn parameters

BV Burn Variables

BP Burn Programs (not applicable on the DMC30000)

ID Identify hardware configuration

LA List arrays

Operator or Comparator
Operators and Comparators take two arguments and return one value. All comparison and operations occur left 
to right. That is, multiplication and addition have the same order-of-operation priority, and operations 
and comparisons are performed as encountered on a left to right search. Parenthesis should be used to 
indicate order of operation precedence. Some examples follow.

Valid Syntax Description

var = 1 + 1 Variable var is assigned value 2

var = 2 + 1 * 3 Variable var is assigned value 9

var = 2 + (1 * 3) Variable var is assigned value 5

IF ((a=b) & (a=c)) Checks if a=b=c

IF (a=b=c) Invalid syntax to check if a=b=c

var = (a=1) var is assigned with Boolean value (true/false) based on comparison a=1

At Function
At functions take one value or evaluated expression and return a result. Some examples follow.

Valid Syntax Description

var = @SIN[90] Variable var is assigned value 1. Sine of 90 degrees.

var = @ASIN[1] Variable var is assigned value 90. Inverse Sine of 1



var = @IN[1] Variable var is assigned 1 or 0, based on current state of digital input 1

var = @RND[1 + 0.6] Variable var is assigned 2, 1.6 round to the nearest integer

Embedded Only
Embedded commands make sense only in the context of an embedded application. These commands 
include jumps, if-then-else syntax, subroutines, etc. Some examples follow. 

Valid Syntax Description

#go Labels can be called by name in order to jump code to specific 
lines

JP#go Jump to line number indicated by #go label

#AUTO Automatic subroutine. #AUTO is the entry point for execution on 
bootup. See entries starting with # for other automatic subroutines.

RI Return from interrupt. This is the termination for certain 
automatic subroutines (event handlers)

IF (a=5);MG"Five";ELSE;MG"Not Five";ENDIF If statement. ; can be replaced by carriage return for better 
readability

Automatic subroutines operate very similarly to event handlers in event-driven languages. When an event 
occurs, execution of code jumps to the automatic subroutine. Once the end of the automatic subroutine is 
reached, code execution continues where it left off. 

Operand
Many commands have corresponding operands that can be used for interrogation or for use within mathematical 
or other expressions. Operands are not valid alone, and must be used inside a valid DMC code expression. 
For example, to print the value of the TIME operand the following command is issued.

:MG TIME
 13779546.0000
:

To assign TIME to a variable and then print it, the following is used.

:var=TIME
:MG var
 13909046.0000
:

All DMC codes starting with the underscore _ character are operands. The servo loop counter, TIME, is an 
operand without an underscore.

Variables and array elements act similarly to operands. Whereas operands are read-only, variables and 
array elements are read-write. Operands, variables, and array elements can be arguments to commands, are valid 



in mathematical expressions, and can be used in assignments to other variables and array elements. 

Trippoints
The controller provides several commands that can be used to pause execution of code until certain conditions 
are met. Commands of this type are called "trippoints." Such trippoints may wait for an elapsed time, wait for 
a particular input, or in motion controllers wait for particular motion event to occur.

When a trippoint command is executed, the program halts execution of the next line of code until the status of 
the trippoint is cleared. Note that the trippoint only halts execution of the thread from which it is 
commanded while all other independent threads are unaffected. Additionally, if the trippoint is commanded from 
a subroutine, execution of the subroutine, as well as its calling thread, is halted.

Trippoints are intended for use only within embedded DMC code and should not be sent from a terminal 
or a host application program executing from a PC.

Popular Trippoints

Trippoint Short Description Supported On

WT wait for a time period (sleep) All Galil Hardware

AI wait for a digital input All Galil Hardware

AM after move Motion Controllers

MC motion complete, in position Motion Controllers

AT At time, time from reference All Galil Hardware

AD after distance Motion Controllers

AS At speed Motion Controllers

AV After Vector Distance Motion Controllers

AA After Analog RIO-47xxx only

Comments
Comments are used to document code, and to disable lines of code while debugging. There are three ways 
to comment.

REM     REM stands for "Remark." When a line begins with the REM command, the entire line is stripped 
by Galil software before downloading to the controller. REM is NOT a recognized Galil command; it is a 
keyword recognized by Galil software as data that is to be skipped during program download. When 
program speed and code length are at a premium, use REM comments.

NO     NO stands for "No Operation." Lines beginning with NO are downloaded to the controller and incur a 
non-zero processing overhead as a result. If the developer desires the comments to stay in code so that 
uploaded code will still be notated, use NO or '. NO comments are not stripped when code is compressed 
by software.

'     The single quote character is similar to NO. Lines beginning with ' are downloaded to the controller and 
incur a non-zero processing overhead as a result. If the developer desires the comments to stay in code so 



that uploaded code will still be notated, use NO or '. ' comments ARE stripped when code is compressed 
by software.

When commenting inline, NO and ' are valid when preceded by a ; character. REM is only valid as the start of 
a line. Some examples follow.

BG;'   This is a comment. semicolon and ' precede, followed by spaces, 
and then the comment
ST;NO  Same as above, except on compression, this data will remain, 
less spaces
REM This is a remark.  It will not be downloaded to the controller by 
Galil software
NO This is an NO comment starting a line
NOTE This is also an NO comment 
' This is a single quote comment starting a line
'PRX=1000;BGX;'  This line of code has been disabled with a leading '

Special characters ; and `

;      The semicolon is used to separate individual commands on a single line of embedded code or in a 
single interrogation from the host. When running multi-threaded, embedded code, all commands on a single 
line will be executed before the program counter switches to the next thread*. Using multiple commands on 
a single line therefore allows for increased thread priority.

* Certain commands such as trippoints will cause the program counter to continue to the next thread before a line has completed.

'      On the RIO series of PLCs and the DMC30000, the backtick (ascii 96) is a line continuation character. If 
a line of code passes the controller's 40 character length limit, the ` character can be used to continue the code 
on the next line.

Interrogation

Most commands accept a question mark (?) as an argument. This argument causes the controller to 
return parameter information. Type the command followed by a ? for each axis requested. The syntax format is 
the same as the parameter arguments described above except '?' replaces the values. 

Syntax Description

PR ? The controller will return the PR value for the A axis

PR ,,,? The controller will return the PR value for the D axis

PR ?,?,?,? The controller will return the PR value for the A,B,C and D axes

PR ,,,,,,,? The controller will return the PR value for the H axis

PR*=? The controller will return the PR value for all axes

Data Types

Galil4.2



There is only one native data type in DMC language, the Galil4.2 format. Galil4.2 is a signed, fixed-point, 
decimal number with 4 bytes of integer and 2 bytes of fraction. Bit encoding of Galil4.2 is 2's complement.

Integer values range from -2,147,483,648 to 2,147,483,647

Fractional values range from 0.999985 to .000015 in increments of .000015 (one part in 65535). When 
working with very small fractional values, use the $ formatter to display the number in hex.

:v=1-$0.0001;'subtract the smallest fractional value
:v=?
 1.0000
:v=?{$1.4};'hex display has higher resolution
$0.FFFF
:v=v+$0.0001
:v=?
 1.0000
:v=?{$1.4}
$1.0000
:

Strings
Galil "strings" are still variables in 4.2 format, with each byte printed as the ASCII representation of the 
number. Galil strings are max 6 characters. The left most character of a string is the most significant byte in 
the Galil4.2 number.

Boolean
A Boolean is represented in the Galil language as a Galil4.2 value. 0.0 is false. All other values are true.

:a=1
:b=2
:c=(a=b);'(a=b) returns a Galil Boolean
:LV
a= 1.0000
b= 2.0000
c= 0.0000
:a=2
:c=(a=b)
:LV
a= 2.0000
b= 2.0000
c= 1.0000
:

Units of Distance

The units of distance in a Galil controller are either in "counts" or "steps". A count is a single unit of 
feedback, such as a quadrature count, an SSI or BiSS bit, or an Analog to Digital converter bit. Counts are 
typical with servos. Steps are used for stepper-type motors. Steps are open-loop units and refer to a single 
level transition sent to a stepper amplifier. In general for a unit of real distance, 1 step is NOT equal in distance 
to 1 count. See the "Stepper Position Maintenance Mode" in the user manual for more information.



Each axis of a Galil motion controller can be configured to control either a servo or a stepper. In 
this documentation, servo motors are generally assumed. Differences between functionality in stepper and 
servo operation are noted in each command. Where not explicitly noted otherwise, when using stepper motors, 
the unit "count" can be exchanged with the unit "step" (e.g. steps per second instead of counts per second).

Flash Memory

Each Galil controller has a flash memory provided for saving parameters and user data. The flash is divided 
into three sectors, Parameters, Variables and Arrays, and Program. Each sector has an associated burn 
command which burns the entire sector.

Flash Sector Data Storage Burn Command

Parameters Stores the controller parameters such as PID filter coefficients, IP address, 
motion kinematic values, I/O configurations BN

Variables and Array Stores the currently allocated variable table (LV) and each of the arrays in 
the array table (LA) BV

Program Stores program currently downloaded on the controller* BP
*The DMC30000 downloads and runs programs directly out of flash. BP is not applicable. 

Resetting the Controller to Factory Defaults
When a master reset occurs, the controller will reset all setup parameters to their default values and the 
non-volatile memory is cleared to the factory state. A master reset is executed by the 
command, <ctrl R> <ctrl S> <Return> OR by powering up or resetting the controller with the MRST jumper on.



-
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Subtraction Operator
Hardware: All

Full Description
The - symbol is the subtraction operator. It takes as arguments any two values, variables, array elements, 
operands, or At functions (@SIN[]) and returns a value equal to the difference of the arguments. 
 
This is a binary operator (takes two arguments and returns one value). 
 
Mathmatical operations are calculated left to right rather than multiplication and division calculations 
performed prior to addition and subraction.  
Example: 
1+2*3 = 9;'      not 7 
 
It is recommended that parenthesis be used when more than one mathmatical operation is combined in 
one command. 
Example: 
var = ((10*30)+(60/30));'      evaluates as 302 
var = 10*30+60/30;'      evalutes as 12

Arguments

m - m
where m is any value, variable, array element, operand, or At functions (@SIN[]) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below. 
 

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands



N/A

Examples

:var1 = 10-4
:var2 = var1 - 3
:MG var2 - 1
 2.0000
:



#
Syntax: Other

Operands: none

Burn: not burnable

Label (subroutine)
Hardware: All

Full Description
The # operator denotes the name of a program label (for example #Move). Labels can be up to seven 
characters long and are often used to implement subroutines or loops. Labels are divided into (a) user defined 
(b) automatic subroutines. User defined labels can be printed with LL and the number of labels left available 
can be queried with MG _DL. The automatic subroutines include #CMDERR, #LIMSWI, #POSERR, 
#ININT, #AUTO, #AUTOERR, and #MCTIME (no RIO).  
A label can only be defined at the beginning of a new line.

There is a maximum of 510 labels available.

Arguments

#string
where  
     string is a label name up to seven characters. Uppercase or lowercase characters are valid.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (no RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
LL - List labels 
_DL - Labels available 
JP - Jump statement 
JS - Jump subroutine



Examples:

'A simple example of iteration.  The loop will run 10 times
i=0;'            Create a counter
#Loop;'          Label
 i=i+1;'         Increment counter
JP#Loop, i<10;'  spin in #Loop until i >= 10
EN;'             End the subroutine or thread



#AMPERR
Syntax: Other

Operands: none

Burn: not burnable

Amplifier error automatic subroutine
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
#AMPERR is an automatic subroutine and is used to run code when a fault occurs on a Galil amplifier. See the 
TA command and individual amplifier information in the controller user manual. 
 
Other user code does not need to be running for #AMPERR to be raised. 
 
When an external servo driver is used in an axes where the AMP-430x0 is also installed, the axis should be 
setup as a brushed motor (BR~a=1) otherwise the lack of hall inputs will cause an amplifier error. 
 
Use RE to return from the AMPERR subroutine. 
 
See the TA command for more information.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage controllers with integrated drives

Related Commands
TA - Tell amplifier status 
CN - Configure I/O 
OE - Off on error 
RE - Return from error

Examples:

'this code will run in the event of an amplifer error, 
'setting a digital output and notifying the operator.

#AMPERR



 'Set a digital bit to signal an amplifier error to peripheral hardware
 SB4

 
 'Send a message to the user                     
 MG"An amplifier error has occured" 

'Return from the AMPERR subroutine, restoring trippoints that were running
RE1

Detailed #AMPERR example.  Uses LCD to display amplifier error 
information and remains in #AMPERR routine until the error is cleared.

#AMPERR
REM mask out axes that are in brushed mode for _TA1
mask=(_BRH*128)+(_BRG*64)+(_BRF*32)+(_BRE*16)+(_BRD*8)+(_BRC*4)+(_BRB*2)+_BRA
mask=@COM[mask]
mask=((_TA1&mask)&$0000FFFF)
LU0;'turn off auto update of LCD
REM amplifier error status on LCD
MG"A-ER TA0"{L1},_TA0{L2};WT2000
MG"A-ER TA1"{L1},mask{L2};WT2000
MG"A-ER TA2"{L1},_TA2{L2};WT2000
MG"A-ER TA3"{L1},_TA3{L2};WT2000
LU1;'turn on Automatic Axis Update of LCD
WT5000
REM the sum of the amperr bits should be 0 with no amplifier error
er=_TA0+mask+_TA2+_TA3
JP#AMPERR,er0
REM Notify user amperr has cleared
LU0
MG"AMPERR"{L1},"RESOLVED"{L2}
WT3000
LU1
RE



#AUTO
Syntax: Other

Operands: none

Burn: not burnable

Subroutine to run automatically upon power up
Hardware: All

Full Description
#AUTO defines code to run automatically when power is applied to the controller, or after the controller is 
reset. When no host software is used with the controller, #AUTO and the BP command are required to run 
an application program on the controller. 
 
Upon controller startup, application code will automatically begin running in thread 0 at #AUTO. 
 
Use EN to end the routine.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Related Commands
EN - End program 
#AUTOERR - Automatic Subroutine for EEPROM error

BP - Burn program

Examples:

'On startup, this code will create a 50% duty cycle square wave on output 
1 with a period of 1 second.
#AUTO;'    Start on powerup
 SB1;'     Set bit 1
 WT500;'   Wait 500msec
 CB1;'     Clear bit 1



 WT500;'   Wait 500msec
JP#AUTO;'  Jump back to #AUTO



#AUTOERR
Syntax: Other

Operands: none

Burn: not burnable

EEPROM checksum error and Serial Encoder timeout error 
Automatic Subroutine Hardware: All

Full Description

All firmware versions and controllers
#AUTOERR will run code upon power up if data in the EEPROM has been corrupted. The EEPROM 
is considered corrupt if the checksum calculated on the bytes in the EEPROM do not match the checksum 
written to the EEPROM. The type of checksum error can be queried with _RS 
 
Use EN to end the routine.

-SER firmware
#AUTOERR will also run if the time to acquire serial position data exceeds 90% of the hardware sample 
loop. This type of error is very rare and should never occur in normal operation. 
 
In the event of a serial position acquisition timeout, the following will occur: 
     a. The controller will reset 
     b. The controller servo loop will not run, TM will be set to zero 
     c. TC1 will return "143 TM timed out" 
     d. The automatic subroutine #AUTOERR will run, if present 
     e. The Error output will be set.  
 
When using serial encoders (SSI or BiSS), the #AUTOERR should follow these guidlines: 
     a. IF _TC=143 do not employ any trippoints in following code as the timer interrupt is suspended. 
     b. Serial encoders can be disabled with the commands SIn=0 or SSn=0 where n is the axis indicator 
ABCDEFG or H 
     c. In order to re-enable the timer interrupt issue "TM m" where m is the servo update period in us 
(usually m=1000). 
 
See code example below.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details



Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
_RS - Checksum error code operand 
EN - End program

Examples:

'Code detects a checksum error and notifies the user
#AUTOERR
 MG"EEPROM ERROR ",_RS
EN

'Distinguishing between a serial timeout
' condition and an EEProm condition
#AUTOERR
IF _TC=143
REM BiSS or SSI timeout
REM No trippoints in this clause
REM Print message to DMC-4020 LCD
 LU0
 MG"BiSS"{L1}
 MG"Timeout"{L2}
 SSA=0 
 SSB=0
ELSE
REM Checksum error
REM trippoints ok here
REM Print message to DMC-4020 LCD
 LU0
 MG"EEProm:"{L1}
 MG{Z10.0}_RS{L2}
ENDIF
EN



#CMDERR
Syntax: Other

Operands: none

Burn: not burnable

Command error automatic subroutine
Hardware: All

Full Description
#CMDERR is an automatic subroutine that runs code when a DMC code error occurs. 
Without #CMDERR defined, if an error (see TC command) occurs in an application program running on the 
Galil controller, the program (and all threads) will stop. 
 
Use EN to end the routine. 
 
#CMDERR will only run from errors generated within embedded DMC code.

In a single threaded application (Thread 0 only), the EN command in the #CMDERR routine will restart thread 
0 where it left off. 
 
In a multi-threaded application, the thread that has an error will be halted when a command error occurs. Thread 
0 will be interrupted to run the #CMDERR routine but other threads will continue to run. In order to restart 
the thread that encountered the error, see the example in Chapter 7 of the User Manual and the _ED 
operand. Thread 0 does not need to be running in order for the #CMDERR routine to execute.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Related Commands
TC - Tell Error Code 
_ED - Last program line with an error 
EN - End program



Examples:

'This code will put the motion controller in Position Tracking mode.
'Variable "target" is updated from the terminal or from a host program
'to specify a new target.  #CMDERR is used to detect a bad target value.
#start
DPA=0;'      Define current position as zero
PTA=1;'      Turn on position tracking
target=0;'   Initialize target variable
#track;'     Start tracking
PAA=target;' Track to current value of target
WT500;'      Wait 500 ms
JP#track;'   Continue to track
'
'
#CMDERR;' runs if an error occurs
JP#done,_TC<>6 ;'check that an out of range occured (See TC)
MG"Value ",target," is out of range for Position Tracking"
target=_PAA ;' reset target
#done
EN1 ;'return to tracking logic



#COMINT
Syntax: Other

Operands: none

Burn: not burnable

Communication interrupt automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO 
DMC300x0

Full Description
#COMINT is an automatic subroutine which can be configured by the CI command to run either when 
any character is received, or when a carriage return is received over the com port. The auxiliary port is used 
if equipped.  
 
#COMINT runs in thread 0, and an application must be running in thread 0 in order for #COMINT to be 
enabled. Code running in thread zero will be interrupted by the #COMINT subroutine. Use EN to end the routine 
 
 
NOTE: An application program must be executing for the automatic subroutine to function, which runs in thread 
0. Use EN to end the routine.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
P2CD - Serial port 2 code 
P2CH - Serial port 2 character 
P2NM- Serial port 2 number 
P2ST - Serial port 2 string 
CI - Configure #COMINT 
CC - Configure serial port 2 
EN - End subroutine



Examples:

#A;                           'Program Label
 CC9600,0,1,0
 CI2;                         'interrupt on any character
#Loop
 MG "Loop";                   'print a message every second
 WT 1000
 JP#Loop
#COMINT
 MG "COMINT:", P2CH{S1};      'print a message and the received character
EN1,1;                        ' End this subroutine, re-arming trip 
points that 
'                             were running and re-enabling the CI mask



#ININT
Syntax: Other

Operands: none

Burn: not burnable

Input interrupt automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO DMC18x6 
DMC18x2 DMC300x0

Full Description
#ININT is an automatic subroutine that runs upon a state transition of digital inputs 1 to 8 and is configured 
with II. #ININT runs in thread 0.

To make an unconditional jump from #ININT, there are two methods for re-enabling the interrupt capability: 1) 
re-issue the command II, or 2) use a 'null' routine. The ?null? routine allows for the execution of the RI 
command before the unconditional jump. 
For more information see Application Note #2418 
http://www.galilmc.com/support/appnotes/optima/note2418.pdf

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Related Commands
II- Input interrupt 
@IN - Read digital input 
RI - Return from interrupt 

Examples:

II1;                'arm digital input 1
EN;                 'End thread zero
'
#ININT;             'Automatic sub.  Runs on input event
 MG"Inputs:",_TI0;  'Display status of inputs 1-8
 WT100;             'Debounce input



RI;                 'Return from interrupt



#LIMSWI
Syntax: Other

Operands: none

Burn: not burnable

Limit switch automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
Without #LIMSWI defined, the controller will effectively issue the STn on the axis when it's limit switch 
is tripped. With #LIMSWI defined, the axis is still stopped, and in addition, code is executed. #LIMSWI is 
most commonly used to turn the motor off when a limit switch is tripped (see example below). For #LIMSWI 
to run, the switch corresponding to the direction of motion must be tripped (forward limit switch for 
positive motion and negative limit switch for negative motion). #LIMSWI interrupts thread 0 when it runs. 
 
Use RE to terminate the #LIMSWI subroutine.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Dafault Value N/A

Default Format N/A

Related Commands
_LFn - State of forward limit switch 
_LRn - State of reverse limit switch

LD - Limit Disable

Examples:

#Main        ;'print a message every second
  MG "Main"



  WT1000
JP#Main
EN
'
#LIMSWI ;'runs when a limit switch is tripped
IF (_LFX = 0) | (_LRX = 0)
 MG "X"
 DCX=67107840
 STX
 AMX
 MOX
ELSE; IF (_LFY = 0) | (_LRY = 0)
 MG "Y"
 DCY=67107840
 STY
 AMY
 MOY
ENDIF; ENDIF
RE1



#MCTIME
Syntax: Other

Operands: none

Burn: not burnable

MC command timeout automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
#MCTIME runs when the MC command is used to wait for motion to be complete, and the actual position TP 
does not reach or pass the target within the specified timeout TW. 
 
Use EN to terminate the subroutine.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
MC - Wait for motion complete trip point 
TW - MC timeout

Examples:

#BEGIN;'                 Begin main program
 TWX=1000;'              Set the time out to 1000 ms
 PRX=10000;'             Position relative
 BGX;'                   Begin motion
 MCX;'                   Motion Complete trip point
EN;'                     End main program
'



#MCTIME;'                Motion Complete Subroutine
 MG "X fell short";'     Send out a message
EN1;'                    End subroutine



#POSERR
Syntax: Other

Operands: none

Burn: not burnable

Position error automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The factory default behavior of the Galil controller upon a position error (_TEn > _ERn) is to do nothing 
more than drive the error signal low, turning on the red error LED. If OE is set to 1, the motor whose position 
error (TE) equals or exceeds its threshold (ER) will be turned off (MO). #POSERR can be used if the 
programmer wishes to run code upon a position error, for example to notify a host computer. 
 
The #POSERR label causes the statements following to be automatically executed if error on any axis exceeds 
the error limit specified by ER. The error routine must be closed with the RE command. The RE command 
returns from the error subroutine to the main program. 
 
Use RE to end the routine

#POSERR will also run when OE1 is set for an axes and that axis is also setup for encoder failure detection 
(see OA, OT, OV commands). 
 
The automatic subroutine runs in thread 0. If thread 0 is running, it will jump to #POSERR when an error 
occurs. If thread 0 is not running, #POSERR will be started in thread 0.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
OE - Off on error 



TE - Tell error 
ER - Error limit 
RE - Return from error routine

Examples:

#main;'       main program
'
JP #main

REM simple example of #POSERR
#POSERR
 MG "#POSERR"
RE

REM example of #POSERR that checks for position error on each axis
#POSERR
 ~a=0;'       axis designator
 IF ((_TE~a>_ER~a)&(_OE~a))
  MG "Position Error occured on ",~a{F1.0}," axis"
 ENDIF
 ~a=~a+1
JP#POSERR,~a<_BV;' loop until axes have been checked
 AI 1;'       wait until input 1 goes high (ex. safety switch)
 SH
RE1;'         retrurn to main program

REM #POSERR example for checking to see if encoder failure occured
REM The stop code will only update of the profilier is running at the time
REM the encoder failure is detected.
#POSERR
~a=0
#loop
IF _MO~a=1
 IF ((_TE~a<_ER~a)&(_OE~a)&(_OA~a))
  MG "possible encoder failure on ",~a{Z1.0}," axis"
 ENDIF
ENDIF
~a=~a+1
JP#loop,~a<_BV
AI1;'              wait for input 1 to go high
SH;'               enable all axes
RE



#SERERR
Syntax: Embedded Only

Operands: none

Burn: not burnable

Serial Encoder Error Automatic Subroutine
Hardware: DMC40x0 DMC41x3 RIO 

DMC300x0

Full Description
When equipped with hardware featuring the -BiSS encoder upgrade, #SERERR is an automatic subroutine 
which runs whenever there is a fault condition on the serial encoder. The following are the fault conditions 
which will cause #SERERR to interrupt.

Serial Encoder Faults

BiSS

Encoder timeout (bit 0 of _SS)

CRC error (bit 1 of _SS)

Error bit* (bit 2 of _SS)

Warning bit* (bit 3 of _SS)
The active level of the Error and Warning bits for BiSS must be configured with SY. 
 
For the encoder timeout condition, TC1 will also return "140 Serial encoder missing." 
 
Return from this automatic sub with RE. 
 
 
*Note: The encoder manufacturer may name the Error and Warning bits differently. Consult the 
encoder documentation for the naming convention. 
 
Galil defines the Warning bit as the bit directly preceeding the CRC. The Error bit is defined as the bit 
directly preceeding the Warning bit. See table 1. 
 
 
 
Arguments
N/A

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes



Command Line No

Default Value N/A

Related Commands
SS - Configure the special Galil BiSS feature 
SY - Serial encoder BiSS active level

Examples

#SERERR
LU0
 MG"SERERR"{L1}
 MG_SSA{L2}
REM disable axis A
 OEA=1;ERA=0
REM disable axis serial encoder
 SSA=0
RE



#TCPERR
Syntax: Other

Operands: none

Burn: not burnable

Ethernet communication error automatic subroutine
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO 
DMC300x0

Full Description
#TCPERR is an automatic subroutine which allows execution of code when an TCP error occurs. 
 
The following error (see TC) occurs when a command such as MG "hello" {EA} is sent to a failed 
Ethernet connection: 
123 TCP lost sync or timeout 
This error means that the client on handle A did not respond with a TCP acknowledgement (for example 
because the Ethernet cable was disconnected). Handle A is closed in this case.  
#TCPERR allows the application programmer to run code (for example to reestablish the connection) when 
error 123 occurs. 
 
Use RE to terminate the subroutine.

Code does not need to be running in thread zero for #TCPERR to run.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Related Commands
TC - Tell error code 
_IA4 - Last dropped handle 
MG - Print message 
SA - Send ASCII command via Ethernet

Examples:



#L
 MG {EA} "L"
 WT1000
JP#L
#TCPERR
 MG {P1} "TCPERR.  Dropped handle", _IA4
RE
'NOTE: Use RE to end the routine



$
Syntax: Other

Operands: none

Burn: not burnable

Hexadecimal
Hardware: All

Full Description
The $ operator denotes that the following string is in hexadecimal notation.

Arguments
$nnnnnnnn.mmmm 
n is up to eight hexadecimal digits (denoting 32 bits of integer) 
m is up to four hexadecimal digits (denoting 16 bits of fraction)

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
+ - * / % - Multiply (shift left) 
+ - * / % - Divide (shift right) 
MG {$8.4} - Print in hexadecimal

Examples:

x = $7fffffff.0000              ;'store 2147483647 in x
y = x & $0000ffff.0000          ;'store lower 16 bits of x in y
z = x & $ffff0000.0000 / $10000 ;'store upper 16 bits of x in z



%
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Modulo Operator
Hardware: DMC40x0 DMC41x3 RIO 

DMC18x6 DMC300x0

Full Description
The % symbol is the modulo operator. It takes as arguments any two values, variables, array elements, 
operands, or At functions (@SIN[]) and returns a value equal to the modulo of the arguments. 
 
This is a binary operator (takes two arguments and returns one value). 
 
Mathmatical operations are calculated left to right rather than multiplication and division calculations 
performed prior to addition and subraction. 
Example: 
1+2*3 = 9, not 7 
 
It is recommended that parenthesis be used when more than one mathmatical operation is combined in 
one command. 
Example: 
var = ((10*30)+(60/30));'      evaluates as 302 
var = 10*30+60/30;'      evalutes as 12

Arguments

m % m
where m is any value, variable, array element, operand, or At functions (@SIN[]) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands



N/A

Examples

'Determine the day of week in n days
DM name[7];'Strings for day of week
name[0]="SUN"
name[1]="MON"
name[2]="TUE"
name[3]="WED"
name[4]="THU"
name[5]="FRI"
name[6]="SAT"
today=2;'Tuesday
days=123;'Days from now
dow=((days + today)%7);'calculate future day of week
MG"The day of week in ",days{Z10.0}," days will be ", name[dow]{S3.0}
EN

REM Code Returns: The day of week in  123 days will be SAT



&
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Bitwise AND Operator
Hardware: All

Full Description
The & symbol is the bitwise AND operator used with IF, JP, and JS decisions, and also to perform 
bitwise ANDING of values.

Arguments

m & m
where 
m is any value, operand, variable, array element, or At Function 
 
For IF, JP, and JS, the values used for m are typically the results of logical expressions such as (x > 2) & (y=8) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below. 
 
 
Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value Yes

Related Commands
N/A

Examples

'Bitwise use
var1=$F;'00001111
var2=$F0;'1111000
MG (var1 & var2)



EN

REM Returned: 0.0000

'Conditional Use
var1=$F;'00001111
var2=$F0;'1111000
IF (var1 = $F) & (var2 = $F1)
 MG"True"
ELSE
 MG"False"
ENDIF
EN

REM Returned: False



&
Syntax: Other

Operands: none

Burn: not burnable

JS subroutine pass variable by reference
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
The & symbol is used to pass a variable by reference on the subroutine stack. When passed by reference, a 
change to the local-scope variable is changes the global value.

Arguments

JS#label(&var1,&var2,&var3,&var4,&var5,&var6,&var7,&var8)
where 
#label is the label for the subroutine to call 
var1 - var8 are the names of global variables which have already been dimensioned. If a value changes in 
the #label subroutine, the value of the global variable will also be change. 
 
To ensure that the global variable does not get changed, omit the & symbol to send a copy of the variable to 
the stack.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line NO

Default Value N/A

Related Commands
N/A

Examples

Pass By Reference Example:

#main
value=5;'         a value to be passed by reference
global=8;'        a global variable
JS#SUM(&value,1,2,3,4,5,6,7);' note first arg passed by reference
MG value;'        message out value after subroutine.



MG _JS;'          message out returned value
EN
'
#SUM;'            (* ^a,^b,^c,^d,^e,^f,^g)
^a=^b+^c+^d+^e+^f+^g+^h+global
EN,,^a
'notes-
'do not use spaces when working with ^
'If using global variables, they MUST be created before the subroutine is run

Executed program from program2.dmc
36.0000
36.0000



( , )
Syntax: Other

Operands: none

Burn: not burnable

Parentheses (order of operations)
Hardware: All

Full Description
The parentheses denote the order of math and logical operations. Note that the controller DOES NOT 
OBEY STANDARD MATHEMATICAL OPERATOR PRECEDENCE. For example, multiplication is 
NOT evaluated before addition. Instead, the controller follows left-to-right precedence. Therefore, it is required 
to use parentheticals to ensure intended precedence.

Arguments
(n) where 
n is a math (+ - * /) or logical (& |) expression

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
+ - * / - Math Operators 
& | - Logical Operators

Examples:

:MG 1 + 2 * 3
 9.0000
:MG 1 + (2 * 3)
 7.0000



*
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Multiplication Operator
Hardware: All

Full Description
The * symbol is the multiplication operator. It takes as arguments any two values, variables, array 
elements, operands, or At functions (@SIN[]) and returns a value equal to the product of the arguments. 
 
This is a binary operator (takes two arguments and returns one value). 
 
Mathmatical operations are calculated left to right rather than multiplication and division calculations 
performed prior to addition and subraction.  
Example: 
1+2*3 = 9;'      not 7 
 
It is recommended that parenthesis be used when more than one mathmatical operation is combined in 
one command. 
Example: 
var = ((10*30)+(60/30));'      evaluates as 302 
var = 10*30+60/30;'      evalutes as 12

Arguments

m * m
where m is any value, variable, array element, operand, or At functions (@SIN[]) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands



N/A

Examples

:var1 = (2 + 3) * 2
:var2 = var1 * 10
:MG var2 * 0.5
 50.0000
:



/
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Division Operator
Hardware: All

Full Description
The / symbol is the division operator. It takes as arguments any two values, variables, array elements, operands, 
or At functions (@SIN[]) and returns a value equal to the quotient of the arguments. 
 
This is a binary operator (takes two arguments and returns one value). 
 
Mathmatical operations are calculated left to right rather than multiplication and division calculations 
performed prior to addition and subraction. 
Example: 
1+2*3 = 9;'      not 7 
 
It is recommended that parenthesis be used when more than one mathmatical operation is combined in 
one command. 
Example: 
var = ((10*30)+(60/30));'      evaluates as 302 
var = 10*30+60/30;'      evalutes as 12

Arguments

m / m
where m is any value, variable, array element, operand, or At functions (@SIN[]) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands



N/A

Examples

:var1 = 100/10
:var2 = var1/2
:MG var2 + 1
 6.0000
:



;
Syntax: Other

Operands: none

Burn: not burnable

Semicolon (Command Delimiter)
Hardware: All

Full Description
The semicolon operator allows multiple Galil commands to exist on a single line. It is used for the following 
three reasons: 
(1) To put comments on the same line as the command (STX ;'stop) 
(2) To compress DMC programs to fit within the program line limit (Note: use a compression utility to do this. 
Do not program this way because it is hard to read.) 
(3) To give higher priority to a thread. All commands on a line are executed before the thread scheduler 
switches to the next thread.

Arguments
n;n;n;n  
where 
n is a valid Galil command

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
NO - No Op, comment 
' - comment

Examples:

SB1;WT500;CB1;'multiple commands separated by semicolons with a comment



#High;'     #High priority thread executes twice as fast as
 a = a + 1; b = b + 1
JP#High

#Low;'      #Low when run in parallel
 c = c + 1
 d = d + 1
JP#Low



@ABS
Syntax: At Function

Operands: none

Burn: not burnable

Absolute value
Hardware: All

Full Description
Takes the absolute value of the given number. Returns the value if positive, and returns -1 times the value 
if negative.

Arguments
@ABS[n] where 
     n is a signed number in the range -2147483647 to 2147483647

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
All math operators 

Examples:

:MG @ABS[-2147483647]
 2147483647.0000



@ACOS
Syntax: At Function

Operands: none

Burn: not burnable

Inverse cosine
Hardware: All

Full Description
Returns in degrees the arc cosine of the given number.

Arguments
@ACOS[n] where 
n is a signed number in the range -1 to 1.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ASIN - Arc sine 
@SIN - sine 
@ATAN - Arc tangent 
@COS - Cosine 
@TAN - Tangent

Examples:

:MG @ACOS[-1]
 180.0000
:MG @ACOS[0]
 90.0000
:MG @ACOS[1]
 0.0001



@AN
Syntax: At Function

Operands: none

Burn: not burnable

Analog Input Query
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO DMC18x6 
DMC300x0

Full Description
Returns the value of the given analog input in volts.

Arguments

@AN[n]
where  
     n is the input number assigned to a particular analog input pin (1-8).

Operand Usage
@AN[] is an operand, not a command. It can only be used as an argument to other commands and operators

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Related Commands
AQ Analog Range 
AO Analog Output

Examples:

:MG @AN[1] ;'print analog input 1
 1.7883
:x = @AN[1] ;'assign analog input 1 to a variable



@ASIN
Syntax: At Function

Operands: none

Burn: not burnable

Inverse sine
Hardware: All

Full Description
Returns in degrees the arc sine of the given number.

Arguments
@ASIN[n] where 
               n is a signed number in the range -1 to 1.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ACOS[n] - Arc cosine 
@SIN[n] - sine 
@ATAN[n] - Arc tangent 
@COS[n] - Cosine 
@TAN[n] - Tangent

Examples:

:MG @ASIN[-1]
 -90.0000
:MG @ASIN[0]
 0.0000
:MG @ASIN[1]
 90.0000



@ATAN
Syntax: At Function

Operands: none

Burn: not burnable

Inverse tangent
Hardware: All

Full Description
Returns in degrees the arc tangent of the given number. 

Arguments
@ATAN[n] 
n is a signed number in the range -2147483647 to 2147483647

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ASIN - Arc sine 
@SIN - Sine 
@ACOS - Arc cosine 
@COS - Cosine 
@TAN - Tangent

Examples:

:MG @ATAN[-10]
 -84.2894
:MG @ATAN[0]
 0.0000
:MG @ATAN[10]
 84.2894



@COM
Syntax: At Function

Operands: none

Burn: not burnable

Bitwise complement
Hardware: All

Full Description
Performs the bitwise complement (NOT) operation to the given number

Arguments
@COM[n] where 
n is a signed integer in the range -2147483647 to 2147483647.  
The integer is interpreted as a 32-bit field.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
& | - Logical operators AND and OR

Examples:

:MG {$8.0} @COM[0]
$FFFFFFFF
:MG {$8.0} @COM[$FFFFFFFF]
$00000000



@COS
Syntax: At Function

Operands: none

Burn: not burnable

Cosine
Hardware: All

Full Description
Returns the cosine of the given angle in degrees

Arguments
@COS[n] where 
n is a signed number in degrees in the range of -32768 to 32767, with a fractional resolution of 16-bit.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ASIN[n] - Arc sine 
@SIN[n] - Sine 
@ATAN[n] - Arc tangent 
@ACOS[n] - Arc cosine 
@TAN[n] - Tangent

Examples:

:MG @COS[0]
 1.0000
:MG @COS[90]
 0.0000
:MG @COS[180]
 -1.0000



:MG @COS[270]
 0.0000
:MG @COS[360]
 1.0000



@FRAC
Syntax: At Function

Operands: none

Burn: not burnable

Fractional part
Hardware: All

Full Description
Returns the fractional part of the given number

Arguments
@FRAC[n], n is a signed number in the range -2147483648 to 2147483647.

Operand Usage
N/A

Usage
Usage and Default Detail

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@INT[n] - Integer part

Examples:

:MG @FRAC[1.2]
 0.2000
:MG @FRAC[-2.4]
 -0.4000



@IN
Syntax: At Function

Operands: none

Burn: not burnable

Read digital input
Hardware: All

Full Description
Returns the value of the given digital input (either 0 or 1) 

Arguments

@IN[n]
where 
     n is an unsigned integer in the range 1 to 96

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@AN[n] - Read analog input 
@OUT[n] - Read digital output 
SB - Set digital output bit 
CB - Clear digital output bit 

OF- Set analog output offset

Examples:

MG @IN[1]
:1.0000



x = @IN[1]
x = ?
:1.000  print digital input 1



@INT
Syntax: At Function

Operands: none

Burn: not burnable

Integer part
Hardware: All

Full Description
Returns the integer part of the given number. Note that the modulus operator can be implemented with @INT 
(see example below).

Arguments
@INT[n] 
n is a signed number in the range -2147483648 to 2147483647.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@FRAC - Fractional part

Examples:

:MG @INT[1.2]
 1.0000
:MG @INT[-2.4]
 -2.0000

#AUTO;'        modulus example
 x = 10;'      prepare arguments
 y = 3
 JS#mod;'      call modulus



 MG z;'        print return value
EN

'subroutine: integer remainder of x/y (10 mod 3 = 1)
'arguments are x and y. Return is in z
#mod
 z = x - (y * @INT[x/y])
EN



@OUT
Syntax: At Function

Operands: none

Burn: not burnable

Read digital output
Hardware: All

Full Description
Returns the value of the given digital output (either 0 or 1)

Arguments

@OUT[n]
where 
     n is an unsigned integer in the range 1 to 80

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
@IN - Read digital input 
SB - Set digital output bit 
CB - Clear digital output bit 
OP - Output Port

Examples:

MG @OUT[1];'     print state of digital output 1
:1.0000
x = @OUT[1];'    assign state of digital output 1 to a variable



@RND
Syntax: At Function

Operands: none

Burn: not burnable

Round
Hardware: All

Full Description
Rounds the given number to the nearest integer

Arguments
@RND[n] 
               n is a signed number in the range -2147483648 to 2147483647.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@INT[n] - Truncates to the nearest integer

Examples:

:MG @RND[1.2]
 1.0000
:MG @RND[5.7]
 6.0000
:MG @RND[-1.2]
 -1.0000
:MG @RND[-5.7]
 -6.0000
:MG @RND[5.5]
 6.0000



:MG @RND[-5.5]
 -5.0000



@SIN
Syntax: At Function

Operands: none

Burn: not burnable

Sine
Hardware: All

Full Description
Returns the sine of the given angle in degrees

Arguments
@SIN[n] where 
n is a signed number in degrees in the range of -32768 to 32767, with a fractional resolution of 16-bit.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ASIN[n] - Arc sine 
@COS[n] - Cosine 
@ATAN[n] - Arc tangent 
@ACOS[n] - Arc cosine 
@TAN[n] - Tangent

Examples:

:MG @SIN[0]
 0.0000
:MG @SIN[90]
 1.0000
:MG @SIN[180]
 0.0000



:MG @SIN[270]
 -1.0000
:MG @SIN[360]
 0.0000



@SQR
Syntax: At Function

Operands: none

Burn: not burnable

Square Root
Hardware: All

Full Description
Takes the square root of the given number. If the number is negative, the absolute value is taken first.

Arguments
@SQR[n] where 
n is a signed number in the range -2147483648 to 2147483647.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
@ABS[n] - Absolute value

Examples:

:MG @SQR[2]
 1.4142
:MG @SQR[-2]
 1.4142



@TAN
Syntax: At Function

Operands: none

Burn: not burnable

Tangent
Hardware: All

Full Description
Returns the Tangent of the given angle in degrees.

Arguments

@TAN[m]
where 
m is a signed number in degrees in the range of -32768 to 32767, with a fractional resolution of 16-bit.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
@ASIN - Arc sine 
@COS - Cosine 
@ATAN - Arc tangent 
@ACOS - Arc cosine 
@SIN - Sine

Examples

:MG @TAN[23]
 0.4245
:



[,]
Syntax: Other

Operands: none

Burn: not burnable

Square Brackets (Array Index Operator)
Hardware: All

Full Description
The square brackets are used to denote the array index for an array, or to denote an array name. 
 
They are also used to designate the argument to a function, such as @ABS[n]. 

Arguments

string[n]
where 
     string is the array name, up to 8 characters.

     Note: If the array will be passed by reference on the subroutine stack (JS), the array name MUST be 
6 characters or less. 
 
      n=-1 returns the array length. 

     n is the array index and is an integer between 0 and 15999 

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
DM - Dimension Array 
QU - Print/Upload Array

Examples:



DM A[50]        ;'define a 50 element array
A[0] = 3        ;'set first element to 3
MG A[0]         ;'print element 0

#array
 DM A[5];'                  define a 5 element array
 A[0] = 3;'                 set first element to 3
 MG "A[0]=",A[0];'          print element 0
 len= A[-1];'               variable len now contains the length of array A[]
 QU A[],0,len-1,1;MG"";'    print entire array
 MG "A[] length=",len;'     display Variable len
EN

Example Output
:XQ#array
:
A[0]= 3 
3, 4320, 216666, 217522, 607950 
A[] length= 5 

:



^a,^b,^c,^d,^e,^f,^g,^h
Syntax: Other

Operands: none

Burn: not burnable

JS subroutine stack variable
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Provides local subroutine access for up to 8 variables passed on the subroutine stack when using the JS (jump 
to subroutine) command. Passing values on the stack is advanced DMC programming, and is recommended 
for experienced DMC programmers familiar with the concept of passing arguments by value and by reference. 
See the JS command for a full explanation of passing stack variables.

Notes:  
1.     Passing parameters has no type checking, so it is important to exercise good programming style when 
passing parameters. See examples below for recommended syntax. 
2.     Do not use spaces in expressions containing ^.  
3.     Global variables MUST be assigned prior to any use in subroutines where variables are passed by reference. 
4.     Arrays passed on the stack must have names no longer than 6 chars. 
5.     Stack zero has no local-scope variables. Accessing these variables from stack zero writes to stack 1's 
variable table.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage DMC-4xxx, DMC-18x6

Default Value N/A

Default Format N/A

Related Commands
MG - Message - & Pass by reference 
JS - Jump to subroutine



Examples:

#Add
JS#SUM(1,2,3,4,5,6,7,8) ;' call subroutine, pass values
MG_JS   ;' print return value
EN
'
#SUM    ;NO(^a,^b,^c,^d,^e,^f,^g,^h) Sums the values ^a to ^h and 
returns the result
EN,,(^a+^b+^c+^d+^e+^f+^g+^h)   ;' return sum

:Executed program from program1.dmc
36.0000

Note: For additional examples, see the "JS Subroutine Stack Variables (^a, ^b, ^c, ^d, ^e, ^f, ^g, ^h)" section in 
the User Manual.



^L^K
Syntax: Implicit Only

Operands: none

Burn: not burnable

Lock program
Hardware: DMC40x0 DMC41x3 RIO 

DMC18x6 DMC300x0

Full Description
<control>L<control>K locks user access to the application program. When locked, the ED, UL, LS, and 
TR commands will give privilege error #106. The application program will still run when locked. 
           The locked or unlocked state can be saved with a BN command. Upon master reset, the controller 
is unlocked. Once the program is unlocked, it will remain accessible until a lock command or a reset (with 
the locked condition burned in) occurs.

Arguments
<control>L<control>K password,n     where 
When n is 1, this command will lock the application program. 
When n is 0, the program will be unlocked. 

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage DMC-4xxx, DMC-18x6, RIO-47xxx

Default Value N/A

Default Format N/A

Related Commands
PW - Password 
ED - Edit program 
UL - Upload program 
LS - List program 
TR - Trace program

Examples:

:PWtest,test             Set password to "test"



:^L^K test,1             Lock the program
:LS                      Attempt to list the program
?
:TC1
106 Privilege violation
:



^R^S
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Master Reset
Hardware: All

Full Description
The Master Reset command resets the controller to factory default settings and erases EEPROM. 
A master reset can also be performed by installing a jumper at the location labeled MRST and resetting the 
board (power cycle or pressing the reset button). Remove the jumper after this procedure. 
 
Note: Sending a ^R^S over an Ethernet connection will cause the IP address to be cleared from the controller 
and will result in a timeout.

Arguments

Operand Usage
N/A

Usage
Usage and Defalut Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value N/A

Default Formula N/A

Related Commands
RS - Reset

Examples:

Example burns-in a non-default value for KP, does a standard reset with
the RS command, then performs a master reset with ^R^S.

:KP?
 6.00
:KP10
:BN



:RS

:KP?
 10.00
:^R^S

:KP?
 6.00
:



^R^V
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Revision Information
Hardware: All

Full Description
The Revision Information command causes the controller to return the firmware revision information.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands

Examples:

N/A



_GP
Syntax: Operand Only

Operands: _GP

Burn: not burnable

Gearing Phase Differential Operand
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The _GP operand contains the value of the "phase differential"* accumulated on the most current change in 
the gearing ratio between the master and the slave axes. The value does not update if the distance over which 
the slave will engage is set to 0 with the GD command. 
     The operand is specified as: _GPn where n is the specified slave axis 
 
* Phase Differential is a term that is used to describe the lead or lag between the master axis and the slave axis 
due to gradual gear shift. Pd=GR*Cm-Cs where Pd is the phase differential, GR is the gear ratio, Cm is 
the number of encoder counts the master axis moved, and Cs is the number of encoder counts the slave moved.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Defalut Value N/A

Default Format N/A

Related Commands
GR - Gear Ratio 
GA - Gear Axis

Examples:

#A      
GAY;'     Sets the Y axis as the gearing master for the X axis.  
'         This axis does not have to be under servo control.  In 



'         this example, the axis is connected to a conveyor 
'         operating open loop.
GD1000;'  Set the distance that the master will travel to 1000 
'         counts before the gearing is fully engaged for the X 
'         axis slave.
AI-1;'    Wait for input 1 to go low.  In this example, this 
'         input is representing a sensor that senses an object 
'         on a conveyor.  This will trigger the controller to 
'         begin gearing and synchronize the master and slave 
'         axes together.
GR1;'     Engage gearing between the master and slave
P1=_TPY;' Sets the current Y axis position to variable P1.  This 
'         variable is used in the next command, because MF 
'         requires an absolute position..
MF,(P1+1000);'Wait for the Y axis (master) to move forward 1000 
'         encoder counts so the gearing engagement period is 
'         complete.  Then the phase difference can be adjusted 
'         for.  Note this example assumes forward motion.
IP_GPX;'  Increment the difference to bring the master/slave in 
'         position sync from the point that the GR1 command was 
'         issued.
EN;'      End Program



_LF
Syntax: Operand Only

Operands: _LFn

Burn: not burnable

Forward Limit Switch Operand
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The _LF operand contains the state of the forward limit for the specified axis. 
The operand is specified as: _LFn where n is the specified axis. 
 
     _LFn = 1 when the limit switch state will allow motion in the positive direction. 
     _LFn = 0 when the limit switch state will not allow motion in the positive direction. 
 
Note: This operand is not a direct readout of the digital input and is affected by the command CN. 

Values of _LFn

Digital Input activation _LF value for CN-1 _LF value for CN1

On. Grounded for TTL, or sufficient activation 
current flowing for optos. 0 (forward motion prohibited) 1 (forward motion allowed)

Off. Pullup for TTL, or insufficient activation 
current flowing for optos. 1 (forward motion allowed) 0 (forward motion prohibited)

Arguments
N/A

Operand Usage
_LF is an operand

Usage
Usage and Default Details 

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
_LR - Reverse Limit Switch Operand



Examples:

MG _LFA Display the status of the A axis forward limit switch
*See Connecting Hardware in User Manual for active/inactive state



_LR
Syntax: Operand Only

Operands: _LRn

Burn: not burnable

Reverse Limit Switch Operand
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The _LR operand contains the state of the forward limit for the specified axis. 
The operand is specified as: _LRn where n is the specified axis. 
 
     _LRn = 1 when the limit switch state will allow motion in the reverse direction. 
     _LRn = 0 when the limit switch state will not allow motion in the reverse direction. 
 
Note: This operand is not a direct readout of the digital input and is affected by the command CN. 

Values of _LRn

Digital input activation _LR value for CN-1 _LR value for CN1

On. Grounded for TTL, or sufficient activation 
current flowing for optos. 0 (reverse motion prohibited) 1 (reverse motion allowed)

Off. Pullup for TTL, or insufficient activation 
current flowing for optos. 1 (reverse motion allowed) 0 (reverse motion prohibited)

Arguments
N/A

Operand Usage
_LR is an operand

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
_LF - Forward Limit Switch Operand



Examples:

MG _LRA Display the status of the A axis reverse limit switch
*See Connecting Hardware in User Manual for active/inactive state



|
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Bitwise OR Operator
Hardware: All

Full Description
The | symbol is the bitwise OR operator used with IF, JP, and JS decisions, and also to perform bitwise ORING 
of values. 
 

Arguments

m | m
where 
m is any value, operand, variable, array element, or At Function 
 
For IF, JP, and JS, the values used for m are typically the results of logical expressions such as (x > 2) | (y=8) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below. 

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
N/A

Examples

'Bitwise use
var1=$F;'00001111
var2=$F0;'1111000
MG (var1 | var2)
EN



REM Returned: 255.0000 (same as 11111111)

'Conditional Use
var1=$F;'00001111
var2=$F0;'1111000
IF (var1 = $F) | (var2 = $F1)
 MG"True"
ELSE
 MG"False"
ENDIF
EN

REM Returned: True



~
Syntax: Other

Operands: none

Burn: not burnable

Variable Axis Designator
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The ~ is the variable axis designator. 8 axis variables are provided: ~a, ~b, ~c, ~d, ~e, ~f, ~g, and ~h. 
Each variable can be assigned an indivudal axis A,B,C,D,E, F,G, or H, a vector plane, or a virtual axis. 
Motion commands on the variable will then apply to the assigned axis.

Arguments
~n=m 
     n is a lowercase letter a through h 
     m is a positive integer or single character string, where  
          0 or "A" (quotes required) = X axis 
          1 or "B" = Y axis 
          2 or "C" = Z axis 
          3 or "D" = W axis 
          4 or "E" = E Axis 
          5 or "F" = F axis 
          6 or "G" = G axis 
          7 or "H" = H axis 
          8 or "S" = S coordinate system 
          9 or "T" = T coordinate system 
          10 or "N' = Virtual N axis

          11 or "M" = Virtual M axis

Operand Usage
~n contains the axis number 0-11

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Related Commands

Examples:



~a=2;~b=6;'     Sets ~a to 2(Z axis).  Sets ~b to 6 (G axis)
PR~a=1000;'     Relative position move 1000 counts on ~a variable (set as 
Z axis)
JG~b=9000;'     Set jog speed of ~b variable (set as G axis) to 9000 cts/sec
BG~a~b;'        Begin motion on ~a and ~b variables (Z and G)



+
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Addition Operator
Hardware: All

Full Description
The + symbol is the addition operator. It takes as arguments any two values, variables, array elements, operands, 
or At functions (@SIN[]) and returns a value equal to the sum of the arguments. 
 
This is a binary operator (takes two arguments and returns one value). 
 
Mathmatical operations are calculated left to right rather than multiplication and division calculations 
performed prior to addition and subraction.  
Example: 
1+2*3 = 9;'      not 7 
 
It is recommended that parenthesis be used when more than one mathmatical operation is combined in 
one command. 
Example: 
var = ((10*30)+(60/30));'      evaluates as 302 
var = 10*30+60/30;'      evalutes as 12

Arguments

m + m
where m is any value, variable, array element, operand, or At functions (@SIN[]) 
 
The result of this operation is a value, which is not valid on its own. It must be coupled with a command. 
See examples below.

Operands
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands



N/A

Examples

:var1 = 1+2
:var2 = var1 + 1
:MG var2 + 2
 6.0000
:



<,>, =,<=,>=,<>
Syntax: Operator or Comparator

Operands: none

Burn: not burnable

Comparison Operators
Hardware: All

Full Description
The comparison operators are as follows: 
<     less than 
>     greater than 
=     equals 
<=     less than or equal 
>=     greater than or equal 
<>     not equals 
These are used in conjunction with IF, JP, JS, ( ), &, and | to perform conditional jumps. The result of 
a comparison expression can also be printed with MG or assigned to a variable.

Arguments
(n < m) or (n > m) or (n = m) or (n <= m) or (n >= m) or (n <> m) where 
     n and m are signed numbers in the range -2147483648 to 2147483647

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
( ) - Parentheses 
IF - If statement 
JP - Jump 
JS - Jump subroutine

Examples:



IF(x > 2) & (y = 4)
 MG "true"
ENDIF   ;'x must be greater than 2 and y equal to 4 for 
;'the message to print



=
Syntax: Other

Operands: none

Burn: not burnable

Equals (Assignment Operator)
Hardware: All

Full Description
The assignment operator is used for three reasons: 
(1)     to define and initialize a variable (x = 0) before it is used 
(2)     to assign a new value to a variable (x = 5) 
(3)     to print a variable or array element (x= which is equivalent to MG x). MG is the preferred method of printing.

Arguments
mmmmmmmm = n where 
mmmmmmmm is a variable name and n is a signed number in the range -2147483648 to 2147483647

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
MG - Print Message

Examples:

:x=5
:x=
 5.0000
:MG x
 5.0000
:       ;'define and initialize x to 5
;'print x two different ways



AB
Syntax: Implicit Only

Operands: _ABn

Burn: not burnable

Abort
Hardware: All

Full Description
AB (Abort) stops a motion instantly without a controlled deceleration. If there is a program operating, AB 
also aborts the program unless a 1 argument is specified. The command, AB, will shut off the motors for any 
axis in which the off on error function is enabled (see command OE). 
AB aborts motion on all axes in motion and cannot stop individual axes.

Arguments
AB n          where 
n = 0      The controller aborts motion and program 
n = 1      The controller aborts motion only 
No argument will cause the controller to abort the motion and program

Operand Usage
_AB gives state of Abort Input, 1 inactive and 0 active.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
SH - Re-enables motor 
OE - Specifies Off On Error

Examples:

AB      ;'Stops motion
OE 1,1,1,1      ;'Enable off on error
AB      ;'Shuts off motor command and stops motion



AC
Syntax: Explicit or Implicit

Operands: _ACn

Burn: burnable with BN

Acceleration
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The Acceleration (AC) command sets the linear acceleration rate of the motors for independent moves, such as 
PR, PA and JG moves. The acceleration rate may be changed during motion. The DC command is used to 
specify the deceleration rate.

Arguments
AC n,n,n,n,n,n,n,n      or     ACA=n           where 
n is an unsigned number in the range 1024 to 1073740800. The parameters input will be rounded down to 
the nearest factor of 1024. The units of the parameters are counts per second squared. 
n = ?      Returns the acceleration value for the specified axes.

Operand Usage
_ACm contains the value of acceleration for the specified axis. 
where m is the axis (ex MG _ACA)

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256000

Default Format 8.0

Related Commands
DC - Specifies deceleration rate. 
FA - Feedforward Accelleration 
IT - Smoothing constant - S-curve

Examples:

AC 150000,200000,300000,400000  Set A-axis acceleration to 150000, B-axis 
to 200000 counts/sec2, the C axis to 300000 counts/sec2, and the D-axis 
to 400000 count/sec2.
AC ?,?,?,?      Request the Acceleration
 149504, 199680, 299008, 399360 Return Acceleration  



(resolution, 1024)
V=_ACB  Assigns the B acceleration to the variable V
Hint:  Specify realistic acceleration rates based on your physical 
system such as motor torque rating, loads, and amplifier current 
rating.  Specifying an excessive acceleration will cause large 
following error during acceleration and the motor will not follow 
the commanded profile.  The acceleration feedforward command FA will 
help minimize the error.



AD
Syntax: Explicit or Implicit 

& Trippoint

Operands: none

Burn: not burnable

After Distance
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The After Distance (AD) command is a trippoint used to control the timing of events. This command will hold 
up the execution of the following command until one of the following conditions have been met:  
1. The commanded motor position crosses the specified relative distance from the start of the move. 
2. The motion profiling on the axis is complete. 
3. If in jog (JG) mode, the commanded motion is in the direction which moves away from the specified position. 
The units of the command are quadrature counts. Only one axis may be specified at a time. AD can only be 
used when there's command motion on the axis. 
Not valid for a slave during ECAM or Gearing - use MF and MR. 
If the direction of motion is reversed when in PT mode, the starting position for AD is reinitialized to the 
position at which the motor is reversed. 
Note: AD command will be affected when the motion smoothing time constant, IT, is not 1. See IT command 
for further information. 
 
Hint: The AD command is accurate to the number of counts that occur in 2*TM ?sec. Multiply your speed 
by 2*TM ?sec to obtain the maximum position error in counts. Remember AD measures incremental distance 
from start of move on one axis.

Arguments
AD n,n,n,n,n,n,n,n      or          ADA=n          where 
n is an unsigned integers in the range 0 to 2147483647 decimal.  
Note: The AD command cannot have more than 1argument.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A



Related Commands
AV - After distance for vector moves 
AP - After position trip point 
AR - After relative distance trip point 
MF - Motion Forward trip point 
MR - Motion Reverse trip point

Examples:

#A;DP0,0;'                Begin Program
PR 10000,20000;'          Specify positions
BG;'                      Begin motion
AD 5000;'                 After A reaches 5000
MG "Halfway to A";TPA;'   Send message
AD ,10000;'               After B reaches 10000
MG "Halfway to B";TPB;'   Send message
EN;'                      End Program



AF
Syntax: Explicit or Implicit

Operands: _AFn

Burn: burnable with BN

Analog Feedback Select
Hardware: All

Full Description
The Analog Feedback (AF) command is used to set an axis to analog feedback instead of digital 
feedback (quadrature/pulse & dir).  
 
The analog input used for feedback is fixed and uses the input that corresponds with the axis letter. For 
example, Analog input 1 is used for the A axis, Analog input 2 is used for the B axis, etc.

The analog feedback is decoded by a 12-bit A/D converter. An upgrade option is available for 16-bits. 

Position decoded with AFn=1 (0-5 
v example)

12 Bit ADC

TP Position at 0v 0

TP Position at 5v 4095
Position decoded with AFn=1 (+/- 10 

v example)

16 Bit ADC

TP Position at -10v -32768

TP Position at 10v 32767
The Analog min/max voltage range is set using the AQ command. See AQ for ranges other than +/- 10v. 
Note: AQ must be set prior to setting AF

Arguments

AF m,m,m,m,m,m,m,m

AFn=m
m = 1     Enables analog feedback 
m = 0     Disables analog feedback and switches to digital feedback 
m = ?     Returns the state of analog feedback for the specified axes. 0 disabled, 1 enabled 
 
n = any axis mask A-H for the supported controller

n = -1      When not using Analog feedback, a -1 provides that the analog hardware still be sampled in the 
servo interrupt. This provides evenly sampled data for both the data record and the RA/RD/RC function.



1V peak to peak Sinusoidal Encoder Input
ICM-42100 Required. 
 
n = 5 - 12 indicates that the sinusoidal encoder input is to be used with 2^n interpolation counts per encoder cycle 
 
n = 0 Disables Sinusoidal Interpolation and switches to digital feedback. Differential encoder inputs must be 
used when using digital encoders with the ICM-42100. Consult the factory for single-ended use. 

Operand Usage
_AFn contains a "1" if analog feedback is enabled and "0" if not enabled for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value Off

Related Commands
MT - Motor Type 
CE - Configure Encoder

AQ - Analog Configuration

Examples:

AF 1;'          Analog feedback on A axis
V1=_AFA;'       Assign feedback type to variable
AF ?;'          Interrogate feedback type



AG
Syntax: Explicit or Implicit

Operands: none

Burn: burnable with BN

Amplifier Gain
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
The AG command sets the amplifier current/voltage gain for the AMP-430x0. 0 sets the lowest ratio or value 
while 2 sets the highest ratio. AG is stored in EEPROM by the BN command. The MT command must be 
issued prior to the AG command to set the proper range. The axis must be in the motor off state (MO) before 
new AG settings will take effect.

Arguments
AG n,n,n,n,n,n,n,n where

AMP-43040

AG setting Gain Value

n = 0 0.4 A/V

n = 1 0.7 A/V

n = 2 1 A/V
AMP-43240

AG Setting Gain Value

n = 0 0.5 A/V

n = 1 1 A/V

n = 2 2 A/V
AMP-43540

AG setting Gain Value

n = 0 0.4 A/V

n = 1 0.8 A/V

n = 2 1.6 A/V
SDM-44140

AG setting Gain Value

n = 0 0.5 A

n = 1 1.0 A

n = 2 2.0 A

n = 3 3.0 A
SDM-44040



AG setting Gain Value

n = 0 0.5 A

n = 1 0.75 A

n = 2 1.0 A

n = 3 1.4 A
n = ?      Returns the value of the amplifier gain

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage DMC-4xxx-D30x0; DMC-4xxx-D4140; DMC-4xxx-D4040

Default Value 1,1,1,1,1,1,1,1

Default Format N/A

Operand Usage

Related Commands
TA - Tell Amplifier Error 
AW - Amplifier Bandwidth

Examples:

MO      Set motor off
AG2,1   Sets the highest amplifier gain for A axis and medium gain for 
B axis on 430x0.
SH      Turn motor on
BN      Save AG setting to EEPROM



AI
Syntax: Implicit Only 

& Trippoint

Operands: none

Burn: not burnable

After Input
Hardware: All

Full Description
The AI command is a trippoint used in motion programs to wait until after a specified input has changed state. 
This command can be configured such that the controller will wait until the input goes high or the input goes low. 
 
Hint: The AI command actually halts execution until specified input is at desired logic level. Use the 
conditional Jump command (JP) or input interrupt (II) if you do not want the program sequence to halt.

Arguments
AI +/-n          where  
n is an integer between 1 and 96 and represents the input number. If n is positive, the controller will wait for 
the input to go high. If n is negative, it waits for n to go low.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Operand Usage

Related Commands
@IN[n] - Read Digital Input 
II - Input interrupt 
#ININT - Label for input interrupt 
TI - Tell Inputs

Examples:

#A;'        Begin Program
AI 8;'      Wait until input 8 is high
SP 10000;'  Speed is 10000 counts/sec



AC 20000;'  Acceleration is 20000 counts/sec2
PR 400;'    Specify position
BGA;'       Begin motion
EN;'        End Program



AL
Syntax: Accepts Axis Mask

Operands: _ALn

Burn: not burnable

Arm Latch
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The AL command enables the latch function (high speed main or auxiliary position capture) of the 
controller. When the position latch is armed, the main or auxiliary encoder position will be captured upon a 
low going signal. Each axis has a position latch and can be activated through the general inputs: 
A axis latch     Input 1 
B axis latch     Input 2 
C axis latch     Input 3 
D axis latch     Input 4 
E axis latch     Input 9 
F axis latch     Input 10 
G axis latch     Input 11 
H axis latch     Input 12 
The command RL returns the captured position for the specified axes. When interrogated the AL command 
will return a 1 if the latch for that axis is armed or a zero after the latch has occurred. The CN command can 
be used to change the polarity of the latch function. 
 
The latch function is available on incremental quadrature encoder inputs only. For other position capture 
methods contact Galil.

Arguments

AL nnnnnnnn
where 
n can be A,B,C,D,E,F,G or H, specifying the main encoder for the axis to be latched  
n can be SA,SB,SC,SD,SE,SF,SG or SH, specifying the auxiliary encoder. 
n can be TA,TB,TC,TD,TE,TF,TG or TH, specifying the main encoder is latched from the index pulse instead of 
a digital input.

Operand Usage
_ALn contains the state of the specified latch. 0 = not armed, 1 = armed.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes



Controller Usage All

Default Value N/A

Default Format 1.0

Related Commands
RL - Report Latch

Examples:

ALB     Arm B-axis latch
JG,50000        Set up jog at 50000 counts/sec
BGB     Begin the move
#LOOP   Loop until latch has occurred
JP #LOOP,_ALB=1 
RLB     Transmit the latched position
EN      End of program



AM
Syntax: Accepts Axis Mask 

& Trippoint

Operands: none

Burn: not burnable

After Move
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The AM command is a trippoint used to control the timing of events. This command will hold up execution of 
the following commands until the current move on the specified axis or axes is completed. Any combination 
of axes or a motion sequence may be specified with the AM command. For example, AM AB waits for motion 
on both the A and B axis to be complete. AM with no parameter specifies that motion on all axes is complete. 
 
Hint: AM is a very important command for controlling the timing between multiple move sequences. For 
example, if the A-axis is in the middle of a position relative move (PR) you cannot make a position absolute 
move (PAA, BGA) until the first move is complete. Use AMA to halt the program sequences until the first 
profiled motion is complete. AM tests for profile completion. The actual motor may still be moving. To 
halt program sequence until the actual physical motion has completed, use the MC command. Another method 
for testing motion complete is to check for the internal variable _BGn, being equal to zero (see BG command).

Arguments
AM nnnnnnnnnn          where 
n is A,B,C,D,E,F,G,H,S or T or any combination to specify the axis or sequence 
No argument specifies to wait for after motion on all axes and / or sequences

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Operand Usage
_BGn contains a 0 if motion complete

Related Commands
BG - Begin Motion 
MC - Motion Complete



Examples:

#MOVE;                 'Program MOVE
PR 5000,5000,5000,5000;'Position relative moves
BG A;                  'Start the A-axis
AM A;                  'After the move is complete on A,
BG B;                  'Start the B-axis
AM B;                  'After the move is complete on B,
BG C;                  'Start the C-axis
AM C;                  'After the move is complete on C
BG D;                  'Start the D-axis
AM D;                  'After the move is complete on D
EN;                    'End of Program



AO
Syntax: Implicit Only

Operands: none

Burn: not burnable

Analog Output
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The AO command sets the analog output voltage of Modbus Devices connected via Ethernet.

Arguments

AO m, n
where 
m is the I/O number calculated using the following equations: 
     m = (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1) 
 
HandleNum is the handle specifier from A to H.  
 
Module is the position of the module in the rack from 1 to 16.  
 
BitNum is the I/O point in the module from 1 to 4. 
     n = the voltage which ranges from 9.99 to -9.99

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Operand Usage

Related Commands
SB - Set Bit 
CB - Clear Bit 
MB - Modbus

Examples:



AP
Syntax: Explicit or Implicit 

& Trippoint

Operands: none

Burn: not burnable

After Absolute Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The After Position (AP) command is a trippoint used to control the timing of events. This command will hold 
up the execution of the following command until one of the following conditions have been met:  
1.      The actual motor position crosses the specified absolute position. When using a stepper motor, this 
condition is satisfied when the stepper position (as determined by the output buffer) has crossed the 
specified position. For further information see Chapter 6 of the User Manual "Stepper Motor Operation". 
2.      The motion profiling on the axis is complete. 
3.      The commanded motion is in the direction which moves away from the specified position. 
The units of the command are quadrature counts. Only one axis may be specified at a time. AP can only be 
used when there's commanded motion on the axis. 
Not valid for a slave during ECAM or Gearing - use MF and MR.

Arguments
AP n,n,n,n,n,n,n,n      or     APA=n           where 
n is a signed integer in the range -2147483648 to 2147483647 decimal

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A
While Moving     Yes     Default Value     --- 
In a Program     Yes     Default Format     --- 
Command Line     No           
Controller Usage     ALL CONTROLLERS

Related Commands
AR - Trippoint for relative distances 
MF - Trippoint for forward motion



Examples:

#TEST   ;'Program B
DP0     ;'Define zero
JG 1000 ;'Jog mode (speed of 1000 counts/sec)
BG A    ;'Begin move
AP 2000 ;'After passing the position 2000
V1=_TPA ;'Assign V1 A position
MG "Position is", V1    ;'Print Message
ST      ;'Stop
EN      ;'End of Program
Hint:  The accuracy of the AP command is the number of counts that occur 
in 2*TM  sec.  Multiply the speed by 2*TM  sec to obtain the maximum 
error.  AP tests for absolute position.  Use the AD command to 
measure incremental distances.



AQ
Syntax: Implicit Only

Operands:
_AQ0,_AQ1,_AQ2,_AQ3,
_AQ4,_AQ5,_AQ6,_AQ7,
_AQ8

Burn: burnable with BN

Analog Input Configuration
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO

Full Description
The Analog Configuration (AQ) command is used to set the range of the analog inputs. There are 4 
different ranges that each analog input may be assigned.  
Setting a negative range for inputs 1,3,5 or 7, configures those inputs as the differential input relative to input 
2,4,6 and 8 respectively.

Arguments

AQ n,m
where  
     n is an integer from 1-8 that represents the analog input channel 
     m is an integer from 1-4 that designates the analog range

AQ setting details

m Analog Range Position Range (12 bit) Position Range (16 bit)

1 +/-5 V -2048 to 2047 -32,768 to 32767

2 +/-10 V -2048 to 2047 -32,768 to 32767

3 0-5 V 0 to 4095 0 to 65535

4 0-10 V 0 to 4095 0 to 65535

Usage
Usage and Default Details

Usage Value

While Moving (no RIO) Yes

In a Program Yes

Command Line Yes

Default Format 1.0000

Operand Usage
_AQn holds the range setting for that axis where n=1-8

Related Commands
@AN[n] - Read Analog Input 



AF - Analog Feedback

Examples:

:AQ2,3            Specify analog input 2 as 0-5V
:AQ1,-3           Specify analog input 1 as 0-5V and the differential 
input to analog input 2
:MG_AQ2 
 3.0000



AR
Syntax: Explicit or Implicit 

& Trippoint

Operands: none

Burn: not burnable

After Relative Distance
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The After Relative (AR) command is a trippoint used to control the timing of events. This command will hold 
up the execution of the following command until one of the following conditions have been met:  
1.     The commanded motor position crosses the specified relative distance from either the start of the move or 
the last AR or AD command. When using a stepper motor, this condition is satisfied when the stepper position 
(as determined by the output buffer) has crossed the specified Relative Position. For further information 
see Chapter 6 of the User Manual "Stepper Motor Operation". 
2.     The motion profiling on the axis is complete. 
3.     If in jog (JG) mode, the commanded motion is in the direction which moves away from the specified position. 
If the direction of the motion is reversed when in position tracking mode (see PT command), the starting point 
for the trippoint is reinitialized to the point at which the motion reversed. 
The units of the command are quadrature counts. Only one axis may be specified at a time. AR can only be 
used when there's commanded motion on the axis. 
Not valid for a slave during ECAM or Gearing - use MF and MR. 
Note: AR will be affected when the motion smoothing time constant, IT, is not 1. See IT command for 
further information.

Arguments
AR n,n,n,n,n,n,n,n     or      ARA=n          where 
n is an unsigned integer in the range 0 to 2147483647 decimal.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
AV - Trippoint for after vector position for coordinated moves 



AP - Trippoint for after absolute position

Examples:

#A;DP 0,0,0,0   ;'Begin Program
JG 50000,,,7000 ;'Specify speeds
BG AD   ;'Begin motion
#B      ;'Label
AR 25000        ;'After passing 25000 counts of relative distance on A-axis
MG "Passed _A",_TPA     ;'Send message on A-axis
JP #B   ;'Jump to Label #B
EN      ;'End Program
Hint:  AR is used to specify incremental distance from last AR or 
AD command. Use AR if multiple position trippoints are needed in a 
single motion sequence.



AS
Syntax: Accepts Axis Mask 

& Trippoint

Operands: none

Burn: not burnable

At Speed
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The AS command is a trippoint that occurs when the generated motion profile has reached the specified 
speed. This command will hold up execution of the following command until the commanded speed has 
been reached. The AS command will operate after either accelerating or decelerating. If the speed is not 
reached, the trippoint will be triggered after the speed begins diverging from the AS value.

Arguments
AS nnnnnnnnnn          where 
n is A,B,C,D,E,F,G,H,S or T or any combination to specify the axis or sequence

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A
While Moving     Yes     Default Value     - 
In a Program     Yes     Default Format     - 
Command Line     No           
Controller Usage     ALL CONTROLLERS

Related Commands

Examples:

#SPEED  ;'Program A
PR 100000       ;'Specify position
SP 10000        ;'Specify speed
BGA     ;'Begin A



ASA     ;'After speed is reached
MG "At Speed"   ;'Print Message
EN      ;'End of Program
WARNING:
The AS command applies to a trapezoidal velocity profile only with 
linear acceleration.  AS used with smoothing profiling will be inaccurate.



AT
Syntax: Implicit Only 

& Trippoint

Operands: none

Burn: not burnable

At Time
Hardware: All

Full Description
The AT command is a trippoint which is used to hold up execution of the next command until after the 
specified time has elapsed. The time is measured with respect to a defined reference time. AT 0 establishes 
the initial reference. AT n specifies n msec from the reference. AT -n specifies n msec from the reference 
and establishes a new reference after the elapsed time period.

AT n,1 specifies n samples from the reference. This is useful when TM is lowered and faster application 
loop times are required.

Arguments
AT n,m     where 
n is a signed, even integer in the range 0 to 2 Billion 
n = 0 defines a reference time at current time 
n > 0 specifies a wait time of n msec from the reference time 
n < 0 specifies a wait time of n msec from the reference time and re-sets the reference time when the trippoint 
is satisfied. 
m = 0 or ommitted specifies n to be in ms 
m = 1 specifies n to be in samples 
 
(AT -n is equivalent to AT n; AT <old reference +n>)

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value 0

Default Format -

Operand Usage

Related Commands
TIME - Time Operand 
TM - Update Time 



WT - Wait 

Examples:

' jog propotional to analog input example with AT in ms
'AT -n
#main0
AT0;'                set time reference for AT command
JG0;BGX;'            start Jog mode
gain=1
#atloop
 jgspd=gain*@AN[1]
 JG jgspd
 AT-100;'           wait 100 ms from last time reference (last AT-n or AT0)
REM same functionality would be:
REM AT -100,0
REM -or-
REM AT 100,0;AT0
JP#atloop

' jog propotional to analog input example with AT in samples
' AT n,1
#main1
AT0;'                set time reference for AT command
JG0;BGX;'            start Jog mode
gain=1
#atloop
 jgspd=gain*@AN[1]
 JG jgspd
 AT -100,1;'         wait 100 samples from last time reference (AT0)
JP#atloop

The following commands are sent sequentially
AT 0    Establishes reference time 0 as current time
AT 50   Waits 50 msec from reference 0
AT 100  Waits 100 msec from reference 0
AT -150 Waits 150 msec from reference 0 and sets new reference at 150
AT 80   Waits 80 msec from new reference (total elapsed time is 230 msec)



AU
Syntax: Explicit or Implicit

Operands: _AUn

Burn: burnable with BN

Set amplifier current loop
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description

AMP-43040
The AU command sets the amplifier current loop gain. The current loop is available in one of two settings (0 
is default while 1 sets a higher current loop gain).  
AU also sets the switching mode where available, Chopper vs. Inverter. 
 
High current loop gain: 
     Use the higher current loop gain (AU 1 or 1.5) when the phase to phase inductance of the motor is > 5mH 
with a 24VDC supply, or if the inductance is > 10mH with a 48VDC supply. 
 
Chopper Mode (AU 0.5 or 1.5): 
     The AMP-430x0 can be set to "chopper" mode. The chopper mode is in contrast to the normal inverter mode 
in which the amplifier sends PWM power to the motor of +/-Vs. In chopper mode, the amplifier sends a 0 to 
+VS PWM to the motor when moving in the forward direction, and a 0 to -VS PWM to the motor when moving 
in the negative direction. 
 
Chopper mode should be used in 2 different scenarios 
     1 - The inductance of the motor is 200uH to 500uH 
     2 - The application requires a continuous operation at >= 4 Amps of continuous torque at a duty cycle of 
>= 50%. 
 
Chopper mode is recommended for high duty-cycle and high current applications. 
 

AMP-43540
The AU command sets the amplifier current loop gain for the AMP-43540. The optimal current loop gain setting 
is determined by the bus voltage supplied to the amplifier and the phase to phase inductance of the motor. 
The table in the Arguments section provides ideal AU settings for common bus voltages and phase to 
phase inductance.

Arguments

AU m,m,m,m,m,m,m,m or AUn=m
where 
m = ?     Returns the value of the AU setting for the specified axis.

AMP-43540

Vsupply VDC Inductance L (mH) m =

24 - 0



24 L < 1 1

24 1 < L < 2.3 2

24 2.3 < L < 4.2 3

24 4.2 < L 4

48 - 0

48 L < 2.4 1

48 2.4 < L <4.2 2

48 4.2 < L < 7 3

48 7 < L 4
AMP-43040

Description m = 

normal current loop gain 0

chopper mode and normal loop gain 0.5

higher current loop gain 1

1.5chopper mode and higher current loop gain 1.5

Operand Usage
_AUn Returns the AU setting for the axis specified by 'n'

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Default Value N/A

Default Format N/A

Related Commands
TA - Tell Amplifier 
AG - Amplifier Gain 
AW - Amplifier Bandwidth

BX - Sine Amp Initialization

Examples:

AU1,0;' Sets X-axis to higher loop gain and Y-axis to normal loop gain



AUY=?;' Query Y-axis current loop gain
:0      
MG_AUA;' Query A axis current loop gain
:1



AV
Syntax: Implicit Only 

& Trippoint

Operands: _AVS,_AVT

Burn: not burnable

After Vector Distance
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The AV command is a trippoint, which is used to hold up execution of the next command during 
coordinated moves such as VP,CR or LI. This trippoint occurs when the path distance of a sequence reaches 
the specified value. The distance is measured from the start of a coordinated move sequence or from the last 
AV command. The units of the command are quadrature counts.

Arguments
AV s,t     where 
s and t are unsigned integers in the range 0 to 2147483647 decimal. 's' represents the vector distance to be 
executed in the S coordinate system and 't' represents the vector distance to be executed in the T coordinate system.

Operand Usage
_AVS contains the vector distance from the start of the sequence in the S coordinate system and _AVT 
contains the vector distance from the start of the sequence in the T coordinate system.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value 0

Default Format N/A

Related Commands

Examples:

#MOVE;DP 0,0;' Label
CAT;'          Specify the T coordinate system
LMAB;'         Linear move for A,B
LI 1000,2000;' Specify distance
LI 2000,3000;' Specify distance
LE



BGT;'          Begin motion in the T coordinate system
AV ,500;'      After path distance = 500,
MG "Path>500"
TPAB;'         Print position of A and B axes
EN;'           End Program

Hint:  Vector Distance is calculated as the square root of the sum of 
the squared distance for each axis in the linear or vector mode.



AW
Syntax: Explicit Only

Operands: none

Burn: not burnable

Amplifier Bandwidth
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
The AW command accepts the drive voltage (volts) and motor inductance (millihenries) and uses the current 
loop gain setting (AU) as the default and then reports the calculated bandwidth. The user can check how 
the amplifier bandwidth is affected by changing the n parameter. The AU command uses the transfer function 
for the AMP-430x0 for the calculation of the bandwidth.

Arguments
AWx = v, l, n where 
     x = Axis designator 
     v = Drive voltage in Volts 
     l = Motor inductance in millihenries 
     n = optional current loop gain setting (1 or 0)

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage DMC-40x0/DMC-21x3 with AMP-430x0, AMP-205x0 or AMP-20440

Default Value 0, 0, 0 

Default Format N/A

Related Commands
TA - Tell Amplifier 
AG - Amplifier Gain 
BS - Brushless Setup

Examples:

AWY=60,5,0      Sets a 60 volt drive, motor with 5 millihenries 
inductance and normal current loop gain
: 4525.732      Is the bandwidth in hertz



BA
Syntax: Accepts Axis Mask

Operands: _BAn

Burn: not burnable

Brushless Axis
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description

Galil Sine Drive Use
For axes equipped with a Galil sine drive, BA is used to configure the axis for sinusoidal operation. In addition 
to BA, BM and BX or BZ must be used to initialize the drive commutation. When using a Galil sine drive, 
one axis of control is required for one axis of drive. This is in contrast to the paired behavior below.

Third-Party Sine Drives Requiring Dual Analog Inputs (Rare)
In rare cases, some third-party sinusoidal drives require two analog signals to perform commutation. In this 
case, the BA command configures the controller axes for sinusoidal commutation and reconfigures the 
controller to reflect the actual number of motors that can be controlled. In this configuration, each axis requires 
2 motor command signals. The second motor command signals will always be associated with the highest axis 
on the controller. For example a 3 axis controller with A and C configured for sinusoidal commutation will 
require 5 command outputs (a 5 axis controller), where the second outputs for A and C will be the D and E 
axes respectively.

Arguments

BA xxxxxxxxxx
where 
     n is A,B,C,D,E,F,G,H or any combination to specify the axis (axes) for this mode. 
 

Galil Sine Drive Use
BAN removes all axes configured for use with the sine drive. Sine drives will be disabled.

Third-Party Sine Drives Requiring Dual Analog Inputs (Rare)
BA removes all axes configured for sinusoidal commutation.

Operand Usage

Galil Sine Drive Use
_BAn will contain a 1 if the BA command has been issued for that axis, or a 0 if it has not.

Third-Party Sine Drives Requiring Dual Analog Inputs (Rare)
_BAn indicates the axis number of the auxiliary DAC used for the second phase of the selected sinusoidal 
axis. The axis numbers start with zero for the A axis DAC. If the motor is configured as standard servo or 
stepper motor, _BAn contains 0.



Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
BB - Brushless Phase Begins 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BO - Brushless Offset 
BS - Brushless Setup 
BZ - Brushless Zero 
BX - Sine Amp Initialization

Examples:

BAA;'  Configure axis A



BB
Syntax: Explicit or Implicit

Operands: _BBn

Burn: burnable with BN

Brushless Phase Begins
Hardware:

DMC40x0 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The BB function describes the position offset between the Hall transition point and = 0, for a 
sinusoidally commutated motor. This command must be saved in non-volatile memory to be effective upon reset.

Arguments

BB n,n,n,n,n,n,n,n or BBA=n
where 
n is a signed integer which represent the phase offset of the selected axes in degrees of the magnetic cycle. 
The range is +/-359.98. The resolution is 1/32 of a degree. 
n = ?      returns the hall offset for the specified axis.

Operand Usage
_BBn contains the position offset between the Hall transition and = 0 for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
BA - Brushless Axis 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BO - Brushless Offset 
BS - Brushless Setup 
BZ - Brushless Zero 
Note: BB is only effective as part of the BC command or upon reset. 
BC



Examples:

BB,30,,60       The offsets for the Y and W axes are 30  and 60  respectively



BC
Syntax: Accepts Axis Mask

Operands: _BCn

Burn: not burnable

Brushless Calibration
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The function BC monitors the status of the Hall sensors of a sinusoidally commutated motor, and resets 
the commutation phase upon detecting the first hall sensor. This procedure replaces the estimated 
commutation phase value with a more precise value determined by the hall sensors.

Arguments
BC nnnnnnn          where 
n is A,B,C,D,E,F,G,H or any combination to specify the axis

Operand Usage
_BCn contains the state of the Hall sensor inputs. This value should be between 1 and 6. 0 and 7 are invalid 
hall states.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
BA - Brushless Axis 
BB - Brushless Phase Begins 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BO - Brushless Offset 
BS - Brushless Setup 
BZ - Brushless Zero 

Examples:



REM Example for use with AMP-43540
#EX
BAA
BMA=2000
BIA=-1;'  use hall sensor inputs on the Galil
BCA;'     enable brushless calibration
bc=_BCA;' store hall state
JGA=500
BGA;'     begin jog
#hall;JP#hall,_BCA=bc;'wait for a hall transition
STA
MG"Commutation Complete"
EN



BD
Syntax: Explicit or Implicit

Operands: _BDn

Burn: burnable with BN

Brushless Degrees
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
This command sets the commutation phase of a sinusoidally commutated motor. When using hall effect sensors, 
a more accurate value for this parameter can be set by using the command, BC. This command should not be 
used except when the user is creating a specialized phase initialization procedure.

Arguments
BD n,n,n,n,n,n,n,n      or          BDA=n           where 
n is an integer between 0 - 360 . 
n = ?      Returns the current brushless motor angle (between 0-360 )

Operand Usage
_BDn contains the commutation phase of the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
"BA" - Brushless Axis 
"BB" - Brushless Phase Begins 
"BC" - Brushless Commutation 
"BI" - Brushless Inputs 
"BM" - Brushless Modulo 
"BO" - Brushless Offset 
"BS" - Brushless Setup 
"BZ" - Brushless Zero  
BG

Examples:



BG
Syntax: Accepts Axis Mask

Operands: _BGn

Burn: not burnable

Begin
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The BG command starts a motion on the specified axis or sequence.

Arguments
BG nnnnnnnnnn          where 
n is A,B,C,D,E,F,G,H,S,T, M or N, or any combination to specify the axis or sequence

Operand Usage
_BGn contains a '0' if motion complete on the specified axis or coordinate system, otherwise contains a '1'.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A
While Moving     Yes     Default Value     0 
In a Program     Yes     Default Format     - 
Command Line     Yes           
Controller Usage     ALL CONTROLLERS

Related Commands
"AM " - After motion complete 
"ST" - Stop Motion

Examples:

PR 2000,3000,,5000      Set up for a relative move
BG ABD  Start the A,B and D motors moving
HM      Set up for the homing
BGA     Start only the A-axis moving
JG 1000,4000    Set up for jog
BGY     Start only the B-axis moving
BSTATE=_BGB     Assign a 1 to BSTATE if the B-axis is performing a move



VP 1000,2000    Specify vector position
VS 20000        Specify vector velocity
BGS     Begin coordinated sequen0ce
VMAB    Vector Mode
VP 4000,-1000   Specify vector position
VE      Vector End
PR ,,8000,5000  Specify C and D position
BGSCD   Begin sequence and C,D motion
MG _BGS Displays a 1 if motion occurring on coordinated system "S"
Hint:  A BG command cannot be executed  for any axis in which motion has 
not completed.  Use the AM trippoint to wait for motion complete 
between moves.  Determining when motion is complete can also be 
accomplished by testing for the value of the operand _BGn.



BI
Syntax: Explicit or Implicit

Operands: _BIn

Burn: burnable with BN

Brushless Inputs
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The command BI is used to define the inputs which are used when Hall sensors have been wired for 
sinusoidally commutated motors. These inputs can be the general use inputs (bits 1-8), the auxiliary encoder 
inputs (bits 81-96), or the extended I/O inputs (bits 17-48). The Hall sensors of each axis must be connected 
to consecutive input lines, for example: BI 3 indicates that inputs 3,4 and 5 are used for halls sensors.  
 
With the AMP-43540 the Hall A, Hall B and Hall C inputs on the Encoder connector may be specified by 
setting the BI command to -1. 
 
With the AMP-43540 or the AMP-43640, the general inputs may be specified with a BI n command. For a 
motor wired to work with the AMP-43020/43040, the following wiring to the general inputs is used 
for commutating the halls with the BI n command. 
@IN[n] = Hall B 
@IN[n+1] = Hall C 
@IN[n+2] = Hall A 
 

Arguments
BI n,n,n,n,n,n,n,n          or      BIA=n          where 
n is an unsigned integer which represent the first digital input to be used for hall sensor input 
n = 0      Clear the hall sensor configuration for the axis. 
n = -1     Specifies the controller to use the Hall inputs available on the AMP-43540. 
n = ?      Returns the starting input used for Hall sensors for the specified axis.

Operand Usage
_BIn contains the starting input used for Hall sensors for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A



Related Commands
BA - Brushless Axis 
BB - Brushless Phase Begins 
BC - Brushless Commutation 
BD - Brushless Degrees 
BM - Brushless Modulo 
BO - Brushless Offset 
BS - Brushless Setup 
BZ - Brushless Zero 
 
 
BK

Examples:

BI, 5;'  The Hall sensor of the Y axis are on inputs 5, 6 and 7.

REM Example for use with AMP-43540
#EX
BAA
BMA=2000
BIA=-1;'  use hall sensor inputs on the Galil
BCA;'     enable brushless calibration
bc=_BCA;' store hall state
JGA=500
BGA;'     begin jog
#hall;JP#hall,_BCA=bc;'wait for a hall transition
STA
MG"Commutation Complete"
EN



BK
Syntax: Implicit Only 

& Trippoint

Operands: _BK

Burn: not burnable

Breakpoint
Hardware: All

Full Description
For debugging. Causes the controller to pause execution of the given thread at the given program line 
number (which is not executed). All other threads continue running. Only one breakpoint may be armed at 
any time. After a breakpoint is encountered, a new breakpoint can be armed (to continue execution to the 
new breakpoint) or BK will resume program execution. The SL command can be used to single step from 
the breakpoint. The breakpoint can be armed before or during thread execution.

Arguments
BK n,m          where 
n is an integer in the range 0 to 1999 which is the line number to stop at. n must be a valid line number in 
the chosen thread. 
m is an integer in the range 0 to 7. The thread.

Operand Usage
_BK will tell whether a breakpoint has been armed, whether it has been encountered, and the program line 
number of the breakpoint: 
= -LineNumber:     breakpoint armed 
= LineNumber:     breakpoint encountered 
= -2147483648:     breakpoint not armed

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value of m 0

Default Format N/A

Related Commands

Examples:



BK 3    Pause at line 3 (the 4th line) in thread 0
BK 5    Continue to line 5
SL      Execute the next line
SL 3    Execute the next 3 lines
BK      Resume normal execution



BL
Syntax: Explicit or Implicit

Operands: _BLn

Burn: burnable with BN

Reverse Software Limit
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The BL command sets the reverse software limit. If this limit is exceeded during motion, motion on that axis 
will decelerate to a stop. Reverse motion beyond this limit is not permitted. 
 
When the reverse software limit is activated, the automatic subroutine #LIMSWI will be executed if it is 
included in the program.

Arguments

BL n,n,n,n,n,n,n,n or BLA=n
where 
n is a signed integer in the range -2147483648 to 2147483647. The reverse limit is activated at the position n-
1. The units are in quadrature counts. 
n = -2147483648      Turns off the reverse limit. 
n = ?      Returns the reverse software limit for the specified axes.

Operand Usage
_BLn contains the value of the reverse software limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value -214783648

Default Format Position format

Related Commands

Examples:

#TEST   Test Program
AC 1000000      Acceleration Rate



DC 1000000      Deceleration Rate
BL -15000       Set Reverse Limit
JG  -5000       Jog Reverse
BGA     Begin Motion
AMA     After Motion (limit occurred)
TPA     Tell Position
EN      End Program

'Hint:  Galil Controllers  also provide hardware limits.



BM
Syntax: Explicit or Implicit

Operands: _BMn

Burn: burnable with BN

Brushless Modulo
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The BM command defines the length of the magnetic cycle in encoder counts. 
 
For rotary motors, it is recommended that the BM value be specified as the counts per revolution divided by the 
# of poll pairs. 

cts=4096;'     Counts per rev
pp=3;'         Pole pairs
BMA=cts/pp

Arguments
BM n,n,n,n,n,n,n,n     or     BMA=n          where 
n is a decimal value between 1 and 10000000 (10,000,000) with a resolution of 1/10. This value can also 
be specified as a fraction with a resolution of 1/16. 
n = ?      Returns the brushless module for the specified axis.

Operand Usage
_BMn indicates the cycle length in counts for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value 2000

Default Format 4.2

Related Commands
BA - Brushless Axis 
BB - Brushless Phase Begins 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BO - Brushless Offset 
BS - Brushless Setup 
BZ - Brushless Zero 



BX - Sine Amp Initialization

Examples:

BM ,60000;'      Set brushless modulo for B axis to be 60000
BMC=100000/3;'   Set brushless modulo for C axis to be 100000/3 (33333.333)
BM ,,,?;'        Interrogate the Brushless Module for the D axis

Note:   Changing the BM parameter causes an instant change in 
the commutation phase.



BN
Syntax: Two Letter Only

Operands: _BN

Burn: not burnable

Burn
Hardware: All

Full Description
The BN command saves controller parameters shown below in Flash EEPROM memory. This command 
typically takes 1 second to execute and must not be interrupted. The controller returns a : when the Burn 
is complete. 
PARAMETERS SAVED DURING BURN: 
AC     CE     GR     MT     SM 
AF     CN     HV     NB     SP 
AG     CO     IA     NF     TK 
AQ     CW     IK     NZ     TL 
AU     DC     IL     OA     TM 
BA     DH     IT     OE     TR 
BB     DV     KD     OF     VA 
BI     EO     KI     OP     VD 
BL     ER     KP     OT     VF 
BM     FA     KS     OV     VS 
BO     FL     LC     PF     YA 
BR     FV     LD     PL     YB 
BW     GA     LZ     PW     YC 
CB     GM     MO     SB

Arguments
N/A

Operand Usage
_BN contains the serial number of the processor board.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A



Related Commands

Examples:

SB1;'   Set bit 1
CB2;'   Clear bit 2
CW1;'   Set data adjustment bit
BN;'    Burn all parameter states



BO
Syntax: Explicit or Implicit

Operands: _BOn

Burn: burnable with BN

Brushless Offset
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The BO command sets a fixed offset on the command signal for sinusoidally commutated motors. This may 
be used to offset any bias in the amplifier, or can be used for phase initialization.

Internal Sine Drive
When using an internal Galil sine drive, each axis has two DACs (Digital to Analog Converter). BO sets the 
first DAC offset. BQ sets the second.

External Sine Drive
When using a third party, external sine drive, each motor axis requires two control axes. Therefore, for 4 axes 
of external sine control, an 8 axis controller is required. In this configuration, BO sets the offset for both 
DACs. Each member of a pair of axes has its own BO value. 
 
When measuring DAC output voltage, to assure that the output voltage equals the BO parameters, set the PID 
and OF parameters to zero.

Arguments

BOm,m,m,m,m,m,m,m

BOn=m
where 
     m specifies the voltage and is a signed number in the range -9.998 to +9.998 with a resolution of 0.0003. 
      
     m = ?      Return the brushless offset for the specified axis. 
 
     n is an axis indicator A,B,C,D,E,F,G or H.

Operand Usage
_BOn contains the offset voltage for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes



Default Value 0

Related Commands
BA - Brushless Axis 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BZ - Brushless Zero

BQ - Brushless Offset dual DAC

Examples:

'Assume a two axis controller
BA A;' BA allows the control of an external sine drive with the use of 
two axis. This is now a one axis controller.
' Axis B is used as the secondary DAC for axis A commutation.
'
BO -2,1;' Generates the DAC voltage -2 on the first DAC A, and 1 on 
the second DAC B of a sinusoidally commutated drive.

'Assume internal Sine drive
BO 1 ;'set A axis first DAC to 1v offset
BQ 2 ;'set the A axis second DAC to 2v offset



BP
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Burn Program
Hardware: All

Full Description
The BP command saves the application program in non-volatile EEPROM memory. This command may 
take several seconds to execute and must not be interrupted. The controller returns a : when the Burn is complete. 
 
Legacy Software Note: This command may cause the Galil software to issue the following warning "A time-
out occurred while waiting for a response from the controller". This warning is normal and is designed to warn 
the user when the controller does not respond to a command within the timeout period. This occurs because 
this command takes more time than the default timeout of 5 sec. The timeout can be changed in the Galil 
software but this warning does not affect the operation of the controller or software.

Arguments
None

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Related Commands
BN - Burn Parameters 
BV - Burn Variables

Examples:

:BP
:



BQ
Syntax: Explicit or Implicit

Operands: _BQn

Burn: burnable with BN

Brushless Offset dual DAC
Hardware: DMC40x0 DMC41x3 

DMC300x0

Full Description
The BQ command sets a fixed offset on the command signal for sinusoidally commutated motors when using 
an internal Galil sine drive. This may be used to offset any bias in the amplifier, or can be used for 
phase initialization. 
 
When using an internal Galil sine drive, each axis has two DACs (Digital to Analog Converter). BO sets the 
first DAC offset. BQ sets the second.

Arguments

BQm,m,m,m,m,m,m,m

BQn=m
where 
     m specifies the voltage and is a signed number in the range -9.998 to +9.998 with a resolution of 0.0003. 
      
     m = ?      Return the brushless offset for the specified axis. 
 
     n is an axis indicator A,B,C,D,E,F,G or H.

Operand Usage
_BQn contains the offset voltage for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value 0

Related Commands
BA - Brushless Axis 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 



BM - Brushless Modulo 
BO - Brushless Offset 
BZ - Brushless Zero

Examples:

'Assume internal Sine drive
BO 1 ;'set A axis first DAC to 1v offset
BQ 2 ;'set the A axis second DAC to 2v offset



BR
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Brush Axis
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
The BR command is used with internal Galil amplifiers to enable which axes will be set as brush-type servos or 
to configure the firmware to use external drives instead of the internal channel. The hall error bits cannot 
cause #AMPERR events if an axis is configured as brush-type. With BR1, the hall inputs are available for 
general use via the QH command.

Trap Amps
If an axis has Off-On-Error(OE) set to 1, an amplifier error will occur on an axis if there are no halls and BR is 
set to 0. Set BR to 1 to avoid an amplifier error state.

Arguments

BR n,n,n,n,n,n,n,n,n
where 
     n = 0     Brushless servo axis  
     n = 1     Brush-type servo axis 
     n = ? Returns the value of the axis

     n = -1     External drive when equipped with an internal Galil sine drive

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value 0, 0, 0, 0, 0, 0, 0, 0

Related Commands
OE - Off-On Error 
TA - Tell Amplifier 
QH - Hall State



Examples:

BR 1,0,0;'     Sets X-axis to brush-type, Y and Z to brushless



BS
Syntax: Explicit Only

Operands: none

Burn: not burnable

Brushless Setup
Hardware: DMC40x0 DMC21x3 

DMC18x6 DMC18x2

Full Description
The command BS tests the wiring of a sinusoidally commutated brushless motor. If Hall sensors are 
connected, this command also tests the wiring of the Hall sensors. This function can only be performed with 
one axis at a time.  
This command returns status information regarding the setup of brushless motors. The following information 
will be returned by the controller: 
1.      Correct wiring of the brushless motor phases. 
2.      An approximate value of the motor's magnetic cycle. 
3.      The value of the BB command (If hall sensors are used). 
4.      The results of the hall sensor wiring test (If hall sensors are used). 
This command will turn the motor off when done and may be given when the motor is off. 
Once the brushless motor is properly setup and the motor configuration has been saved in non-volatile 
memory, the BS command does not have to be re-issued. The configuration is saved by using the burn 
command, BN. 
Note: In order to properly conduct the brushless setup, the motor must be allowed to move a minimum of 
one magnetic cycle in both directions.

Arguments
BSA= v, n     where 
v is a real number between 0 and 10. v represents the voltage level to be applied to each phase. 
n is a positive integer between 100 or 1000. n represents the duration in milliseconds that voltage should 
be applied to the motor phases.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 200

Related Commands
BA - Brushless Axis 



BB - Brushless Phase Begins 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BO - Brushless Offset 
BZ - Brushless Zero

Examples:

BSC = 2,900     Apply set up test to C axis with 2 volts for 900 
millisecond on each step.
Note: When using Galil Windows software, the timeout must be set to 
a minimum of 10 seconds (timeout = 10000) when executing the BS command.  
This allows the software to retrieve all messages returned from 
the controller.



BT
Syntax: Accepts Axis Mask

Operands: _BTn

Burn: not burnable

Begin PVT Motion
Hardware: DMC40x0 DMC41x3 DMC300x0

Full Description
The BT command begins PVT motion on the specified axes. All axes will begin at the same time. For more 
details on PVT mode see the user manual.

Arguments
BTnnnnnnnn where n is A,B,C,D,E,F,G,H or any combination of axes

Operand Usage
_BTn contains the number of PV segments that have executed.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage DMC-40x0, DMC-18x6, and others via upgrade

Default Value N/A

Default Format N/A

Related Commands
PV - PVT Data  
MF - Forward Motion to Position Trippoint 
MR - Reverse Motion to Position Trippoint

Examples

:MG_BTX           Query number of PVT segments executed
0.0000  
:PVX=100,200,100  Command X axis to move 100 counts reaching an ending 
speed of 200c/s in 100 samples
:PVX=100,0,100    Command X axis to move another 100 counts reaching 
an ending speed of 0c/s in 100 samples
:PVX=,,0          Command X axis to exit PVT mode
:BTX              Begin PVT mode
:MG_BTX           Query number of PVT segments executed
3.0000



:



BV
Syntax: Two Letter Only

Operands: _BV

Burn: not burnable

Burn Variables and Array
Hardware: All

Full Description
The BV command saves the controller variables and arrays in non-volatile EEPROM memory. This 
command typically takes up to 2 seconds to execute and must not be interrupted. The controller returns a : 
when the Burn is complete.

Arguments
None

Operand Usage
_BV returns the number of controller axes.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
"BP" - Burn Program 
"BN" - Burn Parameters 
Burn Program 
Note 1: This command will store the ECAM table values in non-volatile EEPROM memory. 
Note 2: This command may cause the Galil software to issue the following warning "A time-out occurred 
while waiting for a response from the controller". This warning is normal and is designed to warn the user 
when the controller does not respond to a command within the timeout period. This occurs because this 
command takes more time than the default timeout of 5 sec. The timeout can be changed in the Galil software 
but this warning does not affect the operation of the controller or software.

Examples:



BW
Syntax: Explicit or Implicit

Operands: _BWn

Burn: burnable with BN

Brake Wait
Hardware: DMC40x0 DMC41x3 

DMC300x0

Full Description
The BW command sets the delay between when the brake is turned on and when the amp is turned off. When 
the controller goes into a motor-off (MO) state, this is the time (in samples) between when the brake digital 
output changes state and when the amp enable digital output changes state. The brake is actuated 
immediately upon MO and the delay is to account for the time it takes for the brake to engage mechanically once 
it is energized electrically. The brake is released immediately upon SH. 
Outputs 1-8 are used for Axes A-H, where output 1 is the brake for axis A and output 2 is the brake for axis B 
and so on. 
Note: The Brake Wait does not apply when the motor is shut off due to OE1 (Off on Error). In this case 
(position error exceeded or Abort triggered) the motor off and brake output will be applied simultaneously.

Arguments
BW n,n,n,n,n,n,n,n      or     BWA=n           where 
n specifies the brake wait time in samples. n ranges from 1 to 32000  
n = 0     Turns Brake Wait off  
n = ?      Returns the brake wait time in msec for the specified axis.

Operand Usage
_BWn contains the brake wait time in samples for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A

Related Commands
MO - Motor Off 
SH - Servo Here

Examples:



BW100   Set brake delay to 100 ms (TM1000) for the X axis



BX
Syntax: Explicit or Implicit

Operands: _BXn

Burn: not burnable

Sine Amp Initialization
Hardware: DMC40x0 DMC41x3 

DMC300x0

THIS COMMAND IS STILL IN BETA. ITS IMPLEMENTATION IS SUBJECT 
TO CHANGE.

Full Description
The BX command is only valid with the AMP-43540 or the AMP-43640 
 
An axis with a Galil sine amp powers up in MO state and SH will generate an error for that axis until it 
is initialized. 
 
While the BX command is executing, communication to and from the controller will be halted. This may result 
in a timeout if the BX command is sent from the host*. Embedded code execution will also pause during 
BX operation. 
 
If the BX command failes to initialize an axis, it will return an error code of 160. TC1 will return "160 
BX Command Failure".  
 
The BX uses a limited motion algorithm to determine the proper location of the motor within the magnetic cycle. 
It is expected to move no greater than 10 degrees of the magnetic cycle. 
 
* The long timeout (-l) for GalilTools 1.5.0 has been increased to prevent a timeout while using the BX command.

Arguments

BX m,m,m,m,m,m,m,m or BXn=m or BX<t
where 
     m is a real number from -4.998 to 4.999 representing the voltage used to initialize the axis. 
     A negative voltage will leave the amp on after the BX command, while a positive voltage will leave the amp 
in the MO state. 
 
     The time for the BX command to return will increase with the magnitude of m. 
     In most cases BX settings of larger than 3 are not required. 
 
     < t is an integer between 1 and 5000 and represents the final pulse duration of the BX command. 
      The last stage of the BX command will lock the motor into a 15 degree increment for 't' samples.

Operands
_BXn 
     contains 0 if n is not a Galil sine amp axis 
     contains 1 if n is an uninitialized sine amp axis 
     contains 3 if n is an initialized sine amp axis 



Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes (recommended)

Command Line Yes

Default Value t = 1000

Related Commands
BA - Brushless Axis 
BM - Brushless Modulo

Examples

REM Simple Example
BAA
BMA=2000
BXA=-3
#bxa;JP#bxa,_BXA<>3
ENDIF

REM Detailed Example
#COM
~a=0;'0 = A axis, 1 = B axis  . . ..
BA~a;'enable brushless mode
BM~a=2000;'must be set per inidividual motor specifications
BX<1000;'set pulse duration to 1000 samples
bx_i=0;'number of tries for the BX command
#COM_H
tc=0;'response from TC command if an error occurs
MO~a;'start in motor off state
#tv;JP#tv,_TV~a>500;'make sure axis is not moving
BX~a=-3;'command the BX command
REM loop until BX passes or error occurs
#LOOP;JP#LOOP,((_BX~a<>3)&(tc=0))
REM try again if an error occured and the number of tries < 5
JP#COM_H,((tc<>0)&(bx_i<5))
REM if the number of tries is < 5 then BX passed
REM else, try BZ command
IF (bx_i<5)
 MG "Commutation complete"
ELSE
 MG "BX failed to complete"
 MG "attempting BZ command"
 tc=0;BZ~a=-3
 IF tc=0
  MG "BZ command complete"



 ELSE
  MG "BZ command failed"
  MG "check motor and encoder wiring"
  MG "try setting CE 2 or swapping 2 motor leads"
 ENDIF
ENDIF
EN

#CMDERR
tc=_TC
TC1
REM if 160 error, increase BX<t and try again
IF tc=160
 MG "Retry BX"
 bx_i=bx_i+1
 BX<(bx_i*1000);'increase pulse time on failure
ENDIF
RE



BZ
Syntax: Other

Operands: _BZn

Burn: not burnable

Brushless Zero
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The BZ command is used for axes which are configured for sinusoidal commutation. This command drives 
the motor to zero magnetic phase and then sets the commutation phase to zero.  
This command may be given when the motor is off.

Arguments

BZ n,n,n,n,n,n,n

BZA=n

BZ <t
where 
 
     n is a real number between -4.998 and 4.998. The parameter n will set the voltage to be applied to the 
amplifier during the initialization. In order to be accurate, the BZ command voltage must be large enough to 
move the motor. If the argument is positive, when the BZ operation is complete, the motor will be left in the 
off state, MO. A negative value causes the motor to end up in the on state, SH. 
 
     <t is an integer between 100 and 32767 and represents the settling time of the BZ function. The controller 
will wait 't' servo samples to settle the motor at the zero magnetic phase. The t parameter should be specified 
prior to issuing the BZ command. 
 
Note: The BZ command causes instantaneous movement of the motor. It is recommended to start with 
small voltages and increase as needed. 
 
Note: Always use the Off On Error function (OE command) to avoid motor runaway whenever testing 
sinusoidal commutation.

Operand Usage
_BZn contains the distance in encoder counts from the motor's current position and the position of 
commutation zero for the specified axis. This can useful to command a motor to move to the commutation 
zero position for phase initialization.

Usage
Usage and Default Details

Usage Value

While Moving No



In a Program Yes

Command Line Yes

Controller Usage All

Default Value n = 0, t= 1000

Default Format 0

Related Commands
BA - Brushless Axis 
BB - Brushless Phase Begins 
BC - Brushless Commutation 
BD - Brushless Degrees 
BI - Brushless Inputs 
BM - Brushless Modulo 
BO - Brushless Offset 
BS - Brushless Setup

Examples:

BZ, -3  Drive B axis to zero phase with 3 volt signal, and end with 
motor enabled.



CA
Syntax: Accepts Axis Mask

Operands: _CAn

Burn: not burnable

Coordinate Axes
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2

Full Description
The CA command specifies the coordinate system to apply proceeding vector commands. The 
following commands apply to the active coordinate system as set by the CA command: 
CR     ES     LE     LI     LM 
TN     VE     VM     VP

Arguments
CAS     or      CAT      where 
CAS specifies that proceeding vector commands shall apply to the S coordinate system 
CAT specifies that proceeding vector commands shall apply to the T coordinate system 
CA ? returns a 0 if the S coordinate system is active and a 1 if the T coordinate system is active.

Operand Usage
_CA contains a 0 if the S coordinate system is active and a 1 if the T coordinate system is active.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value CAS

Default Format N/A

Related Commands
VP - Vector Position 
VS - Vector Speed 
VD - Vector Deceleration 
VA - Vector Acceleration 
VM - Vector Mode 
VE - End Vector 
BG - BGS - Begin Sequence

Examples:



CAT     Specify T coordinate system
VMAB    Specify vector motion in the A and B plane
VS 10000        Specify vector speed
CR 1000,0,360   Generate circle with radius of 1000 counts, start at 
0 degrees and complete one circle in counterclockwise direction.
VE      End Sequence
BGT     Start motion of T coordinate system



CB
Syntax: Implicit Only

Operands: none

Burn: not burnable

Clear Bit
Hardware: All

Full Description
The CB command clears a particular digital output, setting the output to logic 0. The CB and SB (Set 
Bit) instructions can be used to control the state of output lines.  

CB can be used to clear the outputs of extended I/O which have been configured as outputs. See the CO command.

The CB command can also be used with modbus devices to clear remote outputs.

Arguments

CB n
where 
n is an integer corresponding to a specific output on the controller to be cleared (set to 0).

When using Modbus devices, the I/O points of the modbus devices are calculated using the following formula: 
n = (SlaveAddress*10000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1) 
 
     Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 
0 to 255. Please note that the use of slave devices for modbus are very rare and this number will usually be 0. 
 
     HandleNum is the handle specifier from A to H.  
 
     Module is the position of the module in the rack from 1 to 16.  
 
     BitNum is the I/O point in the module from 1 to 4. 

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All



Related Commands
"SB" - Set Bit 
"OB" - Ouput Bit 
"OP" - Output Port

Examples:

CB 7;'     Clear output bit 7
CB 15;'    Clear ouput bit 15 (RIO and 5-8 axis controllers only)



CC
Syntax: Implicit Only

Operands: none

Burn: not burnable

Configure Communications Port 2
Hardware: DMC40x0 DMC41x3

Full Description
The CC command configures baud rate, handshake, mode, and echo for the AUX SERIAL PORT, referred to 
as Port 2. This command must be given before using the MG, or CI commands with Port 2.

Arguments

CC m,n,r,p
where 
m - Baud rate     9600,19200, 38400, or 115200  
n - Handshake     0 for handshake off, 1 for handshake on 
r - Enabled     0 disabled, 1enabled 
p - Echo     0 for echo off, 1 for echo on

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Related Commands
CI - Configure Communication Interrupt

Examples:

:CC 9600,0,0,0  9600 baud, no handshake, echo off.
:               Typical setting with TERM-P or TERM-H.



CD
Syntax: Explicit or Implicit

Operands: none

Burn: not burnable

Contour Data
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The CD command specifies the incremental position on contour axes. The units of the command are in 
encoder counts. This command is used only in the Contour Mode (CM). The incremental position will be 
executed over the time period specified by the command DT (ranging from 2 to 256 servo updates)

The = operator can be used to override the global DT time by transmitting the time in a CD with the position data.

Arguments
CD n,n,n,n,n,n,n,n = m or CDA=n where 
n is an integer in the range of +/-32767. 
m (optional) is an integer in the range 0 to 8 and overrides the global DT time for this interval 
n = m = 0 terminates the Contour Mode.  
m = 1 through 8 specifies the time interval (DT) of 2^m samples.  
By default the sample period is 1 msec (set by the TM command); with m = 1, the time interval would be 2 msec. 
 
Note 1: The command CD 0,0=0 would follow the last CD command in a sequence CD 0,0=0 is similar to VE 
& LE. Once reached in the buffer, CD 0,0 =0 will terminate the contour mode. 
Note 2: The command CD0=0 will assign a variable CD0 the value of 0. In this case the user must have a 
space after CD in order to terminate the Contour Mode correctly. Example: CD 0=0 will terminate the 
contour mode for the X axis.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format 5.0

Related Commands
CM - Contour Mode 
DT - Time Increment 



CS - Clear Sequence 
_CS is the Segment Counter

Examples:

#CONTOUR;'                Program Label
CMAB;'                    Enter Contour Mode
DT 4;'                    Set time interval
CD 1000,2000;'            Specify data
CD 2000,4000;'            Next data
CD 0,0=0;'                End of Contour Buffer
#Wait;'                   Wait for all segments to process (buffer to empty)
WT 16,1;'                 wait for 1 DT time segment (2^4)
JP#Wait,_CM<>511
EN;'                      End Program



CE
Syntax: Explicit or Implicit

Operands: _CEn

Burn: burnable with BN

Configure Encoder
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The CE command configures the encoder to quadrature type or pulse and direction type. It also allows 
inverting the polarity of the encoders which reverses the direction of the feedback. Note: When using a 
servo motor, changing the CE type can cause the motor to run away.  
 
The configuration applies independently to the main axes encoders and the auxiliary encoders. When the 
MT command is configured for a stepper motor, the auxiliary encoder (used to count stepper pulses) will be 
forced to pulse and direction.

Arguments
CE n,n,n,n,n,n,n,n or CEA = n          where 
n is an integer in the range of 0 to 15. Each integer is the sum of two integers M and N which configure the 
main and the auxiliary encoders.  

Configure Encoder Types

M argument Main Encoder Type N argument Auxiliary Encoder Type

0 Normal quadrature 0 Normal quadrature

1 Normal pulse and direction 4 Normal pulse and direction

2 Reversed quadrature 8 Reversed quadrature

3 Reversed pulse and direction 12 Reversed pulse and direction
For example: n = 10 implies M = 2 and N = 8, thus both encoders are reversed quadrature.  
 
n = ?     Returns the value of the encoder configuration for the specified axes.

Operand Usage
_CEn contains the value of encoder type for the axis specified by 'n'.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0



Related Commands
"MT" - Specify motor type

Examples:

CE 0, 3, 6, 2   Configure encoders
CE ?,?,?,?
:0,3,6,2        Interrogate configuration
V = _CEB
V = ?
:3      Assign configuration to a variable
Note:  When using pulse and direction encoders, the pulse signal 
is connected to CHA and the direction signal is connected to CHB.



CF
Syntax: Accepts Axis Mask

Operands: _CFn

Burn: not burnable

Configure Unsolicited Messages Handle
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
Sets the port for unsolicited messages. By default, the controller will send unsolicited data to the main RS-232 
or USB serial port. The CF command directs the controller to send unsolicited responses to the Main or Aux 
Serial Port (If equipped), or to an Ethernet handle. 
 
An unsolicited message is data generated by the controller which is not in response to a command sent by the 
host. Examples of commands that will generate unsolicited messages follow. These commands are unsolicited 
only when in embedded code, NOT when sent from a host.

MG"Hello";'      A message (MG)
TC1;'            A command that returns a response
TP;'             "
RPA;'            "
var=?;'          A variable interogation
var=;'           "
thisIsAnError;'  A dmc error will generate an error message

Arguments
CFn  
where n is A through H for Ethernet handles 1 through 8, S for Main serial port, T for Aux serial port or I is to 
set to the port that issues the CF command. 
 
The axis designator ~n can also be used.

Operands
_CF contains the decimal value of the ASCII letter where unsolicited messages are currently routed.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All Standalone Controllers

Default Value S

Default Format N/A



Related Commands
CW - Configures MSB of unsolicited messages 
WH - What Handle 
TH - Tell Handles

Examples

:CFI;' "Send to me"
'Sent from external hardware only, CFI directs 
'unsolicited traffic to the port that sent the command

When communicating over Ethernet, two Ethernet handles should be used: 
1.) The first handle should be used for command-and-response traffic. This is the primary handle that the host 
uses to communicate to the controller. 
2.) The second handle should be used for unsolicited traffic. This is the primary handle that the controller uses 
to asynchronously communicate to the host. Use CF to point unsolicited traffic to this handle. 
 
It is NOT recommended to use one Ethernet handle for both command-and-response, and unsolicited messages. 
 
GalilTools will by default establish a two handle connection when using Ethernet.

Demonstrates from GalilTools terminal that the 
main handle is seperate from the unsolicited handle
192.168.1.3, RIO47102 Rev 1.0c, 1480, IHA IHB
:TH
CONTROLLER IP ADDRESS 192,168,1,3 ETHERNET ADDRESS 00-50-4C-28-05-C8
IHA TCP PORT 23 TO IP ADDRESS 192,168,1,100 PORT 2420
IHB UDP PORT 60007 TO IP ADDRESS 192,168,1,100 PORT 2421
IHC AVAILABLE 
IHD AVAILABLE 
IHE AVAILABLE 
:WH
IHA
:'Main handle is A
:MG_CF
 66.0000
:'Unsolicited handle. 66 is ASCII for "B"
:



CI
Syntax: Implicit Only

Operands: none

Burn: not burnable

Configure Communication Interrupt
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO 
DMC300x0

Full Description
The CI command configures a program interrupt based on characters received on communications port 2, the 
AUX serial port (port 1 on DMC-21x2/3 & RIO). An interrupt causes program flow to jump to the 
#COMINT subroutine. If multiple program threads are used, the #COMINT subroutine runs in thread 0 and 
the remaining threads continue to run without interruption. The characters received can be accessed via 
the operands P2CH, P2ST, P2NM, P2CD (P1 on DMC-21x2/3 & RIO). For more, see Operator Data Entry 
Mode in the user manual.

Arguments
CI n, m (m on DMC-21x2/3 and RIO only) 
 
n = 0     Do not interrupt 
n = 1     Interrupt on carriage return 
n = 2     Interrupt on any character 
n = -1     Clear interrupt data buffer 
 
RIO And DMC-21x2/3 
m = 0 Default, received serial port data is interpreted as Galil command, returning data to the port as a 
standard interpreted port. 
m = 1 Enable serial port for CI execution. Data received will not be interpreted as a command.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Default Value n = 0, m = 0

Related Commands
CC - Configure communications 
IN - Communication input 
MG - Message output



Examples:

:CI 1     Interrupt when the <enter> key is received on port 2
:CI 2     Interrupt on a single character received on Port 2
:



CM
Syntax: Accepts Axis Mask

Operands: _CMn

Burn: not burnable

Contour Mode
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The Contour Mode is initiated by the instruction CM. This mode allows the generation of an arbitrary 
motion trajectory with any of the axes. The CD command specified a position increment, and the DT 
command specifies the time interval between subsequent increments.

Issuing the CM command will clear the controur buffer when contour mode is not running.

Arguments
CM nnnnnnnnnn          where 
n is A,B,C,D,E,F,G,H or any combination to specify the axes for contour mode  
n = ? Returns a 0 if the contour buffer is full and 511 if the contour buffer is empty.

Operand Usage
_CM contains a '0' if the contour buffer is full; otherwise it contains the number of available contour segments.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value Disabled

Default Format N/A

Related Commands
CD - Contour Data 
DT - Time Increment

Examples:

#Cont0;'                 Define label #Cont0
CM ABCD;'                Specify Contour Mode Axes ABCD
DT 4;'                   Specify time increment for contour (2^4 
servo loops, 16ms at TM1000)



CD 200,350,-150,500;'    Specify incremental positions on A,B,C and D axes
'                        A-axis moves 200 counts B-axis moves 350 counts C-
'                        axis moves -150 counts D-axis moves 500 counts
'
CD 100,200,300,400;'     Next position data
CD 0,0,0,0=0;'           Special syntax to terminate Contour mode  
#Wait;JP#Wait,_CM<>511;' Spin on #Wait label until buffer is empty
'                        End of Contour Buffer/Sequence
EN;'                     End program
'
'
#Cont1;'                 Define label #Cont1
CM ABC;'                 Specify Contour Mode
DT 8;'                   Specify time increment for contour (2^8 
servo loops, 256ms at TM1000)
CD 100,100,100;'         New position data
CD 100,100,100;'         New position data
CD 0,0,0 =-1;'           Pause countour buffer set DT to resume
CD 100,100,100;'         New position data
CD 100,100,100;'         New position data
CD 0,0,0,0=0;'           Special syntax to terminate Contour mode  
#Wait2;JP#Wait2,_CM<>511;'Spin on #Wait2 label until buffer is empty
'End of Contour Buffer/Sequence
EN



CN
Syntax: Implicit Only

Operands: _CN0,_CN1,_CN2,_CN3,
_CN4

Burn: burnable with BN

Configure
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The CN command configures the polarity of the limit switches, home switches, latch inputs, the selective 
abort function, and the program termination behavior of the abort input.

Arguments

CN m,n,o,p,q
where  
m      
      1     Limit switches active high 
     -1     Limit switches active low 
n 
      1     HM will drive motor forward when Home input is high. See HM and FE commands. 
     -1     HM will drive motor backward when Home input is high. See HM and FE commands 
o 
      1     Latch input is active high 
     -1     Latch input is active low 
p 
     1      Configures inputs 5,6,7,8,13,14,15,16 as selective abort inputs for axes A,B,C,D,E,F,G,and H respectively.  
                Will also trigger #POSERR automatic subroutine if program is running. 
     0     Inputs 5,6,7,8,13,14,15,16 are configured as general use inputs 
q 
     1     Abort input will not terminate program execution 
     0     Abort input will terminate program execution

Operand Usage
_CN0     Contains the limit switch configuration 
_CN1     Contains the home switch configuration 
_CN2     Contains the latch input configuration  
_CN3     Contains the state of the selective abort function (1 enabled, 0 disabled) 
_CN4     Contains whether the abort input will terminate the program

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes



Command Line Yes

Controller Usage All

Default Value -1,-1,-1,0,0

Default Format 2.0

Related Commands
AL - Arm latch

LD - Limit Switch Disable

Examples:

CN 1,1  Sets limit and home switches to active high
CN,, -1 Sets input latch active low



CO
Syntax: Implicit Only

Operands: _CO

Burn: burnable with BN

Configure Extended I O
Hardware: DMC40x0 DMC21x3 

DMC18x6 DMC18x2

Full Description
The CO command configures which banks are inputs and which are outputs on the extended I/O.

The CO command configures which points are inputs and which are outputs on the extended I/O. The 32 
extended I/O points of the controller can be configured in banks of 8. The extended I/O is denoted as bits 17-
48 and banks 2-5.

Arguments

CO n
where 
n is a decimal value which represents a binary number. Each bit of the binary number represents one bank 
of extended I/O. When set to 1, the corresponding bank is configured as an output. 
The least significant bit represents bank 2 and the most significant bit represents bank 5. The decimal value can 
be calculated by the following formula.  
n = n2 + 2*n3 + 4*n4 + 8*n5 
where nx represents the bank. To configure a bank as outputs, substitute a one into that nx in the formula. If the 
nx value is a zero, then the bank of 8 I/O points will be configured as inputs. For example, if banks 3 and 4 are 
to be configured as outputs, CO 6 is issued.

Operand Usage
_CO returns the extended I/O configuration value.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Related Commands
CB - Clear Output Bit 
SB - Set Output Bit 
OP - Set Output Port 
TI - Tell Inputs



Examples:

CO 15   Configure all points as outputs
CO 0    Configure all points as inputs
CO 1    Configures bank 2 as outputs on extended I/O



CR
Syntax: Implicit Only

Operands: none

Burn: not burnable

Circle
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
When using the vector mode (VM), the CR command specifies a 2-dimensional arc segment of radius r, starting 
at angle theta, and traversing over angle deltaTheta. A positive deltaTheta denotes counterclockwise 
traverse, negative deltaTheta denotes clockwise. The VE command must be used to denote the end of the 
motion sequence after all CR and VP segments are specified. The BG (Begin Sequence) command is used to 
start the motion sequence. Parameters r, theta , and deltaTheta must be specified in each CR. Radius units are 
in quadrature counts. Theta and deltaTheta have units of degrees. The parameters n and o are optional and 
describe the vector speeds that are attached to the motion segment. 

A starting position of zero degrees denotes that the radius lies along
a vector following the positive X axis, on a 2D Cartesian space:

VMXY
CR 1000,0,270
VE
BGS
EN

 

Arguments

CR r, theta, deltaTheta < n > o
where 
 
r is the circle radius and is an unsigned real number in the range 10 to 6000000 
theta is the circle starting angle in degress and is a signed real number in the range 0 to +/-32000 
deltaTheta is the angle to traverse and is a signed real number in the range 0.0001 to +/-32000 
 
Note: The product r * deltaTheta must be limited to +/-4.5x10^8

n specifies a vector speed to be taken into effect at the execution of the vector segment. n is an unsigned 
even integer between 0 and 22,000,000 for servo motor operation and between 0 and 6,000,000 for stepper motors. 



 
o specifies a vector speed to be achieved at the end of the vector segment. o is an unsigned even integer between 
0 and 8,000,000.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage DMC, No RIO

Default Value N/A

Default Format N/A

Related Commands
VP - Vector Position 
VS - Vector Speed 
VD - Vector Deceleration 
VA - Vector Acceleration 
VM - Vector Mode 
VE - End Vector 
BG,BGS - Begin Sequence

Examples:

VMAB;'                Specify vector motion in the A and B plane
VS 1000;'             Specify vector speed
CR 1000,0,360;'       Generate circle with radius of 1000 counts, start at 
'                     0 degrees and complete one circle in counterclockwise 
'                     direction.
CR 1000,0,360 < 40000;' Generate circle with radius of 1000 counts, start 
'                at 0 degrees and complete one circle in counterclockwise 
'                direction and use a vector speed of 40000.
VE;'             End Sequence
BGS;'            Start motion



CS
Syntax: Accepts Axis Mask

Operands: _CSn

Burn: not burnable

Clear Sequence
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The CS command will remove VP, CR or LI commands stored in a motion sequence for the S or T 
coordinate systems. After a sequence has been executed, the CS command is not necessary to put in a 
new sequence. This command is useful when you have incorrectly specified VP, CR or LI commands.

Arguments
CSS     or      CST     where 
S and/or T can be used to clear the sequence buffer for the "S" or "T" coordinate system.

Operand Usage
_CSn contains the segment number in the sequence specified by n, S or T. This operand is valid in the 
Linear mode, LM, Vector mode, VM

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
"CR" - Circular Interpolation Segment 
"LI" - Linear Interpolation Segment 
"LM" - Linear Interpolation Mode 
"VM" - Vector Mode 
"VP" - Vector Position

Examples:

#CLEAR  ;'Label
CAT     ;'Specify the T coordinate system vector points
VP 1000,2000    ;'Vector position



VP 4000,8000    ;'Vector position
CST     ;'Clear vectors specified in T coordinate system
CAS     ;'Specify the T coordinate system vector points
VP 1000,5000    ;'New vector
VP 8000,9000    ;'New vector
CSS     ;'Clear vectors specified in S coordinate system
EN      ;'End program



CW
Syntax: Implicit Only

Operands: _CWn

Burn: not burnable

Copyright information Data Adjustment bit on off
Hardware: All

Full Description
The CW command will return the copyright information when the argument, n, is 0 or is omitted. Otherwise, 
the CW command is used as a communications enhancement for use by the Galil terminal software 
programs. When turned on, the most significant bit of unsolicited ASCII characters is set to 1. Unsolicited 
ASCII characters are characters that are returned from a program running on the controller (usually from the 
MG command). This command does not affect solicited characters, which are characters that are returned as 
a response to a command sent from a host PC (e.g. TP). 
 
If using Galil drivers, CW will be automatically configured - the user should not change the CW settings.

Arguments

CW n,m
where 
 
n is a number, either 0,1 or 2: 
0 or ? Causes the controller to return the copyright information 
1      Causes the controller to set the MSB of unsolicited returned characters. 
2      Causes the controller to not set the MSB of unsolicited characters.

m is 0 or 1 (optional) 
0      Causes the controller to pause program execution when hardware handshaking disables 
character transmissions. 
1      Causes the controller to continue program execution when hardware handshake disables 
character transmissions, output characters will be lost.

Operand Usage
_CW contains the value of the data adjustment bit. 1 =on, 2 = off

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All



Related Commands
CF - Configure Unsolicited Messages Handle

Examples:

CW1;'     Set CW to Galil Driver mode (MSB set on unsolicited characters)

'Note:    The CW command can cause garbled (non-ASCII) characters to 
be returned 
'         by the controller when using third-party software. Use CW2.
CW2;'     Set CW to third-party device mode (normal ASCII on 
unsoliticed characters)



DA
Syntax: Implicit Only

Operands: _DAn

Burn: not burnable

Deallocate the Variables & Arrays
Hardware: All

Full Description
The DA command frees the array and/or variable memory space. In this command, more than one array or 
variable can be specified for memory de-allocation. Different arrays and variables are separated by comma 
when specified in one command. The * argument deallocates all the variables, and *[0] deallocates all the arrays.

Arguments
DA c[],d,etc.      where 
      c[] - Defined array name 
      d - Defined variable name 
      * - Deallocates all the variables 
      *[] - Deallocates all the arrays 
      DA? Returns the number of arrays available.

Operand Usage
_DA contains the total number of arrays available.

Usage

Related Commands
"DM" - Dimension Array

Examples:

'Cars' and 'Salesmen' are arrays, and 'Total' is a variable.
DM Cars[40],Salesmen[50]        Dimension 2 arrays
Total=70                        Assign 70 to the variable Total
DA Cars[0],Salesmen[0],Total    Deallocate the 2 arrays & variable
DA*[0]                          Deallocate all arrays
DA *,*[0]                       Deallocate all variables and all arrays
NOTE:  Since this command deallocates the spaces and compacts the 
array spaces in the memory, it is possible that execution of this 
command may take longer time than a standard command.  Variables and 
arrays that are deallocated are not set to zero.  A routine that 
writes zeros to the array and/or variables should be created if this 
is desired.



DC
Syntax: Explicit or Implicit

Operands: _DCn

Burn: burnable with BN

Deceleration
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The Deceleration command (DC) sets the linear deceleration rate of the motors for independent moves such as 
PR, PA and JG moves. The parameters will be rounded down to the nearest factor of 1024 and have units of 
counts per second squared.

Arguments
DC n,n,n,n,n,n,n,n     or     DCA=n          where 
n is an unsigned numbers in the range 1024 to 1073740800 
n = ?      Returns the deceleration value for the specified axes.

Operand Usage
_DCn contains the deceleration rate for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (The DC command can only be specified while in the jog 
mode) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256000

Default Format (8.0 for 21x3, 18x2), (10.0 for 40x0, 18x6)
While Moving     Yes*     Default Value     256000 
In a Program     Yes     Default Format     10.0 
Command Line     Yes           
Controller Usage                     ALL CONTROLLERS 
* When moving, the DC command can only be specified while in the jog mode.

Related Commands
AC  
Acceleration 
PR  
Position Relative 
PA  
Position Absolute 
SP 



Speed 
JG  
Jog 
SD 
Limit Switch Deceleration

Examples:

PR 10000        Specify position
AC 2000000      Specify acceleration rate
DC 1000000      Specify deceleration rate
SP 5000 Specify slew speed
BG      Begin motion
Note:  The DC command may be changed during the move in JG move, but not 
in PR or PA move.



DE
Syntax: Explicit or Implicit

Operands: _DEn

Burn: not burnable

Dual (Auxiliary) Encoder Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The DE command defines the position of the auxiliary encoders.  
      The DE command defines the encoder position when used with stepper motors.  
Note: The auxiliary encoders are not available for the stepper axis or for any axis where output compare is active.

Arguments
DE n,n,n,n,n,n,n,n     or     DEA=n          where 
n is a signed integers in the range -2147483648 to 2147483647 decimal 
n = ?      Returns the position of the auxiliary encoders for the specified axes. 
      n = ? returns the commanded reference position of the motor (in step pulses) when used with a stepper 
motor. Example: DE 0 This will define the TP or encoder position to 0. This will not effect the DE ? value. (To 
set the DE value when in stepper mode use the DP command.)

Operand Usage
_DEn contains the current position of the specified auxiliary encoder.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0, 0, 0, 0

Default Format Position Format
While Moving     Yes     Default Value     0,0,0,0 
In a Program     Yes     Default Format     Position Format 
Command Line     Yes           
Controller Usage                     ALL CONTROLLERS

Related Commands

Examples:

DE 0,100,200,400        Set the current auxiliary encoder position 
to 0,100,200,400 on A,B,C and D axes
DE?,?,?,?       Return auxiliary encoder positions



DualA=_DEA      Assign auxiliary encoder position of A-axis to the 
variable DualA
Hint: Dual encoders are useful when you need an encoder on the motor and 
on the load.  The encoder on the load is typically the auxiliary encoder 
and is used to verify the true load position.  Any error in load position 
is used to correct the motor position.



DF
Syntax: Implicit Only

Operands: _DFn

Burn: burnable with BN

Dual Feedback (DV feedback swap)
Hardware: DMC40x0 DMC41x3 

DMC300x0

Full Description
This command is used only by the DMC-4xxx with SSI or BiSS upgrades.

For users wishing to operate with SSI or BiSS in Dual Loop mode (DV), the DF command can be used 
to configure a load-side serial encoder and a motor-side incremental encoder with DV1. Wire the 
motor's incremental encoder per normal to the DMC-4xxx main encoder inputs. The load SSI encoder should 
be wired to the axis aux encoder lines:

SSI Signals, DMC-40x0

Nominal Signal Name Signal Reassignment with SSI Signal Reassignment with BiSS

AA+ Clock+ MA+

AA- Clock- MA-

AB+ Data+ SLO+

AB- Data- SLO-
Issue the configuration command (SI or SS) to setup the serial decoding for the axis aux encoder (e.g. SIn = 2, 
si1, si2, si3 <p >q). Verify proper serial encoder operation by moving the motor in non-dual loop mode 
and checking TDn. Disable the motor with MO and issue DFn=1 and DVn=1. The axis control law will 
now fragment the PID loop. P and I will be closed around the serial encoder. D will be closed around the 
motor encoder. The serial encoder can now be interrogated with TP (not TD), and the incremental encoder 
with TD (not TP). 
 
In summary, DF will cause the main encoder register (TP) and aux encoder register (TD) to be swapped. 
This makes the wiring configuration compatible with the standard dual loop mode (DV).

Arguments
DF n,n,n,n,n,n,n,n where 
n represents a Boolean (on or off) and is either 1 or 0.

Operands
_DFn contains the value (1 or 0) of the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No



In a Program Yes

Command Line Yes

Default Value 0

Related Commands
DV - Dual Velocity (Dual Loop) 
SI - Configure the special Galil SSI feature 
SS - Configure the special Galil BiSS feature 

Examples

MOX;'                Disable motor on X
SIX=2,25,15,0<13>2;' Setup SSI encoder to fill the Aux encoder register
DF1;'                Enable Dual Feedback Swap
DV1;'                Enable Dual Loop mode
SHX;'                Enable servo with new configuration



DH
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

DHCP Server Enable
Hardware: DMC40x0 DMC41x3 RIO 

DMC300x0

Full Description
The DH command configures the DHCP or BOOT-P functionality on the controller for Server IP addressing.

Arguments
DH n     where  
n = 0 disables DHCP and enables BOOT-P  
n = 1 disables BOOT-P and enables DHCP 
n = ? returns the current state of the setting

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line 1.0

Controller Usage DMC-4xxx / RIO-47xxx

Default Value 1.0

Default Format N/A

Operand Usage
N/A

Related Commands
IA - IP Address

Examples:

DH 1    Sets the DHCP function on.  IA assignment will no longer work.  
IP address cannot be burned.  Controller will receive its IP address 
from the DHCP server on the network.
DH 0    Sets the DHCP function off, and the Boot-P function on.



DL
Syntax: Implicit Only

Operands: _DLn

Burn: not burnable

Download
Hardware: All

Full Description
The DL command transfers a data file from the host computer to the controller. Instructions in the file will 
be accepted as a data stream without line numbers. The file is terminated using <control> Z, <control> 
Q, <control> D, or \. DO NOT insert spaces before each command. 
If no parameter is specified, downloading a data file will clear all programs in the controllers RAM. The data 
is entered beginning at line 0. If there are too many lines or too many characters per line, the controller will 
return a ?. To download a program after a label, specify the label name following DL. The argument # may 
be used with DL to append a file at the end of the program in RAM.  
 
It is recommended to use the program download functions available through the GalilTools software and 
drivers rather than directly using the DL command.

Arguments
DL n     where 
n = no argument     Downloads program beginning at line 0. Erases programs in RAM. 
n = #Label     Begins download at line following #Label 
n = #           Begins download at end of program in RAM.

Operand Usage
When used as an operand, _DL gives the number of available labels (510 maximum)

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands

Examples:



DL;     Begin download
#A;PR 4000;BGA  Data
AMA;MG DONE     Data
EN      Data
<control> Z     End download



DM
Syntax: Implicit Only

Operands: _DMn

Burn: not burnable

Dimension
Hardware: All

Full Description
The DM command defines a single-dimensional array with a name and n total elements. The first element of 
the defined array starts with element number 0 and the last element is at n-1.

Arguments
DM c[n]           where 
      c is a array name of up to eight alphanumeric characters, starting with an alphabetic character.  
      n is the number of array elements. 
 
DM? returns the number of array elements available.

Operand Usage
_DM contains the available array space.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
"DA" - Deallocate Array

Examples:

DM Pets[5],Dogs[2],Cats[3]      Define dimension of arrays, pets with 
5 elements; Dogs with 2 elements; Cats with 3 elements
DM Tests[1600]  Define dimension of array Tests with 1600 elements

:DM?
16000



:DM MyArray[1000]
:DM?
15000
'DMC-4xxx and 18x6 provide length of array with array[-1]
:MG "MyArray contains",MyArray[-1]," elements" 
MyArray contains 1000.0000 elements
:



DP
Syntax: Explicit or Implicit

Operands: _DPn

Burn: not burnable

Define Position
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The DP command sets the current motor position and current command positions to a user specified value. 
The units are in quadrature counts. This command will set both the TP and RP values. 
      The DP command sets the commanded reference position for axes configured as steppers. The units are 
in steps. Example: DP 0 this will set the registers for TD and RP to zero, but will not effect the TP register value.

Arguments
DP n,n,n,n,n,n,n,n     or     DPA=n          where       
n is a signed integer in the range -2147483648 to 2147483647 decimal. 
n = ?      Returns the current position of the motor for the specified axes.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0,0,0,0,0,0,0,0

Default Format Position Format (PF)

Operand Usage
_DPn contains the current position of the specified axis.

Related Commands
DE Define Aux Encoder 
FI Find Index 
FE Find Edge 
HM Home 
PF Position Format 
RP Reference Position 
TP Tell Encoder Position 

Examples:

DP 0,100,200,400        Sets the current position of the A-axis to 0, the 



B-axis to 100, the C-axis to 200, and the D-axis to 400
DP ,-50000              Sets the current position of B-axis to -50000.  
The B,C and D axes remain unchanged.
DP ?,?,?,?              Interrogate the position of A,B,C and D axis.
:0, -0050000, 200, 400  Returns all the motor positions
DP ?                    Interrogate the position of A axis
:0                      Returns the A-axis motor position

Hint: The DP command is useful to redefine the absolute position. For example, you can manually 
position the motor by hand using the Motor Off command, MO. Turn the servo motors back on with SH 
and then use DP0 to redefine the new position as your absolute zero.



DR
Syntax: Implicit Only

Operands: _DR

Burn: not burnable

Configures I O Data Record Update Rate
Hardware: All

Full Description
The controller creates a QR record and sends it periodically to a UDP Ethernet Handle.

Arguments
DR n, m 
n specifies the data update rate in samples between updates. When TM is set to the default of 1000, n specifies 
the data update rate in milliseconds. n=0 to turn it off, or n must be an integer in the range of 2 to 30,000. 
m specifies the Ethernet handle on which to periodically send the Data Record. 0 is handle A, 1 is B, 7 is H. 
The handle must be UDP (not TCP).

Operand Usage
_DR contains the data record update rate.

Usage
Usage Default Details

Usage Value

While Moving Yes

In a Program

Command Line Yes

Controller Usage

Default Value

Default Format

Related Commands
QZ 
Sets format of data 
QR 
Query a single data record

Examples:

:DR8,0

:G�x�����~���P�

_�`�����@~���P�



_�H�����`~���P�

_�0�����~���P�
DR0
'Note:  The data record is in a binary, non-printable format (the 
output above is normal when printing to the terminal)



DT
Syntax: Implicit Only

Operands: _DTn

Burn: not burnable

Delta Time
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The DT command sets the time interval for Contour Mode. Sending the DT command once will set the 
time interval for all contour data until a new DT command (or CDm=n) is sent.

Arguments
DT n     where 
n is an integer in the range 0 to 8.  
n = 1 through 8 specifies the time interval of 2^n samples.  
n = -1 allows a pre-load of the contour buffer or to asynchronously pause the contour buffer. DT-1 during 
contour mode will pause the contour buffer (and commanded movement). A positive DT will resume 
contour mode from paused position of buffer. 
By default the sample period is 1 msec (set by the TM command); with n=1, the time interval would be 2 msec 
n = ?      Returns the value for the time interval for contour mode.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Operand Usage
_DT contains the value for the time interval for Contour Mode

Related Commands
CM - Contour Mode 
CD - Contour Data

Examples:

:DT 4              Specifies time interval to be 16 msec (TM1000)
:DT 7              Specifies time interval to be 128 msec



:

REM basic contour example
#Cont0;'                Define label #Cont0
CM ABCD;'               Specify Contour Mode
DT 4;'                  Specify time increment for contour
CD 200,350,-150,500;'   Specify incremental positions on A,B,C and C axes
'                       A-axis moves 200 counts B-axis moves 350 counts C-
'                       axis moves -150 counts C-axis moves 500 counts
CD 100,200,300,400 ;'   New position data
CD 0,0,0,0=0;'          End of Contour Buffer/Sequence
#Wait;'                 Wait for all segments to process (buffer to empty)
WT 16,1;'               wait for 1 DT time segment (2^4)
JP#Wait,_CM<>511
EN;'                    End program

REM contour example for pre-loading of contour buffer
#Cont1;'                Define label #Cont1
CM AB;'                 Specify Contour Mode
DT -1;'                 Pause Contour Mode to allow pre-load of buffer
CD 100,200;'            Countour Data pre-loaded in buffer
CD 400,200;'            Countour Data pre-loaded in buffer
CD 200,100;'            Countour Data pre-loaded in buffer
CD 300,50;'             Countour Data pre-loaded in buffer
AI -1;'                 Wait for Analog input 1 to go low
DT 8;'                  Set positive DT to start contour mode
CD 0,0,0,0=0;'          End of Contour Buffer/Sequence
#Wait;'                 Wait for all segments to process (buffer to empty)
WT 16,1;'               wait for 1 DT time segment (2^4)
JP#Wait,_CM<>511
EN;'                    End program



DV
Syntax: Explicit or Implicit

Operands: _DVn

Burn: burnable with BN

Dual Velocity (Dual Loop)
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC300x0

Full Description
The DV function changes the operation of the filter. It causes the KD (derivative) term to operate on the 
dual encoder instead of the main encoder. This results in improved stability in the cases where there is a 
backlash between the motor and the main encoder, and where the dual encoder is mounted on the motor.

When using Dual Loop mode with a large motor:load ratio and/or running at high velocities where low 
position error at speed is required, FV should be used to compensate for the derivitave contribution from the 
higher resolution motor encoder. 
 
The FV value is calculated by the equation: 
FV = (KD/4)*(motor/load) 
 
motor/load = effective motor to load ratio 
 
For example: 
KD = 200 
motor encoder changes 5000 counts per 1000 counts of load encoder (motor/load = 5/1) 
FV = (200/4)*(5/1) = 250

Arguments
DV n,n,n,n,n,n,n,n     or     DVX=n          where 
n = 0      Disables the dual loop mode.  
n = 1      Enables the dual loop mode.

Operand Usage
_DVn contains the state of dual velocity mode for specified axis. 0 = disabled, 1 = enabled.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A

Related Commands



KD - Damping constant 
FV - Velocity feedforward

Examples:

DV 1,1,1,1      Enables dual loop on all axes
DV 0    Disables DV on A axis
DV,,1,1 Enables dual loop on C axis and D axis.  Other axes remain unchanged.
DV 1,0,1,0      Enables dual loop on A and C axis.  Disables dual loop on 
B and D axis.
MG_DVA  Returns state of dual velocity mode for A axis
Hint:  The DV command is useful in backlash and resonance compensation.



EA
Syntax: Accepts Axis Mask

Operands: none

Burn: not burnable

Choose ECAM master
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EA command selects the master axis for the electronic cam mode. Any axis may be chosen. 
 
The ECAM mode runs off of the master's main encoder (TP) even when the axis is running in stepper mode.

Arguments
EA n     where  
n is the axis specified as A,B,C,D,E,F,G, H, M or N which defines the ECAM master

Operand Usage

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
EB - Enable ECAM 
EC - Set ECAM table index 
EG - Engage ECAM 
EM - Specify ECAM cycle 
EP - Specify ECAM table intervals & staring point 
EQ - Disengage ECAM 
ET - ECAM table

Examples:

#CAMONE 
Master=400 
Slave=8192 



EB0; 'Disable ECAM Mode
ET[0]=,0 
ET[1]=,2048 
ET[2]=,4096 
ET[3]=,6144 
ET[4]=,8192 
EAX; 'Set Master Axis as X
EM Master,Slave 
EP Master/4,0
DP0,0
SHXY 
'NOTE: (EP Value)*(# of Cam Points) must be >= to Master Modulus
JG100;BGX 
EB1
EG,0; 'Start ECAM profile
EN



EB
Syntax: Implicit Only

Operands: _EBn

Burn: not burnable

Enable ECAM
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EB function enables or disables the cam mode. In this mode, the starting position of the master axis 
is specified within the cycle. When the EB command is given, the master axis is modularized.

Arguments
EB n     where  
n = 1           Starts ECAM mode  
n = 0           Stops ECAM mode. 
n = ?           Returns 0 if ECAM is disabled and a 1 if enabled.

Operand Usage
_EB contains the state of Ecam mode. 0 = disabled, 1 = enabled

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
"EA" - Choose ECAM master 
"EC " - Set ECAM table index 
"EG " - Engage ECAM 
"EM " - Specify ECAM cycle 
"EP" - Specify ECAM table intervals & staring point 
"EQ " - Disengage ECAM 
"ET " - ECAM table

Examples:

EB1     Starts ECAM mode



EB0     Stops ECAM mode
B = _EB Return status of cam mode



EC
Syntax: Implicit Only

Operands: _ECn

Burn: not burnable

ECAM Counter
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EC function sets the index into the ECAM table. This command is only useful when entering ECAM 
table values without index values and is most useful when sending commands in binary. See the command, ET.

Arguments
EC n     where  
n is an integer between 0 and 256.  
n = ?      Returns the current value of the index into the ECAM table.

Operand Usage
_EC contains the current value of the index into the ECAM table.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
"EA" - Choose ECAM master 
"EB " - Enable ECAM 
"EG " - Engage ECAM 
"EM " - Specify ECAM cycle 
"EP" - Specify ECAM table intervals & staring point 
"EQ " - Disengage ECAM 
"ET " - ECAM table

Examples:

EC0     Set ECAM index to 0
ET 200,400      Set first ECAM table entries to 200,400



ET 400,800      Set second ECAM table entries to 400,800



ED
Syntax: Implicit Only

Operands: _ED1,_ED

Burn: not burnable

Edit
Hardware: All

Full Description
Using Telnet style interface (not Galil Software). The ED command puts the controller into the Edit subsystem. 
In the Edit subsystem, programs can be created, changed, or destroyed. The commands in the Edit subsystem 
are the following.

ED Commands

Key Combination Function

D Deletes a Line

I Inserts a line before the current

P Displays the previous line

Q Exits the ED subsystem

Enter Saves a line and moves cursor to next

Arguments

ED m
where 
     m specifies the line number to begin editing. The default line number is the last line of program space 
with commands.

Operand Usage
_ED contains the line number of the last line to have an error. 
_ED1 contains the number of the thread where the error occurred (for multitasking). 
_ED4 when evaluated in an embedded code thread, this operand will contain the thread id of the calling 
thread. This is useful for DMC code to determine which thread it is running in. See example below.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program No

Command Line Yes



Related Commands
DL - Download 
UL - Upload

Examples:

ED      
0 #START        
1 PR 2000       
2 BGA   
3 SLKJ  Bad line
4 EN    
5 #CMDERR       Routine which occurs upon a command error
6 V=_ED 
7 MG "An error has occurred" {n}        
8 MG "In line", V{F3.0} 
9 ST    
10 ZS0  
11 EN   
Hint:  Remember to quit the Edit Mode prior to executing or listing 
a program.

'Using _ED4
XQ#id,1
XQ#id,2
XQ#id,3
XQ#id,4
XQ#id,5
XQ#id,6
XQ#id,7
#id
MG{Z10.0}"This message is from thread",_ED4
EN

' Returns...
' :XQ
' This message is from thread 1 
' This message is from thread 2 
' This message is from thread 3 
' This message is from thread 4 
' This message is from thread 5 
' This message is from thread 6 
' This message is from thread 7 
' This message is from thread 0



EG
Syntax: Explicit or Implicit

Operands: _EGn

Burn: not burnable

ECAM go (engage)
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The EG command engages an ECAM slave axis at a specified position of the master. If a value is specified 
outside of the master's range, the slave will engage immediately. Once a slave motor is engaged, its position 
is redefined to fit within the cycle.

Arguments
EG n,n,n,n,n,n,n,n     or     EGA=n           where  
n is the ECAM master position at which the ECAM slave axis must be engaged. 
n = ?           Returns 1 if specified axis is engaged and 0 if disengaged.

Operand Usage
_EGn contains ECAM status for specified axis. 0 = axis is not engaged, 1 = axis is engaged.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
"EA" - Choose ECAM master 
"EB " - Enable ECAM 
"EC " - Set ECAM table index 
"EM " - Specify ECAM cycle 
"EP" - Specify ECAM table intervals & staring point 
"EQ " - Disengage ECAM 
"ET " - ECAM table

Examples:

EG 700,1300     Engages the A and B axes at the master position 700 and 
1300 respectively.
B = _EGB        Return the status of B axis, 1 if engaged



Note:  This command is not a trippoint.  This command will not hold 
the execution of the program flow.  If the execution needs to be held 
until master position is reached, use MF or MR command.



EI
Syntax: Implicit Only

Operands: _EI

Burn: not burnable

Event Interrupts
Hardware:

DMC40x0 DMC41x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
EI enables interrupts for the predefined event conditions in the table below. When a condition (e.g. Axis A 
profiled motion complete) occurs after EI is armed, a particular status byte value (e.g. $D0 or 208) is delivered 
to the host PC along with the interrupt.

Interrupts are issued as automatically dispatched UDP packets. GalilTools version 1.2.1.0 or newer required 
for software support. 

The UDP packet can contain up to 16 individual status bytes and is framed as follows

Format Header (Fixed Byte) Status Byte (1-16 bytes)
Payload Byte Count (0x03 
- 0x12) [Includes header 

and footer in count]

Example 0x01 0xD0F1DBE1 0x06

Example Decoded Interrupt Packet Indicator
Axis A Profiled Motion Complete; 
User Interrupt 1; Application Program 
Stopped; Digital Input 1 is low

6 bytes in payload

Arguments

EI m,n,h
m is a 16-bit integer mask between 0 and 65535 and is used to select the interrupt condition(s) to be used. 0 
(the default) means "don't interrupt" and clears the queue when issued. The * conditions must be re-enabled 
with EI after each occurrence.

Interrupt Bytes

bit m=2^bit Hex (decimal) Status Byte Hex (decimal) Condition

0 $0001 (1) $D0 (208) Axis A profiled motion complete _BGA = 0

1 $0002 (2) $D1 (209) Axis B profiled motion complete _BGB = 0

2 $0004 (4) $D2 (210) Axis C profiled motion complete _BGC = 0

3 $0008 (8) $D3 (211) Axis D profiled motion complete _BGD = 0

4 $0010 (16) $D4 (212) Axis E profiled motion complete _BGE = 0

5 $0020 (32) $D5 (213) Axis F profiled motion complete _BGF = 0

6 $0040 (64) $D6 (214) Axis G profiled motion complete _BGG = 0

7 $0080 (128) $D7 (215) Axis H profiled motion complete _BGH = 0

8 $0100 (256) $D8 (216) All axes profiled motion complete _BGI = 0



9 $0200 (512) $C8 (200) Excess position error _TEn >= _ERn*

10 $0400 (1024) $C0 (192)
Limit switch _LFn = 0* Must be profiling motion 
in direction of activated limit switch for interrupt 
to occur.

11 $0800 (2048) $D9 (217) Watchdog timer (PCI only, no 40x0)

12 $1000 (4096) Reserved

13 $2000 (8192) $DB (219) Application program stopped _XQn = -1

14 $4000 (16384) $DA (218) PC command done, colon response sent (PCI 
only, no 40x0)

15 $8000 (32768) $E1-$E8 (225-232) Digital input(s) 1-8 low (use n for mask)*

UI, user interrupt command $F0-$FF (240-255) User Interrupt, See UI command
n is an 8-bit integer mask between 0 and 255 and is used to select the specific digital input(s) if bit 15 of m is 
set (indicating that digital inputs are to be used for interrupting). Bit 15 of m must be set for the n mask to be used.

Intput Interrupts

bit n=2^bit hex (decimal) Status Byte hex (decimal) Condition

0 $01 (1) $E1 (225) Digital input 1 is low @IN[1] = 0*

1 $02 (2) $E2 (226) Digital input 2 is low @IN[2] = 0*

2 $04 (4) $E3 (227) Digital input 3 is low @IN[3] = 0*

3 $08 (8) $E4 (228) Digital input 4 is low @IN[4] = 0*

4 $10 (16) $E5 (229) Digital input 5 is low @IN[5] = 0*

5 $20 (32) $E6 (230) Digital input 6 is low @IN[6] = 0*

6 $40 (64) $E7 (231) Digital input 7 is low @IN[7] = 0*

7 $80 (128) $E8 (232) Digital input 8 is low @IN[8] = 0*
h is 0-7 or -1 and indicates the preconfigured UDP handle where interrupts should be sent. 0-7 indicates handles 
A-H, respectively. If the handle specified by h is not UDP or not initialized, an error will occur (TC1). A -
1 disables the interrupt dispatch. GalilTools software will auto configure h, allowing the user to ignore its use 
in most cases.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0,0 for PCI 0,0,-1 for Ethernet

Default Format N/A

Operand Usage



_EI contains the interrupt mask m

Related Commands
UI - User interrupt

Examples:

1.  Interrupt when motion is complete on all axes OR if a limit switch 
is hit: 
        From the table, enable bits 8 and 10.  m = 256 + 1024 = 1280
        EI  1280
2.  Interrupt when digital input 3 is low.  Enable bit 15 of m and bit 2 
of n.
        EI 32768,4



ELSE
Syntax: Embedded Only

Operands: none

Burn: not burnable

Else function for use with IF conditional statement
Hardware: All

Full Description
The ELSE command is an optional part of an IF conditional statement. The ELSE command must occur after an 
IF command and it has no arguments. It allows for the execution of a command only when the argument of the 
IF command evaluates False. If the argument of the IF command evaluates false, the controller will 
skip commands until the ELSE command. If the argument for the IF command evaluates true, the controller 
will execute the commands between the IF and ELSE command.

Arguments
ELSE

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
ENDIF - End of IF conditional Statement

Examples:

#A      
IF (@IN[1]=0)   ;'IF conditional statement based on ;'input 1
IF (@IN[2]=0)   ;'2nd IF conditional statement ;'executed if 1st 
IF conditional true
MG "INPUT 1 AND INPUT 2 ARE ACTIVE"     ;'Message to be executed if 
2nd IF ;'conditional is true
ELSE    ;'ELSE command for 2nd IF conditional ;'statement



MG "ONLY INPUT 1 IS ACTIVE"     ;'Message to be executed if 
2nd IF ;'conditional is false
ENDIF   ;'End of 2nd conditional statement
ELSE    ;'ELSE command for 1st IF conditional ;'statement
MG "ONLY INPUT 2 IS ACTIVE"     ;'Message to be executed if 
1st IF ;'conditional statement is false
ENDIF   ;'End of 1st conditional statement
EN



EM
Syntax: Explicit or Implicit

Operands: _EMn

Burn: burnable with BN

Cam cycles (modulus)
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EM command is part of the ECAM mode. It is used to define the change in position over one complete 
cycle of the master. The field for the master axis is the cycle of the master position. For the slaves, the field 
defines the net change in one cycle. If a slave will return to its original position at the end of the cycle, the 
change is zero. If the change is negative, specify the absolute value.

Arguments
EM n,n,n,n,n,n,n,n     or     EMA=n          where 
n is a positive integer in the range between 1 and 8,388,607 for the master axis and between 1 and 
2,147,483,647 for a slave axis.

Operand Usage
_EMn contains the cycle of the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
"EA" - Choose ECAM master 
"EB " - Enable ECAM 
"EC " - Set ECAM table index 
"EG " - Engage ECAM 
"EP" - Specify ECAM table intervals & staring point 
"EQ " - Disengage ECAM 
"ET " - ECAM table

Examples:



EAC     Select C axis as master for ECAM.
EM 0,3000,2000  Define the changes in A and B to be 0 and 
3000 respectively.  Define master cycle as 2000.
V = _EMA        Return cycle of A



EN
Syntax: Embedded Only

Operands: none

Burn: not burnable

End
Hardware: All

Full Description
The EN command is used to designate the end of a program or subroutine. If a subroutine was called by the 
JS command, the EN command ends the subroutine and returns program flow to the point just after the 
JS command.  
 
Note: Instead of EN, use the RE command to end the error subroutine and limit subroutine. Use the RI 
command to end the input interrupt subroutine

A return parameter can be specified to EN from a subroutine to return a value from the subroutine to the 
calling stack. 
 
The EN command is used to end the automatic subroutines #MCTIME #COMINT and #CMDERR.  
 
When the EN command is used to terminate the #COMINT communications interrupt subroutine, there are 
2 argurments. The first determines whether trippoints will be restored upon completion of the subroutine, and 
the second determines whether the communication will be re-enabled.

Arguments
EN m, n, r where 
m = 0:     Return from subroutine without restoring trippoint 
m = 1:     Return from subroutine and restore trippoint 
n = 0 :     Return from #COMINT without restoring CI interrupt trigger 
n = 1 :     Return from #COMINT and restore CI interrupt trigger 
r = anyvalue     Return a value from a subroutine, accessible to the calling stack in _JS 
 
Note 1: The default value for the argument is 0.  
 
Note 2: The arguments will specify how the #COMINT routine handles trippoints. Trippoints cause a program 
to wait for a particular event. The AM command, for example, waits for motion on all axes to complete. If 
the #COMINT subroutine is executed due to a communication interrupt while the program is waiting for 
a trippoint, the #COMINT can end and by continue to wait for the trippoint, or clear the trippoint and 
continue executing the program at the command just after the trippoint. 
 
Note 3: Use the RE command to return from the interrupt handling subroutines #LIMSWI and #POSERR. Use 
the RI command to return from the #ININT subroutine.

Usage
Usage and Default Details

Usage Value

While Moving Yes



In a Program Yes

Command Line No

Controller Usage All

Default Value m=0, n=0, r=0

Default Format N/A

Operand Usage
N/A

Related Commands
RE - Return from error subroutine 
RI - Return from interrupt subroutine

Examples:

#A;'     Program A
PR 500;' Move A axis forward 500 counts
BGA;'    Begin motion
AMA;'    Pause the program until the A axis completes the motion
EN;'     End of Program



ENDIF
Syntax: Embedded Only

Operands: none

Burn: not burnable

End of IF conditional statement
Hardware: All

Full Description
The ENDIF command is used to designate the end of an IF conditional statement. An IF conditional statement 
is formed by the combination of an IF and ENDIF command. An ENDIF command must always be executed 
for every IF command that has been executed. It is recommended that the user not include jump commands 
inside IF conditional statements since this causes re-direction of command execution. In this case, the 
command interpreter may not execute an ENDIF command.

Arguments
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Operand Usage

Related Commands
IF - Command to begin IF conditional statement 
ELSE - Optional command to be used only after IF command 
JP - Jump command 
JS - Jump to subroutine command

Examples:

#A
IF (@IN[1]=0);'                       IF conditional statement based on
'                                     input 1
 IF (@IN[2]=0);'                      2nd IF conditional statement
'                                     executed if 1st IF conditional true



  MG "INPUT 1 AND INPUT 2 ARE ACTIVE";' Message to be executed if 2nd IF
'                                     conditional is true
 ELSE;'                               ELSE command for 2nd IF conditional
'                                     statement
  MG "ONLY INPUT 1 IS ACTIVE";'       Message to be executed if 2nd IF
'                                     conditional is false
 ENDIF;'                              End of 2nd conditional statement
ELSE;'                                ELSE command for 1st IF conditional
'                                     statement
 MG "ONLY INPUT 2 IS ACTIVE";'        Message to be executed if 1st IF
'                                     conditional statement is false
ENDIF;'                               End of 1st conditional statement
EN



EO
Syntax: Implicit Only

Operands: _EO

Burn: not burnable

Echo
Hardware: All

Full Description
The EO command turns the echo on or off. If the echo is off, characters input over the bus will not be echoed back.

Serial only, no Ethernet.

Arguments
EO n     where  
n = 0      0 turns echo off  
n = 1     1 turns echo on.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value (PCI-based controllers) 0

Default Value (Stand Alone controllers) 1 (Galil software will set EO 0 upon connection)

Default Format 1.0

Operand Usage
_EO contains the state of the echo; 0 is off, 1 is on

Related Commands

Examples:

EO 0    Turns echo off
EO 1    Turns echo on



EP
Syntax: Implicit Only

Operands: _EP

Burn: burnable with BN

Cam table master interval and phase shift
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The EP command defines the ECAM table intervals and offset. The offset is the master position of the first 
ECAM table entry. The interval is the difference of the master position between 2 consecutive table entries. 
This command effectively defines the size of the ECAM table. The parameter 'm' is the interval and 'n' is 
the starting point. Up to 257 points may be specified. 
 
The offset parameter 'n' can also be used to instantaneously phase shift the graph of the slave position verses 
the master position. This can be used to make on-the-fly corrections to the slaves. See application note #2502 
for more details. 
http://www.galilmc.com/support/application-notes.php

Arguments
EP m,n          where  
m is the master interval and is a positive integer in the range between 1 and 32,767 master counts. m cannot 
be changed while ECAM is running. 
m = ?      Returns the value of the interval, m. 
n is the phase shift and is an integer between -2,147,483,648 and 2,147,483,647 master counts. n can be 
changed while ECAM is running.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256,0

Default Format N/A

Operand Usage
_EP contains the value of the interval m.

Related Commands
EA - Choose ECAM master 
EB - Enable ECAM 
EC - Set ECAM table index 
EG - Engage ECAM 
EM - Specify ECAM cycle 



EQ - Disengage ECAM 
ET - ECAM table

Examples:

EP 20           Sets the cam master points to 0,20,40 . . .
D =  _EP        Set the variable D equal to the ECAM internal master interval
EP,100          Phase shift all slaves by 100 master counts



EQ
Syntax: Explicit or Implicit

Operands: _EQn

Burn: not burnable

ECAM quit (disengage)
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EQ command disengages an electronic cam slave axis at the specified master position. Separate points can 
be specified for each axis. If a value is specified outside of the master's range, the slave will 
disengage immediately.

Arguments
EQ n,n,n,n,n,n,n,n           or      EQA=n           where 
n is the master positions at which the axes are to be disengaged. 
n = ?      Returns 1 if engage command issued and axis is waiting to engage, 2 if      disengage command issued 
and axis is waiting to disengage, and 0 if ECAM engaged or disengaged.

Operand Usage
_EQn contains 1 if engage command issued and axis is waiting to engage, 2 if disengage command issued and 
axis is waiting to disengage, and 0 if ECAM engaged or disengaged.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
EA - Choose ECAM master 
EB - Enable ECAM 
EC - Set ECAM table index 
EG - Engage ECAM 
EM - Specify ECAM cycle 
EP - Specify ECAM table intervals & staring point 
ET - ECAM table

Examples:



EQ 300,700      Disengages the A and B motors at master positions 300 
and 700 respectively.
Note:  This command is not a trippoint.  This command will not hold 
the execution of the program flow.  If the execution needs to be held 
until master position is reached, use MF or MR command.



ER
Syntax: Explicit or Implicit

Operands: _ERn

Burn: burnable with BN

Error Limit
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The ER command sets the magnitude of the position errors for each axis that will trigger an error condition. 
When the limit is exceeded, the Error output will go low (true) and the controller's red light will be turned on. 
If the Off On Error (OE1) command is active, the motors will be disabled. For debugging purposes, ER0 and ER-
1 can be used to turn the red LED on and off.

Arguments
ER n,n,n,n,n,n,n,n      or           ERA=n           where 
n is an unsigned number in the range 1 to 2147483647 which represents the error limit in encoder counts. A 
value of -1 will disable the position error limit for the specified axis.  
n = ?      Returns the value of the Error limit for the specified axis.

Operand Usage
_ERn contains the value of the Error limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 16384

Default Format Position Format

Related Commands
OE - Off-On Error 
#POSERR - Automatic Error Subroutine

Examples:

ER 200,300,400,600      Set the A-axis error limit to 200, the B-axis 
error limit to 300, the C-axis error limit to 400, and the D-axis 
error limit to 600.
ER ,1000        Sets the B-axis error limit to 1000, leave the A-axis 
error limit unchanged.



ER ?,?,?,?      Return A,B,C and D values
 200, 100, 400, 600     
ER ?    Return A value
 200    
V1=_ERA Assigns V1 value of ERA
V1=     Returns V1
: 200   
Hint:  The error limit specified by ER should be high enough as not to 
be reached during normal operation.  Examples of exceeding the error 
limit would be a mechanical jam, or a fault in a system component such 
as encoder or amplifier.



ES
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Ellipse Scale
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The ES command divides the resolution of one of the axes in a vector mode (VM). This function allows for 
the generation of circular motion when encoder resolutions differ. It also allows for the generation of an 
ellipse instead of a circle. 
The command has two parameters, m and n. The arguments, m and n apply to the axes designated by the 
command VM. When m>n, the resolution of the first axis, x, will be multiplied by the ratio m/n. When m<n, 
the resolution of the second axis, y, will be multiplied by n/m. The resolution change applies for the purpose 
of generating the VP and CR commands, effectively changing the axis with the lower resolution to match 
the higher resolution.  
The ES command will apply to the selected coordinate system, S or T. To select the coordinate system, use 
the command CAS or CAT.

Arguments
ES m,n          where  
m and n are positive integers in the range between 1 and 65,535.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 1.1

Default Format N/A

Related Commands
VM - Vector Mode 
CR - Circle move 
VP - Vector position

Examples:



VMAB;ES3,4      Scale B resolution by 4/3
VMCA;ES2,3      Scale A resolution by 3/2
VMAC; ES3,2     Scale A Resolution by 3/2
Note:  ES must be issued after VM.



ET
Syntax: Other

Operands: none

Burn: not burnable

Electronic cam table
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The ET command sets the ECAM table entries for the slave axes. The values of the master axes are not 
required. The slave entry (n) is the position of the slave axes when the master is at the point (m i) + o, where i 
is the interval and o is the offset as determined by the EP command.

Arguments
ET[m] = n,n,n,n,n,n,n,n                where 
m is an integer between 0 and 256 
n is an integer in the range between -2,147,438,648, and 2,147,438,647. 
n=? Returns the slave position for the specified point. 
The value m can be left out of the command if the index count has been set using the command, EC. In this 
mode, each ET command will automatically increment the index count by 1.

Operand Usage

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
EA - Choose ECAM master 
EB - Enable ECAM 
EC - Set ECAM table index 
EG - Engage ECAM 
EM - Specify ECAM cycle 
EP - Specify ECAM table intervals & staring point 
EQ - Disengage ECAM

Examples:

ET[0]=0,,0      Specifies the position of the slave axes A and C to 



be synchronized with the starting point of the master.
ET[1]=1200,,400 Specifies the position of the slave axes A and C to 
be synchronized with the second point of the master
EC0     Set the table index value to 0, the first element in the table
ET 0,,0 Specifies the position of the slave axes A and C to be 
synchronized with the starting point of the master.
ET 1200,,400    Specifies the position of the slave axes A and C to 
be synchronized with the second point of the master



EW
Syntax: Other

Operands: _EW0,_EW1,_EW2,_EW3,

Burn: not burnable

ECAM Widen Segment
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The EW command allows widening the length of one or two ECAM segments beyond the width specified by 
EP. For ECAM tables with one or two long linear sections, this allows placing more points in the curved 
sections of the table. 
There are only two widened segments, and if used they are common for all ECAM axes. Remember that 
the widened segment lengths must be taken into account when determining the modulus (EM) for the master. 
The segments chosen should not be the first or last segments, or consecutive segments.

Arguments
EW m1=n1,m2=n2     where 
m1 is the index of the first widened segment. m1 is a positive integer between 1 and 255. 
n1 is the length of the first widened segment in master counts. n1 is an integer between 1 and 2,147,483,647. 
m2 is the index of the second widened segment. m2 is a positive integer between 3 and 255. 
n2 is the length of the second widened segment in master counts. n2 is an integer between 1 and 2,147,483,647. 
If m1 or m2 is set to -1, there is no widened segment. The segment number m2 must be greater than m1, and 
m2 may not be used unless m1 is used.

Operand Usage
_EW0 contains m1, the index of the first widened segment. 
_EW1 contains n1, the length of the first widened segment. 
_EW2 contains m2, the index of the second widened segment 
_EW3 contains n2, the length of the second widened segment.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value -1, 0, -1, 0

Default Format N/A

Related Commands
EP - ECAM master positions 
EA - Choose ECAM master 



EB - Enable ECAM 
EC - Set ECAM table index 
EG - Engage ECAM Slave 
EM - Specify ECAM cycle 
EQ - Disengage ECAM Slave 
ET - ECAM table

Examples:

EW 41=688       :'Widen segment 41 to 688 master counts
EW 41=688, 124=688      :'Widen segments 41 and 124 to 688 master counts



EY
Syntax: Implicit Only

Operands: _EY

Burn: not burnable

ECAM Cycle Count
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Sets or gets the ECAM cycle count. This is the number of times that the ECAM axes have exceeded their 
modulus as defined by the EM command. EY will increment by one each time the master exceeds its modulus 
in the positive direction, and EY will decrement by one each time the master exceeds its modulus in the 
negative direction. EY can be used to calculate the absolute position of an axis with the following equation: 
     Absolute position = EY * EM + TP

Arguments
EY n          where  
n is a signed integer in the range -2147483648 to 2147483647 decimal. 
n = ? returns the current cycle count.

Operand Usage
_EY returns the current cycle count

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
EM - ECAM modulus

Examples:

MG _EY * _EMY + _TPY;'         print absolute position of master (Y)



FA
Syntax: Explicit or Implicit

Operands: _FAn

Burn: burnable with BN

Acceleration Feedforward
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The FA command sets the acceleration feedforward coefficient. This coefficient, when scaled by the 
acceleration, adds a torque bias voltage during the acceleration phase and subtracts the bias during the 
deceleration phase of a motion. 
 
The Feedforward Bias product is limited to 10 Volts. FA operates when commanding motion with PA, PR and JG. 
 
Note: If the feedforward coefficient is changed during a move, then the change will not take effect until the 
next move.

Acceleration Feedforward Bias = FA * AC * (1.5 10-7) * ((TM/1000)^2) 
Deceleration Feedforward Bias = FA * DC * (1.5 10-7) * ((TM/1000)^2) 

Arguments
FA n,n,n,n,n,n,n,n      or      FAS=n           where 
n is an unsigned number in the range 0 to 8191 decimal with a resolution of 0.25. 
n = ? Returns the value of the feedforward acceleration coefficient for the specified axis.

Operand Usage
_FAn contains the value of the feedforward acceleration coefficient for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 4.2

Related Commands
FV - Velocity feedforward

Examples:



Set feedforward coefficient to 10 for the A-axis 
and 15 for the B-axis.  The effective bias will 
be 0.75V for A and 2.25V for B.

:AC 500000,1000000
:FA 10,15                
:FA ?,?                  Return A and B values
 10, 15



FE
Syntax: Accepts Axis Mask

Operands: none

Burn: not burnable

Find Edge
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The FE command moves a motor until a transition is seen on the homing input for that axis. The direction 
of motion depends on the initial state of the homing input (use the CN command to configure the polarity of 
the home input). Once the transition is detected, the motor decelerates to a stop. 
This command is useful for creating your own homing sequences. 
 
Hint: Find Edge only searches for a change in state on the Home Input. Use FI (Find Index) to search for 
the encoder index. Use HM (Home) to search for both the Home input and the Index. Remember to specify 
BG after each of these commands.

Arguments
FE nnnnnnnn          where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument specifies all axes.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
FI - Find Index 
HM - Home 
BG - Begin 
AC - Acceleration Rate 
DC - Deceleration Rate 
SP - Speed for search



Examples:

:FE     Set find edge mode
:BG     Begin all axes
:FEA    Only find edge on A
:BGA    
:FEB    Only find edge on B
:BGB    
:FECD   Find edge on C and D
:BGCD



FI
Syntax: Accepts Axis Mask

Operands: none

Burn: not burnable

Find Index
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The FI and BG commands move the motor until an encoder index pulse is detected. The controller looks for 
a transition from low to high. There are 2 stages to the FI command. The first stage jogs the motor at the speed 
and direction of the JG command until a transition is detected on the index line. When the transition is 
detected, the position is latched and the motor will decelerate to a stop. In the second stage, the motor will 
reverse direction and move to the latched position of the index pulse at the speed set by the HV command. At 
the conclusion of FI, the position is defined as zero.

Arguments
FI nnnnnnnn where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or sequence 
No argument specifies all axes.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
FE - Find Edge 
HM - Home 
BG - Begin 
AC - Acceleration 
DC - Deceleration 
JG - Jog

HV - Homing Velocity



Examples:

#HOME;'            Home Routine
JG 500;'           Set speed and forward direction
FIA;'              Find index
BGA;'              Begin motion
AMA;'              After motion
MG "FOUND INDEX";' Print message        
EN

Hint: Find Index only searches for a change in state on the Index. Use FE to search for the Home. Use HM 
(Home) to search for both the Home input and the Index. Remember to specify BG after each of these commands.



FL
Syntax: Explicit or Implicit

Operands: _FLn

Burn: burnable with BN

Forward Software Limit
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The FL command sets the forward software position limit. If this limit is exceeded during motion, motion on 
that axis will decelerate to a stop. Forward motion beyond this limit is not permitted. The forward limit is 
activated at one count past the set value. The forward limit is disabled at 2147483647. The units are in 
quadrature counts. 
 
When the forward software limit is activated, the automatic subroutine #LIMSWI will be executed if it is 
included in the program.

Arguments

FL n,n,n,n,n,n,n,n or FLA=n
where 
n is a signed integers in the range -2147483648 to 2147483647, n represents the absolute position of axis.  
n = 2147483647      turns off the forward limit 
n = ?      Returns the value of the forward limit switch for the specified axis.

Operand Usage
_FLn contains the value of the forward software limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 2147483647

Default Format Position Format

Related Commands
BL - Reverse Limit 
PF - Position Formatting

Examples:



:FL 150000     Set forward limit to 150000 counts on the A-axis
:

#TEST;'         Test Program
AC 1000000;'    Acceleration Rate
DC 1000000;'    Deceleration Rate
FL 15000;'      Forward Limit
JG  5000;'      Jog Forward
BGA;'           Begin
AMA;'           After Limit
TPA;'           Tell Position
EN;'            End

'Hint:  Galil controllers also provide hardware limits.



FV
Syntax: Explicit or Implicit

Operands: _FVn

Burn: burnable with BN

Velocity Feedforward
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The FV command sets the velocity feedforward coefficient, or returns the previously set value. This 
coefficient generates an output bias signal in proportions to the commanded velocity.

Velocity feedforward bias = FV * (Velocity [cts/s]) * (1.22 10-6) * (TM/1000) 
 
FV operates when commanding motion with PA, PR, JG, VM, LM, PVT Mode and CM. 
For example, if FV=10 and the velocity is 200,000 count/s, the velocity feedforward bias equals 2.44 volts.

Arguments
FV n,n,n,n,n,n,n,n or FVA=n where 
n is an unsigned numbers in the range 0 to 8191 decimal 
n = ?      Returns the feedforward velocity for the specified axis.

Operand Usage
_FVn contains the feedforward velocity for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 4.0

Related Commands
FA - Acceleration Feedforward

Examples:

:FV 10,20        Set feedforward coefficients to 10 and 20 for A and 
B respectively
:JG 30000,80000  This produces 0.366 volts for A and 1.95 volts for B.



:FV ?,?          Return the A and B values.
 10,20



GA
Syntax: Explicit or Implicit

Operands: none

Burn: burnable with BN

Master Axis for Gearing
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The GA command specifies the master axes for electronic gearing. Multiple masters for gearing may be 
specified. The masters may be the main encoder input, auxiliary encoder input, or the commanded position of 
any axis. The master may also be the commanded vector move in a coordinated motion of LM or VM type. 
When the master is a simple axis, it may move in any direction and the slave follows. When the master is 
a commanded vector move, the vector move is considered positive and the slave will move forward if the 
gear ratio is positive, and backward if the gear ratio is negative. The slave axes and ratios are specified with 
the GR command and gearing is turned off by the command GR0. 
 
When the geared motors must be coupled "strongly" to the master, use the gantry mode GM. 
 
When gearing is used in a gantry application, gearing off of the commanded position is recommended.

Arguments
GA n,n,n,n,n,n,n,n          or      GAA=n          where 
n can be A,B,C,D,E,F,G, H, M or N. The value of n is used to set the specified main encoder axis as the 
gearing master and M and N represents the virtual axes. The slave axis is specified by the position of the 
argument. The first position of the argument corresponds to the 'A' axis, the second position corresponds to the 
'B' axis, etc. A comma must be used in place of an argument if the corresponding axes will not be a slave. 
n can be CA,CB,CC,CD,CE,CF,CG or CH. The value of x is used to set the commanded position of the 
specified axis as the gearing master.  
n can be S or T. S and T are used to specify the vector motion of the coordinated system, S or T, as the 
gearing master. 
n can be DA,DB,DC,DD,DE,DF,DG or DH. The value of n is used to set the specified auxiliary encoder axis 
as the gearing master. 
n=? returns the GA setting

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A



Default Format N/A

Related Commands
GR - Gear Ratio 
GM - Gantry Mode

Examples:

REM setup gearing where B axis is master for A and C axes.
#GEAR   
MOB;'          Turn off servo to B motor
GAB,,B;'       Specify master axis as B
GR .25,,-5;'   Specify A and C gear ratios
SHB;'          Enable B axis
PRB=1000;BGB;' Move B axis 1000 counts
'              A axis will be commanded to move 250 counts positive
'              C axis will be commanded to move 5000 counts negative (-5000)
EN;'           End program

REM imaginary axis example
#imag
GAC=N;'        set the imaginary N axis as the master of the C axis
GRC=2.5;'      set the gear ratio for the C axis as 1
PRN=1000;BGN;' Move N axis 1000 counts
'              C axis will be commanded to move 2500 counts positive
EN;'           End Program



GD
Syntax: Implicit Only

Operands: _GDn

Burn: burnable with BN

Gear Distance
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The GD command sets the distance of the master axis over which the specified slave will be engaged, 
disengaged or changed to a new gear setting. The distance is entered as an absolute value, the motion of the 
master may be in either direction. If the distance is set to 0, then the gearing will engage instantly.

Arguments
GD n,n,n,n,n,n,n,n      where 
N is an integer in the range 0 to 32767, the units are in encoder counts                     
n = 0      will result in the conventional method of instant gear change 
n = ?      will return the value that is set for the appropriate axis

Operand Usage
_GDn contains the distance the master axis will travel for the specified slave axis to fully engage, disengage, 
or change ratios.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage

Default Value 0

Default Format (1.0 for 18x2 & 21x3) (5.0 for 18x6 & 4xxx)

Related Commands
_GP - Gearing Phase Differential 
GR - Gear Ratio 
GA - Gear Axis

Examples:

#A      
GA,X    ;'Sets the X axis as the gearing master for the Y axis
GD,5000 ;'Set distance over which gearing is engaged to 5000 counts of 
the master axis.



JG5000  ;'Set the X axis jog speed to 5000 cts/sec
BGX     ;'Begin motion on the X axis
ASX     ;'Wait until X axis reaches the set speed of 5000 counts/sec
GR,1    ;'Engage gearing on the Y axis with a ratio of 1:1, the 
'distance to fully engage gearing will be 5000 counts of the master axis
WT1000  ;'Wait 1 second
GR,3    ;'Set the gear ratio to three.  The ratio will be changed 
'over the distance set by the GD command
WT1000  ;'Wait 1 second
GR,0    ;'Disengage the gearing between the Y axis slave and the 
'master.  The gearing will be disengaged over the number of 
'counts of the master specified with the GD command above
EN      ;'End program



GM
Syntax: Explicit or Implicit

Operands: _GMn

Burn: not burnable

Gantry mode
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The GM command specifies the axes in which the gearing function is performed in the Gantry mode. In this 
mode, the gearing will not be stopped by the ST command or by limit switches. Only GR0 will stop the gearing 
in this mode.

Arguments
GM n,n,n,n,n,n,n,n      or     GMA=n           where 
n = 0      Disables gantry mode function 
n = 1     Enables the gantry mode      
n = ?      Returns the state of gantry mode for the specified axis: 0 gantry mode disabled, 1 gantry mode enabled

Operand Usage
_GMn contains the state of gantry mode for the specified axis: 0 gantry mode disabled, 1 gantry mode enabled

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
GR - Gear Ratio           
GA - Gear Axes

Examples:

GM 1,1,1,1      Enable GM on all axes
GM 0    Disable GM on A-axis, other axes remain unchanged
GM ,,1,1        Enable GM on C-axis and D-axis, other axes remain unchanged
GM 1,0,1,0      Enable GM on A and C-axis, disable GM on B and D axis
Hint:  The GM command is useful for driving heavy load on both sides 
(Gantry Style).



GR
Syntax: Explicit or Implicit

Operands: _GRn

Burn: burnable with BN

Gear Ratio
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
GR specifies the Gear Ratios for the geared axes in the electronic gearing mode. The master axis is defined by 
the GA command. The gear ratio may be different for each geared axis. The master can go in both directions. 
A gear ratio of 0 disables gearing for each axis. A limit switch also disables the gearing unless gantry mode 
has been enabled (see GM command). 
 
When the geared motors must be coupled "strongly" to the master, use the gantry mode GM.

Arguments
GR n,n,n,n,n,n,n,n      or          GRA=n           where 
n is a signed numbers in the range +/-127, with a fractional resolution of 1/65536. 
n = 0      Disables gearing 
n = ?      Returns the value of the gear ratio for the specified axis.

Operand Usage
_GRn contains the value of the gear ratio for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 3.4

Related Commands
GA - Master Axis for Gearing 
GM - Gantry Mode

Examples:

REM setup gearing where B axis is master for A and C axes.
#GEAR   
MOB;'          Turn off servo to B motor
GAB,,B;'       Specify master axis as B



GR .25,,-5;'   Specify A and C gear ratios
SHB;'          Enable B axis
PRB=1000;BGB;' Move B axis 1000 counts
'              A axis will be commanded to move 250 counts positive
'              C axis will be commanded to move 5000 counts negative (-5000)
EN;'           End program



HM
Syntax: Accepts Axis Mask

Operands: _HMn

Burn: not burnable

Home
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The HM command performs a three stage homing sequence for servo systems and a two stage sequence for 
stepper motors. 
 
You can create your own custom homing sequence by using the FE (Find Edge) and FI (Find Index) commands.

Step One. Servos and Steppers
During the first stage of the homing sequence, the motor moves at the user-programmed speed until detecting 
a transition on the homing input for that axis. The speed for step one is set with the SP command. 
 
The direction for this first stage is determined by the initial state of the homing input. The state of the 
homing input can be configured using the second field of the CN command. 
 
Once the homing input changes state, the motor decelerates to a stop.

Step Two. Servos and Steppers
At the second stage, the motor changes directions and approaches the transition again at the speed set with the 
HV command. When the transition is detected, the motor is stopped instantaneously. 

Step Three. Servos only
At the third stage, the motor moves forward at the speed set with the HV command until it detects an index 
pulse via latch from the encoder. It returns to the latched position and defines it as position 0.

Arguments

HM nnnnnnnnnn
where 
     n is A,B,C,D,E,F,G, or H, or any combination to specify the axis. No argument homes all axes.

Operand Usage
_HMn state as a function of CN,n and Home digital input

_CN1 value Home input digital state _HMn state Direction of travel if HM begun in this state

-1 1 (pull-up or non-active opto) 1 Backward

-1 0 (grounded or active opto) 0 Forward

1 1 (pull-up or non-active opto) 0 Forward

1 0 (grounded or active opto) 1 Backward



Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
FI - Find Index Only 
FE - Find Home Only 
CN - Configure Home

HV - Homing velocity

Examples:

:HM     Set Homing Mode for all axes
:BG     Home all axes
:
:
:
:HMA     Set Homing Mode for axis A
:BGA     Home only the A-axis



HS
Syntax: Explicit Only

Operands: none

Burn: not burnable

Handle Assignment Switch
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The HS command is used to switch the handle assignments between two handles. Handles are opened when 
a connection is established by an external client (TCP or UDP), or when a handle is assigned explicitly with the 
IH command. Should those assignments need modifications, the HS command allows the handles to be reassigned. 
 
A handle encapsulates the following 4 pieces of information: 
1. Local IP address (same for all handles) 
2. Remote IP address 
3. Local Port 
4. Remote Port 
 
Handles are used as a pointer to the network socket in commands such as SAh, MBh, {Eh}, and IHh where h is 
the handle letter 
 

Arguments
HSh=i     where 
h is the first handle of the switch (A through H, S).  
i is the second handle of the switch (A through H, S)  
S is used to represent the current handle executing the command.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Operand Usage
N/A

Related Commands
IH- IP Handle

Examples:

HSC=D   Connection for handle C is assigned to handle D.  Connection 
for handle D is assigned to handle C.



HSS=E   Executing handle connection is assigned to handle E.  Connection 
for handle E is assigned to executing handle.



HV
Syntax: Explicit or Implicit

Operands: _HVn

Burn: burnable with BN

Homing Velocity
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Sets the slew speed for the FI final move to the index and all but the first stage of HM.

Arguments
HV n,n,n,n,n,n,n,n      or          HVA=n           where 
n is an unsigned even number in the range 0 to 22,000,000 for servo motors. The units are encoder counts 
per second.  
OR      
n is an unsigned number in the range 0 to 6,000,000 for stepper motors 
n = ?      Returns the speed for the specified axis.

Operand Usage
_HVn contains the homing speed for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256

Default Format Position Format

Related Commands
HM - Home 
FI - Find index

Examples:

HVX=1000  ;'set homing speed
HMX       ;'home to home switch then index
BGX       ;'begin motion
AMX       ;'wait for motion complete
EN        ;'end program



HX
Syntax: Implicit Only

Operands: _HX0,_HX1,_HX2,_HX3,
_HX4,_HX5,_HX6,_HX7

Burn: not burnable

Halt Execution
Hardware: All

Full Description
The HX command halts the execution of any program that is running.

Arguments
HXn     where  
     n is an integer in the range of 0 to 7 and indicates the thread number.

Operand Usage
When used as an operand, _HXn contains the running status of thread n with: 
     0          Thread not running 
     1          Thread is running 
     2          Thread has stopped at trippoint

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value n=0

Default Format N/A

Related Commands
XQ - Execute program 
HX - Stop all threads of motion

Examples:

XQ #A   Execute program #A, thread zero
XQ #B,3 Execute program #B, thread three
HX0     Halt thread zero
HX3     Halt thread three



IA
Syntax: Implicit Only

Operands: _IA0,_IA1,_IA2,_IA3,_IA4,
_IA5

Burn: burnable with BN

IP Address
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The IA command assigns the controller's IP address.* 
 
The IA command may also be used to specify the TCP time out, or to ignore multicast traffic. 
 
Setting the IP address over Ethernet to a new value will cause an immediate disconnect/timeout. Reconnect to 
the controller on the new IP address and issue a BN to save the new value to flash. 
 
Since it assigns an IP address to the controller, communication with the controller via Ethernet cannot 
be accomplished until after the address has been assigned. * 
 

* The controller defaults to DHCP and will receive an IP address from a DHCP server if present. To manually 
set an IP address over the serial connection, send DH0 to disable DHCP prior to setting the new IP address with IA.

Arguments

IA ip0, ip1, ip2, ip3

IA n

IA < t

IA > u
where  
ip0, ip1, ip2, ip3 are 1 byte numbers separated by commas and represent the individual fields of the IP address. 
 
n is the IP address for the controller which is specified as an integer representing the signed 32 bit number 
(two's complement). 
 
<t specifies the time in update samples between TCP retries. 1< = t < = 2,147,483,647 up to 5 retries occur. 
(TCP/IP connection only) 
 
>u specifies the multicast IP address where u is an integer between 0 and 63. (UDP/IP connection only).  
 
 
 
IA? will return the IP address of the controller 

     u=-22 causes the controller to ignore Multicast traffic. This will cause Galil software to be unable to 
discover the controller. Connecting to the controller when the IP address is known by the host will be unaffected.



Operand Usage
_IA0 contains the IP address representing a 32 bit signed number (Two's complement). See the example below. 
 
_IA1 contains the value for t (retry time) 
 
_IA2 contains the number of available handles 
 
_IA3 contains the number of the handle using this operand where the number is 0 to 7. 0 represents handle A, 
1 handle B, etc. This is used by a remote device to detect its outgoung handle. 
 
_IA4 contains the number of the handle that lost communication last, contains a -1 on reset to indicate no 
handles lost 

_IA5 returns autonegotiation Ethernet speed. Returns 10 for 10-Base T and returns 100 for 100-Base T, it 
will return -1 if there is no physical link 

Usage
Usage and Default Details

Usage Value

While Moving (no RIO) Yes

In a Program Yes

Command Line Yes

Default Value n=0, t=250

Default Format N/A

Related Commands
IH - Internet Handle

DH - DHCP Server Enable

Examples:

:IA 151,12,53,89             Assigns the controller with the 
address 151.12.53.89
:IA 2534159705               Assigns the controller with the 
address 151.12.53.89
:IA < 500                    Sets the timeout value to 500 msec
:

The IP address can be derived using _IA0:

:a=@INT[(_IA0&($FF000000))/$1000000]&$FF
:b=@INT[(_IA0&($00FF0000))/$10000]
:c=@INT[(_IA0&($0000FF00))/$100]
:d=@INT[(_IA0&($000000FF))]



:

IP address = a.b.c.d



ID
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Identify
Hardware: DMC40x0 DMC41x3 RIO 

DMC300x0

Full Description

DMC-40x0
The ID command is used to query the controller for the accessories that are attached. It will respond with the 
type of communications board followed by the amplifier for axes 1-4 and then axes 5-8 if any are attached. 
The following are example responses to the ID command and a description of each line.

Example ID

This ID response is applicable to the following part number:
DMC-4060(-16bit)-C012-I000-I100-D4040-D3020 

:ID
DMC400016 bit adc option rev 0
Connector J3= Communications Board CMB-41012 3.3 volt i/o rev 0
Connector J1= 
Connector J2= 42100 Sine  rev 1
Connector P1= Stepper Amplifier Board AMP-44040  rev 0
Connector P2= Servo Amplifier Board AMP-43020 500 watt   rev 1
:

Example ID

This ID response is applicable to the following part number:
DMC-4020-C012-I000(SSI)

:ID
DMC4000 rev 0
Connector J3= Communications Board CMB-41012 3.3 volt i/o rev 0
Connector J1= 42000 SSI rev 0

Description of response
DMC4000[bits] rev 0 
where 
[bits] - '16 bit adc option' if -16bit option ordered 
     No string returned here indicates standard 12 bit analog input 
 
Connector J3= Communications Board CMB-41012 [IO type] rev 0  
where 
[IO type] - '3.3 volt i/o' for standard 3.3V extended IO 



      '5 volt i/o' for -5V option ordered      
 
Connector J1/J2= [icm type] [encoder] rev 0 
where 
J1 = A-D axes 
J2 = E-H axes. No string is output for J2 on a 1-4 axis controller 
[icm type] - specifies the ICM model number used.  
               '42000' is the -I000 option 
               '42100' is the -I100 option 
               '42200' is the -I200 option 
[encoder] - specifies the encoder option available on this ICM 
          'Sine' indicates sin/cos encoder support 
          'SSI' indicates SSI encoder support 
          'Biss option' indicates BiSS encoder support 
An empty string after the = sign indicates that it is a standard ICM with no additional encoder option. 
 
 
Connector P1/P2= [drive type] Amplifier Board [model] rev 0 
where 
P1 = A-D axes  
P2 = E-H axes. No string is shown for P2 on a 1-4 axis controller 
[drive type] - specifies the drive avaiable on this set of 4 axes  
          'Servo' indicates standard servo drives 
          'Stepper' indicates stepper drive 
          'Sine' indicates sinusoidally commutated servo drives 
[model] - specifies the ordered drive option for that set of 4 axes      
          'AMP-43040 500 watt' for -D3040 option 
          'AMP-43020 500 watt' for -D3020 option 
          'AMP-43140 1 A' for -D3140 option 
          'AMP-44040' for -D4040 option 
          'AMP-44140' for -D4140 option 
          'AMP-43540' for sine drive option  
If no string is displayed, then that indicates that no drive is present for that set of 4 axes 
 
Note that the rev number at the end of each line of the ID command indicates the hardware revision of that board.  
Newer board revisions will have a higher revision value.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No



Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands

Examples:

:ID
Connector J3= Communications Board CMB-41012 3.3 volt i/o
Connector P1= Stepper Amplifier Board AMP-44040
Connector P2= Stepper Amplifier Board AMP-44040



IF
Syntax: Embedded Only

Operands: none

Burn: not burnable

IF conditional statement
Hardware: All

Full Description
The IF command is used in conjunction with an ENDIF command to form an IF conditional statement. 
The arguments consist of one or more conditional statements and each condition must be enclosed with 
parenthesis (). If the conditional statement(s) evaluates true, the command interpreter will continue 
executing commands which follow the IF command. If the conditional statement evaluates false, the controller 
will ignore commands until the associated ENDIF command OR an ELSE command occurs in the program.

Each condition must be placed in parenthesis for proper evaluation by 
the controller.
Example:

IF((var0=1)&(var1=2));' valid IF statement
 MG "GOOD"
ENDIF

IF var0=1&var1=2;'      invalid IF statement
 MG "BAD"
ENDIF

IF (var0=1&var1=2);'      invalid IF statement
 MG "BAD"
ENDIF

Arguments
IF (condition)          where 
Conditions are tested with the following logical operators: 
< less than or equal to 
> greater than 
= equal to 
<= less than or equal to 
>= greater than or equal to 
<> not equal 
 
Note 1: Bit wise operators | and & can be used to evaluate multiple conditions. 
 
Note 2: A true condition = 1 and an false condition = 0.

Usage
Usage and Default Details

Usage Value



While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Operand Usage

Related Commands
ELSE - Optional command to be used only after IF command 
ENDIF - End of IF conditional Statement 
JS - Jump to subroutine 
JP - Jump to label

Examples:

#A      
IF (_TEA<1000);'  IF conditional statement based on a motor position
 MG "Motor is within 1000 counts of zero";' Message to be executed for true
ENDIF;'           End of IF conditional statement
EN;'              End Program

#input
IF (@IN[1]=0);'          IF conditional statement based on input 1
 MG "Input 1 is Low";'   Message to be executed if "IF" statement is true
ENDIF;'                  End of IF conditional statement
EN

#var
v1=@AN[1]*5;'            some calculation for variable v1
IF((v1>25)&(@IN[4]=1));' Conditions based on V1 variable and input 4 status
 MG "Conditions met";'   Message to be executed if "IF" statement is true
ENDIF;'                  End of IF statement
EN

REM The conditions of an if statement can be simplied with the fact that 
REM a true condition = 1 and a false condition = 0.
#true
v1=1
IF v1
 MG "True v1=",v1
ENDIF
#false
v1=0
IF v1
 'if statement evaluates false



ELSE
 MG "False v1=",0
ENDIF
EN



IH
Syntax: Explicit Only

Operands: _IHn0,_IHn1,_IHn2,_IH3,_IH4

Burn: not burnable

Open IP Handle
Hardware: DMC40x0 DMC41x3 DMC21x3 

RIO DMC300x0

Full Description
The IH command is used when the controller is operated as a master (also known as a client). This 
command opens a handle and connects to a slave (server). 
To open a handle, the user must specify: 
1.      The IP address of the slave 
2.      The type of session: TCP/IP or UDP/IP 
3.      The port number of the slave. This number is not necessary if the slave device does not require a specific 
port value. If not specified, the board will specify the port value as 1000.

Each controller (DMC) may have 8 handles open at any given time. The handles are denoted with A,B,C,D,E,F,
G, or H.

Arguments
IHh= ip0,ip1,ip2,ip3 <p >q 
IHh=n <p >q 
IHh= >r 
where 
h is the handle 
ip0,ip1,ip2,ip3 are integers between 0 and 255 and represent the individual fields of the IP address. These 
values must be separated by commas. 
n is a signed integer between - 2147483648 and 2147483647. This value is the 32 bit IP address and can be 
used instead of specifying the 4 address fields. 
 
<p specifies the port number of the slave where p is an integer between 0 and 65535. This value is not required 
for opening a handle. 
>q specifies the connection type where q is 0 for no connection, 1 for UDP and 2 for TCP 
 
IHS => r closes the handle that sent the command; where r = -1 for UDP/IP, or r = -2 for TCP/IP, or -3 for either 
IHT => r closes all handles except for the one sending the command; where r = -1 UDP, or r = -2 TCP, or -3 
for either 
 
>r specifies that the connection be terminated and the handle be freed, where r is -1 for UDP, -2 for TCP/IP, or -
3 for TCP/IP Reset 
 
IHh=? returns the IP address as 4 1-byte numbers

Operand Usage
_IHh0     contains the IP address as a 32 bit number 
_IHh1     contains the slave port number 
_IHh2     contains a 0 if the handle is free 
          contains a 1 if it is for a UDP slave 
          contains a 2 if it is for a TCP slave 



          contains a -1 if it is for a UDP master 
          contains a -2 if it is for a TCP master 
          contains a -5 while attempting to establish a UDP handle 
          contains a -6 while attempting to establish a TCP/IP handle 
 
_IHh3     contains a 0 if the ARP was successful            
          contains a 1 if it has failed or is still in progress 
_IHh4     contains a 1 if the master controller is waiting for acknowledgment from the slave      after issuing 
a command.      
          contains a 2 if the master controller received a colon from the slave after issuing a      command.      
          contains a 3 if the master controller received a question mark from the slave after      issuing a command. 
          contains a 4 if the master controller timed-out while waiting for a response from the      slave after issuing 
a command.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0,0,0,0

Default Format N/A

Related Commands
IA Internet Address

Examples:

IHA=251,29,51,1;'     Open handle A at IP address 251.29.51.1, TCP is 
used as default
IHA= -2095238399;'    Open handle A at IP address 251.29.51.1
'Note:  When the IH command is given, the controller initializes an ARP 
on the slave device before 
'opening a handle.  This operation can cause a small time delay before 
the controller responds.



II
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Input Interrupt
Hardware: All

Full Description
The II command enables the input interrupt function for the specified inputs. By default, input interrupts 
are configured for activation with a logic "0" but can be configured for activation with a logic "1" signal. 
 
If any of the specified inputs are activated during program execution, the program will jump to the subroutine 
with label #ININT. Any trippoints set by the program will be cleared but can be re-enabled by the 
proper termination of the interrupt subroutine using RI. The RI command is used to return from the 
#ININT routine. 

Arguments

II m,n,o,p
where 
m is an integer between 0 and 8 decimal. 0 disables interrupt. The value of m specifies the lowest input to be 
used for the input interrupt. When the 2nd argument, n, is omitted, only the input specified by m will be enabled. 
 
n is an integer between 2 and 8. This argument is optional and is used with m to specify a range of values for 
input interrupts. For example, II 2,4 specifies interrupts occurring for Input 2, Input 3 and Input 4. 
 
o is an integer between 1 and 255. Using this argument is an alternative to specifying an input range with m,n. If 
m and n are specified, o will be ignored. The argument o is an integer value and represents a binary number. 
For example, if o = 15, the binary equivalent is 00001111 where the bottom 4 bits are 1 (bit 0 through bit 3) 
and the top 4 bits are 0 (bit 4 through bit 7). Each bit represents an interrupt to be enabled - bit0 for interrupt 1, 
bit 1 for interrupt 2, etc. If o=15, the inputs 1,2,3 and 4 would be enabled.  
 
p is an integer between 1 and 255. The argument p is used to specify inputs that will be activated with a logic 
"1". This argument is an integer value and represents a binary number. This binary number is used to 
logically "AND" with the inputs which have been specified by the parameters m and n or the parameter o. 
For example, if m=1 and n=4, the inputs 1,2,3 and 4 have been activated. If the value for p is 2 (the 
binary equivalent of 2 is 00000010), input 2 will be activated by a logic '1' and inputs 1,3, and 4 will be 
activated with a logic "0".

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes



In a Program Yes

Command Line Yes

Default Value 0

Related Commands
#ININT- Interrupt Subroutine 
AI - Trippoint for input 
RI - Return from Interrupt

Examples:

#A;'                        Program A
II 1;'                      Specify interrupt on input 1
JG 5000;BGA;'               Specify jog and begin motion on A axis
#LOOP;JP #LOOP;'            Loop to keep thread zero active, only 
necesary on Ecnono (21x3/18x2)
EN;'                        End Program
#ININT;'                    Interrupt subroutine
STA;MG "INTERRUPT";AMA;'    Stop A, print message, wait for motion 
to complete
AI1;'                       Check for interrupt clear
BGA;'                       Begin motion
RI0;'                       Return to main program, don't re-
enable trippoints



IK
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Block Ethernet ports
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
A Galil Ethernet controller simultaneusly operates as a server (listening for Ethernet connections from a client) 
and a client (able to create connections to a server). The IK command blocks clients from connecting to 
the controller on incoming ports lower than 1000 except for ports 0, 23, 68, and 502.

Arguments
IKn     where  
n = 0 allows controller to receive Ethernet packets on any port 
n = 1 blocks controller from receiving Ethernet packets on all ports lower than 1000 except those mentioned in 
the Full Description above. 
n = ? queries controller for value of IK

Operand Usage
_IK can not be used as an operand.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage Ethernet Only

Default Value 0 (DMC21x3/2)

Default Value 1 (DMC4xxx/RIO) 

Default Format N/A

Related Commands
TH- Tell Handles 
IH - Open new Ethernet handle

Examples

:IK1    Blocks undesirable port communication
:IK0    Allows all Ethernet ports to be used
:





IL
Syntax: Explicit or Implicit

Operands: _ILn

Burn: burnable with BN

Integrator Limit
Hardware: All

Full Description
The IL command limits the effect of the integrator function in the filter to a certain voltage. For example, IL 
2 limits the output of the integrator of the A-axis to the +/-2 Volt range. 
A negative parameter also freezes the effect of the integrator during the move. For example, IL -3 limits 
the integrator output to +/-3V. If, at the start of the motion, the integrator output is 1.6 Volts, that level will 
be maintained through the move. Note, however, that the KD and KP terms remain active in any case.

Arguments
IL n,n,n,n,n,n,n,n      or          ILA=n           where 
n is a number in the range -10 to 10 Volts with a resolution of 0.0003. 
n = ?      Returns the value of the integrator limit for the specified axis.

Operand Usage
_ILn contains the value of the integrator limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 9.9982

Default Format 1.4

Related Commands
KI - Integrator

Examples:

KI 2,3,5,8      Integrator constants
IL 3,2,7,2      Integrator limits
IL ?    Returns the A-axis limit
3.0000



IN
Syntax: Implicit Only

Operands: none

Burn: not burnable

Input Variable
Hardware: DMC40x0 DMC21x3 RIO 

DMC18x6 DMC18x2

Full Description
The IN command allows a variable to be input from a keyboard. When the IN command is executed in a 
program, the prompt message is displayed. The operator then enters the variable value followed by a 
carriage return. The entered value is assigned to the specified variable name. 
The IN command holds up execution of following commands in a program until a carriage return or semicolon 
is detected. If no value is given prior to a semicolon or carriage return, the previous variable value is kept. 
Input Interrupts, Error Interrupts and Limit Switch Interrupts will still be active. 
The IN command may only be used in thread 0. 
 
The IN command can only be used with a serial connection to the controller.

Arguments
IN "m",n          where 
     m is prompt message 
     n is the variable name 
The total number of characters for n and m must be less than 80 characters. 
Note: Do not include a space between the comma at the end of the input message and the variable name.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format Position Format

Related Commands
N/A

Examples:



Operator specifies length of material to be cut in inches and speed 
in inches/sec (2 pitch lead screw, 2000 counts/rev encoder).

#A;'                          Program A
IN "Enter Speed(in/sec)",V1;' Prompt operator for speed
IN "Enter Length(in)",V2;'    Prompt for length
V3=V1*4000;'                  Convert units to counts/sec
V4=V2*4000;'                  Convert units to counts
SP V3;'                       Speed command
PR V4;'                       Position command
BGA;'                         Begin motion
AMA;'                         Wait for motion complete
MG "MOVE DONE";'              Print Message
EN;'                          End Program



IP
Syntax: Explicit or Implicit

Operands: none

Burn: not burnable

Increment Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The IP command allows for a change in the command position while the motor is moving. This command does 
not require a BG. The command has three effects depending on the motion being executed. The units of this 
are quadrature. 
Case 1: Motor is standing still 
An IP a,b,c,d command is equivalent to a PR a,b,c,d and BG command. The motor will move to the 
specified position at the requested slew speed and acceleration. 
Case 2: Motor is moving towards a position as specified by PR, PA, or IP. 
An IP command will cause the motor to move to a new position target, which is the old target plus the 
specified increment. The incremental position must be in the same direction as the existing motion. 
Case 3: Motor is in the Jog Mode 
An IP command will cause the motor to instantly try to servo to a position which is the current 
instantaneous position plus the specified increment position. The SP and AC parameters have no effect. 
This command is useful when synchronizing 2 axes in which one of the axis' speed is indeterminate due to 
a variable diameter pulley. 
Warning: When the mode is in jog mode, an IP will create an instantaneous position error. In this mode, the 
IP should only be used to make small incremental position movements.

Arguments
IP n,n,n,n,n,n,n,n      or           IPA=n           where 
n is a signed numbers in the range -2147483648 to 2147483647 decimal. 
n = ?      Returns the current position of the specified axis.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format (7.0 on 18x2 & 21x3) (PF on 18x6 & 4xxx)



Related Commands
PF - Position Formatting

Examples:

IP 50   50 counts with set acceleration and speed



IT
Syntax: Explicit or Implicit

Operands: _ITn

Burn: burnable with BN

Independent Time Constant - Smoothing Function
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The IT command filters the acceleration and deceleration functions of independent moves such as JG, PR, PA 
to produce a smooth velocity profile. The resulting profile, known as smoothing, has continuous acceleration 
and results in reduced mechanical vibrations. IT sets the bandwidth of the filter where 1 means no filtering 
and 0.004 means maximum filtering. Note that the filtering results in longer motion time. 
The use of IT will not effect the trippoints AR and AD. The trippoints AR & AD monitor the profile prior to the 
IT filter and therefore can be satisfied before the actual distance has been reached if IT is NOT 1.

Arguments
IT n,n,n,n,n,n,n,n      or          ITA=n           where 
n is a positive numbers in the range between 0.004 and 1.0 with a resolution of 1/256. 
n = ?      Returns the value of the independent time constant for the specified axis.

Operand Usage
_ITn contains the value of the independent time constant for the specified 'n' axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 1

Default Format 1.4

Related Commands
PR - Position relative 
PA - Position absolute 
JG - Jog 
VM - Vector mode 
LM - Linear Interpolation Mode

Examples:



IT 0.8, 0.6, 0.9, 0.1   Set independent time constants for a,b,c,d axes
IT ?    Return independent time constant for A-axis
:0.8



JG
Syntax: Explicit or Implicit

Operands: _JGn

Burn: not burnable

Jog
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The JG command sets the jog mode and the jog slew speed of the axes.

Arguments
JG n,n,n,n,n,n,n,n      or          JGA=n           where 
n is a signed even integer in the range 0 to +/-22,000,000. The units of this are counts/second. (Use JGN = n 
or JGM = n for the virtual axes) 
For stepper motor operation, the maximum value is 6,000,000 steps/ second 
n = ?      Returns the absolute value of the jog speed for the specified axis.

When ordered with the ICM-42100: 
     n is a signed even integer in the range of 0 to +/- 50,000,000. The units are interpolated encoder counts 
per second.

Operand Usage
_JGn contains the absolute value of the jog speed for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 25000

Related Commands
BG - Begin 
DC - Deceleration 
TV - Tell Velocity 
ST - Stop 
AC - Acceleration 
IP - Icrement Position

Examples:



JP
Syntax: Embedded Only

Operands: none

Burn: not burnable

Jump to Program Location
Hardware: All

Full Description
The JP command causes a jump to a program location on a specified condition. The program location may be 
any program line number or label. The condition is a conditional statement which uses a logical operator such 
as equal to or less than. A jump is taken if the specified condition is true. 
Multiple conditions can be used in a single jump statement. The conditional statements are combined in pairs 
using the operands "&" and "|". The "&" operand between any two conditions, requires that both statements 
must be true for the combined statement to be true. The "|" operand between any two conditions, requires that 
only one statement be true for the combined statement to be true.

Each condition must be placed in parenthesis for proper evaluation by 
the controller.
Example:
JP#a,((var0=1)&(var1=2));' valid conditional jump
JP#a,var0=1&var1=2;'       invalid conditional jump

Arguments

JP destination,condition
where 
 
destination is a label, integer, or variable and is defined as the line number where code shall jump if condition 
is true. 
 
condition is an optional conditional statement using a logical operator 
 
The logical operators are: 
< less than 
> greater than 
= equal to  
<= less than or equal to  
>= greater than or equal to 
<> not equal to

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value



While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
JS - Jump to Subroutine 
IF - If conditional statement 
ELSE - Else function for use with IF conditional statement 
ENDIF - End of IF conditional statement

Examples:

JP #POS1,(V1<5);'   Jump to label #POS1 if variable V1 is less than 5
JP #A,((V7*V8)=0);' Jump to #A if V7 times V8 equals 0
JP #B,(@IN[1]=1);'  Jump to #B if input 1 = 1
JP #C;'             Jump to #C unconditionally



JS
Syntax: Embedded Only

Operands: _JS

Burn: not burnable

Jump to Subroutine
Hardware: All

Full Description

Basic Usage
The JS command will change the sequential order of execution of commands in a program. If the jump is 
taken, program execution will continue at the line specified by the destination parameter, which can be either a 
line number or label. The line number of the JS command is saved and after the next EN command is 
encountered (End of subroutine), program execution will continue with the instruction following the JS 
command. There can be a JS command within a subroutine, up to 16 deep. 
 
Multiple conditions can be used in a single jump statement. The conditional statements are combined in pairs 
using the operands "&" and "|". The "&" operand between any two conditions, requires that both statements 
must be true for the combined statement to be true. The "|" operand between any two conditions, requires that 
only one statement be true for the combined statement to be true. Note: Each condition must be placed 
in parenthesis for proper evaluation by the controller. 
A jump is taken if the specified condition is true.

Each condition must be placed in parenthesis for proper evaluation by 
the controller.
Example:
JS#a,(var0=1)&(var1=2);' valid conditional jump
JS#a,var0=1&var1=2;'       invalid conditional jump

Passing Values on the Stack
Up to 8 parameters can be passed on the subroutine stack. One value can be returned from a subroutine. 
More return values are possible with pass by reference and array passing.  
Using subroutine stacks and passing parameters in a subroutine has many advantages including: 
1.     Code flexibility/reuse. A single subroutine can be written and called many times and from various locations 
in code. The stack "remembers" where to return when completed. This is opposite from a "blind jump" (JP). 
2.     Variable Scope/ Local variables. A subroutine can run with a protected variable space. Local variables 
exist only in the extent of the subroutine, and no external thread or stack level can access local variables. 
Local variables can be used for counters, indices, and other helper variables. ^a - ^h must be used for 
local variables. Other variable names remain global. 
3.     Each thread has its own stack, therefore subroutines are reentrant. In other words, multiple threads can 
be running the same subroutine simultaneously at various stack depths. 
4.     Support for recursion. Although the subroutine stack is only 16 deep, recursion is possible. A stack depth 
of 16 is sufficient for many recursive tasks. E.G. recursing axes, handles, and thread status.  
5.     Parameter passing. A calling command can explicitly specify the inputs to a subroutine. The subroutine 
can pass one value back to the calling command. More returns are possible with pass by reference and 
array passing. 
 
Constants, Variables, and Arrays may be passed up a subroutine stack. 
 



Variables may be passed by value or by reference. If passed by value, a copy is made in the subroutine 
stack, leaving the original variable unchangeable. If passed by reference, the original variable's value will 
be changed when the subroutine writes to its local variable. This is similar, but not exactly analogous to a 
C pointer.  
 
A variable passed by reference is automatically dereferenced; the variable pointer is not exposed to the 
user. Following the C syntax, a by-reference pass is accomplished with the ampersand (&) in the invoking 
call. When passing a variable by reference, do not allocate any new variables in the called subroutine. 
 
Arrays can be passed in the stack, though only by reference. No "&" is used when passing arrays, by-reference 
is assumed. To pass an array, use its name in quotations. Arrays to be passed must have names that are 6 
characters or less.  
 
The number of elements in an array is returned by reading index -1, e.g. array[-1]. 
 
To return a value on the stack, write the value in the EN command upon ending the subroutine.

Arguments

JS destination (param1,param2,..,param8), condition
where 
 
destination is a label, integer, or variable and is defined as the line number where code shall jump if condition 
is true. 
 
param1 - param8 are optional parameters to pass to the subroutine's stack, referenced from within the subroutine 
as ^a-^h, respectively. 
 
condition is an optional conditional statement using a logical operator 

The logical operators are: 
     < less than or equal to 
     > greater than 
     = equal to 
     <= less than or equal to 
     >= greater than or equal to 
     <> not equal

Operand Usage
_JS     used after JS is called, this operand contains the returned value of the subroutine called by JS

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All



Related Commands
& , | - Bitwise Logical Operators AND and OR  
EN - End 
<,>,=,<=,>=,<> - Comparison Operators

^a, ^b, ^c, ^d, ^e, ^f, ^g, ^h - JS subroutine stack variable

Examples:

JS #SQUARE,(V1<5);' Jump to subroutine #SQUARE if V1 is less than 5
JS #LOOP,(V1<>0);'  Jump to #LOOP if V1 is not equal to 0
JS #A;'             Jump to subroutine #A (unconditionally)

Advanced Usage Examples

#ADD
JS#SUM(1,2,3,4,5,6,7,8);'      Call subroutine, pass values
MG_JS;'                        Print return value, will print 36.0000
EN

#SUM;'                         Sums values passed to it. Expects 8 numbers
EN,,^a+^b+^c+^d+^e+^f+^g+^h;'  Return the sum

'Dimension two arrays
DM array1[10]
DM array2[100]
'Zero the contents of each array
JS#ZeroAry("array1", 0)
JS#ZeroAry("array2", 0)
EN

'Zero the contents of an array
#ZeroAry;'(^a array,^b starting index)
^a[^b]=0
^b=(^b+1)
JP#ZeroAry,(^b < ^a[-1])
EN

i=1;'               Counter
#loop
 offset=#spell+i;'  Calculate offset 
 JS offset;'        Jump to offset
 i=i+1;'            Increment Counter
JP#loop,i<=3;'      Loop through 3 states
EN
'
#spell;'            Subroutine containing various words
MG"One";EN;'        Prints "One" if this line is called (i=1)



MG"Two";EN;'        Prints "Two" if this line is called (i=2)
MG"Three";EN;'      Prints "Three" if this line is called (i=3)

REM Controller responds with:
REM One
REM Two
REM Three



KD
Syntax: Explicit or Implicit

Operands: _KDn

Burn: burnable with BN

Derivative Constant
Hardware: All

Full Description
KD designates the derivative constant in the control filter. The filter transfer function is 
     D(z) = KP + KD(z-1)/z + KIz/2 (z-1) 
     For further details on the filter see the section Theory of Operation.

Arguments

KD m,m,m,m,m,m,m,m or KDn=m

Operand Usage
_KDn contains the value of the derivative constant for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 64

Default Format 4.2

Related Commands
KI - Integrator 
KP - Proportional

Examples:

KD 100,200,300,400.25   Specify KD
KD ?,?,?,?      Return KD
:100.00, 200.00, 300.00, 400.25 
Note:  KD now has four time more resolution as prior controllers, and 
thus for the same value is four times less effective.



KI
Syntax: Explicit or Implicit

Operands: _KIn

Burn: burnable with BN

Integrator
Hardware: All

Full Description
The KI command sets the integral gain of the control loop. It fits in the control equation as follows: 
     D(z) = KP + KD(z-1)/z + KI z/2(z-1)  
     The integrator term will reduce the position error at rest to zero.

Arguments
KI n,n,n,n,n,n,n,n      or          KIA=n           where 
n is an unsigned numbers in the range 0 to 255 with a resolution of 1/1024 
n = ?      Returns the value for the specified axis.

Operand Usage
_KIn contains the value of the integral gain for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format (4.0 for 18x2 & 21x3), (4.4 for 18x6, 4xxx & RIO)

Related Commands
KP - Proportional Constant 
KD - Derivative Constant 
IL - Integrator Limit

Examples:

KI 12,14,16,20  Specify a,b,c,d-axis integral
KI 7    Specify a-axis only
KI ,,8  Specify c-axis only
KI ?,?,?,?      Return A,B,C,D
:7, 14, 8, 20   KI values



KP
Syntax: Explicit or Implicit

Operands: _KPn

Burn: burnable with BN

Proportional Constant
Hardware: All

Full Description
KP designates the proportional constant in the controller filter. The filter transfer function is 
     D(z) = KP + KD(z-1)/z + KI z/2(z-1) 
For further details see the section Theory of Operation in the User's Manual.

Arguments
KP n,n,n,n,n,n,n,n      or          KPA=n           where 
n is an unsigned numbers in the range 0 to 1023.875 with a resolution of 1/8. 
n = ?      Returns the value of the proportional constant for the specified axis.

Operand Usage
_KPn contains the value of the proportional constant for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 6

Default Format 4.2

Related Commands
KD - Derivative Constant 
KI - Integrator Constant 
IL - Integrator Limit

Examples:

KP 12,14,16,20  Specify a,b,c,d-axis proportional
KP 7    Specify a-axis only
KP ,,8  Specify c-axis only
KP ?,?,?,?      Return A,B,C,D
:7, 14, 8, 20   KP values



KS
Syntax: Explicit or Implicit

Operands: _KSn

Burn: burnable with BN

Step Motor Smoothing
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The KS parameter sets the amount of smoothing of stepper motor pulses. This is most useful when operating 
in full or half step mode. Larger values of KS provide greater smoothness. This parameter will also increase 
the motion time by 3KS sampling periods. KS adds a single pole low pass filter onto the output of the 
motion profiler.  
Note: KS will cause a delay in the generation of output steps.

Arguments
KS n,n,n,n,n,n,n,n      or          KSA=n           where 
n is a positive number in the range between 0.25 and 64 with a resolution of 1/32. 
n = ?      Returns the value of the smoothing constant for the specified axis.

Operand Usage
_KSn contains the value of the stepper motor smoothing constant for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 2.0

Default Format 4.0

Related Commands
MT - Motor Type

Examples:

KS 2, 4 , 8;'   Specify a,b,c axes
KS 5;'  Specify a-axis only
KS ,,15;'       Specify c-axis only



LA
Syntax: Two Letter Only

Operands: none

Burn: not burnable

List Arrays
Hardware: All

Full Description
The LA command returns a list of all arrays in memory. The listing will be in alphabetical order. The size of 
each array will be included next to each array name in square brackets.

Arguments
None

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
LL - List Labels 
LS - List Program 
LV - List Variable

Examples:

: LA    
CA [10] 
LA [5]  
NY [25] 
VA [17]



LB
Syntax: Implicit Only

Operands: _LB

Burn: burnable with BN

LCD Bias Contrast
Hardware: DMC40x0

Full Description
Sets the Bias contrast on the LCD.

Arguments
LBn          where 
n is an integer between 0 and 15 where 0 is least contrast and 15 is greatest contrast. A negative value turns 
the optional backlight on.

Operand Usage
_LB contains setting of the LB command

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 8.0

Related Commands
MG - Message {Lx} 
LU - LCD Update

Examples:

LB0     Set the LCD Bias Contrast to minimum
LB15    Set the LCD Bias Contrast to maximum
LB-8    Set the LCD Bias Contrast to default and turn on 
backlight (backlight is an optional enhancement)



LC
Syntax: Explicit or Implicit

Operands: _LCn

Burn: burnable with BN

Low Current Stepper Mode
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The LC command causes the amp enable line for the specified axes to toggle (disabling the stepper drive) when 
the respective axes stops (profiler holding position). Each axis is handled individually. This will reduce 
current consumption, but there will be no holding torque at rest. The MT command must be issued prior to the 
LC command.

The user can set a time interval to wait after the profile has finished the move before the amp enable line 
is removed.

Using a Galil SDM drive with LC
When using an integrated Galil stepper drive LC may leverage a hardware feature providing for a fraction of 
the total holding torque to be used at rest. Sending LC0;MO may be necesary to shut off all current to the SDM 
in the "motor off" (MO) state. Consult the user manual for the SDM to be used for further details.

Arguments

LC m,m,m,m,m,m,m,m

LCn=m
where 
     m = 0      Normal (stepper drive always on) 
     m = 1      Low current stepper mode 
     m = ?      Returns whether the axis is in low current stepper mode

     m can also be an integer between 1 and 32767 specifying the number of samples to wait between the end of 
the move and when the amp enable line toggles

Operand Usage
_LCn contains the low current setting.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes



Command Line Yes

Default Value 0

Related Commands
MT - Motor Type

Examples:

MTZ=2   Specify stepper mode for the z axis
LCZ=1   Specify low current mode for the z axis



LD
Syntax: Explicit or Implicit

Operands: _LDn

Burn: burnable with BN

Limit Disable
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Disables limit switches. Soft limits BL and FL are still in effect. This feature should be used to gain 
additional digital inputs if limit switches are not used, or if there is a noise problem which causes limit 
switch conditions even though no limit switches are connected.

Arguments
LD n,n,n,n,n,n,n,n      or           LDA=n           where 
n = 0           enabled (default)  
n = 1           forward limit disabled 
n = 2          reverse limit disabled 
n = 3          both disabled 
n = ?          returns the current setting

Operand Usage
_LDn contains the current value

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
_LFX - State of forward limit 
_LRX - State of reverse limit 
SC - Stop code 
BL - Backward soft limit 
FL - Forward soft limit

Examples:



LDX=1   Disable the forward limit switch on the X axis



LE
Syntax: Two Letter Only

Operands: _LEn

Burn: not burnable

Linear Interpolation End
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
LE  
Signifies the end of a linear interpolation sequence. It follows the last LI specification in a linear sequence. 
After the LE specification, the controller issues commands to decelerate the motors to a stop. The VE command 
is interchangeable with the LE command. 
The LE command will apply to the selected coordinate system, S or T. To select the coordinate system, use 
the command CAS or CAT.

Arguments
n = ?      Returns the total move length in encoder counts for the selected coordinate system, S or T. To select 
the coordinate system, use the command CAS or CAT.

Operand Usage
_LEn contains the total vector move length in encoder counts.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format PF

Related Commands
LI - Linear Distance 
BG - BGS Begin Sequence 
LM - Linear Interpolation Mode 
PF - Position Formatting 
VA - Vector Acceleration 
VD - Vector Deceleration 
VS - Vector Speed 

Examples:



CAS     Specify S coordinated motion system
LM CD   Specify linear interpolation mode for C and D axes
LI ,,100,200    Specify linear distance
LE      End linear move
BGS     Begin motion



LI
Syntax: Explicit or Implicit

Operands: none

Burn: not burnable

Linear Interpolation Distance
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The LI command specifies the incremental distance of travel for each axis in the Linear Interpolation (LM) 
mode. LI parameters are relative distances given with respect to the current axis positions. Up to 511 LI 
segments may be given ahead of the Begin Sequence (BGS) command. Additional LI commands may be 
sent during motion when the controller sequence buffer frees additional space for new vector segments. The 
Linear End (LE) command must be given after the last LI segment in a sequence. LE tells the controller 
to decelerate to a stop at the last LI command. It is the responsibility of the user to keep enough LI segments in 
the controller's sequence buffer to ensure continuous motion.  
 
LM ? Returns the available spaces for LI segments that can be sent to the buffer. 511 returned means the buffer 
is empty and 511 LI segments can be sent. A zero means the buffer is full and no additional segments can be 
sent. It should be noted that the controller computes the vector speed based on the axes specified in the LM 
mode. For example, LM ABC designates linear interpolation for the A,B and C axes. The speed of these axes 
will be computed from:

 
where  
V is the vector speed 
A, B and C are the speed of the A,B and C axes 
 
If the LI command specifies only A and B, the speed of C will still be used in the vector calculations. 
The controller always uses the axis specifications from LM, not LI, to compute the speed. 
 
The LI command will apply to the selected coordinate system, S or T. To select the coordinate system, use 
the command CAS or CAT.

Arguments

LI n,n,n,n,n,n,n,n <o >p or LIA=n
where 
n is a signed integer in the range -8,388,607 to 8,388,607 and represents the incremental move distance (at 
least one n must be non-zero). 
o specifies a vector speed to be taken into effect at the execution of the linear segment. o is an unsigned 
even integer between 0 and 22,000,000 for servo motor operation and between 0 and 6,000,000 for stepper motors. 
p specifies a vector speed to be achieved at the end of the linear segment. Based on vector accel and decal rates, 
p is an unsigned even integer between 0 and 22,000,000 for servos, and between 0 and 6,000,000 for steppers.

Operand Usage
N/A



Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Related Commands
LE - Linear end 
BG - BGS Begin sequence 
LM - Linear Interpolation Mode 
CS - Clear Sequence 
VS - Vector Speed 
VA - Vector Acceleration 
VD - Vector Deceleration

Examples:

LM ABC;'            Specify linear interpolation mode
LI 1000,2000,3000;' Specify distance
LE;'                Last segment
BGS;'               Begin sequence



LL
Syntax: Two Letter Only

Operands: none

Burn: not burnable

List Labels
Hardware: All

Full Description
The LL command returns a listing of all of the program labels in memory and their associated line numbers. 
The listing will be in alphabetical order.

Arguments
None

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
LA - List Arrays 
LS - List Program  
LV - List Variables

Examples:

: LL    
# FIVE=5        
# FOUR=4        
# ONE=1 
# THREE=3       
# TWO=2



LM
Syntax: Accepts Axis Mask

Operands: _LMn

Burn: not burnable

Linear Interpolation Mode
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The LM command specifies the linear interpolation mode and specifies the axes for linear interpolation. Any set 
of 1 thru 8 axes may be used for linear interpolation. LI commands are used to specify the travel distances 
for linear interpolation. The LE command specifies the end of the linear interpolation sequence. Several 
LI commands may be given as long as the controller sequence buffer has room for additional segments. Once 
the LM command has been given, it does not need to be given again unless the VM command has been used. 
 
The LM command will apply to the selected coordinate system, S or T. To select the coordinate system, use 
the command CAS or CAT.

Arguments

LM nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
n = ?      Returns the number of spaces available in the sequence buffer for additional LI commands.

Operand Usage
_LMn contains the number of spaces available in the sequence buffer for the 'n' coordinate system, S or T.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
LE - Linear Interpolation End 
LI - Linear Interpolation Distance 
VA - Vector Acceleration 
VS - Vector Speed 



VD - Vector Deceleration 
AV - After Vector Distance 
CS - Clear Sequence

Examples:

LM ABCD;'                         Specify linear interpolation mode
VS 10000; VA 100000;VD 1000000;'  Specify vector speed, acceleration 
and deceleration
LI 100,200,300,400;'              Specify linear distance
LI 200,300,400,500;'              Specify linear distance
LE; BGS;'                         Last vector, then begin motion



LS
Syntax: Implicit Only

Operands: none

Burn: not burnable

List
Hardware: All

Full Description
The LS command returns a listing of the programs in memory.

Arguments
LS n,m          where       
n and m are valid numbers from 0 to 1999, or labels. n is the first line to be listed, m is the last. 
n is an integer in the range of 0 to 1999 or a label in the program memory. n is used to specify the first line to 
be listed.  
m is an integer in the range of 1 to 1999 or a label on the program memory. m is used to specify the last line to 
be listed.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value 0, Last Line (for DMC)

Default Format N/A

Related Commands
LA - List Arrays 
LL - List Labels 
LV - List Variables

Examples:

:LS #A,6        List program starting at #A through line 6
2 #A    
3 PR 500        
4 BGA   



5 AM    
6 WT 200        
Hint:  Remember to quit the Edit Mode <cntrl> Q prior to giving the 
LS command. (DOS)



LU
Syntax: Implicit Only

Operands: _LU

Burn: not burnable

LCD Update
Hardware: DMC40x0

Full Description
Turns the automatic axes status update on the LCD on or off.

Arguments
LUn          where 
n = 0     Turns off the automatic update of the LCD with the axis status.  
n = 1      Sets the LCD in an automatic update mode with the axes status shown below.      
 
The LCD displays the following pattern: 
A     B     C     D     E     F     G     H 
m     m     m     m     m     m     m     m 

where m is the axis status for axes ABCDEFGH and is

Axis Status Description

I Idle

i Low power Idle

O Motor Off

M Motion - Axis Running in independent mode

E Error - Positions Error exceeded TEn>ERn

S Stop - Stopped from ST command

L Limit - Decelerating or stopped by a limit switch

A Abort - Stopped by abort

V Vector - Running in Vector or Linear Interpolation Mode

C Contour - Running in Contour Mode

P PVT - Runnning in PVT mode

H Homing - Running in a Homing Routine

e ECAM - Running in ECAM mode

F Fault - Amplifier Fault

T Stall - Stepper Position Maintenance Mode Stall Detected

Operand Usage
_LU contains the setting of the LU command



Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Default Format 1.0

Controller Usage DMC-4000

Related Commands
MG - Message {Lx} 
LB - LCD Bias Contrast 
SC - Stop Code

Examples:

LU0     Turn the LCD update off
MG"DMC-40x0" {L1}       Send DMC-40x0 to line 1 of the LCD screen
MG"Galil MC" {L2}       Send Galil MC to line 2 of the LCD screen
LU1     Set the LCD to automatically update the LCD screen with the 
axis status



LV
Syntax: Two Letter Only

Operands: none

Burn: not burnable

List Variables
Hardware: All

Full Description
The LV command returns a listing of all of the program variables in memory. The listing will be in 
alphabetical order.

Arguments
None

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format VF (for 18x6 & 4xxx)

Related Commands
LA - List Arrays 
LS - List Program  
LL - List Labels

Examples:

: LV    
APPLE = 60.0000 
BOY   = 25.0000 
ZEBRA = 37.0000



LZ
Syntax: Implicit Only

Operands: _LZ

Burn: burnable with BN

Inhibit leading zeros
Hardware: All

Full Description
The LZ command is used for formatting the values returned from interrogation commands or interrogation 
of variables and arrays. By enabling the LZ function, all leading zeros of returned values will be removed.

Arguments
LZ n          where  
n = 1      Removes leading zeros 
n = 0      Does not remove leading zeros. 
n = ?      Returns the state of the LZ function. '0' does not remove and '1' removes zeros

Operand Usage
_LZ contains the state of the LZ function. '0' is disabled and '1' is enabled.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Details 1

Default Value N/A

Related Commands

Examples:

LZ 0    Disable the LZ function
TPA     Interrogate the controller for current position of A axis
:0000021645.0000        Value returned by the controller
VAR1=   Request value of variable "VAR1"  (previously set to 10)
:0000000010.0000        Value of variable returned by controller
LZ1     Enable LZ function
TPA     Interrogate the controller for current position of A axis
:21645.0000     Value returned by the controller



VAR1=   Request value of variable "VAR1"  (previously set to 10)
:10.0000        Value of variable returned by controller



MB
Syntax: Explicit Only

Operands: none

Burn: not burnable

Modbus
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The MB command is used to communicate with I/O devices using the first two levels of the Modbus protocol. 
The format of the command varies depending on each function code. The function code -1 designates that the 
first level of Modbus is used (creates raw packets and receives raw data). The other codes are the 10 
major function codes of the second level. 
 
Modbus support is for TCP/IP. 
 
Note: For those command formats that have "addr", this is the slave address. The slave address may be 
designated or defaulted to the device handle letter. 
Note: All the formats contain an h parameter. This designates the connection handle letter. See the IH 
command for setting up the handle. 
Note: Port 502 must be used in the Ethernet handle. See the IH command for more info on how to open a 
handle with a specific port number. 

Level 2 Modbus Function Codes

Function Code Modbus Definition Slaved Galil Description (RIO only)

01 Read Coil Status (Read Bits) Read Digital Outputs (RIO only)

02 Read Input Status (Read Bits) Read Digital Inputs (RIO only)

03 Read Holding Registers (Read Words) Read Analog Inputs (RIO only)

04 Read Input Registers (Read Words) Read Analog Outputs (RIO only)

05 Force Single Coil (Write One Bit) Write Digital Output (RIO only)

06 Preset Single Register (Write One Word) Write Digital Outputs (RIO only)

07 Read Exception Status (Read Error Code) Read Digital Outputs (RIO only)

15 Force Multiple Coils (Write Multiple Bits) Write Digital Outputs (RIO only)

16 Preset Multiple Registers (Write Words) Write Analog Outputs (RIO only)

17 Report Slave ID

Arguments
MBh= addr, 1, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     1 is the function code 1, Read Coil Status 
     m is the address of the first coil 
     n is the quantity of coils 
     array[] is the name of the array whose first element will store the response 



      
MBh= addr, 2, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     2 is the function code 2, Read Input Status 
     m is the address of the first coil 
     n is the quantity of coils 
     array[] is the name of the array whose first element will store the response 
 
MBh= addr, 3, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     3 is the function code 3, Read Holding Registers 
     m is the address of the first Register 
     n is the quantity of registers 
     array[] is the name of the array that will store the resulting register data; 2-byte per element 
      
MBh= addr, 4, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     4 is the function code 4, Read Input Registers 
     m is the address of the first Register 
     n is the quantity of registers 
     array[] is the name of the array that will store the resulting register data; 2-byte per element 
      
MBh= addr, 5, m, n where 
     h is the handle letter 
     addr is the unit ID 
     5 is the function code 5, Force Single Coil 
     m is the address of the coil 
     n is a value of 0 or 1 to turn the coil off or on 
      
MBh= addr, 6, m, n where 
     h is the handle letter 
     addr is the unit ID 
     6 is the function code 6, Preset Single Register 
     m is register address 
     n is a 16-bit value 
      
MBh= addr, 7, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     7 is the function code 7, Read Exception Status 
     m is the address of the first Register 
     n is the quantity of registers 
     array[] is the name of the array where the response will be stored in the first element 
      
MBh= addr, 15, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     15 is the function code 15, Write Multiple Coils 
     m is the address of the first register 



     n is the quantity of registers 
     array[] is the name of the array that will store the desired register data; 2-byte per element 
 
MBh= addr, 16, m, n, array[] where 
     h is the handle letter 
     addr is the unit ID 
     16 is the function code 16, Write Multiple Registers 
     m is the address of the first Register 
     n is the quantity of registers 
     array[] is the name of the array that will store the desired register data; 2-byte per element 
 
MBh = addr, 17, array[] where 
     h is the handle letter 
     addr is the unit ID 
     17 is the function code 17, Report Slave ID 
     array[] is where the returned data is stored 
     (not supported on RIO)

Raw Modbus Packet Send
MBh= -1,len,array[] where 
     h is the handle letter 
     len is the number of bytes in the array, 
     array[] is the array containing the outgoing data with a dimension of at least len 
 
Note: each element of array[] may contain only one byte, and array[] must contain the entire modbus 
packet, including transaction identifiers, protocol identifiers, length field, modbus function code, and data 
specific to that function code.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
IA - IP Address 
MW - Modbus Wait

Examples:





MC
Syntax: Accepts Axis Mask 

& Trippoint

Operands: none

Burn: not burnable

Motion Complete
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The MC command is a trippoint used to control the timing of events. This command will hold up execution of 
the following commands until the current move on the specified axis or axes is completed and the encoder 
reaches or passes the specified position. Any combination of axes may be specified with the MC command. 
For example, MC AB waits for motion on both the A and B axis to be complete. MC with no parameter 
specifies that motion on all axes should complete before code continues. The command TW sets the timeout 
to declare an error if the encoder is not in position within the specified time. If a timeout occurs, the trippoint 
will clear and the stopcode will be set to 99. An application program will jump to the special label #MCTIME, 
if present. 
 
When used in stepper mode, the controller will hold up execution of the proceeding commands until the 
controller has generated the same number of steps as specified in the commanded position. The actual number 
of steps that have been generated can be monitored by using the interrogation command TD.  
 
Note: The MC command is recommended when operating with stepper motors in lieu of AM since the 
generation of step pulses can be delayed due to the stepper motor smoothing function, KS. In this case, the 
MC command would only be satisfied after all steps are generated.

Arguments
MC nnnnnnnn          where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
MC with no axis mask specifies that motion on all axes should complete before code continues

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Related Commands
BG - Begin 
AM - After Move 
TW - Timeout



Examples:

#MOVE;'                    Program MOVE
TW 1000,1000;'             Set motion complete timeout to one second per axis
PR2000,4000;'              Independent Move on A and B axis
BG AB;'                    Start the B axis 
MC AB;'                    After the move is complete on A and B axes
MG "DONE";'                Print message
EN;'                       End of Program
'
'
#MCTIME;'                  Motion Complete timeout Subroutine
 MG "Motion Timeout";'     Print failure message
 SC;'                      Print stop codes
RE1;'                      End subroutine



MF
Syntax: Explicit or Implicit 

& Trippoint

Operands: none

Burn: not burnable

Forward Motion to Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The MF command is a trippoint used to control the timing of events. This command will hold up the execution 
of the following command until the specified motor moves forward and crosses the position specified*. The 
units of the command are in quadrature counts. Only one axis may be specified at a time. The MF command 
only requires an encoder and does not require that the axis be under servo control. 
* When using a stepper motor, this condition is satisfied when the stepper position (as determined by the 
output buffer) has crossed the specified Forward Motion Position. For further information see Chapter 6 of 
the User Manual "Stepper Motor Operation". 
 
Hint: The accuracy of the MF command is the number of counts that occur in 2*TM sec. Multiply the speed 
by 2*TM sec to obtain the maximum error. MF tests for absolute position. The MF command can also be 
used when the specified motor is driven independently by an external device.

Arguments
MF n,n,n,n,n,n,n,n      or          MFA=n           where 
n is a signed integer in the range 2147483648 to 2147483647 decimal

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
AR - Trippoint for after Relative Distances 
AP - Trippoint for after Absolute Position 
MR - Reverse Motion to Position Trippoint



Examples:

#TEST;'                Program Test 
 DP0;'                 Define zero 
 JG 1000;'             Jog mode (speed of 1000 counts/sec) 
 BG A;'                Begin move 
 MF 2000;'             After passing the position 2000 
 V1=_TPA;'             Assign V1 A position 
 MG "Position is", V1;'Print Message 
 ST;'                  Stop
EN;'                   End of Program



MG
Syntax: Implicit Only

Operands: none

Burn: not burnable

Message
Hardware: All

Full Description
The MG command can be used in two ways: 
 
1.) From a host PC "MG val" will return the value, where val is an operand, string, variable, or number, 
including mathematical expressions. This is known as a solicited command, because the host sends the 
command and expects a response. 

:MG TIME
 261928200.0000
:variable = 10
:MG variable + 5
 15.0000
:MG _TI0
 255.0000
:MG "Foo"
Foo
:

2.) From embedded DMC code, the MG command will send an unsolicited, asynchronous message from 
the controller to the host. This can be used to alert an operator, send instructions or return a variable value. This 
is known as an unsolicited command because the host is not expecting it; the DMC code sends the data when 
the MG command is executed in embedded code. 
 
The CW command controls the ASCII format of all unsolicited messages. 

#POSERR
 MG "Warning, position error exceeded"
RE

Messages sent from within embedded code can go to any of the Ethernet handles, or serial ports. See CF to set 
the routing of the message.

Arguments

MG "m", {^n}, V
where 
"m" is a text string including alphanumeric characters (up to 76 characters) 
{^n} is an ASCII character specified by the value n 
V is a value, variable name, operand, array element, or mathematical expression 
 
Multiple strings, variables, and ASCII characters may be used, each must be separated by a comma.



Formatters
{Fm.n} Display variable in decimal format with m digits to left of decimal, and n to the right.  
{Zm.n} Same as {Fm.n} but suppresses leading zeros. 
{$m.n} Display variable in hexadecimal format with m digits to left of decimal, and n to the right. 
{Sn} Display variable as a string of length n where n is 1 through 6 
{N} Suppress carriage return line feed (\r\n) at the end of the message. 
 
Formatters can be placed before or after each argument in MG.

Message Routing
Messages are routed based upon the CF setting. MG can override the global CF setting. 
 
{Ex} Sends the message out the Ethernet handle x, where x is A,B,C,D,E,F,G or H 
{Pn} Sends the message out the Serial port n, where n is 1 or 2 denoting Main or Auxilary (where equipped).  
 
Routing options should be placed at the beginning of the message, right after MG.

Printing to the LCD
{Lx} Sends the message to the LCD, where x is 1 or 2 for the top or bottom line of the LCD. The message 
cannot be more than 8 characters when sent to the LCD screen; excess characters will not be shown. 
 
The LU command must be set to 0 for user messages sent to the LCD to appear. 
 
When outputting to the LCD using multiple variables, use {L1} and {L2} before the variable in order to direct it 
to a specific line number. See Example Below. 

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Related Commands
CF - Configure Unsolicited Messages Handle

Examples

'Message command displays ASCII string
MG "Good Morning"

'Displays the string with the content of variable 'Total' in



'format of 4 digits before and 2 digits after the decimal point.
MG "The Answer is", Total {F4.2}        

Message command sends any ASCII character
MG {^13}, {^10}, {^48}, {^055} 
'displays carriage return, line feed, and the characters 0 and 7.

CFA;'         Messages configured to go out Ethernet handle A
MG{EB}var;'   Override CF and send the value of variable var to B handle

'printing to the LCD screen
LU0
ct=1
rpm=1432
MG{L1}"CT SPD",{L2}{F1.0}ct," ",{F4.0}rpm
EN



MO
Syntax: Accepts Axis Mask

Operands: _MOn

Burn: burnable with BN

Motor Off
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The MO command shuts off the control algorithm. The controller will continue to monitor the motor position. 
To turn the motor back on use the Servo Here command (SH).

Arguments
MO nnnnnnnnnn          where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
No argument specifies all axes.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0
While Moving     No     Default Value     0 
In a Program     Yes     Default Format     1.0 
Command Line     Yes           
Controller Usage     ALL CONTROLLERS

_MOn contains the state of the motor for the specified axis.

Related Commands
SH 
Servo Here

Examples:

MO      Turn off all motors



MOA     Turn off the A motor.  Leave the other motors unchanged
MOB     Turn off the B motor.  Leave the other motors unchanged
MOCA    Turn off the C and A motors.  Leave the other motors unchanged 
SH      Turn all motors on
Bob=_MOA        Sets Bob equal to the A-axis servo status
Bob=    Return value of Bob.  If 1, in motor off mode, If 0, in servo mode
Hint:  The MO command is useful for positioning the motors by hand.  
Turn them back on with the SH command.



MR
Syntax: Explicit or Implicit

Operands: none

Burn: not burnable

Reverse Motion to Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The MR command is a trippoint used to control the timing of events. This command will hold up the execution 
of the following command until the specified motor moves backward and crosses the position specified*. The 
units of the command are in quadrature counts. Only one axis may be specified at a time. The MR command 
only requires an encoder and does not require that the axis be under servo control. 
* When using a stepper motor, this condition is satisfied when the stepper position (as determined by the 
output buffer) has crossed the specified Reverse Motion Position. For further information see Chapter 6 of 
the User Manual "Stepper Motor Operation". 
 
Hint: The accuracy of the MR command is the number of counts that occur in 2*TM sec. Multiply the speed 
by 2*TM sec to obtain the maximum error. MR tests for absolute position. The MR command can also be 
used when the specified motor is driven independently by an external device.

Arguments
MR n,n,n,n,n,n,n,n      or          MRA=n           where 
n is a signed integers in the range 2147483648 to 2147483647 decimal

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
AD - Trippoint for Relative Distances 
AP - Trippoint for after Absolute Position 
MF - Forward Motion to Position Trippoint



Examples:

#TEST;'                 Program Test 
 DP0;'                  Define zero 
 JG -1000;'             Jog mode (speed of 1000 counts/sec) 
 BG A;'                 Begin move 
 MR -3000;'             After passing the position -3000 
 V1=_TPA;'              Assign V1 A position 
 MG "Position is", V1;' Print Message 
 ST;'                   Stop
EN;'                    End of Program



MT
Syntax: Explicit or Implicit

Operands: _MTn

Burn: burnable with BN

Motor Type
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The MT command selects the type of the motor and the polarity of the drive signal. Motor types include 
standard servomotors, which require a voltage in the range of +/- 10 Volts, and step motors, which require 
pulse and direction signals. The polarity reversal inverts the analog signals for servomotors, and inverts logic 
level of the pulse train, for step motors.

Arguments
MT n,n,n,n,n,n,n,n      or      MTA=n           where 
n = 1                Specifies Servo motor 
n = -1           Specifies Servo motor with reversed polarity 
n = 1.5          Specifies PWM/Sign servo drive 
n = -1.5          Specifies PWM/Sign servo drive with reversed polarity 
n = -2           Specifies Step motor with active high step pulses 
n = 2           Specifies Step motor with active low step pulses 
n = -2.5      Specifies Step motor with reversed direction and active high step pulses 
n = 2.5          Specifies Step motor with reversed direction and active low step pulses 
n = ?           Returns the value of the motor type for the specified axis.

Operand Usage
_MTn contains the value of the motor type for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 1,1,1,1

Default Format 1 (18x2 & 21x3), 1.1 (18x6 & 4xxx)

Related Commands
CE - Configure encoder type

Examples:

MT 1,-1,2,2     Configure a as servo, b as reverse servo, c and d as steppers



MT ?,?  Interrogate motor type
V=_MTA  Assign motor type to variable



MW
Syntax: Implicit Only

Operands: _MW,_MW1

Burn: not burnable

Modbus Wait
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
Enabling the MW command causes the controller to hold up execution of the program after sending a 
Modbus command until a response from the Modbus device has been received. If the response is never 
received, then the #TCPERR subroutine will be triggered and an error code of 123 will occur on _TC.

Arguments
MWn          where 
n = 0      Disables the Modbus Wait function 
n = 1      Enables the Modbus Wait function

Operand Usage
MW? contains the state of the Modbus Wait. 
_MW contains returned function code 
_MW1 contains returned error code

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 1 (0 on 21x3)

Default Format 1.0

Related Commands
MB - Modbus

Examples:

MW1     Enables Modbus Wait
SB1001  Set Bit 1 on Modbus Handle A
CB1001  Clear Bit 1 on Modbus Handle A



NB
Syntax: Explicit or Implicit

Operands: _NBn

Burn: burnable with BN

Notch Bandwidth
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The NB command sets real part of the notch poles

Arguments
NB n,n,n,n,n,n,n,n      or           NBA=n           where 
n is ranges from 0 Hz to

Operand Usage
_NBn contains the value of the notch bandwidth for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0.5

Default Format
While Moving     Yes     Default Value     0.5 
In a Program     Yes     Default Format     3.1 
Command Line     Yes           
Controller Usage     ALL CONTROLLERS

Related Commands
NF - Notch Filter 
NZ - Notch Zeros

Examples:

_NBA = 10       Sets the real part of the notch pole to 10/2 Hz
notch = _NBA    Sets the variable "notch" equal to the notch bandwidth 
value for the A axis



NF
Syntax: Explicit or Implicit

Operands: _NFn

Burn: burnable with BN

Notch Frequency
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The NF command sets the frequency of the notch filter, which is placed in series with the PID compensation.

Arguments
NF n,n,n,n,n,n,n,n      or          NFA=n           where 
n ranges from 1 Hz to 1 / (4 . TM) Hz, where TM is the update rate (default TM is 1000). 
n = ?      Returns the value of the Notch filter for the specified axis.

Operand Usage
_NFn contains the value of notch filter for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A
While Moving     Yes     Default Value     0 
In a Program     Yes     Default Format     3.1 
Command Line     Yes           
Controller Usage     ALL CONTROLLERS

Related Commands
NB - Notch bandwidth 
NZ - Notch Zero

Examples:

NF, 20  Sets the notch frequency of B axis to 20 Hz



NO,'
Syntax: Other

Operands: _NO

Burn: not burnable

No Operation
Hardware: All

Full Description
The NO or an apostrophe (') command performs no action in a sequence, but can be used as a comment in 
a program. This helps to document a program.

Arguments
NO m     where  
m is any group of letters and numbers 
up to 77 characters can follow the NO command

Operand Usage
_NO returns a bit field indicating which threads are running. For example, 0 means no threads are running, 
1 means only thread 0 is running, 3 means threads 0 and 1 are running, and 255 means all 8 threads are running).

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands

Examples:

#A      ;'Program A
 NO     ;'No Operation
 NO This Program        ;'No Operation
 NO Does Absolutely     ;'No Operation
 NO Nothing     ;'No Operation
EN      ;'End of Program



NZ
Syntax: Explicit or Implicit

Operands: _NZn

Burn: burnable with BN

Notch Zero
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The NZ command sets the real part of the notch zero.

Arguments
NZ n,n,n,n,n,n,n,n      or          NZA=n           where 
n is ranges from 1 Hz to 1 / (16 * update period) 
update period = TM/(10^6) 
n = ?      Returns the value of the Notch filter zero for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0.5

Default Format N/A

Operand Usage
_NZn contains the value of the Notch filter zero for the specified axis.

Related Commands
NB - Notch Bandwidth 
NF - Notch Filter

Examples:

NZA = 10        Sets the real part of the notch pole to 10/2 Hz



OA
Syntax: Explicit or Implicit

Operands: _OAn

Burn: burnable with BN

Off on encoder failure
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Turns on or off encoder failure detection. The controller can detect a failure on either or both channels of 
the encoder. This is accomplished by checking on whether motion of at least 4 counts is detected whenever 
the torque exceeds a preset level (OV) for a specified time (OT). Note that for this function to work properly it 
is necessary to have a non-zero value for KI.  
 
The OA command works like the OE command: if OA is set to 1 and an encoder failure occurs, the axis goes 
into the motor off (MO) state and the stop code (SC) is set to 12. The encoder failure detection will shut the 
motor off regardless of profiling status, but the stop code is not updated unless the axis is executing a 
profiled move at the time of the detection of the encoder failure. 
 
If included in the application program and OA is set to 1 for the particular axis, #POSERR will run when 
an encoder failure is detected.

Arguments

OA m,m,m,m,m,m,m,m or OAn=m
where 
     m is 0 or 1 with 1 enabling this feature. 
      ? returns the last value set 
 
     n is a single axis mask, e.g. A

Operand Usage
_OAn contains the OA value for the specified axis.

Usage
Usage and Default Detail

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Related Commands
OT - Off on encoder failure time 
OV - Off on encoder failure voltage



Examples:

#setup
OTX=10;'  Set time to 10 milliseconds
OVX=5;'   Set voltage to 5
OAX=1;'   Enable encoder detection feature
EN

REM #POSERR example for checking to see if encoder failure occured
REM The stop code will only update of the profilier is running at the time
REM the encoder failure is detected.
#POSERR
~a=0
#loop
IF _MO~a=1
 IF ((_TE~a<_ER~a)&(_OE~a)&(_OA~a))
  MG "possible encoder failure on ",~a{Z1.0}," axis"
 ENDIF
ENDIF
~a=~a+1
JP#loop,~a<_BV
AI1;'              wait for input 1 to go high
SH;'               enable all axes
RE



OB
Syntax: Implicit Only

Operands: none

Burn: not burnable

Output Bit
Hardware: All

Full Description
The OB n, logical expression command defines output bit n as either 0 or 1 depending on the result from 
the logical expression. Any non-zero value of the expression results in a one on the output.

Arguments
OB n, expression          where 
n denotes the output bit  
expression is any valid logical expression, variable or array element.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands

Examples:

OB 1, POS=1     If POS 1 is non-zero, Bit 1 is high.
        If POS 1 is zero, Bit 1 is low
OB 2, @IN[1]&@IN[2]     If Input 1 and Input 2 are both high, then
        Output 2 is set high
OB 3, COUNT[1]  If the element 1 in the array is zero, clear bit 3
OB N, COUNT[1]  If element 1 in the array is zero, clear bit N



OC
Syntax: Explicit Only

Operands: _OC

Burn: not burnable

Output Compare
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The OC command sets up the Output Compare feature, also known as Pulse on Position. Each set of 4 
axes, ABCD and EFGH, has one digital output which can be configured to pulse on a specified axis 
absolute encoder position, and optionally on a delta encoder change after that. These operations are known as 
one-shot and circular compare, respectively. 
 
One-Shot Compare: The output compare signal will go low, and stay low at a specified absolute encoder position. 
 
Circular Compare: After the one-shot, the cicular compare can be configured to pulse low at a relative 
delta thereafter.  
 
This function cannot be used with any axis configured for a step motor and the auxiliary encoder of 
the corresponding axis can not be used while using this function. The OC function requires that the main 
encoder and auxiliary encoders be configured exactly the same (see the command, CE). For example: CE 0, CE 
5, CE 10, CE 15. 
 
OC only requires an encoder, and is independent of axis tuning, and motion profiling.

For circular compare, the output is a low-going pulse with a duration of approximately 250 nanoseconds.

Arguments

OCx = m, n
where  
x = A,B,C,D,E,F,G H specifies which main encoder input to be used. For 5-8 axis controllers, two OC 
functions can work simultaneously, one on axes A,B,C or D and the other on E,F,G or H. 
 
m = Absolute position for first pulse. Integer between -2,147,483,648 and 2,147,483,647. The beginning 
pulse position must be within 65535 counts of the current axis positions when the OC command is executed. 
 
n = Incremental distance between pulses. Integer between -65535 and 65535  
          0 one shot when moving in the forward direction 
          -65536 one shot when moving in the reverse direction 
 
OCA = 0 will disable the Circular Compare function on axes A-D. 
OCE = 0 will disable the Circular Compare function on axes E-H. 
 
The sign of the second parameter, n, will designate the expected direction of motion for the output 
compare function. When moving in the opposite direction, output compare pulses will occur at the 
incremental distance of 65536-|n| where |n| is the absolute value of n.

Operand Usage



_OC contains the state of the OC function  
_OC = 0 : OC function has been enabled but not generated any pulses.  
_OC = 1: OC function not enabled or has generated the first output pulse.  
(on a 5-8 axis controller, _OC is a logical AND of axes A-D and E-H)

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Related Commands
AL - Arm Latch 
RL - Report Latched Position 
CE - Configure Encoder 
 

Examples:

OCA=300,100;'   Select A encoder as position sensor.  First pulse at 300.
'               Following pulses at 400, 500, 600 ...

Output compare can be used to create raster scans. By using cicular compare on one axis, followed by an 
index move on a perpindicular axis, raster patterns are easily made. The following image shows a rastered 
"dot matrix" type image easily created with output compare and a laser on a two dimensional stage.

 



OE
Syntax: Explicit or Implicit

Operands: _OEn

Burn: burnable with BN

Off-on-Error
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The OE command causes the controller to shut off the motor command if a position error exceeds the 
limit specified by the ER command, an abort occurs from either the abort input or on AB command, or 
an amplifier error occurs based on the description of the TA command. See the TA command for conditions of 
an amplifier fault. 
 
If an error or axis-specific abort is detected on an axis, and the motion was executing an independent move, 
only that axis will be shut off. If the motion is a part of coordinated mode of the types VM, LM or CM, 
all participating axes will be stopped.

When internal servo amplifiers are installed that can drive brushless motors, such as the AMP-43040 (-D3040), 
or the AMP-20540, and an axis is driven with an external amplifier, the axis should be setup as a brushed 
motor (BR1). Otherwise the controller will detect the amplifier as having a hall error and shut down the motor 
if OE is set to nonzero.

Arguments

OE n,n,n,n,n,n,n,n or OEA=n
OE n,n,n,n,n,n,n,n      or           OEA=n           where 
n = 0           Disables the Off On Error function.  
n = 1           Motor shut off (MO) by position error (TE > ER) or abort input 
n = 2           Motor shut off (MO) by hardware limit switch 
n = 3           Motor shut off (MO) either by position error (TE > ER), hardware limit switch, or abort input 
n <>0          Motor is shut off (MO) by an amplifier error (TA)

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Operand Usage
_OEn contains the status of the off on error function for the specified axis.

Related Commands



AB- Abort 
ER - Error limit 
SH - Servo Here 
#POSERR - Error Subroutine 
TA - Tell Amplifier Error

#LIMSWI - Limit switch automatic subroutine

Examples:

:OE 1,1,1,1     Enable OE on all axes
:OE 0           Disable OE on A-axis; other axes remain unchanged
:OE ,,1,1       Enable OE on C-axis and D-axis; other axes remain unchanged
:OE 1,0,1,0     Enable OE on A and C-axis; Disable OE on B and D axis
:



OF
Syntax: Explicit or Implicit

Operands: _OFn

Burn: burnable with BN

Offset
Hardware: All

Full Description
The OF command sets a bias voltage in the motor command output or returns a previously set value. This can 
be used to counteract gravity or an offset in an amplifier.

Arguments
OF n,n,n,n,n,n,n,n      or           OFA=n           where 
n is a signed number in the range -9.998 to 9.998 volts with resolution of 0.0003. 
n = ?           Returns the offset for the specified axis.

Operand Usage
_OFn contains the offset for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.4 (1.0 for 18x2) 

Related Commands

Examples:

OF 1,-2,3,5     Set A-axis offset to 1, the B-axis offset to -2, the C-
axis to 3, and the D-axis to 5
OF -3   Set A-axis offset to -3  Leave other axes unchanged
OF ,0   Set B-axis offset to 0  Leave other axes unchanged
OF ?,?,?,?      Return offsets
:-3.0000,0.0000,3.0000,5.0000   
OF ?    Return A offset
:-3.0000        
OF ,?   Return B offset
:0.0000



OP
Syntax: Implicit Only

Operands: _OP0,_OP1,_OP2,_OP3,
_OP4

Burn: burnable with BN

Output Port
Hardware: All

Full Description
The OP command sends data to the output ports of the controller. Arguments to the OP command are bit 
patterns (decimal or hex) to set entire banks (bytes) of digital outputs. Use SB, CB or OB to set bits individually.

Arguments

OP m,a,b,c,d
where  
m is an integer in the range 0 to 65535 decimal, or $0000 to $FFFF hexadecimal. (0 to 255 for 4 axes or less). m 
is the decimal representation of the general output bits. Output 1 through output 8 for controllers with 4 axes 
or less. Outputs 1 through output 16 for controller with 5 or more axes. 
 
a,b,c,d represent the extended I/O (where available) in consecutive groups of 16 bits, (values from 0 to 65535). 
Bit patterns for I/O banks which are configured as inputs have no affect on the bank.  
 
m,a,b,c or d = ? returns the current value of the applicable argument. 
 
The following table describes the arguments used to set the state of outputs. 

OP output bank mapping

Argument Examples Banks Bits Description

m Set all: OP255;OP$FF 0 1-8 General Outputs (1-4 axes controllers)

m Set all: OP65535;OP$FFFF 0,1 1-16 General Outputs (5-8 axes controllers)

a Clear all: OP0;OP$0000 2,3 17-32 Extended I/O 

b Alternating on/off:OP43690;OP
$AAAA 4,5 33-48 Extended I/O 

c Set High Byte:OP65280;OP$FF00 6,7 49-64 Extended I/O 

d Set Low Byte: OP255;OP$00FF 8,9 65-80 Extended I/O 
The DMC-40x0 comes equipped with 32 bits of extended I/O standard (banks 2-5).

Operand Usage
_OP0 contains the value of the first argument, m 

_OP1 contains the value of the first argument, a 
_OP2 contains the value of the first argument, b 
_OP3 contains the value of the first argument, c 



_OP4 contains the value of the first argument, d

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Related Commands
SB - Set output bit 
CB - Clear output bit 
OB - Output Byte

Examples:

OP 0    Clear Output Port -- all bits
OP $85  Set outputs 1,3,8; clear the others
MG _OP0 Returns the first parameter "m"



OT
Syntax: Explicit or Implicit

Operands: _OTn

Burn: burnable with BN

Off on encoder failure time
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Sets the time in samples (milliseconds for TM1000) that the controller will wait for motion after the OV 
threshold has been exceeded. The controller can detect a failure on either or both channels of the encoder. This 
is accomplished by checking on whether motion of at least 4 counts is detected whenever the torque exceeds 
a preset level (OV) for a specified time (OT). Note that for this function to work properly it is necessary to have 
a non-zero value for KI.

Arguments
OT n,n,n,n,n,n,n,n where 
n is the number of samples between 2 and 32000 
? returns the last value set

Operand Usage
_OTn contains the OT value for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage DMC-40x0, DMC-18x6

Default Value 30

Default Format 5.0

Related Commands
OA - Off on encoder failure 
OV - Off on encoder failure voltage

Examples:

#setup
OTX=10;'  Set time to 10 milliseconds
OVX=5;'   Set voltage to 5
OAX=1;'   Enable encoder detection feature



EN



OV
Syntax: Explicit or Implicit

Operands: _OVn

Burn: burnable with BN

Off on encoder failure voltage
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
Sets the threshold voltage for detecting an encoder failure. The controller can detect a failure on either or 
both channels of the encoder. This is accomplished by checking on whether motion of at least 4 counts is 
detected whenever the torque exceeds a preset level (OV) for a specified time (OT). Note that for this function 
to work properly it is necessary to have a non-zero value for KI.  
The default value for OV is approximately .95 volts. The value should be high enough to guarantee that the 
motor would overcome any static friction. If it is too low, there will be false triggering of the error condition. 
The OV value may not be higher than the TL value.

Arguments
OV n,n,n,n,n,n,n,n where 
where n is a positive voltage between 0.001 and 9.9 volts. 
? returns the last value set

Operand Usage
_OVn contains the OV value for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0.9438

Default Format 1.4

Related Commands
OA - Off on encoder failure 
OT - Off on encoder failure time

Examples:

#setup
OTX=10;'  Set time to 10 milliseconds
OVX=5;'   Set voltage to 5



OAX=1;'   Enable encoder detection feature
EN



P2CD
Syntax: Operand Only

Operands: P2CD

Burn: not burnable

Serial port 2 code
Hardware: DMC40x0 DMC41x3

Full Description
P2CD returns the status of the auxiliary serial port (port 2). The value of P2CD returns zero after 
the corresponding string or number is read. 

P2CD Status Codes

Status Code Meaning

-1 Mode disabled

0 Nothing received

1 Received character, but not carriage return

2 received a string, not a number

3 received a number

Arguments

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
P2CH - Serial port 2 character 
P2NM - Serial port 2 number 
P2ST - Serial port 2 string 
CI - Configure #COMINT  
CC - Configure serial port 2 



#COMINT - Communication interrupt automatic subroutine

Examples:

:^R^V
DMC2240 Rev 1.0o
:^R^S
:CC 9600,0,0,0
:MG "TEST" {P2};'    send a message to the hand terminal
:MG P2CD;'           no characters entered on hand terminal
0.0000
:MG P2CD;'           the number 6 was pushed on the hand terminal
1.0000
:MG P2CD;'           enter key pushed on hand terminal
3.0000
:MG P2CD;'           the character B was pushed (shift f2) then enter
2.0000



P2CH
Syntax: Operand Only

Operands: P2CH

Burn: not burnable

Serial port 2 character
Hardware: DMC40x0 DMC41x3

Full Description
P2CH returns the last character sent to the auxiliary serial port (port 2)

Arguments

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
P2CD - Serial port 2 code 
P2NM - Serial port 2 number 
P2ST - Serial port 2 string 
CI - Configure #COMINT 
CC - Configure serial port 2 
#COMINT - Communication interrupt automatic subroutine

Examples:

:^R^V
DMC2240 Rev 1.0o
:^R^S
:CC 9600,0,0,0
:MG "TEST" {P2} ;'send a message to the hand terminal
:MG P2CH {S1} ;'the 6 button was pushed on the hand terminal
6



:



P2NM
Syntax: Operand Only

Operands: P2NM

Burn: not burnable

Serial port 2 number
Hardware: DMC40x0 DMC41x3

Full Description
P2NM returns the last number (followed by carriage return) sent to auxiliary serial port (port 2). 
 
Converts from ASCII (e.g. "1234") to binary so that a number can be stored into a variable and math can 
be performed on it. Numbers from -2147483648 to 2147483647 can be processed.

Arguments

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
P2CD - Serial port 2 code 
P2CH - Serial port 2 character 
P2ST - Serial port 2 string 
CI - Configure #COMINT  
CC - Configure serial port 2  
#COMINT - Communication interrupt automatic subroutine

Examples:

:^R^V
DMC2240 Rev 1.0o
:^R^S
:CC 9600,0,0,0



:MG "TEST" {P2} ;'send a message to the hand terminal
:x = P2NM ;'the 1, 2, 3, <enter> buttons were pushed
:MG x
123.0000
:



P2ST
Syntax: Operand Only

Operands: P2ST

Burn: not burnable

Serial port 2 string
Hardware: DMC40x0 DMC41x3

Full Description
P2ST returns the last string (followed by carriage return) sent to auxiliary serial port (port 2) 
NO MORE THAN SIX CHARACTERS CAN BE ACCESSED.

Arguments

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
P2CD - Serial port 2 code 
P2CH - Serial port 2 character 
P2NM - Serial port 2 number 
CI - Configure #COMINT  
CC - Configure serial port 2  
#COMINT - Communication interrupt automatic subroutine

Examples:

:CC 9600,0,1,0
:MG "TEST" {P2} ;'send a message to the hand terminal
:MG P2ST {S3} ;'the characters ABC were entered
ABC



PA
Syntax: Explicit or Implicit

Operands: _PAn

Burn: burnable with BN

Position Absolute
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The PA command sets the end target of the Position Absolute Mode of Motion. The position is referenced to 
the absolute zero.

Arguments

PA n,n,n,n,n,n,n,n or PAA=n
where 
n is a signed integers in the range -2147483647 to 2147483648 decimal. Units are in encoder counts. 
n = ?      Returns the commanded position at which motion stopped.

Operand Usage
_PAn contains the last commanded position at which motion stopped.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
PR - Position relative 
SP - Speed 
AC - Acceleration 
DC - Deceleration 
BG - Begin

Examples:

:PA 400,-600,500,200     A-axis will go to 400 counts B-axis will go to -
600 counts 
                         C-axis will go to 500 counts D-axis will go to 
200 counts
:BG                      Execute Motion
:PA ?,?,?,?              Returns the current commanded position after 



motion has completed
400, -600, 500, 200     
:PA 700                  A-axis will go to 700 on the next move while the
:BG                      B,C and D-axis will travel the previously 
set relative distance 
                         if the preceding move was a PR move, or will 
not move if the 
                         preceding move was a PA move.



PF
Syntax: Implicit Only

Operands: _PF

Burn: burnable with BN

Position Format
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The PF command allows the user to format the position numbers such as those returned by TP. The number 
of digits of integers and the number of digits of fractions can be selected with this command. An extra digit 
for sign and a digit for decimal point will be added to the total number of digits. If PF is negative, the format 
will be hexadecimal and a dollar sign will precede the characters. Hex numbers are displayed as 2's 
complement with the first bit used to signify the sign. 
If a number exceeds the format, the number will be displayed as the maximum possible positive or 
negative number (i.e. 999.99, -999, $8000 or $7FF). 
The PF command can be used to format values returned from the following commands: 
BL ?     LE ? 
DE ?     PA ? 
DP ?     PR ? 
EM ?     TN ? 
FL ?     VE ? 
IP ?     TE 
TP

Arguments
PF m.n          where  
m is an integer between -8 and 10 which represents the number of places preceding the decimal point. A 
negative sign for m specifies hexadecimal representation. 
n is an integer between 0 and 4 which represent the number of places after the decimal point. 
n = ?      Returns the value of m.

Operand Usage
_PF contains the value of the position format parameter.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 10.0

Default Format 2.1 (10.0 for 18x2)



Related Commands

Examples:

TPX     Tell position of X
:0      Default format
PF 5.2  Change format to 5 digits of integers and 2 of fractions
TPX     Tell Position
:21.00  
PF-5.2  New format.  Change format to hexadecimal
TPX     Tell Position
:$00015.00      Report in hex



PL
Syntax: Explicit or Implicit

Operands: _PLn

Burn: burnable with BN

Pole
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The PL command adds a low-pass filter in series with the PID compensation.

The crossover frequency can be entered directly as an argument to PL. The minimum frequency for 
pole placement is 1 Hz. and the maximum is 1/(4*TM). 
 
To maintain compatibility with earlier versions, a value less than 1 may be specified using the following formula. 
 

The digital transfer function of the filter is (1 - n) / (Z - n) and the equivalent continuous filter is A/(S+A) where 
A is the filter cutoff frequency: A=(1/T) ln (1 / n) rad/sec and T is the sample time. 
 
To convert from the desired crossover (-3 dB) frequency in Hertz to the value given to PL, use the 
following formula

 
where: 
     n is the argument given to PL 
     T is the controller's servo loop sample time in seconds (TM divided by 1,000,000) 
     Fc is the crossover frequency in Hertz 
     Example: Fc=36Hz     TM=1000     n=e^(-0.001*36*2*pi) =0.8

n Fc (Hz)

0 Infinite (off)

0.2 256

0.4 145

0.6 81

0.8 36

0.999 0

Arguments

PL n,n,n,n,n,n,n,n or PLA=n

Frequency Argument
n is a positive integer in the range of 1 to Fmax and corresponds to the crossover frequency that the poll will create. 
Fmax is given by 1/(4*TM)



Calculated Poll Argument (deprecated)
n is a positive number in the range 0 to 0.9999. 
     n = ?      Returns the value of the pole filter for the specified axis.

Operand Usage
_PLn contains the value of the pole filter for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0.0

Default Format

Related Commands
KD - Derivative 
KP - Proportional 
KI - Integral Gain

Examples:

Set A-axis Pole to 0.95, B-axis to 0.9, C-axis to 0.8, D-axis pole to 0.822
PL .95,.9,.8,.822
:

Query all Pole values
PL ?,?,?,?
:0.9527,0.8997,0.7994,0.8244

Return A Pole only
PL?
:0.9527



PR
Syntax: Explicit or Implicit

Operands: _PRn

Burn: burnable with BN

Position Relative
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The PR command sets the incremental distance and direction of the next move. The move is referenced 
with respect to the current position. .

Arguments
PR n,n,n,n,n,n,n,n      or          PRA=n           where 
n is a signed integer in the range -2147483648 to 2147483647 decimal. Units are in encoder counts 
n = ?      Returns the current incremental distance for the specified axis.

Operand Usage
_PRn contains the current incremental distance for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format Position Format

Related Commands
AC - Acceleration 
BG - Begin 
DC - Deceleration 
IP - Increment Position 
PA - Position Absolute 
PF - Position Formatting 
SP - Speed

Examples:

PR 100,200,300,400      On the next move the A-axis will go 100 counts,
BG      the B-axis will go to 200 counts forward, C-axis will go 300 
counts and the D-axis will go 400 counts.
PR ?,?,?        Return relative distances



:100, 200, 300  
PR 500  Set the relative distance for the A axis to 500
BG      The A-axis will go 500 counts on the next move while the B-axis 
will go its previously set relative distance.



PT
Syntax: Explicit or Implicit

Operands: _PTn

Burn: not burnable

Position Tracking
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The PT command will place the controller in the position tracking mode. In this mode, the controller will allow 
the user to issue absolute position commands on the fly. The motion profile is trapezoidal with the 
parameters controlled by acceleration, deceleration, and speed (AD, DC, SP). The absolute position may 
be specified such that the axes will begin motion, continue in the same direction, reverse directions, or 
decelerate to a stop. When an axis is in the PT mode the ST command will exit the mode. The PA command 
is used to give the controller an absolute position target. Motion commands other than PA are not supported in 
this mode. 
 
The BG command is not used to start the PT mode. The AM and MC trip points are not valid in this mode. It 
is recommended to use MF and MR as trip points with this command, as they allow the user to specify both 
the absolute position, and the direction. The AP trip point may also be used. 

Arguments

PT n,n,n,n,n,n,n,n
where 
n=0 or 1 where 1 designates the controller is in the special mode. 
n=? returns the current setting

Operand Usage
_PTn contains the set state of position tracking, 1 or 0

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.0

Related Commands
AC - Acceleration 
DC - Deceleration 
PA - Position Absolute 
SP - Speed



Examples:

#A      
 PT1,1,1,1;'        Enable the position tracking mode for axes X, Y, Z, and W
'                    NOTE: The BG command is not used to start the PT mode.
#LOOP;'             Create label #LOOP in a program.  This small 
program will 
'                    update the absolute position at 100 Hz.  Note that the
'                    user must update the variables V1, V2, V3 and V4 
from the 
'                    host PC, or another thread operating on the controller.
'
 PA V1,V2,V3,V4;'   Command XYZW axes to move to absolute positions.  Motion 
'                    begins when the command is processed.  BG is not used
'                    to begin motion in this mode.  In this example, it is
'                    assumed that the user is updating the variables at a 
'                    specified rate.  The controller will update the new
'                    target position every 10 milliseconds (WT10).
 WT10;'             Wait 10 milliseconds
JP#LOOP;'           Repeat by jumping back to label LOOP



PV
Syntax: Explicit Only

Operands: _PVn

Burn: not burnable

PVT Data
Hardware: DMC40x0 DMC41x3 

DMC300x0

Full Description
The PV command is used to enter PVT data into the PVT buffer by specifying the target position, velocity, 
and delta time. For more details on PVT mode of motion see the user manual.

Arguments
PVa=p,v,t     where 
 
a specifies the axis 
p is the relative target position specified in counts. -44,000,000 <= p <= 44,000,000.  
v is the target velocity specified in counts per second. -22,000,000 <= v <= 22,000,000. Integer values only for 
p and v 
t is the time to achieve target position and velocity. t is in even samples 2 <= t <= 2048. If t=0 then the PVT 
mode is exited. If t = -1 the PVT buffer is cleared. t is in samples and sample time is defined by TM (With 
a default TM of 1000, 1024 samples is 1 second). If t is omitted then the previous value is used. 

Operand Usage
_PVa contains the number of spaces available in the PV buffer for the specified axis. Each axis has a 255 
segment PV buffer

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage DMC-4xxx, DMC-18x6, others via upgrade

Default Value N/A

Default Format N/A

Related Commands
BT - Begin PVT Motion 
MF - Forward Motion to Position Trippoint 
MR - Reverse Motion to Position Trippoint 
 

Examples
Desired X/Y Trajectory



X Position 
(relative/absolute)

X Speed at 
end of time 
period (c/s)

Time (ms at 
TM1000) (relative/

time from start)

Y Position 
(relative/absolute)

Y Speed at 
end of time 
period (c/s)

Time (ms at 
TM1000) (relative/

time from start)

0/0 0 0/0 0/0 0 0/0

100/100 200 256/256 -50/-50 500 100/100

200/300 200 50/306 -100/-150 -100 510/610

300/600 0 50/356 300/150 0 50/660

DP0,0;'              Define zero position
PVX=100,200,256;'    Command X axis to move 100 counts reaching an 
ending speed of 200c/s in 256 samples
PVY=-50,500,100;'    Command Y axis to move -50 counts reaching an 
ending speed of 500c/s in 100 samples
PVY=-100,-100,510;'  Command Y axis to move -100 counts reaching an 
ending speed of -100c/s in 510 samples
PVX=200,200,50;'     Command X axis to move 200 counts reaching an 
ending speed of 200c/s in 50 samples
PVX=300,0,50;'       Command X axis to move 300 counts reaching an 
ending speed of 0c/s in 50 samples
PVY=300,0,50;'       Command Y axis to move 300 counts reaching an 
ending speed of 0c/s in 50 samples
PVY=,,0;'            Exit PVT mode on Y axis
PVX=,,0;'            Exit PVT mode on X axis
'                    When the PVT mode is exited, the axis will be in 
the "SH" state
'                     (assuming position error is not exceeded, etc)
BTXY;'               Begin PVT on X and Y axis
AMXY;'               Trip point will block until PVT motion on X AND Y 
is complete
EN;'                 End program



PW
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Password
Hardware: DMC40x0 DMC41x3 RIO 

DMC18x6 DMC300x0

Full Description
The password can be set with the command PW password,password where the password can be up to 
8 alphanumeric characters. The default value after master reset is a null string. The password can only be 
changed when the controller is in the unlocked state (^L^K). The password is burnable but cannot be 
interrogated. If you forget the password you must master reset the controller to gain access.

Arguments
PW n,n     where  
n is a string from 0 to 8 characters in length

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes (No for 40x0)

Command Line Yes

Controller Usage All

Default Value "" (null string)

Default Format N/A

Related Commands
<control>L<control>K - Lock/Unlock 
ED - Edit program 
UL - Upload program 
LS - List program 
TR - Trace program

Examples:

:PWtest,test    Set password to "test"
:^L^K test,1    Lock the program
:ED     Attempt to edit program



QD
Syntax: Implicit Only

Operands: none

Burn: not burnable

Download Array
Hardware: All

Full Description
The QD command transfers array data from the host computer to the controller. QD array[], start, end requires 
that the array name be specified along with the index of the first element of the array and the index of the 
last element of the array. The array elements can be separated by a comma ( , ) or by <CR> <LF>. 
The downloaded array is terminated by a \. 
 
It is recommended to use the array download functions available through the GalilTools software and 
drivers rather than directly using the QD command.

Arguments
QD array[],start,end     where  
array[] is valid array name  
start is index of first element of array (default=0)  
end is index of last element of array (default = size-1)

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value start=0, end=size-1

Default Format N/A (Position Format for 18x2)

Related Commands
QU - Upload array 

Examples

:DM array[5]                               Dimension array
:QD array[]                                Download values to array



1,2,3,4,5\:
:QU array[],0,4,1                          Upload the array
:1.0000, 2.0000, 3.0000, 4.0000, 5.0000
:QD array[],2,4                             Download a subset
9,8,7\:
:QU array[],0,4,1
:1.0000, 2.0000, 9.0000, 8.0000, 7.0000

Hint: This log is from Hyperterm, a non-Galil software.



QH
Syntax: Accepts Axis Mask

Operands: _QHn

Burn: not burnable

Hall State
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
The QH command transmits the state of the Hall sensor inputs. The value is decimal and represents an 8 bit value.  
 
Bit     Status 
07     Undefined (set to 0) 
06     Undefined (set to 0) 
05     Undefined (set to 0) 
04     Undefined (set to 0) 
03     Undefined (set to 0) 
02     Hall C State 
01     Hall B State 
00     Hall A State

When using the AMP-43540 and AMP-43640, the BA command must be issued before QH will report the 
hall state status.

Arguments
QHn returns the Hall sensor input byte where 
          n=A, B, C, D, E, F, G, H

Usage
While Moving     Yes     Default Value     0 
In a Program     Yes     Default Format     1.0 
Command Line     Yes           
Controller Usage     DMC-40x0-D430x0

Operand Usage
_QHn Contains the state of the Hall sensor inputs

Related Commands
PA 
Position Absolute 
BS  
Brushless Setup 
EXAMPLE: 
QHY      
:6     Hall inputs B and C active on Y axis 
 
 
QR



Examples:



QR
Syntax: Accepts Axis Mask

Operands: none

Burn: not burnable

I O Data Record
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO DMC18x6 
DMC18x2 DMC300x0

Full Description
The QR command causes the controller to return a record of information regarding controller status. This 
status information includes 4 bytes of header information and specific blocks of information as specified by 
the command arguments. The details of the status information is described in Chapter 4 of the user's manual.

Arguments
QR nnnnnnnnnn          where 
n is A,B,C,D,E,F,G,H,S,T, or I or any combination to specify the axis, axes, sequence, or I/O status 
S and T represent the S and T coordinated motion planes 
I represents the status of the I/O

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage

Default Value N/A

Default Format N/A

Related Commands
QZ - Return DMA / Data Record information 
Note: The Galil windows terminal will not display the results of the QR command since the results are in 
binary format.

Examples:



QS
Syntax: Accepts Axis Mask

Operands: _QSn

Burn: not burnable

Error Magnitude
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The QS command reports the magnitude of error, in step counts, for axes in Stepper Position Maintenance 
mode. A step count is directly proportional to the resolution of the step drive. 
 
The result of QS is modularized so that result is never grearter than 1/2 the revolution of the stepper motor.  
Largest possible QS result = 0.5*YA*YB

Arguments
QS nnnnnnnn or QSn = ?          where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes

Operand Usage
_QSn contains the error magnitude in drive step counts for the given axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.4

Related Commands
YA - Step Drive Resolution 
YB - Step Motor Resolution 
YC - Encoder Resolution 
YR - Error Correction 
YS - Stepper Position Maintenance Mode Enable, Status

Examples:

1. For an SDM-44140 microstepping drive, query the error of B axis:
    :QSB=?      



    :253        This shows 253 step counts of error.  The SDM-
44140 resolution is 64 microsteps per full motor step, nearly four 
full motor steps of error.
2. Query the value of all axes:
    :QS 
    :0,253,0,0,0,0,0,0  Response shows all axes error values



QU
Syntax: Implicit Only

Operands: none

Burn: not burnable

Upload Array
Hardware: All

Full Description
The QU command transfers array data from the controller to a host computer. The QU requires that the array 
name be specified along with the first element of the array and last element of the array. The uploaded array 
will be followed by a <control>Z as an end of text marker. 
 
The GalilTools array upload functions can be used to upload array data in .csv format.

Arguments
QU array[],start,end,delim          where  
"array[]" is a valid array name 
"start" is the first element of the array (default=0) 
"end" is the last element of the array (default = last element) 
"delim" specifies the character used to delimit the array elements. If delim is 1, then the array elements will 
be separated by a comma. Otherwise, the elements will be separated by a carriage return.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format Position Format

Related Commands
QD - Download array

Examples

:DM array[5]                                Dimension Array
:QU array[],0,4,1                           Upload Array



:0.0000, 0.0000, 0.0000, 0.0000, 0.0000
:array[0]=9                                 Set value
:array[1]=1
:QU array[],0,4,1
:9.0000, 1.0000, 0.0000, 0.0000, 0.0000
:array[0]=?                                 Alternative method to 
return just one array value
 9.0000
:



QZ
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Return Data Record information
Hardware: All

Full Description
The QZ command is an interrogation command that returns information regarding data record transfers. 
The controller's response to this command will be the return of 4 integers separated by commas. The four 
fields represent the following: 
     First field returns the number of axes. 
     Second field returns the number of bytes to be transferred for general status 
     Third field returns the number bytes to be transferred for coordinated move status 
     Fourth field returns the number of bytes to be transferred for axis specific information

Arguments
QZ

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
DR 
Ethernet data record update rate 
RA

Examples:



RA
Syntax: Implicit Only

Operands: none

Burn: not burnable

Record Array
Hardware: All

Full Description
The RA command selects one through eight arrays for automatic data capture. The selected arrays must 
be dimensioned by the DM command. The data to be captured is specified by the RD command and time 
interval by the RC command.

Arguments

RA n[ ],m[ ],o[ ],p[ ],q[ ],r[ ],s[ ],t[ ]
where 
n,m,o,p,q,r,s, and t are dimensioned arrays as defined by DM command. The square brackets are empty, [].

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
DM - Dimension Array 
RD - Record Data 
RC - Record Interval

Examples:

#Record;'     Label
DM POS[100];' Define array
RA POS[];'    Specify Record Mode
RD _TPA;'     Specify data type for record
RC 1;'        Begin recording at 2 msec intervals



PR 1000;BG;'  Start motion
EN;'          End

Hint:  The record array mode is useful for recording the real-time 
motor position during motion.  
The data is automatically captured in the background and does not 
interrupt the program sequencer.  
The record mode can also be used for a teach or learn of a motion path.  

GalilTools: The GalilTools Realtime scope can often be used as 
an alternative to record array.



RC
Syntax: Implicit Only

Operands: _RC

Burn: not burnable

Record
Hardware: All

Full Description
The RC command begins recording for the Automatic Record Array Mode (RA). RC 0 stops recording. 
 
Firmware Note: Do not allocate or deallocate arrays (DM,DA) while the Automatic Record Array Mode is running. 
 
GalilTools Note: Do not download arrays from GalilTools, or call the arrayDownload() or arrayDownloadFile
() functions while automatic record array mode is running.

Arguments

RC n,m
where  
n is an integer 1 thru 8 and specifies 2^n samples between records. RC 0 stops recording. 
m is optional and specifies the number of records to be recorded. If m is not specified, the array bounds will 
be used. A negative number for m causes circular recording over array addresses 0 to m-1.  
 
n = ? Returns status of recording. '1' if recording, '0' if not recording. 
 
Note: The address for the array element for the next recording can be interrogated with _RD.

where  
n is an even integer in the range of 0 to 256 and specifies the samples between records. RC 0 stops recording. 
m is optional and specifies the number of records to be recorded. If m is not specified, the array bounds will 
be used. A negative number for m causes circular recording over array addresses 0 to m-1.  
 
n = ? Returns status of recording. '1' if recording, '0' if not recording. 
 
Note: The address for the array element for the next recording can be interrogated with _RD.

Operand Usage
_RC contains status of recording. '1' if recording, '0' if not recording.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes



Controller Usage All

Default Value 0

Related Commands
DM - Dimension Array 
RD - Record Data 
RA - Record Array Mode

Examples:

#RECORD;'             Record label
DM Torque[1000];'     Define Array
RA Torque[];'         Specify Array to record data
RD _TTA;'             Specify Data Type
RC 2;'                Begin recording and set 4 msec between records
JG 1000;BG;'          Begin motion
#A;JP #A,_RC=1;'      Loop until done
MG "DONE RECORDING";' Print message
EN;'                  End program

#RECORD;'             Record label
DM Torque[1000];'     Define Array
RA Torque[];'         Specify Array to record data
RD _TTA;'             Specify Data Type
RC 2;'                Begin recording and set 2 msec between records
JG 1000;BG;'          Begin motion
#A;JP #A,_RC=1;'      Loop until done
MG "DONE RECORDING";' Print message
EN;'                  End program



RD
Syntax: Implicit Only

Operands: _RD

Burn: not burnable

Record Data
Hardware: All

Full Description
The RD command specifies the data type to be captured for the Record Array (RA) mode. The command 
type includes:

Data sources for automatic record mode

Source name (where 'n' is the axis specifier, A-H) Description

TIME Time in servo sample as read by the TIME command

_AFn Analog Input Value (+32767 to -32768). The analog inputs are 
limited to those which correspond to an axis on the controller.

_DEn 2nd encoder

_TPn Position

_TEn Position error

_RPn Commanded Position (_SHn also valid)

_RLn Latched Position

_TI Input States

_OP Output State

_TSn Switches, only 0-4 bits valid

_SCn Stop code

_TTn
Tell torque (Note: the values recorded for torque are in the range 
of +/- 32767 where 0 is 0 torque, -32767 is -10 volt command 
output, and +32767 is +10 volt.

_TVn Filtered velocity. (Note: will be 65 times greater than TV 
command)

_TDn Stepper Position

Arguments

RD m1, m2, m3, m4, m5, m6, m7, m8
where 
the arguments are the data sources to be captured using the record array feature. The order is important. Each 
data type corresponds with the array specified in the RA command.

Operand Usage
_RD contains the address for the next array element for recording.



Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
RA - Record Array 
RC - Record Interval 
DM - Dimension Array

Examples

DM ERRORA[50],ERRORB[50];'      Define arrays
RA ERRORA[],ERRORB[];'          Specify arrays to be recorded
RD _TEA,_TEB;'                  Specify data source
RC1;'                           Begin recording, period is once every 
other servo sample
JG 1000;BG;'                    Begin motion

GalilTools: The GalilTools Realtime scope can often be used as 
an alternative to record array.



RE
Syntax: Embedded Only

Operands: none

Burn: not burnable

Return from Error Routine
Hardware: All

Full Description
The RE command is used to end the following error automatic subroutines. 

     #POSERR 
     #LIMSWI

     #TCPERR

     #AMPERR (if equipped with internal amplifiers) 
     #SERERR (if equipped with -SER firmware)

An RE at the end of these routines causes a return to the main program. Care should be taken to ensure the 
error conditions no longer are present to avoid re-entering the subroutines.  
 
Trippoint states can be preserved or cleared with RE1 or RE0, respectively. 
 
A motion trippoint like MF or MR requires the axis to be actively profiling in order to be restored with the 
RE1 command.  
 
To avoid returning to the main program on an interrupt, use the ZS command to zero the subroutine stack.

Arguments

RE n
where 
n = 1     Restores state of trippoint 
n = 0     Clears the interrupted trippoint 
           no argument clears the interrupted trippoint

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes



Command Line No

Controller Usage All

Related Commands
#AMPERR - Amplifier error automatic subroutine 
#SERERR - Serial Encoder Error Automatic Subroutine 

#TCPERR - Ethernet communication error automatic subroutine

#POSERR - Position error automatic subroutine 
#LIMSWI - Limit switch automatic subroutine

Examples:

REM dummy loop
#A
JP #A
EN

#POSERR;'       Begin Error Handling Subroutine
MG "ERROR";'    Print message
SB1;'           Set output bit 1
RE;'            Return to main program and clear trippoint



REM
Syntax: Other

Operands: none

Burn: not burnable

Remark
Hardware: All

Full Description
REM is used for comments. The REM statement is NOT a controller command. Rather, it is recognized by 
Galil PC software, which strips away the REM lines before downloading the DMC file to the controller. 
REM differs from NO (or ') in the following ways: 
(1)     NO (or ') comments are downloaded to the controller and REM comments aren't 
(2)     NO (or ') comments take up execution time and REM comments don't; therefore, REM should be used 
for code that needs to run fast. 
(3)     REM comments cannot be recovered when uploading a program but NO (or ') comments are 
recovered. Thus the uploaded program is less readable with REM. 
(4)     NO (or ') comments take up program line space and REM lines don't. 
(5)     REM comments must be the first and only thing on a line, whereas NO (or ') can be used to place 
comments to the right of code (after a semicolon) on the same line 
 
      NO (or ') should be used instead of REM unless speed or program space is an issue.

Arguments

REM n
where 
               n is a text string comment

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
NO (' apostrophe also accepted) - No operation (comment)



Examples:



RI
Syntax: Embedded Only

Operands: none

Burn: not burnable

Return from Interrupt Routine
Hardware: All

Full Description
The RI command is used to end the interrupt subroutine beginning with the label #ININT. An RI at the end of 
this routine causes a return to the main program. The RI command also re-enables input interrupts. If the 
program sequencer was interrupted while waiting for a trippoint, such as WT, RI1 restores the trippoint on 
the return to the program. A motion trippoint such as MF or MR requires the axis to be actively profiling in 
order to be restored with RI1. RI0 clears the trippoint. To avoid returning to the main program on an interrupt, 
use the command ZS to zero the subroutine stack. This turns the jump subroutine into a jump only.

Arguments

RI n
where  
     n = 0           Clears the interrupted trippoint 
     n = 1           Restores state of trippoint 
     no argument clears the interrupted trippoint

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line No

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
#ININT - Input interrupt subroutine 
II - Enable input interrupts

Examples:



#A;II1;JP #A;EN ;'Program label
#ININT  ;'Begin interrupt subroutine
MG "INPUT INTERRUPT"    ;'Print Message
SB 1    ;'Set output line 1
RI 1    ;'Return to the main program and restore trippoint



RL
Syntax: Accepts Axis Mask

Operands: _RLn

Burn: not burnable

Report Latched Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The RL command will return the last position captured by the latch. The latch must first be armed by the 
AL command and then a 0 must occur on the appropriate input. Each axis uses a specific general input for the 
latch input: 
X (A)     axis latch     Input     1 
Y (B)     axis latch     Input     2 
Z (C)      axis latch     Input     3 
W (D)     axis latch     Input     4 
E     axis latch     Input     9 
F     axis latch     Input     10 
G     axis latch     Input     11 
H     axis latch     Input     12 
The armed state of the latch can be configured using the CN command. 
Note:     The Latch Function works with the main encoder. When working with a stepper motor without 
an encoder, the latch can be used to capture the stepper position. To do this, place a wire from the controller 
Step (PWM) output into the main encoder input, channel A+. Connect the Direction (sign) output into the 
channel B+ input. Configure the main encoder for Step/Direction using the CE command. The latch will 
now capture the stepper position based on the pulses generated by the controller.

Arguments

RL nnnnnnnnnn
where 
n is X,Y,Z,W,A,B,C,D,E,F,G or H or any combination to specify the axis or axes

Operand Usage
_RLn contains the latched position of the specified axis. 
RELATED COMMAND: 
AL - Arm Latch

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All



Default Value 0

Default Format Position Format

Related Commands

Examples:

JG ,5000        Set up to jog the B-axis
BGB     Begin jog
ALB     Arm the B latch; assume that after about 2 seconds, input goes low
RLB     Report the latch
:10000



RP
Syntax: Accepts Axis Mask

Operands: _RPn

Burn: not burnable

Reference Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The RP command returns the commanded reference position of the motor(s).

Arguments

RP nnnnnnnnnn
where 
n is A,B,C,D,E,F,G,H or N, or any combination to specify the axis or axes`

Operand Usage
_RPn contains the commanded reference position for the specified axis. 
RELATED COMMAND: 
TP  
Tell Position 
Note: The relationship between RP, TP and TE: TEA equals the difference between the reference position, 
RPA, and the actual position, TPA.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format Position Format

Related Commands

Examples:

Assume that ABC and D axes are commanded to be at the positions 200, -10, 
0, -110 
respectively.  The returned units are in quadrature counts.



RS
Syntax: Two Letter Only

Operands: _RS

Burn: not burnable

Reset
Hardware: All

Full Description
The RS command resets the state of the processor to its power-on condition. The previously saved state of 
the hardware, along with parameter values and saved program, are restored. 
 
RS-1 Soft master reset. Restores factory defaults without erasing EEPROM. To restore saved EEPROM 
settings use RS with no arguments.

Arguments
N/A

Operand Usage
_RS returns the state of the processor on its last power-up condition. The value returned is the decimal 
equivalent of the 4 bit binary value shown below. 
      Bit 3 For master reset error 
      Bit 2 For program checksum error 
      Bit 1 For parameter checksum error 
      Bit 0 For variable checksum error 
 
At startup the controller operating system verifies the firmware sector. If there is a checksum error in firmware, 
it is not loaded and the controller will boot to monitor mode.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program

Command Line Yes

Controller Usage

Default Value

Default Format
In a Program No 
Command Line Yes 
Can be Interrogated     Yes 
Used as an Operand      Yes

Related Commands



^R^S - Master Reset

Examples:

RS      Reset the hardware



SA
Syntax: Explicit Only

Operands: _SAn0,_SAn1,_SAn2,_SAn3,
_SAn4,_SAn5,_SAn6,_SAn7

Burn: not burnable

Send Command
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
SA sends a command, and optionally receives a response, from one controller to another via Ethernet. 

Important Notes
1. SA is non-blocking. A wait (e.g. WT10) must occur between successive calls to SA. 
 
2. SA is not valid over a handle configured for Modbus (port 502). 
 
3. When writing multi-threaded DMC code, send all traffic from only one thread. 
 
4. The Galil that establishes the connection and issues the SA command is called the master. The Galil 
that receives the connection and answers the SA is the slave. For both controllers in a connection to be 
both masters and slaves, open two Ethernet handles. Each of the controllers is a master over one of the 
handles, and a slave on the other.

 

Arguments

SAh=arg

SAh=arg, arg, arg, arg, arg, arg, arg, arg,
where 
h is the handle being used to send commands to the slave controller. 
 
arg is a number, controller operand, variable, mathematical function, or string. The range for numeric values is 
4 bytes of integer followed by two bytes of fraction. 
 
Strings are encapsulated by quotations. 
 
Typical usage would have the first argument as a string such as "KI" and the subsequent arguments as 
the arguments to the command: Example SAF="KI", 1, 2 would send the command: KI1,2

There is a 78 character maximum payload length for the SA command.



Operand Usage
_SAhn gives the value of the response to the command sent with an SA command. The h value represents 
the handle A thru H and the n value represents the specific field returned from the controller (0-7). If the 
specific field is not used, the operand will be -2^31.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Related Commands
IH - Open IP Handle

Examples:

#A      
IHA=10,0,0,12;'     Configures handle A to be connected to a controller 
with IP 10.0.0.12
#B;JP#B,_IHA2<>-2;' Wait for connection
SAA="KI", 1, 2  ;'  Sends the command to handle A (slave controller):  KI 1,2
WT10    
SAA="TE";'          Sends the command to handle A (slave controller):  TE
WT10    
MG_SAA0;'           Display the content of the operand_SAA (first 
response to ;'TE command)
MG_SAA1;'           Display the content of the operand_SAA (2nd response 
to TE ;'command)
SAA="TEMP=",16;'    Sets variable temp equal to 16 on handle A controller
EN;'                End Program



SB
Syntax: Implicit Only

Operands: none

Burn: not burnable

Set Bit
Hardware: All

Full Description
The SB command sets a particular digital output, setting the output to logic 1. The SB and CB (Clear 
Bit) instructions can be used to control the state of output lines.

SB can be used to set the outputs of extended I/O which have been configured as outputs. See the CO command.

The SB command can also be used with modbus devices to toggle remote outputs.

Arguments

SB n
where  
n is an integer which represents a specific controller output bit to be set high.

When using Modbus devices, the I/O points of the modbus devices are calculated using the following formula: 
 
n = (SlaveAddress*10000) + (HandleNum*1000) + ((Module-1)*4) + (Bitnum-1) 
 
     Slave Address is used when the ModBus device has slave devices connected to it and specified as Addresses 
0 to 255. Please note that the use of slave devices for modbus are very rare and this number will usually be 0. 
 
     HandleNum is the handle specifier from A to H.  
 
     Module is the position of the module in the rack from 1 to 16.  
 
     BitNum is the I/O point in the module from 1 to 4.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All



Related Commands
CB - Clear Bit 
OB - Output Bit 
OP - Output Port

Examples:

SB 5;'     Set digital output 5
SB 1;'     Set digital output 1
CB 5;'     Clear digital output 5
CB 1;'     Clear digital output 1



SC
Syntax: Accepts Axis Mask

Operands: _SCn

Burn: not burnable

Stop Code
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The Stop Code command returns a number indicating why a motor has stopped. The controller reponds with 
a number interpreted as follows:

Stop Code Table

Stop Code Number Meaning

0 Motors are running, independent mode

1 Motors decelerating or stopped at commanded independent position

2 Decelerating or stopped by FWD limit switch or soft limit FL

3 Decelerating or stopped by REV limit switch or soft limit BL

4 Decelerating or stopped by Stop Command (ST)

6 Stopped by Abort input

7 Stopped by Abort command (AB)

8 Decelerating or stopped by Off on Error (OE1)

9 Stopped after finding edge (FE)

10 Stopped after homing (HM) or Find Index (FI)

11 Stopped by selective abort input

12 Decelerating or stopped by encoder failure (OA1) (For controllers supporting OA/OV/OT)

15 Amplifier Fault (For controllers with internal drives)

16 Stepper position maintainance error 

30 Running in PVT mode

31 PVT mode completed normally

32 PVT mode exited because buffer is empty

50 Contour Running

51 Contour Stop

99 MC timeout

100 Motors are running, Vector Sequence

101 Motors stopped at commanded vector

Arguments



SC nnnnnnnnnn
where 
     n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes

Operand Usage
_SCn contains the value of the stop code for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (no RIO) Yes

In a Program Yes

Command Line Yes

Default Value N/A

Default Format 3.0

Related Commands
LU - LCD Update

Examples:

Tom =_SCD;'      Assign the Stop Code of D to variable Tom



SD
Syntax: Explicit or Implicit

Operands: _SDn

Burn: burnable with BN

Switch Deceleration
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
The Limit Switch Deceleration command (SD) sets the linear deceleration rate of the motors when a limit 
switch has been reached. The parameters will be rounded down to the nearest factor of 1024 and have units 
of counts per second squared.

Arguments

SD n,n,n,n,n,n,n,n

SDA=n
where 
n is an unsigned numbers in the range 1024 to 1073740800 
n = ?      Returns the deceleration value for the specified axes.

Operand Usage
_SDn contains the deceleration rate for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256000

Related Commands
AC - Acceleration 
DC - Deceleration 
PR - Position Relative 
PA - Position Absolute 
SP - Speed

Examples:

PR 10000        Specify position



AC 2000000      Specify acceleration rate
DC 1000000      Specify deceleration rate
SD 5000000      Specify Limit Switch Deceleration Rate
SP 5000 Specify slew speed
Note:  The SD command may be changed during the move in JG move, but not 
in PR or PA move.



SH
Syntax: Accepts Axis Mask

Operands: none

Burn: burnable with BN

Servo Here
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The SH commands tells the controller to use the current motor position as the command position and to 
enable servo control here. 
This command can be useful when the position of a motor has been manually adjusted following a motor off 
(MO) command.

Arguments

SH nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
MO - Motor-off

Examples:

SH      Servo A,B,C,D motors
SHA     Only servo the A motor, the B,C and D motors remain in its 
previous state.
SHB     Servo the B motor; leave the A,C and D motors unchanged
SHC     Servo the C motor; leave the A,B and D motors unchanged
SHD     Servo the D motor; leave the A,B and C motors unchanged



Note:  The SH command changes the coordinate system.  Therefore, 
all position commands given prior to SH, must be repeated.  Otherwise, 
the controller produces incorrect motion.



SI
Syntax: Explicit Only

Operands: none

Burn: burnable with BN

Configure the special Galil SSI feature
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
Synchronous Serial Interface (SSI) allows for serial transmission of absolute position data (either binary or 
Gray code) from the encoder based on a timed clock pulse train from the controller. Connection between 
the controller and encoder is based on two signal lines, clock and data, which are usually differential for 
increased noise immunity. For each sequential clock pulse of the controller, the encoder transmits one data 
bit from shift registers on the encoder.

There are two items required when connecting an SSI encoder to a DMC-40x0: special SSI firmware and 
the controller -SSI option.

Clocking in SSI data has a timing overhead which may be non-negligible. In the event that clocking in data 
may have a negative effect on servo performance (e.g. using multiple encoders with a lowered TM sample rate) 
the controller will respond with an error mode. See #AUTOERR for more information. This error mode is 
very rare, and is expected to occur only in development.

Arguments

SIn = si0, si1, si2, si3 <p >q
where 
 
n = The axis designator (XYZW or ABCDEFGH). Each axis must be set individually 
 
si0 = 0 is for NO SSI, 1 is for SSI to replace MAIN encoder data. 2 is for SSI to replace AUX encoder data 
 
si1 = Total # of Bits of SSI. A positive number designates No Rollover. A negative number will cause 
the controller to act as an incremental encoder, allowing the encoder to count past the max value of the 
encoder. (Note: when the controller is powered down, the rollover values are lost) 
 
si2 = # of Single Turn Bits 
 
si3 = # of Status Bits (ie: Error Bits) 
Positive # designates status bits as trailing the SSI data 
Negative # designates status bits as leading the SSI data 
 
p is an integer in the range of 4-26 and indicates the clock frequency given the following formula 
 
SSI Clock Freq = CLK/ 2*(p+1)

CLK = 20Mhz

q = 1 For Binary encoding, 2 for Gray Code 
SIn=? Returns the configuration parameters (where n is the axis) 



See Application Note 2438 for more information, and a Clock frequency table.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value SIn=0
SSI Hardware Upgrade Required

Related Commands
TP - Tell Position 
TD - Tell Dual Encoder 
SS - Configure the special Galil BiSS feature 

#AUTOERR - EEPROM checksum error and Serial Encoder timeout error Automatic Subroutine

DF - Dual Feedback (DV feedback swap)

Examples

SIA=1,25,25,0<10>1;' Encoder on axis A replaces main encoder (TP), 25 
bits total, all single turn, no status

SIA=0;' Disable SSI on axis A



SL
Syntax: Implicit Only 

& Trippoint

Operands: none

Burn: not burnable

Single Step
Hardware: All

Full Description
The SL command is for debugging purposes. Single Step through the program after execution has paused at 
a breakpoint (BK). Optional argument allows user to specify the number of lines to execute before pausing 
again. The BK command resumes normal program execution.

Arguments

SL n
where 
n is an integer representing the number of lines to execute before pausing again

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value 1

Default Format

Related Commands
BK - Breakpoint 
TR - Trace

Examples:

BK 3    Pause at line 3 (the 4th line) in thread 0
BK 5    Continue to line 5
SL      Execute the next line
SL 3    Execute the next 3 lines



BK      Resume normal execution



SM
Syntax: Implicit Only

Operands: _SM0

Burn: burnable with BN

Subnet Mask
Hardware: DMC40x0 DMC41x3 RIO 

DMC300x0

Full Description
The SM command assigns a subnet mask to the controller. All packets sent to the controller whose source 
IP address is not on the subnet will be ignored by the controller. For example, for SM 255, 255, 0, 0 and IA 10, 
0, 51, 1, only packets from IP addresses of the form 10.0.xxx.xxx will be accepted.

Arguments

SM sm0, sm1, sm2, sm3 or SM n
where  
sm0, sm1, sm2, sm3 are 1 byte numbers (0 to 255) separated by commas and represent the individual fields of 
the subnet mask. 
n is the subnet mask for the controller, which is specified as an integer representing the signed 32 bit 
number (two's complement). 
SM? will return the subnet mask of the controller

Operand Usage
_SM0     contains the subnet mask representing a 32 bit signed number (Two's complement)

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage

Default Value SM 0, 0, 0, 0

Default Format N/A

Related Commands
IH - Internet Handle  
IA - IP address

Examples:

SM 255, 255, 255, 255   Ignore all incoming Ethernet packets



SM 0, 0, 0, 0   Process all incoming Ethernet packets



SP
Syntax: Explicit or Implicit

Operands: _SPn

Burn: burnable with BN

Speed
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The SP command sets the slew speed of any or all axes for independent moves. 
 
Note: Negative values will be interpreted as the absolute value.

Arguments

SP n,n,n,n,n,n,n,n or SPA=n
where 
     n is an unsigned even number in the range 0 to 22,000,000 for servo motors. The units are encoder counts 
per second.  
OR 
     n is an unsigned number in the range 0 to 6,000,000 for stepper motors  
n = ?      Returns the speed for the specified axis.

When ordered with the ICM-42100: 
     n is an unsigned even number in the range of 0 to 50,000,000. The units are interpolated encoder counts 
per second.

Operand Usage
_SPn contains the speed for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 25000

Related Commands
AC - Acceleration 
DC - Deceleration 
PA - Position Absolute 
PR - Position Relative 
BG - Begin



Examples:

:PR 2000,3000,4000,5000          Specify a,b,c,d parameter 
:SP 5000,6000,7000,8000          Specify a,b,c,d speeds 
:BG                              Begin motion of all axes
:AM C                            After C motion is complete
:

Note:  For vector moves, use the vector speed command (VS) to change 
the speed.
       SP is not a "mode" of motion like JOG (JG).
Note:  2 is the minimum non-zero speed.



SS
Syntax: Explicit Only

Operands: _SSn

Burn: burnable with BN

Configure the special Galil BiSS feature
Hardware: DMC40x0 DMC41x3 DMC300x0

Full Description
BiSS is an open source digital interface for sensors and actuators. BiSS is hardware compatible to the 
industrial standard SSI (Serial Synchronous Interface). It allows serial transmission of absolute position data 
from BiSS encoders based on a master clock signal from the controller.  
 
Communication between the controller and encoder is based on two signal lines, clock (MA) and data 
(SLO), which are differential for increased noise immunity and transmission length.  
 
The standard Galil BiSS implementation is C-mode (unidirectional). Contact Galil for other modes.

There are two items required when connecting a BiSS encoder to a DMC-40x0: special BiSS firmware and 
a hardware upgrade on the controller's internal ICM board. When ordering a new controller with the -BISS 
option, both requirements will be loaded at the factory.

Clocking in BiSS data has a timing overhead which may be non-negligible. In the event that clocking in data 
may have a negative effect on servo performance (e.g. using multiple encoders with a lowered TM sample rate) 
the controller will respond with an error mode. See #AUTOERR for more information. This error mode is 
very rare, and is expected to occur only in development.

Arguments

SSn = ss0, ss1, ss2, ss3 < p
where 
 
n = The axis designator (XYZ or W or ABCDEFG or H). Each axis must be set individually. 
 
ss0 = 0 is for NO BiSS, 1 is for BiSS to replace MAIN encoder data (TP). 2 is for BiSS to replace AUX 
encoder data (TD). 
 
ss1 = number of single-turn bits. A positive number designates true, absolute, single-turn decoding. A 
negative number will cause the controller to internally simulate a multi-turn encoder by counting past the 
single-turn max/min. This is typically used for a rotary, single-turn encoder to prevent an instantaneous change 
in position error when the single-turn bits roll over. When the controller loses power, the internal multi-turn state 
is lost. 
 
ss2 = number of bits before E (error bit). This includes multi-turn bits + single-turn bits + zero padding bits. 
See Table 1. 
 
ss3 = number of zero padding bits after single turn data and before error bit. See Table 1. 
 
p = clock frequency argument. See Table 2. 
 
SSn=? Returns the configuration parameters

Table 1. SS Example for Hengstler 12 bit MT 10 bit ST



Bit sequence: T-2 T-1 (Delay) T0 T1... T12 T13... 
T22 T23... T26 T27 T28 T29... 

T34 T35

Data (Data/
SLO line): 1 0 1 M11... 

M0 S9... S0 0 E W C5... C0 MCD

Data 
Description: Idle Encoder 

acquiring
Start 
Bit

Multi-
turn data

Single-
turn data

Zero 
padding Error Bit Warning 

Bit CRC
Multi-
Cycle 
Data

SS command 
details: - - - - ss1=10 ss3=4

ss2=26, E 
bit read in 
_SSn

W read in 
_SSn

CRC 
valid bit 
read in 
_SSn

Ignored 
by default

'BiSS setup command for the Hengstler 12 bit MT 10 bit ST
'Data will be available in TP and for servo feedback
SSA=1,10,26,4<13

BiSS clock (MA) frequency is set with the p argument and has the following form: 
MA freq= 20 MHz / (2 * (p+1)) 
20 MHz frequency is hardware dependent with a range of 18Mhz to 26Mhz. Contact Galil if tolerances must 
be tighter for a particular application (this is rare).

Table 2. Popular Master Clock 
Frequencies (MA)

p argument Clock Frequency (kHz)

4 2000

8 1111

10 909

12 769

13 714

24 400

26 370

Operands
_SSn Returns 4 bits of axis status data where n is the axis ABCDEFG or H. #SERERR is an automatic sub 
which will run in the event of an encoder problem. See SY for setting up the active high/low status of bits 2 and 3.

_SSN Bit Map

Bit Position Bit Meaning Description

0 No timeout = 0, timeout occurred = 1 The BiSS decoding hardware will timeout if the encoder doesn't set 
the start bit within 30uS

1 CRC valid = 0, invalid = 1 BiSS employs a Cyclic Redundancy Check to verify data after 
transmission

2 Error bit* (active state set with SY)
When SY is set correctly, this bit should be low when there is no 
active warning. Consult the encoder documentation for the Warning 
bit definition



3 Warning bit* (active state set with SY)
When SY is set correctly, this bit should be low when there is no 
active alarm/error. Consult the encoder documentation for the Alarm 
bit definition

*Note: The encoder manufacturer may name the Error and Warning bits differently. Consult the 
encoder documentation for the naming convention. 
 
Galil defines the Warning bit as the bit directly preceeding the CRC. The Error bit is defined as the bit 
directly preceeding the Warning bit. See table 1.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value SSn=0

Related Commands
TP - Tell Position 
TD - Tell Dual Encoder 
SI - Configure the special Galil SSI feature 
SY - Serial encoder BiSS active level 
#SERERR - Serial Encoder Error Automatic Subroutine 
DF - Dual Feedback (DV feedback swap) 
#AUTOERR - EEPROM checksum error and Serial Encoder timeout error Automatic Subroutine

DF - Dual Feedback (DV feedback swap)

Examples

'Configuration for 26 bit Renishaw Resolute single-turn encoder
SYA=0;'Warning and Alarm bits are active low
SSA=1,26,27,0<14
'The 27 includes the Resolute single leading zero bit

'Configuration for 36 bit Hengstler multi-turn encoder
SYA=3;'Warning and Alarm bits are active high
SSB=1,19,36,5<14
'19 bits single turn, 12 bits multi turn, 5 zero padding bits



ST
Syntax: Accepts Axis Mask

Operands: none

Burn: not burnable

Stop
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The ST command stops motion on the specified axis. Motors will come to a decelerated stop. If ST is sent from 
the host without an axis specification, program execution will stop in addition to motion.

Arguments

ST nnnnnnnnnn
where 
n is A,B,C,D,E,F,G,H,M,N,S or T or any combination to specify the axis or sequence. If the specific axis 
or sequence is specified, program execution will not stop. 
No argument will stop motion on all axes.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A

Related Commands
BG - Begin Motion 
AB - Abort Motion 
DC - Deceleration rate

Examples:

ST A    Stop A-axis motion
ST S    Stop coordinated sequence
ST ABCD Stop A,B,C,D motion



ST      Stop ABCD motion
ST SCD  Stop coordinated AB sequence, and C and D motion
Hint:  Use the after motion complete command, AM, to wait for motion to 
be stopped.



SY
Syntax: Explicit or Implicit

Operands: _SYn

Burn: burnable with BN

Serial encoder BiSS active level
Hardware: DMC40x0 DMC41x3 RIO 

DMC300x0

Full Description
This command is used to designate the active level of the Error and Warning bits when using the Galil 
BiSS upgrade. The BiSS protocol defines two bits which can be used by the encoder to signal various events. 
The encoder manufacturer dictates the high/low active state of both of these bits. Consult your 
encoder documentation for details. 

The SY mask should be set appropriately to ensure that the #SERERR automatic subroutine will run when the 
bits are active, and that the _SSn operand reports the fault state of the encoder correctly.

Example of Warning and Alarm/Error bit use

Quoted from Renishaw Data Sheet L-9709-9005-03-A

Error (1 bit)
The error bit is active low: "1" indicates that the transmitted 
position information has been 
verified by the readhead's internal safety checking algorithm and 
is correct; "0" indicates 
that the internal check has failed and the position information should 
not be trusted. 
The error bit is also set to "0" if the temperature exceeds the 
maximum specification for the 
product.

Warning (1 bit)
The warning bit is active low: "0" indicates that the encoder scale (and/
or reading window) 
should be cleaned. Note that the warning bit is not an indication of 
the trustworthiness of 
the position data. Only the error bit should be used for this purpose.

Arguments

SY m,m,m,m,m,m,m,m or SYn=m
where 
m specifies the axis Error and Warning active high/low configuration according to the following table.

SY argument

SY "m" argument Warning Bit Error Bit

0 Active Low Active Low



1 Active Low Active High

2 Active High Active Low

3 (default) Active High Active High

Operands
_SYn contains the current state of the SY setting

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 3

Related Commands
SS - Configure the special Galil BiSS feature 
#SERERR - Serial Encoder Error Automatic Subroutine

Examples

'configure SY for Renishaw Resolute encoder
SYA=0



TA
Syntax: Implicit Only

Operands: _TA0,_TA1,_TA2,_TA3

Burn: not burnable

Tell Amplifier error status
Hardware: DMC40x0 DMC41x3 

DMC21x3 DMC300x0

Full Description
The command returns the amplifier error status. The value is decimal and represents an 8 bit value. Bit 7 is 
most significant bit, 0 is least. 

Tell Amplifier Error Bit Definition

TA0 TA1 TA2 TA3

BIT #: STATUS: STATUS: STATUS: STATUS: BIT #

7 Under Voltage (E-H 
Axes) ) ** Hall Error H Axis * Peak Current H Axis 0 7

6 Over Temperature (E-H 
Axes) ** Hall Error G Axis * Peak Current G Axis 0 6

5 Over Voltage (E-H 
Axes) ) * Hall Error F Axis * Peak Current F Axis 0 5

4 Over Current (E-H 
Axes) ) *** Hall Error E Axis * Peak Current EAxis 0 4

3 Under Voltage (A-D 
Axes) ** Hall Error D Axis * Peak Current DAxis 0 3

2 Over Temperature (A-D 
Axes) * Hall Error C Axis * Peak Current CAxis 0 2

1 Over Voltage (A-D Axes) 
* Hall Error B Axis * Peak Current B Axis ELO Active (E-H 

Axes) **** 1

0 Over Current (A-D Axes) 
*** Hall Error A Axis * Peak Current A Axis ELO Active (A-D 

Axes) **** 0

* Valid for AMP-43040 (-D3040) 
** Valid for AMP-43040 (-D3040) & SDM-44140 (-D4140) 
*** Valid for AMP-43040 (-D3040) & Valid for SDM-44140 (-D4140) & Valid for SDM-44040 (-D4040) 
**** Valid for AMP-43040 (-D3040) & Valid for AMP-43140 (-D3140) & Valid for SDM-44140 (-D4140) 
& Valid for SDM-44040 (-D4040)

Hint: If your Brushed-type servo motor is disabling and TA1 shows a hall error, try using the BR command to 
set that axis as a Brushed axis, causing the controller to ignore invalid Hall states.

Arguments

TA n
returns the amplifier error status where n is 0,1,2, or 3



Operand Usage
_TAm Contains the Amplifier error status. m = 0,1,2, or 3

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage DMC-40x0 with -D30x0, -D4040, -D4140; DMC-21x3 with AMP-204x0, AMP-205x0, or 
SDM 206x0

Default Value N/A

Default Format 1.0

Related Commands
#AMPERR - Amplifier Error Automatic Subroutine 
BR - Brush Axis Configuration 
QH - Hall State 

Examples:

TA1     
:5      Hall Error for Axis A and C



TB
Syntax: Two Letter Only

Operands: _TB

Burn: not burnable

Tell Status Byte
Hardware: All

Full Description
The TB command returns status information from the controller as a decimal number. Each bit of the status 
byte denotes the following condition when the bit is set (high): 
 
BIT     STATUS 
Bit 7     Executing application program 
Bit 6     N/A 
Bit 5     Contouring 
Bit 4     Executing error or limit switch routine  
Bit 3     Input interrupt enabled  
Bit 2     Executing input interrupt routine 
Bit 1     N/A 
Bit 0     Echo on

Arguments

TB ?
returns the status byte

Operand Usage
_TB Contains the status byte

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format 3.0

Related Commands

Examples:



TB?     
:65     Data Record Active and Echo is on (26 + 20 = 64 + 1 = 65)



TC
Syntax: Implicit Only

Operands: _TC

Burn: not burnable

Tell Error Code
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO DMC18x6 
DMC18x2 DMC300x0

Full Description
The TC command returns a number between 1 and 255. This number is a code that reflects why a command 
was not accepted by the controller. This command is useful when the controller halts execution of a program 
or when the response to a command is a question mark. After TC has been read, the error code is set to zero. 
 
TC1 will return the error code, along with a human-readable description of the code.

Tell Code List

Tell Code Number Description Notes

1 Unrecognized command

2 Command only valid from program

3 Command not valid in program

4 Operand error

5 Input buffer full

6 Number out of range

7 Command not valid while running not valid for RIO

8 Command not valid while not running not valid for RIO

9 Variable error

10 Empty program line or undefined label

11 Invalid label or line number

12 Subroutine more than 16 deep

13 JG only valid when running in jog mode not valid for RIO

14 EEPROM check sum error

15 EEPROM write error

16 IP incorrect sign during position move or IP given 
during forced deceleration not valid for RIO

17 ED, BN and DL not valid while program running

18 Command not valid when contouring not valid for RIO

19 Application strand already executing

20 Begin not valid with motor off not valid for RIO

21 Begin not valid while running not valid for RIO

22 Begin not possible due to Limit Switch not valid for RIO



24 Begin not valid because no sequence defined (no 
RIO)

25 Variable not given in IN command

28 S operand not valid not valid for RIO

29 Not valid during coordinated move not valid for RIO

30 Sequenct Segment Too Short not valid for RIO

31 Total move distance in a sequence > 2 billion not valid for RIO

32 Segment buffer full not valid for RIO

33 VP or CR commands cannot be mixed with LI 
commands not valid for RIO

39 No time specified not valid for RIO

41 Contouring record range error not valid for RIO

42 Contour data being sent too slowly not valid for RIO

46 Gear axis both master and follower not valid for RIO

50 Not enough fields

51 Question mark not valid

52 Missing " or string too long

53 Error in {}

54 Question mark part of string

55 Missing [ or []

56 Array index invalid or out of range

57 Bad function or array

58 Bad command response (i.e._GNX)

59 Mismatched parentheses

60 Download error - line too long or too many lines

61 Duplicate or bad label

62 Too many labels

63 IF statement without ENDIF

65 IN command must have a comma

66 Array space full

67 Too many arrays or variables

71 IN only valid in thread #0

80 Record mode already running

81 No array or source specified

82 Undefined Array

83 Not a valid number

84 Too many elements



90 Only A B C D valid operand not valid for RIO

96 SM jumper needs to be installed for stepper motor 
operation (no Accelera, no RIO)

97 Bad Binary Command Format

98 Binary Commands not valid in application program

99 Bad binary command number

100 Not valid when running ECAM not valid for RIO

101 Improper index into ET not valid for RIO

102 No master axis defined for ECAM not valid for RIO

103 Master axis modulus greater than 256 EP value not valid for RIO

104 Not valid when axis performing ECAM not valid for RIO

105 EB1 command must be given first not valid for RIO

106 Privilege Violation not valid for Econo, Optima

110 No hall effect sensors detected not valid for RIO

111 Must be made brushless by BA command not valid for RIO

112 BZ command timeout not valid for RIO

113 No movement in BZ command not valid for RIO

114 BZ command runaway not valid for RIO

118 Controller has GL1600 not GL1800 not valid for RIO

119 Not valid for axis configured as stepper

120 Bad Ethernet transmit not valid for PCI

121 Bad Ethernet packet received not valid for PCI

122 Ethernet input buffer overrun DMC-21x3 only

123 TCP lost sync not valid for PCI

124 Ethernet handle already in use not valid for PCI

125 No ARP response from IP address not valid for PCI

126 Closed Ethernet handle not valid for PCI

127 Illegal Modbus function code not valid for PCI

128 IP address not valid not valid for PCI

130 Remote IO command error not valid for PCI

131 Serial Port Timeout not valid for PCI

132 Analog inputs not present

133 Command not valid when locked / Handle must be 
UDP not valid for PCI

134 All motors must be in MO for this command not valid for RIO

135 Motor must be in MO not valid for RIO

136 Invalid Password not valid for Econo, Optima



137 Invalid lock setting not valid for Econo, Optima

138 Passwords not identical not valid for Econo, Optima

140 serial encoder missing Valid for BiSS support

141 Incorrect ICM Configuration

143 TM timed out Valid on SER firmware (SSI and 
BiSS)

160 BX failure Valid on SINE firmware

161 Sine amp axis not initialized Valid on SINE firmware

Arguments

TC n
where 
n = 0      Returns numerical code only 
n = 1      Returns numerical code and human-readable message 
n = ?      Returns the error code

Operand Usage
_TC contains the value of the error code.

Usage
Usage Details

Usage Value

While Moving Yes (No RIO)

In a Program Yes

Not in a program Yes

Default Value N/A

Default Format 3.0

Related Commands

Examples:

:GF32   Bad command
?TC1    Tell error code
1       Unrecognized command



TD
Syntax: Accepts Axis Mask

Operands: _TDn

Burn: not burnable

Tell Dual Encoder
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TD command returns the current position of the dual (auxiliary) encoder(s). Auxiliary encoders are 
not available for stepper axes or for the axis where output compare is used. 
When operating with stepper motors, the TD command returns the number of counts that have been output by 
the controller.

Arguments

TD nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument will provide the dual encoder position for all axes

Operand Usage
_TDn contains value of dual encoder register.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format Position Format

Related Commands
DE - Dual Encoder

Examples:

:TD     Return A,B,C,D Dual encoders
 200, -10, 0, -110      
TDA     Return the A motor Dual encoder
 200    



DUAL=_TDA       Assign the variable, DUAL, the value of TDA



TE
Syntax: Accepts Axis Mask

Operands: _TEn

Burn: not burnable

Tell Error
Hardware: All

Full Description
The TE command returns the current position error of the motor(s). The range of possible error is 
2147483647. The Tell Error command is not valid for step motors since they operate open-loop.

Arguments

TE nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument will provide the position error for all axes

Operand Usage
_TEn contains the current position error value for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format Position Format

Related Commands
OE - Off On Error 
ER - Error Limit 
#POSERR - Error Subroutine 
PF - Position Formatting

Examples:

TE      Return all position errors
:5, -2, 0, 6    
TEA     Return the A motor position error



:5      
TEB     Return the B motor position error
:-2     
Error =_TEA     Sets the variable, Error, with the A-axis position error
Hint:  Under normal operating conditions with servo control, the 
position error should be small.  The position error is typically 
largest during acceleration.



TH
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Tell Ethernet Handle
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The TH command returns a list of data pertaining to the Galil's Ethernet connection. This list begins with the 
IP address and Ethernet address (physical address), followed by the status of each handle indicating 
connection type and IP address.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (no RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage Ethernet Only

Default Value -

Default Format -

Related Commands
HS - Handle Swap 
IA - IP address 
IH - Internet Handle      
WH - Which Handle

Examples:

:TH
CONTROLLER IP ADDRESS 10,51,0,87 ETHERNET ADDRESS 00-50-4C-08-01-1F
IHA TCP PORT 1050 TO IP ADDRESS 10,51,0,89 PORT 1000 
IHB TCP PORT 1061 TO IP ADDRESS 10,51,0,89 PORT 1001 
IHC TCP PORT 1012 TO IP ADDRESS 10,51,0,93 PORT 1002 
IHD TCP PORT 1023 TO IP ADDRESS 10,51,0,93 PORT 1003 



IHE TCP PORT 1034 TO IP ADDRESS 10,51,0,101 PORT 1004
IHF TCP PORT 1045 TO IP ADDRESS 10,51,0,101 PORT 1005
IHG AVAILABLE
IHH AVAILABLE



TI
Syntax: Implicit Only

Operands: _TI0,_TI1,_TI2,_TI3,_TI4,
_TI5

Burn: not burnable

Tell Inputs
Hardware: All

Full Description
The TI command returns the state of the inputs including the extended I/O configured as inputs. The value 
returned by this command is decimal and represents an 8 bit value (decimal value ranges from 0 to 255). Each 
bit represents one input where the LSB is the lowest input number and the MSB is the highest input bit.

Arguments

TIn
where 
n = 0     Return Input Status for Inputs 1 through 8  
n = 1     Return Input Status for Inputs 9 through 16 ( Applies only to controllers with more than 4 axes) 
 
n = 10     Return Input Status for Inputs 81 through 88 (auxiliary encoder inputs) 
n = 11     Return Input Status for Inputs 89 through 96 (auxiliary encoder inputs) 
 
no argument will return the Input Status for Inputs 1 through 8 
n = ? returns the Input Status for Inputs 1 through 8 

n = 2 through 5 see note 2 (These arguments only apply when using extended I/O configured as inputs) 
          where n represents the extended inputs ranging from (8*n)+1 through (8*(n+1))

Operand Usage
_TIn contains the status byte of the input block specified by 'n'. Note that the operand can be masked to return 
only specified bit information - see section on Bit-wise operations.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
@IN - Read digital input 



CO - Configure Extended I O

Examples:

:TI1             Tell input state on bank 1
:8               Bit 3 is high, others low
:TI0
:0               All inputs on bank 0 low
:Input =_TI1     Sets the variable, Input, with the TI1 value
:Input=?
:8.0000



TIME
Syntax: Operand Only

Operands: TIME

Burn: not burnable

Time Operand
Hardware: All

Full Description
The TIME operand returns the value of the internal free running, real time clock. The returned value represents 
the number of servo loop updates and is based on the TM command. The default value for the TM command 
is 1000. With this update rate, the operand TIME will increase by 1 count every update of 
approximately 1000usec. Note that a value of 1000 for the update rate (TM command) will actually set an 
update rate of 976 microseconds. Thus the value returned by the TIME operand will be off by 2.4% of the 
actual time. 
The clock is reset to 0 with a standard reset or a master reset. 
The keyword, TIME, does not require an underscore "_" as does the other operands.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO)

In a Program Yes

Command Line Yes

Controller Usage

Default Value

Default Format

Related Commands

Examples:

MG TIME Display the value of the internal clock



TK
Syntax: Explicit or Implicit

Operands: _TKn

Burn: burnable with BN

Peak Torque Limit
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TK command sets the peak torque limit on the motor command output and TL sets the continuous 
torque limit. When the average torque is below TL, the motor command signal can go up to the TK (Peak 
Torque) for a short amount of time (appx 1000 samples from 0V to TK value). If TK is set lower than TL, then 
TL is the maximum command output under all circumstances. 
 

Arguments

TK n,n,n,n,n,n,n,n

TKA=n
where 
n is an unsigned number in the range of 0 to 9.99 volts 
n=0 disables the peak torque limit 
n=? returns the value of the peak torque limit for the specified axis.

Operand Usage
_TKn contains the value of the peak torque limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 1.4

Related Commands
TL - Torque Limit

Examples:



TLA=7                   Limit A-axis to a 7 volt average torque output
TKA=9.99                Limit A-axis to a 9.99 volt peak torque output



TL
Syntax: Explicit or Implicit

Operands: _TLn

Burn: burnable with BN

Torque Limit
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TL command sets the limit on the motor command output. For example, TL of 5 limits the motor 
command output to 5 volts. Maximum output of the motor command is 9.998 volts.

Arguments

TL n,n,n,n,n,n,n,n

TLA=n
where 
n is an unsigned numbers in the range 0 to 9.998 volts with resolution of 0.0003 volts 
n = ?      Returns the value of the torque limit for the specified axis.

Operand Usage
_TLn contains the value of the torque limit for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 9.998

Default Format 1.4

Related Commands

Examples:

TL 1,5,9,7.5    Limit A-axis to 1 volt. Limit B-axis to 5 volts. Limit 
C-axis to 9 volts. Limit D-axis to 7.5 volts.
TL ?,?,?,?      Return limits
:1.0000,5.0000,9.0000, 7.5000   
TL ?    Return A-axis limit



:1.0000



TM
Syntax: Implicit Only

Operands: _TM

Burn: burnable with BN

Update Time
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TM command sets the sampling period of the control loop. A zero or negative number turns off the 
servo loop. The units of this command are microseconds.

Arguments

TM n
where 
 
Default Firmware. Using the normal firmware the minimum sample times (n) are the following: 
Accelera Controllers with 1-2 axes     62.5 usec 
Accelera Controllers with 3-4 axes     125 usec 
Accelera Controllers with 5-6 axes     156.25 usec 
Accelera Controllers with 7-8 axes     187.5 usec 
 
Fast Firmware. Using the fast firmware the minimum sample times (n) are the following:  
Accelera Controllers with 1-2 axes     31.25 usec 
Accelera Controllers with 3-4 axes     62.5 usec 
Accelera Controllers with 5-6 axes     93.75 usec 
Accelera Controllers with 7-8 axes     125 usec 
Limitations: In the Fast firmware mode the following functions are disabled:  
TD, DV, TK, NB, NZ, NF, second field of EI, Gearing, CAM, PL, Analog Feedback, Steppers, Trippoints in 
all but threads 0 and 1, Data Record and TV. 
 
 
Maximum value for n is 10000 usec. 
Resolution of n is 31.25 usec. 
 
n = ?     returns the value of the sample time. 

Operand Usage
_TM contains the value of the sample time.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes



Command Line Yes

Default Value 1000

Related Commands

Examples:

TM -1000        Turn off internal clock
TM 2000 Set sample rate to 2000 msec
TM 1000 Return to default sample rate

See http://www.galilmc.com/support/firmware-downloads.php to download fast firmware.



TN
Syntax: Implicit Only

Operands: _TN

Burn: burnable with BN

Vector Tangent
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2

Full Description
The TN m,n command describes the tangent axis to the coordinated motion path. m is the scale factor in 
counts/degree of the tangent axis. n is the absolute position of the tangent axis where the tangent axis is 
aligned with zero degrees in the coordinated motion plane. The tangent axis is specified with the 
VMnmp command where p is the tangent axis. The tangent function is useful for cutting applications where 
a cutting tool must remain tangent to the part.

Arguments

TN m,n
where 
m is the scale factor in counts/degree, in the range between -127 and 127 with a fractional resolution of 0.004 
     m = ? Returns the first position value for the tangent axis (same as _TN). 
     When operating with stepper motors, m is the scale factor in steps / degree 
 
n is the absolute position at which the tangent angle is zero, in the range between -8388608 to 8388607.

Operands
_TNn (where n = S or T) contains the first position value for the tangent axis in the specified vector plane. 
This allows the user to correctly position the tangent axis before the motion begins. Note, _TNn will change 
based upon the vector path described in the VM declaration. See the example below.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value N/A

Related Commands
VM - Vector mode 
CR - Circle Command 
VP - Vector Position

Examples



Use a 2D table with a tangent cutting blade to cut a half circle. Ensure that the blade is oriented before turning 
on the saw. The saw is activated with output 1.

 

#EXAMPLE
VM XYZ;'           Z axis is tangent
VSS=500;'          Set vector speed
m=1000/360;'       Z axis encoder is 1000 counts per full revolution
n=0;'              When TPZ=0, blade is oriented to cut along X axis
TN m,n;'           Set these tangent characteristics
CR 1000,0,180;'    Profile a circle with radius 1000 counts, 
'                   starting at 0 degrees
'                   and spanning 180 degrees
VE;'               End the vector path
MG_TN;'            Print the calculated initial tangent entry point (250)
PAZ=_TN;'          Profile a move to orient the Z axis to begin
BGZ;'              Move the blade into place
AMZ;'              Wait until the blade motion is done
SB1;'              Turn on the saw
WT1000;'           Wait for saw to spin up
BGS;'              Begin vector motion, saw will stay tangent
AMS;'              Wait for the cut to complete
CB0;'              Turn off the saw
MG "ALL DONE";'    Print a message
EN



TP
Syntax: Accepts Axis Mask

Operands: _TPn

Burn: not burnable

Tell Position
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TP command returns the current position of the motor(s).

Arguments

TP nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes

Operand Usage
_TPx contains the current position value for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format Position Format

Related Commands
PF - Position Formatting

Examples:

Assume the A-axis is at the position 200 (decimal), the B-axis is at 
the position -10 (decimal), the C-axis is at position 0, and the D-axis 
is at -110 (decimal).  The returned parameter units are in quadrature counts.
TP      Return A,B,C,D positions
:200,-10,0,-110 
TPA     Return the A motor position
:200    
TPB     Return the B motor position



:-10    
PF-6.0  Change to hex format
TP      Return A,B,C,D in hex
:$0000C8,$FFFFF6,$000000,$FFFF93        
Position =_TPA  Assign the variable, Position, the value of TPA



TR
Syntax: Implicit Only

Operands: none

Burn: burnable with BN

Trace
Hardware: All

Full Description
The TR command causes each instruction in a program to be sent out the communications port prior to 
execution. TR1 enables this function and TR0 disables it. The trace command is useful in debugging programs.

Arguments

TR n, m
where 
n = 0      Disables the trace function 
n = 1      Enables the trace function 
 
m is an integer between 0 and 255 and designates which threads to trace. A bit is set per thread. Thread 
0=1, Thread 1=2, Thread 2=4 ... Thread 7 =128. The default is 255 (all threads)  
 
The least significant bit represents thread 0 and the most significant bit represents thread 7. The decimal value 
can be calculated by the following formula.  
n = n0 + 2*n1 + 4*n2 + 8*n3 +16* n4 +32* n5 +64* n6 +128* n7  
where nx represents the thread. To turn tracing on for a thread, substitute a one into that nx in the formula. If 
the nx value is a zero, then tracing will be off for that thread.  
For example, if threads 3 and 4 are to be traced, TR24 is issued. 
 
Omiiting m traces all threads.

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Related Commands
CF - Configure port for unsolicited messages



Examples:

:'Turn on trace during a program execution
:LS
0 MGTIME
1 WT1000
2 JP0
3 
:XQ
:
18003461.0000 
18004461.0000 
18005461.0000 

:TR1
:
2 JP0 
0 MGTIME 
18006461.0000 
1 WT1000 
2 JP0 
0 MGTIME 
18007461.0000 
1 WT1000 

:TR0
:
18008461.0000 
18009461.0000 

:ST
:



TS
Syntax: Accepts Axis Mask

Operands: _TSn

Burn: not burnable

Tell Switches
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
TS returns status information of the Home switch, Forward Limit switch Reverse Limit switch, error 
conditions, motion condition and motor state. The value returned by this command is decimal and represents an 
8 bit value (decimal value ranges from 0 to 255). Each bit represents the following status information: 
Bit     Status 
Bit 7     Axis in motion if high 
Bit 6     Axis error exceeds error limit if high 
Bit 5     A motor off if high 
Bit 4     Undefined 
Bit 3     Forward Limit Switch Status inactive if high 
Bit 2     Reverse Limit Switch Status inactive if high 
Bit 1     Home A Switch Status 
Bit 0     Latched 
Note: For active high or active low configuration (CN command), the limit switch bits are '1' when the switch 
is inactive and '0' when active.

Arguments

TS nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument will provide the status for all axes

Operand Usage
_TSn contains the current status of the switches.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format 3.0



Related Commands

Examples:

V1=_TSB Assigns value of TSB to the variable V1
V1=     Interrogate value of variable V1
:15     Decimal value corresponding to bit pattern 00001111
Y axis not in motion (bit 7 - has a value of 0)
Y axis error limit not exceeded (bit 6 has a value of 0)
Y axis motor is on (bit 5 has a value of 0)
Y axis forward limit is inactive (bit 3 has a value of 1)
Y axis reverse limit is inactive (bit 2 has a value of 1)
Y axis home switch is high (bit 1 has a value of 1)
Y axis latch is not armed (bit 0 has a value of 1)



TT
Syntax: Accepts Axis Mask

Operands: _TTn

Burn: not burnable

Tell Torque
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TT command reports the value of the analog output signal, which is a number between -9.998 and 9.998 volts.

Arguments

TT nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument will provide the torque for all axes

Operand Usage
_TTn contains the value of the torque for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format 1.4

Related Commands
TL - Torque Limit

Examples:

V1=_TTA Assigns value of TTA to variable, V1
TTA     Report torque on A
:-0.2843        Torque is -.2843 volts



TV
Syntax: Accepts Axis Mask

Operands: _TVn

Burn: not burnable

Tell Velocity
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The TV command returns the actual velocity of the axes in units of encoder count/s. The value returned 
includes the sign. 
 
The TV command is computed using a special averaging filter (over approximately 0.25 sec for 
TM1000). Therefore, TV will return average velocity, not instantaneous velocity.

Arguments

TV nnnnnnnnnn
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes 
No argument will provide the velocity for all axes.

Operand Usage
_TVn contains the value of the velocity for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format 8.0

Related Commands
SP - Speed 
AC - Acceleration 
DC - Deceleration 
TM - Update Time

Examples:



:vela=_TVA       Assigns value of A-axis velocity to the variable VELA
:TVA             Returns the A-axis velocity
 0003420



TW
Syntax: Explicit or Implicit

Operands: _TWn

Burn: burnable with BN

Timeout for IN Position (MC)
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description

Arguments

TW n,n,n,n,n,n,n,n

TWA=n
n specifies the timeout in msec. n ranges from 0 to 32767 msec  
n = -1      Disables the timeout. 
n = ?      Returns the timeout in msec for the MC command for the specified axis.

Operand Usage
_TWn contains the timeout for the MC command for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 32766

Default Format 5.0

Related Commands
MC - Motion Complete trippoint 
#MCTIME - Motion Complete Timeout Automatic Subroutine

Examples:



TZ
Syntax: Two Letter Only

Operands: none

Burn: not burnable

Tell I O Configuration
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO

Full Description
The TZ command is used to request the I/O status. This is returned to the user as a text string.

Arguments
N/A

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Related Commands
TI - Tell Inputs 
SB/CB - Set/Clear output bits 
OP - Output port 
CO - Configure I/O

Examples:

:TZ
BLOCK 0 (8-1) dedicated as input - value 255 (1111_1111)
BLOCK 0 (8-1) dedicated as output- value 0 (0000_0000)
BLOCK 2 (24-17) configured as input - value 255 (1111_1111)
BLOCK 3 (32-25) configured as input - value 255 (1111_1111)
BLOCK 4 (40-33) configured as input - value 255 (1111_1111)
BLOCK 5 (48-41) configured as input - value 255 (1111_1111)
BLOCK 6 (56-49) configured as input - value 255 (1111_1111)
BLOCK 10 (88-81) dedicated as input - value 255 (1111_1111)



UI
Syntax: Implicit Only

Operands: none

Burn: not burnable

User Interrupt
Hardware:

DMC40x0 DMC41x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
UI pushes a user-defined status byte into the EI queue. UI can generate 16 different status bytes, $F0 to $FF 
(240-255), corresponding to UI0 to UI15. When the UI command (e.g. UI5) is executed, the status byte value (e.
g. $F5 or 245) is queued up for transmission to the host, along with any other interrupts.  
The UDP interrupt packet dispatch may be delayed. If immediate packet dispatch is required, use the 
message command (MG) to send a unique message to the host software. 
EI,,h must be set to a valid UDP port (set by the host, not the DMC code, is recommended) before any 
interrupt packet will be dispatched.

Arguments

UI n
where 
     n is an integer between 0 and 15 corresponding to status bytes $F0 to $FF (240-255).  
STATUS BYTE     CONDITION 
$F0 (240)     UI or UI0 was executed 
$F1 (241)     UI1 was executed 
$F2 (242)     UI2 was executed 
$F3 (243)     UI3 was executed 
$F4 (244)     UI4 was executed 
$F5 (245)     UI5 was executed 
$F6 (246)     UI6 was executed 
$F7 (247)     UI7 was executed 
$F8 (248)     UI8 was executed 
$F9 (249)     UI9 was executed 
$FA (250)     UI10 was executed 
$FB(251)     UI11 was executed 
$FC (252)     UI12 was executed 
$FD (253)     UI13 was executed 
$FE (254)     UI14 was executed 
$FF (255)     UI15 was executed

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value



While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 3.0

Related Commands
EI - Event interrupts 
MG - Message

Examples:

JG 5000 Jog at 5000 counts/s
BGA     Begin motion
ASA     Wait for at speed
UI 1    Cause an interrupt with status byte $F1 (241)



UL
Syntax: Two Letter Only

Operands: _UL

Burn: not burnable

Upload
Hardware: All

Full Description
The UL command transfers data from the controller to a host computer. Programs are sent without line 
numbers. The Uploaded program will be followed by a <control>Z as an end of text marker.

Arguments
None

Operand Usage
When used as an operand, _UL gives the number of available variables.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A

Related Commands

Examples:

UL;     Begin upload
#A      Line 0
NO This is an Example   Line 1
NO Program      Line 2
EN      Line 3
<cntrl>Z        Terminator



VA
Syntax: Implicit Only

Operands: _VAn

Burn: burnable with BN

Vector Acceleration
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The VA command sets the acceleration rate of the vector in a coordinated motion sequence.

Arguments

VA s,t
where 
s and t are unsigned integers in the range 1024 to 1073740800. s represents the vector acceleration for the 
S coordinate system and t represents the vector acceleration for the T coordinate system. The parameter input 
will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared. 
s = ?      Returns the value of the vector acceleration for the S coordinate plane. 
t = ?      Returns the value of the vector acceleration for the T coordinate plane.

Operand Usage
_VAx contains the value of the vector acceleration for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256000 (10.0 for 18x6 & 40x0)

Default Format Position Format

Related Commands
VS - Vector Speed 
VP - Vector Position 
VE - End Vector 
CR - Circle 
VM - Vector Mode 
BG - Begin Sequence 
VD - Vector Deceleration 
IT - Smoothing constant - S-curve



Examples:

VA 1024 Set vector acceleration to 1024 counts/sec2
VA ?    Return vector acceleration
:1024   
VA 20000        Set vector acceleration
VA ?    
:19456  Return vector acceleration
ACCEL=_VA       Assign variable, ACCEL, the value of VA



VD
Syntax: Implicit Only

Operands: _VDn

Burn: burnable with BN

Vector Deceleration
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The VD command sets the deceleration rate of the vector in a coordinated motion sequence.

Arguments

VD s,t
where 
s and t are unsigned integers in the range 1024 to 1073740800. s represents the vector deceleration for the 
S coordinate system and t represents the vector acceleration for the T coordinate system. The parameter input 
will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared. 
s = ?      Returns the value of the vector deceleration for the S coordinate plane. 
t = ?      Returns the value of the vector deceleration for the T coordinate plane.

Operand Usage
_VDn contains the value of the vector deceleration for the specified coordinate system, S or T.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 256000

Default Format Position Format (10.0 for 18x6 & 40x0)

Related Commands
VA - Vector Acceleration 
VS - Vector Speed 
VP - Vector Position 
CR - Circle 
VE - Vector End 
VM - Vector Mode 
BG - Begin Sequence 
IT - Smoothing constant - S-curve



Examples:

#VECTOR ;'Vector Program Label
VMAB    ;'Specify plane of motion
VA1000000       ;'Vector Acceleration
VD 5000000      ;'Vector Deceleration
VS 2000 ;'Vector Speed
VP 10000, 20000 ;'Vector Position
VE      ;'End Vector
BGS     ;'Begin Sequence
AMS     ;'Wait for Vector sequence to complete
EN      ;'End Program



VE
Syntax: Implicit Only

Operands: _VEn

Burn: not burnable

Vector Sequence End
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
VE is required to specify the end segment of a coordinated move sequence. VE would follow the final VP or 
CR command in a sequence. VE is equivalent to the LE command. 
The VE command will apply to the selected coordinate system, S or T. To select the coordinate system, use 
the command CAS or CAT.

Arguments

VE n
No argument specifies the end of a vector sequence 
n = ?      Returns the length of the vector in counts.

Operand Usage
_VEn contains the length of the vector in counts for the specified coordinate system, S or T.

Usage
Usage and Defualt Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value N/A

Default Format N/A 

Related Commands
VM - Vector Mode 
VS - Vector Speed 
VA - Vector Acceleration 
VD - Vector Deceleration 
CR - Circle 
VP - Vector Position 
BG - Begin Sequence 
CS - Clear Sequence



Examples:

#A      ;'Program Label
VM AB   ;'Vector move in AB
VP 1000,2000    ;'Linear segment
CR 0,90,180     ;'Arc segment
VP 0,0  ;'Linear segment
VE      ;'End sequence
BGS     ;'Begin motion
AMS     ;'Wait for VE to execute in buffer
EN      ;'End program



VF
Syntax: Implicit Only

Operands: _VF

Burn: burnable with BN

Variable Format
Hardware: All

Full Description
The VF command formats the number of digits to be displayed when interrogating the controller or RIO board.  
If a number exceeds the format, the number will be displayed as the maximum possible positive or 
negative number (i.e. 999.99, -999, $8000 or $7FF).

Arguments

VF m.n
where 
m and n are unsigned numbers in the range 0<m<10 and 0<n<4.  
m represents the number of digits before the decimal point. A negative m specifies hexadecimal format. When 
in hexadecimal, the string will be preceded by a $ and Hex numbers are displayed as 2's complement with the 
first bit used to signify the sign.  
n represents the number of digits after the decimal point.  
m = ?      Returns the value of the format for variables and arrays.

Operand Usage
_VF contains the value of the format for variables and arrays.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 10.4

Default Format 2.1

Related Commands
PF - Position Format

Examples:

VF 5.3  Sets 5 digits of integers and 3 digits after the decimal point



VF 8.0  Sets 8 digits of integers and no fractions
VF -4.0 Specify hexadecimal format with 4 bytes to the left of the decimal



VM
Syntax: Accepts Axis Mask

Operands: _VMS,_VMT

Burn: not burnable

Vector Mode
Hardware: DMC40x0 DMC41x3 DMC21x3 

DMC18x6 DMC18x2 DMC300x0

Full Description
The VM command specifies the coordinated motion mode and the plane of motion. This mode may be 
specified for motion on any set of two axes. 
The motion is specified by the instructions VP and CR, which specify linear and circular segments. Up to 
511 segments may be given before the Begin Sequence (BGS or BGT) command. Additional segments may 
be given during the motion when the buffer frees additional spaces for new segments. It is the responsibility of 
the user to keep enough motion 
segments in the buffer to ensure continuous motion. 
 
The Vector End (VE) command must be given after the last segment. This allows the controller to 
properly decelerate. 
 
The VM command will apply to the selected coordinate system, S or T. To select the coordinate 
system, use the command CAS or CAT.

Arguments

VM nmp
where 
n and m specify plane of vector motion and can be any two axes. Vector Motion can be specified for one axis 
by specifying 2nd parameter, m, as N. Specifying one axis is useful for obtaining sinusoidal motion on 1 axis. 
p is the tangent axis and can be specified as any axis except the imaginary M and N axes. A value of N for 
the parameter, p, turns off tangent function.

Operand Usage
_VMn contains instantaneous commanded vector velocity for the specified coordinate system, S or T.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Default Value AB

Related Commands
CR - Circle 
VP - Vector Mode 



VE - Vector End 
BG - Begin Sequence

Examples:

#A      ;'Program Label
VM AB   ;'Specify motion plane
VP 1000,2000    ;'Specify vector position 1000,2000
VP 2000,4000    ;'Specify vector position 2000,4000
CR 1000,0,360   ;'Specify arc
VE      ;'Vector end
BGS     ;'Begin motion sequence
AMS     ;'Wait for vector motion to complete
EN      ;'End Program
Hint:  The first vector in a coordinated motion sequence defines the 
origin for that sequence.  All other vectors in the sequence are defined 
by their endpoints with respect to the start of the move sequence.



VP
Syntax: Implicit Only

Operands: _VPn

Burn: not burnable

Vector Position
Hardware:

DMC40x0 DMC41x3 DMC21x3 
DMC18x6 DMC18x2 
DMC300x0

Full Description
The VP command defines the target coordinates of a straight line segment in a 2 axis motion sequence which 
have been selected by the VM command. The units are in quadrature counts, and are a function of the 
elliptical scale factor set using the command ES. For three or more axes linear interpolation, use the LI 
command. The VP command will apply to the selected coordinate system, S or T. To select the coordinate 
system, use the command CAS or CAT.

Arguments

VP n,m < o > p
where 
n and m are signed integers in the range -2147483648 to 2147483647 The length of each segment must be 
limited to 8388607. The values for n and m will specify a coordinate system from the beginning of the sequence. 
 
o specifies a vector speed to be taken into effect at the execution of the vector segment. o is an unsigned 
even integer between 2 and 22,000,000 for servo motor operation and between 2 and 6,000,000 for stepper 
motors (o is in units of counts per sample). 
 
p specifies a vector speed to be achieved at the end of the vector segment. p is an unsigned even integer between 
2 and 22,000,000 (p is in units of counts per sample).

Operand Usage
_VPa where a=ABCDEFGH for the axis and contains the absolute coordinate of the axes at the last 
intersection along the sequence. For example, during the first motion segment, this instruction returns 
the coordinate at the start of the sequence. The use as an operand is valid in the linear mode, LM, and in the 
Vector mode, VM. 
example: _VPA for the the A axis

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value -

Default Format -



Related Commands
VM - Vector Mode 
VE - Vector End 
BG - Begin Sequence 
IT - Vector smoothing

Examples

#A;'           Program Label
VM AB;'        Specify motion plane
VP 1000,2000 ;'Specify vector position 1000,2000
VP 2000,4000;' Specify vector position 2000,4000
CR 1000,0,360;'Specify arc
VE;'           Vector end
BGS;'          Begin motion sequence
AMS;'          Wait for vector motion to complete
EN;'           End Program

REM VP n,m <o> p 
REM 'o' and 'p' are in counts/sample rather than counts/second as the 
VS command.
REM this means that when TM <> 1000, commanded speed for VS will 
be different than
REM values for 'o' and 'p'
REM To get counts/second for 'o' and 'p', divide them by a ratio of 1000/_TM
REM
REM #vs and #vsop result in the same profile
#vs
TM 250
VMXY
VS 100000
VA 2560000
VD 2560000
VP 20000,20000
VE
BGS
AMS
EN
'
#vsop
TM 250
VMXY
n=1000/_TM
'VS 100000
VA 2560000
VD 2560000
VP 20000,20000<(100000/n)
VE
BGS
AMS
EN



Hint: The first vector in a coordinated motion sequence defines the origin for that sequence. All other vectors 
in the sequence are defined by their endpoints with respect to the start of the move sequence.



VR
Syntax: Implicit Only

Operands: _VRn

Burn: not burnable

Vector Speed Ratio
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The VR sets a ratio to be used as a multiplier of the current vector speed. The vector speed can be set by 
the command VS or the operators < and > used with CR, VP and LI commands. VR takes effect immediately 
and will ratio all the following vector speed commands. VR doesn't ratio acceleration or deceleration, but 
the change in speed is accomplished by accelerating or decelerating at the rate specified by VA and VD.

Arguments

VR s,t
where 
s and t are between 0 and 10 with a resolution of .0001. The value specified by s is the vector ratio to apply to 
the S coordinate system and t is the value to apply to the T coordinate system. 
s = ?      Returns the value of the vector speed ratio for the S coordinate plane. 
t = ?      Returns the value of the vector speed ratio for the T coordinate plane.

Operand Usage
_VRn contains the vector speed ratio of the specified coordinate system, S or T.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 1

Default Format
While Moving     Yes     Default Value     1 
In a Program     Yes     Default Format     2.4 
Command Line     Yes           
Controller Usage     ALL CONTROLLERS

Related Commands
VS - Vector Speed



Examples:

#A      ;'Vector Program 
 VMAB   ;'Vector Mode
 VP 1000,2000   ;'Vector Position  
 CR 1000,0,360          ;'Specify Arc
 VE     ;'End Sequence 
 VS 2000        ;'Vector Speed  
 BGS    ;'Begin Sequence
 AMS    ;'After Motion
JP#A    ;'Repeat Move



VS
Syntax: Implicit Only

Operands: _VSn

Burn: burnable with BN

Vector Speed
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The VS command specifies the speed of the vector in a coordinated motion sequence in either the LM or 
VM modes. VS may be changed during motion. 
Vector Speed can be calculated by taking the square root of the sum of the squared values of speed for each 
axis specified for vector or linear interpolated motion.

Arguments

VS s,t
where  
s and t are unsigned even numbers in the range 2 to 22,000,000 for servo motors and 2 to 6,000,000 for 
stepper motors. s is the speed to apply to the S coordinate system and t is the speed to apply to the T 
coordinate system. The units are counts per second. 
s = ?      Returns the value of the vector speed for the S coordinate plane. 
t = ?      Returns the value of the vector speed for the T coordinate plane.

Operand Usage
_VSn contains the vector speed of the specified coordinate system, S or T

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 25000

Related Commands
VA - Vector Acceleration 
VP - Vector Position 
CR - Circle 
LM - Linear Interpolation 
VM - Vector Mode 
BG - Begin Sequence 
VE - Vector End



Examples:



VV
Syntax: Explicit Only

Operands: _VVn

Burn: not burnable

Vector Speed Variable
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
The VV command sets the speed of the vector variable in a coordinated motion sequence in either the LM or 
VM modes. VV may be changed during motion. 
 
The VV command is used to set the "<" vector speed variable argument for segments that exist in the 
vector buffer. By defining a vector segment begin speed as a negative 1 (i.e. "<-1"), the controller will utilize 
the current vector variable speed as the segment is profiled from the buffer. 
 
This is useful when vector segments exist in the buffer that use the "<" and ">" speed indicators for 
specific segment and corner speed control and the host needs to be able to dynamically change the nominal 
return operating speed. 
The vector variable is supported for VP, CR and LI segments.

Arguments

VVS=n or VVT=n
where, 
n specifies the speed as an unsigned even number in the range 2 to 22,000,000 for servo motors and 2 to 
6,000,000 for stepper motors. VVS is the speed to apply to the S coordinate system and VVT is the speed to 
apply to the T coordinate system. The units are in counts per second. 
VVS=? Returns the value of the vector speed variable for the S coordinate plane. 
VVT=? Returns the value of the vector speed variable for the T coordinate plane.

Operand Usage
_VVn contains the vector speed variable of the specified coordinate system (n= S or T)

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Value 0

Related Commands
VA - Vector Acceleration 
VD - Vector Deceleration 



VP - Vector Position Segment 
CR - Circular Interpolation Segment 
LI - Linear Interpolation Segment 
VM - Vector Mode 
LM - Linear Interpolation Mode

Examples:

:VVS= 20000             Define vector speed variable to 20000 for the 
S coordinate system
:VP1000,2000<-1>100     Define vector speed variable for specific segment.
:VVS=?
:20000
:



WH
Syntax: Two Letter Only

Operands: _WH

Burn: not burnable

Which Handle
Hardware: DMC40x0 DMC41x3 

DMC21x3 RIO DMC300x0

Full Description
The WH command is used to identify the handle from which the command was received. The command 
returns IHA through IHH to indicate on which handle the command was executed.

The command returns RS232 if using serial communication.

Arguments
None

Operand Usage
_WH contains the numeric representation of the handle from which the command was received.

Handles A through H are indicated by the value 0-7, while a-1 indicates the serial port.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program No

Command Line Yes

Related Commands
HS - Handle Swap 
IA - IP address 
IH - Internet Handle 
TH -Tell Handles

Examples:

:WH     Request incoming handle identification
IHC     Command received from handle C
:



WT
Syntax: Implicit Only 

& Trippoint

Operands: none

Burn: not burnable

Wait
Hardware: All

Full Description
The WT command is a trippoint used to time events. When this command is executed, the controller will wait 
for the number of miliseconds specified before executing the next command. 
 
If m=1 for WTn,m then the controller will wait for the number of samples specified before executing the 
next command.

Arguments

WT n,m
where  
n is an unsigned integer in the range 0 to 2000000000 (2 Billion)

where 
n is a unsigned, even integer in the range 0 to 2 Billion 
m = 0 or ommitted specifies n to be in ms 
m = 1 specifies n to be in samples

Operand Usage
N/A

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In A Program Yes

Command Line No

Controller Usage ALL

Default Value -

Default Format -

Related Commands
AT - At Time 
TIME - Time Operand 



TM - Update Time 

Examples:

REM 10 seconds after a move is complete, turn on a relay for 2 seconds
#A;         'Program A
PR 50000;   'Position relative move
BGA;        'Begin the move
AMA;        'After the move is over
WT 10000;   'Wait 10 seconds
SB 1;       'Turn on relay (set output 1)
WT 2000;    'Wait 2 seconds
CB1;        'Turn off relay (clear output 1)
EN;         'End Program



XQ
Syntax: Implicit Only

Operands: _XQ0,_XQ1,_XQ2,_XQ3,
_XQ4,_XQ5,_XQ6,_XQ7

Burn: not burnable

Execute Program
Hardware: All

Full Description
The XQ command begins execution of a program residing in the program memory of the controller. Execution 
will start at the label or line number specified. Up to 8 programs may be executed with the controller.

Arguments

XQ #A,n

XQm,n
where  
     A is a program name of up to seven characters.  
     m is a line number 
n is an integer representing the thread number for multitasking 
n is an integer in the range of 0 to 7. 
NOTE: The arguments for the command, XQ, are optional. If no arguments are given, the first program in 
memory will be executed as thread 0.

Operand Usage
_XQn contains the current line number of execution for thread n, and -1 if thread n is not running.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format N/A

Related Commands
HX - Halt execution

Examples:



XQ #APPLE,0     Start execution at label APPLE, thread zero
XQ #DATA,2      Start execution at label DATA, thread two
XQ 0    Start execution at line 0
Hint:  For DOS users, don't forget to quit the edit mode first 
before executing a program!



YA
Syntax: Explicit or Implicit

Operands: _YAn

Burn: burnable with BN

Step Drive Resolution
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The YA command specifies the resolution of the step drive, in step counts per full motor step, for Stepper 
Position Maintenance mode. 

Arguments

YA m,m,m,m,m,m,m,m

YAn = m
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
m is 0 to 9999 which represents the drive resolution in step counts per full motor step. 
 
For the SDM-44040, m is 1, 2, 4, or 16 for full, half, 1/4 and 1/16 step drive resolution, respectively. YA 
actually sets the configurable hardware step drive resolution for the SDM-44040. 
 
For the SDM-44140, set m to 64 when using stepper position maintenance mode. The 44140 step drive is fixed 
at 64 step counts per full motor step and is not modifiable with the YA command. 

Operand Usage
_YAn contains the resolution for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 2

Default Format 1.4

Related Commands
QS - Error Magnitude 
YS - Stepper Position Maintenance Mode Enable, Status 



YB - Step Motor Resolution 
YC - Encoder Resolution 
YR - Error Correction

Examples:

1.  Set the step drive resolution for the SDM-44140 Microstepping Drive:
    YA 64,64,64,64      
2.  Query the D axis value:
    MG_YAD      
    :64.0000    Response shows D axis step drive resolution



YB
Syntax: Explicit or Implicit

Operands: _YBn

Burn: burnable with BN

Step Motor Resolution
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The YB command specifies the resolution of the step motor, in full steps per full revolution, for Stepper 
Position Maintenance mode.

Arguments

YB m,m,m,m,m,m,m,m

YBn = m
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
m is 0 to 9999 which represents the motor resolution in full steps per revolution.

Operand Usage
_YBn contains the stepmotor resolution for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 200

Default Format 1.4

Related Commands
QS - Error Magnitude 
YS - Stepper Position Maintenance Mode Enable, Status 
YA - Step Drive Resolution 
YC - Encoder Resolution 
YR - Error Correction

Examples:



1.  Set the step motor resolution of the A axis for a 1.8? step motor:
    YBA=200     
2.  Query the A axis value:
    YBA=?       
    :200        Response shows A axis step motor resolution



YC
Syntax: Explicit or Implicit

Operands: _YCn

Burn: burnable with BN

Encoder Resolution
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The YC command specifies the resolution of the encoder, in counts per revolution, for Stepper 
Position Maintenance mode.

Arguments

YC m,m,m,m,m,m,m,m

YCn = m
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
m is 0 to 32766 which represents the encoder resolution in counts per revolution.

Operand Usage
_YCn contains the encoder resolution for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 4000

Default Format 1.4

Related Commands
QS - Error Magnitude 
YS - Stepper Position Maintenance Mode Enable, Status 
YA - Step Drive Resolution 
YB - Step Motor Resolution 
YR - Error Correction

Examples:



1.  Set the encoder resolution of the D axis for a 4000 count/rev encoder:
    YC,,,4000   
2.  Query the D axis value:
    YCD=?       
    :4000       Response shows D axis encoder resolution



YR
Syntax: Explicit or Implicit

Operands: none

Burn: not burnable

Error Correction
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The YR command allows the user to correct for position error in Stepper Position Maintenance mode. 
This correction acts like an IP command, moving the axis or axes the specified quantity of step counts. YR 
will typically be used in conjunction with QS.

Arguments

YR m,m,m,m,m,m,m,m

YRn = m
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
m is a magnitude in step counts.

Operand Usage
None

Usage
Usage and Default Details

Usage Value

While Moving No

In a Program Yes

Default Format 1.4

Command Line Yes

Default Value 0

Related Commands
QS - Error Magnitude 
YA - Step Drive Resolution 
YB - Step Motor Resolution 
YR - Error Correction 
YS - Stepper Position Maintenance Mode Enable, Status

Examples:



1.  Query the error of the B axis:
    :QSB=?      
    :253        This shows 253 step counts of error
     Correct for the error:
    :YRB=_QSB   The motor moves _QS step counts to correct for the 
error, and YS is set back to 1



YS
Syntax: Explicit or Implicit

Operands: _YSn

Burn: burnable with BN

Stepper Position Maintenance Mode Enable, Status
Hardware:

DMC40x0 DMC41x3 
DMC21x3 DMC18x6 
DMC18x2 DMC300x0

Full Description
The YS command enables and disables the Stepper Position Maintenance Mode function. YS also reacts 
to excessive position error condition as defined by the QS command.

Arguments

YS m,m,m,m,m,m,m,m

YSn = m
where 
n is A,B,C,D,E,F,G or H or any combination to specify the axis or axes. 
m = 0     SPM Mode Disable 
m = 1     Enable SPM Mode, Clear trippoint and QS error 
m = 2     Error condition occurred

Operand Usage
_YSn contains the status of the mode for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Default Format 1.4

Default Value 0

Related Commands
QS - Error Magnitude 
YA - Step Drive Resolution 
YB - Step Motor Resolution 
YC - Encoder Resolution 
YR - Error Correction

Examples:



1.  Enable the mode:
    YSH=1       
2.  Query the value:
    YS*=?
    :0,0,0,0,0,0,0,1    Response shows H axis is enabled



ZA
Syntax: Explicit or Implicit

Operands: _ZAn

Burn: not burnable

User Data Record Variables
Hardware: DMC40x0 DMC41x3 

DMC18x6 DMC300x0

Full Description
ZA sets the user variables in the data record. The eight user variables (one per axis) are automatically sent as 
part of the status record from the controller to the host computer. These variables provide a method for 
specific controller information to be passed to the host automatically.

Arguments

ZA n,n,n,n,n,n,n,n

ZAA=n
where 
n is an integer and can be a number, controller operand, variable, mathematical function, or string. The range 
for numeric values is 4 bytes of integer (-2,147,483,648 to +2,147,483,647). The maximum number of 
characters for a string is 4 characters. Strings are identified by quotations. 
n = ?      returns the current value

Operand Usage
_ZAn contains the current value for the specified axis.

Usage
Usage and Default Details

Usage Value

While Moving Yes

In a Program Yes

Command Line Yes

Controller Usage All

Default Value 0

Default Format 10.0

Related Commands
DR - Data Record update rate 
QR - Query Data Record 
QZ - Data Record format

Examples:



#Thread
ZAX=MyVar;  'constantly update ZA
JP#Thread



ZS
Syntax: Embedded Only

Operands: _ZS0,_ZS1,_ZS2,_ZS3,_ZS4,
_ZS5,_ZS6,_ZS7

Burn: not burnable

Zero Subroutine Stack
Hardware:

DMC40x0 DMC41x3 
DMC21x3 RIO DMC18x6 
DMC18x2 DMC300x0

Full Description
The ZS command is only valid in an application program and is used to avoid returning from an interrupt 
(either input or error). ZS alone returns the stack to its original condition. ZS1 adjusts the stack to eliminate 
one return. This turns the jump to subroutine into a jump. Do not use RI (Return from Interrupt) when using 
ZS. To re-enable interrupts, you must use II command again. 
The status of the stack can be interrogated with the operand _ZSn - see operand usage below.

Arguments

ZS n
where  
     n = 0      Returns stack to original condition 
     n = 1      Eliminates one return on stack

Operand Usage
_ZSn contains the stack level for the specified thread where n = 0 to 7. 
The response, an integer between zero and sixteen, indicates zero for beginning condition and sixteen for 
the deepest value.

Usage
Usage and Default Details

Usage Value

While Moving (No RIO) Yes

In a Program Yes

Command Line No

Controller Usage All

Default Value 0

Default Format 3.0

Related Commands

Examples:

#A;'           Main Program



II1;'          Input Interrupt on 1
#B;JP #B;EN ;' Loop
#ININT;'       Input Interrupt
MG"INTERRUPT";'Print message
S=_ZS;'        Interrogate stack
S=?;'          Print stack
ZS;'           Zero stack
S=_ZS;'        Interrogate stack
S=?;'          Print stack
EN;'           End


	Local Disk
	Galil Firmware Commands
	Overview
	- Subtraction Operator
	# Label (subroutine)
	#AMPERR Amplifier error automatic subroutine
	#AUTO Subroutine to run automatically upon power up
	#AUTOERR EEPROM checksum error and Serial Encoder timeout error Automatic Subroutine
	#CMDERR Command error automatic subroutine
	#COMINT Communication interrupt automatic subroutine
	#ININT Input interrupt automatic subroutine
	#LIMSWI Limit switch automatic subroutine
	#MCTIME MC command timeout automatic subroutine
	#POSERR Position error automatic subroutine
	#SERERR Serial Encoder Error Automatic Subroutine
	#TCPERR Ethernet communication error automatic subroutine
	$ Hexadecimal
	% Modulo Operator
	& Bitwise AND Operator
	& JS subroutine pass variable by reference
	( , ) Parentheses (order of operations)
	* Multiplication Operator
	/ Division Operator
	; Semicolon (Command Delimiter)
	@ABS Absolute value
	@ACOS Inverse cosine
	@AN Analog Input Query
	@ASIN Inverse sine
	@ATAN Inverse tangent
	@COM Bitwise complement
	@COS Cosine
	@FRAC Fractional part
	@IN Read digital input
	@INT Integer part
	@OUT Read digital output
	@RND Round
	@SIN Sine
	@SQR Square Root
	@TAN Tangent
	[,] Square Brackets (Array Index Operator)
	^a,^b,^c,^d,^e,^f,^g,^h JS subroutine stack variable
	^L^K Lock program
	^R^S Master Reset
	^R^V Revision Information
	_GP Gearing Phase Differential Operand
	_LF Forward Limit Switch Operand
	_LR Reverse Limit Switch Operand
	| Bitwise OR Operator
	~ Variable Axis Designator
	+ Addition Operator
	<,>, =,<=,>=,<> Comparison Operators
	= Equals (Assignment Operator)
	AB Abort
	AC Acceleration
	AD After Distance
	AF Analog Feedback Select
	AG Amplifier Gain
	AI After Input
	AL Arm Latch
	AM After Move
	AO Analog Output
	AP After Absolute Position
	AQ Analog Input Configuration
	AR After Relative Distance
	AS At Speed
	AT At Time
	AU Set amplifier current loop
	AV After Vector Distance
	AW Amplifier Bandwidth
	BA Brushless Axis
	BB Brushless Phase Begins
	BC Brushless Calibration
	BD Brushless Degrees
	BG Begin
	BI Brushless Inputs
	BK Breakpoint
	BL Reverse Software Limit
	BM Brushless Modulo
	BN Burn
	BO Brushless Offset
	BP Burn Program
	BQ Brushless Offset dual DAC
	BR Brush Axis
	BS Brushless Setup
	BT Begin PVT Motion
	BV Burn Variables and Array
	BW Brake Wait
	BX Sine Amp Initialization
	BZ Brushless Zero
	CA Coordinate Axes
	CB Clear Bit
	CC Configure Communications Port 2
	CD Contour Data
	CE Configure Encoder
	CF Configure Unsolicited Messages Handle
	CI Configure Communication Interrupt
	CM Contour Mode
	CN Configure
	CO Configure Extended I O
	CR Circle
	CS Clear Sequence
	CW Copyright information Data Adjustment bit on off
	DA Deallocate the Variables & Arrays
	DC Deceleration
	DE Dual (Auxiliary) Encoder Position
	DF Dual Feedback (DV feedback swap)
	DH DHCP Server Enable
	DL Download
	DM Dimension
	DP Define Position
	DR Configures I O Data Record Update Rate
	DT Delta Time
	DV Dual Velocity (Dual Loop)
	EA Choose ECAM master
	EB Enable ECAM
	EC ECAM Counter
	ED Edit
	EG ECAM go (engage)
	EI Event Interrupts
	ELSE Else function for use with IF conditional statement
	EM Cam cycles (modulus)
	EN End
	ENDIF End of IF conditional statement
	EO Echo
	EP Cam table master interval and phase shift
	EQ ECAM quit (disengage)
	ER Error Limit
	ES Ellipse Scale
	ET Electronic cam table
	EW ECAM Widen Segment
	EY ECAM Cycle Count
	FA Acceleration Feedforward
	FE Find Edge
	FI Find Index
	FL Forward Software Limit
	FV Velocity Feedforward
	GA Master Axis for Gearing
	GD Gear Distance
	GM Gantry mode
	GR Gear Ratio
	HM Home
	HS Handle Assignment Switch
	HV Homing Velocity
	HX Halt Execution
	IA IP Address
	ID Identify
	IF IF conditional statement
	IH Open IP Handle
	II Input Interrupt
	IK Block Ethernet ports
	IL Integrator Limit
	IN Input Variable
	IP Increment Position
	IT Independent Time Constant - Smoothing Function
	JG Jog
	JP Jump to Program Location
	JS Jump to Subroutine
	KD Derivative Constant
	KI Integrator
	KP Proportional Constant
	KS Step Motor Smoothing
	LA List Arrays
	LB LCD Bias Contrast
	LC Low Current Stepper Mode
	LD Limit Disable
	LE Linear Interpolation End
	LI Linear Interpolation Distance
	LL List Labels
	LM Linear Interpolation Mode
	LS List
	LU LCD Update
	LV List Variables
	LZ Inhibit leading zeros
	MB Modbus
	MC Motion Complete
	MF Forward Motion to Position
	MG Message
	MO Motor Off
	MR Reverse Motion to Position
	MT Motor Type
	MW Modbus Wait
	NB Notch Bandwidth
	NF Notch Frequency
	NO,' No Operation
	NZ Notch Zero
	OA Off on encoder failure
	OB Output Bit
	OC Output Compare
	OE Off-on-Error
	OF Offset
	OP Output Port
	OT Off on encoder failure time
	OV Off on encoder failure voltage
	P2CD Serial port 2 code
	P2CH Serial port 2 character
	P2NM Serial port 2 number
	P2ST Serial port 2 string
	PA Position Absolute
	PF Position Format
	PL Pole
	PR Position Relative
	PT Position Tracking
	PV PVT Data
	PW Password
	QD Download Array
	QH Hall State
	QR I O Data Record
	QS Error Magnitude
	QU Upload Array
	QZ Return Data Record information
	RA Record Array
	RC Record
	RD Record Data
	RE Return from Error Routine
	REM Remark
	RI Return from Interrupt Routine
	RL Report Latched Position
	RP Reference Position
	RS Reset
	SA Send Command
	SB Set Bit
	SC Stop Code
	SD Switch Deceleration
	SH Servo Here
	SI Configure the special Galil SSI feature
	SL Single Step
	SM Subnet Mask
	SP Speed
	SS Configure the special Galil BiSS feature
	ST Stop
	SY Serial encoder BiSS active level
	TA Tell Amplifier error status
	TB Tell Status Byte
	TC Tell Error Code
	TD Tell Dual Encoder
	TE Tell Error
	TH Tell Ethernet Handle
	TI Tell Inputs
	TIME Time Operand
	TK Peak Torque Limit
	TL Torque Limit
	TM Update Time
	TN Vector Tangent
	TP Tell Position
	TR Trace
	TS Tell Switches
	TT Tell Torque
	TV Tell Velocity
	TW Timeout for IN Position (MC)
	TZ Tell I O Configuration
	UI User Interrupt
	UL Upload
	VA Vector Acceleration
	VD Vector Deceleration
	VE Vector Sequence End
	VF Variable Format
	VM Vector Mode
	VP Vector Position
	VR Vector Speed Ratio
	VS Vector Speed
	VV Vector Speed Variable
	WH Which Handle
	WT Wait
	XQ Execute Program
	YA Step Drive Resolution
	YB Step Motor Resolution
	YC Encoder Resolution
	YR Error Correction
	YS Stepper Position Maintenance Mode Enable, Status
	ZA User Data Record Variables
	ZS Zero Subroutine Stack


