
NUMMER 35 • VOORJAAR 2007

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn
Siep Kroonenberg

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Wybo Dekker

ntg-treasurer@ntg.nl

Bestuursleden
Karel Wesseling

k.h.wesseling@planet.nl

Taco Hoekwater
taco@elvenkind.com

Postadres
Nederlandstalige TEX

Gebruikersgroep
Maasstraat 2

5836 BB Sambeek
Postgiro
1306238

t.n.v. NTG, Deil
BIC-code: PSTBNL21

IBAN-code: NL05PSTB0001306238
E-mail bestuur

ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2007 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een fo-
rum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

2 Tweemaal per jaar een NTG-bijeenkomst.
2 Het NTG-tijdschrift MAPS.
2 De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN software-

archieven.
2 Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
2 De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
2 De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
2 Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daar-
naast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is ver-
eist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide
contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin
van het jaar. De ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaTEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaTEX class file en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.3-2.2 (Web2C 7.5.6) draaiend onder Linux 2.6. De gebruikte fonts zijn Bit-
stream Charter, schreefloze en niet-proportionele fonts uit de Latin Modern collectie,
en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische struc-
tuur van een document beschreven kan worden, met behoud van de letterzet-
mogelijkheden van TEX. Voorbeelden zijn LaTEX van Leslie Lamport, AMS-TEX van
Michael Spivak, en ConTEXt van Hans Hagen.

Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: TUG conference 2007, Taco Hoekwater 2

René van der Heijden, NTG Bestuur 3

The MPlib Project, Hans Hagen & Taco Hoekwater 4

Tokens in LuaTEX, Hans Hagen 5

Integrating the pool file, Taco Hoekwater 9

PDF / TikZ, Willi Egger 11

External graphics for LaTEX, Siep Kroonenberg 18

Review: Alphabetgeschichten, Hans Hagen & Taco Hoekwater 27

Folding Sheets for a Modular Origami Dodecalendar, Richard Hirsch 30

ConTEXt User Meeting 2007, Mojca Miklavec 37

EuroBachoTEX 2007, Michael Guravage 43

MiKTEX installeren valt erg mee, Frans Goddijn 51

VOORJAAR 2007 1

Redactioneel

Hopelijk valt deze Maps nog net voor de voorjaars-
bijeenkomst bij jullie in de bus. Of, ik zou eigenlijk
moeten zeggen: dwarrelt in de bus. Want het is een
dunnetje geworden, deze keer. Nu verwachten jullie
natuurlijk dat ik ga klagen over een gebrek aan kopij
en vrije tijd, want dat doe ik immers meestal.

Maar deze keer is de Maps juist doelbewust zo dun.
We hadden meer dan genoeg artikelen over kunnen
nemen uit de EuroTEX 2007 proceedings om een hele,
hele dikke Maps te kunnen maken. Maar dat zou heel
bewerkelijk geweest zijn, want die artikelen zouden
we allemaal moeten herpagineren voor de Maps lay-
out, en de relatief kleine oplage van de Maps maakt
dat bovendien al snel een prijzige onderneming.

Daar komt bij dat de EuroTEX proceedings hoe-dan-
ook in een grote oplage gedrukt gaat worden, omdat
alle Dante en Gust leden er één krijgen. Het leek ons
daarom alles bij elkaar veel praktischer om die extra
service uit te breiden naar de NTG leden. We weten
nog niet precies wanneer ze de deur uit zullen gaan,
maar ergens in de nazomer zullen jullie dus allemaal
een extra enveloppe van de NTG ontvangen!

Aan het einde van het najaar volgt dan natuurlijk
weer gewoon de volgende Maps. En dáárvoor hebben
we wel weer dringend behoefte aan kopij en extra vrij-
willigers. Heb je wat te melden, of wil je helpen met
de productie van de Maps, stuur de redactie dan een
mailtje. We zijn altijd blij met nieuwe artikelen, vooral
die van eigen bodem.

Ondertussen is er natuurlijk ook nog deze Maps.
We hebben vrij veel aandacht voor grafische onder-
werpen deze keer, zoals het eerste deel van een twee-
luik van Richard Hirsch over het maken van een drie-
dimensionale kalender met behulp van MetaPost. Van
Willi Egger hebben we een korte kennismaking met
het relatief nieuwe tekenpakket PDF / TikZ, en Siep
Kroonenberg gaat dieper in op het gebruik van externe
figuren in LaTEX.

In het afgelopen voorjaar hebben er twee internatio-
nale conferenties plaatsgevonden waar we een verslag
van hebben opgenomen: van de ConTEXt user meeting
in Epen een artikel van de hand van Mojca Miklavec,
en van de EuroBachoTEX in Polen een verslag door
Michael Guravage. Ik wil Michael overigens nog van
harte bedanken voor het proeflezen en corrigeren van
al ons gebrekkige Engels.

Van Hans Hagen en mijzelf zijn er een paar korte
artikeltjes met nieuws rondom MetaPost en LuaTEX.
En er is een nieuw boek van Hermann Zapf uit, daar
hebben we een review van geschreven. Frans Goddijn
heeft MikTEX geïnstalleerd, wat weer niet zonder slag
of stoot ging, maar als ik goed snap werkt nu alles naar
behoren.

Tot slot nog even terug naar Maps 34. Weten jullie
nog dat we toen een paar fotootjes hebben afgedrukt
van het kersverse dochtertje van Paweł (pagina 77)?
Natuurlijk ging er toen een exemplaar per post naar
Polen, en een paar dagen later kregen we onderstaan-
de foto in de email. Om op te eten, toch?

Veel leesplezier, en tot de volgende keer!

Taco Hoekwater, hoofdredacteur

2 MAPS 35

TUG 2007: Practicing TEX
Workshops and presentations on

LATEX, TEX, MetaPost,
ConTEXt, LuaTEX,

and more

July 17–20, 2007

San Diego State University
San Diego, California, USA

http://tug.org/tug2007

tug2007@tug.org

Keynote address: Peter Wilson,
The Herries Press

April 23, 2007 — presentation proposal deadline
May 18, 2007 — early bird registration deadline
July 17–20, 2007 — workshop and conference

Further information
Conference attendees will enjoy an opening night reception and an (optional)
banquet one evening. Coffee and lunch will be served each day of the meeting.
Located on the campus of San Diego State University, an easy trolley ride from
downtown San Diego. Inexpensive campus housing is available.
Conference fee, hotel, and other information is available on the web site.

Sponsorship
We thank the present sponsors: the German-speaking TEX users group DANTE
e.V., von Hoerner & Sulger GmbH, MacKichan Software, and Adobe Systems
Inc. have provided generous support; San Diego State University is our host;
and special thanks to the many individual contributors.
If you’d like to support the conference, promote TEX products and services, or
otherwise provide sponsorship, see the web site for donation and advertising options.

Hope to see you there! Sponsored by the TEX Users Group

NTG Bestuur VOORJAAR 2007 3

René van der Heijden
2007 †

“Wanneer ik deze wereld ga verlaten, weet ik nauwelijks wat mij het meest zal
spijten: de mensen die ik nooit heb ontmoet, of de plaatsen die ik nooit heb
gezien. Als het om de wereld van het boek gaat kan ik mijn hoofd tamelijk
tevreden neerleggen: ik heb mijn portie gelezen.”
W.N.P. Barbellion, 10 maart 1917.

Een van de aardige dingen van een bijeenkomst van TEX gebruikers is dat je “elkaar
weer eens ziet”; er is een vaste kern die altijd komt. In de ruim tien jaar dat ik
NTG bijeenkomsten bezoek was René van der Heijden voor mij zo’n ankerpunt
geworden. Als hij er was, dan waren we compleet en konden we beginnen.

Op vrijdag 6 april 2007 is René van der Heijden overleden. Als bestuur wisten we al
wat eerder dat was vastgesteld dat hij ongeneeslijk ziek was. Het kwam evengoed
als een schok.

René: TEX op de Atari, schaken en altijd geïnteresseerd in nieuwe ontwikkelingen
rond TEX waarvoor hij, zoals hij me vaak vertelde, helaas niet altijd tijd had. Nu
een bekend gezicht is weggevallen, zal de volgende bijeenkomst toch wat anders
zijn. Hij was er altijd, en wij zullen hem missen.

We wensen zijn vrouw Tia en haar omgeving veel sterkte.

Hans Hagen

4 MAPS 35 Hans Hagen & Taco Hoekwater

The MPlib Project
MetaPost as a reusable component

As you probably know, MetaPost development has
restarted approximately two years ago. After a period
of investigating user demands, it has now become
obvious that MetaPost is showing its age.

The problems lie not so much in the actual drawing
language that is used, but in the 1980s Metafont legacy
that is very noticable in the way the program interacts
with the user and in how it deals with the computing
environment in general.

Some of the big user-side problems that resurface
on a regular basis are:

The model used for the handling of external labels
is outdated.

Running a per-file preprocessor to create the
labels was already problematic before, but it is get-
ting worse now that both TEX and Troff are moving
away from their traditional output formats.
All number handling is based on fractions of a 32-
bit integer.

User input often hits one of the many bound-
aries that are a result of that. For instance, no
numbers can be any larger than 16384, and there
is a noticeable lack of precision in the intersection-
point calculations.
MetaPost cannot be used as a system-level service.

In fact, MetaPost cannot even be used as a
system-wide library, because the many global vari-
ables make it non-shareable.
Lack of 3-D support.

Even technical drawings that are nominally con-
sidered to be two-dimensional, like the ones in
highschool math and physics books, often need to
handle projections of 3-D objects to a plane.

Much of the needed development to fix these issues
can be done in the normal course of events, because
the needed extensions or changes to the program are
isolated to a small section of the source code (this is for
instance true for 3-D projection support), or because
the needed changes are so well understood that it is
trivial to make many changes (this is true for upgrading
the 32-bit internal calculus).

But the handling of labels and the lack of system
integration require massive changes to the source code

as well as to the build system, and therefore it was very
unlikely that this would ever get done without extra
incentives: a significant amount of time and effort that
has to be dedicated to those particular problems.

An estimate of the needed programming hours to
turn MetaPost into a modern, re-entrant system library
with a modern form of inter-process communication
was created:

Converting from the use of hunderds of global
variables into a data structure that is passed on
from one function to another

200

Adding a unified redirection layer for the input
and output, allowing files as well as buffers to
be used

100

Designing and implementing a new subsystem
for label typesetting

150

Adding an interface for configurable default error
responses

50

Total 500

If writing documentation is included in that esti-
mate, it makes for six months of full-time (40 hours a
week) programming, time that simply could be alloted
within anybody’s free hours in any way. It was clear
to us that, to get these tasks done within a reasonable
time frame, at least some of the work would have to
be done during office hours. And that requires money.

So, a funding proposal was written and at the Dante
2007 meeting Hans proposed this new project for
funding. Dante immediately stepped in for 50% of
the requested amount (6000 euro) and within a week
other user groups joined in as well: TUGIndia (1000
euro), TUG (1500 euro), NTG (2000 euro) and CSTug
(1000 euro). Currently 500 euro is still missing, but we
are confident that this gap will be bridged or overcome.

Work will start in the autumn of this year, and it is
our current estimate that the project will be complete
by the summer of 2008. The actual programming will
be carried out by Taco. Hans Hagen will lead the
project, and Bogusław Jackowski will be in charge of
quality control.

Hans Hagen & Taco Hoekwater

Hans Hagen VOORJAAR 2007 5

Tokens in LuaTEX
Hans Hagen

tokenization
Most TEX users only deal with (keyed in) characters
and (produced) output. Some will play with boxes,
skips and kerns or maybe even leaders (repeated
sequences of the former). Others will be grateful that
macro package writers take care of such things.

Macro writers on the other hand deal with prop-
erties of characters, like catcodes and a truckload of
other codes, with lists made out of boxes, skips, kerns
and penalties. But even they cannot look much deeper
into TEX’s internals. Their deeper understanding
comes from reading the TEXbook or even looking at
the source code.

When someone enters the magic world of TEX and
starts asking around a bit, he or she will at some point
get confronted with the concept of tokens. A token is
what ends up in TEX after characters have entered its
machinery. Sometimes it even seems that one is only
considered a qualified macro writer if one can talk the
right token--speak. So, what are those magic tokens
and how can LuaTEX shed light on this?

In a moment we will show examples of how LuaTEX
turns characters into tokens, but when looking at those
sequences, you need to keep a few things in mind:

A sequence of characters that starts with an escape
symbol (normally this is the backslash) is looked
up in the hash table (which relates those names to
meanings) and replaced with its reference. Such
a reference is much faster than looking up the se-
quence each time.
Characters can have special meanings, for instance
a dollar is often used to enter and exit math mode,
and a percent symbol starts a comment and hides
everything following it on the same line. These
meanings are determined by the character’s cat-
code.
All the characters that will end up actually typeset
have catcode letter or other assigned. A sequence
of items with catcode letter is considered a word
and can potentially become hyphenated.

examples
We will now provide a few examples of how TEX sees
your input.

Hi there!

Hi there!

cmd chr id name
letter 72 H
letter 105 i
spacer 32
letter 116 t
letter 104 h
letter 101 e
letter 114 r
letter 101 e
other_char 33 !

Here we see three kinds of tokens. At this stage a space
is still recognizable as such, but later this will become
a skip. In our current setup, the exclamation mark is
not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

Hans & Taco use LuaTEX!

cmd chr id name
letter 72 H
letter 97 a
letter 110 n
letter 115 s
spacer 32
char_given 38 1114152 &
spacer 32
letter 84 T
letter 97 a
letter 99 c
letter 111 o
spacer 32
letter 117 u
letter 115 s
letter 101 e
spacer 32
letter 76 L
letter 117 u
letter 97 a
call 1554614 1114740 TeX
char_num 0 1115630 char

6 MAPS 35 Hans Hagen

other_char 51 3
other_char 51 3
relax 1114112 1117492 relax

Here we see a few new tokens, a char_given and a
call. The first represents a \chardef i.e. a reference
to a character slot in a font, and the second one a macro
that will expand to the TEX logo. Watch how the space
after a control sequence is eaten up. The exclamation
mark is a direct reference to character slot 33.

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

Hans
Taco

cmd chr id name
start_par 0 1141958 noindent
left_brace 123
call 1650250 1114412 bf
letter 72 H
letter 97 a
letter 110 n
letter 115 s
right_brace 125
spacer 32
par_end 1114112 1114870 par
make_box 122 1115680 hbox
left_brace 123
letter 84 T
letter 97 a
letter 99 c
letter 111 o
right_brace 125
spacer 32
par_end 1114112 1127274 endgraf

As you can see, some primitives and macros that
are bound to them (like \endgraf) have an internal
representation on top of their name.

before \dimen2=10pt after \the\dimen2

before after 10.0pt

cmd chr id name
letter 98 b
letter 101 e
letter 102 f
letter 111 o
letter 114 r
letter 101 e
spacer 32
register 1 1117302 dimen
other_char 50 2

other_char 61 =
other_char 49 1
other_char 48 0
letter 112 p
letter 116 t
spacer 32
letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r
spacer 32
the 0 1114887 the
register 1 1117302 dimen
other_char 50 2

As you can see, registers are not explicitly named, one
needs the associated register code to determine it’s
character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

before whatever after

cmd chr id name
letter 98 b
letter 101 e
letter 102 f
letter 111 o
letter 114 r
letter 101 e
spacer 32
call 1824889 3226639 inframed
other_char 91 [
letter 119 w
letter 105 i
letter 100 d
letter 116 t
letter 104 h
other_char 61 =
other_char 51 3
letter 99 c
letter 109 m
other_char 93]
left_brace 123
letter 119 w
letter 104 h
letter 97 a
letter 116 t
letter 101 e
letter 118 v
letter 101 e
letter 114 r
right_brace 125
spacer 32

Tokens in LuaTEX VOORJAAR 2007 7

letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r

As you can see, even when control sequences are
collapsed into a reference, we still end up with many
tokens, and because each token has three properties
(cmd, chr and id) in practice we end up with more
memory used after tokenization.

compound|-|word

compound-word

cmd chr id name
letter 99 c
letter 111 o
letter 109 m
letter 112 p
letter 111 o
letter 117 u
letter 110 n
letter 100 d
call 1869296 125 |
other_char 45 -
call 1869296 125 |
letter 119 w
letter 111 o
letter 114 r
letter 100 d

This example uses an active character to handle
compound words (a ConTEXt feature).

hm, \directlua 0 { tex.sprint("Hello World") }

hm, Hello World!

cmd chr id name
letter 104 h
letter 109 m
other_char 44 ,
spacer 32
convert 23 1166957 directlua
other_char 48 0
spacer 32
left_brace 123
spacer 32
letter 116 t
letter 101 e
letter 120 x
other_char 46 .
letter 115 s

letter 112 p
letter 114 r
letter 105 i
letter 110 n
letter 116 t
other_char 40 (
other_char 34 "
letter 72 H
letter 101 e
letter 108 l
letter 108 l
letter 111 o
spacer 32
letter 87 W
letter 111 o
letter 114 r
letter 108 l
letter 100 d
other_char 33 !
other_char 34 "
other_char 41)
spacer 32
right_brace 125

The previous example shows what happens when we
include a bit of lua code . . . it is just seen as regular
input, but when the string is passed to Lua, only the
chr property is passed, so we no longer can distinguish
between letters and other characters.

A macro definition converts to tokens as follows.

[B][A]

cmd chr id name
def 0 1114818 def
undefined_cs 1115536 Test
mac_param 35
other_char 49 1
mac_param 35
other_char 50 2
left_brace 123
other_char 91 [
mac_param 35
other_char 50 2
other_char 93]
other_char 91 [
mac_param 35
other_char 49 1
other_char 93]
right_brace 125
spacer 32
undefined_cs 1115536 Test
left_brace 123
letter 65 A
right_brace 125

8 MAPS 35 Hans Hagen

left_brace 123
letter 66 B
right_brace 125

As we already mentioned, a token has three properties.
More details can be found in the reference manual so
we will not go into much detail here. A stupid callback
looks like:

callback.register(’token_filter’,token.get_next)

In principle you can call token.get_next anytime you
want to intercept a token. In that case you can feed
back tokens into TEX by using a trick like:

function tex.printlist(data)
callback.register(’token_filter’,function ()

callback.register(’token_filter’, nil)
return data

end)
end

Another example of usage is:

callback.register(’token_filter’, function ()
local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }

end)

There is a whole repertoire of related functions, one is
token.create, which can be used as:

tex.printlist{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}

This results in: ?

While playing with this we made a few auxiliary
functions which permit things like:

tex.printlist (
table.unnest ({

tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}))

Unnesting is needed because the result of the letters
call is a table, and the printlist function wants a
flattened table.

The result looks like: 12345

cmd chr id name
make_box 122 1115680 hbox
left_brace 123
letter 49 1
letter 50 2
letter 51 3
letter 52 4
letter 53 5
right_brace 125

In practice, manipulating tokens or constructing lists of
tokens this way is rather cumbersome, but at least we
now have some kind of access, if only for illustrative
purposes.

\hbox{12345\hbox{54321}}

can also be done by saying:

tex.sprint("\\hbox{12345\\hbox{54321}}")

or under ConTEXt’s basic catcode regime:

tex.sprint(tex.ctxcatcodes,
"\\hbox{12345\\hbox{54321}}")

If you like it the hard way:

tex.printlist (table.unnest ({
tokens.hbox,

tokens.bgroup,
tokens.letters("12345"),
tokens.hbox,

tokens.bgroup,
tokens.letters(string.reverse("12345")),
tokens.egroup,

tokens.egroup
}))

This method may attract those who dislike the tradi-
tional TEX syntax for doing the same thing. Okay, a
carefull reader will notice that reversing the string in
TEX takes a bit more trickery, so . . .

Hans Hagen

Taco Hoekwater VOORJAAR 2007 9

Integrating the pool file
Taco Hoekwater

Abstract
This short article discusses the method that is used in
MetaPost and luaTEX to integrate the string pool file
into the program.
This method allows the redistribution of a single updated
executable in place of both a program and a data file,
and this makes updating those programs easier on both
the user and the developer (me).

How a pool file is created
The readers who regularly update their (pdf)TEX or
MetaPost executables will probably be familiar with
the concept of pool files already, but I will explain the
mechanics in some detail.

Programs written in the WEB language normally do
not contain the strings inside the executable proper,
but in a separate file, called the ‘pool file’.

The most important reason for the existence of this
file is that back when Knuth was working on TEX and
Metafont, there was not yet a standardized way to
handle strings inside the Pascal language, so he had
to invent his own solution for printing messages and
warnings.

In order to illustrate what is in a pool file, I will
show you the required steps. First, here is a bit of
WEB source from MetaPost:

...
if minx_val(h)>maxx_val(h) then

print("0 0 0 0")
else begin

ps_pair_out(minx_val(h),miny_val(h));
ps_pair_out(maxx_val(h),maxy_val(h));
end;

print_nl("%%Creator: MetaPost ");
print(metapost_version);
print_nl("%%CreationDate: ");

this excerpt is from one of the PostScript output
routines. Here, there are still recognizable strings
that are used as function arguments (as well as the
symbolic value metapost_version, that is actually a
macro resolving to a string).

The processor tangle converts this input into a
proper Pascal source file. While doing so, it resolves
all of the many WEB macros that are present in the

code. metapost_version is one of those, but also
the constructs like minx_val(h) and maxx_val(h).
It also removes the underscores from function names,
because traditional Pascal compilers did not allow _ to
appear in identifiers.

What we are focusing on now, is that it also collects all
of the double--quoted strings in the input. It puts all
of the unique multi--character strings into an internal
array, and replaces the actual string in its output with
the index number it has given the string inside that
array. Of course, functions like print() are written
in such a way that they expect numbers as arguments
instead of string values.

The Pascal output file looks like this:

...
if mem[h+2].int>mem[h+4].int then print(1279)
else begin pspairout(mem[h+2].int,mem[h+3].int);
pspairout(mem[h+4].int,mem[h+5].int);end;
printnl(1281);print(256);printnl(1282);

As you can see, this file is clearly intended for a
compiler only. The complete lack of indentation makes
it near impossible for a human to read the generated
code, but of course a Pascal compiler has no problem
with it.

Nowadays, creating an executable program from the
WEB source file happens in a few extra steps, and one
of these steps is a conversion from Pascal to C source
code, by means of the web2c system. You may find the
output of web2c easier to read, because it re-indents
the code for human reading:

...
if (mem [h + 2].cint > mem [h + 4].cint)

print (1279) ;
else {

pspairout(mem [h + 2].cint,mem [h + 3].cint);
pspairout(mem [h + 4].cint,mem [h + 5].cint);

}
printnl (1281) ;
print (256) ;
printnl (1282) ;

10 MAPS 35 Taco Hoekwater

So, where did the strings go? tangle put the multi--
character strings into a separate file, in this case named
mp.pool. Each line of that file contains two digits
indicating the length of the string, followed by the
string itself. Around line 1000, you will find this:

...
070 0 0 0
20%%HiResBoundingBox:
20%%Creator: MetaPost
16%%CreationDate:
...

07 is the length in bytes of ‘0 0 0 0’, 20 is the
length of ‘%%HiResBoundingBox: ’, including the
trailing space character, etcetera. Single character
strings are not written to the pool file, because there
is no need: all single--character strings simply have an
assumed index value matching their contents, and the
first string in the pool file receives index number 256.

The Pascal source code (or C source code) is now
converted into an executable, and you end up with
mpost.exe as well as mp.pool. The pool file is stored
somewhere in the TEXMF tree, and one of the very first
things that the --ini version of MetaPost does, is that
it reads mp.pool to initialize its internal arrays. When
the user executes the dump command, MetaPost writes
all of the string items to the .mem file, from where it
will be retrieved by production runs of MetaPost.

There is nothing wrong with this system as such. In
fact, it has worked well for nearly 30 years. But it does
make updating executables a bit harder than desired:
users not only have to copy the actual program to a
folder in the path, but they also have to figure out
where to place the new and improved mp.pool file.

As the maintainer of MetaPost and luaTEX, both
programs that are updated frequently, I was getting
annoyed with having to explain to almost each updat-
ing user what a pool file was, why it was important,
and where it should go in their TEXMF tree.

How a pool file disappears again

So I decided to do something about it, and that was
how the makecpool program was born. The concept
is very simple: it converts the mp.pool into a C source
file named loadpool.c. In fact, it is so obvious that
the idea has been proposed a number of times already,
for instance by Fabrice Popineau. But somehow it has
never made it to the core TEX distribution yet.

The structure of the created file is straightforward:
there is one big static array, and a fairly simple C
function that replaces the Pascal procedure for pool
file reading. In abbreviated form, loadpool.c looks
like this:

/* This file is auto-generated by makecpool */

#include <stdio.h>
#include "mpdir/mplib.h"

static char *poolfilearr[] = {
"1.000",

...

"0 0 0 0",
"%%HiResBoundingBox: ",
"%%Creator: MetaPost ",
"%%CreationDate: ",

...

NULL };

int loadpoolstrings (integer spare_size) {
char *s;
strnumber g=0;
int i=0,j=0;
while ((s = poolfilearr[j++])) {

int l = strlen (s);
i += l;
if (i>=spare_size) return 0;
while (l-- > 0) strpool[poolptr++] = *s++;
g = makestring();
strref[g]= 127;

}
return g;

}

In the stage where the various C files are compiled
into mpost.exe, this file is included in the list, and in
that way the strings will be embedded in the program.
At run-time, the C function is called to put the strings
for the C array into the internal storage area instead
of the original file reader.

The result: there is only one single executable file
that can be freely distributed to the users. The source
code for makecpool is part of the MetaPost and luaTEX
distribution package.

Taco Hoekwater
taco(a)elvenkind.com

Willi Egger VOORJAAR 2007 11

PGF / TikZ
Willi Egger

Abstract
For those who are looking for an alternative for external graphic drawing tools, PGF /
TikZ offers a wealth of possibilities. PGF is a macro-package that, together with its
user interface TikZ, comprises a kind of "graphics language" to build graphics inside the
text as inline graphics or as pictures of larger size. PGF is a macro-package originally
written for LaTEX. In the meantime it is also available for use within ConTEXt. The
package comes with a large set of libraries for different kinds of graphics. There is
extensive documentation and a tutorial. For support a mailing list and web-site are
available. Users of the package with ConTEXt have to install the xkeyval package
version 1.8. PGF and TikZ are distributed under the GNU Public License version 2.

Introduction
The drawing environment is called PGF. PGF is the acronym for “Portable Graphics
Format”. The user interface is called TikZ. TikZ stands for “TikZ ist kein Zeichenpro-
gramm” meaning it is not an interactive drawing/painting program. The package
provides a kind of “graphics language” with which to program a graphic comparable
to programming the text in TEX.

PGF / TikZ is a macropackage that was originally written for LaTEX. In the
meantime ConTEXt users can also profit from this package and use it within ConTEXt.

The package is written and maintained by Till Tantau, professor at the Institut
für Theoretische Informatik, Universität Lübeck.

The macropackage is distributed under the GNU Public License version 2.

Installation
LaTEX
Because the package is basically a LaTEX-package, it is probably already installed
on your system. Otherwise install it as usual in the TEX tree e.g. from CTAN.

ConTEXt
The easiest way to install the package under ConTEXt is to download it and unpack it
in a temporary folder. Move the contents of the generic folder to . . .\tex\generic.
Move the contents of the folder context to . . .\tex\context\third (the third party
module folder). In order to get the package working you need to install the xkeyval
version 1.8 package written by Hendri Adriaens. Download it from CTAN. Install
the files either in . . .\tex\generic or . . .\tex\latex. Move the folder doc to
. . ./doc. Run mktexlsr in order to update the file-database.

Plain TEX
Provided that you use a full installation of TEX, like the TEX-live distribution, the
package might be installed already. Otherwise, install the necessary files contained
in the archive into the respective folders of the TEX-tree. For use of the package
under Plain TEX you need also the xkeyval package version 1.8 or above by Hendri
Adriaens and the xcolor package version 2.0 by Uwe Kern.

12 MAPS 35 Willi Egger

Syntax differences
The graphics language syntax for the different TEX-environments is generally set
up in such a way that the user can use the commands as he is accustomed to do in
his TEX-environment:

In order to use the package, it must first be loaded:
LaTEX ConTEXt Plain TEX

\usepackage{tikz} \usemodule[tikz] \input tikz.tex

Starting a sequence of commands for a graphic:
LaTEX ConTEXt Plain TEX

\begin{tikzpicture}
. . .
\end{tikzpicture}

\starttikzpicture
. . .
\stoptikzpicture

\tikzpicture
. . .
\endtikzpicture

Structure of the package
The package is built in three layers: system, basic and front end. The system-layer
provides the highest abstraction level, i.e. it provides the translations of commands
into \special -commands as required by the different driver environments (dvips,
dvipdfm, pdftex). This layer is not intended for use by the user.

The second layer is called basic-layer. This layer provides a set of commands for
building complex graphics without being obliged to use the syntax of the system
layer.

Lastly, the front end layer provides a set of commands which make the use of the
basic layer more convenient. The most natural front end is TikZ. For illustration,
if you wanted to draw e.g. a triangle with the basic layer you would have to issue
up to 5 commands, whereas with the TikZ-front end it will suffice to say \draw
(0,0)--(1,0)--(1,1)--cycle;.

TikZ
Defining points in a graphic
There are different possibilities to define a point in a graphic. First, a point can
be defined by giving the coordinates in dimensions known to TEX inside a pair
of round brackets e.g. (2cm,10pt). This represents the xy-coordinate system.
Giving three dimensions inside a pair of round brackets (1,1,1) will invoke the
xyz-coordinate system. Omitting the unit of a dimension will cause TikZ to use
the predefined dimension of 1cm. A third way of defining a point is to indicate a
vector in the form of (30:1cm). This will cause TikZ to move 1cm in the direction
of 30 degrees. Finally, points can be specified relative to another point. e.g. (1,0)
++(1,0) ++(0,1) specifies the following movements: (1,0) (2,0) (2,1). One can
also define a relative point by adding a single +: (1,0) +(1,0) +(0,1) - which
defines the following coordinates: (1,0) (2,0) (1,1). The difference is, that the
points defined with a single + will not change the current point which is in the
example (1,0).

Paths
Paths consisting of a series of straight and curved elements are defined similar to
MetaPost. Path elements do not necessarily need to be connected to each other.
Actions on (closed) paths are draw, fill, shade and clip. These actions can be applied
to paths in any combination.

Grouping
Within a TikZ-picture grouping of elements can be achieved by using scopes

LaTEX: \begin{scope}[options] . . .\end{scope} and
ConTEXt: \startscope[options] . . .\stopscope.

PGF / TikZ VOORJAAR 2007 13

The application of styles enables the user to apply options defined outside the
graphic to (part of) the graphic.

Transformations
Shifting an object can be done with \shift{1,2} or \shift{+1,2} i.e. with
relative positioning. There is also xshift=10pt and yshift=1cm. Objects can be
rotated with the command rotate or rotated around a given point with rotated
around. scale=2 will scale the object or picture by the given factor. There is also
xscale and yscale for scaling in a single direction.

For-loops
LaTEX-users can issue the built in loop constructs or the \multido command from
pstricks. ConTEXt-users can use the \dorecurse{}{} looping mechanism. TikZ
offers yet another for-loop, based on series represented by dimensionless real num-
bers, which are given as {1,2,3} or {1,...,10} or even {1,3,...,20}. In case
two figures are given before the ellipsis, the difference between the two figures is
used as step. The basic command is

\foreach \variablename in {...series...}
\draw(\variablename pt, -1pt) -- (\variablename pt,1pt)

Text and Labels
Text can be added to any given point of a path. When TikZ encounters the keyword
node during the construction of a path, the elements of the node will be added as
a TEX-box after the complete path is ready. A node consists of the keyword node
followed by options between square-brackets and followed by the text enclosed in
curly braces.

Node-options are numerous: left/right/below/above =dimension, anchors
are north, south, west, east, north east . . . Furthermore text may be po-
sitioned along the path with the option slope. Texts may be moved towards the
beginning or end of a path by very near or near end. These options can be
combined with above etc. and sloped.

Libraries
TikZ comes with a large set of specialized libraries. Each library needs to be loaded
separately: Libraries are loaded by \usetikzlibrary{library-name} in LaTEX
and \usetikzlibrary[library-name] in ConTEXt.

− Arrow Tip Library, arrows
This library contains a large pallet of different tip-styles like triangular tips,
barbed and bracket-like, circle and diamond like, partial tips and line caps.

− Automata Drawing Library, automata
For the drawing of finite automata and Turing machines.

− Background Library, backgrounds
Various background types are provided.

− Entity-Relationship Drawing Library, er
This library will be loaded for drawing E/R diagrams.

− Mind-map Library, mindmap
For those who need a nice presentation of their mind-maps, this library is use-
ful.

− Pattern Library, patterns
For filling shapes with pattern this library is loaded.

− Petri-Net Library, petri
For the construction of Petri-nets this library is needed.

− Plot Handler Library, plothandlers
The plot handler library is loaded automatically by TikZ.

14 MAPS 35 Willi Egger

− Plot Marks Library, plotmarks
This library defines additional plot marks next to the standard marks, which
are *, x and +.

− Shape Library, shapes
The shapes library contains a number of predefined shapes.

− Snake Library, snakes
This library defines a series of non-straight lines like coils, braces, bumps, ex-
panding waves, saw or yes, snake lines.

− To Path Library, topaths
This library is loaded automatically by TikZ and provides predefined to paths
which are used in the to path operation.

− Tree Library, trees
This library provides different styles to draw trees.

Examples
Below are some examples that demonstrate what TikZ can do. The examples are
taken from the manual, and are formatted for ConTEXt. LaTEX-users can best refer
to the manual, because examples are given there in LaTEX-code.

Using TikZ code inline in the text
For drawing a sloped line within the text row you would type

\tikz \draw(0pt,0pt) -- (20pt,6pt);

and get . Here a big grey dot should be placed . This is coded as

\tikz \fill[black!60] circle (1ex);

.

Trigonometry

x

y

−1 − 1
2

1

−1

− 1
2

1
2

1

α
sinα

cosα

tan α= sinα
cosα

The angle α is 30◦ in the example (π/6
in radians). The sine of α, which is the
height of the red line, is [sinα = 1/2.]
By the Theorem of Pythagoras ...

Figure 1. Trigonometry
\usemodule[tikz]
\starttikzpicture[scale=2,cap=round]

% Local definitions
\def\costhirty{0.8660256}
% Colors
\definecolor[anglecolor][r=.5,g=.5,b=0]
\definecolor[sincolor][r=1,g=0,b=0]
\definecolor[tancolor][r=.7,g=0,b=.7]
\definecolor[coscolor][r=0,g=0,b=.8]
\definecolor[fillcolor][.625black]
% Styles

PGF / TikZ VOORJAAR 2007 15

\tikzstyle{axes}=[]
\tikzstyle{important line}=[very thick]
\tikzstyle{information text}=[rounded corners,inner sep=1ex]
% The graphic
\draw[style=help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);
\draw (0,0) circle (1cm);
\startscope[style=axes]

\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) node[above] {y} coordinate(y axis);
\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]

{\xtext};
\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white]

{\ytext};
\stopscope
\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {α};
\draw[style=important line,sincolor] (30:1cm) -- node[left=1pt,fill=white]

{$\sin \alpha$} (30:1cm |- x axis);
\draw[style=important line,coscolor]

(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw[style=important line,tancolor] (1,0) -- node[right=1pt,fill=white]

{$ \tan \alpha {\color[black]=}
\frac{\color[sincolor]\sin \alpha}{\color[coscolor]\cos \alpha}$}

(intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);
\draw (0,0) -- (t);
\draw[xshift=2.5cm]
node[right,text width=6cm,style=information text]
{
The {\color[anglecolor] angle α} is $30ˆ\circ$ in the
example ($\pi/6$ in radians). The {\color[sincolor]sine of
α}, which is the height of the red line, is
[{\color[sincolor] \sin \alpha} = 1/2.]

By the Theorem of Pythagoras ...
};

\stoptikzpicture

Simple organigramma / tree

root

left

right

child

child

Figure 2. A tree
\usemodule[tikz]
\usetikzlibrary[arrows,snakes,backgrounds,trees]
\starttikzpicture[parentanchor=east,child anchor=west,grow=east]

\tikzstyle{every node}=[ball color=blue,circle,text=white]
\tikzstyle{edge from parent}=[draw,dashed,thick,blue]

16 MAPS 35 Willi Egger

\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
};

\stoptikzpicture

TikZ in cooperation with GNUplot
One can use GNUplot to calculate the points needed in a path. TikZ will, after
reading its instructions, prepare a command file containing GNUplot commands
describing the function to be drawn. In a second run GNUplot is envoked with
these commands from which a data file is produced. TikZ imports this data file and
draws the graph.

x(t)

y(t)

−1 2

−1

1

2

3

(
x(t), y(t)

)
= (t sin 1

t
, t cos 1

t
)

(2
π
, 0)

Figure 3. A function calculated by GNUplot
\usemodule[tikz]
\starttikzpicture

\draw[gray,very thin] (-1.9,-1.9) grid (2.9,3.9)
[step=0.25cm] (-1,-1) grid (1,1);

\draw[blue] (1,-2.1) -- (1,4.1);
\draw[->] (-2,0) -- (3,0) node[right] {$x(t)$};
\draw[->] (0,-2) -- (0,4) node[above] {$y(t)$};
\foreach \pos in {-1,2}

\draw[shift={(\pos,0)}] (0pt,2pt) -- (0pt,-2pt) node[below] {\pos};
\foreach \pos in {-1,1,2,3}

\draw[shift={(0,\pos)}] (2pt,0pt) -- (-2pt,0pt) node[left] {\pos};
\fill (0,0) circle (0.064cm);
\draw[thick,parametric,domain=0.4:1.5,samples=200]
% The plot is parameterized such that there are more samples
% near the centre.
plot[id=asymptotic-example]

function{(t*t*t)*sin(1/(t*t*t)), (t*t*t)*cos(1/(t*t*t))}
node[right]
{$\bigl(x(t),y(t)\bigr) = (t\sin \frac{1}{t},t\cos\frac{1}{t})$};

\fill[red] (0.63662,0) circle (2pt)

PGF / TikZ VOORJAAR 2007 17

node [below right,fill=white,yshift=-4pt] {$(\frac{2}{\pi},0)$};
\stoptikzpicture

The contents of the file created by GNUplot looks as follows:

#Curve 0, 200 points
#x y type
0.00530 -0.06378 i
0.04363 -0.05043 i
0.06711 -0.01790 i
0.06896 0.02170 i
0.05014 0.05606 i
0.01712 0.07631 i
-0.02110 0.07849 i
-0.05579 0.06337 i
-0.08032 0.03512 i
-0.09097 -0.00029 i
-0.08696 -0.03664 i
-0.06987 -0.06850 i
-0.04284 -0.09192 i
-0.00982 -0.10460 i
0.02515 -0.10585 i
0.05841 -0.09629 i
...
0.98511 3.18914 i
0.98543 3.22793 i

Internet
More information on PGF and TikZ can easily be found on the Internet. For a stable
release of the package one can visit CTAN or from http://sourceforge.net/
projects/pgf/.

If you want to get the most recent developments you can fetch the latest version
from CVS. The command would be something like

cvs -z3 -d:pserver:anonymous@pgf.cvs.sourceforge.net:/cvsroot/pgf
-co checkout pgf

For extensive examples there is a web-site by Kjell Magne Fauske, Norway:

http://www.fauskes.net/pgftikzexamples

For support one can join the following mailing-list. Visit

https://lists.sourceforge.net/lists/listinfo/pgf-users

for subscription.

Summary
TikZ is a tool for making various kinds of drawings. For TEX-users the style of setting
up such drawings is familiar, because you program a drawing similarly to how you
program a TEX-text. TikZ is the natural front end to lower level PGF functionality.
On top of this, it is possible to draw graphs using points generated by GNUplot.

Acknowledgement
I would like to thank Michael Guravage for looking through the text and turn it
into correct English.

Willi Egger

18 MAPS 35 Siep Kroonenberg

External graphics for LaTEX

Siep Kroonenberg
N.S.Kroonenberg at rug dot nl

Abstract
In this article, we discuss graphics file formats, software to create graphics and
procedures to convert them to LaTEX- and pdflatex-compatible formats.

Keywords
Graphics converting bitmap vector compression eps pdf jpeg lossy lossless resolution

This article is about preparing external graphics for use with LaTEX.
We start out with a quick overview of types of graphics. If you understand what

kind of data you are dealing with, you will have a much better chance of getting
good results.

Next, we list programs for creating graphics, both free and commercial.
The final part is about programs and procedures for converting graphics into

LaTEX-compatible formats.

1 Types of graphics
Graphics can be defined in different ways, depending on the type of information
they contain and on the software with which they have been created. Figures 1–6
contain some examples, each together with an enlarged detail.

Figure 1. Bitmapped art: a photograph

A bitmap is built up as a grid of pixels. Figures 1 and 2 show a photograph and
a screenshot respectively. The grid structure is obvious in the enlarged detail.

Vector graphics are defined in terms of lines, circles, curves and other geometric
shapes. They keep their sharpness at any scale; see figures 3–5.

Some file formats can contain both bitmapped and vector data. In figure 6, the
bitmapped background becomes fuzzy when enlarged, but the text on top remains
sharp.

External graphics for LaTEX VOORJAAR 2007 19

Figure 2. Bitmapped art: screenshot

1998 1999 2000 2001 2002 2003

0
10
20
30
40
50
60

70
80
90

100
110
120
130

140
150
160

1998 1999 2000 2001 2002 2003

0
10
20
30
40
50
60

70
80
90

100
110
120
130

140
150
160

Figure 3. Vector art: OpenOffice.org graph

Figure 4. Vector art: adapted from a Ghostscript example file

1.1 Jpeg compression
High-resolution bitmapped files can get very big. There are various ways to reduce
those file sizes.

Lossless compression works by storing information in a more compact way. A very
simplified example: instead of enumerating a thousand identical white pixels one
by one, you can say at once that the next one thousand pixels are white. Lossless
compression can be quite effective when there are large areas of solid colors or
regular patterns. Png is a lossless bitmapped format that can be processed directly
by pdflatex.

Lossless compression doesn’t work so well with photographic images. When
we no longer insist on exactly preserving every bit of information and accept lossy

20 MAPS 35 Siep Kroonenberg

Figure 5. Vector art: generated with MetaPost

The End
01/04/07 6

The End
01/04/07 6

Figure 6. Bitmapped and vector combined

Figure 7. Don’t use jpeg compression for screenshots.

compression, then very good results van be reached with jpeg. At medium to high
quality settings, the loss of information is essentially invisible, but the compression
rate is easily 10:1. When you save in jpeg format you can usually make your own
tradeoff between file size and image quality.

For non-photographic bitmapped images such as screenshots or logos, jpeg com-
pression produces visible artifacts; see figure 7. To be fair, for the right image
quality was set very low in order to make the artifacts more obvious. Here, com-
pression isn’t all that good either compared to png. Nevertheless, many people use
jpeg compression indiscriminately, even when png would have been much better.1

1.2 Bitmap resolutions
The resolution of a bitmap should be high enough to look sharp, but, in order to
keep file size and loading times within bounds, the resolution should not be higher

External graphics for LaTEX VOORJAAR 2007 21

than necessary.
For screen viewing, the ideal resolution would be exactly one bitmap pixel per

screen pixel, but of course you may not know at what screen resolution and zoom
level your document will be viewed.

For printing, good resolutions are:

Photographs. 150–300 DPI (dots per inch) depending on the output device. Most
printers and imagesetters simulate grays and other tints with dot patterns or halftone
screens. As a consequence, the effective printed resolution of a photograph is much
lower than the resolution of the output device, no matter how high the resolution
of the original photograph.

Charts and diagrams. 600–1200 DPI. 600 is enough to avoid visible blockiness.
Higher resolutions can mean finer detail, if the printer resolution is also high. But
vector formats are better for such graphics.

Screenshots. Keep the original resolution.

Of course I am talking about resolution after scaling; if you print a 2" wide, 300
DPI image at a width of 4" then the effective resolution is 150 DPI.

It will do no good to increase the resolution of an existing low-resolution im-
age; it might even make the output fuzzier. So either try to find or create a better
original, or use your bad picture as-is.

1.3 Problems with vector graphics
Missing fonts. If some standard fonts (Times, Helvetica, Courier, Symbol, Zapf
Dingbat) are not embedded then epspdftk (see section 3.2) can help. If the pdf
output target is set to prepress then fonts will be embedded during conversion to
pdf. Epspdftk can convert back and forth between eps and PostScript on the one
hand and pdf on the other. You can either apply a pdf-to-eps-to-pdf conversion to
individual graphics or a pdf-to-ps-to-pdf conversion to the document as a whole.

If other fonts are missing then you have a real problem.
If you don’t mind using Ghostscript from the command-line: the epswrite out-

put device replaces characters with little drawings of their shapes: a fool-proof way
to get rid of font problems. Don’t do this with large amounts of text. I guess it only
works if the font is embedded or is known to Ghostscript in some other way.

Zero-width lines. If your graphic has some very thin lines, then check by zooming
in whether the lines have some positive width. A line width of zero will be inter-
preted by the output device as a width of one pixel, which is fine for the screen or
for an old 300 DPI laserprinter, but not for a 2400 DPI imagesetter. A line width of
e.g. 0.3pt should be safe. You may be able to fix this from within the program with
which the graphic was created.

Transparency and fill patterns. Many programs and graphic formats do not sup-
port transparancy or fill patterns; upon conversion these features might either get
lost altogether or simulated with e.g. bitmaps, which might make the file much
larger and virtually ineditable. Hang on to the original – which you should do in
any case!

General fixes. You may be able to import and fix problems in a draw program:
substituting fonts, changing line widths, replacing pattern fills with something else;
see section 2 on draw programs.

As a last resort, you can convert your graphic to a bitmapped png file of suffi-
ciently high resolution.

22 MAPS 35 Siep Kroonenberg

Figure 8. Inkscape, a free vector draw program for Linux, Windows and Mac OS X

2 Creating graphics
In computer graphics, the term drawing means vector art and painting means
bitmapped art.

2.1 Drawings and diagrams
You can create drawings and diagrams in Word or PowerPoint. However, it may be
difficult to convert graphics from these programs intact to eps or pdf, the formats
needed by LaTEX and pdflatex2 respectively. Instead, check out some free alterna-
tives such as Inkscape, which is a specialized draw program resembling CorelDRAW,
or the Draw module of OpenOffice. OpenOffice.org is fairly good at reading and
writing MS Office files, and has a pdf export option.

If you spend a lot of time creating and editing vector graphics, consider buying
a professional draw program such as CorelDRAW or Adobe Illustrator.

Under Mac OS X there are several less expensive commercial programs worth
checking out, such as OmniGraffle from the Omni Group (www.omnigroup.com),
Create from Stone Design (www.stone.com) and Intaglio from Purgatory Design
(www.purgatorydesign.com).

In any case, investigate at an early stage how to get your drawings into LaTEX,
see section 3.

2.2 Draw programs with LaTEX support
Draw programs which can use TeX for typesetting text include Ipe (cross-platform)
and TpX (Windows-only). TpX is also available from CTAN. Both are free.

Section 3.3 has some information on Ipe file formats.
TpX generates LaTEX code, which you have to load into your document with an

\input command. The various output options of TpX are a bit too complicated to
explain here, but you can read all about it in the TpX online help.

External graphics for LaTEX VOORJAAR 2007 23

2.3 Charts
Charts are normally generated as a byproduct of spreadsheets or mathematical,
statistical or econometric software.

2.4 Bitmaps: paint programs and image editors
There exists a large selection of free and inexpensive paint programs and image
editors. Paint is a very basic paint program which is included with Windows. Irfan-
View is a small, simple and free image viewer and converter for Windows. If you
need something more substantial, have a look at the GIMP, which was originally
developed for Linux. Yet another option is Adobe PhotoShop Elements, which may
be easier to work with. It is commercial, but costs a fraction of its professional big
brother, PhotoShop, which is the favorite of professional designers. A favorite on
the Macintosh is GraphicConverter.

2.5 Screenshots
You can take screenshots without specialized software.

Windows. The PrtScrn key will copy the entire screen to the clipboard, and Alt-
PrtScrn the active window. Most paint- and image-editing programs can retrieve
the screenshot from the clipboard, usually with Edit / Paste. They also have tools
to crop images.3

Linux. Here, PrtScrn will probably take a screenshot as well, either to the clipboard
or to a file. I usually take screenshots with the Gimp (File > Acquire > Screenshot).

You can also take a screenshot from the commandline, with import from the Im-
ageMagick suite: type import file.png and click either a window or the desktop
background.

Mac OS X. Cmd-Shift-3 copies the entire screen to a file on your desktop, and
Cmd-Shift-4 lets you make a selection.

3 Converting to LaTEX- and pdflatex-compatible formats
I’ll only discuss graphics usage for the two most popular output options: generating
PostScript with LaTEX and dvips, and generating pdf with pdflatex. The graphicx
package will automatically detect these two cases. In the LaTEX-plus-dvips case, it
will look for graphics in eps format, and in the pdflatex case it will look for graphics
in pdf, jpg and png format.4

These are stable formats, with little room for ambiguity. Eps and pdf can contain
just about any kind of graphics information. This small selection of file formats is
therefore not a real limitation, but it can mean extra work.

3.1 Converting bitmaps to png and jpg
Many image editors and paint programs, including IrfanView, can convert to png
and jpg. Convert from the ImageMagick suite is a command-line option. Im-
ageMagick also has a GUI viewer and converter: display under Unix/X11 and
IMDisplay under Windows; see Figure 9.

3.2 Converting between PostScript, eps and pdf
Epspdftk and epspdf. These utilities can convert between PostScript, eps and pdf,
often with no loss of information. They can also remove unwanted borders (com-
pute tight boundingbox option). Epspdftk is a GUI program, and epspdf is its
command-line counterpart.

epstopdf. An alternative for converting eps to pdf is the command-line program eps-
topdf, which is part of most TEX distributions and is probably already on our system.

24 MAPS 35 Siep Kroonenberg

Figure 9. IMDisplay: ImageMagick’s GUI component for Windows

convert. On many systems, convert from the ImageMagick suite will use Ghost-
script when converting between eps and pdf, and will in that case convert vector
graphics to vector graphics. Prefix the target pdf filename with EPDF: if you want
to preserve the eps boundingbox. View the result at a high zoom level to make sure
that it is still a vector graphic.

Ghostscript and pdftops. You can also use Ghostscript directly for converting eps
and PostScript to pdf, and either Ghostscript or pdftops from the xpdf suite for
converting in the other direction. But this is not the place for explaining the use of
these programs.

3.3 Working with Ipe files
Ipe, see section 2.2, can store drawings in its own private format, with extension
ipe or xml, but it can also save them in eps- and pdf format. Ipe drawings in eps-
and pdf format have private information hidden inside, which makes it possible for
Ipe to read them back in. But if you convert those files to something else then this
private information will get lost.

Ipe cannot read arbitrary eps or pdf, but it comes with a command-line import
utility pdftoipe. You can put a shortcut to it on your desktop and then simply drop
a pdf file on it. The result of the conversion will be in the same directory as the
original. You will very likely have to do some cleanup afterwards, especially if there
is a lot of text.

3.4 Converting bitmaps to eps
The simpler paint programs and image editors don’t convert to eps or pdf, but more
advanced ones, such as the GIMP, do. Convert and [IM]Display from the ImageMag-
ick suite also convert to eps and pdf.

You can also convert to eps or pdf with Ipe: create a new, empty document. This
happens automatically when you start the program. Select File, Insert image... and
load the image that you want to convert. Now save the Ipe document in eps- or pdf
format.

3.5 Wmf, emf and the Windows clipboard
Wmf and emf are native vector formats for Windows, and can be read by most Win-
dows graphics programs, including TpX, which I already mentioned in section 2.
Another option is Wmf2eps. This shareware program does exactly what its name
implies, and its conversions are quite accurate. It uses Windows’ native PostScript
printerdriver in the background.5

External graphics for LaTEX VOORJAAR 2007 25

If you cannot even save as wmf or emf then again both TpX and Wmf2eps can
copy the clipboard content to a file. Note that for TpX you do this with Tools /
Capture EMF, not with Paste from the Edit menu.

3.6 Exporting eps and PostScript from Windows programs
If a Windows program doesn’t have a usable export option, then you can try to
‘print’ to a PostScript file. This is approximately what the above wmf2eps program
does.6

For this, you need to have a PostScript printer driver. If you don’t have one
installed, go to ‘Printers’ and start up the Add Printer wizard. Choose Local Printer
and uncheck automatic detection. As printer port, you can pick FILE, otherwise
you would have to manually check ‘Print to File’ anytime you print. A good choice
for manufacturer and model would be ‘Generic’ and ‘MS Publisher Imagesetter’
respectively.

Pay attention to printer settings: in the Print dialog, click ‘Properties’, then ‘Ad-
vanced’ (on either tab). In the ‘Advanced Document Settings’ tree, under ‘Graphic’,
‘TrueType Font’ should be set to ‘Download as Softfont’7

Now navigate to first ‘Document Options’, then ‘PostScript Options’. For ‘Post-
Script Output Option’ the default setting is ‘Optimize for speed’. Change that to
‘Optimize for Portability’ or ‘Archive Format’, or, for single pages only, ‘Encapsulated
PostScript’. These non-default options presumably produce cleaner PostScript code,
without printer-specific hacks. Experiment with this and other options if you run
into problems (e.g. bad-looking screen output, or part of a graphic getting cut off,
or conversion to bitmap).

What works best may depend on your Windows version: under Windows 2000,
Archive worked best for me, but I have been warned that this option was unusable
in older Windows versions.

Next, the setting ‘TrueType Font Downloading Option’ should be set to ‘Outline’,
not ‘Automatic’ or ‘Bitmap’.

Figure 10. configuring a PostScript printer driver

26 MAPS 35 Siep Kroonenberg

Notes
1. Jpeg2000 (extension .jp2 or .j2c) is a successor of the jpeg format. This type of com-
pression supports both lossy and lossless compression. Pdflatex can use pdf graphics which
internally use jpeg2000 compression, but at the moment you cannot use jpeg2000 images
directly.
2. Although pdflatex can also use the bitmapped jpeg and png file formats, we would rather
not convert vector graphics to bitmaps.
3. With IrfanView this is not quite obvious, but if you just start to drag the cursor then it
changes into a selection tool, and then you can apply Edit / Crop selection.
4. If you specify a non-default output driver as optional parameter to the graphicx package,
then different graphics formats may be supported.
5. Most Windows PostScript drivers use the same core. Individual PostScript drivers add to
this core a ppd- or PostScript Printer Definition file which is basically an enumeration of the
printer’s features and properties. Wmf2eps comes with its own ppd.
6. This section is lifted almost literally from my article ‘Epspdf, easy conversion between
PostScript en Pdf’ in Maps 34.
7. The alternative setting is ‘Substitute with Device Font’. For prepress use, you should al-
ways include all fonts. It is possible to include fonts after the fact, when converting to pdf, but
then you run the risk of noticeable discrepancies between the original font and the actually
included font.

References
CTAN, The Comprehensive TEX Archive Network. http://www.ctan.org/.

Epspdf and epspdftk. http://tex.aanhet.net/epspdf/.

Ghostscript Homepage. http://www.cs.wisc.edu/~ghost/.

ImageMagick Homepage. http://imagemagick.org/.

Inkscape draw program. http://inkscape.org/.

Ipe draw program. http://tclab.kaist.ac.kr/ipe/.

IrfanView image viewer and converter for Windows. http://www.irfanview.
com/.

OpenOffice.org homepage. http://www.openoffice.org/.

The Gimp image editor for Windows. http://gimp-win.sourceforge.net/.

TpX draw program. http://sourceforge.net/projects/tpx/.

Wmf2eps Homepage. http://www.wmf2eps.de.vu/, wmf2eps can be down-
loaded from CTAN.

Xpdf Homepage. http://www.foolabs.com/xpdf/.

Siep Kroonenberg
N.S.Kroonenberg at rug dot nl

Hans Hagen & Taco Hoekwater VOORJAAR 2007 27

Alphabetgeschichten
Eine Chronik
technischer Entwicklungen

Hans Hagen & Taco Hoekwater

Introduction
It pays off to be a Dante member! Some time ago each
member received a copy of Hermann Zapfs monograph
‘Alphabetgeschichten’, a gift from Hermann himself.
For many users of computers the name ‘Zapf’ may
ring a bell because of the omnipresent Zapf dingbats
fonts. But with Hermann Zapf being one of the greatest
designers of our time, there is much more to learn
about him.

Being an honorary member of Dante, Hermann is
quite familiar with TEX and friends, and he is in contact
with several TEXies. He worked with Donald Knuth on
the book ‘3:16’, a calligraphic masterpiece. He is also
responsible for the design of the Euler font family (we
will tell you more about this in an upcoming Maps
issue). In the recent font projects (Latin Modern and
TEX Gyre) we consult Hermann on matters that we are
unsure about.

Two versions
There are two versions of this book, the German
version and an English translation and it is a pleasure

to have both, especially because they are not entirely
the same. The German version has a few more pages
than the English translation. And not only because
of the language, there are also true differences in the
contents.

Born at November 8, 1918 Hermann has grown up
in and been a witness of turbulent times. The German
version sheds more light on how difficult it was to
survive in these times and how much art got lost in
that period. He wrote down nice anecdotes about this
era, for instance how the ability to write in 1 mm script
impressed his army superiors so much that it kept him
out of trouble. Both books have some differences in
the graphics that go with that period and in the English
version some quotes are shortened.

The English book catches up on its last pages. Since
1977 Hermann Zapf is an associate professor at the
Rochester Institute of Technology. In the postscript
to this version the curator describes the influence
Hermann has had on them in the past 30 years. At
the time we write this review, Hermann is visiting this
institute, where he is involved in a calligraphic and
typographic display on 27 glass panels surrounding
the new facilities.

28 MAPS 35 Hans Hagen & Taco Hoekwater

If you manage to lay hands on a copy, you will notice
that it’s printed on thick cream-colored paper and
very well bound in a dark blue hard cover with gold
initials on the front. At the traditional Dante Christmas
Party in 2006 in Darmstadt, Herman told the audience
that nowadays it’s not trivial to get such paper in the
quantities needed: most paper plants only produce
paper of moderate quality in any bulk. But here, large
quantities of special paper were needed; keep in mind
that he gave away a free copy to each of the more than
2000 Dante members.

Other interesting differences between the versions
are in paragraph breaks and whitespace. As with
Dutch, German needs a few more words than English
to express ideas, but the general impression is that
the German version is the most informative. Other
subtle differences are in the used technical terms. The
English version qualifies Palatino Sans as ‘sans serif’,
but the German text talks about ‘Grotesk’.

A lifetime

One possible reason why Hermann has always been
able to catch up with technology and could adapt quite
well to the transition from lead to computer, was that
originally he wanted to be an ‘Elektroingenieur’, but
calligraphy attracted him more.

Hermann was never stuck on characters only. The
book starts with a colorful full--page illustration of
flowers and small beetles.

Also, in his early period he created a few ‘Noten-
schriften’. The book shows many examples of hand-
writing and the grand finale is Zapfino, which is avail-
able as a OpenType font with many (complex) features.

Greek, Arab, you name it . . . he draws it. Among
his most well known fonts are Optima and Palatino.
Both fonts date back half a century when lead was
still leading, but they were recently redesigned to take
advantage of new technologies. Last year a sans serif
family named Palatino Sans was added, and an Arab
variant is in the making.

The first Optima was draft on thousand lire notes
in 1950. In 1975, this font was used for the Vietnam
Veterans Memorial in Washington.

Hermann spent quite some time in the USA, running
his own company there, teaching at several designer

schools and working with Donald Knuth. He is still
associated with the Rochester Institute of Technology
in New York.

In pdfTEX there is a feature that informally is called
‘hz-optimization’. This feature is inspired by the work
of Hermann on the ‘hz-Programm’ and in the book
Hàn Thế Thành’s work and Hermann’s communication
with Hàn Thế Thành are explicitly mentioned.

Although an old printing press has a prominent
position in his house in Darmstadt, Hermann has
always been involved in new technologies. He went
from typesetting in lead to using phototypesetters to
computer based typesetting. The Zapfino font, that
adapts its choice of glyphs to the circumstances is a
prime example of this. Steve Jobs of Apple Computers
made sure that on this platform the Zapfino behaves
how it should behave.

For those who use the dingbats there is good news
as well. The Zapf Essentials are the improved and
extended version of these symbols. We now finally
have everything available that Hermann originally had

Alphabetgeschichten VOORJAAR 2007 29

in mind when he started drafting this symbol set.
The book also shows samples of Zapfino Ink, yet

another innovation. Here color and shades make their
way into the font but we have to wait till the font
technologies are ready for that. The book tells us that
this is being worked on.

The book is typeset in Palatino Nova with displayed
quotations in the brand new Palatino Sans. In the
not too wide margin keywords are typeset. These
are rotated 90 degrees and printed in blue, which

adds a very nice touch to the book’s typographic feel.
Especially so where the keyword in question is actually
a font name, because each of those is typeset in the font
that is indicated.

Afterword
At the Dante Christmas Party 2006 we showed Her-
mann some of his work on a digital ink device and he
seemed quite impressed with what new technologies
can provide. However we fully agree with the
following quote from his monograph:

“Ein gedruckter Buchstabe und ein schön gestal-
tetes Buch sind etwas Beständiges, Bleibendes
im Vergleich zu dem schnellen Zugriff zu einer
Information im Internet und dessen Flüchtigkeit
der Wiedergabe am Bildschirm. Es ist das etwas
schwer zu beschreibende eigenartige Erlebnis des
Lesers, wenn er ein Buch in seiner Händen hält.
Ein Buch spricht die Sinne an, der Druck auf
dem Papier, das Umblättern der Seiten, ganz
im Gegensatz zu der abstrakten elektronischen
Darstellung eines Textes.”

Both language versions of the monograph can be
ordered directly from the Merchandise section of
the Linotype website, http://www.linotype.com/
26/merchandise.html.

If you prefer to order elsewhere, The ISBN number
is 3-9810319–5-4 for ‘Alphabetgeschichten’, or 3-
98103129-6-2 for ‘Alphabet Stories’.

Hans Hagen & Taco Hoekwater

30 MAPS 35 Richard Hirsch

Folding Sheets for a
Modular Origami Dodecalendar

Richard Hirsch
richard.hirsch at gmx dot net

Abstract
Twelve square sheets of paper can be folded in such a
way that they can be assembled to a pentagon
dodecahedron (origami). The single units are called
modules, hence the name modular. If the sheets bear
calendrical information at the right places, the
dodecahedron shows the calendar for each month on
its faces: the dodecalendar.
In this article we let MetaPost calculate piece by piece
the information that needs to be printed on the
module paper to enable us to fold the modules and
assemble the dodecahedron.

Keywords
MetaPost, tutorial

Introduction

MetaPost
MetaPost is a programming language and an inter-
preter that produces PostScript output. It is well suited
to produce technical drawings and – being derived
from Metafont with basically the same capabilities and
just a few extensions – suggests itself to illustrate TEX
documents. As we will see, MetaPost provides a very
natural way of describing relations of points in the
plane (3D extensions do exist also).

However, the richness of features and concepts
makes it hard for the beginner to start. The user’s
manual from John Hobby [1] and the Metafontbook
from Donald Knuth [2] want to be read and for the fine
touch even a glimpse into the source code (plain.mp)
may be necessary.

Examples, however, are a good way to start with.
There are excellent sources in the Internet (c.f.
http://www.tug.org/metapost.html for an exten-
sive list), and I hope, the origami dodecalendar will be
another one that might attract you to MetaPost.

Dodecalendar
At http://www.origami-cdo.it/modelli/ instruc-
tions for folding a 12-piece modular origami dodecal-
endar can be found. Twelve square paper sheets are
folded into twelve modules that can be assembled to
a pentagon dodecahedron. If the paper is properly
printed, each face shows a calendar for one month,
see figure 1.

MDMDFSS

April2007

1
2345678
9101112131415
16171819202122
23242526272829
3031

M
D

M
D

F
S

S
November2007

1
2

3
4

5
6

7
8

9
1011

12131415161718
19202122232425

262728293031

M
D

M
D

F
S

S

Ju
ni

2
0
0
7 1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

M D M D F S S

Januar 2007

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

M
D

M
D

F
S

S
M

ä
r
z

2007

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

M
D

M
D

F
S

S
Febr

uar
20

07 1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
262

728
293

031

Figure 1: the modular origami dodecalendar

Aim of this Article
We want to print those sheets on our own and use
MetaPost for this purpose. Traditional origami doesn’t
allow preprinted guides that show where the creases
must go, but since we have to print the calendars any-
way, we can as well print those marks – not for cheat-
ing, of course, but to avoid ugly creases on the faces of
our dodecalendar.

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 31

M D M D F S S

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

20
07

Juni

Juni

M
ärz

Feb
ru

ar

Figure 2: folding sheet with creases shown for January
2007 (sic!, see figure 1)

Folding Sheets
Figure 2 shows how the preprinted sheets of paper
should look like. We number the relevant points as
shown in figure 3.

A good start for calculating all those points seems
to be the base of the regular pentagon highlighted in
figure 3. But first of all we have to perform some setup.

Setup
We are going to calculate the positions of the points
shown in figure 3. Usually this is done in Metafont or
MetaPost by collecting the x- and y-parts of the coor-
dinate pairs in the arrays x and y and adress them as
points z. We will use coordinate pairs P1 through P20
instead and won’t bother with their components at all.
This may be mainly a matter of taste, but there is at
least one rationale too: For the dodecalendar we need
twelve paper sheets for the modules, and for each of
them the positions of the points in figure 3 must be
known. Now MetaPost clears the contents of the coor-
dinate pairs z for every new figure; thus all the calcula-
tions would have to be done over and over again. The
positions in container P however, are valid through the
whole MetaPost run. Therefore, first thing for us to do
is to declare the container P for the coordinate pairs:

pair P[]; % positions of the points

(As you already may have guessed or known, just like
in TEX everything after a %-sign in the MetaPost source
is ignored by the interpreter.)

Furthermore we have to give MetaPost some infor-
mation about the size of our figure. Therefore we de-

1

2 3

4

5 6

7

8 9

10
11

12 13

16 17

18

19

20

21 22

23 24

Figure 3: numbering of important points

00

4
R

(a) turning P0 by 72◦

00

4

0

4

5

0

4

5 6

0

4

5 6

7

(b) all vertices of the pentagon

Figure 4: central pentagon

fine a basic unit of measurement for our drawing: the
radius R of the escribed circle of the central pentagon
(see figure 4) is set to be 2 cm:

R:= 2cm; % scaling factor

The real MetaPost way to deal with the absolute size
of the figure would be to tell MetaPost only something
like P2 + 11cm*right = P3 and let it figure out the
actual value of R itself. Unfortunately MetaPost can
not perform transformations unless all components of
the transformation matrix are known. Since we want
to make heavy use of transformations, it is better for
us to fix the scale of the figure at this time.

32 MAPS 35 Richard Hirsch

4

5 6

7

8 9

Figure 5: points P8 and P9

Regular Pentagon
First of all, we introduce point P0 at the top of the pen-
tagon to complete it. We set the origin of our coordi-
nate system to the center of the pentagon and then we
can define the position of P0 simply as

P0 = R*up;

The vector up is predefined in MetaPost as
“up=-down=(0,1)”.

Now, by means of MetaPost’s rotation command, the
position of the other vertices can be calculated as easily
as

for i:= 1 upto 4:
P[i+3]:= P0 rotated (i*360/5);

endfor

Mirroring of the Pentagon’s Base
Now that MetaPost knows the positions of P4 to P7,
we can define points P8 and P9: We get P8 if we reflect
P5 about line P4P7 and P9 by doing the same with P6.
MetaPost understands this immediately:

for i:= 8,9:
P[i]:= P[i-3] reflectedabout (P4, P7);

endfor

The Top Corner
The points P8 and P9 are of special interest since they
lie on the edges of our folding sheet; until now all our
drawing was completely independent of the actual size
of the paper. But now we are going to deal with the
boundaries of our sheet of paper; we start with the top
(P1).

We observe that the triangle4P8P9P1 is the top half
of a square (see figure 2. We know the length of its

1

8 9
b

b

(a) Calculation by vector addition

1

8 9
b

b

(b) Calculation by means of the law of Pythagoras

Figure 6: P1, the top corner of the paper sheet

base since we have already P8 and P9;we call it a and
let b = a/2 (see figure 6a).

a:= length(P9-P8);
b:= .5a;

Now MetaPost can find P1 simply by vector addition

P1:= P8 + b*(right + up);

(Alternatively we could have made use of the
Pythagorean theorem (and introduce MetaPost’s dir
command and its ++-operator): We know that the
angle 6 P1P8P9 is half of a right angle (i.e. 45◦).
The length of the hypotenuse c is

√
b2 + b2 (see fig-

ure 6b) and this root is just what the ++-operator cal-
culates. So shifting P8 by b++b in northeast direction
yields P1 – or in MetaPost’s terms: P1:= P8 shifted
((b++b)*dir 45).)

Left Edge
Next we want to deal with the points on the left edge,
P2, P10 and P12. Point P2 lies somewhere on the line
through points P5 and P6 (see figure 7) and also some-
where on the line going through P1 and P8. If we

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 33

1

2

4

5 6

7

8

10

12

2

(a) Point P2 as intersection point

Figure 7: points on the left and right edge

want to tell MetaPost about these facts we can use the
volatile numeric variable whatever for “somewhere”
and the expression [p,q] for “on the line pq”. So we
write:

P2 = whatever[P1,P8] = whatever[P5,P6];

This is all information MetaPost needs in order to know
where point P2 lies.

Please note, that we didn’t use the := assignment,
but instead add two equations to MetaPost’s internal
system of linear equations with =. This system is solved
if we use P2 in a drawing (or an immediate assignment
with :=).

Points P10 and P12 are computed likewise:

P10 = whatever[P1,P8] = whatever[P7,P4];
P12 = whatever[P1,P8] = whatever[P5,P4];

Right edge
The positions of points P3, P11 and P13 could be found
the same way, but we don’t want the MAPS to become
dull.

1

2

4

5 6

7

8

10

12

3

11

13

Figure 8: The points on the right edge

Instead we use another important feature of Meta-
Post: transformations. In figure 8 we note that point
P3 is just P2 reflected about line P0P1. In MetaPost

we can express that as P3 = P2 reflectedabout
(P0,P1) but since we need to transform more than
one variable the same way, we’d rather have an own
transformation for this purpose. We can have that in
MetaPost by defining

transform flipright;
flipright:= identity reflectedabout(P0,P1);

Now we could say P3 = P2 transformed
flipright, but we go one step further and de-
fine the new macro flippedright:

def flippedright=transformed flipright enddef;

That enables us to write simply:

P3 = P2 flippedright;
P11 = P10 flippedright;
P13 = P12 flippedright;

Angle Marks

2 3

4

5

12 13

14

2 3

4

5

12 13

1414 15

Figure 9: Points P14 and P15

In the process of building a module, the corners P2
and P3 must be folded along P5P12 and P6P13 respec-
tively. We must get the creases by having the angle
marks at P14 and P15 preprinted on the sheets (see fig-
ure 9); this way P2 can be folded to P15 and P3 to P14
and the creases come up. Since we know already about
transformations, defining P14 and P15 is too easy:

P14 = P3 reflectedabout (P6, P13);
P15 = P14 flippedright;

34 MAPS 35 Richard Hirsch

2 3

4

5

12 13

14

(a) the command unitvector

2 3

4

5

12 13

(b) the guides for the corners

2 3

4

5

12 13

(c) the guides on the lower half of the paper

Figure 10: Angles as guides for the corners

We don’t want just points, however, but nice lit-
tle angles of a certain length (ticklength say), into
which the corners fit smugly (see figure 10). For
this purpose we use MetaPost’s unitvector command
which reduces a given vector to length 1, but main-
tains its direction. With this tool we can build vectors
with arbitrary length in a given direction, just by mul-
tiplying it with the proper dimension (see figure 10a).
For the calculation of the endpoints of the angle’s rays
we define a vardef macro, which returns its last ex-
pression (like a function in certain other programming
languages):

ticklength:= 0.1a;
vardef tkend(expr p, q) =

p + ticklength*unitvector(q-p)
enddef;

The two rays of each angle are obtained by con-
necting P14 and the endpoints with the ---operator.
It produces a path where the points are connected by
straight lines. We can store these paths in suitable vari-
ables (of type path) and collect them in a container
(Line[]). For the angle at point P15 we make use of
the fact that transformations work on paths as well as
on points:

path Line[];
Line14:= tkend(P14,P6)--P14--tkend(P14,P13);
Line15:= Line14 flippedright;

Finally we want the guidelines in the lower half of
the paper. So we apply a final transformation. (Here
the := operator is mandatory, because the equation
with = would be inconsistent.)

transform flipdown;
flipdown:= identity reflectedabout (P2,P3);
def flippeddown = transformed flipdown enddef;

for p:= 14,15:
Line[p]:= Line[p] flippeddown;

endfor

Boundaries for Calendrical Information
In order to print the calendar, the month and year in-
formation at the correct places, we need to calculate
the positions of points P16 to P19 (see figure 3).

Since we obtained P8 by reflecting P5 about P4P7
(see ‘Mirroring of the Pentagon’s Base’), we know from
the interception theorems that the vector P8 −P4 is the
same as P4 − P16 (see figure 12a). The position of P17
is again found by reflection (figure 11b).

P16:= 2[P8,P4];
P17:= P16 flippedright;

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 35

16

4

8 9

7

17

0

4

16
(a) position of P17

16

4

8 9

7

171616 17
(b) position of P16

Figure 11: boundaries for calendrical information

In order to determine the position of P19 we look at
P18 first: The triangle M is isosceles, so |P0 − P4| =
|P18 − P4| and we can obtain the position of P18 by
rotating P0 around P4:

w:= angle(P0-P4) - angle(P7-P4);
P18 = P0 rotatedaround (P4, -w);

(Yes, the expression angle(P7-P4) is indeed 0 and
could have been left out, and yes, the use of
unitvector may have been appropriate here too; in-
deed, we are going to return to using unitvector
soon when calculating P19.)

Now, that we know the position of P18 we can fo-
cus again on P19. The line P0P18 divides the trian-
gle 4P4P7P0 into two smaller triangles M and Y that
contain the information about the month and the year
respectively (see figure 12a). We observe that the
triangles Y and Y ′ are identical, only that the latter

16

4

8 9

7

1716 17

18

M

M ′

Y

Y ′

(a) position of P18

16

4

8 9

7

1716 17

18

516 17

18

19

(b) position of P19

Figure 12: boundary of the year-field

falls onto another face of the dodecahedron. Thus
|P7 −P18| = |P7 −P19| and we get the position of P19 by
applying the universal example of constructing a vec-
tor by multiplying its length with the unitvector of its
direction:

P19 = P7 + unitvector(P17-P7)*length(P7-P18);

Guideline for aligning two modules
When all the modules have been folded, every two of
them at a time are to be combined to a double module.
To get the correct angle between the faces of the dodec-
ahedron, the two modules must be aligned along line
P6P20. (As it happens, this is just the bisector of an-
gle 6 P6P3P7, but we pretend not to know about that.)
Since we know already about the position of P19, we
can apply the same technique as in ‘Left Edge’ and have

P20 = whatever[P1,P3] = whatever[P6,P19];

36 MAPS 35 Richard Hirsch

1

3
6

19

20

Figure 13: The guideline for aligning two modules

On the final sheets we don’t want the whole line
to show up; some part (20 % say) at the beginning
and the end should be left out (see figure 2). We find
the new starting point 20 % from P6 on the line P6P20.
Sounds familiar? Yes, see section ‘Mirroring of the Pen-
tagon’s Base’ – we can apply the [p,q]-expression again
and store the resulting path in our Line[] container.

Line[20]:= .2[P6,P20]--.8[P5,P20];

Drawing the folding sheets
Now MetaPost knows about all the relevant points and
we can let it draw the folding sheets. The result, to-
gether with some labels, is presented in figure 14. Alas,
the calendar is still missing (see below).

beginfig(1);
draw P1--P2--P1 flippeddown--P3--cycle;
draw P8--P9;
draw Line[20];
for l:= 14, 15: draw Line[l]; endfor

endfig;
end.

Summary and Outlook
For now we have learned how to make use of some
important features of MetaPost, among them

2 addition of vectors,
2 affine transformations like shifting, rotation, and

reflection,
2 solving linear equations (the whatever-statement),
2 and last but not least how to draw straight lines.

4

5 6

7

8 9

16

19

20

14 15

Figure 14: the printed information (with labels)

In the next issue of the MAPS we will have a look on
MetaPost’s algebraic capabilities and the possibilities
to add labels and TEX content to the picture when we
are going to make MetaPost calculate and draw the
calendrical information for the dodecalendar too.

In the meantime you can prepare a set of twelve
folding sheets and assemble a dodecahedron as shown
at the above mentioned web page. (If you don’t
know how to run MetaPost on your system, you can
try the MetaPost Previewer at http://www.tlhiv.
org/MetaPostPreviewer, just put the code without
“beginfig(1);”, “endfig;” and “end.” into the
textfield and press the preview button.)

Have fun!

References
[1] John D. Hobby. A User’s Manual for

MetaPost. Technical Report 162, AT&T
Bell Laboratories, Murray Hill, New Jer-
sey, April 1992. Also available at
http://www.tug.org/docs/metapost/
mpman.pdf.

[2] D. E. Knuth. Computers and Typesetting,
volume C. Addison Wesley, Reading, Massachu-
setts, 1986.

Richard Hirsch
richard.hirsch at gmx dot net

Mojca Miklavec VOORJAAR 2007 37

ConTEXt User Meeting 2007
Epen, March 23–25
Mojca Miklavec

The 23rd of March was a drippy Friday afternoon, but the rain did not stop TEX-ies
from using almost all modes of transport to gather in the small village of Epen on
the Dutch–Belgian–German border. Most of the 26 attendees from 11 countries,
arrived by plane, train, bus, or car, but a few preferred to roller blade, to buy a new
bike (because the old one broke down on the way to the meeting), or to jump over
the fences all the way from Aachen.

The extremely interesting and packed
schedule meant evening discussions
that often continued into the wee hours
of the morning. And even with the
delicious food, Taco usually had prob-
lems interrupting the lively discussions
and wild coding to bring us down to
the dining room before the food got
cold.

Indeed, we hardly had time to breathe
during the meeting. Those who were
not in Epen should feel sorry for miss-
ing out on the fun!

Tutorials

Friday evening started with an excellent tutorial by Taco on how to write a ConTEXt Taco Hoekwater:
Writing a ConTEXt
module

module. He led us from the basics of writing a module to the most important
aspects, conventions, tips, and tricks. The tutorial included dozens of pages of
documentation to be published on the wiki. Our assignment was to write a new
FIXME module, which has been on the ConTEXt wishlist for more than a year.
Although no module had been written by the end of the meeting (perhaps because
there were too many interesting talks), the tutorial and documentation should
inspire more authors to provide new high-quality ConTEXt modules.

Two more tutorials followed on Saturday.

Willi Egger:
Page layout, Arrange-
ments and Posters

Willi’s tutorial was not just about setting up a page layout in
ConTEXt, but also dealt with typographical traditions con-
cerning printing, and the related technical aspects like the
properties of the paper sheets your book will be printed on.

In the picture you can see Sanjoy Mahajan solving some of
the related questions: how many times do I need to fold this
sheet to get 16 pages? And what is the grain direction of
the paper?

38 MAPS 35 Mojca Miklavec

Willi in action

In contrast to math where many users can start from their LaTEX experience whenHans Hagen:
XML switching to ConTEXt, XML processing is ConTEXt’s speciality without beginner’s

manual. That meant that every single hand was raised when Hans asked about
the interest to listen to his XML tutorial, although it was almost bed-time when it
started.

History of Typesetting & Typesetting of History

The first talk on Saturday morning was given by Taco Hoekwater, one of the firstTaco Hoekwater:
A short history of

ConTEXt
ConTEXt users outside PRAGMA ADE. It was enjoyable to listen to the summary of the
early revolutionary ideas Hans implemented into his system at a time when some
of the attendants in Epen were still school kids who had only dreamt about owning
a computer.

Coming from a completely different field as most attendees (humanities), ThomasThomas A. Schmitz:
Classical greek

with ConTEXt
shared his experience of ConTEXt related to typesetting Ancient Greek, struggling
with font-system oddities and limitations of PDFTEX. Is LuaTEX going to offer the
definitive answer to the problems he had to fight with?

In contrast to the usual development cycles of ConTEXt and its modules, whereIdris Samawi Hamid:
Critical Editions documentation is lagging way behind the functionality, Idris brought with him a

complete specification of a yet-to-be-written module for typesetting Critical Editions
with multiple levels of footnotes, proposing a complete hierarchy of commentaries.

Talks From User Experience . . .

Mari presented all the problems a newbie faces when switching from MICROSOFTMari Voipio:
ConTEXting in
MS WINDOWS–
a user’s view

products to ConTEXt: no WYSIWYG editor, no drop-down menu with fonts, no copy-
paste to include images, no easy way to create tables . . . Would a WORD2CONTEXT
tutorial help?

Sanjoy described how he uses ConTEXt to typeset his mathematics textbook (Street-Sanjoy Mahajan:
Typesetting a physics

textbook with ConTEXt
fighting mathematics), covering project structure, page layout, and figure–text
integration (figure placement).

ConTEXt User Meeting 2007 VOORJAAR 2007 39

The conference room

Duncan’s company uses ConTEXt for typesetting multilingual documents (including Duncan Hothersall:
Using ConTEXt as part
of a larger system

Arabic) from XML sources, but he showed a great deal of courage when he dared to
make a presentation in PowerPoint during ConTEXt meeting, for which he has been
“punished” appropriately during the live demo.

Useful tools

Patrick’s presentation of his TEXTMATE extensions for better ConTEXt support could be Patrick Gundlach:
ConTEXt integration in
the TEXTMATE editor

called “a story of success” or “a good reason why one should attend TEX meetings”.
His first announcement about the ConTEXt bundle on the mailing list got no reply.
This time, most of the Mac users at the meeting eagerly awaited the upload of the
new bundle, in order to try it on their own computers. The bundle supports syntax
highlighting and auto-completion of all user-level commands. It also provides an
interactive list of arguments that these commands accept, and provides shortcuts
for typesetting and previewing.

Probably tired of the ease of typesetting PDF documents with ConTEXt, he has also Patrick Gundlach:
Creating a PDF docu-
ment, the hard way

written support for manual editing of PDF in TEXTMATE, so that cross-reference tables
can be calculated automatically. Interested hackers should ask him for details.

Discussions

All attendees agreed that our shelves lacked a well-written “THE CONTEXTBOOK” or Mojca Miklavec:
Documentation(online) Cookbook, but no one volunteered to write it. It was also agreed that

TEXSHOW is incomplete. Filling the gaps in this area is mostly up to the users.
Some suggested to clean up and improve the wiki pages: to create a site

index, to point the most important recent changes and advances since the last
update of ConTEXt manual. More samples should be provided, and submitting test
files should be made easier.

40 MAPS 35 Mojca Miklavec

Sanjoy Mahajan:
Regression testing

The one who makes few mistakes makes little progress. Because ConTEXt development
is progressing apace, a repository with test suites has been set up, and Sanjoy has
been developing tools to check for broken functionality between different ConTEXt
releases. Simplifying submissions of test cases should be one of the first steps
towards a better quality control before new “γ releases”, as some jokingly called
them.

A Glimpse into the Future

Unfortunately, OpenType fonts are notArthur Reutenauer:
An Introduction

to OPENTYPE fonts
as open as one would expect them to
be, but luckily enough both Hans and
Patrick have been open enough to ideas
and requirements for proper font sup-
port in ConTEXt and on the garden, some
of which have secretly been added to
live.contextgarden.net during the night
before presentation, while Patrick himself
was sleeping.

If typesetting Ancient Greek is problematicIdris Samawi Hamid:
Oriental TEX – what about Arabic? After (mis)using

ALEPH for quite some time, Idris claimed
that no existing system was able to meet
his requirements to typeset old Arabic
texts, and applied for a grant at Colorado
State University to fund Taco’s develop-
ment of LuaTEX. Without such a grant, we
would probably not be seeing the rapid de-
velopment of LuaTEX, aiming for the first
beta release during TUG conference this
year.

We are now eagerly awaiting his next tutorial about writing funding proposals
(hopefully applicable to EURO currency as well).

Hans Hagen,
Taco Hoekwater:

LuaTEX,
ConTEXt MKIV,

Fonts & Typescripts

Last but not least, Hans and Taco filled
in the remaining time not already re-
served for other presentations. Al-
though I’ve seen quite some of their
talks already, they always keep us sur-
prising with some really special slides
– both in visual appearance and con-
tents. The development has been pro-
gressing almost with the light-speed –
even during the conference.
The picture shows a (non-scheduled)
Live demonstration of bugfixing in
LuaTEX during Hans’s tutorial.

ConTEXt User Meeting 2007 VOORJAAR 2007 41

The most special thing of the meet-
ing was that most of us have known
each other from vivid discussions on
the mailing list without ever meeting
before. So the introductory discussions
that would otherwise start with plati-
tude phrases asking for names, location
or profession, were usually replaced by
hitting the core of the subject:

“Wait! You are the one who did . . . !”
The meeting was a great success and
left a deep impression to everyone.
Most attendees left Epen saying “See
you next year”.

How to fit five nationalities into one car? Well, TEXies have lots of experience with
packing boxes. So as long as they go well with each other, they always find a
solution.

Invitation to Slovenia
The second ConTEXt user meeting, in 2008, will take place in Slovenia, near the
Slovenian–Austrian–Italian border, and last probably a day or two longer than this
one, in order to leave you more time to discuss the fascinating topics, to exchange
ideas, and to breathe fresh air while sightseeing or doing sport. As the date
approaches and planning crystallizes, the time and location will be announced on
the mailing list and contextgarden.net.

I

ConTEXt
S LOVELOVE NIJA

Mojca Miklavec

42 MAPS 35 Mojca Miklavec

Participants:
Front row (from left to right): Luigi Scarso (it), Mojca Miklavec (si), Zofia Wal-
czak (pl), Taco Hoekwater (nl), Duncan Hothersall (uk), Arthur Reutenauer (fr)
Back row: Bernd Militzer (de), Willi Egger (nl), Thomas Engel (de), David Roder-
ick (uk), Oliver Buerschaper (de), Patrick Gundlach (de), Mari Voipio (fi), Steffen
Wolfrum (de), Luuk Beurskens (nl), Alexander S. Berdnikov (ru), Jano Kula (cz),
Idris Samawi Hamid (us), Hans Hagen (nl), David Kastrup (de), Michael Guravage
(nl), Karel Horák (cz)
Missing from the photo: Sanjoy Mahajan (us), Tobias Burnus (de), Thomas A.
Schmitz (de), Jelle Huisman (nl)

Michael Guravage VOORJAAR 2007 43

EuroBachoTEX 2007
Michael Guravage

Saturday

Jerzy Ludwichowski, GUST president and conference
organizing committee chair, opened the conference
by welcoming all the participants, and encouraged
everyone to enjoy the proceedings in the spirit of the
conference – “Paths to the Future”.

The first speaker was Jonathan Kew, who related
the history and current status of X ETEX. After its
initial appearance in the spring of 2004 on Mac OSX,
a version supporting OpenType fonts appeared the
following year. X ETEX for Linux was announced at
BachoTEX 2006, and was quickly followed in June by
a version for Windows. This year marked a milestone
for the X ETEX project, in that it became an integral part
of TEX Live distribution.

Key features of the current X ETEX implementation
include its native Unicode support, improved inte-
gration with existing macro packages and its smart
inclusion of hyphenation patterns.

Looking ahead, future releases will support host
operating system fonts (OpenType, TrueType and
PostScript) with no TEX-specific setup. Another new
feature is inter-character tokens – inserting arbitrary
tokens in-between adjacent characters based on char-
acter classes. This allows one to easily mix scripts
and fonts, or insert spacing to stretch text. Finally, to
better support non-Latin scripts minority languages,
and scripts not yet in Unicode, X ETEX will support SIL’s
Graphite font system.

Taco Hoekwater began his presentation by announc-
ing that Metapost version 1.0 is now available. New
features include, file name templates, new color
types, i.e. cmyk, grey-scale and marking-only and
an improved manual. To overcome the various size
limitations of the current implementation, Metapost
version 1.1 will incorporate dynamic array allocation
and provide greater numeric precision. To obviate
problems with existing input files, this new version will
appear as a separate binary. Finally, in the next year
or so Taco anticipates making Metapost functionality
available as a library.

The title of Hans Hagen’s presentation was “Beware
of too much tokenspeak”. TEX consumes characters
which, in turn, become tokens, and then nodes. Hans
gave us a glimpse into how LuaTEX, at the node
list level, is simplifying and streamlining previously
complex pieces of TEX. So much so that he has been
able to retire moderate pieces of existing ConTEXt code.
Consistent with the theme of the conference, Hans
described how LuaTEX provides a genuine opportunity
to embrace the future.

Joanna Ludmiła Ryćko introduced the TEX Clinic. The
clinic began last year at BachoTEX, and was open to
anyone at the conference seeking relief from a nagging
TEX complaint. A number of TEX clinicians were
introduced and put at the disposal of the participants.

44 MAPS 35 Michael Guravage

Johannes Große presented MathPSfrag – a tool that
replaces existing labels in Encapsulated PostScript
graphics with LaTEX generated labels. MathPSfrag ex-
tends PSfrag, allowing both automatic and fine grained
manual control over label content and placement.

Siep Kroonenberg presented her epspdf conversion
utility. Written in Ruby and Ruby/Tk, and using
Ghostscript and pdftops, epspdf offers both command
line and graphical user interfaces for a round-trip
conversion between PostScript and PDF.

Zofia Walczak demonstrated several basic and ad-
vanced features of the the Portable Graphics Format
(PGF) package. Written by Till Tantau at the Institute
for Theoretical Computer Science at the University of
Lübeck, PGF is partitioned in three layers: system,
basic and front-end. TikZ is a front-end for PGF.
It provides access to all the features of PGF, and is
intended to be easy to use. If you look closely you
will see it has borrowed part of its syntax from both
METAFONT and PSTRICKS.

Norbert Preining stood in for Jim Hefferon and de-
scribed a new ‘experimental’ procedure for uploading
software to CTAN. The workflow includes upload,
approve and install steps resulting in TDS compliant

bundles. A means for updating package meta-data is
also present.

Jean-Michel Hufflen introduced us to XSL-FO, com-
paring and contrasting corresponding LaTEX and XSL-
FO structures.

Grzegorz Murzynowski introduced gmdoc, a package
for documenting LaTEX style files. It differs from
its predecessor by emphasising compact ‘minimal’
markup.

Grzegorz Murzynowski continued by describing his
gmverse and gmcontinuo packages. The former
provides right alignment for long and broken lines
of verse. The latter allows typesetting paragraphs in
continuo, marked not with a new line and indent but
continuously, marked with only the ¶ sign.

In the last talk for Saturday, Marek Ryćko argued for a
fine, or finer, grained component architecture for TEX
functionality. He hopes that focusing on interfaces to
facilitate integration will be the tipping point for TEX
development.

The weather was clear and cool throughout the week.
So it was under the stars and a waxing moon that, later

EuroBachoTEX 2007 VOORJAAR 2007 45

that evening, we enjoyed the annual bonfire; replete
with food, drinks, songs, and of course fire breathing
pyroTEXnics.

Sunday

This year we found the accomodation not quite ready
for guests. For instance, there were no curtains and
toiletpaper was missing as well. It took us a while
to find out that all cloth and paper was being used
in the “make yourself some paper” workshop given by
Grażyna Jackowska that ran in parallel to the talks.
As the conferences advanced, the participants had
to become more careful where they walked because
handmade paper was hanging on trees everywhere.

Andrzej Tomaszewski began the second full day of
talks by describing the various conditions and limita-
tions he encountered while producing “The Master of
Life Arteries of the Greater Warsaw;” a jubilee book
for the Warsaw Municipal Water Authority.

Dorota Cendrowska presented several, oft disre-
garded, design criteria to consider when typesetting
enumeration for inclusion in printed text and multi-
media presentations.

Jerzy Ludwichowski described his and Karl Berry’s
work on consolidating the GUST SOURCE and NON-
SOURCE font licences into the single GUST Font
License (GFL). The result is a license that is legally
identical to the LaTEX Project Public License (LPPL),
which the FSF and Debian already accept as a legiti-
mate free software license.

Jean-Michel Hufflen described how MlBibTEX strives
to be a better BibTEX. Starting in 2000, MlBibTEX
originally was written in C, but has been reimple-
mented recently in Scheme, a Lisp dialect. Jean-Michel
anticipates MlBibTEX’s first public release in May of this
year.

Next, Jean-Michel Hufflen showed how lexicograph-
ical order relations are language-dependent, and
how MlBibTEX addresses this issue in the context of
multilingual bibliographies. Bibliography styles can be
unsorted or sorted. However, the bst language’s sort
function is suitable for English only. MlBibTEX uses
nbst and scheme which together allows one to sort
European Languages in correct lexicographic order.

David Kastrup described how to download, install and
use the Emacs AUCTEX package. You can retrieve the
latest version of AUCTEX from
http://www.gnu.org/software/auctex.
And for the stouthearted, the source code for a pre-
release version of Emacs 22 is available from
http://alpha.gnu.org/gnu/emacs/pretest

Péter Szabó demonstrated dvdmenuauthor, a collec-
tion of tools, including pdfLaTEX and xpdf, used to
create menus for dvdauthor – an excellent low level
tool for creating video DVDs on Unix systems.

Norbert Preining described how the Debian “etch”
release contains both TEX Live 2005 and teTEX – in par-
allel, and how both system administrators and regular
users can benefit from side-by-side TEX distributions.
Norbert concluded with a preview of TEX Live 2007
and further developments regarding TEX on Debian.

The presentation of Atif Gulzar and Shafiq-ur Rah-
man, who are from Pakistan, began by explaining
how Urdu is used by some sixty million people in
twenty countries. Urdu is based on an Arabic script
with Nastaleeq as its most prevalent writing style.
Nastaleeq is highly contextual – written right-to-left
and top-to-bottom. Atif constructed an Omega virtual
font containing 827 glyphs, and used Omega external
OTPs in a two pass solution to achieve the appropriate
ligature placement and kerning. From the more than
twenty thousand valid ligatures in Urdu, Atif was able

46 MAPS 35 Michael Guravage

to correctly render and place a subset of approximately
seven thousand ligatures.

Hossam A. H. Fahmy presented his joint paper with
Amir M.S. Hamdy about their aim to create a font
suitable for typesetting the Qur’an. Using examples
from existing fonts, he explained many of the problems
that one encounters when attempting to digitize a
calligraphic script like Arabic. The second part of the
talk focused on a detail of that: how to simulate a
real-world pen nib in METAFONT.

All the news about pdfTEX version 1.40 was brought
to use by Martin Schröder. Most prominent among
the new features are the ability to create compressed
object streams, support for JBIG2--encoded images,
and the addition of a colorstack á la dvips. The
colorstack feature is already in use in the new releases
of the hyperref package, and solves the LaTEX problem
of the text color disappearing at a page break.

Karel Horák walked us through the history of the
háček – or caron, if you prefer – in Czech typeset-
ting. He showed us not only an objective historical
progression of the symbol shape, but also many
forms that occur in actual fonts. Some few he
considered good, some more not so food, most all are
apparently simply hideous and out of touch with Czech
tradition. The likely cause is that the big font foundries
never considered asking a Czech typographer for an
opinion.

Hàn Thế Thành also talked mostly about accents, but
in this case about the ones used in Vietnamese. The
writing system is based on the Latin alphabet, but it
has great many accented characters to denote sounds
that are not differentiated in the roman alphabet. His
VnTEX package is a complete solution for typesetting
Vietnamese, including support for large number of
fonts, some of which he created himself.

The day ended with two presentations by Tomasz
Łuczak. The first talk was about the LyX document
processor (see www.lyx.org), the second talk about
how to convert wiki markup into TEX source. Unfortu-
nately, both talks were given in Polish, and even with
the simultaneous English translations provided by kind
members of the audience it was hard to follow.

Monday

There were no lectures scheduled for Monday. Instead,
we took an excursion to Toruń where we visited the
District Public Library – Copernican Library and toured
the town. After which we drove on to Chełmno where
we enjoyed a scrumptious dinner and music before
returning home.

Toruń, situated astride the Vistula (Wisla) river, has
been an important regional and trading center since
medieval time. A member of the Hanseatic League,
Toruń boasted a fleet of one hundred and fifty
ships, whose trade allowed Toruń’s prosperity to rival
that of Brugge, Copenhagen and London. UNESCO
designated the Gothic buildings of Toruń’s Old Town a
World Heritage Site in 1997.

At the Copernican Library we were treated to a
sample of the treasures of their collection, including
a first edition of Copernicus’s “Revolutionibus Orbium
Coelestium”, or “The Revolution Of The Heavenly
Orbs” which appeared in print in 1543. Lastly, we were
shown a recent reproduction of Gutenberg’s Bible. The
exemplar is one of 180 copies, matching Gutenberg’s
original number. Each exemplar was made using
the same materials and techniques as the originals,
including individual letter variations (font expansion)
that Gutenberg used to achieve aesthetic interline
spacing.

EuroBachoTEX 2007 VOORJAAR 2007 47

Our tour of Toruń’s Old Town began at the historic
Town Hall under a statue of Nicholas Copernicus with
the inscription, “He moved the earth, and made the sun
stand still.” We visited several churches and historical
landmarks before ending where we started.

We were running late, so it was late in the afternoon
when we arrived in Chełmno, a town located on
seven hills, and one of Europe’s best examples of
defensive architecture. Chełmno’s several churches
date from the thirteenth and fourteenth centuries. On
the fourteenth of February each year, the inhabitants
ostentatiously celebrate Saint Valentine’s Day since the
local parish church has kept the saint’s reliquary for
many centuries.

After a short stroll through the town, we retired to a
local restaurant where we enjoyed a delicious buffet
dinner. Entertainment was provided by a group of
musicians including Bogusław Jackowski’s daughter.

Tuesday

In the first presentation Tuesday, Hàn Thế Thành
presented a summary of font-related topics in pdfTEX.
Some, like font expansion and margin kerning, are

already documented in the pdfTEX manual. The rest
are scattered across README and example files, e-
mails and mailing lists. For the first time, all these
topics were brought together in one place. Topics
include adjusting letter and inter-word spacing, adding
additional kerning before or after certain characters
from a font, Unicode support for browser cut, paste
and search actions and sub-fonts – a mechanism for
supporting CJK languages.

Hans Hagen began his presentation by describing
the issues driving the development of ConTEXt’s font
system, namely switching between different font styles
and sizes, and proper font handling in math mode.
To make font switching easier, ConTEXt can assemble
a collection of different fonts into a single structure
called a typescript. For example, a typescript might use
palatino-regular as the default serif font, palatino-sans
as the sans font, courier as the mono space font and
euler as the math font. Instantiating this typescript
would make these fonts available when using the
commands \rm, \ss, \tt, and $$ respectively.

Hans concluded by describing how the trend
toward OpenType fonts, consistent user interfaces and
DTP-like functionality will continue to inform where
and how ConTEXt controls fonts – and vice versa.

Taco Hoekwater explained how LuaTEX, with its
native support for OpenType fonts, will obviate the
need for static font metric files. Currently LuaTEX
implements a few dozen callbacks at strategic points in
TEX. When populated, callbacks will override TEX’s de-
fault behaviour with custom code. Taco demonstrated
how, when using OpenType fonts, LuaTEX callbacks
invoke code that extract the font metric information
directly from the OpenType font itself.

Grzegorz Murzynowski identified two differing opin-
ions concerning the TEX & Co. logos. The first
group contends that the font is part of a logo, and

48 MAPS 35 Michael Guravage

therefore the combination is inviolate. The second
group contends that a logo should be typeset in the
same font as its context. For the latter group Grzegorz
suggests several slight modifications to the LaTEX logo
to make it fit better with various fonts.

Sam Guravage, the youngest speaker ever to address
a BachoTEX conference, explained how he uses TEX for
all his school assignments. Sam enumerated what he
found easy in TEX e.g. sectioning and lists, and what he
found difficult e.g. figures and error messages. Sam’s
conclusion was that TEX makes his work look better,
and looking better meant higher grades.

David Kastrup began a series of talks by introducing
qstest – a LaTEX macro package for writing regression
tests. The idea is that a user can include a number of
tests in his .dtx files and use pattern and keyword lists
to specify which tests should be run; either when his
package is loaded or while running a separate test file
through LaTEX. The qstest package, together with the
typedtx documentation format and docstrip, allows
one to integrate unit testing and documentation in a
single .dtx file.

David Kastrup continued with a discussion of the
makematch LaTEX macro package. Factored out of the
gstest package, makematch matches patterns with
wildcards against a list of targets.

David Kastrup concluded his series of talks by
explaining how the bigfoot macro package, origi-
nally written as a footnote apparatus for text-critical
editions, can benifit the ordinary LaTEX user. For
example, default footnote behavior bypasses TEX’s
global pagebreak optimization whenever a footnote
does not completely fit on one page. In contrast,
footnote breaks in bigfoot are reconsidered for each
possible breakpoint of the main text. This means TEX
will find the optimum combination of breaks in main
and footnote texts.

Robustness, optimization, color continuity and
paragraph footnotes are just a few reasons why LaTEX
users might consider using bigfoot to replace TEX’s
native footnote apparatus.

Klaus Höppner walked us through the process of
creating PostScript Type 1 fonts from METAPOST sources
using MetaType1. Created by Bogusław Jackowski,
Janusz Nowacki and Piotr Strzelczyk, MetaType1 is a
collection of tools including METAPOST, t1utils and
AWK; together they are used to generate PostScript
Type 1 AFM, TFM and PFB files. Though documenta-
tion was scarce, MetaType1 proved to be the correct
tool for the job.

Petr Sojka and Michal Růžička explained how they
generated PDF, HTML and XHTML+MathML output
from a single LaTEX source file. While many single-
source publishing approaches begin with XML, the
amount of mathematics involved made TEX the only
viable input format. By enforcing a strict separation of
form and content, and modifying the TEX4ht sources,
the authors were able to realize individual workflows
for each output format.

Péter Szabó reflected on his experience compiling
various conference proceedings – including those of
last year’s EuroTEX conference. Péter described how
the judicious use of procedures and tools can clarify
and simplify the work of authors, editors and printers.
Revision control software, mailing lists, shell scripts,
utilities, instant messaging and of course TEX, can be
combined to realize effective publication workflows.

David Kastrup described DocScape Publisher, an XML
oriented database publishing system from QuinScape
GmbH. At its core, DocScape uses LaTEX, pdfTEX, and
David Carlisle’s xmltex. Current applications include
financial reports, a variety of product catalogs, and
online excerpts.

EuroBachoTEX 2007 VOORJAAR 2007 49

Karel Píška described procedures and programs
he has developed for comparing and viewing font
elements. His workbench can be downloaded from:
http://www-ep.fzu.cz/˜piska/tfcpr.html.
From this set, Karel demonstrated several tools:

cprpk, cprpkt1, cprpkt1c, cprticpk and cprpkpk:
tools for comparing two bitmapped representa-
tions of a glyph pair at two different resolutions.

prfkrn, prfkrna, cpkrn and cpkrna: tools for com-
paring kerning pairs in two (or three) relative
TEX fonts, or in two releases of one font.

prfof and cprof: tools for comparing and proofing
outline fonts.

In his second presentation, Karel Píška applied his
tools to analyze and verify the Latin Modern fonts.
His results included examples of individual letter
defects and inconsistencies. Interestingly, he found
an inordinately large number of kerning pairs; the
majority of which he thinks are not relevant to
any language. Through his exacting work, Karel is
improving the quality of the fonts we use everyday.

Janusz M. Nowacki unveiled his complete set of Latin
glyphs for the Cyklop font. Designed and cast in lead
in Warsaw in the 1920s by J. Idźkowski, Cyklop is
a very heavy sans-serif two-element font, Originally
produced only in the oblique form, in sizes from 8
to 48 pt, Cyklop is used for newspaper titles, posters,
forms, labels and invitations. In addition to the new
Latin glyphs, Janusz has added a complete new upright
variant.

To round out the day, an informal reception was held in
the lecture hall, where participants could enjoy a glass
of wine, pleasant conversation, and an exhibition of
black and white prints taken by Janusz Nowacki.

Wednesday

Paweł Jackowski presented this years crop of TEX
beauties and oddities, sixteen in total. You have to
see these pearls to believe them. The entire collection
can be found at: http://www.gust.org.pl/pearls.

Ross Moore spoke about his experience typesetting
articles for The Journal of The Australian Mathemat-
ical Society. Leveraging the interactive capabilities of
PDF, AMS journal articles, available free online, now
incorporate lots of useful meta data that readers would
otherwise have to research themselves.

To enlighten our path to the future, Arthur
Reutenauer recounted TEX’s recent history. Subtitled
“Pax TEXnica – The program on which the sun never
sets”, Arthur described how, from TEX78 to Aleph,
X ETEX and LuaTEX, the various TEX engine extensions
and macro packages have gradually enabled us to
typeset every language and script of the world – well
almost.

Ulrik Vieth presented an overview of the TEX his-
toric archive, an archive of historic TEX distribu-
tions and packages hosted on the TUG FTP server
(http://ftp.tug.org/historic/). TEX’s history
spans thirty years now, and while its early history
is well documented, the history of various macro
packages, fonts, and systems like METAFONT and META-
POST must often be pieced together from anecdotal
evidence.

After thirty years, the history of TEX remains an
interesting topic of research. The archive contains a
wealth of information, but gaps still exist. Contribu-
tions are welcome, especially those about (pdf)TEX and
Latin Modern fonts.

50 MAPS 35 Michael Guravage

Bogusław Jackowski, Jerzy Ludwichowski and
Janusz M. Nowacki described the current status of
the two large font projects being developed by TEX
User Groups: Latin Modern and TEX Gyre.

The Latin Modern fonts project was begun in 2002.
Based on Computer Modern, the Latin Modern family
currently consist of seventy two text and twenty math
fonts; available in both OpenType and PostScript
Type 1 formats.

The Gyre font project that was begun in 2006 aims to
supplement the thirty three URW++ fonts distributed
with GhostScript to cover all Latin languages, similarly
as the LM fonts do. Hinting is improved and files in
OpenType format are provided. Extensions to the math
capabilities are planned for the near future.

Here are those TEX Gyre fonts which have already been
given new names:

Original name : Gyre name
Avantgarde : Adventor

Bookman : Bonum
Courier : Cursor

Helvetica : Heros
Palatino : Pagella

Century Schoolbook : Schola
Times : Termes

Zaph Chancery : Chorus

The Latin Modern and Gyre project pages are found
on the http://www.gust.org.pl website. The re-
spective folders are /projects/e-foundry/latin-
modern and /projects/e-foundry/tex-gyre.

Recalling Niklaus Wirth’s statement that “algorithms
plus data structures equal programs”, Marek Ryćko
demonstrated how to realise Lisp like structures and
methods in TEX. Marek argued that a clean and
consistent approach to handling lists of elements will
make programming TEX simpler, and TEX programs,
i.e. macros, more reliable.

Jerzy Ludwichowski concluded the conference pro-
ceedings by thanking the organizers, authors and
participants. And as a particular encouragement, the
GUST board awarded Sam the award for the best
conference presentation. The award was impressed
on one of the handmade paper sheets.

Michael Guravage
(Hans Hagen, Taco Hoekwater)

Frans Goddijn VOORJAAR 2007 51

MiKTEX installeren valt erg mee

Frans Goddijn
frans@goddijn.com

Toen ik laatst een XP laptopje kocht, was een van de
dingen die daar op moest natuurlijk een TEX installa-
tie. Ik heb dat echter tot het laatst uitgesteld, want ik
kan me zo droevig dom voelen als het niet werkt en ik
installeer TEX zo zelden dat ik me elke keer weer af-
vraag hoe het ook alweer zat. Liefst zou ik TEX als een
pakket kopen, wat mij betreft met een betaling aan een
non-profit organisatie die er ligaturen en oldstyle cij-
fers van kweekt. Als het maar werkt. Zo van CD erin,
wachten tot de setup klaar is en dan vind je alle betref-
fende iconen op je scherm.

Wat ook mooi zou zijn: een aanpasbare GUI zoals
(figuur 1) mijn scanner heeft. Er is een extreem simpel
GUI voor de thuisgebruiker die alleen wil scannen en
printen, een met wat meer opties voor de handige ge-
bruiker die wil kunnen bepalen wat hij scant/ print en
een professionele GUI met talloze knoppen en regel-
panelen voor kleur, zwartwit, retouche, en vele print
opties.

Met TEX zou ik er dan een willen voor de eerste ge-
bruiker, die een sterk uitgeklede Word-GUI ziet met
een standaard “hello world” tekstje dat met een van
de twee knoppen kan worden gecompileerd en met de
andere bekeken en geprint. En een voor de gebruiker
die de manual heeft gelezen (er hoort een vuistdikke
“TEX For Dummies” bij de installatie-schijf natuurlijk)
met veel meer opties, in feite een kant en klare instal-
latie van WinEdt. Plus een Geek-GUI in twee versies:
eentje met heel veel knoppen, en zo’n compleet zelf
in elkaar te zetten super-editor, emacs of zo, en de
meest macho knop van allemaal, die naar een zwart
scherm leidt waar op de command line lange regels
met tientallen variabelen kunnen worden ingetikt met
opdrachten voor ruby, metafont, emtex, ghostscript.

Maar goed, dat is er niet.
Van mijn buurvrouw tijdens het NTG-diner afgelo-

pen weekeinde kreeg ik de tip eens MikTEX te pro-
beren. Op www.miktex.org is die te vinden en daar
wordt op de download-pagina de keuze geboden voor
de “Basic MiKTeX Installer” en voor de grotere “MiKTEX
Net Installer”. De kleinere haalt zelf later op wat
je eventueel zou missen en daarom kies ik die (fi-
guur 2).

De installer is ruim 40MB, toch niet kinderachtig.

Figuur 1. Mijn scanner GUI

Figuur 2. MiXTeX download

Ik start de installer en krijg het scherm te lezen met
de “Copying Conditions” en zoals altijd bij installaties
klik ik ongezien voor akkoord, want dan kun je verder.
Daarna de keuze om MiKTEX te installeren voor mezelf
of ook voor andere gebruikers als die er ooit bijkomen
op mijn XP systeem. “Maakt me niet uit” zou wat mij
betreft een derde keuze kunnen zijn. De plek waar al-
les geïnstalleerd gaat worden is zoals gebruikelijk een
eigen map in “Program files” op de schijf waar XP zijn
systeem heeft staan, daar verander ik niets aan. Dan

52 MAPS 35 Frans Goddijn

Figuur 3. De keuzes

Figuur 4. Een pagina uit de FAQ

de vraag (figuur 3) of ontbrekende pakketten zonder
omhaal mogen worden opgehaald van internet of dat
me dat eerst moet worden gevraagd en ik kies voor
“on the fly” ophalen. Mist er wat, meteen doorpakken,
installeren en verder met m’n document.

Dan passeren wat schermen (figuur 5) waarin ik
steeds voor “Start”, “volgende”, of “Sluiten” kies en
daarna is de installatie klaar. Wat nu? Ik verwacht
een icoon op het XP-bureaublad, met daarachter een
“gezicht” van MikTEX of een WinEdt-achtige editor die
alles overkoepelt, maar dat bleef uit. Nu lijkt het eerst
alsof de MikTEX installatie zichzelf met succes heeft
verstopt.

In het XP-startmenu vind ik wel “MikTEX 2.5” en een
van de onderdelen daar is een MiKTEX FAQ. Daarin
staat bij hoofdstuk 5 (figuur 4) de vraag die volgens
mij bovenaan hoort: “I have installed MiKTEX. How
do I use it?” Het antwoord is “you can now say ‘tex Figuur 5. Wat er zoals passeert tijdens de installatie

MiKTEX installeren valt erg mee VOORJAAR 2007 53

Figuur 6. Package manager

filename’ ” — maar er staat niet bij hoe je dat tegen je
machine moet ‘zeggen’. Een simpel scherm en een aan-
tal meteen-werkende voorbeelden van brieven, boe-
ken, beamer-presentaties en artikelen zou toch voor de
hand liggen met zoveel knappe koppen aan het werk
voor de TEX distributies.

In dezelfde MiKTEX map staat ook een Package Ma-
nager (figuur 6) en die ziet er simpel maar erg veelbe-
lovend uit. Een pakket als ‘memoir’ staat er, bijvoor-
beeld. De laatste tijd heb ik daar een paar maal over
gehoord maar ik zag er tegenop in het pakket te gaan
zoeken, dan te zien hoe de installatie ook alweer moet
(de DTX ervan vinden, die compileren alsof het een
document is en dan de resultaten ergens in de texmf
structuur plaatsen, ik herinner me dat het zo ongeveer
moet maar zou het ook lukken?) De Package Manager
kan het voor me ophalen en installeren, lekker makke-
lijk!

Er staat ook een DVI previewer in de MiKTEX map
maar ik heb al zoveel jaren geen DVI gebruikt... zou-
den er nog mensen zijn die DVI willen in plaats van

Figuur 7. MiKTEXinstellingen

PDF?
Een “settings” programma in de MiKTEX map is

een van de dingen die ik zou verwachten als menu-
onderdeel van “het” MiKTEX programma op mijn
desktop. Wie eerder was vergeten te kiezen voor
“on-the-fly” ophalen van ontbrekende pakketten kan
dat hier goedmaken en wat voor mij belangrijk is:
er is een tab met de naam “roots” (figuur 7) waar
je kunt aangeven waar je je eigen vertrouwde texmf
boeltje hebt neergezet, als je bijvoorbeeld al eens op
een andere computer met TEX aan de slag bent ge-
gaan. Daar ben ik blij mee want op mijn Apple
heb ik in de loop van de tijd allerlei eigen materi-
aal opgeslagen, aangepaste stylefiles bijvoorbeeld om
mijn briefhoofd met logo mee te maken, en inder-
tijd van Wybo Dekker gekregen bestanden om old-
style cijfers te kunnen gebruiken in Times en Palatino.
(http://www.servalys.nl/tex/index.html). Ik kopieer
die texmf map met alles eronder naar de D: schrijf op
de XP en geef in “roots” op dat daar gezocht mag wor-
den.

Voor mij voelt het toch aan alsof ik iets heb waar
ik “niet bij kan”, een super fiets zonder zadel en
stuur. Pas als ik het vertrouwde WinEdt ophaal van
www.winedt.com en installeer, zit er een kop op de
MiKTEX installatie: WinEdt heeft in de gaten dat
MiKTEX er is en functioneert als cockpit voor het op-
stellen, compileren en bekijken van TEX documenten.

54 MAPS 35 Frans Goddijn

Figuur 8. MikTEX haalt ontbrekende pakketten op

Ik probeer een van mijn eigen documenten te compi-
leren en WinEdt start MikTEX dat op zijn beurt in een
DOS-box (figuur 8) aan het werk gaat om een paar
ontbrekende pakketten op te halen.

Even later staat het in de Acrobat Reader (vanuit
WinEdt gestart) op mijn scherm te pronken, met mijn
vertrouwde lay-out, fonts inclusief de oldstyles. Het
werkt en dat vind ik erg mooi en onverwacht makke-
lijk!

En tenslotte het beste nieuws: als u NTG-lid bent
hebt u de TeXCollection ontvangen. Daarin zit de Pro-
text CD. Steek die in uw CD-lezer en volg de aanwij-
zingen in het PDF-document dat daar verschijnt. U ziet
zich afspelen wat hierboven beschreven is en krijgt ook
nog de automatische installatie aangeboden van het
gratis alternatief voor WinEdt: TeXnicCenter. Ga in
die laatste naar File⇒ New Project, vul een document-
naam in en selecteer onder Tab ‘English Advanced’ het
‘Mathematical Article’ en klik ‘OK’. Ga tenslotte naar
Build ⇒ Build and View Output en uw eerste Latex
document verschijnt in Adobe Reader!

Frans Goddijn
frans@goddijn.com

