V L S 1 T O O L S

www.vlsitools.com

ARROWS

USER MANUAL

Version 1.0

AUTHOR: Michael Wieckowski
CONTACT: wieckows@umich.edu

.vlsi Is.com

http://www.vlsitools.com
http://www.vlsitools.com
http://www.vlsitools.com
http://www.vlsitools.com

Introduction

What is Arrows?

Arrows is a Python scripting package for performing vector field (dynamical) analysis on bistable
circuits using the Spectre simulator. Arrows is highly object oriented and abstracted allowing for
complete independence of circuit structure, technology node, environment, and analysis type. This
allows Arrows to perform “black box” analysis of any bistable circuit (design for SRAM cells) to:

e Generate butterfly curves

¢ (Calculate noise margins

e Trace separatrix lines

¢ Perform dynamic stability analysis

¢ (Calculate the Separatrix Affinity metric

¢ Visualize “quasi-transient” simulations
Two examples are shown in the figures below.

One of the primary goals of Arrows is to be highly extensible while maintaining independence of
technology and circuit topology. To that end, circuit structures and technology nodes (design Kits)
are modeled and wrapped in customizable XML files. The resulting design framework makes Ar-
rows highly readable, easy to learn and implement, and well suited to large multi-user projects.

Arrows is being developed rapidly and new features are being added daily. In addition, I welcome
any feedback and feature requests from the VLSI community, so don't hesitate to ask if you think
function X is a must have!

‘o
Stable
1 E=point
4
08 .\o\o’
'\@0«\‘
S 7N 7 s 3
Q 9‘? 5 [V
3 06 F ¥ ,* Metastable 1 &
S A Point S
= 5
Y 2’ < 9
© o4 f o’ A PO
A7 NS
%
2% \e&
% © X 1
0.2 72 ’ g\b .
7% 7 ¥
,?;S',, 2 Stable
%"7;,. Point " 1
11%%
0 //j(//‘(‘. A 1 L L A L K 1 0
0 0.2 0.4 0.6 0.8 1 0 1 2 3 | 5
CellNode CellNode

VLSI TOOLS ARROWS USER MANUAL

Setup

Process technology independence and user independence is a MUST for any successful VLSI project.
To that end, I recommend setting up your design environment as shown in the following figure. In
essence, all design kits and tools are installed in isolated locations to be shared among all users.
Each user maintains separate directories for each of their projects, where each directory has a shell
script to link the required tools for that project only. The following setup instructions for Arrows
are based on this model.

Installing Python

Since Arrows is a tool for layout scripting in Python, it requires a recent version of Python to be in-
stalled (2.6 or higher). Most linux distributions will have a version of Python installed for you to
use, but the version may not be recent enough. Luckily, you can install a local copy of Python on top
of any existing installations if the machine you want to run on doesn’t meet the requirements. I rec-
ommend installing a copy of Python 2.6 locally as follows:

1. Download Python via SVN and decompress it as follows:
1.1. cd /some/tempPath/
1.2. wgethttp:/ /www.python.org/ ftp/python/2.6.1/Python-2.6.1.tgz
1.3. tar xvzf Python-2.6.1.tgz
2. Install Python into your home directory (or a project directory):
2.1. cd /some/tempPath/Python-2.6.1

2.2. ./configure —prefix /some/localPath/forPython/toReside

VLSI TOOLS ARROWS USER MANUAL

http://www.python.org/ftp/python/2.6.1/Python-2.6.1.tgz
http://www.python.org/ftp/python/2.6.1/Python-2.6.1.tgz

2.3. make

2.4. make install

Installing Arrows

These instructions will install Arrows into a central location.

1.

5.

6.

Download the Arrows zip from http:/ /www.vlsitools.com

mkdir /design/common/Arrows

mv /download/location/Arrows_1.0.zip /design/common/Arrows
cd /design/common/Arrows

unzip Arrows_1.0.zip

rm Arrows_1.0.zip

The remainder of the “installation” involves copying and modifying the shell script in /design/

common/Arrows/exampleUserDir. This is covered in the section “Setup a directory to work

from” below.

Installing the NCSU CDK

All the examples in this manual are based on the NCSU Cadence Design Kit. Since it is freely

available, it is a good platform to introducing Arrows while avoiding any IP issues. Arrows will

work with ANY technology and is designed specifically to do so. The following steps were

used to install the NCSU CDK on my system (yours might be different, so read carefully.)

1.

Register and download the CDK from:
http:/ /www.eda.ncsu.edu /wiki/NCSU CDK download

I consider it good practice to keep the CDK itself in a central location that is referenced by
each user’s working directory. Untar / Unzip the downloaded CDK into your central loca-

tion. For my case:
2.1. cpncsu-cdk-1.5.1.tar.gz /design/common
22. cd /design/common

2.3. tar-xvvzf ncsu-cdk-1.5.1.tar.gz

VLSI TOOLS ARROWS USER MANUAL

http://www.vlsitools.com
http://www.vlsitools.com
http://www.eda.ncsu.edu/wiki/NCSU_CDK_download
http://www.eda.ncsu.edu/wiki/NCSU_CDK_download

Configuring tech.xml

To isolate technology specific configuration from analysis and circuit design, Arrows makes use
of a tech.xml file. A global version of this file lives in /design/common/Arrows/config. A sys-
tem administrator could setup a tech.xml for all of the globally installed technologies. A user
may also have their own tech.xml located anywhere the wish. Upon creating a technology ob-
ject in an Arrows script, you simply choose whether to use the global tech.xml (default) or the

local copy.

A tech.xml file contains several important elements. Each technology you want to give Arrows
access to is bracketed by <technology> tags. The tags have a property called name which is a
concatenation of the Vendor, the Node, and the Version. For example, if I have a technology

available to me from TSMC that is a 45nm node and version 1.2, I would add to my tech.xml:

<technology name="TSMC45nm1.2">

</technology>

Inside of these technology tags, two types of elements need to be added. The first is a model
path. Each model path tag corresponds to a path that is included at the top of any simulation
using this technology. You can have as many model path tags as you’d like, and each one can

contain an optional paramter called section. For example:

<modelPath section = “tt”>/common /ncsu-cdk-1.5.1/ models/ spectre / standalone / ami06P.m</ modelPath>

<modelPath>/common/ncsu-cdk-1.5.1/models/spectre/standalone/ami06N.m</ modelPath>

After the model paths, the technology must contain a list of device templates. The de-
vice templates tell Arrows how to write instances of a device for a particular technology.
The best way to explain the device template format is with an example:
<deviceTemplate name="MOSFET">

<modelAlias model="ami06N">nmos</model Alias>

<modelAlias model="ami06P">pmos</model Alias>

<modelAlias model="ami06N">sramPullDown</modelAlias>

<modelAlias model="ami06P">sramPullUp</modelAlias>

<modelAlias model="ami06N">sramPassGate</model Alias>

<netlistFormat simulator="spectre">

VLSI TOOLS ARROWS USER MANUAL

MfuniqueName} ({drain} {gate} {source} {body}) {model} w={width} I={length} as={fami600areaSourceDiff-

usion} ad={ami600areaDrainDiffusion} ps={ami600perimeterSourceDiffusion} pd={ami600perimeterDrainDiffusion}
</netlistFormat>

</ deviceTemplate>

First, the device template is given a name. In this case, MOSFET is used. Any time an Arrows
script is using this technology, it can instantiate a device called MOSFET. Clearly, no simulator
will know what a MOSFET is - therefore, the next section of the device template includes model
aliases. Model aliases map a device type to an actual model name. So if an Arrows script uses a
device called MOSFET and it’s type is sramPullUp, the simulation netlist will actually get a de-
vice model called ami06P. The beauty of this system is that I can specify a new technology with
a device template called MOSFET and a type called sramPullUp, but a completely different

model alias. Doing so allows my circuit to work with ANY technology.

The last part of the device template block is the netlistFormat tag. This tag tells Arrows how to
create a netlist for a particular type of simulator using this specific technology. Items sur-
rounded by { } will be replaced with properties for that device instance. This allows us to have

simulator independence in addition to technology independence.
Making a circuit in XML format

Circuits for analysis in Arrows are also specified in XML format. This method was chosen to
maintain technology independence while avoiding complex Python specification of circuit ob-
jects. Every circuit is bracketed by <circuit> tags with a name property. Inside of the circuit,
<inputOutput> tags are used to specify the inputs and outputs to the circuit when instantiating
it in a netlist. Similarly, <parameter> tags can be added to create variables within the circuits

definition.

The circuit structure is composed of a series of <device> tags. Each tag contains a type, defined
in the tech.xml file, and a uniqueName, to ensure that each device is unique. The <device> tags
bracket a series of <modelAlias>, <property>, and <expression> tags. <modelAlias> specifies
the alias to use in the tech.xml file. For example, <modelAlias>sramPullDown</modelAlias>
will result in device with an ami06N model based on the tech.xml above. <property> tags spec-
ify the properties that will be substituted into the { } elements in the tech.xml’s <netlistFormat>
tag. If a property is added that does not exist in the <netlistFormat>, it will be ignored. On the
other hand, if a <netlistFormat> element does not have a corresponding property, an error

will occur. Finally, <expression> tags can be used when one property is a function of another.

VLSI TOOLS ARROWS USER MANUAI

&)

For example, a sourceArea property is generally a function of the device’s width property.
Therefore, an expression is used since the sourceArea property cannot be determine a priori.

Take a look at the example circuits to get an idea of what a complete circuit definition looks like.

Setup a directory to work from

Your working directory will be the location where you run Arrows, Cadence, etc. In this man-

ual, we will setup the working directory to use the NCSU CDK installed above.

1. Create a directory specific to the process node you want to use. In my case, this will be AMI

Semiconductor 0.6 micron process.
1.1. mkdir ~/design/600nmAmi

2. Copy the CDS initialization and library files from the CDK common directory into your

working directory.
2.1. cp /design/common/ncsu-cdk-1.5.1/.cdsinit ~/design/600nmAmi/
2.2. cp /design/common/ncsu-cdk-1.5.1/cdssetup/cds.lib ~/ design/600nmAmi/

3. The files we copied in step 2 rely on some environment variable to work properly. Since
these variables are specific to the NCSU CDK, we will NOT put them in our global shell ini-
tialization file. Instead, make a local file that you will source every time you want to use the

design kit. For my case, using CSHELL:
3.1. cd ~/design/600nmAmi
3.2. for vi, use vi 600nmAmi.cshrc. Alternately, use your favorite editor.

3.3. Enter the following lines into the file, changing the paths where appropriate:

setenv SYSTEM_CDS_LIB_DIR /tools/ic-5.141_usr5/tools/dfII/samples
setenv CDSHOME /tools/ic-5.141_usr5

setenv CDK_DIR /design/common/ncsu-cdk-1.5.1

setenv CDS_MMSIM_DIR /tools/ mmsim-7.0

setenv CDS_INST_DIR /tools/ic-5.141_usr5

VLSI TOOLS ARROWS USER MANUAL

4. Now we need to copy a few files for Arrows. Take a look in the /design/common/Arrows/
exampleUserDir. This directory contains what a typical work directory might look like to

Arrows. For this setup, let’s just copy it all into our work directory.
41. cp-r /design/common/Arrows/exampleUserDir/* ~/design/600nmAmi
42. cd ~/design/600nmAmi

4.3. Edit the arrows.cshre file according to the instructions inside. The most important
variables to set are PATH, PYTHONPATH, and MMSIM_PATH. Without these, you
will likely have the wrong version of Python running and your scripts will not know
where to find Arrows. More importantly, you will not be able to run any of the simu-

lations required without command line access to Spectre.

VLSI TOOLS ARROWS USER MANUAL

Quick Start Example

The included quick start example demonstrates how to setup and run a basic vector field analy-
sis of a 6T SRAM cell in the AMI 600nm technology. The vector field is generated, and from it,
butterfly curves are generated and a static noise margin measurement is taken. The state space

with the superimposed butterfly curves is plotted in a PDF file for viewing.

The Arrows Quick Start Script

The quick start script is located in the exampleUserDir directory. It gives a step by step example

of using Arrows to do some basic analysis.
To run the script:
1. cd ~/design/600nmAmi

2. edit quickStart.py so that the paths are real. For example, replace “~/design/600nmAmi”

with an actual path, such as “/users/me/home/design/600nmAmi”
3. make sure the paths in arrows.cshrc are properly configured
4. source arrows.cshrc
5. python quickStart.py

Let’s go over the script piece by piece to learn the basics of Arrows. Lines 1 through 29 setup the
Arrows environment and technology objects. The environment object is instantiated in like 12
and initialized with a global supply voltage of 5.0 volts and a unique name that is a function of
today’s date. The unique name prevents overwriting of intermediate data when you run multi-

ple Arrows scrips at the same time.

The AMI600 technology object is created and initialized in Line 18. It specifies the name of the
technology as well as the version. The vendor, node, and version are concatenated internally to
generate a unique identifier for the technology in the tech.xml file. For info on the tech.xml file,
check the section above entitled “Configuring tech.xml”. Line 22 simply tells the technology
object to go ahead and scan the XML file for devices, models, formats, etc. Since the AMI tech-
nology does not contain special models or devices for voltage sources, we also include a “ge-

neric technology” which defines these basic circuit elements.

VLSI TOOLS ARROWS USER MANUAL

S W N

P = O o0~ O Ul

=

12.
13.

import arrows
from datetime import *

#i#t

3k 3k 3k >k ok 5k ok >k 3k ok ok ok 5k 3k ok 3k 5k ok >k 3k 3k ok %k 5k ok >k 3k 5k ok ok 3k 3k >k 3k 5k 3k >k 3k 5k ok ok 3k 3k >k %k 5k 3k >k 3k 3k >k ok %k 3k >k 3k 5k Kk >k 3k 3k ok %k 5k 3k >k %k 5k ok >k 5k 3k >k %k 5k K >k 3k 5k >k ok %k 3k >k %k >k K >k %k *k *k kK

Set up the analysis environment. This is where you

specify a "uniqueId" to your controller so that

it won't overwrite other files and you can run multiple

at the same time. Also specify the global
. ## supply voltage.
. idViaDate =
str(datetime.now().month)+"-"+str(datetime.now().day)+"-"+str(datetime.now().year)
analysiskEnv = arrows.Environment(uniqueld = idViaDate,

globalSupply = 5.0)

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.
27.

28

#to generate the netlists, we use Technology objects which are configured using XML descrip-
tions

#of the process technology, it's paths, model templates, etc. Refer to config/tech.xml
#For this example, we are using a 0.6 micron technology from AMI in the NCSU design kit
amiTechnology = arrows.Technology(vendor = "Ami",

node = "600",

version = "a",

environmentToUse = analysisEnv)

amiTechnology.configureFromXml()
#we also need a "generic technology" which defines standard circuit elements such as voltage
and current sources
genericTechnology = arrows.Technology(vendor = "Generic",
node = "",
version = ""

environmentToUse = analysisEnv)
. genericTechnology.configureFromxml()

29.

Lines 30 through 35 create a circuit object. Our amiTechnology is linked to the circuit during

initialization, and then the configureFromXml method is called. This method generates an in-

ternal representation of the circuit (in this case, a 6 transistor SRAM cell) and will eventually

allow the circuit object to output subcircuit and instance statements specific to its linked tech-

nology. In this way, technology independence is achieved and the linked technology can be

changed at any point.

30. #The bistable circuit we will analyze in this example is a standard 6T SRAM cell.

31. #The cell circuit is described in the circuits/sramCell6T.xml file

32. #We use it by creating a generic circuit object and then configuring it to be an SRAM cell
33. sixCell = arrows.Circuit(technologyToUse = amiTechnology)

34. sixCell.configureFromXml(analysisEnv.modelPath+"/circuits/sramCell6T.xml")

35.

VL

SI TOOLS ARROWS USER MANUAL

Lines 36 through 54 define the test bench that will be used during the vector field analysis. The
testbench object is first instantiated and initialized with the generic technology (line 38). A sin-
gle DC voltage source is then added. This source is the global supply voltage and uses the

value specified in the environment object.

In order to connect the cell properly in the testbench, lines 46 through 50 specify the connections
for the inputs and outputs in the cell’s XML definition. For the standby case, the bitlines and
power node are connected to the DC global supply. All other inputs are grounded. Lastly, line
53 is included as a demonstration of how to modify the circuit’s properties, even when config-
ured using the XML file. With this type of scheme, one could easily run simulations where de-

vice size, threshold mismatch, etc. are parameterized.

36. #WNe will analyze the 6t SRAM cell using a testbench. This allows us to specify bitline,
wordline, and supply

37. #voltage values. For this example, we will simply create 1 DC voltage source and connect
everything to it.

38. sixTestbench = arrows.Testbench(technologyToUse = genericTechnology) #make a new testbench
here

39. #all we need a supply for vdd!.

40. sixTestbench.addDcVoltageSource(uniqueName = "0",

41. plusNode="vdd!",

42. minusNode="0",

43. value=analysisEnv.globalSupply)

44.

45. ## Now set up the testbench connections to the cells

46. sixCell.inputsQutputs["leftBitline"] = "vdd!" #vdd! for standby, @ for write

47. sixCell.inputsOutputs["rightBitline"] = "vdd!"

48. sixCell.inputsOutputs["wordline"] = "0@" #@ means standby mode. set this to vdd! for either
read or write

49. sixCell.inputsOutputs["power"] = "vdd!"

50. sixCell.inputsOutputs["ground"] = "0"

51.

52. #if we want to modify some properties of the circuit, we can do it here to override the XML
configuration

53. sixCell.devices["leftPullDown"]["length"] = "1u"

54.

Lines 55 through 72 run the dynamical analysis (vector field analysis). The analysis object is in-
stantiated and initialized using our 6T circuit, the AMI technology object, and an analysis envi-
ronment. In addition, the names of the bistable nodes are given as a string list. These two
nodes define the state space of the analysis. Lastly, a numberOfSteps is given which controls
how many divisions the state space is quantized into for each dimension. After the vectorField
simulation is actually executed in line 68, a separate method in line 72 is invoked to parse and
clean up the intermediate simulation files. If cleanUpWhenDone is set to zero, all intermediate

files will be left in the input directory for debugging purposes.

VLSI TOOLS ARROWS USER MANUAL

10

55. #The actual analysis is a VectorField analysis object.

56. #Initialize this object using our SRAM object, technology, etc.

57. #The bistableNodes are a list of the 2 nodes considered in the state space
58. #The numberOfSteps is the quantization parameter for the state space

59. analysis = arrows.VectorField(cellToAnalyze = sixCell,

60. bistableNodes = ["data","dataBar"],
6l. technologyToUse = amiTechnology,
62. numberOfSteps = 50,

63. environmentToUse = analysisEnv,

64. testbenchToUse = sixTestbench)

65.

66. #Run the actual sim

67. #make sure that the .cshrc is sourced beforehand, or else spectre will fail

68. analysis.runVectorFieldSim()

69.

70. #Parse the output from the sim and populate our analysis object with the results

71. #cleanUpWhenDone determines whether or not we leave the intermediate files in the input/
output directories

72. analysis.parseVectorFieldSim(cleanUpWhenDone = 1)

Lines 73 through 81 execute some analyses on the internal vector field data. The nullclines (but-

terfly curves) are extracted from the vector field in line 74. Based on the nullcline intersection,

the metastable point is determined in line 77. Once that is found, the separatrix could be traced

as in line 80. This is commented out for our example to save time. Notice that these commands

are interdependent - one cannot trace the separatrix without first finding the metastable point,

and one cannot find this point without first tracing the nullclines.

73. #Find the null clines (corresponds to the DC transfer curves of a standard buterfly simula-
tion)

74. analysis.findNullclines(Q)

75. #Find the metastable point by intersecting the nullClines

76. #Can't do this until the nullClines have been located

77. analysis.findMetastablePoint()

78.

79. #Trace the metastable point along the separatrix back to the boundaraies

80. #analysis.traceSeparatrix()

81.

Lines 82 through 108 encapsulate the visualization portion of the quick start script. First the

SNM'’s are calculated using the smallest square method in line 85. It is important to note that

printing the SNM value to the terminal is not the only function of this method call. Line 99 will

not be able to properly draw the SNM boxes if it is not first calculated.

A VectorPlot object is instantiated and initialized in line 88. The analysis and its environment

are passed in during this process. This object effectively creates the two dimensional state space
plot internally for eventual output as a PDF or EPS file. Line 91 is commented out, but could be
used to plot all of the vectors in the field. Lines 94 through 96 set the drawing color and plot the

nullclines. For each dynamical analysis, there are two nullclines, U and V. Plotting both is

VLSI TOOLS ARROWS USER MANUAL

equivalent to plotting the cell’s butterfly curves. Lines 102 through 104 are used to plot the
metastable point and the separatrix, if it was traced. Lastly, line 108 outputs a PDF file in the

output directory containing our data.

82. ## 3k 3k 3k 3k 3k 3k ok 3k 3k 3k >k 3k 3k %k >k 3k 3%k >k 3k 3k %k >k %k %k %k %k %k ¥ Now Create some Output to 100k at 3k 3k 3k 3k 3k 3k %k ok 3k %k >k 3k 3k %k >k %k %k %k >k %k %k %k %k k

83. ##

84. # Calculate the SNM as the least square fitting in the butterfly curve
85. print "SNM Vectors: "+repr(analysis.calculateSnm())

86.

87. #To plot some state space curves in a PDF or EPS file, we need a VectorPlot object
88. myVectorPlot = arrows.VectorPlot(analysis,analysisEnv)

89.

90. #Uncomment the next line to plot the actualy vector field

91. #myVectorPlot.drawNormalizedVectorField()

92.

93. #Set the color and plot the nullclines (butterfly curve)

94. myVectorPlot.setHexColor("#3EGBCE")

95. myVectorPlot.drawNullclineU(Q)

96. myVectorPlot.drawNullclineV()

97. #Set the color and plot the "least square box" used to calculate SNM
98. myVectorPlot.setHexColor("#FCA12C")

99. myVectorPlot.drawSnmRulers()

100.

101.#Set the color and draw the metastable point and separatrix

102 .myVectorPlot.setHexColor("#2BFC32")

103 .myVectorPlot.drawMetastablePoint()

104 .#myVectorPlot.drawSeparatrix()

105.

106.#Finally, put everything into a PDF file in our output directory
107.print "Creating PDF files"

108 .myVectorPlot.createPdf(analysisEnv.outputPath+"/field"+analysisEnv.uniqueld+".pdf")

Overlay Example

The Arrows overlay example demonstrates how Arrows can analyze two different cell types
under the same technology, testbench, and environment. The butterfly curves and SNM calcu-

lations for both cells are plotted on the same state space graph for easy comparison.

The Arrows Overlay Script

Lines 1 through 22 are the same as in the previous example. The environment, AMI600 technol-

ogy, and generic technology objects are all instantiated and initialized.

1. import arrows
2. from datetime import *
3.
4. ##
3k 3k sk 3k 3k 3k 3k sk 3k sk 3k sk 3k 3k 5k ok sk 3k sk 3k ok 5k ok sk 3k sk 3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k ok sk 3k sk 3k sk 3k 3k sk 3k sk 3k sk 3k 3k sk 3k sk 3k 3k sk 3k sk 3k sk 3k sk 3k ok sk 3k ok 3k 3k ok ok sk 3k ok sk ok ok ok %k ok ok sk ok %k ok k k
5. ## Notice this time, we just use a string as our unique ID
6. analysiskEnv = arrows.Environment(uniqueld = "overlayExample",
7. globalSupply = 5.0)

VLSI TOOLS ARROWS USER MANUAL

o]

9. amiTechnology = arrows.Technology(vendor = "Ami",

10. node = "600",

11. version = "a",

12. environmentToUse = analysisEnv)
13. amiTechnology.configureFromXml()

14. genericTechnology = arrows.Technology(vendor = "Generic",

15. node = "",

16. version = ""

17. environmentToUse = analysisEnv)
18. genericTechnology.configureFromXml()

19.

20. #In this example, we will analyze 2 different sram cells and overlay their results on one
plot

21. sixCell = arrows.Circuit(technologyToUse = amiTechnology)

22. sixCell.configureFromXml(analysisEnv.modelPath+"/circuits/sramCell6T.xml")

Line 23 is the first difference in this example where a second cell circuit is instantiated for a 7T
cell. The same technology is used, but a local circuit XML file is used to define the portless

structure.

23. portlessCell = arrows.Circuit(technologyToUse = amiTechnology)

24. portlessCell.configureFromXml("./circuits/portlessCell.xml") #notice, the portless cell is
defined in the user directory

25.

Lines 26 through 49 setup the testbench and connect the cells” inputs and outputs. Notice that a
second DC source is added to allow us to apply an AXS voltage to the portless cell that is less
than vdd!. This connection is reflected in the inputsOutputs list elements.

26. testbench = arrows.Testbench(technologyToUse = genericTechnology) #make a new testbench here
27. testbench.addDcVoltageSource(uniqueName = "0",

28. plusNode="vdd!",
29. minusNode="0",
30. value=analysisEnv.globalSupply)

31. #add an additional voltage source to act as the portless AXS signal
32. testbench.addDcVoltageSource(uniqueName = "1",

33. plusNode="axs",

34. minusNode="0",

35. value=3.0) #value is lower than the global supply
36.

37. ## Now set up the testbench connections to the cells

38. sixCell.inputsOutputs["leftBitline"] = "vdd!" #vdd! for standby, @ for write

39. sixCell.inputsQutputs["rightBitline"] = "vdd!"

40. sixCell.inputsQutputs["wordline"] = "vdd!" #do a read SNM this time
41. sixCell.inputsOutputs["power"] = "vdd!"

42. sixCell.inputsQutputs["ground"] = "0"

43,

44 . portlessCell.inputsOutputs["leftBitline"] = "vdd!"

45. portlessCell.inputsOutputs["rightBitline"] = "vdd!"

46. portlessCell.inputsOutputs["axsLine"] = "axs"

VLSI TOOLS ARROWS USER MANUAL

47. portlessCell.inputsOutputs["power"] = "vdd!"
48. portlessCell.inputsOutputs["ground"] = "0"
49.

Lines 50 through 73 perform the same analysis instantiation, execution, and visualization as in

the quick start example.

50. #The actual analysis is a VectorField analysis object.

51. #Initialize this object using our SRAM object, technology, etc.

52. #The bistableNodes are a list of the 2 nodes considered in the state space
53. #The numberOfSteps is the quantization parameter for the state space

54. analysis = arrows.VectorField(cellToAnalyze = sixCell,

55. bistableNodes = ["data","dataBar"],
56. technologyToUse = amiTechnology,
57. numberQfSteps = 50,

58. environmentToUse = analysisEnv,

59. testbenchToUse = testbench)

60. analysis.runVectorFieldSim()

61. analysis.parseVectorFieldSim()

62. analysis.findNullclines()

63. ## 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk 3k sk 3k 3k 3k 3k sk sk 3k sk sk %k ok ok %k %k ok NOW Create some Output tO 100k at 3k 3k 3k sk sk 3k 3k ok ok 3k ok sk sk sk sk 3k ok ok ok ok ok sk k k-
64. ##

65. # Calculate the SNM as the least square fitting in the butterfly curve
66. print "SNM Vectors: "+repr(analysis.calculateSnm())

67. myVectorPlot = arrows.VectorPlot(analysis,analysisEnv)

68. myVectorPlot.setHexColor("#3EGBCE™)

69. myVectorPlot.drawNullclineU(Q)

70. myVectorPlot.drawNullclineV()

71. myVectorPlot.setHexColor("#FCA12C™)

72. myVectorPlot.drawSnmRulers()

73.

Lines 74 through 89 swap out the sixCell object for a portlessCell object in the analysis. Every-
thing is run again for the new cell and plotted with some different colors. Lines 91 through 94

output the two overlayed butterfly curves as a single PDF file.

T4 e RRRERRRRCRGk Rk Rk Rk Rk kxR kR x % Now we will run the analysis again, but with the Portless
Cell 3k 3k 3k sk 3k 3k 3k 3k 3k sk sk sk sk sk sk ok ok sk %k sk sk %k k k

75. ##

76. analysis.cellToAnalyze = portlessCell

77. analysis.runVectorFieldSim(Q)

78. analysis.parseVectorFieldSim()

79. analysis.findNullclines(Q)

80. analysis.calculateSnm() #need to do this in order to draw SNM rulers

81. #and now plot the new results in a different color

82. myVectorPlot.setHexColor("#56CF3E")

83. myVectorPlot.drawNullclineU(Q)

84. myVectorPlot.drawNullclineV(Q)

85. myVectorPlot.setHexColor("#FCA12C")

86.

87. myVectorPlot.drawSnmRulers()

88.

89.

VLSI TOOLS ARROWS USER MANUAL

90
91

92.

. #Finally, put everything into a PDF file in our output directory
. print "Creating PDF files"
myVectorPlot.createPdf(analysisEnv.outputPath+"/overlayExample.pdf™)

93.
94.

Parametric Example

The parametric Arrows example demonstrates how Arrows can be used to sweep an analysis

parameter and provide output as a text file instead of a PDF file.

The Arrows Parametric Script

Lines 1 through 42 are the same as in the quick start example.

S wWwnN -

O oo N O Ul

10.
11.
12.
13.
14.
15.
16.
17.
18.

import arrows
from datetime import *

##

3k 3k 3k >k 3k 3k ok 3k 3k 3k >k 3k 5k 3k >k 3k 5k ok 3k 3k 3k >k 3k 5k %k 3k 3k 5k >k %k 5k %k >k 3k 5k ok 3k 3k 3%k >k 3k 5k %k >k 3k 5%k >k %k 5k %k >k 3k 5k >k 3k 5k %k >k 3k 5k %k >k 3k 3%k >k %k 5k %k >k 3k 5%k %k >k 5k %k >k 3k 5%k %k >k 3k %k >k %k >k *k >k %k %k *k kk

Notice this time, we just use a string as our unique ID
analysisknv = arrows.Environment(uniqueld = "parameterExample",
globalSupply = 5.0)
amiTechnology = arrows.Technology(vendor = "Ami",
node = "600",
version = "a",

environmentToUse = analysisEnv)
amiTechnology. configureFromXml()
genericTechnology = arrows.Technology(vendor = "Generic",
node = "",
version =
environmentToUse = analysisEnv)

genericTechnology.configureFromXml()

19.

20.
21.

sixCell = arrows.Circuit(technologyToUse = amiTechnology)
sixCell.configureFromXml(analysisEnv.modelPath+"/circuits/sramCell6T.xmL")

22.

23.

testbench = arrows.Testbench(technologyToUse = genericTechnology) #make a new testbench here

24.

25.
26.
27.
28.
29.
30.

Now set up the testbench connections to the cells
sixCell.inputsQutputs["leftBitline"] = "vdd!" #vdd! for standby, @ for write
sixCell.inputsQutputs["rightBitline"] = "vdd!"
sixCell.inputsQutputs["wordline"] = "vdd!" #do a read SNM this time
sixCell.inputsOQutputs["power"] = "vdd!"

sixCell.inputsQutputs["ground"] = "0"

31.

32.
33.
34.
35.
36.
37.

VL

#The actual analysis is a VectorField analysis object.
#Initialize this object using our SRAM object, technology, etc.
#The bistableNodes are a list of the 2 nodes considered in the state space
#The numberOfSteps is the quantization parameter for the state space
analysis = arrows.VectorField(cellToAnalyze = sixCell,

bistableNodes = ["data","dataBar"],

SI TOOLS ARROWS USER MANUAL

38.
39.
40.
41.
42.

technologyToUse = amiTechnology,
numberOfSteps = 50,
environmentToUse = analysisEnv,
testbenchToUse = testbench)

Here, we will create a loop where the supple voltage is reduced in each iteration. Lines 44

through 45 create an output file an write the first line, a tab delimited header. Inside of the loop,

a new supply voltage is defined in line 48. Each time through loop, a DC source with the new

voltage is added to the testbench. The standard set of analyses are performed to measure SNM,

and then the DC source is removed. After each iteration, the SNM and current supply voltage

are written to the output file for later use.

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

#here, we are going to run a loop to determine SNM vs SupplyVoltage
outputFile = open(analysisEnv.outputPath+"/snmVsSupply.txt","w")
outputFile.write("Vdd\tSnm\n")
for index in range(0,10):
#add the supply voltage with a value based on index
newSupply = analysisEnv.globalSupply - (index*.02)
testbench.addDcVoltageSource(uniqueName = "supply",
plusNode="vdd!",
minusNode="0",
value=newSupply)
analysis.runVectorFieldSim(Q)
analysis.parseVectorFieldSim()
analysis.findNullclines()
snm = repr(analysis.calculateSnm())
print "Supply:"+repr(newSupply)+" SNM:"+repr(snm)+"\n"
outputFile.write(repr(newSupply)+"\t"+repr(snm)+"\n")
#remove the supply DC source since we add one at the top of the loop
testbench. remove("supply")

outputFile.close()

VLSI TOOLS ARROWS USER MANUAL

16

Class Reference

Circuit Class

Relevant properties:

Description:

¢ Adictionary whose keys represent inputs and output defined in the subcircuit, and
whose values represent their connection in the instance definition

Default: Empty

Description:

¢ Adictionary whose keys represent device names specified in the circuit XML, and whose
values are a dictionary of properties for that device.

Default: Empty

Description:

¢ Adictionary whose keys represent circuit parameters specified in the circuit XML, and
whose values are added to the instance definition.

Default: Empty

Relevant methods:

__init__(environmentToUse, technologyToUse):

Description:

¢ Constructor method.

Arguments:

o environmentToUse is an object of type Environment
e technologyToUse is an object of type Technology
Return: None

configureFromXml(circuitXmlFilePath):

Description:

¢ When called, populates the circuit object with a definition from the associated XML file.
Arguments:

e circuitXmlFilePath is an absolute string path to a XML circuit description.

Return: None

subCircuit([format]):

Description:
¢ When called, creates a subcircuit definition of the Circuit object for inclusion in a simula-
tion netlist.

Arguments:
e formatis a string describing the simulator format. Default and currently only option is
“spectre”

Return: A string containing the full subcircuit definition.

instance(uniqueName):

VLSI TOOLS ARROWS USER MANUAL

Description:

¢ When called, returns an instance definition of the Circuit object for inclusion in a simula-
tion netlist.

Arguments:

¢ uniqueName is a string to ensure that the instance definition is not repeated.

Return: A string containing the full instance definition.

Environment Class

Relevant properties:

Description:
¢ A string that contains the system environment variable “ARROWS_HOME”
Default: None

Description:

¢ A string name assigned to the analysis environment such that multiple or simultaneous
runs of an Arrows script will not overwrite each other's data.

Default: None

Description:

¢ A float specifying the supply voltage used. This defines the extents of the vector field’s
state space (x and y axis limits.)

Default: None

Description:
¢ Strings that contain absolute paths to the various directories within an Arrows installa-
tion.

Default: None

Relevant methods:

__init__(uniqueld, globalSupply, inputPath, outputPath):

Description:

¢ Constructor method.

Arguments:

e uniqueld is a name assigned to the analysis environment such that multiple or simulta-
neous runs of an Arrows script will not overwrite each other's data.

e globalSupply is a float specifying the supply voltage used. This defines the extents of the
vector field’s state space (x and y axis limits.)

e inputPath specifies a directory to use for input to Arrows if the default /userDirectory/
input is unacceptable - keep in mind that when Arrows generates a netlist for simula-
tion, it will put that netlist into this input path.

e outputPath specifies a directory to use for Arrows output if the default /userDirectory/
input is unacceptable

Return: None

VLSI TOOLS ARROWS USER MANUAL

Technology Class

Relevant properties:

Description:
e Strings from a tech.xml file corresponding to the unique properties of a technology.
Default:None

Description:

¢ Adictionary whose keys are read from the tech.xml file for each type of model and
whose keys are the string definitions of those types for a netlist file.

Default:None

Description:
e Alist of all the paths required for inclusion in a simulation of a particular technology.
Default:None

Description:

¢ Adictionary of device types. Each key points to an internally defined device class that
contains the properties for model aliasing and netlist formatting.

Default:None

Relevant methods:

__init__(vendor, node, version, environmentToUse):

Description:

¢ Constructor method.

Arguments:

¢ vendor, node, and version are string objects used to identify a particular technology defi-
nition in an XML file by concatenating all three into a single string internally.

e environmentToUse is an Environment object.

Return: None

generateModellncludeFile():

Description:
¢ C(Creates a file for inclusion in a simulation. The file contains all of the model paths for a
particular technology.

Return: None

device(name, format, properties):

Description:

+ Creates a string for instantiating a device for this technology node into a netlist.

Arguments:

¢ nameis a unique name string to identify the device in a netlist

e fotmat is a string specifying which netlist format to use. Currently, “spectre” is the only
option.

e properties is a dictionary of properties and values corresponding to the device definition
in the tech.xml file.

VLSI TOOLS ARROWS USER MANUAL

19

¢ Return: None

Testbench Class

This class encapsulates the testbench used when running vector field analysis. It requires a technol-
ogy object and stores statements internally to instantiate testbench elements such as voltage and
current sources.

Relevant properties:

e Description:
e A Technology object from which basic circuit elements can be instantiated.

Relevant methods:

__init__ (technologyToUse):
¢ Description:
e Constructor method.
¢ Arguments:
e technologyToUse is the Technology object whose methods are called internally.
e Return: None

addDcVoltageSource(uniqueName, plusNode, minusNode, value):

e Description:
e Adds an instance of a DC voltage source to the current testbench netlist.

¢ Arguments:
e uniqueName is the string instance name used in the netlist
e plusNode, minusNode are the string connections for the voltage source. i.e. “vdd!”, “0”
e value is the float value for the DC voltage

e Return: None

writeToFile(fileHandle):
e Description:
¢ Adds the testbench netslist to a file via it’s opened file handle.
¢ Arguments:
e fileHandle is a handle to a ascii text file created using the open() method in Python
e Return: None

remove(uniqueName):
e Description:
¢ Removes an element from the testbench netlist.
¢ Arguments:
e uniqueName is the name of the element to be removed from the internally maintained
list of testbench devices.
e Return: None

clear():
e Description:
e (lear all elements in the internal list of testbnech elements.
e Arguments: None

VLSI TOOLS ARROWS USER MANUAL

20

e Return: None

VectorField Class

This class is the main workhorse of the Arrows framework for vector field analysis. It handles gen-
eration of simulation netlists, simulation execution, post processing, and data analysis.

Relevant properties:

e Description:
e A Circuit object representing a bistable system to analyze.

e Description:
¢ Alist of two strings corresponding to the bistable node names in the circuit netlist.
***These must be in the inputOutput list of the subcircuit definition.

e Description:
e Aninteger number of steps by which to quantize the state space in both dimensions.

e Description:
e Environment, Technology, Testbench objects used in netlist generation and analysis.

e Description:

e Two lists of state space X and Y float coordinates. Corresponds to the points in the
quantized state space to be used during analysis. Since the space is 2 dimensional, the Y
coordinates are repeated every numberOfSteps to ensure that these two lists are the
same length.

e Description:
e Twolists of U and V float magnitudes. These lists correspond to the coordinates in the
XY lists and represent vector components of the state space derivatives at each point.
For example, the vector (U[10],V[10]) is the arrow to be plotted at the coordinated
(X[10], Y[10D).

e Description:
e Alist of the float magnitudes (euclidian) of every vector described by the U,V lists.

e Description:
e Lists of xand y coordinates of the U and V nullclines. A nullcline is defined as the collec-
tion of points in the state space where one of the vector components are zero, either the
Uorthe V.

VLSI TOOLS ARROWS USER MANUAI

21

Description:

¢ A float tuple of the metastable point calculated via the intersection of the U and V null-
clines. Since nullclines intersect at 3 points for a bistable system, it is assumed that the
metastable point is that point whose x and y coordinates are most similar (defines the
point most central in the state space).

Description:
¢ Two float tuples providing the coordinates of the two stable points calculated using
nullcline intersection. See metastable point above.

Description:
¢ Alist of tuples containing (x,y) coordinates for separatrix points. Since the separatrix is
interpolated, these points are not necessarily in the X,Y coordinate list.

Description:
¢ Alist of ruler coordinates (largest box inside of butterfly curve.) Each ruler is a float tu-
ple of the form (x1,y1,x2,y2) providing the coordinates of the SNM box.

Description:
e Alist of the SNMs (noise margins) for each lobe of the butterfly curve using the largest
square method. The smallest of these two list elements defines the SNM of the system.

Relevant methods:

__init__(cellToAnalyse, bistableNodes, technology ToUse, numberOfSteps, environmentToUse, test-
benchToUse):

Description:

¢ Constructor method.

Arguments:

e cellToAnalyze, technologyToUse, environmentToUse, testBenchToUse are self explanatory.
Each of these objects is passed in during initialization to control the terms of the analy-
sis.

e DbistableNodes is a string list of the bistable node names in the circuit to analyze.

e numberOfSteps is the quantization factor of the state space.

Return: None

runVectorFieldSim():

Description:

e Executes a variety of internal methods to create the simulation netlists and run the
simulation.

Arguments:

e None

Return: None

parseVectorFieldSim([outputFile], [cleanUpWhenDone]):

Description:
e Parses the simulation output to determine vectors from the operating points and nodal
capacitance.

VLSI TOOLS ARROWS USER MANUAL

¢ Arguments:
e outputFile is an optional file path string where X,Y,U,V data will be dumped after parsing.
e cleanUpWhenDone is an optional boolean defaulting to true. If false, all intermediate
simulation files will be left in the output directory.
e Return: None

findNullclines():
e Description:
¢ Searched the vector field for null cline components and stores the result internally.
¢ Arguments: None
e Return: None

calculateSnm():
e Description:
¢ (Calculates the noise margins of the system by rotating the nullclines about the 45 degree
line, resampling them, and then subtracting them. The result is stored internally.
¢ Arguments: None
e Return: The minimum float value of the two measured SNMs is returned.

findMetastablePoint():
e Description:
¢ (alculates the metastable point by intersecting the nullclines. Assumes that the null-
clines have already been determined using the findNullClines() method.
¢ Arguments: None
e Return: None - result is stored internally as a property.

traceSeparatrix():
e Description:
¢ Traces the separatrix (boundary between the two stable manifolds) inside of the vector

field using an interpolation algorithm. Assumes that the metstable point has already
been found using the findMetastablePoint() method. Separatrix points are stored inter-
nally as a property and may not coincide with points in the X,Y state space lists.

¢ Arguments: None

e Return: None.

measureSeparatrixAreas():
e Description:

e Measures the area of the state space on either side of the separatrix. Since the separa-
trix is not always a 45 degree line bisecting the state space, this is a good measure of
mismatch / impose skew in the bistable circuit.

e Arguments: None
e Return: A tuple of (ratioA, ratioB) where the sum of the two ratios is 1 and each represents a
fraction of the total state space area.

UVatXY(xy):
e Description:
¢ A useful utility method to provide a U,V value for any point (x,y) using two sided vector
interpolation.
¢ Arguments: x,y are floating point coordinates for any value within the state space bounda-
ries.

e Return: A tuple (U,V) of the interpolated vector components.

stablePointClosestToSeparatrix():
VLSI TOOLS ARROWS USER MANUAL

e Description:

¢ (Calculates which stable point is closest to the separatrix.
¢ Arguments: None
e Return: A triplet (distance, stablePoint, and separatrixPoint)

distanceToSeparatrix(pointToMeasureFrom):
e Description:
¢ C(Calculates the euclidian distance from any point to the separatrix.
¢ Arguments: pointToMeasureFrom is a float tuple of coordinates.
e Return: A float of the distance in state space units (volts).

distanceToMetastable(pointToMeasureFrom):
e Description:
¢ C(Calculates the euclidian distance from the metstable point to any provided point within
the state space boundaries.
¢ Arguments: pointToMeasureFrom is a float tuple of coordinates.
e Return: A float of the distance in state space units (volts).

integrateSeparatrix():
e Description:
¢ (Calculates the integral of the state space underneath the separatrix.
¢ Arguments: None.
e Return: A float integral value.

weightedDistanceToSeparatrix(pointToMeasureFrom):
e Description:
¢ C(Calculates the weighted distance from any point to its closest separatrix point using the
U,V data in the vector field. This is the method used to calculate Separatrix Affinity
when the pointToMeasureFrom is specified as one of the stable points.
¢ Arguments: pointToMeasureFrom is a float tuple of coordinates.
e Return: A float of the weighted distance from the measurement point to the separatrix point.

weightedDistanceToMetastable(pointToMeasureFrom):
e Description:
¢ C(Calculates the weighted distance from any point to the metastable point using the U,V
data in the vector field.
¢ Arguments: pointToMeasureFrom is a float tuple of coordinates.
e Return: A float of the weighted distance.

VectorPlot Class
This class is the main visualization tool for Arrows. When linked with a VectorField class, it sup-
ports plotting of bistable state spaces, nullclines, SNM rulers, serparatrix traces, etc. using the Py-

thon package PyX.

Relevant properties:

e Description:
o A VectorField object to be visualized.

VLSI TOOLS ARROWS USER MANUAL

24

e Description:
¢ An Environment object used to determine the extents of the state space boundary from
the globalSupply property.

e Description:
¢ Strings used to label the axis of the state space.

Relevant methods:

__init__(vectorFieldAnalysis, environmentToUse, [xLabel, yLabel]):

e Description:
¢ Constructor method.

¢ Arguments:
e vectorFleldAnalysis is the VectorField object to visualize.
e environmentToUse is the Environment object associated with the analysis.
e xLabel and yLabel are optional strings used to generate the plots.

e Return: None

getGraph():
e Description:
¢ Utility method used to get the internal representation of the vector field plot. This
method is used when you have two different VectorPlot objects and you want to combine
their data. Used in conjunction with the setGraph() method.
¢ Arguments: None
e Return: A PyX graph object.

setGraph(graphToUse):
e Description:

o Utility method used to set the internal representation of the vector field plot. This
method is used when you have two different VectorPlot objects and you want to combine
their data. Used in conjunction with the getGraph() method.

¢ Arguments:
e graphToUse is a PyX graph object.
e Return: None.

setColor(red, green, blue):
e Description:
¢ Utility method used to set the internal drawing color. Use this method before executing
a plot command of any kind to control the result.
¢ Arguments:
e red, green, blue are floats between 0 and 1 representing the RGB composition of the
color.
e Return: None.

setHexColor(hexColor):
e Description:
¢ Utility method used to set the internal drawing color. Use this method before executing
a plot command of any kind to control the result.
¢ Arguments:
¢ hexColor is a string of the format “#A2C80B” where every pair of hex characters repre-
sents an 8 bit value for R, G, and B components of the color.
e Return: None.

VLSI TOOLS ARROWS USER MANUAL

25

drawVectorField():
e Description:
¢ Adds the U,V arrows to the vector field plot. These arrows can be very lage and may re-
sult in unreadable outputs. Refer to the drawNormalizedVectorField()method below.
¢ Arguments: None.
e Return: None.

drawNormalizedVectorField(normScale, filter):

e Description:

¢ Same as drawVectorField() but the arrows lengths are normalized to the longest arrow
in the field.

¢ Arguments:
¢ normScale is a float factor multiplied by the largest normalized vector length
e filter is a float which “drops” vectors less than this length from the field drawing.

e Return: None.

drawNullclineU(), drawNulclineV():
e Description:
¢ Draws the nullclines U or V on the vectorfield.
¢ Arguments: None
e Return: None.

drawSnmRulers():
e Description:
¢ Draws the boxes and diagonals for the SNM largest square methods.
¢ Arguments: None.
e Return: None.

drawMetastablePoint():
e Description:
¢ Places a dot at the metastable point calculated in the vector field.
¢ Arguments: None.
e Return: None.

drawSeparatrix():
e Description:
¢ Draws the separatrix points on the vector field.
¢ Arguments: None.
e Return: None.

createEps(fileName):
e Description:
¢ Exports the PyX graph as an EPS file.
¢ Arguments:
¢ fileName is a string path to the output filename.
e Return: None.

createPdf(fileName):
e Description:
¢ Exports the PyX graph as a PDF file.
¢ Arguments:
¢ fileName is a string path to the output filename.
e Return: None.
VLSI TOOLS ARROWS USER MANUAL

26

