
Livelink WCM Server

Portal Manager API
Programmer’s Manual

This manual describes how to develop dynamic
and personalized websites on the basis of the
Portal Manager API. Highlighted topics
include:

• basic concepts of the Portal Manager API

• configuring the Portal Manager API in the
Admin client

• overview of the classes and interfaces of the
Portal Manager API

• application examples of programming with
the Portal Manager API

PortalManagerAPIProgrammersManual_en.book Page 1 Wednesday, April 27, 2005 11:01 AM

Copyright 2005 by Open Text Corporation.
The copyright to these materials and any accompanying software is owned, without
reservation, by Open Text. These materials and any accompanying software may not be
copied in whole or part without the express, written permission of Open Text.

Open Text Corporation is the owner of the trademarks Open Text, ‘Great Minds Working
Together’, Livelink, and MeetingZone among others. This list is not exhaustive. All other
products or company names are used for identification purposes only, and are trademarks of
their respective owners. All rights reserved.

Open Text Corporation provides certain warranties and limitations in connection with the
software that this document describes. For information about these warranties and
limitations, refer to the license agreement entered into between the licensee and Open Text
Corporation.

Contacting Us
Corporate Headquarters
Open Text Corporation
185 Columbia Street West,
Waterloo, Ontario
N2L 5Z5
Canada

(519) 888-7111

If you subscribe to our Software Maintenance Program or would like more information
about additional support programs, visit Open Text Customer Support at http://
www.opentext.com/services/support.html.

If you have suggestions for this publication, send an e-mail message to
documentation@opentext.com to contact the Open Text Publications Group.

Visit our home page at http://www.opentext.com for more information about Open Text
products and services.

© 2005 IXOS SOFTWARE AG
Bretonischer Ring 12
85630 Grasbrunn, Germany

Tel.: +49 (89) 4629-0
Fax: +49 (89) 4629-1199
eMail: <office@ixos.de>
Internet: http://www.ixos.de

All rights reserved, including those regarding reproduction, copying or other use or
communication of the contents of this document or parts thereof. No part of this publication
may be reproduced, transmitted to third parties, processed using electronic retrieval
systems, copied, distributed or used for public demonstration in any form without the
written consent of IXOS SOFTWARE AG. We reserve the right to update or modify the
contents. Any and all information that appears within illustrations of screenshots is
provided coincidentally to better demonstrate the functioning of the software. IXOS

PortalManagerAPIProgrammersManual_en.book Page 2 Wednesday, April 27, 2005 11:01 AM

http://www.opentext.com/services/support.html
http://www.opentext.com/services/support.html
http://www.opentext.com
http://www.ixos.de

SOFTWARE AG hereby declares that this information reflects no statistics of nor has any
validity for any existing company. This product includes software developed by the
OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/) and software
developed by the Apache Software Foundation (http://www.apache.org/).

Trademarks IXOS: IXOS SOFTWARE AG.

SAP®, R/3® and SAP ArchiveLink® are registered trademarks of SAP AG.

Microsoft®, Microsoft Windows NT® and the names of further Microsoft products are
registered trademarks of Microsoft Corporation.

Acrobat Reader Copyright © 1987 Adobe Systems Incorporated. All rights reserved. Adobe
and Acrobat are trademarks of Adobe Systems Incorporated which may be registered in
certain jurisdictions.

Siebel® is a registered trademark by Siebel Systems, Inc.

Other product names are used only to identify the products and they may be registered
trademarks of the relevant manufacturers.

Copyright © 2005 Gauss Interprise AG Hamburg, Gauss Interprise, Inc.
Irvine, California. All rights reserved worldwide.
This document and the related software are property of Gauss Interprise AG or its suppliers
and protected by copyright and other laws. They are distributed under licenses restricting
their use, copying, distribution, and decompilation. Neither receipt nor possession of this
document confers or transfers any right to reproduce or disclose any part of the contents
hereof. No part of this document may be reproduced in any form by any means without
prior written authorization of Gauss Interprise AG or Gauss Interprise, Inc.

Moreover, the regulations of the software license agreement apply to this documentation.

All brand names and trademarks mentioned are the property of their respective owners.

http://www.opentext.com/bridging/gauss.html

Program version: Livelink Web Content Management Server TM (Content Server) 9.5.0

Document version: En-01

Publication date: April 2005

PortalManagerAPIProgrammersManual_en.book Page 3 Wednesday, April 27, 2005 11:01 AM

http://www.openssl.org/
http://www.apache.org/
http://www.gaussvip.com

4 Livelink WCM Server

Table of Contents

List of Figures 6

List of Tables 8

Chapter 1 Introduction 11

About this Manual 12

Typographic Conventions 16

Chapter 2 Concepts 19

The Architecture of the Portal Manager API 19

Integrating the Portal Manager API in the WCM System 24

Programming Concepts 32

Integrating External Programs 46

Chapter 3 Managing the Portal Manager API 51

Managing Repositories 52

Managing applications 65

LDAP 86

Locating Errors 89

Chapter 4 Classes and Interfaces of the Portal Manager API 95

Class Diagrams and Class Descriptions 95

Basic Classes 97

Application and Bean Classes 110

PortalManagerAPIProgrammersManual_en.book Page 4 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 5

Chapter 5 Notes on Programming with the Portal
Manager API 127

Authentication and Session Management 127

Application Examples for the Portal Manager API 133

Framework for Applications 152

Designing a JSP Page 157

Security Aspects 159

Internationalization 160

Appendix A Metadata Schemes 167

Appendix B Caching 173

Accessing WCM Objects 173

Deployment Cache 175

How the Cache for WCM Objects Works 175

Caching RepositoryEntry Objects 177

Glossary 179

Index 183

PortalManagerAPIProgrammersManual_en.book Page 5 Wednesday, April 27, 2005 11:01 AM

6 Livelink WCM Server

List of Figures

Fig. 1 – The layer model of the Portal Manager API 20

Fig. 2 – The layer model of the Portal Manager API with session and
application scope 23

Fig. 3 – Structure of a minimum system 28

Fig. 4 – Distributed WCM system with separate databases 30

Fig. 5 – The life cycle state of a WCM object. 45

Fig. 6 – Principal class design in the Portal Manager API 49

Fig. 7 – The Configuration items 51

Fig. 8 – Overview of available repositories 53

Fig. 9 – Adding a repository 54

Fig. 10 – Adding a parameter for a repository 56

Fig. 11 – Applications assigned to a repository 63

Fig. 12 – Structure below the tree item Repositories 64

Fig. 13 – Overview of available applications 66

Fig. 14 – Defining basic application data 68

Fig. 15 – Quit wizard? 69

Fig. 16 – Assigning a repository to an application during setup 70

Fig. 17 – Assigning resources when adding an application 71

Fig. 18 – Adding a parameter for an application 73

Fig. 19 – Repositories assigned to an application 82

Fig. 20 – Structure below the tree item Applications 83

Fig. 21 – Applications assigned to a Content server 85

Fig. 22 – The DirectoryRepository with its parameters 89

Fig. 23 – Representation scheme for class diagrams 96

Fig. 24 – Multi-level key value lists in the TupelMap 99

Fig. 25 – The basic classes in the entire class diagram 100

Fig. 26 – The filtering and sorting classes in the entire class diagram 102

PortalManagerAPIProgrammersManual_en.book Page 6 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 7

Fig. 27 – The RepositoryMap class in the entire class diagram 102

Fig. 28 – Structural relations of complex data types 103

Fig. 29 – Multi-level key value lists in the repository map 105

Fig. 30 – The repository classes in the entire class diagram 109

Fig. 31 – The application classes in the entire class diagram 112

Fig. 32 – The bean classes in the entire class diagram 115

Fig. 33 – Structure of VipProfile and the managed information 119

Fig. 34 – Configuring the trusted login mode via the Admin client 129

Fig. 35 – Authentication and session management 131

Fig. 36 – Login Repositories 132

Fig. 37 – Class diagram for applications 152

Fig. 38 – General hierarchy for developing applications 154

Fig. 39 – The RepositoryImpl class with all methods relevant to
data sources 155

Fig. 40 – JSP model 2 architecture 157

Fig. 41 – Architecture of the Portal Manager API with internationalization
aspects 161

Fig. 42 – Structure of a website 164

PortalManagerAPIProgrammersManual_en.book Page 7 Wednesday, April 27, 2005 11:01 AM

8 Livelink WCM Server

List of Tables

Table 1 – Available functions of the Livelink WCM Server APIs 14

Table 2 – Functions for configuring repositories and applications 52

Table 3 – Repositories and their parameters 57

Table 4 – WCM Applications and their parameters 73

Table 5 – Start parameters for Content servers running in the context
of a JSP engine 110

Table 6 – Sample configuration of a DirectoryRepository 135

PortalManagerAPIProgrammersManual_en.book Page 8 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 9

PortalManagerAPIProgrammersManual_en.book Page 9 Wednesday, April 27, 2005 11:01 AM

10 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 10 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 11

CHAPTER 1
1Introduction

The Portal Manager API is part of Livelink Web Content Management
ServerTM (Livelink WCM Server for short). By purchasing
Livelink WCM Server, you have acquired a powerful Content Manage-
ment System, which you can use to build, maintain, and manage complex
and distributed websites.

The Portal Manager API enables you to create and manage dynamic
content for your website, thus allowing you to develop enterprise portals.
Furthermore, the Portal Manager API forms the basis for personalizing
websites.

The Portal Manager API can be integrated in application servers which
conform to the J2EE specification and offers the possibility of dynamic
load balancing and session fail over. It also functions as a platform for
Enterprise Application Integration (EAI). The Portal Manager API is the
basis for a multitude of connectors that you can use to establish a connec-
tion to third-party products.

The Portal Manager API is not a product that gives you a finished web
portal after installation. You should consider it as a framework that helps
you create web portals and that provides support in coming up with neces-
sary solutions to problems. A seamless integration with
Livelink WCM Server is guaranteed. The Portal Manager API allows you
to quickly develop dynamic components that are internally consistent, in
line with your own ideas, and that meet the demands of modern websites.

PortalManagerAPIProgrammersManual_en.book Page 11 Wednesday, April 27, 2005 11:01 AM

12 Livelink WCM Server

Chapter 1

About this Manual
The Portal Manager API and hence this document are designed for indi-
viduals with sound technical know-how. The following requirements
should be satisfied:

knowledge of the product Livelink WCM Server, preferably not only
as user, but also as administrator

technical understanding of the processes involved in using JSP
pages and servlets

general programming experience, Java programming experience,
and familiarity with HTML

The contents of this manual are organized as follows:

Chapter 2 “Concepts” explains the basic concepts of the
Portal Manager API and the integration of the Portal Manager API in
the system architecture of a WCM system.

Important! Incorrect use of the programming interface described in this
manual may lead to errors in the WCM system including system
crashes and data loss. Incorrect programming can also cause problems
concerning performance and system resources. For this reason it is
essential to test the developed software with regard to correctness,
stability, robustness, and performance before putting it to productive
operation.

Gauss Interprise AG cannot assume any liability for the correct function-
ality of the developed software. Our Professional Services Group can
help you plan and implement solutions. This may help you avoid prob-
lems right from the start.

PortalManagerAPIProgrammersManual_en.book Page 12 Wednesday, April 27, 2005 11:01 AM

Introduction

Portal Manager API – Programmer’s Manual 13

Chapter 3 “Managing the Portal Manager API” describes how to
configure the Portal Manager API by means of applications and
repositories. The chapter also contains notes on LDAP.

Chapter 4 “Classes and Interfaces of the Portal Manager API”
contains a description of the programming interface that the
programmer must be familiar with in order to create JSP pages.

Chapter 5 “Notes on Programming with the Portal Manager API”
offers an introduction to the Portal Manager API’s programming inter-
faces as well as a few application examples.

Appendix A “Metadata Schemes” compares the metadata schemes
of version 5e and version 8.

Appendix B “Caching” describes the caching behavior of the
Portal Manager API.

The programming interface described here is a component of
Livelink WCM Server. In addition to this Programmer’s Manual, the
following sources provide information:

Livelink WCM Server Installation Manual: This document describes
the installation of the WCM system and contains information on the
configuration of web server and application server.

Livelink WCM Server Administrator Manual: This document
describes the configuration and administration of a WCM system
from the point of view of an administrator.

WCM Java API Programmer's Manual: This document contains
information on interfaces, classes, and methods of the Java
programming interface (WCM Java API), which makes it possible to
use the functionality of the WCM servers via external programs.

Javadoc – Here you will find the complete documentation on the
classes of the Portal Manager API.

PortalManagerAPIProgrammersManual_en.book Page 13 Wednesday, April 27, 2005 11:01 AM

14 Livelink WCM Server

Chapter 1

Livelink WCM Server offers flexible programming interfaces for using the
core functionality of Livelink WCM Server via external programs. The
following table provides an overview of the different interfaces and the
available functions.

Table 1 – Available functions of the Livelink WCM Server APIs

Functionality of the W
C

M
Ja

va
A

PI

R
em

ot
e

A
PI

Po
rta

lM
an

ag
er

A
PI

W
C

M
W

eb
Se

rv
ic

es

AdminHandler

read-only

by means of
VipUserBean

AttributeHandler

by means of
VipWebsiteBean

by means of
VipWebService_
Port

EventDispatcher

MailHandler

by means of
VipEMailBean

ObjectHandler

by means of
VipObject
HandlerBean

by means of
VipWebService_
Port

ObjectLoader

SystemHandler

PortalManagerAPIProgrammersManual_en.book Page 14 Wednesday, April 27, 2005 11:01 AM

Introduction

Portal Manager API – Programmer’s Manual 15

WorkflowHandler

by means of
VipWorkflow
Bean

by means of
VipWebService_
Port

DeploymentHandler

ContextHandler

LivelinkAdmin
Handler by means of

LivelinkUser
Bean

LivelinkObject
Handler by means of

LivelinkObject
Bean

Functionality of the W
C

M
Ja

va
A

PI

R
em

ot
e

A
PI

Po
rta

lM
an

ag
er

A
PI

W
C

M
W

eb
Se

rv
ic

es

PortalManagerAPIProgrammersManual_en.book Page 15 Wednesday, April 27, 2005 11:01 AM

16 Livelink WCM Server

Chapter 1

Typographic Conventions
The following conventions are used in the text to draw attention to
program elements, etc.:

Element Font or symbol Examples

Program interface
such as menu
commands, windows,
dialog boxes, field and
button names

Menu → Entry File → Create

Paths to directories,
file and directory
names

Drive:\Directory\File
name

D:\WCM\
admin.bat

Quotations from
program code or
configuration files

Code quotations <head>

<title>heading
</title>

</head>

Variables, i.e.
placeholders for
specific elements

{variable} {WCM installation
directory}

Important information and warnings are enclosed in gray boxes. Make
sure to read such information to avoid losing data or making errors
when using and managing WCM systems.

PortalManagerAPIProgrammersManual_en.book Page 16 Wednesday, April 27, 2005 11:01 AM

Introduction

Portal Manager API – Programmer’s Manual 17

PortalManagerAPIProgrammersManual_en.book Page 17 Wednesday, April 27, 2005 11:01 AM

18 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 18 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 19

CHAPTER 2
2Concepts

This chapter describes how the Portal Manager API is integrated in a
WCM system. Moreover, the general concepts of programming with the
Portal Manager API are explained.

The Architecture of the Portal Manager API
The functionality of the Portal Manager API is a result of the collaboration
of the various components of the WCM system. The most important are

servers (e.g. master Admin server, master Content server, proxy
Content server)

websites managed in the WCM system

session beans and other classes of the Portal Manager API

JSP pages using these interfaces

The internal structure of the Portal Manager API can be described by a
simple layer model (see the following figure).

PortalManagerAPIProgrammersManual_en.book Page 19 Wednesday, April 27, 2005 11:01 AM

20 Livelink WCM Server

Chapter 2

Fig. 1 – The layer model of the Portal Manager API

JSP Scripts
JSP scripts are Java code embedded in HTML pages. Requests from
clients (HTML browsers) to the web server result in the JSP engine
executing the Java code in such HTML pages. The result is returned to
the client as content. The Java code is thus executed on the server side.
The Java code is converted into servlets by the JSP engine once before
the initial execution. This is invisible to the client because the client only
sees HTML pages.

Java code used in JSP pages must be enclosed in tags that correspond to
the JSP syntax. Otherwise, the code cannot be processed by the JSP
engine.

JSP Script

Session Beans

Applications

Repositories

Content Manager

LDAP
server

RDBMS
server

(E-Commerce-)
Application

Po
rt

al
 M

an
ag

er
 A

PI

g

PortalManagerAPIProgrammersManual_en.book Page 20 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 21

Session Beans
Beans are classes whose instances can be used in JSP scripts. They are
the starting point in the Portal Manager API. A bean is based on an appli-
cation, depending on which tasks are supposed to be performed with the
Portal Manager API. As with applications, external programs cannot be
connected until individual bean classes have been developed.

Each of the beans contained in the Portal Manager API is linked to a JSP
session. That is why they are also called session beans.

Sessions are units managed by the JSP engine. The purpose of a session
is to be able to combine the actions of a web client. This is not possible
with HTTP as the protocol between web client (HTML browser) and web
server because HTTP is a stateless protocol. But a session exists beyond
individual HTML requests. A JSP script can reference the current session.
This means that a state for each user can be managed despite numerous
requests. Session beans facilitate resource management considerably.

A session begins with the first contact of a web client and ends with the
last contact. The JSP engine is technically responsible for managing the
session. Generally, the JSP engine saves a session key in the respective
browser. This means that the browser must allow (non-persistent)
cookies. Each JSP engine has its own strategies to determine when and
how the session key becomes invalid or when the last contact with a
browser took place. Normally, this is determined empirically through time
behavior. Different browser instances on the same client computer are
normally associated with different session keys. The entire JSP engine
complex is almost completely standardized.

PortalManagerAPIProgrammersManual_en.book Page 21 Wednesday, April 27, 2005 11:01 AM

22 Livelink WCM Server

Chapter 2

Applications
Applications are descriptions of any programs that are to be referenced in
the Portal Manager API. The Portal Manager API already contains some
applications that have been implemented to control internal access to
Livelink WCM Server. However, additional individual implementations
must be developed if external applications such as e-commerce solutions
are intended to be controlled using the Portal Manager API.

Applications provide access to data sources. The concept provided in the
Portal Manager API for processing the data of an application is based on
the use of repositories. Repositories are modeled by the basic classes
that are described in chapter 4 “Classes and Interfaces of the
Portal Manager API”.

In the Portal Manager API, applications are defined, in the broadest
sense, as a collection of abstract access processes which standardize the
view of programs. New, concrete applications can be easily integrated by
using the application interface. Using this interface is not mandatory, but it
makes available the full functionality of the session beans.

In contrast to session beans, the lifetime of resources in applications is
unlimited. Applications do not know sessions. There is only one single
resource context that begins with the application’s runtime start and
finishes when the runtime ends. If necessary, the application is instanti-
ated by the bean and stopped by the server-side process (Java Virtual
Machine).

The following figure shows where the borderline between session and
application scope lies.

PortalManagerAPIProgrammersManual_en.book Page 22 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 23

Fig. 2 – The layer model of the Portal Manager API with session and application
scope

Repositories
Similar to applications, repositories are an abstraction allowing uniform
accesses to data. New applications that are created by using the applica-
tion interface can access existing repositories or repositories that are yet
to be developed.

JSP Script

Session Beans

Applications

Repositories

Content Manager

A
pp

lic
at

io
n

Sc
op

e
Se

ss
io

n
S

co
pe

PortalManagerAPIProgrammersManual_en.book Page 23 Wednesday, April 27, 2005 11:01 AM

24 Livelink WCM Server

Chapter 2

Integrating the Portal Manager API in the
WCM System
The integration of the Portal Manager API in the WCM system involves
different aspects:

access of Portal Manager API solutions to WCM system data

integration of Content servers on which the Portal Manager API is
available into the WCM system

Access to the Data of the WCM System
If you look at the solutions based on the Portal Manager API, the reposi-
tory interface connects the Portal Manager API and the WCM system.
When programming a solution with the Portal Manager API, you use
beans to access the data of the WCM system. The bean requests the
necessary repository from the application and establishes a connection to
the WCM system via this repository. The repository provides the object
data from the WCM system for the Portal Manager API solution. You can
assign repositories and applications to each user via the Admin client, see
“Assigning a Repository to an Application” on page 81.

There are numerous beans that access certain services in the
WCM system. They allow access to the data of the managed objects as
well as to administrative data. This enables access to object content,
object metadata, user, group, role, and functional area data. Support is
also provided for filtering and sorting the data of the WCM system.

PortalManagerAPIProgrammersManual_en.book Page 24 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 25

Portal Manager API and Deployment Systems
When a repository is used to access object data, the data of a certain
deployment system is accessed. A deployment system is specified in the
configuration of each repository that can be used to access object content
and metadata. When you create a new website via the Admin client, the
repositories for all deployment systems of the new website are generated
automatically.

The Portal Manager API can access the data of any deployment system.
The only requirement is that the respective deployment systems use the
same data storage as the Content server running in the context of a JSP
engine or as web application in an application server. For accessing
objects with WebDAV-capable clients, a servlet is used that requires the
Portal Manager API.

Portal Manager API and Data Storage
The Portal Manager API requires access to both the data of deployment
systems (e.g. the generated URLs of objects) and to the WCM objects
themselves (via repositories). Access to the WCM objects is required for
reading the metadata and for processing them for applications and
programs. For accessing the data of deployment systems, the deployment
system of the repository must be installed on a Content server that uses
the same data storage as the Content server running in the context of a
JSP engine or as web application in an application server.

In a distributed WCM system, it is, for example, possible that two Edit
deployment systems for the same website have been installed on different
servers. If these two servers have separate data storages, the deployment
systems also use different data storages when generating pages. The
Portal Manager API cannot access both Edit deployment systems
because this would require simultaneous access to the data of one
website via different JDBC pools. In such a case, two Content servers
running in the context of a JSP engine or as web application in an applica-
tion server are required.

PortalManagerAPIProgrammersManual_en.book Page 25 Wednesday, April 27, 2005 11:01 AM

26 Livelink WCM Server

Chapter 2

Integrating the Portal Manager API in a WCM
System
The servers are divided into two main categories: master and proxy. In
every WCM system, there is one master Administration server and one or
several master Content servers.

The master Administration server handles the user administration and
is responsible for configuration, system administration, and license
management. The Administration server can be accessed using the
Admin client.

The master Content server manages one or more websites. Each
website is assigned to exactly one master Content server. Changes to the
content and status of WCM objects can only be made on a master
Content server. The master Content server always has all data storage
views (Edit, QA, and Production).

In addition to the master Content server, you can set up proxy Content
servers in a WCM system, which also provide access – by way of deploy-
ment systems – to the website data. Unlike a master Content server,
however, proxy Content servers merely have read-only access to the
content. If website data is to be edited using a proxy Content server, the
proxy Content server consults the master Content server, which locks the
object from further write accesses and, once editing is complete, stores
the changed objects in the data storage. The master Content server then
informs all proxy Content servers connected to the website that the
WCM object has changed. This ensures that your website content
remains consistent.

The deployment systems are responsible for the distribution of the
pages in the WCM system.

The Portal Manager API is available on all Content servers running in the
context of a JSP engine or as web application in an application server.

PortalManagerAPIProgrammersManual_en.book Page 26 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 27

Such a Content server is required for using the Content client and the
Content client (Classic).

Please note the following for configuring Content servers running in the
context of a JSP engine or as web application in an application server.

Deployment systems of a website that use different data storages
must be accessed via different Content servers.

The available view of a website's data and the possible actions
depend on the routing settings of the Content server. If changes to a
website’s data are to be performed by the Content server, for
example via the Content client, the Content server must receive the
Edit view of the data (in which case, the Content server would have
access to all three views of the website).

Due to the flexible system architecture of Livelink WCM Server, there are
numerous possibilities of setting up a WCM system. The
Livelink WCM Server Administrator Manual contains detailed information
on this topic.

In the following sections, two scenarios for integrating the
Portal Manager API in a WCM system are described.

Minimum System
The WCM system consists of a master Admin server and a master
Content server. The master Content server is executed in the context of a
JSP engine or as web application in an application server. Thus, the
Portal Manager API, which is required for editing websites with the
Content client, is available on the master Content server.

The website “InternetSite” is created on the master Content server. The
website objects are distributed to different directories via three deploy-
ment systems (Edit, QA, and Production). Thus, the complete staging is
realized on the master Content server. In the figure, “DS” is used as
abbreviation for “deployment system”.

PortalManagerAPIProgrammersManual_en.book Page 27 Wednesday, April 27, 2005 11:01 AM

28 Livelink WCM Server

Chapter 2

Fig. 3 – Structure of a minimum system

A minimum system is installed by selecting the relevant option in the
WCM installation program (see Livelink WCM Server Installation Manual).
In order to create a website in this scenario, start the new-website wizard
in the Admin client and create the website with the option Minimum or
Minimum (dynamic).

Distributed WCM System with Separate Data Storages
The flexible and scalable system architecture of Livelink WCM Server
enables you to set up distributed WCM systems according to your corpo-
rate structure. To minimize data transmission between the individual
servers, the proxy servers can access separate data storages.

When using the Portal Manager API in such a scenario, please note that a
Content server running in the context of a JSP engine or as web applica-
tion in an application server cannot access different data storages at the
same time (see also “Portal Manager API and Data Storage” on page 25).
If the data of your website is managed by different proxy Content servers

RDBMS

Master Admin Server

DS
Edit

(InternetSite)

DS
QA

(InternetSite)

DS
Production

(InternetSite)

Master Content Server

System data

Website data

User data

InternetSite

PortalManagerAPIProgrammersManual_en.book Page 28 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 29

that access separate data storages, these servers must run in the context
of a JSP engine or as web application in an application server.

The following example illustrates such a scenario:

The WCM system consists of a master Admin server and a master
Content server. The website “InternetSite” is created in the WCM system.
The system is distributed among three additional proxy Content servers.
Two of these proxy Content servers run in the context of a JSP engine or
as web application in an application server. They are used for editing the
WCM objects by means of the Content client. Thus, the respective Edit
and QA deployment systems are installed on these two servers. The third
proxy Content server is used for publishing the Production view of the
website. On this server, a Production deployment system is installed.

To make the illustration more comprehensible, the connections from the
master Admin server to the other servers are not contained in the
following figure.

PortalManagerAPIProgrammersManual_en.book Page 29 Wednesday, April 27, 2005 11:01 AM

30 Livelink WCM Server

Chapter 2

Fig. 4 – Distributed WCM system with separate databases

If a WCM object is changed, the master Content server informs the proxy
Content servers 1 and 3. Proxy Content server 1 informs proxy Content
server 2 about the changes. Deployment for the changed objects is
carried out on all the notified servers, so that the corresponding pages are
updated.

A distributed system of this kind is created using of the option User-
defined installation in the WCM installation program (see
Livelink WCM Server Installation Manual).

In order to create a website in this scenario, start the new-website wizard
in the Admin client and create the website with the option User-defined.

Master
RDBMS

Master Admin Server

DS
Edit

(InternetSite)

InternetSite

Proxy Content Server 1

Master Content Server

InternetSite

Proxy Content Server 3

DS
Production

(InternetSite)

InternetSite

Proxy
RDBMS

InternetSite

Proxy Content Server 2

Notification and
transmission of content

Notification in case of changes

DS
QA

(InternetSite)

DS
Edit2

(InternetSite)

DS
QA2

(InternetSite)

PortalManagerAPIProgrammersManual_en.book Page 30 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 31

Starting a Content Server in the Application Server
Both the Content client and the Content client (Classic) use the
Portal Manager API. For making this API available (also for custom JSP
pages), a Content server must be started in the context of the application
server.

Content server as web application

If a web application has been generated for the Content server, the
Content server runs in an application server. If the application server used
supports the servlet standard 2.3, the Content server is started and
stopped automatically together with the respective web application.

If the application server supports the servlet standard 2.2, the web appli-
cation and the Content server are started and stopped separately. In this
case, use the respective scripts for the Content server (see the following
section). Make sure that the web application is started first.

Starting the Content server in the JSP engine

If the Content server runs in the context of a JSP engine that does not
support web applications, the scripts located in the directory
{WCM installation directory}\tools\ must be used for starting the
server.

The following steps are required:

1. To set the class path required for the Content server, call the script
setPomaClasspath.bat or .sh. This script is located in the direc-
tory {WCM installation directory}\tools\.

2. Add the class path that was created as the script was called to the
class path of the JSP engine.

3. Copy the supplied script portalmanager.bat or .sh, which is
located in the directory {WCM installation directory}\tools\ , to
the root directory of the WCM installation. Rename the script {name
of the Content server}.bat or .sh.

PortalManagerAPIProgrammersManual_en.book Page 31 Wednesday, April 27, 2005 11:01 AM

32 Livelink WCM Server

Chapter 2

4. In the script {name of the Content server}.bat or .sh, replace
all placeholders SERVERNAME with the name of the Content server.

In order to start the Content server via the script, the JSP engine must
already be running. In the configuration of the JSP engine used, the
servlet mapping '/servlet/*' must be entered.

For stopping the Content server, use the supplied script
shutdown_{name of the Content server}.bat or .sh. Alternately,
the server can be shut down via the Admin client.

Programming Concepts
In order to use the Portal Manager API to create dynamic and personal-
ized websites, you must first understand its basic programming concepts.
The purpose of this section is to introduce you to these basic concepts.

The Portal Manager API enables you to develop programs for the JSP
engine, so-called JSP scripts. JSP scripts implement the part of a website
or portal that the user sees, similar to the role of the GUI in a conventional
application. Furthermore, the Portal Manager API provides extensive
support when integrating new solutions.

Note: If you set up two or more Content servers on the same computer,
you must use different instances for your JSP engine for executing the
servers. After the installation of the WCM system, modify the default
URL in the scripts for starting the Content servers according to the
configuration of the JSP engine used.

PortalManagerAPIProgrammersManual_en.book Page 32 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 33

Interfaces in the form of completed Java classes are provided for creating
JSP scripts as well as applications. The Java classes and JavaBeans
implement the concepts introduced in this chapter. Chapter 4 “Classes
and Interfaces of the Portal Manager API” gives you an overview of the
classes and beans. For more detailed information, please refer to the
Javadoc on the Portal Manager API.

Dynamic Content
 The Portal Manager API can be used to create and manage dynamic web
content, which is characteristic of corporate portals. In contrast to the
static content that the writer or editor specifies when a page is created,
dynamic content is generated entirely or in part at runtime. Dynamic
content thus allows you to react to the current situation and the current
context while the website is being used.

The template concept already implemented in Livelink WCM Server is
basically a step in the direction of dynamic content, because content is
created by connecting two or more content objects. The result, however,
is static and cannot adjust in real-time to the context in which the website
is used.

In a “really” dynamic website, the content can be checked or updated at
runtime, when a page is requested by a user. Its power and flexibility can
be seen from the look at the typical requirements of modern websites,
which are introduced below on the basis of a selection of typical applica-
tion cases of the Portal Manager API. These scenarios serve as examples
only; the use of the Portal Manager API is in no way limited to these
examples.

PortalManagerAPIProgrammersManual_en.book Page 33 Wednesday, April 27, 2005 11:01 AM

34 Livelink WCM Server

Chapter 2

Navigation Elements
First of all, navigation is defined as the possibility to display the context of
the current page so that the user is able to understand the context quickly.
In addition, navigation provides the user with hyperlinks for quickly and
easily switching to associated content, for example, to pages on related
topics or neighboring pages in the hierarchic structure. Sitemaps also
belong to the navigation elements, although they generally represent
information concerning the entire website and not the context of the
current page.

Navigation elements can appear on a page in many ways. Animated
components that display navigation elements as menus or as a expand-
able tree structure are possible. Navigation elements can be designed
with the “look and feel” of a website, fitting in with the total website design.

In the WCM system, the fact that metadata are stored for each content
object provides sufficient information for navigating. For each content
object, the program stores details of those objects that can be reached by
hyperlink and those objects from which the active content object can be
reached by hyperlink. Further information for navigation is provided by the
topic tree and by linking a content object to a template object.

If the underlying metadata change, the content changes automatically
without any need for manual modification. As a result, these navigation
elements do not get out of date when objects are deleted, copied, or
moved.

Personalization
Personalized websites are websites that are individually prepared and
displayed, depending on the user. Such user-specific content may be
desirable for several reasons.

PortalManagerAPIProgrammersManual_en.book Page 34 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 35

It may be necessary to withhold certain information from some users. A
static system such as Livelink WCM Server can prevent users without
sufficient rights from accessing content, but this does not prevent users
from learning of the existence of objects for which they have no access
rights.

Personalized pages can also be used to provide user-specific, individual
settings, preferences, etc. or the user’s current context. An e-commerce
shopping cart system is a typical example: users only see their personal
shopping carts.

Personalization and navigation should always go hand in hand. Naviga-
tion should not display content that the user does not want to see or is not
supposed to see.

Integrating External Programs
Website applications are always dynamic components. When integrating
an application in a website, it is important to adapt the user interface to the
website with regard to data and the “look and feel”. Ideally, program data
is interpreted as content or as elements of content so that the source of
the content no longer plays a role when the website is displayed. How to
perform this task strongly depends on which interfaces the program offers.
The Portal Manager API gives you programming support and makes such
an integration possible on the functional and data levels.

Placing Several Content Objects on one Page (Multi-
Content Page)
Using the Portal Manager API, any number of content objects can be
presented on a page. Of course, limiting aspects – as mentioned under
the keyword personalization – must be taken into account. The content
can consist of objects from WCM-managed websites or data from
programs. Even inter-website and inter-program content links are no
problem at all.

PortalManagerAPIProgrammersManual_en.book Page 35 Wednesday, April 27, 2005 11:01 AM

36 Livelink WCM Server

Chapter 2

Forms
Thanks to the options provided by the Portal Manager API, you can easily
develop form-based solutions. You can use form-based interfaces, for
example, to create and edit the objects of a website managed with
Livelink WCM Server.

A form is a JSP page that provides a form-based interface to the user.
This type of form is used to retrieve and process data for a form instance.

The possibilities of form-based work are represented by two special object
types: Form template and Form instance.

Form template – template defining the type “Form”

Form instance – content of a form (form template) as XML data

In order to offer a form-based interface on the basis of these object types,
the actual forms must be developed as JSP pages with the corresponding
selection and entry options.

Basically, the form template serves only to identify and typify the different
form instances. The form instance (a filled-out form) is an XML file that
can have a specific form template as its WCM template.

Processing Form Data
In a form instance, the data of the individual form fields is stored in an
XML notation. To generate these XML data from an HTML form, the
methods of the FormData class are used.

Note: For editing XML data structures, the four object types “XML docu-
ment”, “XML template”, “XSLT document”, and “XSLT template” are
available. For detailed information on these object types, refer to the
Content Client User Manual.

PortalManagerAPIProgrammersManual_en.book Page 36 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 37

The FormData class

Full name: de.gauss.vip.portalmanager.util.forms.FormData

The FormData class provides methods for processing form data, in
particular for reading data from an HTML form and saving the form
data as XML document.

The processFilledForm method of the FormData class is of particular
importance in this context. This method generates an XML document and
extracts the metadata for the WCM object from the form data supplied.
For more information on this method, please refer to the Javadoc on the
Portal Manager API.

An additional utility class for processing forms and their data is the
XmlContentConverter class, which allows to directly separate fields from
the XML document. For further information on this class and its methods,
please refer to the Javadoc on the Portal Manager API.

Creating an Object
After the content and the metadata for a form instance have been
extracted and converted using the processFilledForm method, the form
instance must be created with the relevant data. The
VipObjectHandlerBean class (see section “The
VipObjectHandlerBean class” on page 121) establishes the connection
to the functions of Livelink WCM Server. For more information on the
methods of this class, please refer to the Javadoc on the
Portal Manager API.

The VipObjectHandlerBean is also the basis for form-supported work
with objects of a WCM-managed website. In principle, it is possible to
develop an HTML-based user interface for Livelink WCM Server. Using
the methods of the VipObjectHandlerBean, all functions from creating a
new object, to submitting it to Quality Assurance, and to releasing the
object can be realized via this type of form-based user interface.

PortalManagerAPIProgrammersManual_en.book Page 37 Wednesday, April 27, 2005 11:01 AM

38 Livelink WCM Server

Chapter 2

Statification
In order to speed up access to dynamic content, it might be useful to
convert the code of the dynamic page into static code. The term
statification refers to the representation of dynamic content on static
pages. When statification is performed, the code of the dynamic page is
already executed during the (asynchronous) generation of the page and
the result – usually HTML code – is saved.

Statifying pages means freezing the object state and publishing it in the
Production view of a website. For example, in the case of a page
containing navigation elements, the current navigation status at the time
of publication is recorded in the form of static elements on the page.
Changes in the topic structure released subsequently are not reflected in
the statified navigation. The dynamic page elements are updated only
when the page is regenerated or republished. Statification is generally
unsuitable for personalized pages, as these pages have to react dynami-
cally, i.e. at runtime, to the user data entered.

Statification of pages depends on various conditions.

Configuration of the deployment system

In the Admin client, you determine whether statification is to be
performed for all objects of the website, for no objects or depending
on the object.

In the Admin client, the option Analyze statified pages can be acti-
vated. During this analysis, the OIDs for the WCM URLs used on the
pages are saved in the database. If the URL of a referenced object
changes, the respective pages are automatically regenerated and
statified.

For detailed information on the configuration of deployment systems, refer
to the online help of the Admin client.

PortalManagerAPIProgrammersManual_en.book Page 38 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 39

Object type

Only objects whose object type is assigned to the attribute set “dynamic”
can be statified. These are the following object types:

“JSP page”, “JSP topic”, and “JSP template”

“Form instance” and “Form template”.

“XML document”, “XML template”, “XSLT document”, and “XSLT
template”

Special Attributes

The following attributes are important for statification of objects:

generate_static
The special attribute generate_static is used to control the object-
dependent statification (see section “Object-Dependent Statification”
on page 40).

In the Content client, this attribute is called “Statify page”.

timeout
If the code of a dynamic page is to be converted into static code, the
respective page is first generated as temporary page. This temporary
page is executed via a URL connection. The result of this execution
is stored as final static page.

When configuring the deployment system in the Admin client, you set
the waiting time (in milliseconds) for establishing the URL connection
to the temporarily generated dynamic page. This value can be over-
written by means of the special attribute timeout in the metadata
dialog of the Content client.

PortalManagerAPIProgrammersManual_en.book Page 39 Wednesday, April 27, 2005 11:01 AM

40 Livelink WCM Server

Chapter 2

The timeout value that applies to a page is determined as follows:

1. The value of the special attribute timeout is determined for the
object to be statified.

2. The value of the special attribute timeout is determined for the
template assigned to the object to be statified (if necessary, the
template cascade is searched).

3. The timeout value is read from the configuration of the deploy-
ment system.

Thus, the timeout value specified in the Admin client is only used if
neither the object to be statified nor one of its templates has a valid
value for the special attribute timeout.

absolute_urls
The special attribute absolute_urls plays, among other things, a
special role when statifying form instances (see section “Statification
of form instances” on page 41).

Object-Dependent Statification
An object whose type is assigned to the attribute set “dynamic” possesses
the special attribute generate_static. You can use this attribute to
determine in the Metadata dialog of the Content client how the code of the
object and – if existing – of its template(s) is to be statified. This requires
that object-dependent statification is set for the deployment system in the
Admin client.

Note: The statification is performed by means of the Content server
running in the context of the JSP engine or as web application in
the application server. Especially if this Content server is over-
loaded, the valid timeout value may be exceeded. This results in the
abortion of the statification attempt and in error messages. Accord-
ingly, select generous timeout values.

PortalManagerAPIProgrammersManual_en.book Page 40 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 41

Statification of JSP objects

Statification of JSP objects is object-dependent if the special attribute
generate_static has the value on or local:

on: This value causes the content of the object to be converted into
static code. The same applies to all templates assigned to the object,
provided their content is inserted into the page which the deployment
system generates for the object.

local: Regarding the body element, this value has the effect that
only the content of the object is converted into static code. Addition-
ally, the content of the entire head element – which may consist of
the merged content of the head elements of the template cascade –
is converted into static code.

Variables defined in a JSP template can only be used by objects that have
the same “statification status” as the JSP template. For the object to be
able to use the variable from the JSP template, the following conditions
must be met in the case of a not completely statified template cascade:

either the code of both the JSP template and the object must be
statified

or neither the code of the JSP template nor the code of the object
may be statified.

Statification of form instances

Statification of form instances is always object-dependent. If in the
Admin client statification was set to “always” for a deployment system, it is
not possible to create, edit, or statify form instances by means of a JSP
page in this deployment system. In a deployment system with such a
configuration, you cannot work with forms in a useful way.

PortalManagerAPIProgrammersManual_en.book Page 41 Wednesday, April 27, 2005 11:01 AM

42 Livelink WCM Server

Chapter 2

Although the special attribute generate_static is also analyzed for the
statification of form instances, a different algorithm is used than with JSP
objects: form instances are statified by means of a JSP object that must
be specified. The OID of the JSP object that takes over the actual statifica-
tion is located in the special attribute generate_static. If this special
attribute does not have a value in a form instance, the system checks the
instance’s form template to see if such a value exists. If this is the case,
the value is used for statification. The OID of the form instance is sent to
the determined JSP object for statification. Afterwards, the result (usually
an HTML page) is generated by the deployment system. References from
other objects to the form instance are automatically mapped to this HTML
page.

If the option Analyze statified pages is activated for the deployment
system, all form instances to which this JSP object is assigned are regen-
erated and statified each time the JSP object is changed.

The JSP object determines the layout and presentation of the data from
the form instance. If no OID is stored in the special attribute
generate_static, the deployment system generates the unchanged
content of the form instance in the form of XML code.

When a deployment system is created in the Admin client, you determine
how the references in the WCM objects are converted into URLs. The
following options exist:

absolute: Absolute paths are used in the links.

Example: <a href=”http://www.company.example/products/
NewProducts.htm”>

relative: Relative paths are used in the links.

Example:

server-relative: Relative references without specification of protocol
and base URL are used in the links.

PortalManagerAPIProgrammersManual_en.book Page 42 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 43

Example:

In the metadata dialog of the Content client, you can overwrite the setting
in the Admin client by means of the special attribute absolute_urls.

Deployment systems created with the option relative calculate the refer-
ences that the JSP object contains relatively to the path of the JSP object.
When the JSP object is executed for statifying a form instance, the relative
URLs are written to the static code of the form instance, where they are no
longer adapted. This causes problems if the form instance is not located in
the same directory as the JSP object used for statification. In this case,
the relative URLs are wrong. To avoid this problem, set the special
attribute absolute_urls for the JSP object to on (or to any value other
than SERVER_RELATIVE). This generates absolute URLs on the executed
JSP page. When the form instance is statified, these URLs are converted
into relative URLs – relatively to the newly generated form instance.

Statification of XML objects

XML objects can be statified. Two cases are differentiated for statifying
XML objects:

The XML object is assigned a form template or the special attribute
generate_static of the XML object has a purely numeric value.

Statification is performed in the same way as for form instances, i.e.
by means of a JSP page (see section “Statification of form instances”
on page 41). For each XML object, the following files are generated:

the unstatified page

the statified page

if required: the surrogate page with a link to the XML document

PortalManagerAPIProgrammersManual_en.book Page 43 Wednesday, April 27, 2005 11:01 AM

44 Livelink WCM Server

Chapter 2

The special attribute generate_static of the XML object does not
have a numeric value. No form template is assigned to the XML
object. At least one of the templates assigned to the XML object is a
JSP template. In this case, the template directly assigned to the XML
object should be an XSLT template.

Statification is performed in the same way as for JSP objects (see
section “Statification of JSP objects” on page 41). For each XML
object, the following files are generated:

the statified page

if required: the surrogate page with a link to the XML document

Staging
All objects of the WCM-managed website pass through the following
stages: editing, quality assurance, and publication for productive opera-
tion. Editing and quality assurance of the objects is carried out in the
Content client. After publication, the objects can be accessed via a
browser. Passing through these stages is called staging.

Objects of a WCM-managed website are edited using methods of the
Portal Manager API, especially the methods of the
VipObjectHandlerBean. Some of these methods change the content or
the metadata of an object, others cause a change in object status. This
represents the multi-stage staging of Livelink WCM Server. This staging

Note: When a form template is used, the content of the unstatified
page is distributed as HTML code (file extension .html) because
the form template is taken into account. This means that the JSP
page responsible for statification cannot directly evaluate the XML
code of the XML object. For this reason, it is not recommendable to
assign a form instance to an XML object.

PortalManagerAPIProgrammersManual_en.book Page 44 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 45

corresponds to the life cycle of a WCM object, which is shown in the
following diagram.

Fig. 5 – The life cycle state of a WCM object.

The life cycle of a WCM object may include the following transitions, which
are represented by the VipObjectHandlerBean methods:

The object is created in the Edit view (create).

For editing an object’s content, the object can be checked out in the
Edit view and changed in an editor program (checkOut).

After changes have been made, the object must be checked in again
in the Edit view (checkIn).

The object becomes available in the QA view by being submitting to
Quality Assurance in the Edit view (submit).

In the QA view, the object can be released and thus moved to the
Production view (release).

In the Edit view, the object can be released if the metadata item
“Direct release” is set for the object and if the object has already
been released once with this setting (directRelease).

QA
view

WCM
object

destroy

Production
view

WCM
object

release

generatePage

directRelease
Editor

WCM
object

Edit
view

checkIn

WCM
object

create
checkOut reject

submit
or

delete

PortalManagerAPIProgrammersManual_en.book Page 45 Wednesday, April 27, 2005 11:01 AM

46 Livelink WCM Server

Chapter 2

The object can also be rejected in the QA view and sent back to the
Edit view (reject).

Regenerating an already released dynamic object that has been stat-
ified in the Production view updates the object in the Production view
(generatePage).

Objects are deleted in the Edit view (delete). If the respective object
has already been released, the object must be destroyed in the QA
view afterwards (destroy). However, if the deletion is rejected in the
QA view (reject), the object becomes available again in the Edit
view.

Please refer to the Content Client User Manual for more information on
the staging. For further information on the VipObjectHandlerBean, see
section “The VipObjectHandlerBean class” on page 121. The Javadoc
on the Portal Manager API provides a detailed description of the methods
of this class.

Integrating External Programs
The Portal Manager API is basically a framework that allows the integra-
tion of external programs such as e-commerce applications. In this
context, subjects such as dynamic content, personalization, and correla-
tion with website content play an important role.

Integrating an external program is relatively easy and very well prepared
for in the Portal Manager API. If you want to implement external programs
within the given framework, you should observe several design principles.
The easiest way to implement external applications is to use a bottom-up
strategy.

PortalManagerAPIProgrammersManual_en.book Page 46 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 47

In most cases, an external program functions exclusively as data
source and data target. For this purpose, it is necessary to implement
appropriate repositories or use already existing repository implemen-
tations. Repositories are important (generally, the most important or
sometimes even the only) components of an application.

New repositories can be implemented by extending existing reposito-
ries or by developing them on the basis of the abstract basic
repository (RepositoryImpl).

For each new program, it is necessary to develop an application
class. This class describes the basic functions and behavior of the
program. On this level, however, no functions should be combined to
form function units.

You can create a new application class very quickly if you derive it
from the abstract basic implementation (ApplicationImpl)
supplied.

One or more repositories are an essential component of every appli-
cation. For most programs, you do not have to develop additional
functions because the repository already sufficiently describes the
program. For example, the applications that implement the various
aspects of Livelink WCM Server do not have methods apart from
those of the abstract basic implementation for applications.

If necessary, each application is encapsulated by one or more beans.
You must also develop this bean. Here, too, it is recommended to
use a given abstract basic implementation as a starting point.

PortalManagerAPIProgrammersManual_en.book Page 47 Wednesday, April 27, 2005 11:01 AM

48 Livelink WCM Server

Chapter 2

The bean carries out two tasks. First, it creates the more or less
formal interface to the JSP script and to the JSP engine’s session
handling. The basic implementation of the bean performs this task.
The second, more demanding function of the beans is to make avail-
able simple but powerful access methods at the highest possible
abstraction level for an application and its repositories. The bean
combines the basic functionality made available by an application
with the access possibilities of the repositories, thus creating consis-
tent complex methods. Furthermore, these methods should be
simple and reflect the possibilities of the application on which they
are based as “naturally” as possible.

Finally, you should use the bean methods in a JSP script whenever
possible, although access to the application and even the reposito-
ries is, of course, always possible.

The basic implementation is designed in such a way that the user
interface can be presented in different languages.

In order to be able to control an external program via the browser,
you must design an HTML page with a JSP script. The HTML page
must use the bean that originated previously and must be an WCM-
managed object. It is therefore necessary to integrate the HTML
page in the website to be used for reaching the underlying external
program.

Following the described design specifications automatically results in the
architecture typical of the Portal Manager API, which has already been
described. The following figure illustrates the relevant section slightly
modified.

PortalManagerAPIProgrammersManual_en.book Page 48 Wednesday, April 27, 2005 11:01 AM

Concepts

Portal Manager API – Programmer’s Manual 49

Fig. 6 – Principal class design in the Portal Manager API

JSP Script

Bean

Application

Repository

External
Application

PortalManagerAPIProgrammersManual_en.book Page 49 Wednesday, April 27, 2005 11:01 AM

50 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 50 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 51

CHAPTER 3
3Managing the Portal Manager API

This chapter provides information on the Portal Manager API configura-
tion. It also contains information on using an LDAP directory service and
locating errors.

The entire configuration of your WCM system is performed via the
Admin client. This is also the central point for administering and config-
uring the Portal Manager API. To open the configuration, launch the
Admin client and click the tab.

The items you can manage in this view are displayed in a tree structure.

Fig. 7 – The Configuration items

In this chapter the following configuration items are described:

PortalManagerAPIProgrammersManual_en.book Page 51 Wednesday, April 27, 2005 11:01 AM

52 Livelink WCM Server

Chapter 3

Table 2 – Functions for configuring repositories and applications

The administration of the other items and the use of the Admin client is
described in detail in the Livelink WCM Server Administrator Manual.

Managing Repositories
For general information on repositories, refer to section “Repositories” on
page 106.

If you open the Repositories item, you will see all available repositories –
both in the tree on the left and in a list in the right window pane.

Item Available functions

Repositories Adding, editing, and deleting repositories

See section “Managing Repositories” starting on page
52

Applications Adding, editing, and deleting applications

See section “Managing applications” starting on page
65

PortalManagerAPIProgrammersManual_en.book Page 52 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 53

Fig. 8 – Overview of available repositories

The displayed repositories ClickStreamRepository, groups, roles,
users, VipDAVLockRepository, VipHCLConfigRepository, and
VIPHTMLClientConfig are created during the installation of the
WCM system. These repositories are supplied with the
Portal Manager API and should not be deleted. The repositories
InternetSite_edit, InternetSite_prod, and InternetSite_qa were
automatically added when the website “InternetSite” was created.

The following functions are available to you for repositories:

adding a repository (see the following section)

configuring repositories by means of parameters (see section
“Setting the Parameters for a Repository” on page 55)

editing repository settings (see section “General Settings of Reposi-
tories” on page 62)

PortalManagerAPIProgrammersManual_en.book Page 53 Wednesday, April 27, 2005 11:01 AM

54 Livelink WCM Server

Chapter 3

overview of assigned applications, assign new applications, and
remove assignments (see section “Assigning an Application to a
Repository” on page 62)

removing a repository (see section “Deleting a Repository” on page
65)

Adding a Repository
To add a repository:

1. Select Configuration → Repositories.

2. Choose New repository on the context menu or click the corre-
sponding icon.

The dialog box for adding a repository opens.

Fig. 9 – Adding a repository

Icon for adding a repository

PortalManagerAPIProgrammersManual_en.book Page 54 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 55

3. In the Name field, enter a name for the new repository. You have a
free choice of name, but it must be unique within the WCM system.

For repositories of type VipObjectRepository and
VipObjectHandlerRepository, this may be the name of the
deployment system.

You cannot change the name of the repository subsequently.

4. In the Class name field, enter the name of the repository's Java
class.

The class loader uses this name to load the class. It is expected that
the class implements the Repository interface and has an empty
public constructor.

5. Click the Finish button.

Setting the Parameters for a Repository
Repositories are configured by means of parameters. Type and number of
parameters depend on the functions of the repository.

Parameters may be defined as nodes or as individual parameters. Nodes
group parameters of the same type. Nodes may contain other nodes.
Unlike parameters, they do not have a value.

To define parameters for a repository:

1. Select Configuration → Repositories→ {repository name} →
Parameters.

2. Choose New parameter on the context menu or click the corre-
sponding icon.

The New node dialog box opens.

Icon for adding a parameter

PortalManagerAPIProgrammersManual_en.book Page 55 Wednesday, April 27, 2005 11:01 AM

56 Livelink WCM Server

Chapter 3

Fig. 10 – Adding a parameter for a repository

3. Select whether you want to add a Node or a Parameter.

If you want to assign numerous parameters to a repository, we
recommend that you group the parameters. First, add the required
nodes and then one or more parameters below the nodes.

4. If you clicked the Node radio button, enter a unique name for the new
node.

If you clicked the Parameter radio button, enter a name and a value
for the parameter.

5. Click the OK button.

The following table gives you an overview of the parameters expected by
the repositories supplied with the Portal Manager API.

Note: The repositories ClickStreamRepository and
VipDAVLockRepository save their data in a database table. They can
only be used if a JDBC pool is assigned to them. This JDBC pool
manages the connections to the database. To assign a JDBC pool,
specify the name of the respective pool as the value for the parameter
store/{table name}/poolname/default.

PortalManagerAPIProgrammersManual_en.book Page 56 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 57

Table 3 – Repositories and their parameters

Repository

Parameter Description

VipHclConfigRepository

ProfileDataRefresh-
Milliseconds

The time (in milliseconds) that an unchanged profile
is maintained in the Content client until it is reloaded
from the Administration server

SaveWaitMilli-
seconds

The interval (in milliseconds) for saving changes to
the profile data

DirectoryRepository

authentication The authentication method. The values SIMPLE (no
encryption) and NONE are possible. NONE should not
be used because in this case no authorization is
performed and no data can be read or written.

base The start node under which the entries are searched
or entered

Example: ou=software, o=company.example

build-profile_
filter_expr

The search expression that is used when searching
for groups and roles. The expression *DN* is
replaced by the “distinguished name”. The expres-
sion *UID* is replaced by the user ID; or, if no user
ID has been supplied to the method, by the “distin-
guished name”.

context-factory The “Initial Context Factory” for the LDAP classes.
Currently, only the class
com.sun.jndi.ldap.LdapCtxFactory is
supported.

credentials The password of the user entered under principal.

credentials-changes The password of the user entered under
principal-changes.

PortalManagerAPIProgrammersManual_en.book Page 57 Wednesday, April 27, 2005 11:01 AM

58 Livelink WCM Server

Chapter 3

credentials-read The password of the user entered under
principal-read.

dn-pattern The pattern for the structure of the “distinguished
name” (dn). * is replaced by the key value.

Example: uid=*, ou=software,
o=company.example becomes uid=smith,
ou=software, o=company.example, if the current
key value is smith.

group-base The start node below which the entries for the user’s
groups are searched. If the attribute has not been
set, the value of base is used for this attribute.

mappings The mapping between the LDAP parameters and
the WCM parameters. Possible mappings are, for
example, name and language. These have the
attributes ldapatttr and pomaattr. The attribute
pomaattr must not be changed (see figure 22 “The
DirectoryRepository with its parameters” on
page 89).

member-key-attrib The name of the LDAP attribute under which the
users of a group or role are stored

objectclass The name of the object class that should be inserted
when creating a new entry, provided that no object
class has been specified (example: vipUser). The
entries are separated by spaces.

password-attrib The name of the LDAP attribute to be used as the
password in Livelink WCM Server

principal An LDAP user with the right to add entries

Example: uid=admin, ou=software,
o=company.example

Repository

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 58 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 59

principal-changes An LDAP user with write access to the entries in the
LDAP directory service. If this parameter has not
been set, entries are changed and deleted in the
context of the logged-in user.

principal-read An LDAP user with read access to the entries in the
LDAP directory service. If the parameter has not
been set, entries are read in the context of the
logged-in user.

role-base The start node below which the entries for the user’s
roles are searched. If the attribute has not been set,
the value of base is used for this attribute.

search-scope Describes the search scope below the start node
specified in dn-pattern. SUBTREE_SCOPE searches
the entire sub-tree beginning with BASE,
ONELEVEL_SCOPE only searches in the level directly
below BASE.

url The list of URLs to directory servers separated by
spaces. Initially, the first LDAP server is addressed.
If this fails, the second will be addressed, etc.

Example: ldap://ldap.company.example:389
ldap://ldap2.company.example:389

DoorwaysRepository

alias An alias for the DoorwaysRepository. If no alias
has been specified, the name of the
DoorwayRepository is used in order to establish
the connection to the Doorways server.

This parameter is optional.

Repository

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 59 Wednesday, April 27, 2005 11:01 AM

60 Livelink WCM Server

Chapter 3

authentication The authentication method. Possible values are
LOGIN, SESSION, and CONFIG.

LOGIN: For the DoorwaysBean class, an explicit login
must be made using the DoorwaysBean.setLogin
method.

SESSION: The login information from the
SessionBean class will be used.

CONFIG: All users are logged in with the user infor-
mation of a default user. The user information is
specified by means of the user and pwd parameters.

hostname The host name of the Doorways server to which a
connection is to be established

port The port of the Doorway server for the connection

pwd The password of the default user entered under
user

user The default user whose user account is used for the
CONFIG authentication method.

Repository

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 60 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 61

VipObjectHandlerRepository (for deployment systems)

deployment-name The name of the deployment system, e.g. {website
name}_edit, whose objects are accessed via the
repository

Notes:
Alternately, you can also use the view and website
parameters to configure the repository. In this way,
you can access the website objects without having
to set up deployment systems. Repositories config-
ured in this way cannot return deployment-specific
object data, such as an URL or path.

The deployment-name parameter takes priority over
the view and website parameters. That means that
these two parameters are ignored, if the
deployment-name parameter is specified.

metadata-style The metadata scheme used. In this parameter, you
specify whether the repository uses the attribute
names and values according to the version 5e or 8.
Possible values are 5e and 8. For a comparison of
the respective values and attributes, refer to
appendix A “Metadata Schemes”.

Repository

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 61 Wednesday, April 27, 2005 11:01 AM

62 Livelink WCM Server

Chapter 3

Deleting repository parameters

In order to remove a parameter from the configuration of a repository,
mark the parameter to be deleted in the right window pane. Choose
Delete parameter on the context menu or click the corresponding icon.

General Settings of Repositories
To edit the settings of a repository:

1. Select Configuration → Repositories.

2. Mark the desired repository in the tree on the left.

The settings are displayed in the right window pane. You can subse-
quently change the name of the Java class of the repository. The
name of the repository itself is defined when the repository is added.
You cannot change it subsequently.

3. Click the Apply button.

Assigning an Application to a Repository
Select Configuration → Repositories → {repository name} →
Applications to display an overview of the applications that have already
been assigned to the repository. The assigned applications are displayed
in a list in the right window pane.

Icon for deleting a parameter

PortalManagerAPIProgrammersManual_en.book Page 62 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 63

Fig. 11 – Applications assigned to a repository

Assigning an application to a repository

To assign an application to a repository:

1. Select Configuration → Repositories → {repository name} →
Applications.

2. Choose Assign application on the context menu or click the corre-
sponding icon.

The Select application dialog box opens. It shows a list of the appli-
cations not yet assigned.

3. Mark the desired application(s).

4. Click the OK button.

Removing the assignment of an application to a repository

To remove the assignment of an application to a repository, mark the
respective application in the right window pane. Choose Remove
assignment of application on the context menu or click the corresponding
icon.

Icon for assigning an application to a repository

PortalManagerAPIProgrammersManual_en.book Page 63 Wednesday, April 27, 2005 11:01 AM

64 Livelink WCM Server

Chapter 3

Structure Below the Tree Item Repositories
Each repository has the nodes Applications and Parameters. If you have
assigned applications or parameters to a repository, these entries will
appear below the respective node (in the illustration, the parameters max-
records, store, table, and tosql have been assigned to the
ClickStreamRepository).

Fig. 12 – Structure below the tree item Repositories

Icon for removing the assignment of an application to a repository

PortalManagerAPIProgrammersManual_en.book Page 64 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 65

Deleting a Repository
To delete a repository:

1. Select Configuration → Repositories.

2. Mark the desired repository in the tree on the left.

3. Choose Delete repository on the context menu or click the corre-
sponding icon.

4. Confirm the security prompt by clicking the Yes button.

The configuration of the repository is deleted from the WCM system,
the associated Java class is, however, not deleted.

Managing applications
For general information on applications, see section “Applications” on
page 111.

If you open the Applications item, you will see all available applications –
both in the tree on the left and in a list in the right window pane.

Icon for deleting a repository

PortalManagerAPIProgrammersManual_en.book Page 65 Wednesday, April 27, 2005 11:01 AM

66 Livelink WCM Server

Chapter 3

Fig. 13 – Overview of available applications

The applications ClickStreamApplication, VipDAVApplication,
VipHCLApplication, VIPHTMLClientApplication,
VipObjectApplication, VipUserApplication, and
WebServiceApplication, which are displayed here, are created during
the installation of the WCM system. These applications are supplied with
the Portal Manager API and should neither be changed nor deleted.
However, you can add and edit any of your own applications.

The following functions are available for applications:

adding an application (see the following section)

configuring applications by means of parameters (see section
“Setting the Parameters of an Application” on page 72)

editing application settings (see section “General Settings of Applica-
tions” on page 81)

PortalManagerAPIProgrammersManual_en.book Page 66 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 67

overview of assigned repositories, assigning new repositories, and
removing assignments (see section “Assigning a Repository to an
Application” on page 81)

deleting an application (see section “Deleting an Application” on
page 84)

assigning an application to a Content server (see section “Assigning
an Application to a Content Server” on page 84)

Adding an Application
To add an application:

1. Select Configuration → Applications.

2. Choose New application on the context menu or click the corre-
sponding icon.

3. Follow the instructions of the wizard.

Defining Basic Data
In the first dialog boxer you define the basic data of the application.

Icon for adding an application

PortalManagerAPIProgrammersManual_en.book Page 67 Wednesday, April 27, 2005 11:01 AM

68 Livelink WCM Server

Chapter 3

Fig. 14 – Defining basic application data

Name: The name of the application must be unique and start with a
letter.

You cannot change the name subsequently.

Class name: name of the application's Java class. The class loader
uses this name to load the class. It is expected that the class imple-
ments the application interface and has an empty public
constructor.

Logical name: The logical name of the application is the name the
Portal Manager API uses to address the application. If, for example,
two Content servers are to possess differently configured
VipUserApplications, two VipUserApplications can be created
with different names that both have the logical name
“VipUserApplication”.

PortalManagerAPIProgrammersManual_en.book Page 68 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 69

Language: default language of the application. The language is
used, among other things, to read localized resources. An entry of
type {language code}_{country code} (e.g. en_US) is expected.
For more information, refer to the Java SDK API documentation of
the java.util.Locale class.

Confirm your entries by clicking the Next button.

Quit Wizard?

Fig. 15 – Quit wizard?

The information that you have specified so far is sufficient for adding the
application. You can, however, optionally assign repositories and
resources to the application.

Click the desired radio button and confirm by clicking the Finish or Next
button.

PortalManagerAPIProgrammersManual_en.book Page 69 Wednesday, April 27, 2005 11:01 AM

70 Livelink WCM Server

Chapter 3

Assigning Repositories
In this dialog box, you can assign repositories to the application already
during the setup.

Fig. 16 – Assigning a repository to an application during setup

Proceed as follows:

1. Click the Add button.

2. In the list displayed, mark the repositories that you want to assign.

3. Confirm by clicking the OK button.

The repositories are included in the wizard.

4. Click the Next button.

PortalManagerAPIProgrammersManual_en.book Page 70 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 71

Assigning Resources
The resources form the basis for internationalization in the beans. In this
dialog box, you can configure access to the Java resources.

Fig. 17 – Assigning resources when adding an application

Proceed as follows:

1. Click the Add button.

2. A dialog box opens in which you enter the name of the resource.

The resources specified here are loaded via the class path and must
correspond to the Java resources (for detailed information, refer to
the Java SDK API documentation of the
java.util.ResourceBundle class).

3. Confirm the entries by clicking the OK button.

The resource is included in the wizard.

4. Click the Finish button.

PortalManagerAPIProgrammersManual_en.book Page 71 Wednesday, April 27, 2005 11:01 AM

72 Livelink WCM Server

Chapter 3

Setting the Parameters of an Application
Applications are configured by means of parameters. Type and number of
parameters depend on the functions of the application.

Parameters may be defined as nodes or as individual parameters. Nodes
group parameters of the same type. Nodes may contain other nodes.
Unlike parameters, they do not have a value.

To define parameters for an application:

1. Select Configuration → Applications → {application name} →
Parameters.

2. Choose New parameter on the context menu or click the corre-
sponding icon.

The New node dialog box opens.

Note: Do not delete the applications that are supplied with the
Portal Manager API (ClickStreamApplication, VipDAVApplication,
VipHCLApplication, VIPHTMLClientApplication,
VipObjectApplication, VipUserApplication, and
WebServiceApplication). The basic data of these applications should
not be changed either.

Icon for adding a parameter

PortalManagerAPIProgrammersManual_en.book Page 72 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 73

Fig. 18 – Adding a parameter for an application

3. Select whether you want to add a Node or a Parameter.

If you want to assign numerous parameters to an application, we
recommend that you group the parameters. First, add the required
nodes and then one or more parameters below the nodes.

4. If you clicked the Node radio button, enter a unique name for the
node.

If you clicked the Parameter radio button, enter a name and a value
for the parameter.

5. Click the OK button.

The following table gives you an overview of the parameters expected by
the applications supplied with the Portal Manager API.

Table 4 – WCM Applications and their parameters

Application

Parameter Description

ClickStreamApplication

none none

PortalManagerAPIProgrammersManual_en.book Page 73 Wednesday, April 27, 2005 11:01 AM

74 Livelink WCM Server

Chapter 3

VipDAVApplication

import-indexfile-name Specifies the name of index files in
directories. When new resources are
created, files with this file name are
interpreted as index files – independent
of the file extension. The content of
these files is integrated in the index file
of the respective collection.

Default value: index

lock-cleanup-interval Specifies the interval (in milliseconds)
for searching for expired locks

Default value: 600000 (corresponds to
10 minutes)

lock-infinite-timeout Specifies the maximum expiration
interval for a lock

Default value: 86400000 (corresponds
to 24 hours)

topic-default-type WebDAV makes it possible to add
collections (directories, WCM objects of
a certain topic type). This parameter
specifies the topic type of objects that
are created by the WebDAV command
MKCOL.

Default value: TOPIC

vip-default-attributes Specifies the name of the
WCM metadata that can be queried via
the WebDAV interface.

Default value: oid, title, subtitle,
description, target_group,
keywords

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 74 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 75

VipHCLApplication

default-profile-user Specifies the ID of the WCM user
whose default profile is to be used as
the template for the default profile of
new users.

Default value: empty (i.e. there is no
template for default profiles)

embedded-type-names Contains a comma-separated list of
object types. When a WCM object is
added, objects of this type are
regarded as embedded objects.

If this parameter is not set, the following
list is used as the default value: ETC,
GIF, JAVASCRIPT, JPG, PNG

hcl-absolute-servlet Specifies the absolute URL for
addressing the controller servlet of the
Content client. The controller servlet is
responsible for controlling the
Content client.

Example: http://
wcmserver.company.example/
hclservlet

hcl-root Specifies the absolute URL for
addressing the start page of the
Content client

Example: http://
wcmserver.company.example/
cmsclient

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 75 Wednesday, April 27, 2005 11:01 AM

76 Livelink WCM Server

Chapter 3

hcl-servlet-url Specifies the name for addressing the
controller servlet of the Content client.
The controller servlet is responsible for
controlling the Content client.

Default value: hclservlet

{name of an InSite Editing
deployment system}

Configures the window with the object
information for the respective
InSite Editing deployment system. The
following parameters can be added
below this parameter node:

keys: space-separated list of attributes
displayed for each object. By default,
oid, title, type, state, and version
are displayed.

width: width of the window in pixels

height: height of the window in pixels

VIPHTMLClientApplication

DEFAULT_VALUE_FOR_APPLET_
WORK_DIRECTORY

Indicates the local working directory for
the Download applet of the
Content client (Classic). The value
must not be empty and has to be a
valid directory.

Default value: c:\temp

DEFAULT_VALUE_FOR_AUTO_
REFRESH_TIME

Indicates the period of time in seconds
after which the action list of the
Content client (Classic) is automatically
updated. The value must be a positive
integer or 0.

Default value: 0

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 76 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 77

DEFAULT_VALUE_FOR_NAVIGATION_
APPLET_OBJECTLIST_POS

Specifies where in the Content client
(Classic) to display the object list when
the Navigation applet is used. Possible
values are:
0 = below the topic structure
1 = to the right of the topic structure
2 = within the topic structure

Default value: 0

DEFAULT_VALUE_FOR_NO_AUTO_
TASKMANAGER_WINDOW

Specifies whether the action list of the
Content client (Classic) is to be opened
automatically when starting an asyn-
chronous action. Possible values are
false (open) or true (do not open).

Default value: false

DEFAULT_VALUE_FOR_NO_OBJECT_
PREVIEW_MODE

Determines whether the object preview
of the Content client (Classic) is to be
switched off. Possible values are false
(do not switch off) or true (switch off).

Default value: false

DEFAULT_VALUE_FOR_USE_
DOWNLOAD_APPLET

Determines whether the Download
applet of the Content client (Classic) is
to be used. Possible values are false
(do not use) or true (use).

Default value: true

DEFAULT_VALUE_FOR_USE_
INTEGRATED_HTML_EDITOR

Determines whether the integrated
HTML editor of the Content client
(Classic) is to be used. Possible values
are false (do not use) or true (use).

Default value: false

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 77 Wednesday, April 27, 2005 11:01 AM

78 Livelink WCM Server

Chapter 3

DEFAULT_VALUE_FOR_USE_
NAVIGATION_APPLET

Determines whether the Navigation
applet of the Content client (Classic) is
to be used. Possible values are false
(do not use) or true (use).

Default value: false

DEFAULT_VALUE_FOR_USE_
SEPARATE_PREVIEW_WINDOW

Determines whether a separate
browser window is to be opened for the
object preview of the Content client
(Classic). Possible values are false
(no separate window) or true (sepa-
rate window).

Default value: false

MAX_SHOWN_FILTER_RESULTS Specifies the maximum number of
objects to be displayed in the hitlist of
the Content client (Classic) after
applying the object filter.

Default value: 1000

MAX_SHOWN_LOG_ENTRIES Specifies the maximum number of
entries to be displayed in the log of the
Content client (Classic).

Default value: 100

MAX_SHOWN_PRINCIPALS Specifies the maximum number of
entries to be displayed in the selection
lists for adding principals to an access
control list (see dialog box for changing
the access control list).

Default value: 300

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 78 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 79

MAX_SHOWN_REFERENCES Specifies the maximum number of
entries to be displayed in the lists in the
References dialog box of the
Content client (Classic).

Default value: 300

MAX_SHOWN_TEMPLATES Specifies the maximum number of
entries to be displayed in the selection
list Template of the Content client
(Classic) (see Metadata dialog box and
dialog box for adding an object).

Default value: 300

MAX_SHOWN_VERSIONS Specifies the maximum number of
versions to be displayed in the Restore
old version dialog box of the
Content client (Classic). The most
current object versions are displayed.

Default value: 300

OPTION_SHOW_DEBUG_INFO If the value of this parameter is true,
additional information is displayed in
some dialog boxes of the Content client
(Classic). This information can be used
for locating errors.

Default value: false

VipObjectApplication

none none

VipUserApplication

extend-profile A list of repositories separated by
spaces. These repositories are used for
the extension of the profile.

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 79 Wednesday, April 27, 2005 11:01 AM

80 Livelink WCM Server

Chapter 3

Deleting an application parameter

In order to remove a parameter from the configuration of an application,
mark the desired parameter in the right window pane. Choose Delete
parameter on the context menu or click the corresponding icon.

WebServiceApplication

allowedWebsites A comma-separated list of website
names. The specified websites can be
accessed via WCM WebServices.
Entering an asterisk (*) allows access
to all WCM-managed websites.

Default value: empty (access via
WCM WebServices not possible)

deniedWebsites A comma-separated list of website
names. The specified websites cannot
be accessed via WCM WebServices.
Entering an asterisk (*) blocks access
to all WCM-managed websites. A
prohibition takes priority over a
permission.

Default value: empty

Icon for deleting a parameter

Application

Parameter Description

PortalManagerAPIProgrammersManual_en.book Page 80 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 81

General Settings of Applications
To edit the settings of an application:

1. Select Configuration → Applications.

2. Mark the desired application in the tree on the left.

In the right window pane, the settings are displayed on two tabs.

The settings on the Basic data tab are made when the applica-
tion is added. You can change all settings except the name
subsequently.

On the Resources tab, you can change the settings for the
access to Java resources.

3. Make the desired changes.

4. Click the Apply button.

Assigning a Repository to an Application
Select Configuration → Applications → {application name} →
Repositories to display an overview of the repositories that have already
been assigned to the application. The assigned repositories are displayed
in a list in the right window pane.

PortalManagerAPIProgrammersManual_en.book Page 81 Wednesday, April 27, 2005 11:01 AM

82 Livelink WCM Server

Chapter 3

Fig. 19 – Repositories assigned to an application

Assigning a repository to an application

How to assign a repository to an application:

1. Select Configuration → Applications → {application name} →
Repositories.

2. Choose Assign repository on the context menu or click the corre-
sponding icon.

The Select repository dialog box opens. It shows a list of the reposi-
tories not yet assigned.

3. Mark the desired repository.

4. Click the OK button.

Icon for assigning a repository to an application

PortalManagerAPIProgrammersManual_en.book Page 82 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 83

Removing the assignment of a repository to an application

To remove the assignment of a repository to an application, mark the
respective repository in the right window pane. Choose Remove
assignment of repository on the context menu or click the corresponding
icon.

Structure Below the Tree Item Applications
Each application has the nodes Repositories and Parameters. If you have
assigned repositories or parameters to an application, these entries will
appear below the respective node (in the figure below, a parameter was
assigned to the VipHCLApplication).

Fig. 20 – Structure below the tree item Applications

Icon for removing the assignment of a repository to an application

PortalManagerAPIProgrammersManual_en.book Page 83 Wednesday, April 27, 2005 11:01 AM

84 Livelink WCM Server

Chapter 3

Deleting an Application
To delete an application:

1. Select Configuration → Applications.

2. Mark the desired application in the tree on the left.

3. Choose Delete application on the context menu or click the corre-
sponding icon.

4. Confirm the deletion with Yes.

The configuration of the application is deleted from the WCM system,
the associated Java class is, however, not deleted.

Assigning an Application to a Content Server
A Content server running in the context of a JSP engine or as a web appli-
cation in an application server can only access applications that have
been assigned to it. Select Configuration → Servers → {name of the
Content server} → Applications to display an overview of the applications
that have already been assigned to the server. The applications are
displayed in a list in the right window pane.

Icon for deleting an application

PortalManagerAPIProgrammersManual_en.book Page 84 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 85

Fig. 21 – Applications assigned to a Content server

Assigning an application to a Content server

To assign an application to a Content server:

1. Select Configuration → Servers → {name of the Content server} →
Applications.

2. Choose Assign application on the context menu or click the corre-
sponding icon.

The Select application dialog box opens. It shows a list of the appli-
cations not yet assigned.

3. Mark the desired application.

4. Click the OK button.

Icon for assigning an application to a Content server

Note: You cannot assign two applications with the same logical
name to one Content server.

PortalManagerAPIProgrammersManual_en.book Page 85 Wednesday, April 27, 2005 11:01 AM

86 Livelink WCM Server

Chapter 3

Removing assignment of an application to a Content server

To remove the assignment of an application to a Content server, mark the
application in the right window pane. Choose Remove assignment of
application on the context menu or click the corresponding icon.

LDAP
By using an LDAP directory service, you can considerably reduce admin-
istration efforts connected with the configuration and maintenance of user
data. The Portal Manager API is available on all Content servers running
in the context of a JSP engine or as web applications in an application
server. These Content servers access the general data storage of the
WCM system. As a result, the user, group and role information of an
LDAP directory service can be adopted and used by the
Portal Manager API.

For detailed information on configuring the LDAP integration, refer to the
Livelink WCM Server Installation Manual. The Portal Manager API also
offers the possibility to access the LDAP directory service directly. The
DirectoryRepository class of the Portal Manager API provides LDAP
support.

Icon for removing the assignment of an application to a Content
server

PortalManagerAPIProgrammersManual_en.book Page 86 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 87

The DirectoryRepository class
The DirectoryRepository class implements the access to an LDAP
directory server. This is an alternative way of accessing LDAP, indepen-
dent of the LDAP connection of a master Administration server. The
DirectoryRepository can be used to load data from the LDAP server
and to store data there. For an application example, refer to section
“Creating Users in an LDAP System via a Portal” on page 133.

The DirectoryRepository can be configured by means of parameters.
Configuration involves, for example, specifying a search node (base) for
searching and loading existing entries, and adding new entries. Each
access to the LDAP directory service requires an authentication of the
respective user. To be able to add new entries, the user must have admin-
istrator rights for the LDAP directory service.

The DirectoryRepository class can be used for the authentication of
users for the Portal Manager API, since it implements the
LoginRepository interface. If write access to the WCM system is
required or if the requested objects cannot be read by all users, the user
must log in using the VipUserRepository. For this login, the user is
assigned a context ID which the WCM system requires for checking the
rights.

Using a DirectoryRepository for user administration in the
Portal Manager API requires the integration of additional object classes
and attributes in the LDAP directory service. These settings must also be
made when Livelink WCM Server accesses the LDAP directory service.

It is possible to add further object classes and attributes in the LDAP
directory service. When adding an entry to LDAP, these object classes
can be specified. They must be entered as Value in the
RepositoryEntry under the key AttributeName.OBJECTCLASS as a
RepositoryMap.

PortalManagerAPIProgrammersManual_en.book Page 87 Wednesday, April 27, 2005 11:01 AM

88 Livelink WCM Server

Chapter 3

The identifiers for the attribute types in the LDAP directory service differ
from those used internally in the Administration server. The
AttributeName class contains constants for the valid attribute names and
methods that help to map the internal attribute identifiers to the LDAP
directory service spelling.

The mapping of identifiers is only necessary for individual implementa-
tions of a repository class that accesses the LDAP directory service. The
internal attribute identifiers are automatically transformed into the identi-
fiers for the LDAP directory service when the DirectoryRepository
class writes data. When reading from the LDAP directory service, this
process is automatically performed in the opposite direction.

Like any other repository, the DirectoryRepository must be configured
using the Admin client.

Note: Microsoft Active Directory does not support overwriting an entry.
Thus, when using Microsoft Active Directory, the putEntry method
results in an exception if the entry already exists in the LDAP directory
service. It is, however, possible to create a new entry. All method calls
take place in the context of the user currently logged in to the session.
Only getting the profile at login and creating new entries is performed in
the context of principal.

PortalManagerAPIProgrammersManual_en.book Page 88 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 89

Fig. 22 – The DirectoryRepository with its parameters

Locating Errors
Locating errors within the methods and classes that derive directly or indi-
rectly from the Base class is called tracing. The tracing behavior can be
configured in the trace.properties file. For the changes made in the file
to take effect, the servers must be restarted. You can also configure the
tracing behavior in the Admin client. In this case, it is not necessary to
restart the servers.

The file trace.properties contains the following entries:

PortalManagerAPIProgrammersManual_en.book Page 89 Wednesday, April 27, 2005 11:01 AM

90 Livelink WCM Server

Chapter 3

Entries in the trace.properties file

Entry Meaning

output.policy This entry is used to determine the output type. The
following values are possible:

Stdout: default output channel

Sterr: default error channel

Process: one file for all outputs (default)

Thread: one file per thread

Class: one file per class

Thread+Class: one file per thread and class

output.overwrite This entry is used to overwrite existing log files
(value true) or add the data to existing files (value
false).

output.limit The maximum size of the output file in KB

file.path The path to the directory in which the log files are
located

file.prefix The prefix of the file names

file.suffix The suffix of the file names (usually the file
extension)

clearer.delay The time in seconds between two runs in order to
clean the thread table of no longer running threads.
If the value is 0, no clean-up thread is started (only
for tests in a productive installation, a clean-up
thread must always be running).

The time should amount to at least 10 seconds, a
duration of 60 to 300 seconds is recommended.

PortalManagerAPIProgrammersManual_en.book Page 90 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 91

clearer.entries The minimum number of entries in the thread table,
so that the clean-up of this table can be performed at
all. This entry is only considered if the clean-up
thread is running.

There should be 50 to 200 entries in this table.

trace.filter The created thread objects use the filter value
indicated here to decide which trace outputs are
written to the logging channel. The filter value is
interpreted as a bit field. Each bit stands for a trace
information type (for example: entering a method,
exiting a method, warning message, error). The
value 0 has the effect that no tracing is performed.
The filter value can also be indicated as a hex
number by using 0x as a prefix (the setting of all bits
for bit-oriented filter implementations in the logging
channel can be achieved by using the value 0x7F).

For detailed information, refer to the comments of
the trace.properties file.

trace.indentspaces The number of spaces that should be output per
indentation depth behind the date stamp.

trace.width The width of the output lines. The output is
interrupted at word boundaries. The width must have
a value of at least 40. If no word-wrap is to be used,
the value 0 should be entered.

trace.timestamp The type of time stamp at the beginning of each line.
One of the four following values is allowed:

NO: no time stamp

INTERNAL: time stamp in milliseconds

SHORT: time stamp hour to millisecond

LONG: time stamp year to millisecond

Entry Meaning

PortalManagerAPIProgrammersManual_en.book Page 91 Wednesday, April 27, 2005 11:01 AM

92 Livelink WCM Server

Chapter 3

trace.format The format string for the trace output. The following
placeholders are possible:

{0}: the complete name of the class calling the trace

{1}: the name of the class calling the trace without
package name

{2}: the name of the method from which the trace is
called

{3}: the name of the object that uses the trace

{4}: the name of the current thread

{5}: the indentation depth as a number

{6}: the trace text

trace.acceptclasses As a rule, the traces are filtered by checking the
entry trace.filter. Exceptions exist for certain
classes: explicitly named classes have filter values
that deviate from the standard filter values. This
behavior is very time-consuming and can be
(de)activated. The value true activates exception
treatment of the appropriate classes; the value
false deactivates it.

For detailed information, refer to the comments of
the trace.properties file.

class1 and class2 This entry is used to determine for which class(es)
tracing is to be enabled. Possible values are

com.org.pkg.Class1: tracing for the class

com.org.pkg.*: tracing for the package

com.org.pkg.**: tracing for the package with all
sub-packages

Entry Meaning

PortalManagerAPIProgrammersManual_en.book Page 92 Wednesday, April 27, 2005 11:01 AM

Managing the Portal Manager API

Portal Manager API – Programmer’s Manual 93

PortalManagerAPIProgrammersManual_en.book Page 93 Wednesday, April 27, 2005 11:01 AM

94 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 94 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 95

CHAPTER 4
4Classes and Interfaces of the
Portal Manager API

This chapter describes the classes that are necessary for understanding
the concepts of the Portal Manager API.

Class Diagrams and Class Descriptions

Class Diagrams
To give an overview, class diagrams are provided with the individual
sections of this chapter. The entire diagram is available as a file in the
directory {WCM installation directory}\documentation\manual\
portalManagerClassDiagram.pdf. The diagrams in the text each
represent the relevant sections. In the entire diagram, the classes
belonging to one topic are each marked in a specific color.

For the class diagrams, the following scheme – derived from UML
diagrams – is used.

White boxes indicate classes or interfaces that belong to other
sections, for example to other related topics of the
Portal Manager API, or to the Java basic libraries (Java Foundation
classes or Java extensions). These classes are not explained in the
text. They are included in the diagram as contextual references.

PortalManagerAPIProgrammersManual_en.book Page 95 Wednesday, April 27, 2005 11:01 AM

96 Livelink WCM Server

Chapter 4

Light boxes symbolize interfaces. The interface name is always
written in italics.

Dark boxes represent classes. Only the names of abstract classes
are written in italics.

The relations of the classes and interfaces are described by arrows. A
filled arrow represents the inheritance of a class (keyword extends), an
empty arrow represents the implementation of an interface (keyword
implements). Dashed arrows represent associative relations between
classes. In this case, the relationship is explicitly stated.

The following figure illustrates the conventions used in this scheme:

Fig. 23 – Representation scheme for class diagrams

interface
Interface1

class
External

Class

interface
External
Interface

abstract class
AbstractClass1

class
Class1

class
Class2

interface
Interface2

uses

PortalManagerAPIProgrammersManual_en.book Page 96 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 97

Class Description
During installation of the WCM system, the complete class documentation
of the Portal Manager API is installed as Javadoc pages. The Javadoc
documentation is located in the directory {WCM installation
directory}\documentation\javadoc\. The class descriptions in this
manual differ from the Javadoc documentation. The Javadoc on the
Portal Manager API offers detailed information on all the classes and
interfaces and their associated methods.

Basic Classes
All classes supplied with the Portal Manager API use a number of basic
classes, which can be categorized in four groups:

basic data types

filtering and sorting

RepositoryMap and associated classes

repositories

These four groups are described in this section. For each group, the
respective section of the class diagram is shown.

The basic classes supply the important algorithmic and data-related foun-
dations of the Portal Manager API, including important properties such as
comparability, filter capability, and sort capability. The highest level of
abstraction is attained by the repositories. Since all basic classes are used
directly or indirectly in session beans, knowledge of these classes and the
related concepts is essential.

PortalManagerAPIProgrammersManual_en.book Page 97 Wednesday, April 27, 2005 11:01 AM

98 Livelink WCM Server

Chapter 4

Basic Data Types
All attribute keys of a WCM object implement the Key interface. The
attribute values implement the Value interface. This interface enhances
the Comparable, Cloneable, and Serializable interfaces (as shown in
figure 25 “The basic classes in the entire class diagram” on page 100).

Object data can be represented as attribute-value pairs and can thus be
managed by the Portal Manager API. For further information on this topic,
please refer to the WCM Java API Programmer’s Manual.

Key Values (Keys)
Since both the class TupelMap and the class RepositoryMap basically
describe the assignment of keys to data values, a Key interface was intro-
duced. However, any class can be used as a key in the repository, as long
as they implement the Key interface.

Data Values (Values)
The values to be stored must correspond to the Value interface. The
basic data implementation supplied with the Portal Manager API contains,
except in one case, the description “Value” as a suffix in the class name.
Classes other than those supplied can also be used here, as long as they
consider the Value interface.

The Value interface

Full name: de.gauss.lang.Value

The Value interface represents a data value. Data values are used in
the TupelMap class, but not as a key (for this, the Key interface is
available, which extends the Value interface even further). A data
value must be comparable, cloneable, and serializable. Thus, the
Value interface is based on the three corresponding interfaces.

PortalManagerAPIProgrammersManual_en.book Page 98 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 99

A specific implementation of the Value interface must be mentioned in
particular: the TupelMap class. A TupelMap stores pairs of Key and
Value. Since it is itself of the type Value, it can appear as a value in
another TupelMap. This is how multi-level (recursive) structures are devel-
oped. The following figure demonstrates this construction.

Fig. 24 – Multi-level key value lists in the TupelMap

It is also possible that a TupelMap contains itself, even if this is not really a
sensible or desirable constellation. In this case, some algorithms in the
Portal Manager API classes that operate on a TupelMap, would assume
the state of an endless recursion.

Key Value

key2 value2

key1 value1

keyn valuen

......

key3

value3

key4 value4

Key Value

key2 value2
key1 value1

keyn valuen
......

key3 value3

key4 value4

PortalManagerAPIProgrammersManual_en.book Page 99 Wednesday, April 27, 2005 11:01 AM

100 Livelink WCM Server

Chapter 4

Class Diagram
The following figure shows the relevant section of the entire class
diagram.

Fig. 25 – The basic classes in the entire class diagram

Filtering and Sorting
Filtering and sorting data are fundamental functions that are frequently
required for processing data.

Filtering
Filtering is generally described by the Filter interface (full name:
de.gauss.vip.lang.filter.Filter), for which several implementa-
tions are available. Complex filters can be combined from simple filters, as
in a construction set. For more detailed information on this topic, please
refer to the WCM Java API Programmer’s Manual.

interface
Comparable

interface
Serializable

interface
Clonable

class
HashMap

interface
Key

class
TupelMap

class
... Value

class
StringValue

interface
Value

PortalManagerAPIProgrammersManual_en.book Page 100 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 101

Sorting
Sorting is generally described by the Sort interface (full name:
de.gauss.lang.Sort). The KeySort class is the only implementation of
the Sort interface. This class is used to define a sort criterion for the
RepositoryEntry objects contained in a RepositoryMap (see section
“RepositoryMap and associated classes” starting on page 102). The
KeySort class contains the appropriate key and sort order. The key deter-
mines the sort criterion of the RepositoryEntry objects. The
RepositoryEntry objects are compared on the basis of the value they
contain for the specified key.

Example

A RepositoryMap contains three objects of the RepositoryEntry class.
For the key “A”, the first RepositoryEntry contains the value “Benjamin”,
the second RepositoryEntry contains the value “Charlie”, the third
contains the value “Alfred”. When the key “A” is applied, the KeySort
class sorts the RepositoryEntry objects in the following order: third
RepositoryEntry, first RepositoryEntry, second RepositoryEntry.

An example of how the KeySort class is used can be found in the code in
section “Generating Dynamic Navigation Elements” starting on page 142.

Class Diagram
The following figure shows the relevant section of the entire class
diagram.

PortalManagerAPIProgrammersManual_en.book Page 101 Wednesday, April 27, 2005 11:01 AM

102 Livelink WCM Server

Chapter 4

Fig. 26 – The filtering and sorting classes in the entire class diagram

RepositoryMap and associated classes
The RepositoryMap class is among the most universal of the basic data
types in the Portal Manager API. The classes belonging to
RepositoryMap must not be confused with the classes that implement the
Repository interface. Even though they are closely linked thematically,
there is no data inheritance relationship between them.

Class Diagram
The following figure shows the relevant section of the entire class
diagram.

Fig. 27 – The RepositoryMap class in the entire class diagram

class
KeySort

class
... Filter

interface
Sort

interface
Filter

interface
Serializable

class
TupelMap

interface
RepositoryEntry

Iterator

interface
Repository
Iterator

supplies

class
RepositoryEntry

supplies

class
RepositoryMap

PortalManagerAPIProgrammersManual_en.book Page 102 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 103

The following figure shows the classes that are used in the
Portal Manager API to store data. The diagram does not emphasize the
data attribute hierarchy, but the structural relationships.

Fig. 28 – Structural relations of complex data types

The Repository Entry class

Full name: de.gauss.vip.RepositoryEntry

The objects of the RepositoryEntry class are the values that are
stored in a RepositoryMap. In principle, a RepositoryEntry is also a
map, since the class is derived from the TupelMap class. Storing an
object of this class in a RepositoryMap results in a two-level data
structure.

class
RepositoryEntry

class
RepositoryMap

interface
Value

interface
Key

class
TupelMap

class
HashMap

interface
Key

interface
Value

interface
Keyuses as storage key

stores

class
Object

class
Objectuses as storage key

stores

uses as storage key

stores

uses as storage key

stores

PortalManagerAPIProgrammersManual_en.book Page 103 Wednesday, April 27, 2005 11:01 AM

104 Livelink WCM Server

Chapter 4

An important function of the class RepositoryEntry compared with
the class TupelMap is to supply an interface to a directory service via
JNDI. A RepositoryEntry can be initialized with JNDI data and can
also present itself as JNDI data. The applicable interface is the JNDI
attributes interface.

The RepositoryEntryIterator interface

Full name: de.gauss.vip.repository.RepositoryEntryIterator

A RepositoryEntryIterator is a listing of the key-value pairs in a
RepositoryEntry. By definition, a new iterator is positioned before
the first pair. In order to access the pairs, the iterator must be incre-
mented with one of the next methods for the first pair and the
following pairs.

The RepositoryMap class

Full name: de.gauss.vip.repository.RepositoryMap

The class RepositoryMap extends the class TupelMap, especially by
the possibility of filtering, sorting, and listing data. However, instead of
storing values of the type Value, values of the type RepositoryEntry
are stored. Since a RepositoryEntry is also derived from TupelMap,
multi-level lists are inevitably developed. This is represented in the
following figure.

PortalManagerAPIProgrammersManual_en.book Page 104 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 105

Fig. 29 – Multi-level key value lists in the repository map

To filter, sort, and list the data of a RepositoryMap, there is an iterator
(RepositoryIterator), which can be used to run through previously
filtered or sorted data.

The RepositoryIterator interface

Full name: de.gauss.vip.repository.RepositoryIterator

A RepositoryIterator is an enumeration of the key-value pairs in a
RepositoryMap, in which the data values are always of type
RepositoryEntry. By definition, a new iterator is positioned before
the first pair. In order to access the pairs, the iterator must be incre-
mented with one of the next methods for the first pair and the
following pairs.

Key RepositoryEntry

key2 entry2

key1 entry1

keyn entryn

......

key3

entry3

key4 entry4

Key Value

key2 value2
key1 value1

keyn valuen
......

key3 value3

key4 value4

PortalManagerAPIProgrammersManual_en.book Page 105 Wednesday, April 27, 2005 11:01 AM

106 Livelink WCM Server

Chapter 4

Repositories

Access to External Resources
Each access to external resources (application data) requires, on the one
hand, the definition of the resources (such as host name, port number,
program name) and, on the other hand, the authorization information for
access (user name and password).

In the Portal Manager API, the application data is modeled by reposito-
ries. The initialization data for defining the resource (URL, user ID, pass-
word, and several configuration parameters) is supplied to a repository as
parameters. The expected entries are different for each application.

Options for Authorization
If an application requires an authorization, two different ways can be
chosen: authorization data can either be directly supplied or centrally
managed.

As previously described, authorization data can be directly supplied in the
parameters. The other possibility is to perform the management centrally,
by means of account information (login information) that is stored in the
Portal Manager API. The account information is central and can – in case
there are more repositories – be used by all repositories. This creates a
single sign-on mechanism.

Systems that store account information can also be interpreted as applica-
tions. Therefore, it is obvious to make the repositories accessible. This is
realized in the Portal Manager API.

PortalManagerAPIProgrammersManual_en.book Page 106 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 107

Repository Types
Repositories are used for two purposes:

representation of an application or the data of an application (primary
usage in the Portal Manager API)

retrieving and checking user-specific account information (login
repositories)

In the special case that just the account information represents the data of
an application, a repository implementation can, of course, be used for
both purposes.

Login Repositories

Login repositories are repositories used for processing account informa-
tion. The Portal Manager API has two login repositories that support the
following data sources:

account information in an LDAP server (DirectoryRepository)

account information in the Admin client (VipUserRepository); the
Administration server can also access the LDAP server for this
purpose.

Each login repository uses the user name as a key. The account informa-
tion for the respective users serves as data value. These are filed in a
RepositoryEntry. In this respect, the login repositories are equal to the
“normal” repositories.

After successful authentication of a user, the user's password is saved.
Thus, other repositories can use the password again without the user
needing to reenter it (single sign-on support).

PortalManagerAPIProgrammersManual_en.book Page 107 Wednesday, April 27, 2005 11:01 AM

108 Livelink WCM Server

Chapter 4

Class Hierarchy
A repository is represented by the Repository interface. The
Repository interface basically contains access methods that suggest
(but do not force) an implementation by means of a RepositoryMap.
Some implementations of the Repository interface actually store the
repository data as RepositoryMap, others forward the method calls to the
underlying external data source.

The Repository interface is implemented by the abstract basic class
RepositoryImpl. This class is the basis for all Repository implementa-
tions supplied with the Portal Manager API.

The RepositoryImpl class

Full name:
de.gauss.vip.portalmanager.repository.RepositoryImpl

This Repository implementation is the abstract basic implementation
of a repository for all repository classes supplied with
Livelink WCM Server.

A login repository is modeled as a LoginRepository interface. It extends
the Repository interface by methods for checking the login.

Sessions
For each access to repository contents, a session must be indicated. The
information contained in the session can be used by the repository.

A session describes the current processing context between the browser
and web server. In addition, the session contains an ID. With this ID, the
name of the user who is logged in to this session is available. This user
name should be used to query account information from a login repository.

The interface Session is represented in connection with the session-
related classes (see figure 32 “The bean classes in the entire class
diagram” on page 115).

PortalManagerAPIProgrammersManual_en.book Page 108 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 109

Class Diagram
The following figure shows the relevant section of the entire class
diagram.

Fig. 30 – The repository classes in the entire class diagram

class
Directory

Repository

in terface
Repository

interface
Login

Repository

class
VipUser

Repository

abstract class
VipAdmin
Repository

class
FileRepository

abstract class
RepositoryImpl

class
VipGroup
Repository

class
VipRole

Repository

abstract class
Base

class
VipObject
Repository

class
VipObjectHandler

Repository

PortalManagerAPIProgrammersManual_en.book Page 109 Wednesday, April 27, 2005 11:01 AM

110 Livelink WCM Server

Chapter 4

Application and Bean Classes

Basic Class
Bean classes, application classes, and repository classes are derived
from the basic class Base. This class implements several interfaces and
extends an external CoreObject class.

The Base class

Full name: de.gauss.vip.portalmanager.core.Base

Base is an abstract basic class of all applications and repositories. In
addition, the Base class contains the methods for loading properties
and multi-properties files.

Base also contains the static method startPMServer, which you can
use to start Content servers running in the context of a JSP engine or
as web application in an application server. If these Content servers
have already been started, a call of the method remains without effect.
The following parameters must be set as system properties.

Table 5 – Start parameters for Content servers running in the context of a JSP
engine

Parameter Meaning

vip.server.name The name of the Content server running in
the context of a JSP engine or as web appli-
cation in an application server

vip.admin.host The name of the computer on which the
master Admin server is running

vip.admin.socket The socket port of the master Admin server

vip.admin.http The HTTP port of the master Admin server

PortalManagerAPIProgrammersManual_en.book Page 110 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 111

Applications
Programs are described by the Application interface. The Application
interface is implemented by the abstract basic class ApplicationImpl.
On this basis, two concrete implementations of the Application interface
are provided for the integration of Livelink WCM Server. However, these
do not contain any further methods. New classes that implement the
Application interface for other external programs should also be derived
from the abstract basic class.

Class diagram

The following figure shows the relevant section of the entire class
diagram.

vip.admin.secure Indicates whether the communication with
the master Admin server is to be encrypted.
Possible values are:
true – encrypted communication
false – non-encrypted communication

vip.installdir The installation directory of the WCM system

Parameter Meaning

PortalManagerAPIProgrammersManual_en.book Page 111 Wednesday, April 27, 2005 11:01 AM

112 Livelink WCM Server

Chapter 4

Fig. 31 – The application classes in the entire class diagram

The Application interface

Full name:
de.gauss.vip.portalmanager.application.Application

The Application interface represents a program in the
Portal Manager API. This interface determines, in particular, that a
program is based on one or more repositories that describe the status
and data of a program.

Each Application implementation must support at least the following
properties:

An Application should, as far as possible, fulfill the factory
design pattern: each Application class checks which instances
exist.

An Application can have any number of resources that are
used for configuration (for example, for setting the language).
The purpose of a resource depends on the concrete
Application. Resources are entered as strings that describe
resource bundle files in the file system or in JAR files identified

abstract class
Base

class
VipObject

Application

interface
Application

abstract class
ApplicationImpl

class
VipUser

Application

PortalManagerAPIProgrammersManual_en.book Page 112 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 113

via the class path. Resources are loaded via the standard class
loader.

An Application uses any number of repositories, which differ
by name.

An Application has a default locale that can be used for local-
ization and internationalization purposes.

The listed properties of each Application implementation are real-
ized as methods in the interface declaration. However, there are only
methods to determine the property values (get methods), the defini-
tion of the properties (by set methods) is not required by an
Application. Usually, the properties are set implicitly by conventions
or by properties that are entered at initialization by the open method.

The ApplicationImpl class

Full name:
de.gauss.vip.portalmanager.application.ApplicationImpl

An ApplicationImpl is an abstract implementation of the
Application interface on which basis concrete Application classes
can be developed without great effort. ApplicationImpl does not
have a public constructor. Beyond the methods defined in
Application, only the method getInstance exists as a surrogate for
a constructor, whereby the factory pattern is implemented.

At the first call of the method getInstance(String),
ApplicationImpl automatically starts the Content server running in
the context of a JSP engine or as web application in an application
server. If you want to start the Content server explicitly, use the
method startPMServer of the Base class.

The class ApplicationImpl uses the following conventions for its
own initialization:

PortalManagerAPIProgrammersManual_en.book Page 113 Wednesday, April 27, 2005 11:01 AM

114 Livelink WCM Server

Chapter 4

The settings of the application are read from the configuration file
application.xml . The configuration file server.xml contains a
mapping of the logical application names to existing application
names.

Each repository, which needs an ApplicationImpl, is read
through the settings of the configuration file repository.xml .

These configuration files contain all information that allows creating
Application objects as factory. In this way, supplying concrete
Application implementations with initialization data is considerably
facilitated.

Beans
The beans made available in the Portal Manager API can be used as
instances in JSP scripts. They make it possible to access any program
through HTML pages. As scope for the beans, a “session scope” should
be set. Beans use an application, which represents the actual program.
For this reason, the highest-level bean class is called
SessionApplication.

Beans contain high-level methods based on the Application and
Repository classes. These methods summarize typical use cases of a
program in an easy-to-understand and efficient manner.

Note: All beans of the Portal Manager API were developed for use with
session scope. When using other scopes – especially “request” and
“page” – there is the danger of using up many CA licenses (CA =
concurrent author), which can only be used again after the respective
context IDs in Livelink WCM Server have become invalid.

PortalManagerAPIProgrammersManual_en.book Page 114 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 115

The abstract implementation in SessionApplication provides, in partic-
ular, simple facilities for internationalizing programs. In this way, users are
offered a program with country-specific standards and language. This is
only possible if localization information on the respective user is available.

Class diagram

The following figure shows the relevant section of the entire class
diagram.

Fig. 32 – The bean classes in the entire class diagram

class
ExceptionDisplay

Bean

interface
ContentHandler

class
ContentHandler

Bean

abstrac t c lass
ObjectBean

class
SessionBean

c lass
V ipUserBean

c lass
VipObjectBean

c lass
VipW hatsNew

Bean

class
VipOb jectHandler

Bean

c lass
VipObjectFilter

Bean

class
V ipWorkflow

Bean

class
ClickStream

Bean

class
VipEMailBean

abstract class
Session

Application
c lass

Internationalizationus es

abs tract class
Base

interface
HttpSession

BindingListener

abstract class
SessionBase

interface
Session

PortalManagerAPIProgrammersManual_en.book Page 115 Wednesday, April 27, 2005 11:01 AM

116 Livelink WCM Server

Chapter 4

The SessionApplication class

Full name:
de.gauss.vip.portalmanager.application.SessionApplication

The SessionApplication class represents the abstract basic class
for all beans in the Portal Manager API. The class provides the
following functionality:

assignment of the bean to a session

method for retrieving the assigned application

localization information

methods for receiving and setting the repository name

The default locale and the resources for the respective application are
retrieved from the configuration file application.xml .

The Internationalization class

Full name: de.gauss.vip.i18n.Internationalization

The Internationalization class is responsible for international-
izing messages. Internationalization is controlled by a Locale object.

Resource bundles are the basis for internationalization. An
Internationalization object can use any number of resource
bundles on the basis of any Locale object. Access to resources is
performed, as usual, using keys. The selection of the Locale objects
is controlled by the current Locale of the session. A key is checked for
each resource bundle that is possibly associated with the Locale,
until one of the resource bundles returns a value. If resource bundles
have the same key, the resource bundle which is entered first in the
file application.xml is used.

PortalManagerAPIProgrammersManual_en.book Page 116 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 117

The Internationalization class makes methods available for

retrieving localized messages for the key

retrieving Locale-specific date and number formats

The SessionBean class

Full name: de.gauss.vip.portalmanager.SessionBean

A SessionBean manages user profiles on the basis of the unique
session ID. (The term session bean refers to a bean that realizes a
session-related user administration. However, it should not be
confused with the session beans that are part of the Enterprise Java-
Beans.) A session ID can either be specified as a string or as an HTTP
request.

Before a user has been authenticated by a login process, the user will
be treated as an anonymous user with very limited rights. Users are
not automatically logged in by the SessionBean class. It is possible to
log out a user explicitly.

The VipProfile interface

Full name: de.gauss.vip.portalmanager.VipProfile

You can use the interface VipProfile to store and manage additional
information on users. The Content client uses VipProfile to perma-
nently store a user's configuration information. VipProfile also offers
the possibility to store and manage non-WCM information such as a
user's address.

To retrieve a user's VipProfile, call the method
SessionBean.getCurrentUserProfile(String) from the
SessionBean. The user ID must be supplied with the call. Within
VipProfile, user information is managed and (if necessary) stored
as key-value pairs. That means that a Value can be stored with a
certain key.

PortalManagerAPIProgrammersManual_en.book Page 117 Wednesday, April 27, 2005 11:01 AM

118 Livelink WCM Server

Chapter 4

VipProfile provides three sections for user information:

transient profile information (VipProfile.TRANSIENT)

This section is used to store profile information which must be
available during a user session, but which is not to be stored
persistently. Transient profile data from VipProfile can be read
and manipulated even if the corresponding user is not logged in
to the WCM system.

client-related profile information (VipProfile.KNOWN_USER)

This section is used to manage and store user information which
is to be stored persistently. The data is saved in a cookie. Thus,
the data in this section is only available on the client (browser)
which stores the cookie. By default, the life span of the cookie is
limited to 90 days. You can, however, change this default by
means of the KNOWNUSER_COOKIE_DURATION parameter of the
VipUserApplication class.

user-specific profile information (Vip.Profile.VIP_USER)

This section is used to persistently store and manage user infor-
mation which is to be available in the whole system. Depending
on the kind of user administration, this profile information is
stored in a database, an LDAP directory service, or in Livelink. To
read and manipulate data from this section, the corresponding
user must be logged in to the WCM system.

Within this section, the user information must be stored and
managed in sub-profiles which must have unique names. The
methods VipProfile.getProfileValue(String
profileName,String attribute) and
VipProfile.setProfileValue(String profileName,String

attribute,Value value) allow you to access and manipulate
the information in this section. A profile name must be specified
for this purpose. Alternately, you can use the method

PortalManagerAPIProgrammersManual_en.book Page 118 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 119

VipProfile.setCurrentProfileName(String name) to set
the profile name which is to be used for the VIP_USER section. To
retrieve the name of the profile currently used for the user-
specific profile information, you can use the method
VipProfile.getCurrentProfileName.

Fig. 33 – Structure of VipProfile and the managed information

The methods VipProfile.getValue(String attribute,int
type) and VipProfile.setValue(String attribute,Value
value,int type) are provided for accessing and manipulating indi-
vidual profile values. This applies to all VipProfile sections. The
section to be used must be specified as type (TRANSIENT,
KNOWN_USER, or VIP_USER).

KNOWN_USER

VIP_USER

Key1/Value1
Key2/Value2
Key3/Value3
...

Profile A
Key1/Value1
Key2/Value2
Key3/Value3
...

Cookie

TRANSIENT
Key1/Value1
Key2/Value2
Key3/Value3
...

Database/
LDAP/

Livelink

VipProfile

Profile B
Key1/Value1
Key2/Value2
Key3/Value3
...

Profile C
Key1/Value1
Key2/Value2
Key3/Value3
...

PortalManagerAPIProgrammersManual_en.book Page 119 Wednesday, April 27, 2005 11:01 AM

120 Livelink WCM Server

Chapter 4

The VipUserBean class

Full name: de.gauss.vip.portalmanager.VipUserBean

The logical name of the underlying application of this class is
VipUserApplication. The VipUserBean class is an interface to the
user administration of Livelink WCM Server. It offers methods for
storing and loading the Value objects of different repositories, as well
as convenience methods for dealing with bookmark entries. The
VipUserBean class continues to offer methods that make it possible to
represent an individual user. These methods have been deprecated.
Instead, the class VipProfile should be used. In order to get a refer-
ence to an object of the class VipProfile, use the class
SessionBean.

The VipObjectBean class

Full name: de.gauss.vip.portalmanager.VipObjectBean

The VipObjectBean class provides (read-only) access to all objects
of the websites managed with Livelink WCM Server. In particular,
there are several methods for retrieving the website’s hierarchical
structure, which is determined by topic objects. This can, for example,
be used to construct navigation.

The VipObjectBean uses repositories of the class
VipObjectRepository to query data from the WCM system. These
repositories can be configured in two ways:

by specifying the name of a deployment system

In this case, each repository represents the data of a deployment
system. (For each deployment system, a VipObjectRepository
or VipObjectHandlerRepository with the same name is
created automatically; however, this name can also be chosen in
such a way that the name of the repository differs from the name
of the deployment system.) A deployment system is responsible
for exactly one website and one data storage view (Edit, QA,

PortalManagerAPIProgrammersManual_en.book Page 120 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 121

Production). By choosing a VipObjectRepository, a specific
website and a specific view are always specified at the same
time. The logical name of the underlying application is
VipUserApplication.

by specifying the website name and the data storage view of the
website (Edit, QA, Production)

This makes it possible to access the objects of a website without
setting up deployment systems. Repositories configured in such
a way cannot return deployment-specific object data (e.g. URL,
path).

Individual WCM objects are entries in these repositories. All metadata
of the WCM objects are keys of these entries. The descriptors of this
metadata and the values of some metadata are described in the
WCM Java API Programmer’s Manual or in the Javadoc on the
Portal Manager API.

The VipObjectHandlerBean class

Full name: de.gauss.vip.portalmanager.VipObjectHandlerBean

The VipObjectHandlerBean extends the VipObjectBean by the
write access to the website objects managed with
Livelink WCM Server. The VipObjectHandlerBean is the interface of
the Portal Manager API to the WCM Java API.

Note: For further information on the configuration of a
VipObjectRepository, refer to table 3 “Repositories and their
parameters” on page 57.

PortalManagerAPIProgrammersManual_en.book Page 121 Wednesday, April 27, 2005 11:01 AM

122 Livelink WCM Server

Chapter 4

The available methods are almost identical to the methods of the
ObjectHandler interface of the WCM Java API. The ObjectHandler
is the central instance of the WCM Java API for manipulating a
website via the program. All techniques, limitations, constants, etc.
described in the WCM Java API Programmer’s Manual are therefore
also valid for the VipObjectHandlerBean. Therefore, knowledge of
the ObjectHandler methods is essential.

The name of the underlying application of this bean is
VipObjectApplication. The repositories that use this application
are entered in the configuration files application.xml and
repository.xml .

These repositories can be configured in two ways:

by specifying the name of a deployment system

A deployment system is responsible for exactly one website and
one data storage view (Edit, QA, Production). Therefore, by
selecting a deployment system for a repository, you specify
exactly which data will be returned and which objects are
affected. With the method setRepositoryName(String), you
can specify which VipObjectHandlerRepository is to be used
by this bean to carry out operations in the WCM system.

by specifying the website name and the data storage view of the
website (Edit, QA, Production)

This makes it possible to access the objects of a website without
setting up deployment systems. Repositories configured in such
a way cannot return deployment-specific object data (e.g. URL,
path).

PortalManagerAPIProgrammersManual_en.book Page 122 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 123

The data storage view, which is assigned directly to the
VipObjectHandlerRepository or indirectly via the deployment
system, determines which objects are visible. The data storage view
also specifies which actions can be performed. For a detailed descrip-
tion of which actions can be performed in which view, please refer to
the description of the ObjectHandler class in the WCM Java API
Programmer’s Manual.

The most methods of the VipObjectHandlerBean can only be used if
the user is logged in. The logged-in user must have sufficient rights to
carry out the actions. Each user who performs actions on the
WCM objects uses up one license. This license can be used again
when the user logs off or the user login becomes invalid in the server.

The VipObjectFilterBean class.

Full name: de.gauss.vip.portalmanager.VipObjectFilterBean

The class VipObjectFilterBean makes it possible to filter the
WCM objects of a website according to specific criteria. All methods
inherited from the super class VipObjectBean that return certain
object sets are additionally restricted according to the filter conditions
defined here.

Filtering results are stored temporarily in the VipObjectFilterBean
in a cache. The cache is filled using the method call applyFilter.
Subsequent filtering with identical filter conditions is not actually
performed, but is read from the cache. The cache can be deleted
explicitly (method invalidateCache) to force a new filtering.

Note: Every user with write access to the WCM system uses up a
license. This license is released after one minute, even if the user
logs out before this minute has elapsed. When the minute has
elapsed, the license will be released together with the user logout.

PortalManagerAPIProgrammersManual_en.book Page 123 Wednesday, April 27, 2005 11:01 AM

124 Livelink WCM Server

Chapter 4

The VipWhatsNewBean class

Full name: de.gauss.vip.portalmanager.VipWhatsNewBean

The VipWhatsNewBean extends the filter function of the
VipObjectFilterBean by the “What's New” feature. “What's New”
returns pages (WCM objects) that have changed recently or are new.
The release date is compared to a specific date. This date determines
how “changed recently” and “new” is defined.

The “What’s New” feature can be extended by the following
properties:

The retrieved set of changed or new WCM objects can be sorted.

Individual WCM objects can be excluded explicitly.

Object types can be excluded explicitly.

File extensions can be excluded explicitly.

The following properties are inherited from the super class
VipObjectFilterBean:

In addition to the “What’s New” condition, another filter condition
can be entered for restriction purposes.

Only WCM objects starting from a specific root object can be
considered.

The maximum number of WCM objects can be specified.

It is possible to enter a sorting sequence for the retrieved objects.
Without an explicit entry, the WCM objects are sorted by release date.
The WCM objects with the most recent release dates are at the top of
the hitlist.

PortalManagerAPIProgrammersManual_en.book Page 124 Wednesday, April 27, 2005 11:01 AM

Classes and Interfaces of the Portal Manager API

Portal Manager API – Programmer’s Manual 125

The ContentHandler interface

Full name: de.gauss.vip.portalmanager.ContentHandler

The ContentHandler interface allows access to the content of an
object that is specified by a URL.

The content can be read as a string, stream, or reader. In all cases, a
converter can be specified (for example: XML ContentConverter),
which converts the content. Converters interpret the content and only
return the relevant parts.

PortalManagerAPIProgrammersManual_en.book Page 125 Wednesday, April 27, 2005 11:01 AM

126 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 126 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 127

CHAPTER 5
5Notes on Programming with the
Portal Manager API

This chapter gives you a brief introduction to the programming interfaces
of the Portal Manager API. It also provides some application examples.

Authentication and Session Management
To be able to use the functionality of the Portal Manager API, a proper
authentication as a WCM user is necessary due to the system’s access
and security mechanism. The HTTP protocol used for communication
between user and the Portal Manager API is stateless. This means that
authentication is necessary for each HTTP request. This problem is reme-
died by the JSP specification, which provides a mechanism for HTTP
sessions.

An HTTP session has the following features:

Initialization – an HTTP session is initialized when the connection
between a client and a web server is established for the first time.

Session ID – a session that takes place in the context of a JSP
engine is identified by a session ID that is unique for the individual
installation. The session ID is managed by the JSP engine (server).

PortalManagerAPIProgrammersManual_en.book Page 127 Wednesday, April 27, 2005 11:01 AM

128 Livelink WCM Server

Chapter 5

HTTP session timeout – an HTTP session is only valid if the client
sends a request within a certain period of time. Otherwise, a timeout
occurs in the JSP engine.

The HTTP session mechanism is used by the Portal Manager API for
session management of the WCM JavaBeans and at the same time guar-
antees WCM authentication for a specific session.

Authentication
Authentication in the Portal Manager API is based on the concept of the
WCM user, who is characterized by the following attributes:

unique user name (for a specific installation or for the LDAP server
that is used for user administration)

password

The user information for authorization in the Portal Manager API is stored
in a LoginRepository implementation. There are various
LoginRepository implementations, e.g. VipUserRepository.
Depending on the use of the Portal Manager API, there are various
authentication modes.

Authentication via HTTP request parameters
The WCM user parameters are defined using the HTTP request
parameters userName and userPassword in the HTTP request of the
JSP engine. In this mode, the authentication parameters are made
available by using an HTML form that supplies the required
parameters.

Authentication via HTTP standard authentication
The WCM user parameters are provided via the authentication
mechanism of the (web) server. The Authorization field in the header
of the HTTP request contains the user name and the password,
which are separated by a colon and Base 64-coded.

PortalManagerAPIProgrammersManual_en.book Page 128 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 129

Context ID login from request or cookie
The context ID is read and the user is logged in. This ID is assigned
by Secure Access or written to the request during statification.

Trusted login (authentication via the session attribute)
For enabling the Portal Manager API to work with other e-business
applications and to support single sign-on, it is possible to request
the WCM user’s name from an attribute that is associated with the
HTTP session. The trusted login mode is a function of the
LoginRepository interface. The following figure shows how to
configure trusted login in the Admin client.

Fig. 34 – Configuring the trusted login mode via the Admin client

PortalManagerAPIProgrammersManual_en.book Page 129 Wednesday, April 27, 2005 11:01 AM

130 Livelink WCM Server

Chapter 5

Trusted login in the WCM system
(checkLogin(request, “uid”, null)), in the user’s settings in the
Admin client, the option Trusted login must be activated)

If the user does not log in to the Portal Manager API, the user is
treated as an anonymous user with minimum rights. If the trusted
login mode is used for user authentication, it is not possible to use
the class DirectoryRepository, as this repository demands a
password that is not available in this case.

If the WCM system is to be accessed (including write access) or the
requested objects cannot be read by all users, the user must log in using
the VipUserRepository. For this login, the user is assigned a context ID
which the WCM system requires for checking the rights.

Each user writing uses one CA license (CA = concurrent author), which
will be returned when the user logs out or the used context ID times out.

Session Management
The following class diagram shows the HTTP session management in
connection with authentication.

Note: The license used is released after one minute, even if the user
logs out before this minute has elapsed. When the minute has elapsed,
the license will be released together with the user logout.

PortalManagerAPIProgrammersManual_en.book Page 130 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 131

Fig. 35 – Authentication and session management

The following main components are used for session management and
authentication:

HttpSession – makes it possible to retrieve a unique session ID for
an HTTP request

HttpSessionBindingListener – informs the SessionBase class
when an HTTP session has ended or started

LoginRepository – contains the user information for checking the
login request

class
SessionBean

from portalmanager

class
ObjectBean

from portalmanager

abstract class
SessionApplication

from application

abstract class
SessionBase
from application

interface
Session
from core

abstract class
Base

from core

interface
HttpSession

BindingListener
from http

interface
HttpSession

from http
1

interface
VipProfile

from portalmanagern

interface
LoginRepository

from repository1

<<sessionId>>

PortalManagerAPIProgrammersManual_en.book Page 131 Wednesday, April 27, 2005 11:01 AM

132 Livelink WCM Server

Chapter 5

SessionBean – contains all session information in the
Portal Manager API

VipProfile – contains all information about the WCM user associ-
ated with an HTTP session

Login Repositories
The following diagram shows the repositories that can be used for a login.

Fig. 36 – Login Repositories

Sometimes it is necessary to write your own login repositories. For
example, if you have a database with all the user information and want to
use the data source for authentication purposes, you must develop a login
repository that accesses the database. This class must implement the
LoginRepository interface and must be derived from the abstract basic
class RepositoryImpl or from one of its subclasses. For further informa-
tion, see section “Deriving from the RepositoryImpl class” on page 154.
The default login repository is the users repository.

class
DirectoryRepository

from repository

abstract class
RepositoryImpl

from repository

class
VipUserRepository

from repository

abstract class
VipAdminRepository

from repository

interface
LoginRepository

from repository

PortalManagerAPIProgrammersManual_en.book Page 132 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 133

Application Examples for the
Portal Manager API
This section contains application examples of programming with the
Portal Manager API for the following topics:

creating users via a portal (see the following section)

creating dynamic navigation elements (see section “Generating
Dynamic Navigation Elements” on page 142)

multi-content pages (see section “Placing Several Content Objects
on one Page (Multi-Content Page)” on page 146)

form-based creation of objects (see section “Creating WCM Objects
via an HTML Form” on page 149)

Creating Users in an LDAP System via a Portal
Internet portals usually require users to specify their identity. For this
purpose, the users create a user accounts with their personal data in the
portal. By means of this account, users can tailor the layout of the portal to
their wishes and needs. Moreover, it is possible to control which content
provided by the portal the users may access.

The user data can be stored in a database or an LDAP directory service.
This section describes how to create new user accounts in an LDAP direc-
tory service via a portal by means of the DirectoryRepository of the
Portal Manager API. The required data can be taken from login forms.
This way, portal users can create and manage their accounts themselves.

It is also possible to develop JSP applications for managing user
accounts. Such web applications potentially offer more functionality than
the Admin client because any data can be stored and managed in them.

PortalManagerAPIProgrammersManual_en.book Page 133 Wednesday, April 27, 2005 11:01 AM

134 Livelink WCM Server

Chapter 5

Requirements

To enable a user whose account is created in the LDAP directory
service to log in to the WCM system and thus become part of the
access control, the WCM user administration must be based on
LDAP. The newly created user accounts must be available from the
Administration server (master or proxy) that performs the login
procedure for the Content server running in the context of the JSP
engine or as web application in an application server.

The DirectoryRepository can use all LDAP directory services that
are supported by Livelink WCM Server (for detailed information on
the supported LDAP directory services, refer to the Release Notes
for Livelink WCM Server).

Configuring the DirectoryRepository

For accessing an LDAP directory service, a repository of the type
DirectoryRepository must be configured. Proceed as follows:

1. In the Admin client, create a new repository (see section “Adding a
Repository” on page 54).

As class name, enter de.gauss.vip.portalmanager.
repository.DirectoryRepository.

2. Configure the new repository by means of parameters (see section
“Setting the Parameters for a Repository” on page 55).

The following table contains a sample configuration. For basic infor-
mation on the DirectoryRepository, refer to section “The
DirectoryRepository class” on page 87. The individual parame-
ters are described in table 3 “Repositories and their parameters” on
page 57.

PortalManagerAPIProgrammersManual_en.book Page 134 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 135

Table 6 – Sample configuration of a DirectoryRepository

Notes:

If necessary, the values of the ldapattr parameters must be modi-
fied according to the configuration of the LDAP directory service.

Mappings must only be made for those parameters that have
different values for the parameters pomaattr and ldapattr. A
distinction is made between upper and lower cases, i.e. the values
“userpassword” and “userPassword” are not identical.

Parameter Value

url ldap://ldapserver.company.example:389

authentication simple

principal {LDAP user with the right to add entries}

credentials {password of the user entered under
principal}

principal-changes {LDAP user with the right to change and
delete entries}

Note: This parameter is used to assign
users to groups and roles. This also applies
if the logged-in user does not have the right
to change and delete LDAP entries.

credentials-changes {password of the user entered under
principal-changes}

search-scope SUBTREE_SCOPE

base ou=software, o=company.example

group-base ou=groups, ou=software,
o=company.example

PortalManagerAPIProgrammersManual_en.book Page 135 Wednesday, April 27, 2005 11:01 AM

136 Livelink WCM Server

Chapter 5

role-base ou=roles, ou=software, o=company.example

dn-pattern uid=*, ou=software, o=company.example

password-attrib userPassword

mappings

mapping

LDAP_USER_ID

pomaattr uid

ldapattr uid

CN

pomaattr cn

ldapattr cn

INIT_PASSWORD

pomaattr pwdChange

ldapattr initPassword

VIP_ACCESS

pomaattr account

ldapattr vipAccess

LDAP_OBJECTCLASS

pomaattr objectclass

ldapattr objectClass

Parameter Value

PortalManagerAPIProgrammersManual_en.book Page 136 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 137

TRUSTED_LOGIN

pomaattr trustedLogin

ldapattr trustedLogin

VIP_FUNCAREAS

pomaattr vipFuncarea

ldapattr vipFuncarea

VIP_RIGHTS

pomaattr vipRights

ldapattr vipRights

LANGUAGE

pomaattr language

ldapattr preferredLocale

LDAP_VIP_TYPE

pomaattr vipType

ldapattr vipType

VIP_WEBSITES

pomaattr website

ldapattr vipWebsite

HCL_PROFILES

pomaattr hclProfiles

ldapattr hclProfiles

Parameter Value

PortalManagerAPIProgrammersManual_en.book Page 137 Wednesday, April 27, 2005 11:01 AM

138 Livelink WCM Server

Chapter 5

3. Assign the new repository to the application VipUserApplication
(see section “Assigning a Repository to an Application” on page 81).

Methods for using the DirectoryRepository

For accessing the data of the LDAP directory service and changing them,
the following methods are available. The class VipUserBean inherits them
from the class ObjectBean:

containsKey("<repositoryName>", key)

createEntry("<repositoryName>", key, data)

loadEntry("<repositoryName>", key)

MAIL

pomaattr email

ldapattr mail

VIP_MEMBERS

pomaattr user-name

ldapattr member

VIP_SUBSTITUTE

pomaattr vipSubstitute

ldapattr vipSubstitute

USER_PASSWORD

pomaattr userpassword

ldapattr userPassword

Parameter Value

PortalManagerAPIProgrammersManual_en.book Page 138 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 139

removeEntry("<repositoryName>", key)

storeEntry("<repositoryName>", key, data)

The parameter key of these methods must be a String or a
StringValue. The value of the parameter must be the fully qualified
“distinguished name” (DN), the name of a user, group, or role. If no DN
has been specified as parameter key, the DirectoryRepository
searches for a principal in the following order:

1. for a user whose DN contains the value of the parameter dn-
pattern of the repository.

2. for a group with the retrieved DN cn={key}, {group-base}

3. for a role with the retrieved DN cn={key}, {role-base}

The parameter data of the methods and the return values of the most
methods are RepositoryEntry objects. These RepositoryEntry
objects contain the attributes of the LDAP entry referenced by key.
According to the mapping specified in the configuration of the repository,
these attributes are converted when they are written in the LDAP directory
service or read from there.

The methods containsKey, createEntry, and loadEntry are executed
in the context of the repository binding profile, which is specified by the
parameters principal and credential. Thus, these method can be
executed independently of the currently logged-in user. As a precondition,
the binding profile user must have sufficient rights in the LDAP directory
service.

The methods removeEntry and storeEntry are executed in the context
of the currently logged-in user provided that the parameters principal-
changes and credential-changes have been configured for the reposi-
tory.

PortalManagerAPIProgrammersManual_en.book Page 139 Wednesday, April 27, 2005 11:01 AM

140 Livelink WCM Server

Chapter 5

The method createNewUser("{repository name}", key, data) of
the class VipUserBean makes it possible to create new users and assign
them to groups and roles in just one step. After a user has been assigned
to a group or role, the data of the group or role must be updated. For this
reason, either the currently logged-in user must have sufficient rights for
this operation or the parameters principal-changes and credential-
changes must be used together.

Example of creating a new user account

In this JSP example, the entries from an HTML form are used to create a
new user account.

<html>
<head></head>
<body>
<%@ page

import="java.util.*,
de.gauss.lang.*,
de.gauss.vip.util.*,
de.gauss.vip.repository.*"

%>
<jsp:useBean id="vub"

class="de.gauss.vip.portalmanager.VipUserBean"
scope="session" />

<%
// read the parameters from the request
String name = request.getParameter("name");
if (name == null) name = "";
String uid = request.getParameter("uid");
if (uid == null) uid = "";
String mail = request.getParameter("mail");
if (mail == null) mail = "";
String pwd = request.getParameter("pwd");
if (pwd == null) pwd = "";

%>
<p><form action="{VIPURL}">

<table>
<tr><td>Name</td><td><input name="name"

value="<%=name%>"></td></tr>
<tr><td>User-Id</td><td><input name="uid"

value="<%=uid%>"></td></tr>
<tr><td>E-Mail</td><td><input name="mail"

value="<%=mail%>"></td></tr>

PortalManagerAPIProgrammersManual_en.book Page 140 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 141

<tr><td>Password</td><td><input name="pwd" type="password"
value="<%=pwd%>"></td></tr>

<tr><td> </td><td><input type="submit"
value="create user"></td></tr>

</table>
</form></p>
<hr>
<%

if ((name.length() > 0) && (uid.length() > 0) && (pwd.length()
> 0))

{
RepositoryEntry newUserEntry = new RepositoryEntry();
// add the common name
newUserEntry.putValue(AttributeName.CN,

new StringValue(name));
// add the user id
newUserEntry.putValue(AttributeName.UID,

new StringValue(uid));
// add the mail address
newUserEntry.putValue(AttributeName.MAIL,

new StringValue(mail));
// add the password
newUserEntry.putValue(AttributeName.PWD,

new StringValue(pwd));
// allow WCM access
newUserEntry.putValue(AttributeName.ACCOUNT, new

BooleanValue(true));
// define a language
newUserEntry.putValue(AttributeName.LANGUAGE,

new LocaleValue(Locale.getDefault()));
// the user does not have to change his password
newUserEntry.putValue(AttributeName.PWD_CHANGE,

new BooleanValue(false));
// no trusted login allowed
newUserEntry.putValue("trustedLogin",

new BooleanValue(false));
// no defalt object rights are defined
newUserEntry.putValue("vipRights", new StringValue(" "));
// the user is assigned two object classes: vip and vipUser
RepositoryMap objectclassMap = new RepositoryMap();
objectclassMap.putEntry("vip", null);
objectclassMap.putEntry("vipUser", null);
newUserEntry.putValue(AttributeName.OBJECTCLASS,

objectclassMap);
// assign the user to the website
RepositoryMap websiteMap = new RepositoryMap();
websiteMap.putEntry("{VIPSITE}", null);
newUserEntry.putValue(AttributeName.WEBSITES, websiteMap);

PortalManagerAPIProgrammersManual_en.book Page 141 Wednesday, April 27, 2005 11:01 AM

142 Livelink WCM Server

Chapter 5

// assign the user to a group
RepositoryMap groupMap = new RepositoryMap();
groupMap.putEntry("testgroup", null);
newUserEntry.putValue(AttributeName.GROUPS, groupMap);
// create the user
vub.createNewUser("ldap", uid, newUserEntry);

%><p>Created new user account: <%=vub.loadEntry("ldap",
uid)%></p><%

}
else
{

%><p>Please insert data into all fields.</p><%
}

%>
</html>

Generating Dynamic Navigation Elements
The purpose of consistent navigation in a website is to make the content
accessible to the user in an easy way. In addition, navigation provides the
user with hyperlinks for quickly and easily switching to associated content,
for example, to pages on related topics or neighboring pages in the hierar-
chic structure. Sitemaps are also navigation elements. Generally
speaking, however, they are not confined to the context of the current
page, but provide information about the website as a whole.

In Livelink WCM Server, the fact that metadata are stored for each content
object provides sufficient information for navigating. For each content
object, the program stores details of those objects that can be reached by
hyperlink and those objects from which the active content object can be
reached by hyperlink. It also stores the references to the parent
WCM object and to all WCM objects that are located on the same or a
lower level in the topic structure. Further information for navigation is
provided by the topic tree and by linking a content object to a template
object.

PortalManagerAPIProgrammersManual_en.book Page 142 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 143

If the underlying metadata are changed, the content is automatically modi-
fied – in the case of a respective implementation – without any need for
manual modification. As a result, these navigation elements do not get out
of date when objects are deleted, copied, or moved.

The Portal Manager API makes dynamic generation of navigation
elements possible. For example, the subtopics of a main topic could be
automatically output as subheadings in a menu, or sitemaps could give
the user an overview of the structure of the website. In both cases,
changes in the structure of the website are taken into account without any
need to revise the navigation.

When navigation elements are dynamically generated by means of the
methods of the Portal Manager API, the users’ access rights can be taken
into account. Users have only those navigation options for which they
have the necessary rights. For example, an anonymous user sees
different elements than an authorized user. More far-reaching personaliza-
tion concepts would filter object information on the basis of attributes in
the user profile.

Design

This section outlines how to design dynamic navigation elements.
Proceed as follows:

1. Sketch the layout of the page and consider what HTML elements can
be used to implement it.

2. On the basis of this plan, write the JSP code. Consider which parts of
the HTML code must be generated dynamically and which beans
provide the appropriate methods for obtaining this information.

Normally, hyperlinks to WCM objects within a certain topic are offered as a
table or list. The number and names of the objects are not known, i.e. the
names and/or titles and the URLs of all WCM objects below the selected
topic are needed.

PortalManagerAPIProgrammersManual_en.book Page 143 Wednesday, April 27, 2005 11:01 AM

144 Livelink WCM Server

Chapter 5

By means of the VIPObjectBean class, a RepositoryIterator can be
supplied to all objects below the topic. It is also possible to only consider
objects of a certain type.

The RepositoryIterator runs through the list of objects. Each entry is a
RepositoryEntry containing metadata (name, title, etc.) that can be read
and output in HTML.

It is also possible to obtain the URL of an object via the
RepositoryEntry, though it is only possible to specify the URL from the
applicable deployment system. However, it makes sense to show the
hyperlinks for the system in which the user is already located. A suitable
method is provided by the class VipObjectBean.

Implementation

The following section outlines how to build the JSP page.

1. Import the required classes. Instantiate beans with a special JSP
statement.

2. Make sure that all WCM beans used are initialized.

It must be known to the VipObjectBean class which repository is to
be used. The repository specifies the deployment system. The
WCM tag {VIPDEPLOYMENT_NAME}, which references the deployment
system of the object, is usually used for the repository. The WCM tag
{VIPOID}, however, references the OID of the WCM object.

The following example contains the JSP code used to read and run
through the RepositoryIterator (applicable to all JSP topics below the
WCM OID). The commands are coded in HTML code in such a way that,
for example, an entry in a list or a row in a table is output for each
RepositoryEntry. A hyperlink can then be constructed from the name of
the entry and the URL of the WCM object.

PortalManagerAPIProgrammersManual_en.book Page 144 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 145

<html>

<head>
<TITLE>getSubElements</TITLE>
</head>

<body>

<!-- This should be part of the Template -- Begin -->
<%@ page
 import="de.gauss.vip.repository.RepositoryEntry,
 de.gauss.vip.repository.RepositoryIterator,
 de.gauss.lang.KeySort,
 de.gauss.lang.StringValue"
%>

<jsp:useBean id="sessionBean"
class="de.gauss.vip.portalmanager.SessionBean" scope="session" />
<jsp:useBean id="objBean"
class="de.gauss.vip.portalmanager.VipObjectBean" scope="session" />

<%
objBean.setRepositoryName("{VIPDEPLOYMENT_NAME}");

// A user has to be logged in, otherwise the operations are
// executed in the content of "Anonymous".
if(!sessionBean.isLoggedIn(request))
// The request contains the necessary attributes for the
// login.

sessionBean.checkLogin(request);
%>
<!-- This should be part of the Template -- End -->
<%

// get the meta data of the object
RepositoryEntry entry = objBean.getEntry("{VIPOID}");
if(entry != null)
{

KeySort sort = new KeySort(new StringValue("title"));
// get all subelements of the current object which are
// jsp topics
RepositoryIterator it = objBean.getSubElements(entry,

"JSPTOPIC", sort);
%><table><%
while(it.hasNext())
{

RepositoryEntry e = it.nextEntry();
%>
<tr><td>

PortalManagerAPIProgrammersManual_en.book Page 145 Wednesday, April 27, 2005 11:01 AM

146 Livelink WCM Server

Chapter 5

<a href="<%= e.getValue("url") %>">
<%=e.getValue("title") %>

</td></tr>
<%

}
%></table><%

}
%>

</body>

</html>

Placing Several Content Objects on one Page
(Multi-Content Page)
With the Portal Manager API, you can present as many content objects
(texts, tables, graphics, etc.) as you like on one page. It is of course
necessary to take account of restrictive aspects such as access rights.
The objects you use as content may be objects of the WCM-managed
website or data from external programs. Even inter-website and inter-
program content links are no problem at all.

The multi-content page approach is particularly suitable for sophisticated
websites where responsibility for content creation and content provision is
usually divided between different staff. For example, product descriptions
may be written by copy writers, the illustrations are supplied by a photo
agency, and product data such as name, article number, price, and
delivery period is entered in a database by the purchasing department.

PortalManagerAPIProgrammersManual_en.book Page 146 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 147

Design

A multi-content page is created as a JSP page by means of the methods
of the Portal Manager API. This requires – even at this early stage – a
division of labor between web designer and programmer.

Sketch the layout of the multi-content page on a sheet of paper. Since it is
advisable to arrange the content objects with the aid of HTML tables, you
should determine the exact position and size of the tables before going
any further.

Implementation

When you have finished creating the layout, proceed as follows.

1. Create a JSP object.

2. Execute your layout with HTML elements, and then check the result
in the browser. Make any changes needed until the result is in line
with your ideas. You may have to check the page out and in again
several times.

3. Insert the JSP code in the page. Make sure to separate the JSP
elements from the HTML code as far as possible. This makes the
structure of the JSP page considerably clearer and makes it easier
for you to implement changes necessary at a later stage.

The following sample code contains a JSP code for a multi-content page,
in which different possibilities for loading the content are listed.

<html>

<head>
<TITLE>multiContent</TITLE>
<body>

<!-- This should be part of the Template -- Begin -->
<%@ page

import="de.gauss.vip.repository.RepositoryEntry,
de.gauss.vip.portalmanager.converter.HTMLContentConverter,
de.gauss.vip.portalmanager.ContentHandler"

PortalManagerAPIProgrammersManual_en.book Page 147 Wednesday, April 27, 2005 11:01 AM

148 Livelink WCM Server

Chapter 5

%>
<jsp:useBean id="sessionBean"

class="de.gauss.vip.portalmanager.SessionBean"
scope="session" />

<jsp:useBean id="objBean"
class="de.gauss.vip.portalmanager.VipObjectBean"
scope="session" />

<%
objBean.setRepositoryName("{VIPDEPLOYMENT_NAME}");

// A user has to be logged in, otherwise the operations are
// executed in the content of "Anonymous".
if(!sessionBean.isLoggedIn(request))
// The request contains the necessary attributes for the
// login.

sessionBean.checkLogin(request);
%>

<!-- This should be part of the Template -- End -->
<%

// In this example is no check, if the retrieved entries
// are null in my website is object "215" a jsp-object
RepositoryEntry jsp = objBean.getEntry("215");
ContentHandler chJsp = objBean.getContent(jsp);

// in my website is object "255" a picture object
RepositoryEntry pic = objBean.getEntry("255");
ContentHandler chPic = objBean.getContent(pic);

%>
<table>
<tr>

<td><!-- Gets the whole content, i. e. content plus
template. -->
<%= chJsp.getString() %>

</td>
<td><!-- Returns the content, in this case the tag -->

<%= chPic.getString(new HTMLContentConverter()) %>
</td>

</tr>
<tr>

<td><!-- This is faster, because it is not necessary to load
the content -->
<img src="<%= objBean.getUrl("255")%>">

</td>
<td><!-- Gets only the content of the object, i. e. content

without template. -->
<%= objBean.getVipContent(jsp) %>

</td>

PortalManagerAPIProgrammersManual_en.book Page 148 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 149

</tr>
</table>

</body>
</html>

Using the method getVipContent of the class VipObjectBean, you can
access the HTML code of the content objects. This bean also provides the
method getContent, which returns a ContentHandler. This class can be
used to access specific items in the content (e.g. specific attributes in form
instances). The content is loaded via a URL connection, i.e dynamic
pages are executed before they are returned. The methods require a
RepositoryEntry as parameter. The framework of the
Portal Manager API provides you with numerous methods of determining
a RepositoryEntry indirectly. If you know the object ID of a content
object, however, you can determine a RepositoryEntry directly with the
method getEntry of the class VipObjectBean.

Creating WCM Objects via an HTML Form
Using the Portal Manager API, you can develop HTML forms that can be
used for form-based content creation. A form-based entry is always
advantageous if large numbers of similar content objects are to be created
and the responsible users need a simplified user interface for implementa-
tion.

Although the Content client, for example, is very easy to use, it provides a
wide scope of functionality. Only a small proportion of these functions are
needed for creating simple, identically structured documents such as
article pages and press releases. Making these functions available
through a form considerably reduces familiarization time for the user.

PortalManagerAPIProgrammersManual_en.book Page 149 Wednesday, April 27, 2005 11:01 AM

150 Livelink WCM Server

Chapter 5

This is important, for example, if external resources are to be integrated in
the website creation process. A professional web content management
system such as Livelink WCM Server makes it possible for external staff
to work on a distributed basis at their individual locations. In this way,
advertising copy writers and photo agencies can be integrated in the
creation of article pages.

The structure of the content object created in this way is determined by a
form. The objects created are XML objects – known as form instances –
with a structure corresponding to the structure of the form. The elements
of these XML objects can then be arranged and formatted as desired on
an HTML page.

Design

A form-based entry must always be implemented as a clearly defined
program. The user interface consists of several components that are inte-
grated in a workflow and tailored to the program in question. As a rule, the
following components are needed:

Overview page – lists the form instances created and provides
buttons for the actions that can be performed on these WCM objects

Input form – is used for creating new form instances, and provides
entry fields, selection fields, etc. for creating the XML objects

Edit form – is used for changing existing form instances. The field
contents and the status of the form instances are shown in editable
form.

View page – is used for preparing the field contents and the status of
form instances for display.

VipObjectHandlerBean – performs, among other things, the
following actions on the form instances:

Note: It is of course possible to create other object types.

PortalManagerAPIProgrammersManual_en.book Page 150 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 151

Create

Change

Submit

Reject

Release

Delete

The input form is called from the overview page. The user enters the form
data and sends off the form. The contents of the form are passed to the
JSP page for creation. The JSP page extracts the form entries from the
HTTP request and generates the metadata and the content for the form
instance. The form instance must then be created as a WCM object and
its content must be written.

If an existing form instance is to be edited, it is loaded into the edit form
from the overview form. The user edits the data and sends the form off
again. Unlike creation of form instances, the contents of the form are
passed to the JSP page for editing. This extracts the form data and
updates the metadata and content of the form instance that is to be edited.

The remaining actions that can be performed from the overview page are
less spectacular. They merely involve calling the relevant ObjectHandler
for the form instance and updating the overview page.

PortalManagerAPIProgrammersManual_en.book Page 151 Wednesday, April 27, 2005 11:01 AM

152 Livelink WCM Server

Chapter 5

Framework for Applications
This section describes the framework used to implement user-specific
applications.

The Portal Manager API provides a number of Java classes that can be
used to integrate user-specific applications in the Portal Manager API.
The interaction of the classes is shown in the following class diagram:

Fig. 37 – Class diagram for applications

The following elements are needed to implement an application:

1 1

The setLocale(Locale locale)
method makes language changes
available during run time.

abstract class
SessionApplication

from application

class
Internationalization

from i18n

interface
Application

from application

1 0..n
interface

Repository
from respository

1

1

abstract class
SessionBase
from application

The Session interface
connects the SessionBase
class with an HTTP session
created by the JSP engine.

interface
Session
from core

PortalManagerAPIProgrammersManual_en.book Page 152 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 153

Repository – An implementation of the interface Repository is
used as a wrapper class to make an external data source WCM-
capable. An application may be associated with 0–n repositories

Application – An implementation of the interface Application is
used as a wrapper class to make the logic of an application WCM-
capable. The application uses the associated repositories to maintain
and edit the business objects.

JavaBean – A class deriving from the class SessionApplication
packs the Application in a JavaBean, which performs the instantia-
tion of the Application in the context of a JSP page. The bean
provides the following functionality:

linking the bean with a javax.servlet.http.HttpSession –
The HTTP session provides state support for the stateless HTTP
protocol. This makes it possible to associate a specific user with
an HTTP session for authentication purposes.

internationalization support – switchable at runtime – for an appli-
cation via the class Internationalization

additional application-related functionality

Implementing an Application
The actual process of implementing an application which is derived from
the Portal Manager API comprises the following steps:

1. Implementing the repositories, applications, SessionApplication
objects

2. Configuring the Portal Manager API to use the new application (see
section “Managing applications” starting on page 65)

PortalManagerAPIProgrammersManual_en.book Page 153 Wednesday, April 27, 2005 11:01 AM

154 Livelink WCM Server

Chapter 5

Deriving the Application-Specific Classes
To make the procedure easier for the user, the Portal Manager API
provides abstract basic classes with the basic implementations of all func-
tionalities connected with the Portal Manager API. A user-specific applica-
tion merely has to implement a certain basic class. The following diagram
shows the general hierarchy for developing applications:

Fig. 38 – General hierarchy for developing applications

Deriving from the RepositoryImpl class

As already described, the interface Repository functions as a wrapper
class for preparing data sources so that the Portal Manager API can
access them.

The abstract basic class RepositoryImpl provides standard implementa-
tions for methods which are related to the Portal Manager API. This
means that only methods that are relevant to the data sources must be
implemented in the derived Repository classes. A repository in the

Element that represents a
data source used in the
application context

Element that represents
the business logic of an
application

Element for packing the
application in a JavaBean
that can be instantiated in
a JSP page

abstract class
SessionApplication

from application

interface
Application

from application

1 1 1 0..n
interface

Repository
from respository

abstract class
RepositoryImpl

from repository

abstract class
ApplicationImpl

from application

class
MyApplication

from customer

class
MyRepository
from customer

class
MyAppliationBean

from customer

PortalManagerAPIProgrammersManual_en.book Page 154 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 155

context of the Portal Manager API is based on data structures used within
the WCM system (see section “RepositoryMap and associated classes”
on page 102).

The following figure shows all methods that are related to data sources
and that are provided by the class RepositoryImpl.

Fig. 39 – The RepositoryImpl class with all methods relevant to data sources

The class derived from the RepositoryImpl class has its own persis-
tency mechanism. It passes the persistency task to an LDAP or DBMS
system (e.g. via a JDBC connection to an RDBMS).

For a RepositoryImpl-capable implementation, it is necessary to imple-
ment all specified methods. For all Repository classes that only support
certain methods, the non-supported methods should throw a meaningful
exception.

abstract class
RepositoryImpl

from repository

containsKey(session : Session, key : Key) : boolean
getEntry(session : Session, key : Key) : RepositoryEntry
putEntry(session : Session, key : Key, value : RepositoryEntry) : RepositoryEntry
createEntry(session : Session, key : Key, entry : RepositoryEntry) : boolean
removeEntry(session : Session, key : Key) : RepositoryEntry
filter(session : Session, filter : Filter, max : int) : RepositoryMap
filter(session : Session, filter : Filter) : RepositoryMap
setRepositoryMap(map : RepositoryMap) : void
getRepositoryMap() : RepositoryMap

All content-related repository
methods are shown. According to
the implementation strategy,
these are possible methods that
are implemented in a derived
repository class.

PortalManagerAPIProgrammersManual_en.book Page 155 Wednesday, April 27, 2005 11:01 AM

156 Livelink WCM Server

Chapter 5

Deriving from the ApplicationImpl class

The ApplicationImpl class and the classes derived from it have the
following functions:

Managing all repositories associated with an application

Providing the business logic for an application

All methods required to support the Portal Manager API are provided via
the basic class ApplicationImpl and do not have to be implemented by
means of a derived Application class. Applications are configured via
the Admin client. There are no general rules for implementing the busi-
ness logic for a specific application.

Deriving from the SessionApplication class

The SessionApplication class (and the classes derived from it) have
the following functions:

Encapsulating an Application as a JavaBean to support the JSP
application

Associating an Application with a specific HTTP session (and the
HTTP session with a WCM user)

Maintaining a runtime locale for the Application

Returning messages and resources in accordance with the current
locale setting. This is done via the internationalization object that is
associated with the SessionApplication.

All methods required to support the Portal Manager API are provided by
the basic class SessionApplication and do not have to be implemented
by the derived bean classes.

PortalManagerAPIProgrammersManual_en.book Page 156 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 157

Designing a JSP Page
Various models are available to you for designing a JavaServer page (JSP
page). In the JSP model 1 architecture, the JSP page is responsible for
processing a request and sending a reply to the client. Access to the data
is performed by the JavaBeans. This model results in a large number of
scriptlets and/or large amounts of Java code in the JSP page. This makes
it more difficult to maintain these sources, eliminate errors in them, or
reuse them. Moreover, there is no clear separation of logic and presenta-
tion, which makes it difficult to split jobs between Java developers and
web designers.

The JSP model 2 uses the MVC model design (Model View Controller).
Here, a controller JSP page or a servlet is used that is responsible for
processing the request and generating the beans. The JavaBeans
(Portal Manager API classes) are the model that has access to the data
sources. The controller decides – depending on the request parameters –
which JSP page to forward the request to. The View JSP page has no
processing logic. It uses the beans to build up the dynamic content.

Fig. 40 – JSP model 2 architecture

B
R

O
W

S
ER

Request

Response

Model
(Java-
Bean)

Application server

Enterprise server/
Data sources

instantiates

Controller
(Servlet)

View
(JSP)

PortalManagerAPIProgrammersManual_en.book Page 157 Wednesday, April 27, 2005 11:01 AM

158 Livelink WCM Server

Chapter 5

Tips for Developing JSP Pages with the
Portal Manager API
Livelink WCM Server offers two possible ways of implementing the
controller in the JSP model 2 architecture. First, you can use the JSP
page or the servlet as a controller. Since JSP pages are easier to handle
in Livelink WCM Server than servlets, we recommend using JSP pages.
You can also work with WCM templates that may contain the following
functionality:

Login check to see whether the session user has already logged in to
the Portal Manager API

Creating and initializing Portal Manager API beans that are needed
in the view

Forwarding the request to a JSP page, depending on the request
parameters

Error handling by means of a try/catch block

<%
try {

%>
{VIPCONTENT}
<%

} catch (Exception ex) {
//Error handling

%>
Error: <%=ex.getMessage()%>
<%
}
%>

Although the generated page contains the template and the content of the
view (as in JSP model 1), the web designers cannot see the content of the
template. The templates should therefore be written by experienced Java
developers.

PortalManagerAPIProgrammersManual_en.book Page 158 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 159

The web designers are responsible for writing the view (of the
WCM object). When they create a WCM object, they can select a
template that may subsequently be modified. The web designers should
use as little Java as possible in the JSP page.

If web designers cannot avoid using Java, e.g. because of logical or arith-
metical operations that do not relate to the design, they should offload
their code into JavaBeans or classes.

Security Aspects
When designing a web application that operates with sensitive data, the
security aspect is particularly important. Apart from aspects such as
authentication, encryption etc., which must be implemented in the applica-
tion, it is also important to be aware of the access for the Java Virtual
Machine (JVM), which executes the server-side software. When using
JSP pages, it is necessary to take a closer look at the security mecha-
nisms of the JVM that are used within the JSP engine.

JVM Without SecurityManager
If no SecurityManager is explicitly set in the context of a program, the JVM
possesses the access rights of the user who started the program.
Depending on the functionality of the program, this can result in serious
security loopholes. Possible scenarios:

The application and hence also the client can navigate in the server-
side file system and view or modify content.

The application and hence also the client may establish network
connections with computers in the server-side environment.

PortalManagerAPIProgrammersManual_en.book Page 159 Wednesday, April 27, 2005 11:01 AM

160 Livelink WCM Server

Chapter 5

In such an environment, you are recommended to give the above-
mentioned user only those rights that are needed to ensure a correct func-
tioning of the application. Moreover, access should be prohibited to other
resources, especially security-relevant or sensitive data.

JVM with SecurityManager
The Java 2 platform provides a revised security architecture with finely
structured and easily configured security mechanisms. To be able to use
these functions, perform the following steps:

1. Integrate a SecurityManager in the server process.

2. Create a security mechanism file that provides the program with the
rights required for a correct functioning. This file can be used to
impose considerable restrictions on access by a program compared
with the rights granted to a user by the operating system.

A detailed description of the SecurityManager can be found in the docu-
mentation on Java 2.

Internationalization
The Internet and intranet applications are increasingly used globally and
designed for users in different countries. Thus, there is potentially a need
to internationalize a solution based on the Portal Manager API.

The solutions are based on Java, so they automatically inherit the interna-
tionalization support offered by Java. This includes:

Locale – the Locale object as a simple identifier for a language (or
region)

localized resources – the ResourceBundle as container for all
Locale-specific commands and objects

PortalManagerAPIProgrammersManual_en.book Page 160 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 161

calendar and time zone support

Locale-specific formatting of numbers, dates, etc.

Locale-specific string methods (e.g. Locale-specific sorting)

All functions are described in detail in the Java 2 specification.

As a web application, the Portal Manager API uses other software compo-
nents in addition to the Java programming language. The architecture and
the implications of the architecture for internationalization are explained in
the following sections.

Architecture of the Portal Manager API and
Internationalization
The following diagram illustrates the architecture of the
Portal Manager API with all aspects relevant to internationalization.

Fig. 41 – Architecture of the Portal Manager API with internationalization aspects

WCM
Appl ication

Browser

HTTP/GET
<Accept-Language>

<localized page>

Browser language
setting

WCM
Beans

HTML page/
JSP

Language-specific
version

Web server

JSP Engine

Locale of JVM

Locale setting in line with
WCM language setting in
application.xml

PortalManagerAPIProgrammersManual_en.book Page 161 Wednesday, April 27, 2005 11:01 AM

162 Livelink WCM Server

Chapter 5

The architecture is based on the following components:

a browser as client (for the HTTP protocol)

a web server as server (for the HTTP protocol)

a JSP engine as adapter between web server and Java applications

components of the Portal Manager API (e.g. JavaBeans) that are
executed in a JSP engine

As shown in the diagram, each of these components has its own settings
relevant to language and internationalization:

The browser can request a specific language via the HTTP header.

The web server has to keep different document versions (HTML, JSP
page, graphics, etc.) available.

The JVM that runs the JSP engine has a default Locale setting.

The WCM beans and WCM applications are Locale-specific. The
default language setting for an application and the respective bean is
specified in the Admin client (see section “Managing applications”
starting on page 65).

Recommendation for Internationalizing a
Portal Manager API Solution
On the basis of the architecture described in section “Architecture of the
Portal Manager API and Internationalization” on page 161, international-
ization can be carried out according to the following strategy: the client
that uses the solution is the recipient of all information and the entire
content. It therefore specifies its preferred language or localization. All

Note: The default Locale for the SessionBean is determined by the
default language of the logged-in WCM user.

PortalManagerAPIProgrammersManual_en.book Page 162 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 163

other system components must modify their behavior to suit the client’s
choice.

This strategy results in the following technical recommendations:

Users can define their preferred language in the browser. This prefer-
ence is sent in the header of every HTTP request and can be
retrieved by the web server and by the JSP engine. The choice of
language according to RFC 1766 and ISO 639 can be retrieved from
the servlet request.

The URL can be dynamically created and reference the applicable
content.

For internationalizing dynamic content made available by applica-
tions, the following must apply:

The JavaBeans or applications must support internationalization

A JSP page that instantiates a specific bean or component must
define the Locale in accordance with the user settings. This is
done by obtaining the value accept-language from the header
of the HttpRequest object and creating a corresponding Java
locale object.

The following example shows a JSP page that uses internationalization
with a session bean.

...

<body>

<%@ page import="java.util.Locale" %>
<h1>Setting the Locale for a WCM bean from the HTTP header</h1>
<jsp:useBean id="sessionBean"

class="de.gauss.vip.portalmanager.SessionBean" />
 <%
 sessionBean.init(request);
 Locale locale = request.getLocale();
 sessionBean.setLocale(locale);

PortalManagerAPIProgrammersManual_en.book Page 163 Wednesday, April 27, 2005 11:01 AM

164 Livelink WCM Server

Chapter 5

 out.println("sessionBean locale=" + sessionBean.getLocale()
+ "
");

out.println(sessionBean.getI18n().getString("MY_MESSAGE_KEY"));
 %>

</body>

...

Supporting Several Languages by Using one Central
Template
The website structure can be presented as in the following figure:

Fig. 42 – Structure of a website

When users reach the start page of the website, they can choose a
language, for example English. After selecting the language, a JSP page
is called up, which will set all the necessary OIDs such as the start files of
the individual areas. Once an area has been selected, the template will
receive the OID from the session and will display the applicable objects.

de Area 1
Area 2

Images

en Area 1
Area 2

Images

Home page

PortalManagerAPIProgrammersManual_en.book Page 164 Wednesday, April 27, 2005 11:01 AM

Notes on Programming with the Portal Manager API

Portal Manager API – Programmer’s Manual 165

Applications and Internationalization
The Portal Manager API offers the possibility of integrating user-specific
applications in the API. For being able to use the internationalization
support of the Portal Manager API, you must perform the following steps.

1. Localize all resources in accordance with the standards laid down in
Java 2 (PropertyResourceBundle, etc.).

2. Assign the resources and the parameters to the user-specific appli-
cation (see section “Managing applications” starting on page 65).

WCM Beans and Internationalization
All WCM beans have integrated support for internationalization. Its use is
made possible by the following methods:

The current setting of the Locale valid for a specific bean is provided
by public java.util.Locale getLocale.

The Locale for a specific bean can be set by
public void setLocale(java.util.Locale locale).

WCM Internationalization Object
To support internationalization, Livelink WCM Server provides a specific
internationalization object that is used in the WCM beans. Access to this
object is ensured by means of the method getI18n. You can also use this
object to internationalize your own beans and applications.

The class de.gauss.vip.i18n.Internationalization makes the
following functionality available:

Loading ResourceBundle objects

Obtaining keys from a specific ResourceBundle

Obtaining Locale-specific date and number formats

PortalManagerAPIProgrammersManual_en.book Page 165 Wednesday, April 27, 2005 11:01 AM

166 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 166 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 167

APPENDIX A
AMetadata Schemes

Compared with version 5e, the metadata names and data types have
remained unchanged in order to ensure downward compatibility with
previous versions of the Portal Manager API.

When configuring a VipObjectRepository or a
VipObjectHandlerRepository, you can enter which metadata scheme
is to be used (see table 3 “Repositories and their parameters” on page
57).

The following table compares the metadata schemes of version 5e and
version 8.

Metadata scheme in version 5e Metadata scheme in version 8

Attribute Value Attribute Value

acl VipAclValue acl Acl

author StringValue created_by User

date-created DateValue date_created DateValue

date-expire DateValue date_expire DateValue

date-release DateValue date_released_at DateValue

date-released DateValue date_released DateValue

direct-release StringValue direct_release BooleanValue

PortalManagerAPIProgrammersManual_en.book Page 167 Wednesday, April 27, 2005 11:01 AM

168 Livelink WCM Server

Appendix A

edit-url StringValue url StringValue

Note: in repositories of type EDIT

elements RepositoryMap all_children ListValue

email-edit StringValue email_edit SetValue

email-qa StringValue email_qa SetValue

email-release StringValue email_release SetValue

filename StringValue filename StringValue

Note: Portal Manager API-specific

generic1 StringValue keywords SetValue

generic2 StringValue description StringValue

generic3 StringValue target_group StringValue

language StringValue language LocaleValue

level IntegerValue level IntegerValue

Note: Portal Manager API-specific

linked-from RepositoryMap linked_from SetValue

links-to RepositoryMap links_to SetValue

name StringValue title StringValue

object-icon StringValue

oid StringValue oid ObjectId

Metadata scheme in version 5e Metadata scheme in version 8

Attribute Value Attribute Value

PortalManagerAPIProgrammersManual_en.book Page 168 Wednesday, April 27, 2005 11:01 AM

Metadata Schemes

Portal Manager API – Programmer’s Manual 169

pathname StringValue pathname StringValue

prod-url StringValue url StringValue

Note: in repositories of type PROD

qs-url StringValue url StringValue

Note: in repositories of type QA

status StringValue state ObjectState

status-icon StringValue

Remark: accessible via ObjectState

subtitle StringValue subtitle StringValue

suffix StringValue suffix StringValue

Note: Portal Manager API-specific

template StringValue template ObjectId

topic StringValue topic ObjectId

topics RepositoryMap

type StringValue type ObjectType

url StringValue url StringValue

version IntegerValue version Version

vip-edit-url StringValue surrogate_url StringValue

Note: in repositories of type EDIT

Metadata scheme in version 5e Metadata scheme in version 8

Attribute Value Attribute Value

PortalManagerAPIProgrammersManual_en.book Page 169 Wednesday, April 27, 2005 11:01 AM

170 Livelink WCM Server

Appendix A

vip-qs-url StringValue surrogate_url StringValue

Note: in repositories of type QA

website StringValue website StringValue

@@codebase StringValue

category StringValue

date_modified DateValue

deployment_hint StringValue

Note: contains file name with extension

modified_by User

released_by User

Metadata scheme in version 5e Metadata scheme in version 8

Attribute Value Attribute Value

PortalManagerAPIProgrammersManual_en.book Page 170 Wednesday, April 27, 2005 11:01 AM

Metadata Schemes

Portal Manager API – Programmer’s Manual 171

PortalManagerAPIProgrammersManual_en.book Page 171 Wednesday, April 27, 2005 11:01 AM

172 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 172 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 173

APPENDIX B
BCaching

For operating Livelink WCM Server, a relational database management
system is required. In the database, the metadata of the WCM objects are
saved, among other things. This appendix describes the caching behavior
of the Portal Manager API with regard to metadata.

Accessing WCM Objects
When an object is accessed for the first time, the saved metadata are
loaded from the database. The object is created from the metadata and
then stored temporarily in the server-side cache. When an object that has
already been loaded is requested again, the object contained in the cache
is returned.

If an object changes as the result of a staging action, it is removed from
the cache. Consequently, the updated metadata must be reloaded from
the database the next time the object is accessed. As an object may have
different metadata in each view (Edit, QA, Production), a separate object
is stored in the database and the cache for each view.

Creation of some metadata is quite time-consuming. As the Content client
usually does not require all metadata, only the basic data is read from the
database when the object is loaded. Thus, the server requires less
memory and the load process is sped up. The metadata that are not
loaded – the so-called data to be loaded with delay – are read from the
database on demand.

PortalManagerAPIProgrammersManual_en.book Page 173 Wednesday, April 27, 2005 11:01 AM

174 Livelink WCM Server

Appendix B

In Livelink WCM Server, all special attributes as well as the following data
are loaded with delay:

pathname

filename

suffix

url

surrogate_url

links_to

linked_from

all_children (for Oracle only)

Notes

If you do not want the data to be loaded from the database during
operation, you should access the data to be loaded with delay
directly after loading the object. Thus, the data can be read from the
cache later on.

The metadata links_to and linked_from should only be loaded in
exceptional cases as they can only be retrieved by means of a time-
consuming database request.

For the metadata item linked_from, the rule applies that the object
is not removed from the cache if a reference to the object is added to
another object or if a reference to the object is removed.

PortalManagerAPIProgrammersManual_en.book Page 174 Wednesday, April 27, 2005 11:01 AM

Caching

Portal Manager API – Programmer’s Manual 175

Deployment Cache
In Livelink WCM Server, deployment systems have an integrated cache
for the metadata provided by the deployment. Thus, this data can be
supplied directly the second time it is accessed. This presupposes that the
deployment system is set up on the accessing server (usually a Content
server running in the context of a JSP engine or as web application in an
application server). This constellation is recommendable if during normal
operation only a few changes are made that have a great impact on the
deployment. Otherwise, the additional effort required for the deployment
may result in bottlenecks on the Content server.

It must be evaluated individually whether faster access to the data of the
deployment system compensates for the additional load caused by the
separate deployment system. Example: in your website, you use a
template cascade that is assigned to more than 10,000 objects. Some of
the templates are changed regularly once a week. After the changed
templates have been released, all objects affected must be regenerated.
This causes a higher load on the server. Wether a higher load is accept-
able for your system, can be determined by means of performance tests.

How the Cache for WCM Objects Works
The cache for WCM objects is configured in the Admin client in the
settings of the website (Configuration → Websites → {website name} →
General tab → Caching). The following parameters can be set:

Minimum size: number of objects to which the cache is reduced in
server idle times. The default value is 20000.

Maximum size: maximum number of objects in the cache. The
default value is 45000.

PortalManagerAPIProgrammersManual_en.book Page 175 Wednesday, April 27, 2005 11:01 AM

176 Livelink WCM Server

Appendix B

Cache reduce interval: interval in milliseconds. The default value is
7200000 (corresponds to 2 hours). If the objects in the cache are not
accessed during this period, objects are removed from the cache
until the minimum cache size is reached again.

When an object is accessed, the system first looks for the object in the
cache. If the object is not in the cache, it is loaded from the database.
Afterwards, the object is stored in the cache. Three cases are differenti-
ated:

The minimum size has not been reached yet.

The newly loaded object is stored at a free position in the cache. The
cache grows.

The minimum size has been reached, the maximum size has not
been reached yet.

The newly loaded WCM object is stored in the cache. As a result,
another object may be removed from the cache. This means that the
size of the cache does not necessarily increase.

The maximum size has been reached.

The newly loaded WCM object is stored in the cache. On the basis of
a certain algorithm (How often has the object been accessed/How
long has it been in the cache?), the cache determines which object is
removed from the cache.

If – when the configured cache reduce interval is reached – the size of the
cache is greater then specified in the minimum size parameter, the cache
automatically removes objects until the minimum size is reached. This
process is repeated at the configured interval.

PortalManagerAPIProgrammersManual_en.book Page 176 Wednesday, April 27, 2005 11:01 AM

Caching

Portal Manager API – Programmer’s Manual 177

If you want to ensure that many objects are stored in the cache, set the
minimum size to a high value. This prevents the objects from being
removed from the cache too early. The maximum size must be adapted
accordingly. On Content servers with Production view in particular, it is
recommendable to store the majority of objects in the cache during opera-
tion.

Caching RepositoryEntry Objects
The representation of metadata on the Content server running in the
context of a JSP engine or as web application in an application server, the
so-called external representation, is realized by RepositoryEntry
objects. The external representation is partly different from the internal
representation of the data. To keep the conversion effort at a minimum
level, each object in the cache has its own cache for storing
RepositoryEntry objects. If an object is removed from the cache, the
corresponding RepositoryEntry objects are removed as well.

When the Content server requests a RepositoryEntry, the WCM object
checks whether the desired attribute combination already exists in its
cache and provides the data directly from there. Otherwise, the requested
data is prepared accordingly. For this purpose, they may have to be
loaded from the database. Afterwards, the attribute combination with its
values is stored in the cache.

When programming JSP pages, you should therefore specify – if possible
– all attributes required on the page when accessing the
RepositoryEntry for the first time. Thus, you do not have to access the
database and the database does not have to return values for different
attributes.

PortalManagerAPIProgrammersManual_en.book Page 177 Wednesday, April 27, 2005 11:01 AM

178 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 178 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 179

Glossary

Application – Interface for a uniform description of an external
application

Context ID – Object that is assigned to a user after successfully logging in
to the WCM system. A context ID is always unique throughout the entire
system. It thus precisely identifies a user. If a context ID is not used over a
certain period of time, it expires.

Deployment system – The deployment systems generate pages from
the WCM objects and distribute the generated files to the appropriate
directories. From there, the files become visible for the users via an HTTP
server. Deployment systems may be of various types and categories.

Dynamization – All or part of the content of a website is not generated
until runtime.

JSP engine – A module, integrated in the web server, for running JSP
scripts embedded in HTML pages. JSP engines generally contain Java
compilers.

JSP script – HTML page in which Java code has been embedded which
is run on the server side.

LoginRepository – Repository used to work with user accounts

Master server – Only master servers have read and write access to the
data of a WCM system. The master Content server manages website
data, while the master Administration server manages the configuration
and system data of the WCM system. See also Server category.

ObjectHandler – This instance accepts actions and thus manipulates the
objects of the website.

Personalization – Dynamization of the website tailored to the current
user

PortalManagerAPIProgrammersManual_en.book Page 179 Wednesday, April 27, 2005 11:01 AM

180 Livelink WCM Server

Glossary

Portal – A portal is a website that serves the user as a central point of
access – as a gate – to certain Internet services. A portal often offers
topic-specific and personalized offers and information.

Properties file – A file containing resource information in a defined format
(key-value pairs)

Proxy server – A proxy server is used to intercept requests from a client
application, e.g. a browser, to one or more other servers. If the proxy
server can meet the request, it sends the requested data back to the
client. Otherwise, it forwards the request to the specified server.

In the context of Livelink WCM Server, WCM servers of the category
“proxy” do not have write access, but only read access to the
WCM objects or the configuration. Changes to the WCM objects are only
possible via the master Content server, changes to the configuration of the
WCM system are made only via the master Administration server. See
also Server category.

Repository – A repository is an abstraction that allows uniform access to
data.

Server category – In a WCM system, a distinction is made between
master and proxy servers. Master servers have write access to the data of
the WCM system, while proxy servers have only read access. The master
Content server manages the website data, the master Administration
server manages the configuration and system data. In addition to this,
any number of proxy servers can be set up.

Server type – According to the tasks of the servers, there are two server
types: Content servers for managing website data and Administration
servers for managing the user, configuration, and system data of the
WCM system. Basically, every Content server is able to provide all views
of the data of the managed websites – Edit, QA, and Production. The
available views may be limited by the fact that the Content server only
receives the data of certain views.

PortalManagerAPIProgrammersManual_en.book Page 180 Wednesday, April 27, 2005 11:01 AM

Glossary

Portal Manager API – Programmer’s Manual 181

Session – Unit managed by the JSP engine so that logically related
actions (in terms of resources) can be combined

Session bean – A JavaBean used in a JSP script in connection with the
Portal Manager API. The life span of a session bean lasts throughout the
entire session.

Statification – During statification, the dynamic components of, for
example, a JSP page are converted into static components. The result is
pure HTML without Java code.

PortalManagerAPIProgrammersManual_en.book Page 181 Wednesday, April 27, 2005 11:01 AM

182 Livelink WCM Server

PortalManagerAPIProgrammersManual_en.book Page 182 Wednesday, April 27, 2005 11:01 AM

Portal Manager API – Programmer’s Manual 183

Index

A
absolute_urls (special attribute) 40
add

application 67
repository 54

Application (interface) 112
application examples

creating users in LDAP via a portal
133
dynamic navigation elements 142
HTML form 149
multi-content page 146

ApplicationImpl (class) 113
applications 111

add 67
assign repository 81
assign repository (during setup) 70
assign to Content server 84
class name 68
delete 84
framework 152
implement 153
internationalization 165
introduction 22
language 69
logical name 68
manage 65
parameters of supplied applications
73
resources 71
set parameters 72

architecture
Portal Manager API 19

authentication 127

B
Base (class) 110
basic classes 97

basic data types 98
filtering and sorting 100
repositories 106
RepositoryMap 102

basic data types 98
beans 114

C
class description 97
class diagrams 95
classes

ApplicationImpl 113
Base 110
FormData 37
Internationalization 116
RepositoryEntry 103
RepositoryImpl 108
RepositoryMap 104
SessionApplication 116
SessionBean 117
VipObjectBean 120
VipObjectFilterBean 123
VipObjectHandlerBean 45, 121
VipUserBean 120
VipWhatsNewBean 124

content
dynamic 33

content objects
placing several 35

Content server in application server
start 31

ContentHandler (interface) 125

PortalManagerAPIProgrammersManual_en.book Page 183 Wednesday, April 27, 2005 11:01 AM

184 Livelink WCM Server

Index

D
data values 98
delete

application 84
repository 65

DirectoryRepository
class 87

dynamic content 33
dynamic navigation elements 142

E
errors

locate 89

F
filtering 100
FormData (class) 37
forms

creating an object 37
working with 36

framework
applications 152

G
generate_static (special attribute) 39

H
HTML form 149

I
implement

applications 153
integrating external programs 35
integration

external programs 46
in the WCM system 24

Interfaces
VipProfile 117

interfaces
Application 112
ContentHandler 125
RepositoryEntryIterator 104
RepositoryIterator 105
Value 98

internationalization 160
architecture of the Portal Manager
API 161
Portal Manager API solution 162
WCM internationalization object
165

Internationalization (class) 116

J
Javadoc 97
JavaServer page

<Italic>see JSP page
JSP page

design 157
model 1 architecture 157
model 2 architecture 157

JSP script 20
JVM

with SecurityManager 160
without SecurityManager 159

K
key values (keys) 98

L
language

application 69
LDAP

create new users 133
DirectoryRepository (class) 87

life cycle of a WCM object 45
locale 160
login repositories 107

PortalManagerAPIProgrammersManual_en.book Page 184 Wednesday, April 27, 2005 11:01 AM

Index

Portal Manager API – Programmer’s Manual 185

M
manage

applications 65
repositories 52

metadata schemes 167
multi-content page 146

N
navigation elements 34
new

application 67
repository 54

P
parameters

define for a repository 55
define for an application 72
supplied applications 73
VipDAVApplication 74
VipHCLApplication 75
VipHTMLClientApplication 76
VipObjectApplication 79
VipUserApplication 79
WebServiceApplication 80

personalization 34
placing several content objects 35
portal

create users in LDAP 133
Portal Manager API

application examples 133
architecture 19
integration 24
staging 44

profile 117

R
repositories 106

add 54
assign application 62

class name 55
define parameters 55
delete 65
introduction 23
login repositories 107
manage 52
name 55
types 107

RepositoryEntry (class) 103
RepositoryEntryIterator (interface) 104
RepositoryImpl (class) 108
RepositoryIterator (interface) 105
RepositoryMap 102
RepositoryMap (class) 104

S
security aspects 159
SecurityManager

JVM with 160
JVM without 159

session 21, 108
session beans 21
session management 127, 130
SessionApplication (class) 116
SessionBean (class) 117
sorting 101
special attributes

statification 38
staging 44
start

Content server in application server
31

statification 38
absolute_urls (special attribute) 40
generate_static (special attribute)
39
of form instances 41
of JSP objects 41
of XML objects 43

PortalManagerAPIProgrammersManual_en.book Page 185 Wednesday, April 27, 2005 11:01 AM

186 Livelink WCM Server

Index

timeout (special attribute) 39
system architecture

master Administration server 26
master Content server 26
minimum system 27
proxy server 26
separate data storage 28

T
timeout (special attribute) 39
trace.properties 89

U
users

create in LDAP via a portal 133

V
Value (interface) 98
VipDAVApplication

parameters 74
VipHCLApplication

parameters 75
VipHTMLClientApplication

parameters 76
VipObjectApplication

parameters 79
VipObjectBean (class) 120
VipObjectFilterBean (class) 123
VipObjectHandlerBean (class) 45, 121
VipProfile (Interface) 117
VipUserApplication

parameters 79
VipUserBean (class) 120
VipWhatsNewBean (class) 124

W
WCM object

life cycle 45

WebServiceApplication
parameters 80

PortalManagerAPIProgrammersManual_en.book Page 186 Wednesday, April 27, 2005 11:01 AM

Index

Portal Manager API – Programmer’s Manual 187

PortalManagerAPIProgrammersManual_en.book Page 187 Wednesday, April 27, 2005 11:01 AM

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	About this Manual
	Typographic Conventions

	Concepts
	The Architecture of the Portal Manager API
	JSP Scripts
	Session Beans
	Applications
	Repositories

	Integrating the Portal Manager API in the WCM System
	Access to the Data of the WCM System
	Integrating the Portal Manager API in a WCM System

	Programming Concepts
	Dynamic Content
	Forms
	Statification
	Staging

	Integrating External Programs

	Managing the Portal Manager API
	Managing Repositories
	Adding a Repository
	Setting the Parameters for a Repository
	General Settings of Repositories
	Assigning an Application to a Repository
	Structure Below the Tree Item Repositories
	Deleting a Repository

	Managing applications
	Adding an Application
	Setting the Parameters of an Application
	General Settings of Applications
	Assigning a Repository to an Application
	Structure Below the Tree Item Applications
	Deleting an Application
	Assigning an Application to a Content Server

	LDAP
	The DirectoryRepository class

	Locating Errors

	Classes and Interfaces of the Portal Manager API
	Class Diagrams and Class Descriptions
	Class Diagrams
	Class Description

	Basic Classes
	Basic Data Types
	Filtering and Sorting
	RepositoryMap and associated classes
	Repositories

	Application and Bean Classes
	Basic Class
	Applications
	Beans

	Notes on Programming with the Portal Manager API
	Authentication and Session Management
	Authentication
	Session Management
	Login Repositories

	Application Examples for the Portal Manager API
	Creating Users in an LDAP System via a Portal
	Generating Dynamic Navigation Elements
	Placing Several Content Objects on one Page (Multi-Content Page)
	Creating WCM Objects via an HTML Form

	Framework for Applications
	Implementing an Application

	Designing a JSP Page
	Tips for Developing JSP Pages with the Portal Manager API

	Security Aspects
	JVM Without SecurityManager
	JVM with SecurityManager

	Internationalization
	Architecture of the Portal Manager API and Internationalization
	Recommendation for Internationalizing a Portal Manager API Solution

	Metadata Schemes
	Caching
	Accessing WCM Objects
	Deployment Cache
	How the Cache for WCM Objects Works
	Caching RepositoryEntry Objects

	Glossary
	Index

