

REDACTIE Taco Hoekwater, hoofdredacteur Wybo Dekker Frans Goddijn Siep Kroonenberg

Voorzitter

Hans Hagen ntg-president@ntg.nl

Secretaris

Willi Egger

ntg-secretary@ntg.nl

Penningmeester Wybo Dekker

ntg-treasurer@ntg.nl

Bestuursleden

Karel Wesseling

k.h.wesseling@planet.nl

Taco Hoekwater taco@elvenkind.com

Postadres

Nederlandstalige TEX Gebruikersgroep Maasstraat 2 5836 BB Sambeek

Postgiro 1306238 t.n.v. NTG, Deil BIC-code: PSTBNL21 IBAN-code: NL05PSTB0001306238

-code. NE05F51B0001500256

E-mail bestuur ntg@ntg.nl

E-mail MAPS redactie maps@ntg.nl

www

www.ntg.nl Copyright © 2007 NTG De Nederlandstalige T_EX Gebruikersgroep (NTG) is een vereniging die tot doel heeft de kennis en het gebruik van T_EX te bevorderen. De NTG fungeert als een forum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-opmaak in het algemeen en de ontwikkeling van 'T_EX and friends' in het bijzonder. De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van informatie, het organiseren van conferenties en symposia met betrekking tot T_EX en daarmee verwante programmatuur.

De NTG biedt haar leden ondermeer:

- □ Tweemaal per jaar een NTG-bijeenkomst.
- □ Het NTG-tijdschrift MAPS.
- □ De 'T_EX Live'-distributie op DVD/CDROM inclusief de complete CTAN softwarearchieven.
- □ Verschillende discussielijsten (mailing lists) over T_EX-gerelateerde onderwerpen, zowel voor beginners als gevorderden, algemeen en specialistisch.
- □ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen te gebruiken 'T_EX-producten' staan.
- □ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG, bijeenkomsten, publicaties en links naar andere T_FX sites.
- □ Korting op (buitenlandse) T_EX-conferenties en -cursussen en op het lidmaatschap van andere T_EX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro (zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daarnaast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan ook een papieren formulier bij het secretariaat worden opgevraagd.

De contributie bedraagt \in 40; voor studenten geldt een tarief van \in 20. Dit geeft alle lidmaatschapsvoordelen maar *geen stemrecht*. Een bewijs van inschrijving is vereist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies op. De prijs in euro's wordt bepaald door de dollarkoers aan het begin van het jaar. De ongekorte TUG-contributie is momenteel \$65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaT_EX- of ConT_EXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaT_EX class file en een ConT_EXt module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-tex 1.40.3-2.2 (Web2C 7.5.6) draaiend onder Linux 2.6. De gebruikte fonts zijn Bit-stream Charter, schreefloze en niet-proportionele fonts uit de Latin Modern collectie, en de Euler wiskunde fonts, alle vrij beschikbaar.

 T_{EX} is een door professor Donald E. Knuth ontwikkelde 'opmaaktaal' voor het letterzetten van documenten, een documentopmaaksysteem. Met T_{EX} is het mogelijk om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt voor formules in mathematische teksten.

Er is een aantal op T_EX gebaseerde producten, waarmee ook de logische structuur van een document beschreven kan worden, met behoud van de letterzetmogelijkheden van T_EX. Voorbeelden zijn LaT_EX van Leslie Lamport, A_M S-T_EX van Michael Spivak, en ConT_EXt van Hans Hagen.

Inhoudsopgave

Redactioneel, *Taco Hoekwater* Announcement: TUG conference 2007, *Taco Hoekwater* René van der Heijden, *NTG Bestuur* The MPlib Project, *Hans Hagen* & *Taco Hoekwater* Tokens in LuaT_EX, *Hans Hagen* Integrating the pool file, *Taco Hoekwater* PDF / TikZ, *Willi Egger* External graphics for LaT_EX, *Siep Kroonenberg* Review: Alphabetgeschichten, *Hans Hagen* & *Taco Hoekwater* Folding Sheets for a Modular Origami Dodecalendar, *Richard Hirsch* ConT_EXt User Meeting 2007, *Mojca Miklavec* EuroBachoT_EX 2007, *Michael Guravage* MiKT_EX installeren valt erg mee, *Frans Goddijn*

Redactioneel

Hopelijk valt deze Maps nog net voor de voorjaarsbijeenkomst bij jullie in de bus. Of, ik zou eigenlijk moeten zeggen: dwarrelt in de bus. Want het is een dunnetje geworden, deze keer. Nu verwachten jullie natuurlijk dat ik ga klagen over een gebrek aan kopij en vrije tijd, want dat doe ik immers meestal.

Maar deze keer is de Maps juist doelbewust zo dun. We hadden meer dan genoeg artikelen over kunnen nemen uit de EuroT_EX 2007 proceedings om een hele, hele dikke Maps te kunnen maken. Maar dat zou heel bewerkelijk geweest zijn, want die artikelen zouden we allemaal moeten herpagineren voor de Maps layout, en de relatief kleine oplage van de Maps maakt dat bovendien al snel een prijzige onderneming.

Daar komt bij dat de EuroT_EX proceedings hoe-danook in een grote oplage gedrukt gaat worden, omdat alle Dante en Gust leden er één krijgen. Het leek ons daarom alles bij elkaar veel praktischer om die extra service uit te breiden naar de NTG leden. We weten nog niet precies wanneer ze de deur uit zullen gaan, maar ergens in de nazomer zullen jullie dus allemaal een extra enveloppe van de NTG ontvangen!

Aan het einde van het najaar volgt dan natuurlijk weer gewoon de volgende Maps. En dáárvoor hebben we wel weer dringend behoefte aan kopij en extra vrijwilligers. Heb je wat te melden, of wil je helpen met de productie van de Maps, stuur de redactie dan een mailtje. We zijn altijd blij met nieuwe artikelen, vooral die van eigen bodem.

Ondertussen is er natuurlijk ook nog deze Maps. We hebben vrij veel aandacht voor grafische onderwerpen deze keer, zoals het eerste deel van een tweeluik van *Richard Hirsch* over het maken van een driedimensionale kalender met behulp van MetaPost. Van *Willi Egger* hebben we een korte kennismaking met het relatief nieuwe tekenpakket PDF / TikZ, en *Siep Kroonenberg* gaat dieper in op het gebruik van externe figuren in LaTFX.

In het afgelopen voorjaar hebben er twee internationale conferenties plaatsgevonden waar we een verslag van hebben opgenomen: van de ConTEXt user meeting in Epen een artikel van de hand van *Mojca Miklavec*, en van de EuroBachoTEX in Polen een verslag door *Michael Guravage*. Ik wil Michael overigens nog van harte bedanken voor het proeflezen en corrigeren van al ons gebrekkige Engels. Van *Hans Hagen* en mijzelf zijn er een paar korte artikeltjes met nieuws rondom MetaPost en LuaT_EX. En er is een nieuw boek van Hermann Zapf uit, daar hebben we een review van geschreven. *Frans Goddijn* heeft MikT_EX geïnstalleerd, wat weer niet zonder slag of stoot ging, maar als ik goed snap werkt nu alles naar behoren.

Tot slot nog even terug naar Maps 34. Weten jullie nog dat we toen een paar fotootjes hebben afgedrukt van het kersverse dochtertje van Paweł (pagina 77)? Natuurlijk ging er toen een exemplaar per post naar Polen, en een paar dagen later kregen we onderstaande foto in de email. Om op te eten, toch?

Veel leesplezier, en tot de volgende keer!

Taco Hoekwater, hoofdredacteur

TUG 2007: Practicing T_EX

Workshops and presentations on

LATEX, TEX, MetaPost, ConTEXt, LuaTEX,

and more

July 17-20, 2007

San Diego State University San Diego, California, USA

http://tug.org/tug2007 tug2007@tug.org

Keynote address: Peter Wilson, The Herries Press

- April 23, 2007—presentation proposal deadline
- May 18, 2007—early bird registration deadline
- July 17–20, 2007 workshop and conference

Further information

Conference attendees will enjoy an opening night reception and an (optional) banquet one evening. Coffee and lunch will be served each day of the meeting. Located on the campus of San Diego State University, an easy trolley ride from downtown San Diego. Inexpensive campus housing is available.

Conference fee, hotel, and other information is available on the web site.

Sponsorship

We thank the present sponsors: the German-speaking T_EX users group DANTE e.V., von Hoerner & Sulger GmbH, MacKichan Software, and Adobe Systems Inc. have provided generous support; San Diego State University is our host; and special thanks to the many individual contributors.

If you'd like to support the conference, promote T_EX products and services, or otherwise provide sponsorship, see the web site for donation and advertising options.

René van der Heijden 2007[†]

"Wanneer ik deze wereld ga verlaten, weet ik nauwelijks wat mij het meest zal spijten: de mensen die ik nooit heb ontmoet, of de plaatsen die ik nooit heb gezien. Als het om de wereld van het boek gaat kan ik mijn hoofd tamelijk tevreden neerleggen: ik heb mijn portie gelezen." W.N.P. Barbellion, 10 maart 1917.

Een van de aardige dingen van een bijeenkomst van T_EX gebruikers is dat je "elkaar weer eens ziet"; er is een vaste kern die altijd komt. In de ruim tien jaar dat ik NTG bijeenkomsten bezoek was René van der Heijden voor mij zo'n ankerpunt geworden. Als hij er was, dan waren we compleet en konden we beginnen.

Op vrijdag 6 april 2007 is René van der Heijden overleden. Als bestuur wisten we al wat eerder dat was vastgesteld dat hij ongeneeslijk ziek was. Het kwam evengoed als een schok.

René: T_EX op de Atari, schaken en altijd geïnteresseerd in nieuwe ontwikkelingen rond T_EX waarvoor hij, zoals hij me vaak vertelde, helaas niet altijd tijd had. Nu een bekend gezicht is weggevallen, zal de volgende bijeenkomst toch wat anders zijn. Hij was er altijd, en wij zullen hem missen.

We wensen zijn vrouw Tia en haar omgeving veel sterkte.

Hans Hagen

The MPlib Project MetaPost as a reusable component

As you probably know, MetaPost development has restarted approximately two years ago. After a period of investigating user demands, it has now become obvious that MetaPost is showing its age.

The problems lie not so much in the actual drawing language that is used, but in the 1980s Metafont legacy that is very noticable in the way the program interacts with the user and in how it deals with the computing environment in general.

Some of the big user-side problems that resurface on a regular basis are:

□ The model used for the handling of external labels is outdated.

Running a per-file preprocessor to create the labels was already problematic before, but it is getting worse now that both T_FX and Troff are moving away from their traditional output formats.

All number handling is based on fractions of a 32bit integer.

User input often hits one of the many boundaries that are a result of that. For instance, no numbers can be any larger than 16384, and there is a noticeable lack of precision in the intersectionpoint calculations.

MetaPost cannot be used as a system-level service. In fact, MetaPost cannot even be used as a system-wide library, because the many global variables make it non-shareable.

□ Lack of 3-D support.

Even technical drawings that are nominally considered to be two-dimensional, like the ones in highschool math and physics books, often need to handle projections of 3-D objects to a plane.

Much of the needed development to fix these issues can be done in the normal course of events, because the needed extensions or changes to the program are isolated to a small section of the source code (this is for instance true for 3-D projection support), or because the needed changes are so well understood that it is trivial to make many changes (this is true for upgrading the 32-bit internal calculus).

But the handling of labels and the lack of system integration require massive changes to the source code as well as to the build system, and therefore it was very unlikely that this would ever get done without extra incentives: a significant amount of time and effort that has to be dedicated to those particular problems.

An estimate of the needed programming hours to turn MetaPost into a modern, re-entrant system library with a modern form of inter-process communication was created:

Converting from the use of hunderds of global 200 variables into a data structure that is passed on from one function to another Adding a unified redirection layer for the input 100 and output, allowing files as well as buffers to be used Designing and implementing a new subsystem 150 for label typesetting Adding an interface for configurable default error 50

responses Total 500

If writing documentation is included in that estimate, it makes for six months of full-time (40 hours a week) programming, time that simply could be alloted within anybody's free hours in any way. It was clear to us that, to get these tasks done within a reasonable time frame, at least some of the work would have to be done during office hours. And that requires money.

So, a funding proposal was written and at the Dante 2007 meeting Hans proposed this new project for funding. Dante immediately stepped in for 50% of the requested amount (6000 euro) and within a week other user groups joined in as well: TUGIndia (1000 euro), TUG (1500 euro), NTG (2000 euro) and CSTug (1000 euro). Currently 500 euro is still missing, but we are confident that this gap will be bridged or overcome.

Work will start in the autumn of this year, and it is our current estimate that the project will be complete by the summer of 2008. The actual programming will be carried out by Taco. Hans Hagen will lead the project, and Bogusław Jackowski will be in charge of quality control.

Hans Hagen & Taco Hoekwater

Tokens in LuaT_EX

Hans Hagen

tokenization

Most T_EX users only deal with (keyed in) characters and (produced) output. Some will play with boxes, skips and kerns or maybe even leaders (repeated sequences of the former). Others will be grateful that macro package writers take care of such things.

Macro writers on the other hand deal with properties of characters, like catcodes and a truckload of other codes, with lists made out of boxes, skips, kerns and penalties. But even they cannot look much deeper into T_EX 's internals. Their deeper understanding comes from reading the T_EX book or even looking at the source code.

When someone enters the magic world of T_EX and starts asking around a bit, he or she will at some point get confronted with the concept of tokens. A token is what ends up in T_EX after characters have entered its machinery. Sometimes it even seems that one is only considered a qualified macro writer if one can talk the right token–speak. So, what are those magic tokens and how can LuaT_EX shed light on this?

In a moment we will show examples of how $LuaT_{EX}$ turns characters into tokens, but when looking at those sequences, you need to keep a few things in mind:

- A sequence of characters that starts with an escape symbol (normally this is the backslash) is looked up in the hash table (which relates those names to meanings) and replaced with its reference. Such a reference is much faster than looking up the sequence each time.
- Characters can have special meanings, for instance a dollar is often used to enter and exit math mode, and a percent symbol starts a comment and hides everything following it on the same line. These meanings are determined by the character's catcode.
- All the characters that will end up actually typeset have catcode letter or other assigned. A sequence of items with catcode letter is considered a word and can potentially become hyphenated.

examples

We will now provide a few examples of how $T_{\rm E}X$ sees your input.

Hi there!

Hi there!

cmd	chr		id	name
letter	72	Η		
letter	105	i		
spacer	32			
letter	116	t		
letter	104	h		
letter	101	е		
letter	114	r		
letter	101	е		
other_char	33	!		

Here we see three kinds of tokens. At this stage a space is still recognizable as such, but later this will become a skip. In our current setup, the exclamation mark is not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

Hans & Taco use LuaT_EX!

cmd	chr		id	name
letter	72	Η		
letter	97	а		
letter	110	n		
letter	115	s		
spacer	32			
char_given	38		1114152	&
spacer	32			
letter	84	Т		
letter	97	а		
letter	99	с		
letter	111	0		
spacer	32			
letter	117	u		
letter	115	s		
letter	101	е		
spacer	32			
letter	76	L		
letter	117	u		
letter	97	а		
call	1554614		1114740	TeX
char_num	0		1115630	char

other_char	51	3			
other_char	51	3			
relax	1114112		1117492	relax	

Here we see a few new tokens, a char_given and a call. The first represents a \chardef i.e. a reference to a character slot in a font, and the second one a macro that will expand to the $T_{E}X$ logo. Watch how the space after a control sequence is eaten up. The exclamation mark is a direct reference to character slot 33.

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

Hans

Taco

cmd	chr		id	name
start_par	0		1141958	noindent
left_brace	123			
call	1650250		1114412	bf
letter	72	Η		
letter	97	а		
letter	110	n		
letter	115	s		
right_brace	125			
spacer	32			
par_end	1114112		1114870	par
make_box	122		1115680	hbox
left_brace	123			
letter	84	Т		
letter	97	а		
letter	99	с		
letter	111	0		
right_brace	125			
spacer	32			
par_end	1114112		1127274	endgraf

As you can see, some primitives and macros that are bound to them (like \endgraf) have an internal representation on top of their name.

before \dimen2=10pt after \the\dimen2

before after 10.0pt

cmd	chr		i	d	name
letter	98	b			
letter	101	е			
letter	102	f			
letter	111	0			
letter	114	r			
letter	101	е			
spacer	32				
register	1		111730	2	dimen
other_char	50	2			

other_char letter spacer letter letter letter letter letter letter	32 97 102 116 101 114	t a f t e r		
letter	101	e		
200002		r		
spacer the register other char	32 0 1 50	2	1114887 1117302	the dimen

As you can see, registers are not explicitly named, one needs the associated register code to determine it's character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

before	wł	natever	after		
cmd		chr		id	name
letter	<u>.</u>	98	b		
letter	2	101	е		
letter	2	102	f		
letter	2	111	0		
letter	2	114	r		
letter	2	101	е		
spacei	2	32			
call		1824889		3226639	inframed
other	char	91	Γ		
letter	2	119	W		
letter	2	105	i		
letter	5	100	d		
letter	5	116	t		
letter	5	104	h		
other	char	61	=		
other	char	51	3		
letter	2	99	с		
letter	<u> </u>	109	m		
other	char	93]		
left_b	orace	123			
letter	2	119	W		
letter	<u> </u>	104	h		
letter	2	97	а		
letter	2	116	t		
letter	2	101	е		
letter	2	118	v		
letter	2	101	е		
letter	2	114	r		
right_	brace	125			
space	5	32			

letter	97	a	letter	112	р
letter	102	f	letter	114	r
letter	116	t	letter	105	i
letter	101	е	letter	110	n
letter	114	r	letter	116	t
			other char	40	(

As you can see, even when control sequences are collapsed into a reference, we still end up with many tokens, and because each token has three properties (cmd, chr and id) in practice we end up with more memory used after tokenization.

compound | - | word

compound-word

cmd	chr		id	name
letter	99	с		
letter	111	0		
letter	109	m		
letter	112	р		
letter	111	0		
letter	117	u		
letter	110	n		
letter	100	d		
call	1869296		125	1
other_char	45	-		
call	1869296		125	
letter	119	W		
letter	111	0		
letter	114	r		
letter	100	d		

This example uses an active character to handle compound words (a ConT_FXt feature).

hm, \directlua 0 { tex.sprint("Hello World") }

hm, Hello World!

cmd	chr		id	name
letter	104	h		
letter	109	m		
other_char	44	,		
spacer	32			
convert	23		1166957	directlua
other_char	48	0		
spacer	32			
left_brace	123			
spacer	32			
letter	116	t		
letter	101	е		
letter	120	х		
other_char	46	•		
letter	115	s		

letter	112	р	
letter	114	r	
letter	105	i	
letter	110	n	
letter	116	t	
other_char	40	(
other_char	34	"	
letter	72	Η	
letter	101	е	
letter	108	1	
letter	108	1	
letter	111	0	
spacer	32		
letter	87	W	
letter	111	0	
letter	114	r	
letter	108	1	
letter	100		
other_char	33	!	
other_char	34	"	
other_char	41)	
spacer	32		
right_brace	125		

The previous example shows what happens when we include a bit of lua code ... it is just seen as regular input, but when the string is passed to Lua, only the chr property is passed, so we no longer can distinguish between letters and other characters.

A macro definition converts to tokens as follows.

[B][A]

cmd	chr		id	name
def	0		1114818	def
undefined_cs			1115536	Test
mac_param	35			
other_char	49	1		
mac_param	35			
other_char	50	2		
left_brace	123			
other_char	91	Γ		
mac_param	35			
other_char	50	2		
other_char	93]		
other_char	91	Γ		
mac_param	35			
other_char	49	1		
other_char	93]		
right_brace	125			
spacer	32			
undefined_cs			1115536	Test
left_brace	123			
letter	65	Α		
right_brace	125			

left_brace	123	
letter	66	В
right_brace	125	

As we already mentioned, a token has three properties. More details can be found in the reference manual so we will not go into much detail here. A stupid callback looks like:

```
callback.register('token_filter',token.get_next)
```

In principle you can call token.get_next anytime you want to intercept a token. In that case you can feed back tokens into T_FX by using a trick like:

```
function tex.printlist(data)
   callback.register('token_filter',function ()
       callback.register('token_filter', nil)
       return data
    end)
end
```

Another example of usage is:

```
callback.register('token filter', function ()
    local t = token.get_next
    local cmd, chr, id = t[1], t[2], t[3]
    -- do something with cmd, chr, id
    return { cmd, chr, id }
end)
```

There is a whole repertoire of related functions, one is token.create, which can be used as:

```
tex.printlist{
    token.create("hbox"),
    token.create(utf.byte("{"), 1),
   token.create(utf.byte("?"), 12),
    token.create(utf.byte("}"), 2),
}
```

This results in: ?

While playing with this we made a few auxiliary })) functions which permit things like:

```
tex.printlist (
 table.unnest ( {
    tokens.hbox,
    tokens.bgroup,
    tokens.letters("12345"),
    tokens.egroup,
  }))
```

Unnesting is needed because the result of the letters call is a table, and the printlist function wants a flattened table.

The result looks like: 12345

cmd	chr		id	name
make_box	122		1115680	hbox
left_brace	123			
letter	49	1		
letter	50	2		
letter	51	3		
letter	52	4		
letter	53	5		
right_brace	125			

In practice, manipulating tokens or constructing lists of tokens this way is rather cumbersome, but at least we now have some kind of access, if only for illustrative purposes.

\hbox{12345\hbox{54321}}

can also be done by saying:

tex.sprint("\\hbox{12345\\hbox{54321}}")

or under ConTEXt's basic catcode regime:

```
tex.sprint(tex.ctxcatcodes,
           "\\hbox{12345\\hbox{54321}}")
```

If you like it the hard way:

```
tex.printlist ( table.unnest ( {
 tokens.hbox,
    tokens.bgroup,
    tokens.letters("12345"),
    tokens.hbox.
      tokens.bgroup,
      tokens.letters(string.reverse("12345")),
      tokens.egroup,
    tokens.egroup
```

This method may attract those who dislike the traditional T_FX syntax for doing the same thing. Okay, a carefull reader will notice that reversing the string in T_FX takes a bit more trickery, so ...

Hans Hagen

Integrating the pool file

Taco Hoekwater

Abstract

This short article discusses the method that is used in MetaPost and $luaT_EX$ to integrate the string pool file into the program.

This method allows the redistribution of a single updated executable in place of both a program and a data file, and this makes updating those programs easier on both the user and the developer (me).

How a pool file is created

The readers who regularly update their $(pdf)T_{EX}$ or MetaPost executables will probably be familiar with the concept of pool files already, but I will explain the mechanics in some detail.

Programs written in the WEB language normally do not contain the strings inside the executable proper, but in a separate file, called the 'pool file'.

The most important reason for the existence of this file is that back when Knuth was working on T_EX and Metafont, there was not yet a standardized way to handle strings inside the Pascal language, so he had to invent his own solution for printing messages and warnings.

In order to illustrate what is in a pool file, I will show you the required steps. First, here is a bit of WEB source from MetaPost:

```
...
if minx_val(h)>maxx_val(h) then
print("0 0 0 0")
else begin
ps_pair_out(minx_val(h),miny_val(h));
ps_pair_out(maxx_val(h),maxy_val(h));
end;
print_nl("%%Creator: MetaPost ");
print(metapost_version);
print_nl("%%CreationDate: ");
```

this excerpt is from one of the PostScript output routines. Here, there are still recognizable strings that are used as function arguments (as well as the symbolic value metapost_version, that is actually a macro resolving to a string).

The processor tangle converts this input into a proper Pascal source file. While doing so, it resolves all of the many WEB macros that are present in the code. metapost_version is one of those, but also the constructs like minx_val(h) and maxx_val(h). It also removes the underscores from function names, because traditional Pascal compilers did not allow _ to appear in identifiers.

What we are focusing on now, is that it also collects all of the double-quoted strings in the input. It puts all of the unique multi-character strings into an internal array, and replaces the actual string in its output with the index number it has given the string inside that array. Of course, functions like print() are written in such a way that they expect numbers as arguments instead of string values.

The Pascal output file looks like this:

. . .

```
if mem[h+2].int>mem[h+4].int then print(1279)
else begin pspairout(mem[h+2].int,mem[h+3].int);
pspairout(mem[h+4].int,mem[h+5].int);end;
printnl(1281);print(256);printnl(1282);
```

As you can see, this file is clearly intended for a compiler only. The complete lack of indentation makes it near impossible for a human to read the generated code, but of course a Pascal compiler has no problem with it.

Nowadays, creating an executable program from the WEB source file happens in a few extra steps, and one of these steps is a conversion from Pascal to C source code, by means of the web2c system. You may find the output of web2c easier to read, because it re-indents the code for human reading:

```
...
if ( mem [h + 2 ].cint > mem [h + 4 ].cint )
print ( 1279 );
else {
    pspairout(mem [h + 2].cint,mem [h + 3].cint);
    pspairout(mem [h + 4].cint,mem [h + 5].cint);
}
printnl ( 1281 ) ;
print ( 256 ) ;
printnl ( 1282 ) ;
```

So, where did the strings go? tangle put the multicharacter strings into a separate file, in this case named mp.pool. Each line of that file contains two digits indicating the length of the string, followed by the string itself. Around line 1000, you will find this:

```
...
070 0 0 0
20%/HiResBoundingBox:
20%/Creator: MetaPost
16%/CreationDate:
...
```

07 is the length in bytes of '0 0 0 0', 20 is the length of "%%HiResBoundingBox: ', including the trailing space character, etcetera. Single character strings are not written to the pool file, because there is no need: all single-character strings simply have an assumed index value matching their contents, and the first string in the pool file receives index number 256.

The Pascal source code (or C source code) is now converted into an executable, and you end up with mpost.exe as well as mp.pool. The pool file is stored somewhere in the TEXMF tree, and one of the very first things that the --ini version of MetaPost does, is that it reads mp.pool to initialize its internal arrays. When the user executes the dump command, MetaPost writes all of the string items to the .mem file, from where it will be retrieved by production runs of MetaPost.

There is nothing wrong with this system as such. In fact, it has worked well for nearly 30 years. But it does make updating executables a bit harder than desired: users not only have to copy the actual program to a folder in the path, but they also have to figure out where to place the new and improved mp.pool file.

As the maintainer of MetaPost and luaT_EX, both programs that are updated frequently, I was getting annoyed with having to explain to almost each updating user what a pool file was, why it was important, and where it should go in their TEXMF tree.

How a pool file disappears again

So I decided to do something about it, and that was how the makecpool program was born. The concept is very simple: it converts the mp.pool into a C source file named loadpool.c. In fact, it is so obvious that the idea has been proposed a number of times already, for instance by Fabrice Popineau. But somehow it has never made it to the core $T_{\rm FX}$ distribution yet. The structure of the created file is straightforward: there is one big static array, and a fairly simple C function that replaces the Pascal procedure for pool file reading. In abbreviated form, loadpool.c looks like this:

```
/* This file is auto-generated by makecpool */
```

```
#include <stdio.h>
#include "mpdir/mplib.h"
static char *poolfilearr[] = {
  "1.000",
  . . .
  "0 0 0 0",
  "%%HiResBoundingBox: ",
  "%%Creator: MetaPost ",
  "%%CreationDate: ",
  . . .
  NULL };
int loadpoolstrings (integer spare_size) {
  char *s;
  strnumber g=0;
  int i=0, j=0;
  while ((s = poolfilearr[j++])) {
    int l = strlen (s);
    i += 1;
    if (i>=spare_size) return 0;
    while (1-- > 0) strpool[poolptr++] = *s++;
    g = makestring();
    strref[g] = 127;
  }
  return g;
}
```

In the stage where the various C files are compiled into mpost.exe, this file is included in the list, and in that way the strings will be embedded in the program. At run-time, the C function is called to put the strings for the C array into the internal storage area instead of the original file reader.

The result: there is only one single executable file that can be freely distributed to the users. The source code for makecpool is part of the MetaPost and luaT_EX distribution package.

Taco Hoekwater taco(a)elvenkind.com

PGF / TikZ

Willi Egger

Abstract

For those who are looking for an alternative for external graphic drawing tools, PGF / TikZ offers a wealth of possibilities. PGF is a macro-package that, together with its user interface TikZ, comprises a kind of "graphics language" to build graphics inside the text as inline graphics or as pictures of larger size. PGF is a macro-package originally written for LaT_EX. In the meantime it is also available for use within ConT_EXt. The package comes with a large set of libraries for different kinds of graphics. There is extensive documentation and a tutorial. For support a mailing list and web-site are available. Users of the package with ConT_EXt have to install the xkeyval package version 1.8. PGF and TikZ are distributed under the GNU Public License version 2.

Introduction

The drawing environment is called PGF. PGF is the acronym for "Portable Graphics Format". The user interface is called TikZ. TikZ stands for "TikZ ist *kein* Zeichenprogramm" meaning it is not an interactive drawing/painting program. The package provides a kind of "graphics language" with which to program a graphic comparable to programming the text in T_FX.

PGF / TikZ is a macropackage that was originally written for LaT_EX. In the meantime ConT_EXt users can also profit from this package and use it within ConT_EXt.

The package is written and maintained by Till Tantau, professor at the Institut für Theoretische Informatik, Universität Lübeck.

The macropackage is distributed under the GNU Public License version 2.

Installation

LaT_EX

Because the package is basically a $LaT_{E}X$ -package, it is probably already installed on your system. Otherwise install it as usual in the $T_{E}X$ tree e.g. from CTAN.

ConT_EXt

The easiest way to install the package under ConT_EXt is to download it and unpack it in a temporary folder. Move the contents of the *generic* folder to ...\tex\generic. Move the contents of the folder *context* to ...\tex\context\third (the third party module folder). In order to get the package working you need to install the xkeyval version 1.8 package written by Hendri Adriaens. Download it from CTAN. Install the files either in ...\tex\generic or ...\tex\latex. Move the folder *doc* to .../doc. Run mktexlsr in order to update the file-database.

Plain T_EX

Provided that you use a full installation of T_EX , like the T_EX -live distribution, the package might be installed already. Otherwise, install the necessary files contained in the archive into the respective folders of the T_EX -tree. For use of the package under Plain T_EX you need also the xkeyval package version 1.8 or above by Hendri Adriaens and the xcolor package version 2.0 by Uwe Kern.

Syntax differences

The graphics language syntax for the different $T_{E}X$ -environments is generally set up in such a way that the user can use the commands as he is accustomed to do in his $T_{E}X$ -environment:

In order to use the package, it must first be loaded:

LaT _E X	ConT _E Xt	Plain T _E X		
\usepackage{tikz}	\usemodule[tikz]	\input tikz.tex		
Ctanting a communate of communate for a smorthing				

Starting a sequence of commands for a graphic:

LaT _E X	ConT _E Xt	Plain T _E X	
\begin{tikzpicture}	\starttikzpicture	\tikzpicture	
<pre> \end{tikzpicture}</pre>	 \stoptikzpicture	 ∖endtikzpicture	

Structure of the package

The package is built in three layers: system, basic and front end. The system-layer provides the highest abstraction level, i.e. it provides the translations of commands into \special -commands as required by the different driver environments (dvips, dvipdfm, pdftex). This layer is not intended for use by the user.

The second layer is called basic-layer. This layer provides a set of commands for building complex graphics without being obliged to use the syntax of the system layer.

Lastly, the front end layer provides a set of commands which make the use of the basic layer more convenient. The most natural front end is TikZ. For illustration, if you wanted to draw e.g. a triangle with the basic layer you would have to issue up to 5 commands, whereas with the TikZ-front end it will suffice to say draw (0,0)--(1,0)--(1,1)--cycle;.

TikZ

Defining points in a graphic

There are different possibilities to define a point in a graphic. First, a point can be defined by giving the coordinates in dimensions known to $T_{E}X$ inside a pair of round brackets e.g. (2cm,10pt). This represents the xy-coordinate system. Giving three dimensions inside a pair of round brackets (1,1,1) will invoke the xyz-coordinate system. Omitting the unit of a dimension will cause TikZ to use the predefined dimension of 1cm. A third way of defining a point is to indicate a vector in the form of (30:1cm). This will cause TikZ to move 1cm in the direction of 30 degrees. Finally, points can be specified relative to another point. e.g. (1,0) ++(1,0) ++(0,1) specifies the following movements: (1,0) (2,0) (2,1). One can also define a relative point by adding a single +: (1,0) +(1,0) +(0,1) - which defines the following coordinates: (1,0) (2,0) (1,1). The difference is, that the points defined with a single + will not change the current point which is in the example (1,0).

Paths

Paths consisting of a series of straight and curved elements are defined similar to MetaPost. Path elements do not necessarily need to be connected to each other. Actions on (closed) paths are draw, fill, shade and clip. These actions can be applied to paths in any combination.

Grouping

Within a TikZ-picture grouping of elements can be achieved by using scopes LaTEX: \begin{scope}[options]...\end{scope} and ConTEXt: \startscope[options]...\stopscope. The application of styles enables the user to apply options defined outside the graphic to (part of) the graphic.

Transformations

Shifting an object can be done with \shift{1,2} or \shift{+1,2} i.e. with relative positioning. There is also xshift=10pt and yshift=1cm. Objects can be rotated with the command rotate or rotated around a given point with rotated around. scale=2 will scale the object or picture by the given factor. There is also xscale and yscale for scaling in a single direction.

For-loops

LaT_EX-users can issue the built in loop constructs or the \multido command from pstricks. ConT_EXt-users can use the \dorecurse{}{} looping mechanism. TikZ offers yet another for-loop, based on series represented by dimensionless real numbers, which are given as $\{1,2,3\}$ or $\{1,\ldots,10\}$ or even $\{1,3,\ldots,20\}$. In case two figures are given before the ellipsis, the difference between the two figures is used as step. The basic command is

\foreach \variablename in {...series...} \draw(\variablename pt, -1pt) -- (\variablename pt,1pt)

Text and Labels

Text can be added to any given point of a path. When TikZ encounters the keyword node during the construction of a path, the elements of the node will be added as a T_EX-box after the complete path is ready. A node consists of the keyword node followed by options between square-brackets and followed by the text enclosed in curly braces.

Node-options are numerous: left/right/below/above =dimension, anchors are north, south, west, east, north east... Furthermore text may be positioned along the path with the option slope. Texts may be moved towards the beginning or end of a path by very near or near end. These options can be combined with above etc. and sloped.

Libraries

- Arrow Tip Library, arrows

This library contains a large pallet of different tip-styles like triangular tips,

- barbed and bracket-like, circle and diamond like, partial tips and line caps. Automata Drawing Library, *automata*
- For the drawing of finite automata and Turing machines.
- Background Library, backgrounds
- Various background types are provided.
- Entity-Relationship Drawing Library, er This library will be loaded for drawing E/R diagrams.
- Mind-map Library, *mindmap*
- For those who need a nice presentation of their mind-maps, this library is useful.
- Pattern Library, *patterns*
- For filling shapes with pattern this library is loaded.
- Petri-Net Library, petri

For the construction of Petri-nets this library is needed.

- Plot Handler Library, plothandlers

The plot handler library is loaded automatically by TikZ.

– Plot Marks Library, *plotmarks*

This library defines additional plot marks next to the standard marks, which are *, x and +.

- Shape Library, shapes

The shapes library contains a number of predefined shapes.

Snake Library, snakes

This library defines a series of non-straight lines like coils, braces, bumps, expanding waves, saw or yes, snake lines.

- To Path Library, topaths

This library is loaded automatically by TikZ and provides predefined to paths which are used in the to path operation.

– Tree Library, trees

This library provides different styles to draw trees.

Examples

Below are some examples that demonstrate what TikZ can do. The examples are taken from the manual, and are formatted for $ConT_EXt$. LaT_EX-users can best refer to the manual, because examples are given there in LaT_EX-code.

Using TikZ code inline in the text

For drawing a sloped line within the text row you would type

\tikz \draw(0pt,0pt) -- (20pt,6pt);

and get \frown . Here a big grey dot should be placed \blacksquare . This is coded as

```
\tikz \fill[black!60] circle (1ex);
```

Trigonometry

The angle α is 30° in the example ($\pi/6$ in radians). The sine of α , which is the height of the red line, is [sin $\alpha = 1/2$.] By the Theorem of Pythagoras ...

Figure 1. Trigonometry

\usemodule[tikz] \starttikzpicture[scale=2,cap=round] % Local definitions \def\costhirty{0.8660256} % Colors \definecolor[anglecolor][r=.5,g=.5,b=0] \definecolor[sincolor][r=1,g=0,b=0] \definecolor[tancolor][r=.7,g=0,b=.7] \definecolor[coscolor][r=0,g=0,b=.8] \definecolor[fillcolor][.625black] % Styles

```
\tikzstyle{axes}=[]
\tikzstyle{important line}=[very thick]
\tikzstyle{information text}=[rounded corners,inner sep=1ex]
% The graphic
\draw[style=help lines, step=0.5cm] (-1.4, -1.4) grid (1.4, 1.4);
\draw (0,0) circle (1cm);
\startscope[style=axes]
   \draw[->] (-1.5,0) -- (1.5,0) node[right] {$x$} coordinate(x axis);
   \draw[->] (0,-1.5) -- (0,1.5) node[above] {$y$} coordinate(y axis);
   foreach x/xtext in {-1, -.5/-frac{1}{2}, 1}
   \draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]
       \{ xtext \};
   foreach y/ytext in {-1, -.5/-frac{1}{2}, .5/frac{1}{2}, 1}
   \draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white]
       \{ vtext \};
\stopscope
\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {$\alpha$};
\draw[style=important line,sincolor] (30:1cm) -- node[left=1pt,fill=white]
     {$\sin \alpha$} (30:1cm |- x axis);
\draw[style=important line,coscolor]
     (30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw[style=important line,tancolor] (1,0) -- node[right=1pt,fill=white]
     {$ \tan \alpha {\color[black]=}
        \frac{\color[sincolor]\sin \alpha}{\color[coscolor]\cos \alpha}$}
     (intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);
\draw (0,0) -- (t);
\draw[xshift=2.5cm]
node[right,text width=6cm,style=information text]
ſ
The {\color[anglecolor] angle $\alpha$} is $30^\circ$ in the
example ($\pi/6$ in radians). The {\color[sincolor]sine of
$\alpha$}, which is the height of the red line, is
[{\color[sincolor] \ \ l= 1/2.]
By the Theorem of Pythagoras ...
};
```

\stoptikzpicture

Simple organigramma / tree

Figure 2. A tree

```
\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
};
\stoptikzpicture
```

TikZ in cooperation with GNUplot

One can use GNUplot to calculate the points needed in a path. TikZ will, after reading its instructions, prepare a command file containing GNUplot commands describing the function to be drawn. In a second run GNUplot is envoked with these commands from which a data file is produced. TikZ imports this data file and draws the graph.

Figure 3. A function calculated by GNUplot

```
\usemodule[tikz]
\starttikzpicture
   \draw[gray,very thin] (-1.9,-1.9) grid (2.9,3.9)
                    [step=0.25cm] (-1,-1) grid (1,1);
   \draw[blue] (1,-2.1) -- (1,4.1);
   \draw[->] (-2,0) -- (3,0) node[right] {$x(t)$};
   \draw[->] (0,-2) -- (0,4) node[above] {$y(t)$};
   foreach pos in {-1,2}
        \draw[shift={(\pos,0)}] (0pt,2pt) -- (0pt,-2pt) node[below] {$\pos$};
   foreach pos in {-1,1,2,3}
        \draw[shift={(0,\pos)}] (2pt,0pt) -- (-2pt,0pt) node[left] {$\pos$};
   \fill (0,0) circle (0.064cm);
   \draw[thick,parametric,domain=0.4:1.5,samples=200]
   % The plot is parameterized such that there are more samples
   % near the centre.
   plot[id=asymptotic-example]
        function{(t*t*t)*sin(1/(t*t*t)), (t*t*t)*cos(1/(t*t*t))}
        node[right]
        {$\bigl(x(t),y(t)\bigr) = (t\sin \frac{1}{t},t\cos\frac{1}{t})$;
   \fill[red] (0.63662,0) circle (2pt)
```

```
node [below right,fill=white,yshift=-4pt] {$(\frac{2}{\pi},0)$};
\stoptikzpicture
```

The contents of the file created by GNUplot looks as follows:

```
#Curve 0, 200 points
#x y type
0.00530 -0.06378
                     i
0.04363 -0.05043
                     i
0.06711 -0.01790
                    i
0.06896 0.02170
                    i
0.05014 0.05606
                    i
0.01712 0.07631
                    i
-0.02110 0.07849
                     i
-0.05579 0.06337
                    i
-0.08032 0.03512
                    i
-0.09097 -0.00029
                    i
-0.08696 -0.03664
                    i
-0.06987 -0.06850
                    i
-0.04284 -0.09192
                     i
-0.00982 -0.10460
                    i
0.02515 -0.10585
                    i
0.05841 -0.09629
                    i
. . .
0.98511 3.18914 i
0.98543 3.22793 i
```

Internet

More information on PGF and TikZ can easily be found on the Internet. For a stable release of the package one can visit CTAN or from http://sourceforge.net/projects/pgf/.

If you want to get the most recent developments you can fetch the latest version from CVS. The command would be something like

For extensive examples there is a web-site by Kjell Magne Fauske, Norway:

http://www.fauskes.net/pgftikzexamples

For support one can join the following mailing-list. Visit

https://lists.sourceforge.net/lists/listinfo/pgf-users

for subscription.

Summary

TikZ is a tool for making various kinds of drawings. For T_EX -users the style of setting up such drawings is familiar, because you program a drawing similarly to how you program a T_EX -text. TikZ is the natural front end to lower level PGF functionality. On top of this, it is possible to draw graphs using points generated by GNUplot.

Acknowledgement

I would like to thank Michael Guravage for looking through the text and turn it into correct English.

Willi Egger

External graphics for LaT_EX

Siep Kroonenberg N.S.Kroonenberg at rug dot nl

Abstract

In this article, we discuss graphics file formats, software to create graphics and procedures to convert them to LaTeX- and pdflatex-compatible formats.

Keywords

Graphics converting bitmap vector compression eps pdf jpeg lossy lossless resolution

This article is about preparing external graphics for use with LaT_FX.

We start out with a quick overview of types of graphics. If you understand what kind of data you are dealing with, you will have a much better chance of getting good results.

Next, we list programs for creating graphics, both free and commercial.

The final part is about programs and procedures for converting graphics into LaT_EX-compatible formats.

1 Types of graphics

Graphics can be defined in different ways, depending on the type of information they contain and on the software with which they have been created. Figures 1–6 contain some examples, each together with an enlarged detail.

Figure 1. Bitmapped art: a photograph

A bitmap is built up as a grid of pixels. Figures 1 and 2 show a photograph and a screenshot respectively. The grid structure is obvious in the enlarged detail.

Vector graphics are defined in terms of lines, circles, curves and other geometric shapes. They keep their sharpness at any scale; see figures 3–5.

Some file formats can contain both bitmapped and vector data. In figure 6, the bitmapped background becomes fuzzy when enlarged, but the text on top remains sharp.

Figure 2. Bitmapped art: screenshot

30 -20 -10 -0 -1998 1999 2

Figure 3. Vector art: OpenOffice.org graph

60

50

40

Figure 4. Vector art: adapted from a Ghostscript example file

1.1 Jpeg compression

High-resolution bitmapped files can get very big. There are various ways to reduce those file sizes.

Lossless compression works by storing information in a more compact way. A very simplified example: instead of enumerating a thousand identical white pixels one by one, you can say at once that the next one thousand pixels are white. Lossless compression can be quite effective when there are large areas of solid colors or regular patterns. Png is a lossless bitmapped format that can be processed directly by pdflatex.

Lossless compression doesn't work so well with photographic images. When we no longer insist on exactly preserving every bit of information and accept *lossy*

Figure 5. Vector art: generated with MetaPost

Figure 6. Bitmapped and vector combined

Figure 7. Don't use jpeg compression for screenshots.

compression, then very good results van be reached with jpeg. At medium to high quality settings, the loss of information is essentially invisible, but the compression rate is easily 10:1. When you save in jpeg format you can usually make your own tradeoff between file size and image quality.

For non-photographic bitmapped images such as screenshots or logos, jpeg compression produces visible artifacts; see figure 7. To be fair, for the right image quality was set very low in order to make the artifacts more obvious. Here, compression isn't all that good either compared to png. Nevertheless, many people use jpeg compression indiscriminately, even when png would have been much better.¹

1.2 Bitmap resolutions

The resolution of a bitmap should be high enough to look sharp, but, in order to keep file size and loading times within bounds, the resolution should not be higher

than necessary.

For screen viewing, the ideal resolution would be exactly one bitmap pixel per screen pixel, but of course you may not know at what screen resolution and zoom level your document will be viewed.

For printing, good resolutions are:

Photographs. 150–300 DPI (dots per inch) depending on the output device. Most printers and imagesetters simulate grays and other tints with dot patterns or halftone screens. As a consequence, the effective printed resolution of a photograph is much lower than the resolution of the output device, no matter how high the resolution of the original photograph.

Charts and diagrams. 600–1200 DPI. 600 is enough to avoid visible blockiness. Higher resolutions can mean finer detail, if the printer resolution is also high. But vector formats are better for such graphics.

Screenshots. Keep the original resolution.

Of course I am talking about resolution after scaling; if you print a 2" wide, 300 DPI image at a width of 4" then the effective resolution is 150 DPI.

It will do no good to increase the resolution of an existing low-resolution image; it might even make the output fuzzier. So either try to find or create a better original, or use your bad picture as-is.

1.3 Problems with vector graphics

Missing fonts. If some standard fonts (Times, Helvetica, Courier, Symbol, Zapf Dingbat) are not embedded then epspdftk (see section 3.2) can help. If the pdf output target is set to prepress then fonts will be embedded during conversion to pdf. Epspdftk can convert back and forth between eps and PostScript on the one hand and pdf on the other. You can either apply a pdf-to-eps-to-pdf conversion to individual graphics or a pdf-to-ps-to-pdf conversion to the document as a whole.

If other fonts are missing then you have a real problem.

If you don't mind using Ghostscript from the command-line: the epswrite output device replaces characters with little drawings of their shapes: a fool-proof way to get rid of font problems. Don't do this with large amounts of text. I guess it only works if the font is embedded or is known to Ghostscript in some other way.

Zero-width lines. If your graphic has some very thin lines, then check by zooming in whether the lines have some positive width. A line width of zero will be interpreted by the output device as a width of one pixel, which is fine for the screen or for an old 300 DPI laserprinter, but not for a 2400 DPI imagesetter. A line width of e.g. 0.3pt should be safe. You may be able to fix this from within the program with which the graphic was created.

Transparency and fill patterns. Many programs and graphic formats do not support transparancy or fill patterns; upon conversion these features might either get lost altogether or simulated with e.g. bitmaps, which might make the file much larger and virtually ineditable. Hang on to the original – which you should do in any case!

General fixes. You may be able to import and fix problems in a draw program: substituting fonts, changing line widths, replacing pattern fills with something else; see section 2 on draw programs.

As a last resort, you can convert your graphic to a bitmapped png file of sufficiently high resolution.

Figure 8. Inkscape, a free vector draw program for Linux, Windows and Mac OS X

2 Creating graphics

In computer graphics, the term drawing means vector art and painting means bitmapped art.

2.1 Drawings and diagrams

You can create drawings and diagrams in Word or PowerPoint. However, it may be difficult to convert graphics from these programs intact to eps or pdf, the formats needed by LaT_EX and pdflatex² respectively. Instead, check out some free alternatives such as Inkscape, which is a specialized draw program resembling CorelDRAW, or the Draw module of OpenOffice. OpenOffice.org is fairly good at reading and writing MS Office files, and has a pdf export option.

If you spend a lot of time creating and editing vector graphics, consider buying a professional draw program such as CorelDRAW or Adobe Illustrator.

Under Mac OS X there are several less expensive commercial programs worth checking out, such as OmniGraffle from the Omni Group (www.omnigroup.com), Create from Stone Design (www.stone.com) and Intaglio from Purgatory Design (www.purgatorydesign.com).

In any case, investigate at an early stage how to get your drawings into LaT_EX , see section 3.

2.2 Draw programs with LaTEX support

Draw programs which can use TeX for typesetting text include Ipe (cross-platform) and TpX (Windows-only). TpX is also available from CTAN. Both are free.

Section 3.3 has some information on Ipe file formats.

TpX generates LaTEX code, which you have to load into your document with an \input command. The various output options of TpX are a bit too complicated to explain here, but you can read all about it in the TpX online help.

2.3 Charts

Charts are normally generated as a byproduct of spreadsheets or mathematical, statistical or econometric software.

2.4 Bitmaps: paint programs and image editors

There exists a large selection of free and inexpensive paint programs and image editors. Paint is a very basic paint program which is included with Windows. Irfan-View is a small, simple and free image viewer and converter for Windows. If you need something more substantial, have a look at the GIMP, which was originally developed for Linux. Yet another option is Adobe PhotoShop Elements, which may be easier to work with. It is commercial, but costs a fraction of its professional big brother, PhotoShop, which is the favorite of professional designers. A favorite on the Macintosh is GraphicConverter.

2.5 Screenshots

You can take screenshots without specialized software.

Windows. The PrtScrn key will copy the entire screen to the clipboard, and Alt-PrtScrn the active window. Most paint- and image-editing programs can retrieve the screenshot from the clipboard, usually with Edit / Paste. They also have tools to crop images.³

Linux. Here, PrtScrn will probably take a screenshot as well, either to the clipboard or to a file. I usually take screenshots with the Gimp (File > Acquire > Screenshot).

You can also take a screenshot from the commandline, with import from the ImageMagick suite: type import file.png and click either a window or the desktop background.

Mac OS X. Cmd-Shift-3 copies the entire screen to a file on your desktop, and Cmd-Shift-4 lets you make a selection.

3 Converting to LaTEX- and pdflatex-compatible formats

I'll only discuss graphics usage for the two most popular output options: generating PostScript with LaT_EX and dvips, and generating pdf with pdflatex. The graphicx package will automatically detect these two cases. In the LaT_EX-plus-dvips case, it will look for graphics in eps format, and in the pdflatex case it will look for graphics in pdf, jpg and png format.⁴

These are stable formats, with little room for ambiguity. Eps and pdf can contain just about any kind of graphics information. This small selection of file formats is therefore not a real limitation, but it can mean extra work.

3.1 Converting bitmaps to png and jpg

Many image editors and paint programs, including IrfanView, can convert to png and jpg. Convert from the ImageMagick suite is a command-line option. ImageMagick also has a GUI viewer and converter: display under Unix/X11 and IMDisplay under Windows; see Figure 9.

3.2 Converting between PostScript, eps and pdf

Epspdftk and epspdf. These utilities can convert between PostScript, eps and pdf, often with no loss of information. They can also remove unwanted borders (compute tight boundingbox option). Epspdftk is a GUI program, and epspdf is its command-line counterpart.

epstopdf. An alternative for converting eps to pdf is the command-line program epstopdf, which is part of most T_FX distributions and is probably already on our system.

🎾 IMDisplay - fract	.png					
	nsform <u>Wi</u> ndow	Help				
🗋 🗅 😂 🔛 🕹 🗉	è 🖻 🖨 🦓					
📝 duin217.jpg						
fract.png						
	Save As		Analasia Antonia an			? ×
and the second	Source in:	imagick		•	+ 🗈 💣 🖩	
	Javejit			<u> </u>		·
	3	📓 duin217.jpg				
and have been and	History	fract.eps				
		a nacciping				
	Desktop					
	My Computer					
	<u> </u>					
4	My Network P					
		File name:	fract.pdf		•	Save
Ready		Save as type:	All Files (".")		-	Cancel
		pave as type:	Annes wit			Carlos

Figure 9. IMDisplay: ImageMagick's GUI component for Windows

convert. On many systems, convert from the ImageMagick suite will use Ghostscript when converting between eps and pdf, and will in that case convert vector graphics to vector graphics. Prefix the target pdf filename with EPDF: if you want to preserve the eps boundingbox. View the result at a high zoom level to make sure that it is still a vector graphic.

Ghostscript and pdftops. You can also use Ghostscript directly for converting eps and PostScript to pdf, and either Ghostscript or pdftops from the xpdf suite for converting in the other direction. But this is not the place for explaining the use of these programs.

3.3 Working with lpe files

Ipe, see section 2.2, can store drawings in its own private format, with extension ipe or xml, but it can also save them in eps- and pdf format. Ipe drawings in eps- and pdf format have private information hidden inside, which makes it possible for Ipe to read them back in. But if you convert those files to something else then this private information will get lost.

Ipe cannot read arbitrary eps or pdf, but it comes with a command-line import utility pdftoipe. You can put a shortcut to it on your desktop and then simply drop a pdf file on it. The result of the conversion will be in the same directory as the original. You will very likely have to do some cleanup afterwards, especially if there is a lot of text.

3.4 Converting bitmaps to eps

The simpler paint programs and image editors don't convert to eps or pdf, but more advanced ones, such as the GIMP, do. Convert and [IM]Display from the ImageMagick suite also convert to eps and pdf.

You can also convert to eps or pdf with Ipe: create a new, empty document. This happens automatically when you start the program. Select File, Insert image... and load the image that you want to convert. Now save the Ipe document in eps- or pdf format.

3.5 Wmf, emf and the Windows clipboard

Wmf and emf are native vector formats for Windows, and can be read by most Windows graphics programs, including TpX, which I already mentioned in section 2. Another option is Wmf2eps. This shareware program does exactly what its name implies, and its conversions are quite accurate. It uses Windows' native PostScript printerdriver in the background.⁵

If you cannot even save as wmf or emf then again both TpX and Wmf2eps can copy the clipboard content to a file. Note that for TpX you do this with Tools / Capture EMF, not with Paste from the Edit menu.

3.6 Exporting eps and PostScript from Windows programs

If a Windows program doesn't have a usable export option, then you can try to 'print' to a PostScript file. This is approximately what the above wmf2eps program does. 6

For this, you need to have a PostScript printer driver. If you don't have one installed, go to 'Printers' and start up the Add Printer wizard. Choose Local Printer and uncheck automatic detection. As printer port, you can pick FILE, otherwise you would have to manually check 'Print to File' anytime you print. A good choice for manufacturer and model would be 'Generic' and 'MS Publisher Imagesetter' respectively.

Pay attention to printer settings: in the Print dialog, click 'Properties', then 'Advanced' (on either tab). In the 'Advanced Document Settings' tree, under 'Graphic', 'TrueType Font' should be set to 'Download as Softfont'⁷

Now navigate to first 'Document Options', then 'PostScript Options'. For 'Post-Script Output Option' the default setting is 'Optimize for speed'. Change that to 'Optimize for Portability' or 'Archive Format', or, for single pages only, 'Encapsulated PostScript'. These non-default options presumably produce cleaner PostScript code, without printer-specific hacks. Experiment with this and other options if you run into problems (e.g. bad-looking screen output, or part of a graphic getting cut off, or conversion to bitmap).

What works best may depend on your Windows version: under Windows 2000, Archive worked best for me, but I have been warned that this option was unusable in older Windows versions.

Next, the setting 'TrueType Font Downloading Option' should be set to 'Outline', not 'Automatic' or 'Bitmap'.

Figure 10. configuring a PostScript printer driver

Notes

1. Jpeg2000 (extension .jp2 or .j2c) is a successor of the jpeg format. This type of compression supports both lossy and lossless compression. Pdflatex can use pdf graphics which internally use jpeg2000 compression, but at the moment you cannot use jpeg2000 images directly.

2. Although pdflatex can also use the bitmapped jpeg and png file formats, we would rather not convert vector graphics to bitmaps.

3. With IrfanView this is not quite obvious, but if you just start to drag the cursor then it changes into a selection tool, and then you can apply Edit / Crop selection.

4. If you specify a non-default output driver as optional parameter to the graphicx package, then different graphics formats may be supported.

5. Most Windows PostScript drivers use the same core. Individual PostScript drivers add to this core a ppd- or PostScript Printer Definition file which is basically an enumeration of the printer's features and properties. Wmf2eps comes with its own ppd.

6. This section is lifted almost literally from my article 'Epspdf, easy conversion between PostScript en Pdf' in Maps 34.

7. The alternative setting is 'Substitute with Device Font'. For prepress use, you should always include all fonts. It is possible to include fonts after the fact, when converting to pdf, but then you run the risk of noticeable discrepancies between the original font and the actually included font.

References

CTAN, The Comprehensive T_EX Archive Network. http://www.ctan.org/.

Epspdf and epspdftk. http://tex.aanhet.net/epspdf/.

Ghostscript Homepage. http://www.cs.wisc.edu/~ghost/.

ImageMagick Homepage. http://imagemagick.org/.

Inkscape draw program. http://inkscape.org/.

Ipe draw program. http://tclab.kaist.ac.kr/ipe/.

IrfanView image viewer and converter for Windows. http://www.irfanview. com/.

OpenOffice.org homepage. http://www.openoffice.org/.

The Gimp image editor for Windows. http://gimp-win.sourceforge.net/.

TpX draw program. http://sourceforge.net/projects/tpx/.

Wmf2eps Homepage. http://www.wmf2eps.de.vu/, wmf2eps can be downloaded from CTAN.

Xpdf Homepage. http://www.foolabs.com/xpdf/.

Siep Kroonenberg N.S.Kroonenberg at rug dot nl

Alphabetgeschichten Eine Chronik technischer Entwicklungen

Hans Hagen & Taco Hoekwater

Introduction

It pays off to be a Dante member! Some time ago each member received a copy of Hermann Zapfs monograph 'Alphabetgeschichten', a gift from Hermann himself. For many users of computers the name 'Zapf' may ring a bell because of the omnipresent Zapf dingbats fonts. But with Hermann Zapf being one of the greatest designers of our time, there is much more to learn about him.

Being an honorary member of Dante, Hermann is quite familiar with T_EX and friends, and he is in contact with several T_EX ies. He worked with Donald Knuth on the book '3:16', a calligraphic masterpiece. He is also responsible for the design of the Euler font family (we will tell you more about this in an upcoming Maps issue). In the recent font projects (Latin Modern and T_EX Gyre) we consult Hermann on matters that we are unsure about.

Two versions

There are two versions of this book, the German version and an English translation and it is a pleasure

to have both, especially because they are not entirely the same. The German version has a few more pages than the English translation. And not only because of the language, there are also true differences in the contents.

Born at November 8, 1918 Hermann has grown up in and been a witness of turbulent times. The German version sheds more light on how difficult it was to survive in these times and how much art got lost in that period. He wrote down nice anecdotes about this era, for instance how the ability to write in 1 mm script impressed his army superiors so much that it kept him out of trouble. Both books have some differences in the graphics that go with that period and in the English version some quotes are shortened.

The English book catches up on its last pages. Since 1977 Hermann Zapf is an associate professor at the Rochester Institute of Technology. In the postscript to this version the curator describes the influence Hermann has had on them in the past 30 years. At the time we write this review, Hermann is visiting this institute, where he is involved in a calligraphic and typographic display on 27 glass panels surrounding the new facilities.

If you manage to lay hands on a copy, you will notice that it's printed on thick cream-colored paper and very well bound in a dark blue hard cover with gold initials on the front. At the traditional Dante Christmas Party in 2006 in Darmstadt, Herman told the audience that nowadays it's not trivial to get such paper in the quantities needed: most paper plants only produce paper of moderate quality in any bulk. But here, large quantities of special paper were needed; keep in mind that he gave away a free copy to each of the more than 2000 Dante members.

Other interesting differences between the versions are in paragraph breaks and whitespace. As with Dutch, German needs a few more words than English to express ideas, but the general impression is that the German version is the most informative. Other subtle differences are in the used technical terms. The English version qualifies Palatino Sans as 'sans serif', but the German text talks about 'Grotesk'.

A lifetime

One possible reason why Hermann has always been able to catch up with technology and could adapt quite well to the transition from lead to computer, was that originally he wanted to be an 'Elektroingenieur', but calligraphy attracted him more.

Hermann was never stuck on characters only. The book starts with a colorful full-page illustration of flowers and small beetles.

Also, in his early period he created a few 'Notenschriften'. The book shows many examples of handwriting and the grand finale is Zapfino, which is available as a OpenType font with many (complex) features.

und der größte Teil meiner Vorlagen wurden bei dem Luftangriff auf das Buchhändlerviertel in Leipzig am 4. Dezember 1943 vernichtet. abcdefghijklmnopqrsftuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

Greek, Arab, you name it ... he draws it. Among his most well known fonts are Optima and Palatino. Both fonts date back half a century when lead was still leading, but they were recently redesigned to take advantage of new technologies. Last year a sans serif family named Palatino Sans was added, and an Arab variant is in the making.

The first Optima was draft on thousand lire notes in 1950. In 1975, this font was used for the Vietnam Veterans Memorial in Washington.

Hermann spent quite some time in the USA, running his own company there, teaching at several designer

schools and working with Donald Knuth. He is still associated with the Rochester Institute of Technology in New York.

In pdfT_EX there is a feature that informally is called 'hz-optimization'. This feature is inspired by the work of Hermann on the 'hz-Programm' and in the book Hàn Thế Thành's work and Hermann's communication with Hàn Thế Thành are explicitly mentioned.

Although an old printing press has a prominent position in his house in Darmstadt, Hermann has always been involved in new technologies. He went from typesetting in lead to using phototypesetters to computer based typesetting. The Zapfino font, that adapts its choice of glyphs to the circumstances is a prime example of this. Steve Jobs of Apple Computers made sure that on this platform the Zapfino behaves how it should behave.

For those who use the dingbats there is good news as well. The Zapf Essentials are the improved and extended version of these symbols. We now finally have everything available that Hermann originally had

153

in mind when he started drafting this symbol set.

The book also shows samples of Zapfino Ink, yet another innovation. Here color and shades make their way into the font but we have to wait till the font technologies are ready for that. The book tells us that this is being worked on.

The book is typeset in Palatino Nova with displayed quotations in the brand new Palatino Sans. In the not too wide margin keywords are typeset. These are rotated 90 degrees and printed in blue, which adds a very nice touch to the book's typographic feel. Especially so where the keyword in question is actually a font name, because each of those is typeset in the font that is indicated.

Afterword

At the Dante Christmas Party 2006 we showed Hermann some of his work on a digital ink device and he seemed quite impressed with what new technologies can provide. However we fully agree with the following quote from his monograph:

"Ein gedruckter Buchstabe und ein schön gestaltetes Buch sind etwas Beständiges, Bleibendes im Vergleich zu dem schnellen Zugriff zu einer Information im Internet und dessen Flüchtigkeit der Wiedergabe am Bildschirm. Es ist das etwas schwer zu beschreibende eigenartige Erlebnis des Lesers, wenn er ein Buch in seiner Händen hält. Ein Buch spricht die Sinne an, der Druck auf dem Papier, das Umblättern der Seiten, ganz im Gegensatz zu der abstrakten elektronischen Darstellung eines Textes."

Both language versions of the monograph can be ordered directly from the Merchandise section of the Linotype website, http://www.linotype.com/ 26/merchandise.html.

If you prefer to order elsewhere, The ISBN number is 3-9810319–5-4 for 'Alphabetgeschichten', or 3-98103129-6-2 for 'Alphabet Stories'.

Hans Hagen & Taco Hoekwater

Folding Sheets for a Modular Origami Dodecalendar

Richard Hirsch richard.hirsch at gmx dot net

Abstract

Twelve square sheets of paper can be folded in such a way that they can be assembled to a pentagon dodecahedron (*origami*). The single units are called modules, hence the name *modular*. If the sheets bear calendrical information at the right places, the dodecahedron shows the calendar for each month on its faces: the *dodecalendar*.

In this article we let MetaPost calculate piece by piece the information that needs to be printed on the module paper to enable us to fold the modules and assemble the dodecahedron.

Keywords

MetaPost, tutorial

Introduction

MetaPost

MetaPost is a programming language and an interpreter that produces PostScript output. It is well suited to produce technical drawings and – being derived from Metafont with basically the same capabilities and just a few extensions – suggests itself to illustrate T_EX documents. As we will see, MetaPost provides a very natural way of describing relations of points in the plane (3D extensions do exist also).

However, the richness of features and concepts makes it hard for the beginner to start. The user's manual from John Hobby [1] and the Metafontbook from Donald Knuth [2] want to be read and for the fine touch even a glimpse into the source code (plain.mp) may be necessary.

Examples, however, are a good way to start with. There are excellent sources in the Internet (c.f. http://www.tug.org/metapost.html for an extensive list), and I hope, the origami dodecalendar will be another one that might attract you to MetaPost.

Dodecalendar

At http://www.origami-cdo.it/modelli/ instructions for folding a 12-piece modular origami dodecalendar can be found. Twelve square paper sheets are folded into twelve modules that can be assembled to a pentagon dodecahedron. If the paper is properly printed, each face shows a calendar for one month, see figure 1.

Figure 1: the modular origami dodecalendar

Aim of this Article

We want to print those sheets on our own and use MetaPost for this purpose. Traditional origami doesn't allow preprinted guides that show where the creases must go, but since we have to print the calendars anyway, we can as well print those marks – not for cheating, of course, but to avoid ugly creases on the faces of our dodecalendar.

Figure 2: folding sheet with creases shown for January 2007 (sic!, see figure 1)

Folding Sheets

Figure 2 shows how the preprinted sheets of paper should look like. We number the relevant points as shown in figure 3.

A good start for calculating all those points seems to be the base of the regular pentagon highlighted in figure 3. But first of all we have to perform some setup.

Setup

We are going to calculate the positions of the points shown in figure 3. Usually this is done in Metafont or MetaPost by collecting the x- and y-parts of the coordinate pairs in the arrays x and y and adress them as points z. We will use coordinate pairs P1 through P20 instead and won't bother with their components at all. This may be mainly a matter of taste, but there is at least one rationale too: For the dodecalendar we need twelve paper sheets for the modules, and for each of them the positions of the points in figure 3 must be known. Now MetaPost clears the contents of the coordinate pairs z for every new figure; thus all the calculations would have to be done over and over again. The positions in container P however, are valid through the whole MetaPost run. Therefore, first thing for us to do is to declare the container P for the coordinate pairs:

pair P[]; % positions of the points

(As you already may have guessed or known, just like in T_EX everything after a %-sign in the MetaPost source is ignored by the interpreter.)

Furthermore we have to give MetaPost some information about the size of our figure. Therefore we de-

Figure 3: numbering of important points

(b) all vertices of the pentagon

fine a basic unit of measurement for our drawing: the radius R of the escribed circle of the central pentagon (see figure 4) is set to be 2 cm:

R:= 2cm; % scaling factor

The real MetaPost way to deal with the absolute size of the figure would be to tell MetaPost only something like P2 + 11cm*right = P3 and let it figure out the actual value of R itself. Unfortunately MetaPost can not perform transformations unless all components of the transformation matrix are known. Since we want to make heavy use of transformations, it is better for us to fix the scale of the figure at this time.

Figure 5: points P₈ and P₉

Regular Pentagon

First of all, we introduce point P_0 at the top of the pentagon to complete it. We set the origin of our coordinate system to the center of the pentagon and then we can define the position of P_0 simply as

PO = R*up;

The vector up is predefined in MetaPost as "up=-down=(0,1)".

Now, by means of MetaPost's rotation command, the position of the other vertices can be calculated as easily as

for i:= 1 upto 4:
 P[i+3]:= P0 rotated (i*360/5);
endfor

Mirroring of the Pentagon's Base

Now that MetaPost knows the positions of P_4 to P_7 , we can define points P_8 and P_9 : We get P_8 if we reflect P_5 about line $\overline{P_4P_7}$ and P_9 by doing the same with P_6 . MetaPost understands this immediately:

for i:= 8,9:
 P[i]:= P[i-3] reflectedabout (P4, P7);
endfor

The Top Corner

The points P_8 and P_9 are of special interest since they lie on the edges of our folding sheet; until now all our drawing was completely independent of the actual size of the paper. But now we are going to deal with the boundaries of our sheet of paper; we start with the top (P_1).

We observe that the triangle $\triangle P_8 P_9 P_1$ is the top half of a square (see figure 2. We know the length of its

(b) Calculation by means of the law of Pythagoras

Figure 6: P_1 , the top corner of the paper sheet

base since we have already P_8 and P_9 ;we call it a and let b = a/2 (see figure 6a).

a:= length(P9-P8); b:= .5a;

Now MetaPost can find P₁ simply by vector addition

P1:= P8 + b*(right + up);

(Alternatively we could have made use of the Pythagorean theorem (and introduce MetaPost's dir command and its ++-operator): We know that the angle $\angle P_1P_8P_9$ is half of a right angle (i.e. 45°). The length of the hypotenuse c is $\sqrt{b^2 + b^2}$ (see figure 6b) and this root is just what the ++-operator calculates. So shifting P_8 by b++b in northeast direction yields P_1 - or in MetaPost's terms: P1:= P8 shifted ((b++b)*dir 45).)

Left Edge

Next we want to deal with the points on the left edge, P_2 , P_{10} and P_{12} . Point P_2 lies somewhere on the line through points P_5 and P_6 (see figure 7) and also somewhere on the line going through P_1 and P_8 . If we

(a) Point P_2 as intersection point

want to tell MetaPost about these facts we can use the volatile numeric variable *whatever* for "somewhere" and the expression [p,q] for "on the line \overline{pq} ". So we write:

P2 = whatever[P1,P8] = whatever[P5,P6];

This is all information MetaPost needs in order to know where point P_2 lies.

Please note, that we didn't use the := assignment, but instead add two equations to MetaPost's internal system of linear equations with =. This system is solved if we use P₂ in a drawing (or an immediate assignment with :=).

Points P₁₀ and P₁₂ are computed likewise:

P10 = whatever[P1,P8] = whatever[P7,P4]; P12 = whatever[P1,P8] = whatever[P5,P4];

Right edge

The positions of points P_3 , P_{11} and P_{13} could be found the same way, but we don't want the MAPS to become dull.

Figure 8: The points on the right edge

Instead we use another important feature of Meta-Post: transformations. In figure 8 we note that point P_3 is just P_2 reflected about line $\overline{P_0P_1}$. In MetaPost

we can express that as P3 = P2 reflectedabout (P0,P1) but since we need to transform more than one variable the same way, we'd rather have an own transformation for this purpose. We can have that in MetaPost by defining

transform flipright; flipright:= identity reflectedabout(P0,P1);

Now we could say P3 = P2 transformed flipright, but we go one step further and define the new macro flippedright:

def flippedright=transformed flipright enddef;

That enables us to write simply:

P3 = P2 flippedright; P11 = P10 flippedright; P13 = P12 flippedright;

Angle Marks

Figure 9: Points P₁₄ and P₁₅

In the process of building a module, the corners P_2 and P_3 must be folded along $\overline{P_5P_{12}}$ and $\overline{P_6P_{13}}$ respectively. We must get the creases by having the angle marks at P_{14} and P_{15} preprinted on the sheets (see figure 9); this way P_2 can be folded to P_{15} and P_3 to P_{14} and the creases come up. Since we know already about transformations, defining P_{14} and P_{15} is too easy:

P14 = P3 reflectedabout (P6, P13); P15 = P14 flippedright;

(c) the guides on the lower half of the paper

We don't want just points, however, but nice little angles of a certain length (ticklength say), into which the corners fit smugly (see figure 10). For this purpose we use MetaPost's unitvector command which reduces a given vector to length 1, but maintains its direction. With this tool we can build vectors with arbitrary length in a given direction, just by multiplying it with the proper dimension (see figure 10a). For the calculation of the endpoints of the angle's rays we define a *vardef* macro, which returns its last expression (like a function in certain other programming languages):

ticklength:= 0.1a; vardef tkend(expr p, q) = p + ticklength*unitvector(q-p) enddef;

The two rays of each angle are obtained by connecting P_{14} and the endpoints with the ---operator. It produces a path where the points are connected by straight lines. We can store these paths in suitable variables (of type path) and collect them in a container (Line[]). For the angle at point P_{15} we make use of the fact that transformations work on paths as well as on points:

path Line[]; Line14:= tkend(P14,P6)--P14--tkend(P14,P13); Line15:= Line14 flippedright;

Finally we want the guidelines in the lower half of the paper. So we apply a final transformation. (Here the := operator is mandatory, because the equation with = would be inconsistent.)

```
transform flipdown;
flipdown:= identity reflectedabout (P2,P3);
def flippeddown = transformed flipdown enddef;
```

for p:= 14,15: Line[p]:= Line[p] flippeddown; endfor

Boundaries for Calendrical Information

In order to print the calendar, the month and year information at the correct places, we need to calculate the positions of points P_{16} to P_{19} (see figure 3).

Since we obtained P_8 by reflecting P_5 about $\overline{P_4P_7}$ (see 'Mirroring of the Pentagon's Base'), we know from the interception theorems that the vector $P_8 - P_4$ is the same as $P_4 - P_{16}$ (see figure 12a). The position of P_{17} is again found by reflection (figure 11b).

P16:= 2[P8,P4]; P17:= P16 flippedright;

Figure 11: boundaries for calendrical information

In order to determine the position of P_{19} we look at P_{18} first: The triangle M is isosceles, so $|P_0 - P_4| = |P_{18} - P_4|$ and we can obtain the position of P_{18} by rotating P_0 around P_4 :

w:= angle(P0-P4) - angle(P7-P4); P18 = P0 rotatedaround (P4, -w);

(Yes, the expression angle(P7-P4) is indeed 0 and could have been left out, and yes, the use of unitvector may have been appropriate here too; indeed, we are going to return to using unitvector soon when calculating P_{19} .)

Now, that we know the position of P_{18} we can focus again on P_{19} . The line $\overline{P_0P_{18}}$ divides the triangle $\triangle P_4P_7P_0$ into two smaller triangles M and Y that contain the information about the month and the year respectively (see figure 12a). We observe that the triangles Y and Y' are identical, only that the latter

(b) position of P_{19}

Figure 12: boundary of the year-field

falls onto another face of the dodecahedron. Thus $|P_7 - P_{18}| = |P_7 - P_{19}|$ and we get the position of P_{19} by applying the universal example of constructing a vector by multiplying its length with the univector of its direction:

P19 = P7 + unitvector(P17-P7)*length(P7-P18);

Guideline for aligning two modules

When all the modules have been folded, every two of them at a time are to be combined to a double module. To get the correct angle between the faces of the dodecahedron, the two modules must be aligned along line $\overline{P_6P_{20}}$. (As it happens, this is just the bisector of angle $\angle P_6P_3P_7$, but we pretend not to know about that.) Since we know already about the position of P_{19} , we can apply the same technique as in 'Left Edge' and have

Figure 13: The guideline for aligning two modules

On the final sheets we don't want the whole line to show up; some part (20 % say) at the beginning and the end should be left out (see figure 2). We find the new starting point 20 % from P₆ on the line $\overline{P_6P_{20}}$. Sounds familiar? Yes, see section 'Mirroring of the Pentagon's Base' – we can apply the [p,q]-expression again and store the resulting path in our Line[] container.

Line[20]:= .2[P6,P20]--.8[P5,P20];

Drawing the folding sheets

Now MetaPost knows about all the relevant points and we can let it draw the folding sheets. The result, together with some labels, is presented in figure 14. Alas, the calendar is still missing (see below).

```
beginfig(1);
  draw P1--P2--P1 flippeddown--P3--cycle;
  draw P8--P9;
  draw Line[20];
  for 1:= 14, 15: draw Line[1]; endfor
endfig;
end.
```

Summary and Outlook

For now we have learned how to make use of some important features of MetaPost, among them

- \Box addition of vectors,
- □ affine transformations like *shifting*, *rotation*, and *reflection*,
- □ solving linear equations (the *whatever*-statement),
- \Box and last but not least how to draw *straight lines*.

Figure 14: the printed information (with labels)

In the next issue of the MAPS we will have a look on MetaPost's algebraic capabilities and the possibilities to add labels and T_EX content to the picture when we are going to make MetaPost calculate and draw the calendrical information for the dodecalendar too.

In the meantime you can prepare a set of twelve folding sheets and assemble a dodecahedron as shown at the above mentioned web page. (If you don't know how to run MetaPost on your system, you can try the MetaPost Previewer at http://www.tlhiv. org/MetaPostPreviewer, just put the code without "beginfig(1);", "endfig;" and "end." into the textfield and press the preview button.)

Have fun!

References

- [1] John D. Hobby. A User's Manual for MetaPost. Technical Report 162, AT&T Bell Laboratories, Murray Hill, New Jersey, April 1992. Also available at http://www.tug.org/docs/metapost/ mpman.pdf.
- [2] D. E. Knuth. Computers and Typesetting, volume C. Addison Wesley, Reading, Massachusetts, 1986.

Richard Hirsch richard.hirsch at gmx dot net

ConT_EXt User Meeting 2007 *Epen, March 23–25*

Mojca Miklavec

The 23^{rd} of March was a drippy Friday afternoon, but the rain did not stop T_EX-ies from using almost all modes of transport to gather in the small village of Epen on the Dutch–Belgian–German border. Most of the 26 attendees from 11 countries, arrived by plane, train, bus, or car, but a few preferred to roller blade, to buy a new bike (because the old one broke down on the way to the meeting), or to jump over the fences all the way from Aachen.

The extremely interesting and packed schedule meant evening discussions that often continued into the wee hours of the morning. And even with the delicious food, Taco usually had problems interrupting the lively discussions and wild coding to bring us down to the dining room before the food got cold.

Indeed, we hardly had time to breathe during the meeting. Those who were not in Epen should feel sorry for missing out on the fun!

Tutorials

Friday evening started with an excellent tutorial by Taco on how to write a ConT_EXt module. He led us from the basics of writing a module to the most important aspects, conventions, tips, and tricks. The tutorial included dozens of pages of documentation to be published on the wiki. Our assignment was to write a new FIXME module, which has been on the ConT_EXt wishlist for more than a year. Although no module had been written by the end of the meeting (perhaps because there were too many interesting talks), the tutorial and documentation should inspire more authors to provide new high-quality ConT_EXt modules.

Two more tutorials followed on Saturday.

Willi's tutorial was not just about setting up a page layout in ConT_EXt, but also dealt with typographical traditions concerning printing, and the related technical aspects like the properties of the paper sheets your book will be printed on.

In the picture you can see Sanjoy Mahajan solving some of the related questions: how many times do I need to fold this sheet to get 16 pages? And what is the grain direction of the paper? Taco Hoekwater: Writing a ConT_EXt module

Willi Egger: Page layout, Arrangements and Posters

Willi in action

Hans Hagen: XML In contrast to math where many users can start from their LaT_EX experience when switching to ConT_EXt, XML processing is ConT_EXt's speciality without beginner's manual. That meant that every single hand was raised when Hans asked about the interest to listen to his XML tutorial, although it was almost bed-time when it started.

History of Typesetting & Typesetting of History

Taco Hoekwater:The first talk on Saturday morning was given by Taco Hoekwater, one of the firstA short history of
ConT_EXtConT_EXt users outside PRAGMA ADE. It was enjoyable to listen to the summary of the
early revolutionary ideas Hans implemented into his system at a time when some
of the attendants in Epen were still school kids who had only dreamt about owning
a computer.

Thomas A. Schmitz:Coming from a completely different field as most attendees (humanities), ThomasClassical greekshared his experience of ConT_EXt related to typesetting Ancient Greek, strugglingwith ConT_EXtwith font-system oddities and limitations of PDFT_EX. Is LuaT_EX going to offer the
definitive answer to the problems he had to fight with?

Idris Samawi Hamid:In contrast to the usual development cycles of ConTEXt and its modules, where
documentation is lagging way behind the functionality, Idris brought with him a
complete specification of a yet-to-be-written module for typesetting Critical Editions
with multiple levels of footnotes, proposing a complete hierarchy of commentaries.

Talks From User Experience ...

Mari Voipio: ConT_EXting in MS wINDOWSa user's view

Mari presented all the problems a newbie faces when switching from MICROSOFT products to ConT_EXt: no WYSIWYG editor, no drop-down menu with fonts, no copypaste to include images, no easy way to create tables ... Would a WORD2CONT_EXT tutorial help?

Sanjoy Mahajan: Typesetting a physics textbook with ConT_EXt Sanjoy described how he uses ConT_EXt to typeset his mathematics textbook (*Street-fighting mathematics*), covering project structure, page layout, and figure–text integration (figure placement).

The conference room

Duncan's company uses ConT_EXt for typesetting multilingual documents (including Arabic) from XML sources, but he showed a great deal of courage when he dared to make a presentation in PowerPoint during ConT_EXt meeting, for which he has been "punished" appropriately during the live demo.

Duncan Hothersall: Using ConT_EXt as part of a larger system

Useful tools

Patrick's presentation of his TEXTMATE extensions for better $\text{ConT}_{E}Xt$ support could be called "a story of success" or "a good reason why one should attend T_EX meetings". His first announcement about the $\text{ConT}_{E}Xt$ bundle on the mailing list got no reply. This time, most of the Mac users at the meeting eagerly awaited the upload of the new bundle, in order to try it on their own computers. The bundle supports syntax highlighting and auto-completion of all user-level commands. It also provides an interactive list of arguments that these commands accept, and provides shortcuts for typesetting and previewing.

Probably tired of the ease of typesetting PDF documents with ConT_EXt, he has also written support for manual editing of PDF in TEXTMATE, so that cross-reference tables can be calculated automatically. Interested hackers should ask him for details.

Discussions

All attendees agreed that our shelves lacked a well-written "THE CONTEXTBOOK" or (online) Cookbook, but no one volunteered to write it. It was also agreed that $T_{E}XSHOW$ is incomplete. Filling the gaps in this area is mostly up to the users.

Some suggested to clean up and improve the wiki pages: to create a site index, to point the most important recent changes and advances since the last update of $ConT_EXt$ manual. More samples should be provided, and submitting test files should be made easier.

the TEXTMATE editor

ConT_EXt integration in

Patrick Gundlach:

Patrick Gundlach: Creating a PDF document, the hard way

Mojca Miklavec: Documentation

Sanjoy Mahajan: Regression testing The one who makes few mistakes makes little progress. Because ConT_EXt development is progressing apace, a repository with test suites has been set up, and Sanjoy has been developing tools to check for broken functionality between different ConT_EXt releases. Simplifying submissions of test cases should be one of the first steps towards a better quality control before new " γ releases", as some jokingly called them.

A Glimpse into the Future

Arthur Reutenauer: An Introduction to OPENTYPE fonts

Unfortunately, OpenType fonts are not as open as one would expect them to be, but luckily enough both Hans and Patrick have been open enough to ideas and requirements for proper font support in ConT_EXt and on the garden, some of which have secretly been added to live.contextgarden.net during the night before presentation, while Patrick himself was sleeping.

Idris Samawi Hamid:If typesetting Ancient Greek is problematicOriental TEX- what about Arabic? After (mis)using
ALEPH for quite some time, Idris claimed
that no existing system was able to meet
his requirements to typeset old Arabic
texts, and applied for a grant at Colorado
State University to fund Taco's develop-
ment of LuaTEX. Without such a grant, we
would probably not be seeing the rapid de-
velopment of LuaTEX, aiming for the first
beta release during TUG conference this
year.

We are now eagerly awaiting his next tutorial about writing funding proposals (hopefully applicable to EURO currency as well).

Hans Hagen,	E a
Taco Hoekwater:	
LuaT _E X,	Pages
ConT _E Xt MKIV,	
Fonts & Typescripts	

				0 55% • 0 Dj.	Gilde -
L :	7% complete	ed - Skype [®] Receiving file		·	
	Recei	iving file			
	* Qu	ico_etvenland		00	
	-	hates.exe			
	L	57% done, 00:00:00 remain	(659 KB/s)	File sze: 2.8 MB	
			A		

Last but not least, Hans and Taco filled in the remaining time not already reserved for other presentations. Although I've seen quite some of their talks already, they always keep us surprising with some really special slides – both in visual appearance and contents. The development has been progressing almost with the light-speed – even during the conference. The picture shows a (non-scheduled) Live demonstration of bugfixing in

LuaT_FX during Hans's tutorial.

The most special thing of the meeting was that most of us have known each other from vivid discussions on the mailing list without ever meeting before. So the introductory discussions that would otherwise start with platitude phrases asking for names, location or profession, were usually replaced by hitting the core of the subject:

"Wait! You are the one who did ...!"

The meeting was a great success and left a deep impression to everyone. Most attendees left Epen saying "See you next year".

How to fit five nationalities into one car? Well, $T_{\rm E}$ Xies have lots of experience with packing boxes. So as long as they go well with each other, they always find a solution.

Invitation to Slovenia

The second $\text{ConT}_{E}Xt$ user meeting, in 2008, will take place in Slovenia, near the Slovenian–Austrian–Italian border, and last probably a day or two longer than this one, in order to leave you more time to discuss the fascinating topics, to exchange ideas, and to breathe fresh air while sightseeing or doing sport. As the date approaches and planning crystallizes, the time and location will be announced on the mailing list and contextgarden.net.

Mojca Miklavec

Participants:

Front row (from left to right): Luigi Scarso (it), Mojca Miklavec (si), Zofia Walczak (pl), Taco Hoekwater (nl), Duncan Hothersall (uk), Arthur Reutenauer (fr) Back row: Bernd Militzer (de), Willi Egger (nl), Thomas Engel (de), David Roderick (uk), Oliver Buerschaper (de), Patrick Gundlach (de), Mari Voipio (fi), Steffen Wolfrum (de), Luuk Beurskens (nl), Alexander S. Berdnikov (ru), Jano Kula (cz), Idris Samawi Hamid (us), Hans Hagen (nl), David Kastrup (de), Michael Guravage (nl), Karel Horák (cz)

Missing from the photo: Sanjoy Mahajan (us), Tobias Burnus (de), Thomas A. Schmitz (de), Jelle Huisman (nl)

EuroBachoT_EX 2007

Michael Guravage

Saturday

Jerzy Ludwichowski, GUST president and conference organizing committee chair, opened the conference by welcoming all the participants, and encouraged everyone to enjoy the proceedings in the spirit of the conference – "Paths to the Future".

The first speaker was **Jonathan Kew**, who related the history and current status of $X_{\Xi}T_{E}X$. After its initial appearance in the spring of 2004 on Mac OSX, a version supporting OpenType fonts appeared the following year. $X_{\Xi}T_{E}X$ for Linux was announced at BachoT_EX 2006, and was quickly followed in June by a version for Windows. This year marked a milestone for the $X_{\Xi}T_{E}X$ project, in that it became an integral part of T_EX Live distribution.

Key features of the current X₄T_EX implementation include its native Unicode support, improved integration with existing macro packages and its smart inclusion of hyphenation patterns.

Looking ahead, future releases will support host operating system fonts (OpenType, TrueType and PostScript) with no TEX-specific setup. Another new feature is inter-character tokens – inserting arbitrary tokens in-between adjacent characters based on character classes. This allows one to easily mix scripts and fonts, or insert spacing to stretch text. Finally, to better support non-Latin scripts minority languages, and scripts not yet in Unicode, X_HTEX will support SIL's Graphite font system.

Taco Hoekwater began his presentation by announcing that Metapost version 1.0 is now available. New features include, file name templates, new color types, i.e. cmyk, grey-scale and marking-only and an improved manual. To overcome the various size limitations of the current implementation, Metapost version 1.1 will incorporate dynamic array allocation and provide greater numeric precision. To obviate problems with existing input files, this new version will appear as a separate binary. Finally, in the next year or so Taco anticipates making Metapost functionality available as a library.

The title of **Hans Hagen's** presentation was "Beware of too much tokenspeak". T_EX consumes characters which, in turn, become tokens, and then nodes. Hans gave us a glimpse into how Lua T_EX , at the node list level, is simplifying and streamlining previously complex pieces of T_EX . So much so that he has been able to retire moderate pieces of existing Con T_EX code. Consistent with the theme of the conference, Hans described how Lua T_EX provides a genuine opportunity to embrace the future.

Joanna Ludmiła Ryćko introduced the T_EX Clinic. The clinic began last year at Bacho T_EX , and was open to anyone at the conference seeking relief from a nagging T_EX complaint. A number of T_EX clinicians were introduced and put at the disposal of the participants.

Johannes Große presented MathPSfrag – a tool that replaces existing labels in Encapsulated PostScript graphics with LaT_EX generated labels. MathPSfrag extends PSfrag, allowing both automatic and fine grained manual control over label content and placement.

Siep Kroonenberg presented her epspdf conversion utility. Written in Ruby and Ruby/Tk, and using Ghostscript and pdftops, epspdf offers both command line and graphical user interfaces for a round-trip conversion between PostScript and PDF.

Zofia Walczak demonstrated several basic and advanced features of the the Portable Graphics Format (PGF) package. Written by Till Tantau at the Institute for Theoretical Computer Science at the University of Lübeck, PGF is partitioned in three layers: system, basic and front-end. TikZ is a front-end for PGF. It provides access to all the features of PGF, and is intended to be easy to use. If you look closely you will see it has borrowed part of its syntax from both METAFONT and PSTRICKS.

Norbert Preining stood in for **Jim Hefferon** and described a new 'experimental' procedure for uploading software to CTAN. The workflow includes upload, approve and install steps resulting in TDS compliant

bundles. A means for updating package meta-data is also present.

Jean-Michel Hufflen introduced us to XSL-FO, comparing and contrasting corresponding $LaT_{E}X$ and XSL-FO structures.

Grzegorz Murzynowski introduced gmdoc, a package for documenting LaT_EX style files. It differs from its predecessor by emphasising compact 'minimal' markup.

Grzegorz Murzynowski continued by describing his gmverse and gmcontinuo packages. The former provides right alignment for long and broken lines of verse. The latter allows typesetting paragraphs *in continuo*, marked not with a new line and indent but continuously, marked with only the \P sign.

In the last talk for Saturday, **Marek Ryćko** argued for a fine, or finer, grained component architecture for T_EX functionality. He hopes that focusing on interfaces to facilitate integration will be the tipping point for T_EX development.

The weather was clear and cool throughout the week. So it was under the stars and a waxing moon that, later

that evening, we enjoyed the annual bonfire; replete with food, drinks, songs, and of course fire breathing $pyroT_{E}Xnics$.

Sunday

This year we found the accomodation not quite ready for guests. For instance, there were no curtains and toiletpaper was missing as well. It took us a while to find out that all cloth and paper was being used in the "make yourself some paper" workshop given by **Grażyna Jackowska** that ran in parallel to the talks. As the conferences advanced, the participants had to become more careful where they walked because handmade paper was hanging on trees everywhere.

Andrzej Tomaszewski began the second full day of talks by describing the various conditions and limitations he encountered while producing "The Master of Life Arteries of the Greater Warsaw;" a jubilee book for the Warsaw Municipal Water Authority.

Dorota Cendrowska presented several, oft disregarded, design criteria to consider when typesetting enumeration for inclusion in printed text and multimedia presentations.

Jerzy Ludwichowski described his and **Karl Berry**'s work on consolidating the GUST SOURCE and NON-SOURCE font licences into the single GUST Font License (GFL). The result is a license that is legally identical to the LaT_EX Project Public License (LPPL), which the FSF and Debian already accept as a legitimate free software license.

Jean-Michel Hufflen described how MlBibT_EX strives to be a better BibT_EX. Starting in 2000, MlBibT_EX originally was written in C, but has been reimplemented recently in Scheme, a Lisp dialect. Jean-Michel anticipates MlBibT_EX's first public release in May of this year. Next, **Jean-Michel Hufflen** showed how lexicographical order relations are language-dependent, and how MlBibT_EX addresses this issue in the context of multilingual bibliographies. Bibliography styles can be unsorted or sorted. However, the bst language's sort function is suitable for English only. MlBibT_EX uses nbst and scheme which together allows one to sort European Languages in correct lexicographic order.

David Kastrup described how to download, install and use the Emacs AUCTEX package. You can retrieve the latest version of AUCTEX from http://www.gnu.org/software/auctex. And for the stouthearted, the source code for a prerelease version of Emacs 22 is available from

http://alpha.gnu.org/gnu/emacs/pretest

Péter Szabó demonstrated dvdmenuauthor, a collection of tools, including $pdfLaT_EX$ and xpdf, used to create menus for dvdauthor – an excellent low level tool for creating video DVDs on Unix systems.

Norbert Preining described how the Debian "etch" release contains both T_{EX} Live 2005 and teT_{EX} – in parallel, and how both system administrators and regular users can benefit from side-by-side T_{EX} distributions. Norbert concluded with a preview of T_{EX} Live 2007 and further developments regarding T_{EX} on Debian.

The presentation of **Atif Gulzar** and **Shafiq-ur Rahman**, who are from Pakistan, began by explaining how Urdu is used by some sixty million people in twenty countries. Urdu is based on an Arabic script with Nastaleeq as its most prevalent writing style. Nastaleeq is highly contextual – written right-to-left and top-to-bottom. Atif constructed an Omega virtual font containing 827 glyphs, and used Omega external OTPs in a two pass solution to achieve the appropriate ligature placement and kerning. From the more than twenty thousand valid ligatures in Urdu, Atif was able

to correctly render and place a subset of approximately seven thousand ligatures.

Hossam A. H. Fahmy presented his joint paper with Amir M.S. Hamdy about their aim to create a font suitable for typesetting the Qur'an. Using examples from existing fonts, he explained many of the problems that one encounters when attempting to digitize a calligraphic script like Arabic. The second part of the talk focused on a detail of that: how to simulate a real-world pen nib in METAFONT.

All the news about $pdfT_EX$ version 1.40 was brought to use by **Martin Schröder**. Most prominent among the new features are the ability to create compressed object streams, support for JBIG2–encoded images, and the addition of a colorstack á la dvips. The colorstack feature is already in use in the new releases of the hyperref package, and solves the LaT_EX problem of the text color disappearing at a page break.

Karel Horák walked us through the history of the háček – or caron, if you prefer – in Czech typesetting. He showed us not only an objective historical progression of the symbol shape, but also many forms that occur in actual fonts. Some few he considered good, some more not so food, most all are apparently simply hideous and out of touch with Czech tradition. The likely cause is that the big font foundries never considered asking a Czech typographer for an opinion.

Hàn Thế Thành also talked mostly about accents, but in this case about the ones used in Vietnamese. The writing system is based on the Latin alphabet, but it has great many accented characters to denote sounds that are not differentiated in the roman alphabet. His VnT_EX package is a complete solution for typesetting Vietnamese, including support for large number of fonts, some of which he created himself.

The day ended with two presentations by **Tomasz Luczak**. The first talk was about the LyX document processor (see www.lyx.org), the second talk about how to convert wiki markup into T_EX source. Unfortunately, both talks were given in Polish, and even with the simultaneous English translations provided by kind members of the audience it was hard to follow.

Monday

There were no lectures scheduled for Monday. Instead, we took an excursion to Toruń where we visited the District Public Library – Copernican Library and toured the town. After which we drove on to Chełmno where we enjoyed a scrumptious dinner and music before returning home.

Toruń, situated astride the Vistula (Wisla) river, has been an important regional and trading center since medieval time. A member of the Hanseatic League, Toruń boasted a fleet of one hundred and fifty ships, whose trade allowed Toruń's prosperity to rival that of Brugge, Copenhagen and London. UNESCO designated the Gothic buildings of Toruń's Old Town a World Heritage Site in 1997.

At the Copernican Library we were treated to a sample of the treasures of their collection, including a first edition of Copernicus's "Revolutionibus Orbium Coelestium", or "The Revolution Of The Heavenly Orbs" which appeared in print in 1543. Lastly, we were shown a recent reproduction of Gutenberg's Bible. The exemplar is one of 180 copies, matching Gutenberg's original number. Each exemplar was made using the same materials and techniques as the originals, including individual letter variations (font expansion) that Gutenberg used to achieve aesthetic interline spacing.

Our tour of Toruń's Old Town began at the historic Town Hall under a statue of Nicholas Copernicus with the inscription, "He moved the earth, and made the sun stand still." We visited several churches and historical landmarks before ending where we started.

We were running late, so it was late in the afternoon when we arrived in Chełmno, a town located on seven hills, and one of Europe's best examples of defensive architecture. Chełmno's several churches date from the thirteenth and fourteenth centuries. On the fourteenth of February each year, the inhabitants ostentatiously celebrate Saint Valentine's Day since the local parish church has kept the saint's reliquary for many centuries.

After a short stroll through the town, we retired to a local restaurant where we enjoyed a delicious buffet dinner. Entertainment was provided by a group of musicians including Bogusław Jackowski's daughter.

Tuesday

In the first presentation Tuesday, Hàn Thế Thành presented a summary of font-related topics in $pdfT_{E}X$. Some, like font expansion and margin kerning, are already documented in the $pdfT_EX$ manual. The rest are scattered across README and example files, emails and mailing lists. For the first time, all these topics were brought together in one place. Topics include adjusting letter and inter-word spacing, adding additional kerning before or after certain characters from a font, Unicode support for browser cut, paste and search actions and sub-fonts – a mechanism for supporting CJK languages.

Hans Hagen began his presentation by describing the issues driving the development of $ConT_EXt$'s font system, namely switching between different font styles and sizes, and proper font handling in math mode. To make font switching easier, $ConT_EXt$ can assemble a collection of different fonts into a single structure called a typescript. For example, a typescript might use palatino-regular as the default serif font, palatino-sans as the sans font, courier as the mono space font and euler as the math font. Instantiating this typescript would make these fonts available when using the commands rm, ss, tt, and \$\$ respectively.

Hans concluded by describing how the trend toward OpenType fonts, consistent user interfaces and DTP-like functionality will continue to inform where and how $ConT_{\rm F}Xt$ controls fonts – and vice versa.

Taco Hoekwater explained how LuaT_EX, with its native support for OpenType fonts, will obviate the need for static font metric files. Currently LuaT_EX implements a few dozen callbacks at strategic points in T_EX. When populated, callbacks will override T_EX's default behaviour with custom code. Taco demonstrated how, when using OpenType fonts, LuaT_EX callbacks invoke code that extract the font metric information directly from the OpenType font itself.

Grzegorz Murzynowski identified two differing opinions concerning the $T_{E}X$ & Co. logos. The first group contends that the font is part of a logo, and

therefore the combination is inviolate. The second group contends that a logo should be typeset in the same font as its context. For the latter group Grzegorz suggests several slight modifications to the LaT_EX logo to make it fit better with various fonts.

Sam Guravage, the youngest speaker ever to address a BachoT_EX conference, explained how he uses T_EX for all his school assignments. Sam enumerated what he found easy in T_EX e.g. sectioning and lists, and what he found difficult e.g. figures and error messages. Sam's conclusion was that T_EX makes his work look better, and looking better meant higher grades.

David Kastrup began a series of talks by introducing $qstest - a LaT_EX$ macro package for writing regression tests. The idea is that a user can include a number of tests in his .dtx files and use pattern and keyword lists to specify which tests should be run; either when his package is loaded or while running a separate test file through LaTEX. The qstest package, together with the typedtx documentation format and docstrip, allows one to integrate unit testing and documentation in a single .dtx file.

David Kastrup continued with a discussion of the makematch LaT_EX macro package. Factored out of the gstest package, makematch matches patterns with wildcards against a list of targets.

David Kastrup concluded his series of talks by explaining how the bigfoot macro package, originally written as a footnote apparatus for text-critical editions, can benifit the ordinary LaT_EX user. For example, default footnote behavior bypasses T_EX's global pagebreak optimization whenever a footnote does not completely fit on one page. In contrast, footnote breaks in bigfoot are reconsidered for each possible breakpoint of the main text. This means T_EX will find the optimum combination of breaks in main and footnote texts.

Robustness, optimization, color continuity and paragraph footnotes are just a few reasons why LaT_EX users might consider using bigfoot to replace T_EX 's native footnote apparatus.

Klaus Höppner walked us through the process of creating PostScript Type 1 fonts from METAPOST sources using MetaType1. Created by Bogusław Jackowski, Janusz Nowacki and Piotr Strzelczyk, MetaType1 is a collection of tools including METAPOST, t1utils and AWK; together they are used to generate PostScript Type 1 AFM, TFM and PFB files. Though documentation was scarce, MetaType1 proved to be the correct tool for the job.

Petr Sojka and Michal Růžička explained how they generated PDF, HTML and XHTML+MathML output from a single LaT_EX source file. While many single-source publishing approaches begin with XML, the amount of mathematics involved made T_EX the only viable input format. By enforcing a strict separation of form and content, and modifying the T_EX4ht sources, the authors were able to realize individual workflows for each output format.

Péter Szabó reflected on his experience compiling various conference proceedings – including those of last year's EuroT_EX conference. Péter described how the judicious use of procedures and tools can clarify and simplify the work of authors, editors and printers. Revision control software, mailing lists, shell scripts, utilities, instant messaging and of course T_EX, can be combined to realize effective publication workflows.

David Kastrup described DocScape Publisher, an XML oriented database publishing system from QuinScape GmbH. At its core, DocScape uses LaT_EX, pdfT_EX, and David Carlisle's xmltex. Current applications include financial reports, a variety of product catalogs, and online excerpts.

Karel Píška described procedures and programs he has developed for comparing and viewing font elements. His workbench can be downloaded from: http://www-ep.fzu.cz/~piska/tfcpr.html. From this set, Karel demonstrated several tools:

cprpk, cprpkt1, cprpkt1c, cprticpk and cprpkpk:

tools for comparing two bitmapped representations of a glyph pair at two different resolutions.

- prfkrn, prfkrna, cpkrn and cpkrna: tools for comparing kerning pairs in two (or three) relative
 - T_EX fonts, or in two releases of one font.
- **prfof and cprof:** tools for comparing and proofing outline fonts.

In his second presentation, **Karel Píška** applied his tools to analyze and verify the Latin Modern fonts. His results included examples of individual letter defects and inconsistencies. Interestingly, he found an inordinately large number of kerning pairs; the majority of which he thinks are not relevant to any language. Through his exacting work, Karel is improving the quality of the fonts we use everyday.

Janusz M. Nowacki unveiled his complete set of Latin glyphs for the Cyklop font. Designed and cast in lead in Warsaw in the 1920s by J. Idźkowski, Cyklop is a very heavy sans-serif two-element font, Originally produced only in the oblique form, in sizes from 8 to 48 pt, Cyklop is used for newspaper titles, posters, forms, labels and invitations. In addition to the new Latin glyphs, Janusz has added a complete new upright variant.

To round out the day, an informal reception was held in the lecture hall, where participants could enjoy a glass of wine, pleasant conversation, and an exhibition of black and white prints taken by Janusz Nowacki.

Wednesday

Paweł Jackowski presented this years crop of T_EX beauties and oddities, sixteen in total. You have to see these pearls to believe them. The entire collection can be found at: http://www.gust.org.pl/pearls.

Ross Moore spoke about his experience typesetting articles for The Journal of The Australian Mathematical Society. Leveraging the interactive capabilities of PDF, AMS journal articles, available free online, now incorporate lots of useful meta data that readers would otherwise have to research themselves.

To enlighten our path to the future, **Arthur Reutenauer** recounted T_EX 's recent history. Subtitled "Pax T_EX nica – The program on which the sun never sets", Arthur described how, from T_EX78 to Aleph, X₂ T_EX and Lua T_EX , the various T_EX engine extensions and macro packages have gradually enabled us to typeset every language and script of the world – well almost.

Ulrik Vieth presented an overview of the T_EX historic archive, an archive of historic T_EX distributions and packages hosted on the TUG FTP server (http://ftp.tug.org/historic/). T_EX's history spans thirty years now, and while its early history is well documented, the history of various macro packages, fonts, and systems like METAFONT and METAPOST must often be pieced together from anecdotal evidence.

After thirty years, the history of T_EX remains an interesting topic of research. The archive contains a wealth of information, but gaps still exist. Contributions are welcome, especially those about (pdf) T_EX and Latin Modern fonts.

Bogusław Jackowski, Jerzy Ludwichowski and Janusz M. Nowacki described the current status of the two large font projects being developed by T_EX User Groups: Latin Modern and T_EX Gyre.

The Latin Modern fonts project was begun in 2002. Based on Computer Modern, the Latin Modern family currently consist of seventy two text and twenty math fonts; available in both OpenType and PostScript Type 1 formats.

The Gyre font project that was begun in 2006 aims to supplement the thirty three URW++ fonts distributed with GhostScript to cover all Latin languages, similarly as the LM fonts do. Hinting is improved and files in OpenType format are provided. Extensions to the math capabilities are planned for the near future.

Here are those T_EX Gyre fonts which have already been given new names:

Original name	:	Gyre name
Avantgarde	:	Adventor
Bookman	:	Bonum
Courier	:	Cursor
Helvetica	:	Heros
Palatino	:	Pagella
Century Schoolbook	:	Schola
Times	:	Termes
Zaph Chancery	:	Chorus

The Latin Modern and Gyre project pages are found on the http://www.gust.org.pl website. The respective folders are /projects/e-foundry/latinmodern and /projects/e-foundry/tex-gyre. Recalling Niklaus Wirth's statement that "algorithms plus data structures equal programs", **Marek Ryćko** demonstrated how to realise Lisp like structures and methods in T_EX. Marek argued that a clean and consistent approach to handling lists of elements will make programming T_EX simpler, and T_EX programs, i.e. macros, more reliable.

Jerzy Ludwichowski concluded the conference proceedings by thanking the organizers, authors and participants. And as a particular encouragement, the GUST board awarded Sam the award for the best conference presentation. The award was impressed on one of the handmade paper sheets.

Michael Guravage (Hans Hagen, Taco Hoekwater)

EPSON Scan

MiKT_EX installeren valt erg mee

Frans Goddijn frans@goddijn.com

Toen ik laatst een XP laptopje kocht, was een van de dingen die daar op moest natuurlijk een T_EX installatie. Ik heb dat echter tot het laatst uitgesteld, want ik kan me zo droevig dom voelen als het niet werkt en ik installeer T_EX zo zelden dat ik me elke keer weer afvraag hoe het ook alweer zat. Liefst zou ik T_EX als een pakket kopen, wat mij betreft met een betaling aan een non-profit organisatie die er ligaturen en oldstyle cijfers van kweekt. Als het maar werkt. Zo van CD erin, wachten tot de setup klaar is en dan vind je alle betreffende iconen op je scherm.

Wat ook mooi zou zijn: een aanpasbare GUI zoals (figuur 1) mijn scanner heeft. Er is een extreem simpel GUI voor de thuisgebruiker die alleen wil scannen en printen, een met wat meer opties voor de handige gebruiker die wil kunnen bepalen wat hij scant/ print en een professionele GUI met talloze knoppen en regelpanelen voor kleur, zwartwit, retouche, en vele print opties.

Met T_EX zou ik er dan een willen voor de eerste gebruiker, die een sterk uitgeklede Word-GUI ziet met een standaard "hello world" tekstje dat met een van de twee knoppen kan worden gecompileerd en met de andere bekeken en geprint. En een voor de gebruiker die de manual heeft gelezen (er hoort een vuistdikke "T_EX For Dummies" bij de installatie-schijf natuurlijk) met veel meer opties, in feite een kant en klare installatie van WinEdt. Plus een Geek-GUI in twee versies: eentje met heel veel knoppen, en zo'n compleet zelf in elkaar te zetten super-editor, emacs of zo, en de meest macho knop van allemaal, die naar een zwart scherm leidt waar op de command line lange regels met tientallen variabelen kunnen worden ingetikt met opdrachten voor ruby, metafont, emtex, ghostscript.

Maar goed, dat is er niet.

Van mijn buurvrouw tijdens het NTG-diner afgelopen weekeinde kreeg ik de tip eens MikTEX te proberen. Op www.miktex.org is die te vinden en daar wordt op de download-pagina de keuze geboden voor de "Basic MiKTEX Installer" en voor de grotere "MiKTEX Net Installer". De kleinere haalt zelf later op wat je eventueel zou missen en daarom kies ik die (figuur 2).

De installer is ruim 40MB, toch niet kinderachtig.

Figuur 1. Mijn scanner GUI

Installing a basic system To install a basic MiKTeX system, download and run the "Basic MiKTeX" installer. MiKTeX has the ability to install missing packages automatically, i.e., this installer is suitable for computers connected to the Internet. Download "Basic MiKTeX" Installer basic-miktex-2.5.2471.exe opener Installing t U hebt gekozen om het volgende bestand te openen: 🖻 basic-miktex-2.5.2471.exe You use the I Dit is een: Toenassing van: http://heanet.dl.sourceforge.net MiKTeX pack; Wilt u dit bestand opslaan? system. See MiKTeX manu Bestand opslaan Annuleren Download Mikrex net instaner

Figuur 2. MiXTeX download

Ik start de installer en krijg het scherm te lezen met de "Copying Conditions" en zoals altijd bij installaties klik ik ongezien voor akkoord, want dan kun je verder. Daarna de keuze om MiKTEX te installeren voor mezelf of ook voor andere gebruikers als die er ooit bijkomen op mijn XP systeem. "Maakt me niet uit" zou wat mij betreft een derde keuze kunnen zijn. De plek waar alles geïnstalleerd gaat worden is zoals gebruikelijk een eigen map in "Program files" op de schijf waar XP zijn systeem heeft staan, daar verander ik niets aan. Dan

🖥 Basic MiKTeX 2.5.2471 Installer	🗙 🖉 Basic MiKTeX 2.5.2471 Installer 🛛 🔀
Settings Set your preferences.	Information Review the settings.
Preferred paper: A4 💽 Install missing packages on-the-fly: Yes 💌	MiKTeX Setup Wizard has enough information to start the task. If you want to review or change any of the settings, click Back. If you are satisfied with the settings, click Start. Install basic packages to C: Vrogram Files/MiKTeX 2.5 Install MiKTeX for all users Preferred paper size is A4 Packages will be installed on-the-fly
< Vorige Volgende > Annuleren	< Vorige Start Annuleren

Figuur 4. Een pagina uit de FAQ

de vraag (figuur 3) of ontbrekende pakketten zonder omhaal mogen worden opgehaald van internet of dat me dat eerst moet worden gevraagd en ik kies voor "on the fly" ophalen. Mist er wat, meteen doorpakken, installeren en verder met m'n document.

Dan passeren wat schermen (figuur 5) waarin ik steeds voor "Start", "volgende", of "Sluiten" kies en daarna is de installatie klaar. Wat nu? Ik verwacht een icoon op het XP-bureaublad, met daarachter een "gezicht" van MikT_EX of een WinEdt-achtige editor die alles overkoepelt, maar dat bleef uit. Nu lijkt het eerst alsof de MikT_EX installatie zichzelf met succes heeft verstopt.

In het XP-startmenu vind ik wel "MikT_EX 2.5" en een van de onderdelen daar is een MiKT_EX FAQ. Daarin staat bij hoofdstuk 5 (figuur 4) de vraag die volgens mij bovenaan hoort: "I have installed MiKT_EX. How do I use it?" Het antwoord is "you can now say 'tex

Figuur 5. Wat er zoals passeert tijdens de installatie

MiKTEX installeren valt erg mee

iKTeX F	ow Task															
- 6							Name:		Keywords:		Filename:		Filter		Reset	1
	memoir								Title					_		
innote osym	General	Files							Marginnote allows n A Type 1 font: Mart	otes in the i n Vogels Sy	margin, even w mbole (marvos	here (marg ym) font	inpar fails			
comp design	Name:	merno	r						Mathematical fonts	o fit with p	articular text fo	onts				
ematica pazo	Date:	20064	08-1310	5					Pazo Math fonts an	LaTeX pac	kage to typese	t Palatino				
ime ins emath tion	Title:		Typeset	liction, no	n-fiction and	mathemati	cal books		Make math bold or it Put captions in the r	alic accordi	ng to context					
ools iir iirchapt	Descrip		caption : There is	tyles and an easy w	of predefiner easy means ray of specify and for printin	of creating ing page r	new ones. nargins etc.,	<	Miscellaneous tools I Typeset fiction, non Chapter styles in me	y Mark Wo	oding I mathematical I	oooks				
s xbi	Size		3083182						Adjustments Mentis	publishers i		iermany				
kot nost-eox	5128		100-51 02	pynes					Example drawings u							
ex ml d									METATeX communic MetaPost library for Typeset method and A Polish format for 1	ites TeX an typesettin; I variable d eX	d METAFONT g UML diagrams					
									A MetaFont-PostScr LaTeX support for M		d loop foots					
					OK	Annuler	en To-	epassen	Draw Metallont/Pos	pictures fr		mands				
					/110.00	211100		vyoonodii	Pretty-print Metafor The MH bundle	it source						
Te.	X Pa	cka	ge A	lana	ger					_						×
	X Pa		ge A	lana	ger										(×
ownle			ge A	lana	ger											×
ownle			ge Å	lana	ger											
ownle			ge Å	lana	ger											
ownli otal: Bligh oing oing ownl 7556	oading nt dige to dov to inst loading 34 by	est: 9 while all 1 g ftp tes,	11 cf9 ad 11 5 file 63.9	18982 '5563 's) (1 lian.c	2171a7 14 bytes packag se.msu	: ie(s))			3 TAN/system	s/win3	32/mikte	x/tm/p	ackage	s/me	moi	
ownle otal: Bligh oing ownl 7556 xtrac	oading nt dige to dov to inst loading 34 by	est: 9 while all 1 g ftp tes,	11 cf9 ad 11 5 file 63.9	18982 '5563 's) (1 lian.c	2171a7 14 bytes packag se.msu Sec	: ie(s))				s/win3	32/mikte	x/tm/p	ackage	s/me	moii	
ownli oing oing ownl 7556 xtrac	oading to dov to inst oading 634 by tring fil	st: 9 which all 1 g ftp tes, res fr	11 cf9 ad 11 5 file //inu 63.90 om n	18982 '5563 's) (1 lian.c	2171a7 14 bytes packag se.msu Sec	: ie(s))		rrors/C		s/win3	32/mikte	s/tm/p	ackage	s/me	moii	
ownli otal: oing oing ownl 7556 xtrac	oading nt dige to dou to inst loading fil e statis	st: 9 who all 1 ftp tes, es fr	11 cf9 ad 11 5 file 63.9 om n : Ins	18982 '5563 's) (1 lian.c	2171a7 14 bytes packag se.msu Sec .cab	: ie(s)) .edu/j Do		rrors/C		s/win3		×/tm/p	ackage	s/me	moii	
ownli otal: poing poing lownl 7556 extrac	oading nt dige to dou to inst loading fil e statis	st: S who have a strice strices strices	11 cf9 ad 11 5 file 63.9 om n : Ins	18982 75563 s) (1 j jian.c 3 KB/ emoir talled	2171a7 14 bytes packag se.msu Sec .cab	: ie(s)) .edu/j Do	oub/mi ownload	rrors/C	TAN/system	s/win3	32/mikte	×/tm/p	ackage	s/me	moii	

Figuur 6. Package manager

filename'" — maar er staat niet bij hoe je dat tegen je machine moet 'zeggen'. Een simpel scherm en een aantal meteen-werkende voorbeelden van brieven, boeken, beamer-presentaties en artikelen zou toch voor de hand liggen met zoveel knappe koppen aan het werk voor de T_EX distributies.

In dezelfde MiKTEX map staat ook een Package Manager (figuur 6) en die ziet er simpel maar erg veelbelovend uit. Een pakket als 'memoir' staat er, bijvoorbeeld. De laatste tijd heb ik daar een paar maal over gehoord maar ik zag er tegenop in het pakket te gaan zoeken, dan te zien hoe de installatie ook alweer moet (de DTX ervan vinden, die compileren alsof het een document is en dan de resultaten ergens in de texmf structuur plaatsen, ik herinner me dat het zo ongeveer moet maar zou het ook lukken?) De Package Manager kan het voor me ophalen en installeren, lekker makkelijk!

Er staat ook een DVI previewer in de MiKT_EX map maar ik heb al zoveel jaren geen DVI gebruikt... zouden er nog mensen zijn die DVI willen in plaats van

MiKTeX Options	? 🔀
General Roots Formats Languages Package:	s
The list of registered root directories. The order in th order, in which files are searched.	e list determines the
	Up Down
Path	Description
C:\Documents and Settings\Frans\Appli\2.5 C:\Documents and Settings\Frans\Local\2.5 C:\Documents and Settings\All Users\A\2.5 C:\Program Files\MiKTeX 2.5 D:\texmf	UserConfig UserData CommonData, Install
Add Remove	
OK An	nuleren Toepassen

Figuur 7. MiKT_EXinstellingen

PDF?

Een "settings" programma in de MiKT_FX map is een van de dingen die ik zou verwachten als menuonderdeel van "het" MiKTFX programma op mijn desktop. Wie eerder was vergeten te kiezen voor "on-the-fly" ophalen van ontbrekende pakketten kan dat hier goedmaken en wat voor mij belangrijk is: er is een tab met de naam "roots" (figuur 7) waar je kunt aangeven waar je je eigen vertrouwde texmf boeltje hebt neergezet, als je bijvoorbeeld al eens op een andere computer met TEX aan de slag bent gegaan. Daar ben ik blij mee want op mijn Apple heb ik in de loop van de tijd allerlei eigen materiaal opgeslagen, aangepaste stylefiles bijvoorbeeld om mijn briefhoofd met logo mee te maken, en indertijd van Wybo Dekker gekregen bestanden om oldstyle cijfers te kunnen gebruiken in Times en Palatino. (http://www.servalys.nl/tex/index.html). Ik kopieer die texmf map met alles eronder naar de D: schrijf op de XP en geef in "roots" op dat daar gezocht mag worden.

Voor mij voelt het toch aan alsof ik iets heb waar ik "niet bij kan", een super fiets zonder zadel en stuur. Pas als ik het vertrouwde WinEdt ophaal van www.winedt.com en installeer, zit er een kop op de MiKT_EX installatie: WinEdt heeft in de gaten dat MiKT_EX er is en functioneert als cockpit voor het opstellen, compileren en bekijken van T_EX documenten.

Figuur 8. MikTEX haalt ontbrekende pakketten op

Ik probeer een van mijn eigen documenten te compileren en WinEdt start MikT_EX dat op zijn beurt in een DOS-box (figuur 8) aan het werk gaat om een paar ontbrekende pakketten op te halen.

Even later staat het in de Acrobat Reader (vanuit WinEdt gestart) op mijn scherm te pronken, met mijn vertrouwde lay-out, fonts inclusief de oldstyles. Het werkt en dat vind ik erg mooi en onverwacht makkelijk!

En tenslotte het beste nieuws: als u NTG-lid bent hebt u de TeXCollection ontvangen. Daarin zit de Protext CD. Steek die in uw CD-lezer en volg de aanwijzingen in het PDF-document dat daar verschijnt. U ziet zich afspelen wat hierboven beschreven is en krijgt ook nog de automatische installatie aangeboden van het gratis alternatief voor WinEdt: TeXnicCenter. Ga in die laatste naar File \Rightarrow New Project, vul een documentnaam in en selecteer onder Tab 'English Advanced' het 'Mathematical Article' en klik 'OK'. Ga tenslotte naar Build \Rightarrow Build and View Output en uw eerste Latex document verschijnt in Adobe Reader!

Frans Goddijn frans@goddijn.com