Aviation Research Lab
Institute of Aviation

University of Illinois
at Urbana-Champaign
1 Airport Road
Savoy, lllinois 61874

IPC DATA LOGGER
(A Flight Data Recorder):
Operation Manual

Lester Lendrum, Henry L. Taylor,
Donald A. Talleur, Charles L. Hulin,
Gary L. Bradshaw & Tom W. Emanuel, Jr.
Technical Report ARL-00-8/FAA-00-5

July 2000

Prepared for

Federal Aviation Administration
Civil Aeromedical Institute
Oklahoma City, OK

Contract DTFA 98-G-003

1. Introduction

The IPC Data Logger (aflight data recorder) is designed to support research involving pilot performance in
executing instrument flight procedures. The system is designed for use in small single engine aircraft and
can easily be removed to return the aircraft to normal service. The systemis based on acommercial single
board computer, recording data at the rate of one frame per second. In addition to aircraft position and
altitude, pitch, roll, yaw, magnetic heading, vertical speed, and airspeed are recorded. The radio-navigation
displays (Very-high-frequency Omni Range/L OCalizer (VOR/LOC) and Glideslope) are also recorded.
Provision is made for the check pilot/operator to mark sections of the flight records to aid in the subsequent
analysis of thedata. Apart from connection to the pitot/static system and the navigation displays,
instruments internal to the Data Logger generate all data.

The datalogger is housed in an aluminum enclosure 22 inches in width, 24 inchesin length, and
approximately 12 inchesin height. The weight is approximately 42 pounds. To install the |PC Data L ogger
in the aircraft (Beech Sundowner C-23, in this application), the rear seats were removed and the logger
mounted in their place; a custom floor plate to which the Data L ogger is mounted replaced the original
floor of the rear seating and baggage area. A flux-gate magnetic compass system is mounted in a separate
non-magnetic enclosure so as to allow its positioning within the airframe in order to provide the most
accurate heading information possible.

Wiring of the aircraft has been modified to supply 12-volt DC power and to provide the data from the
aircraft’'s VOR/LOC' s and Glideslope systems to the Data Logger. An FAA/PMA approved GPS antenna
wasinstalled on the fuselage above the front seating area. Thisisthe only available horizontal areawith an
unobstructed view of the sky. The VOR/LOC antenna distribution system was modified to allow
connection of the RDS (differential correction system) receiver. The pitot and static air systems were
modified to provide for connection to the data logger for measurement of airspeed.

These modifications were field approved by the local Flight Service District Office (FSDO). A test flight
was required by the FAA to demonstrate the data logger did not adversely effect the operation of critical
aircraft systems. FAA Form 337 (Major Repair or Alteration) was submitted to document these
modifications.

The Data Logger may be adapted to aircraft other than the Beech Sundowner. Some component changes
and wiring modifications would be required to operate the system in an aircraft that is equipped with a 24
volt DC power system. Re-calibration of the airspeed may be required to accommodate a different pitot-
dtatic system.

The interface to the radio-navigation systems (VOR/LOC and GS) was designed for the Bendix/King K-
2xx system of outputs; wiring modifications within the Data Logger may be required if other navigation
radios are employed.

2. Components

All the components of the Data Logger System are houses in a single enclosure with the exception of the
Compass System and User Display/Control Console. The locations of the major components are
inlustrated in the Figure below.

Airspeed Microcomputer DC-to-DC Power
Sensor and Card Cage Converters

Analog RBDS GPS
Multiplexer Receiver Receiver

Single Board Computer

The central component of the Data Logger is the single board computer. This unit is essentialy an IBM PC
compatible computer that is fabricated on a single Industry-Standard- Architecture (ISA) board yet is
capable of operation in a greater range of environmental conditions than a standard desktop personal
computer. The Industrial Computer Source Model SB486PV single board computer is designed around an
Intel 486DX 100 microprocessor and provides support for keyboard control, video adapter, both fixed and
floppy disks, two serial ports, and one parallel port. The Intel 486DX100 has a built-in numeric co-
processor, which would not normally be needed since no extensive floating-point mathematical calculations
are required in the operation of the Data Logger. However, the present compilation of the software
assumes such a co-processor is present. The keyboard and video adapter/display are used only during
development and repair/maintenance functions. A rugged card cage/passive motherboard is used to house
the SB486PV, an additional serial port interface, and an analog-to-digital converter. There are at least two
additional 1SA slots available for additional hardware if required for additions to the present configuration.

The disk operating system is MSDOS 6.22 and is completely standard. The system is capable of operating
asanormal personal computer with no modification except for changes to the autoexec.bat file, which is
designed to start the data logger software automatically following the load of the MSDOS operating system
when the system is powered.

There are anumber of settings in the BIOS of the SB486PV single board computer that have been modified
from the standard configuration to facilitate the operation of the Data Logger. These are documented in
Appendix 1.

Digital Storage Devices

The system is equipped with a 3 Gigabyte IDE fixed disk that contains the MSDOS operating system, the
datalogger software, and provides primary storage for the recorded flight data files.

A 3¥2" floppy disk driveis also provided to permit a convenient method of updating the software and to
off-load the Data L ogger data files at the end of each logging session. The Data Logger will not attempt to
load an operating system from the floppy drive and depends compl etely on the fixed disk for operation.

Serial Data Ports

Two seria data ports (RS-232) are the standard hardware provided on the SB486PV single board computer.
These are configured in the industry-standard manner as COM 1 (1/0O Ports 3F8-3FF, IRQ 4) and COM2
(1/0 Ports 2F8-2FF, IRQ 3).

A third serial port isrequired for datalogger operations. A SIIG 1/O Professional multifunction
input/output board, Model 101809, provides this capability. Thisboard has two additional serial ports and
one additional parallel port. In thisapplication, only one serial port is used and the remaining serial port
and the parallel port are disabled. The serial port on the SIIG board is configured in a non-standard manner
since al serial input/output in the data logger usesinterrupt driven routines and each serial port must have a
unigque IRQ (hardware interrupt request) channel. This port is designated COM 3 (1/O Ports 2E8-2EF, IRQ
5). The hardware configuration of this board is documented in Appendix 2.

COM1 communicates with the Global Positioning receiver; COM2 with the User Display/Control Console,
and COM 3 with the KVH Compass System.

All serial ports operate at 9600-baud, no parity, 8-bit of data with 1 stop bit (9600N81).

Analog to Digital Converter

An analog-to-digital converter allows the recording of the following analog variablesin digital format.

e Aircraft pitch and roll data from the Vertical Gyroscope
e Aircraft yaw data from the Pendulum

e Airspeed data, derived from a differential pressure sensor
e Electronic Navigation datafrom VOR, LOC, Glideslope

In total, there are twelve channels of analog information that are sampled and converted into digital datain
this application. It ispossible to add significant number of additional analog sensors to the system, up to
128-channels. The magnitude of the variables to be measured range from a few tenths of avolt full scale to
10 voltsfull scale. Additionally, some variables are referenced to ground potential while others are the
difference between two voltages (differential).

In order to accommodate the range and types of signal voltages, an anal og-to-digital converter plus a 16-
channel analog multiplexer are employed. The analog-to-digital converter isaModel AD12-8
manufactured Industrial Computer Source, the multiplexer is Model AT16-P by the same manufacturer.
The hardware configuration of these boards is documented in Appendix 4.

The basic analog-to-digital converter used is capable of 12-bit resolution: one part in 4096. The
combination of the AD12-8 and AT16-P allow up to sixteen channels of both single-ended and differential
inputs with the gain (amplification) of each channel individually selected under control of the software.

The A/D system incorporates a counter/timer system that is used to automatically sequence through all of
the active channel s once given the command to begin the analog-to-digital conversion. Hardware interrupts
are used to determine when each conversion is complete. A number of sequential conversions are averaged
to determine the final value to be recorded for each of the variables measured.

A precision + 10 volt DC reference voltage output is provided by the AD12-8 to excite those sensors which
require such an external source (the vertical gyroscope, pendulum, and airspeed sensor).

Vertical Gyroscope

A vertical gyroscopeis employed to provide aircraft pitch and roll information for the Data Logger. The
component used isthe Model VG24-0825-1 manufactured by Humphrey, Inc. Thetimeto erect islessthan
nine minutes, + 0.5 degrees. The unit weighs 3.0 pounds and requires 1 amp of starting current, 0.4 amps
running current at 28 volts DC. The operational limits are £ 60 degrees of pitch; theroll axis is continuous
(360 degrees).

The unit is shock mount in a specially fabricated carrier (which also is used to mount the Pendulum system
described below) and this carrier is further isolated from the Data L ogger enclosure by Lord mounts.

The outputs are provided by two potentiometers requiring an external DC excitation voltage (the +10 volts
DC supplied from the analog-to-digital converter system described above). The signal isnominally 66
millivolts per degree in theroll axis and 80 millivolts per degree in the pitch axis. Both axes are calibrated
initially on the bench at O degrees and + 45 degrees. Flight tests are performed to verify that the recorded
data accurately represents the data provided to the pilot by the standard aircraft instruments.

Pendulum

A standard pendulum is employed to sense aircraft yaw in the same manner as the ball of arate-of-turn
indicator. The instrument used isthe Model CP17-0601-1 produced by Humphrey, Inc. Thisisapassive
instrument with a range of + 45 degrees and aweight of 6 ounces.

Output is by means of a center-tapped potentiometer excited by the same 10 volt DC source used for the
gyroscope excitation. The voltage is sensed differentially between the center tap and the wiper yielding an
output of zero voltsin the vertical position. Positive voltage indicates deflection to the right; negative
voltage, deflection to the left. The signal is nominally 110 millivolts per degree.

The pendulum is mounted on the gyroscope carrier described above and is mechanically adjusted to
provide a zero volt output when the Data Logger is precisely oriented in the horizontal plane and at rest.
Flight tests verified the correspondence between the ball of the pilot’s turn coordinator instrument and the
pendulum sensor.

Compass System

Although the Global Positioning System is capable of providing the course-over-ground (COG), the Data
Logger is equipped with a magnetic compass system to provide the true aircraft heading. The unit chosen
is an electronic flux-gate compass system that provides data via a serial RS-232 output.

KVH Industries, Inc manufactures the C100 Compass Engine. It isavailablein two configurations, the SE-
10 gimbaled coil was chosen for this application. The compass engine is mounted in a separate non-
magnetic enclosure and positioned in the aircraft cabin in order to minimize magnetic, electrical, and
electronic interference from the aircraft frame and electrical systems. The output isin units of degrees with
aresolution of 0.1 degrees. The compass engine is provided with user selectable output filters and a
selectable time-constant for thisfilter. The filter selected for this application is a double low-pass filter
with atime constant of three (3) seconds.

The C100 Compass Engine has a built-in autocompensation system that enables the system to calibrate
itself to maintain accuracy to afraction of a degree even when surrounded by the airframe that distorts the
earth’s magnetic field. The autocompensation procedure is performed upon initial installation of the Data
Logger.

The Data Logger displays the heading determined by the compass system during the start-up procedures.
The operator is given the opportunity to compare this reading with the aircraft magnetic compass to verify
proper operation. In the event of a discrepancy, the operator or atechnician can initiate a new
autocompensation procedure directly from the Display/Control Console. See the Maintenance and
Troubleshooting section for details.

The flux-gate compass system is not gyroscopically aided. Thisimpliesthat large errorsin the magnetic
heading will occur during periods the maneuvers of the aircraft cause the flux-gate to deviate from the
horizontal plane. A coordinated turn is one such maneuver: where the perceived gravitational forceis
perpendicular the plane of the aircraft’s’ wings and not perpendicular to the surface of the earth.

Positioning System
GPS Receiver System

The Ashtech Model G12 Global Positioning System (GPS) receiver isinstalled in the Data Logger. This
receiver is capable of tracking up to twelve satellites simultaneously using both code and carrier phase data.
It can accept standard RTCM SC-104 V2.1 differential corrections. The G12 used isthe OEM version:
Part Number 990190. The receiver is connected to a“keep-alive” battery to maintain the GPS constellation
almanac data between operating sessions.

An active GPS L1 band aircraft type antenna is mounted on the fuselage of the aircraft above the front
seating area to provide the most unobstructed view of the sky possible.

Communication with the GPS receiver is by way of two RS-232 serial ports (Ports A and B). Port A is
used for GPS receiver control and data output; Port B is dedicated to receiving differential correction data
from the DCI differential correction system described below. Both ports are operated at 9600 baud, 8 data
bits, 1 stop bit, and no parity.

The Ashtech G-12 receiver remains configured in the factory default mode. The Data L ogger software
accomplishes all initialization of the receiver. The Data Logger software is configured so that flight
logging can not begin until and unless the GPS receiver is providing differentially corrected three-
dimensional position data. If three-dimensional position and/or differential corrections are lost after data
logging has begun, the session continues with the appropriate notations recorded in the datafile.

The time-stamped navigation messages from by the GPS receiver are used to provide the timing of data
acquisition. The receiver provides a position fix once per second and the receipt of this position fix causes
the Data Logger to record the position information and all other measured parameters to the logging data
file.

If, while recording flight data, the Global Position System loses lock and fails to provide data output, the
Data Logger will continue to record data using the internal operating system clock to trigger the storage of
data points. No position datawill be available, but al other variables continue to be recorded. When and if
the GPS reacquires the satellites, logging will revert to timing using the GPS position message as described
above.

GPS system time is used to set the internal real-time clock of the underlying operating system (MSDOS
6.22) upon initial GPS receiver lock-on.

Differential Correction System

There were several options available as to the method used to obtain the RTCM differential correction data
needed to provide the level of accuracy required. The simplest and most cost effective was determined to
be the Radio Data System (RDS), which distributes digital data via a sub-carrier on standard FM
commercial broadcasts. Differential CorrectionsInc. (DCI) provides the service used in this application.

Thisis asubscription service requiring a separate license for each RDS receiver serviced. An RDS-3000
receiver (also supplied by DCI) is required to access and decode the FM RDS sub-carrier. The RDS-3000
is an automatic frequency scanning FM receiver that searches for a useable RDS sub-carrier, locks-on,
decodes the differential correction information, and outputs this information viaa serial RS-232 connection
to adifferential-ready GPS receiver. This output is connected directly to the Ashtech G-12 GPS receiver as
described above. The combination of the G-12 and RDS-3000 provides a differentially corrected
horizontal accuracy of 1 meter (2d RMS). Vertical accuracy ison the order of 1.6 meters RMS.

The VHF navigation antenna of the aircraft is used to receive the FM broadcast stations. It was determined
by flight tests that this was a satisfactory solution for ranges of at least 55 nautical miles from the FM
station location. Since the flight tracks used in the present application are never further than 30 nautical
miles from a ground station broadcasting DCI correction data, no difficulties have been experienced in
obtaining correction data during any flight logging sessions.

Radio-Navigation Instruments

The Data L ogger records the radio-navigation indications from two VOR/LOC displays and one Glideslope
display. Theleft-right (up-down) deflection of the course-deviation-indicators (CDI’s) isrecorded in
addition to the state of the system flags and TO-FROM indicators (in the case of VOR operations). This
requires atotal of eight analog-to-digital channels.

This data are derived from the outputs of the panel mounted display units normally used to connect to an
autopilot. The Bendix/King unitsinstalled in the Beech Sundowners used in this application provide
industry-standard CDI signal voltages (+150 millivolts for afull scale deflection); however, the flags and
TO-FROM signals are not exactly standardized and the Data L ogger software is designed to accommodate
the voltages specific to these instruments.

As asafety precaution, all connections to the aircraft navigation displays are routed through relays which
totally isolate the aircraft navigation circuitry from that of the Data L ogger when the Data L ogger is turned
off (or loses primary power).

Airspeed Sensor

The Data Logger measures airspeed in the same manner as an aircraft airspeed indicator, which senses the
differential pressure between the pitot port and the static port. However, the processing and conversion of
differential pressure to atitude is accomplished electronically in the Data L ogger.

The differential pressure sensor isaModel 140PC01D produced by the Micro Switch Division of
Honeywell. It requires an excitation voltage (the same +10 volt DC source used for the gyroscope and
pendulum) and produces an output voltage proportional to the pressure difference between units' two ports.

From standard FAA calibration specifications it was determined that following formula defines the
relationship between the differential pressure (expressed in inches of mercury) and the airspeed (expressed
in Knots).

Airspeed =142.91/differential pressure
Thisrelation is employed in the Data Logger and flight-testing indicates the recorded airspeed iswithin 1

or 2 Knots of that of the aircraft’s airspeed indicator within the speed range of interest (approximately 65 to
110 Knots).

User Display/Control Console

The User Display/Control Consoleis a handheld ASCII terminal that has two primary functions.

» Allow the operator to start/stop the logging of flight data and optionally mark data records
« Display the state of the Data Logger and indicate the progress of the logging operations

The unit used in this application is the QTERM-II O manufactured by QSI Corporation. The particular
model chosen has a backlighted display, RS-232 9-pin “D” type connector, and the wide-temperature
option. The alphanumeric display isfour lines of twenty characters each. The unit has a forty (40) key
tactile keypad; of which, five are user-definable. Five light-emitting-diode (LED) indicators are available
for displaying status information in addition to the alphanumeric display.

The five LED indicators are labeled REC, GPS, DIFF, GYRO, and MARK.

» REC indicatesthat the Data Logger is recording data.

e GPSindicatesthat the GPS receiver is providing 3-dimensional position data.

» DIFFindicates differential corrections are being applied to the GPS data.

* GYRO indicates that the vertical gyroscope has erected.

* MARK indicates that the data being recorded is being “marked” (to aid later analysis).

Below the five LED indicators are five custom keys labeled START-STOP, EXIT, RESTART, CAL
COMP, and TGGLE. These are the only keys that the operator normally uses during operation of the
system.

e START-STOP dlowsthe operator to start and stop logging data. The GPS, DIFF, and GY RO
LED’s must be lit before logging can be started. Logging can be started and stopped as often as
required; all the recorded datais stored in asinglefile.

» EXIT alowsthe operator to start the shutdown procedures after the final termination of data
logging. "EXIT"ing copies the present data file to floppy disk (if present) and terminates the Data
Logger functions allowing the power to the system to be safely turned off.

» RESTART alowsthe operator to restart data logging after some abnormal behavior terminated the
previous logging session. If restarting is possible, the operator will be informed by text on the
display.

e CAL COMP (calibrate compass) allows the operator to command the system to perform an
autocompensation procedure on the magnetic compass system. This key isinoperative if the Data
Logger is presently logging flight data!

 TGGLE (toggle) allows the operator to mark portions of the flight for later analysis. Pressing the
key once starts the marking process; pressing the key again ends marking. The marks are numeric
tags, incrementing automatically. The operator isinformed of the numeric value of the tag by text
on the display. Marking is only functional while the Data Logger is recording data.

No other inputs or keys are required during normal operations of the Data L ogger; however, two more keys
are active to control the display functions. See the Operation section for details.

Some additional functions and displays are provided for maintenance purposes; these are discussed in the
section Maintenance and Troubleshooting.

Power Converters

The complete Data Logger requires approximately 4.5 amps from the aircraft 12-volt power buss. The
aircraft power buss and wiring is protected by a 10-amp circuit breaker in the primary power circuit of the
Data Logger. Two switching DC-to-DC converters are required in 12-volt aircraft; only a primary
converter isrequired in 24-volt aircraft (in addition to changes to other components of the Data L ogger,
see the section Maintenance and Troubleshooting for details).

Primary Converter

The primary DC-to-DC converter is that which converts the aircraft DC power to the voltages required to
operate the single board computer and other components that require compatible regulated voltages (the
Display/Terminal and the Compass System).

Theinput of the primary converter (for the Beech Sundowner) is 12 volts DC, the outputs are

e +5voltsDC regulated
e -5voltsDC regulated
e +12voltsDC regulated
* -12 volts DC regulated

The primary DC-to-DC converter used isthe Model PD110-40L by International Power Sources, Inc. This
unit requires an input of 10 to 20 volts DC and provides the four regulated output voltages listed above.
The unit is capable of providing + 5 volts DC @ 10 amps, + 12 volts DC @ 9 amps, —12 voltsDC and - 5
volts DC both @ 1 amp (total power output not to exceed 110 watts). The + 5 volt output is over-voltage
protected and all outputs are over-current protected.

Secondary Converter

The secondary DC-to-DC converter isrequired only in aircraft that are equipped with a 12-volt electrical
system (such as the model of Beech Sundowner employed in this application).

The Vertical Gyroscope requires 24 volt DC for operation; the secondary converter provides this voltage.
This converter is not required if the aircraft electrical system is 24 volt DC since then the aircraft power bus
can power the gyroscope directly.

The secondary DC-to-DC converter used is Model VT25-142-10 manufactured by Converter Concepts,
Inc. Thisunit requiresan input of 10 to 40 volts DC and provides an output of 28 volts DC @ 1 amp.

3. Software

System Operating Software

The software for the Data L ogger was developed using Borland C++ Version 3.1; however, the codeis all
standard C with no C++ extensions. An asynchronous communication library, Greenleaf CommLib Level
2, was used to provide a more robust serial communication environment than is natively available in the
Borland product. Software drivers for the analog-to-digital converter system were provided by the
manufacturer, Industrial Computer Source.

The objectives and constrains on the software design are outlined in the following list.

e Simpleand easy to use; placing as little additional workload on the operator as possible.
e Sdf-diagnostics of sub-systems on start-up.
» Asimmune from operator error as practical.
» Capable of recovery from in-process errors.

The program requires afile called logger.ini to function. Thisfile contains the system identification (A or
B, as presently only two systems have been constructed), the path or directory into which the logger data
filesare to be placed, and calibration data for the analog channels which are hardware dependent (pitch,
roll, ball, and airspeed). Thisallows re-calibration of the system without the need to re-compile the basic
program.

Most of the inputs are channeled through hardware interrupt serviced input/output ports to insure that data
from the external devicesis received without loss of information. A system of flags and semaphores are
used to indicate when data is available for each module to process, thus allowing the software to bypass
modules which need not be run at that particular instant.

After the initialization of the sub-systems, the program enters the main program loop; each function within
the loop performs a specific, relatively short task on the data available to be processed and then passes

control the next task. By these means, an operating system, which was never designed to be multitasking,
can be manipulated into a multitasking function. For example, one task reads available characters from the
GPS system and places them in a buffer (temporary storage). This routine places each messagein a
separate buffer and sets aflag if a complete messageis available. Later, another task interrupts the
buffered message and acts upon the result. 1n the meantime, other tasks are performed (such as servicing
the anal og-to-digital converter system, scanning for and acting upon operator keyboard input, processing
data, storing data, and updating the LED’ s and text messages of the terminal). When operating and
collecting data, this loop is executed approximately three hundred times per second.

A datarecord is taken each second and stored to atemporary buffer. Every ten seconds, this buffer is
written to the fixed disk and the fileis closed. This procedure ensures that if software or hardware failure
occurs during aflight logging session, the data recorded (with the possible exception of the last ten
seconds) is saved and recoverable.

Thelogger datais stored to the fixed disk in binary format that minimizes the time and disk space required
to store each record. A binary record isonly 60 byteslong. One hour of flight data occupiesonly 211
kilobytes of storage and thus a data file representing more than six hours of flight data can easily be stored
ona3Y2 floppy disk.

When the operator ends alogging session and exits the program, the recorded datafile is copied to the
floppy disk automatically. If thisoperation fails for any reason (no disk present, disk not formatted, or
some other reason), the fileis retained and written to the floppy disk on the next opportunity. In any event,
the data files are always retained on the fixed disk and may be retrieved using standard DOS command-line
procedures.

The program consists of multiple modules, the source code for which may be found in Appendix 7.

Post Flight Data Conversion Software

As noted above, the flight data files are stored in binary for reasons of minimizing the file writing time and
to allow them to be easily transported via floppy disks. Although the binary format uses standard |EEE
floating point formats, it was determined that conversion to a standard text (ASCII) format would allow the
maximum flexibility in viewing and analyzing these data.

Programs have been written to read the binary data files and convert the records to text format (ASCII). In
the converted ASCII file, “tab” characters separate the fields of each record and records are separated by a
carriage-return/line feed (newline) character(s).

There are two versions of the conversion program; these differ only in the treatment of the horizontal
position information. The standard horizontal position output of the Global Positioning System Receiver is
latitude and longitude. The first version of the conversion program (convert.exe) directly convertsthis
datato the ASCII format. The second version (utm-con.exe) converts the horizontal position datato
Universal Transverse Mercator (UTM), in place of latitude and longitude. UTM uses “northing” and
“easting” asthe coordinates (in addition to a UTM zone number).

The advantage of using UTM coordinates isthat UTM is arectilinear system. This simplifies the process
of plotting the aircraft’'s’ course. The “northing” and “easting” coordinates are expressed in meters and are
converted from the latitude/longitude data to a resolution of one meter in this application.

The source code for both conversion programs may be found in Appendix 7.

10

4. Operation

General Operational Procedures

Theinitia display on the handheld display/control console is a sign-on message indicating the Systemi D
and software version. Thisisfollowed by a check for the presence of afloppy disk in drive A and giving
the operator the opportunity to insert one. If adisk is present, an estimate of the flight length (in hours) that
can be stored on this floppy isdisplayed. If thereisno disk in the drive, the program continues after a
short delay.

The system then displays the magnetic heading to allow the operator to judge if the system compass and
aircraft compass agree. Pressing ENTER terminates this display.

As soon as a GPS lock is obtained, the system clock is synchronized to UTC (Zulu) time!
LED’s on the terminal areilluminated to indicate:

» GPS position fixes are available [GPS]
» Position data are differentially corrected [DIFF]
e System vertical gyro has erected [GY RQ]

Once these three conditions are true (LED’ s lit), the message “READY” will be displayed and pressing the
START/STOP key begins recording data. The REC LED will light; indicating recording isin progress.
Thetop line of the display will indicate the number of records that have been recorded; this number will
continue to increment as long as the unit is recording flight data.

After ten seconds, the automatically generated filename will be displayed. The filename format is
[SystemI D] [day] [hours] [minutes]. [year] [month]; e.g. A072115.985 is the filename of the flight data
taken with System “A” beginning at 21157 on May 7, 1998.

Once recording, the operator may press TGGLE to flag certain critical segments of flight datarecords. The
MARK LED will light and all subsequent records will be marked until TGGLE is pressed once again. A
mark is an integer recorded in the record, beginning at one (1) and incremented upon each use of the
marking function. The bottom line of the display indicates the present state of the marking function and the
present or last marking number used.

If the GPS signal or differential correction signal are lost while recording, the recording will continue with
no position or atitude datain the first case or with loss of precision in the second. The appropriate LED
will blink rapidly to signal the loss of either function.

Pressing START/STOP once again terminates recording of data.

Pressing the EXIT key will attempt to write the recorded data to the floppy disk. Regardlessis the success
or failure of this operation, the system will shut down the interfaces to the data systems and inform the
operator when it is permissible to shut off the power to the system.

Errorsand Recovery

There are many possible fatal (and non-fatal) errors, which will be trapped, and a message displayed on the
handheld terminal! There will be, no doubt, other faultsin the hardware and software which may just
STOP the system with NO displayed error message. If an error message is displayed (or if the logging just
stops inexplicably), pressing the “reset” button on the Data L ogger or turning the power switch OFF and
then back ON will re-initialize the system.

11

In any event, if the system was recording, a processisin place that alows the operator to restart recording
datato the origina file.

If restart is possible, the sign-on message, check for disk, compass checks, and gyro check will be
bypassed. The message “Restart Possible” will be displayed!

The operator may press RSTRT on the handheld terminal to resume recording (if GPS and DIFF LED’s are
lit).

If it desired that subsequent flight data be recorded to a new file, the aircraft must be flown straight and
level until the GYRO Led islit; thenif the GPS and DIFF are aso lit, pressing the START/STOP key
begins recording to a new file.

Other Features

Calibrate Compass: When NOT recording data, the operator may press CAL COMP to begin a compass
calibration (autocompensation) procedure. Messages on the handheld terminal will guide the operator
through the series of steps required to do an eight-point ground calibration of the magnetic compass engine.
The operator may abort this procedure at any time. The unit displays information on the accuracy of the
calibration upon completion. Details on this procedure may be found in the Maintenance and
Troubleshooting section.

Display Contrast: By pressing “C” on the keypad, the operator can increase the display contrast on the
terminal. Each pressincreases the contrast until maximum contrast is reached and then “wraps around” to
minimum contrast.

Display Backlight: By pressing “B” on the keypad, the operator may toggl e the backlighting on the LCD
display.

File Recovery: If after aflight the datafile isnot copied to the floppy disk for any reason, that fileis
retained on the hard disk marked as not copied. The next time the system is used, any un-copied datafiles
previously stored will be copied to the floppy disk in addition to the datafile just recorded. One floppy
disk can contain approximately 6.75 hours of flight data.

By starting the Data Logger and NOT pressing START but pressing EXIT, an operator may copy any
previously un-copied data files from the system’ s fixed disk on a floppy.

Operational Error Codes

The following table contains the Error Codes displayed on the handheld terminal when an unrecoverable
(fatal) error occurs during a datalogging session. In the event that afatal error is encountered, the operator
should make note of the displayed Error Code to facilitate the remediation of the problem.

If an Error Code is displayed in the course of arecording session, it is recommended that a “reset” followed
by a“restart” (as mentioned in the previous section) be attempted. Note that in any event, pressing the
“reset” button on the Data Logger will require a minute or so before the system appears to respond! This
delay is caused by the necessity of re-loading the operating system followed by the actual program.

If thisfails to resolve the problem, the Data L ogger should be powered down and the logging session
cancelled until the required maintenance can be performed.

12

Table 1 Data Logger Error Codes

Error Code Description

A001 Error initializing the anal og-to-digital converter!

A002 Error initializing an A/D conversion cycle!

A003 Error starting an A/D conversion cycle!

A004 Error reading data from an A/D conversion!

C001 M agnetic Compass fails to respond to commands!

C002 Failed to obtain magnetic heading!

G001 Could not send command to GPS receiver!

G002 Could not reset the GPS receiver!

G003 Could not set differential mode in GPS receiver!

G004 Could not set navigation mode in GPS receiver!

G005 Could not set up differential input port on the GPS receiver!
G006 Could not request NMEA message GGA from GPS receiver!
G007 Could not request NMEA message POS from GPS receiver!
G008 Could not set the differential time limit of the GPS receiver!
1001 Error initializing 16550 serial UARTS.

1002 Error initialing COM 3 serial port (compass).

1003 Error initialing COM1 serial port (GPS receiver).

1004 Error initialing COM?2 serial port (terminal).

S001 Failed to find file logger .ini! This file must be present for the system to start!
S002 Datain file logger .ini isincomplete or corrupt!

W001 Error opening datafile!

W002 Error writing to the datafile!

WO003 Error closing the datafile!

Structure and Content of Data Files

Each datafile is automatically assigned a unique name when alogging session is started. Thisisdoneto
minimize the number of steps the operator must do to record a session. Thefileisnamed using a
combination of the System identifier, the date, and the time (Zulu or Universal Coordinated Time) which
the particular logging session was started.

The format is{SystemID}DDHHMM.YYM where

e {SystemID} isthe character ‘A’ or ‘B’

e DD isthetwo digit day of the month

» HH isthetwo digit hour of the day in 24-hour format

MM isthetwo digit minute of the hour

* YY isthelast two digits of the year

* M isacharacter representing the month (1-9, A=Oct., B=Nov., and C=Dec.)

As noted previously, the Data Logger files are stored in binary format. The details of the binary storage
format is defined by the C ‘structure’ record which may be found in any of the program listingsin
Appendix 7. Notethat an ‘int’ isa 16-bit and a‘long (int)’ isa32-bit integer. A ‘float’ is equivaent to the
32-hit floating point and a ‘double’ is equivalent to the 64-bit floating point representation defined by
ANSI/IEEE 754-1985: |[EEE Sandard for Binary Floating-Point Arithmetic.

13

Since it was never intended that the data files be read directly in binary format, the above is more for
informational than practical purposes. The following tables indicate the variables stored in the files. The
first is exactly the same variables and in the same order as the raw binary data files described above.

Table 2 L egend for Latitude/L on

itude ASCI| Conversion

Column Heading

Description

Format and Limits

Time Universal Coordinated Time HHMMSS
Mark Observer Data Mark Auto incrementing integers
Mode GPS Operationa Mode 0=none, 2 = non-diff, 3 = diff
Lat Latitude in WGS-84 Datum (+ or =) ddmm.mmmmm
+ indicates North Latitude
Long Longitude in WGS-84 Datum (+ or =) dddmm.mmmmm
+ indicates East L ongitude
Alt Altitude Above MSL Units of feet
Rate of Climb Vertical Speed Units of feet/minute
Airspeed Indicated Airspeed Units of Knots
MagHeading Magnetic Heading Degrees
Pitch Pitch Attitude Degrees (+ nose up)
Roll Roll Attitude Degrees (+ right)
Ball Coordination (Y aw) Units of “Ball Width”
CDI_1 VOR/LOC # 1 Course Deviation | Percent Full Scale (limit at 120)
+ right
T F1 #1 To-From Indicator 1=TO, -1 =FROM, 0 = none
Flagl VOR/LOC #1 Flag 1=GO0D, 0= FLAGGED
CDI 2 VOR/LOC # 2 — Same as Above
T F2
Flag2
GSCDI Glideslope Course Deviation Same as VOR/LOC CDI’'s
+ Up
GSFag Glidedope Flag Same as VOR/LOC Flags
COSs Course Over Ground Degrees — Derived by GPS
SOG Speed Over Ground Knots - Derived by GPS

14

Table 3 Legend for UTM ASCII Converted Files

Column Heading

Description

Format and Limits

Time

Universal Coordinated Time

HHMMSS

Mark Observer Data Mark Auto incrementing integers
Mode GPS Operational Mode 0=none, 2 = non-diff, 3 = diff
Zone UTM Zone Integers between 1 and 60
Northing UTM Northing Coordinate Meters north of the Equator
Easting UTM Easting Coordinate Meters East of Central Meridian
For this Zone + 500,000
Alt Altitude Above MSL Units of feet
Rate of Climb Vertical Speed Units of feet/minute
Airspeed Indicated Airspeed Units of Knots
MagHeading Magnetic Heading Degrees
Pitch Pitch Attitude Degrees (+ nose up)
Roll Roll Attitude Degrees (+ right)
Ball Coordination (Y aw) Units of “Ball Width”
CDI 1 VOR/LOC # 1 Course Deviation | Percent Full Scale (limit at 120)
+ right
T F1 #1 To-From Indicator 1=TO, -1=FROM, 0 = none
Flagl VOR/LOC # 1 Flag 1=GO0O0D, 0=FLAGGED
CDI 2 VOR/LOC # 2 — Same as Above
T F2
Flag2
GSCDI Glideslope Course Deviation Same as VOR/LOC CDI’s
+ up
GSFag Glidedope Flag Same as VOR/LOC Flags
COS Course Over Ground Degrees - Derived by GPS
SOG Speed Over Ground Knots - Derived by GPS

Post Processing Procedures

A mentioned above, the Data L ogger produces a copy of the datafile on a 3%%" floppy disk at the end of
each logging session. Thisfileisinthe binary dataformat. The Post Flight Data Conversion Softwareis
used to convert these filesto ASCII (text) format. The program is used depends on if the horizontal position
datais desired in latitude/longitude (convert.exe) or in Universal Transverse Mercator (Uutm_con.exe)

format.

The datafileis copied to the directory of the computer that contains the conversion program executable
file. The program (either convert.exe or utm_con.exe) is run and the user must enter the name of the data
file to be converted. Each program allows the user to select subsets of the records to be converted. The
user may 1) convert al records, 2) convert only “marked” records, or 3) convert only a decimated number
of records (with the choice of the decimation factor). Once this selection is made, the program writes the
converted file in the same directory with only the “extension” of the file name changed. For example, if the
file name to be converted was A111407.98B, the resulting ASCII file will have the name A111407.txt. As
apractical matter, if the conversion is being run on aWindows 9x or NT computer, the file is manually
renamed including the original extension plusthe “txt” extension (A111407.98B.txt). Thisisalegal file
name construct in these operating systems.

15

These converted data files can then be processed by any of a number of software packages depending on
the desired analysis to be performed. In the particular experiment for which the Data Logger was
developed, this program is a highly modified Microsoft Excel based application.

5. Maintenance and Troubleshooting
General System Software Configuration

System Start Up

The autoexec.bat file found in the root directory of the fixed disk is configured to change the default
directory to that in which the Data L ogger software resides and to execute the Data Logger software:
gpstest.exe.

In the event that the Data L ogger system requires maintenance, these lines of the autoexec.bat file may be
“commented out” so that the system comes up in the standard MSDOS command-line mode. Seethe
section on General Computer Problems for a procedure that may be used.

The boot sequence, which is configured from the CM OS setup of the single board computer, is also
modified to facilitate the operation of the system as a Data L ogger. To boot from afloppy disk, the CMOS
setup must be changed. See the section on General Computer Problems for details.

Logger Parameter File

A file named logger .ini is used to define the identification of the system, certain analog calibration
parameters, and the directory to which the generated data files will be stored on the fixed disk. Thisfile
must be present in the same directory as the main Data Logger executable file: gpstest.exe.

Each line begins with the name of parameter defined by that line and must be exactly as appearsin the
example below. All ten parameters must appear in the file but may be in any order. Any spaces before and
after the“=" sign are ignored.

“SystemID” shall be asingle character. “DataDirPath” shall be an ASCII string containing no spaces and
having the “back-dlash” replaced by a“forward-slash” (contrary to normal MSDOS usage for path
specifiers). Thelast “forward-dash” must be present! “DataDirPath” should never be empty nor should it
reference the root directory of adisk drivel The remaining values may be specified in signed integer
format or signed floating format (with a decimal point). These parameter (those assigned numerical values)
are used to adjust the translation of the outputs of the gyroscope, pendulum, and altitude pressure sensor for
minor variations of the transducers.

Typical logger.ini file

SystemID = A

PitchOffset = -4.979
PitchGain = 12.27

RollOffset = -5.062
RollGain= 18.01

AltOffset = -1.3

AltGain= 0.32175

BallOffset =0

BallGain = 1.783
DataDirPath = c:/gpstest/data/

16

General Maintenance and Calibration

Periodic Maintenance

Generally, the Data Logger systems require little maintenance on aregularly scheduled basis. The only
item would be the air filter, which should be checked and cleaned as required every six months.

The only limited life components are the backup batteries (for the CMOS memory and real time clock of
the single board computer, and for the GPS receiver) and the vertical gyroscope. The batteries should last
approximately five years before requiring replacement. The vertical gyroscope has a service life of
approximately 300-500 hours according to the manufacturer, Humphrey, Inc.

Calibration

The only components that may require calibration (with the exception of the compass engine, the
calibration of which is addressed later in this section) are those associated with the analog systems.

The calibration of the analog-to-digital converter systemitself is addressed later in this section and isa
rather lengthy procedure, which is described in the respective manuals of the two components (AD12-8 and
AT16-P). It should be noted that calibration of these componentsis the only form of adjustment for
correcting errorsin the low-level A/D channels (see “Errorsin Low Level Channels’ later in this section).

The remaining variables (pitch, roll, ball (yaw), and airspeed) may be calibrated by changing the respective
gain and offset parameters in the logger.ini file previously mentioned. Each Data Logger has a program
(adtest.exe) which may be useful in the adjustment of the gain and offset numbers. Thisfileislocated in
the same directory as the main Data Logger file (gpstest.exe) and uses the same logger.ini data as the main
Data Logger program. “adtest.exe displays on the VGA display all of the above mentioned variables. It
does not require the compass engine or the handheld terminal to be attached or functional. “adtest.exe’
only requires that the A/D system is operational; i. e. communicating with the single board computer.

Troubleshooting

General Computer Problems

To operate the Data Logger system asa MSDOS computer, a standard PC keyboard and a VGA capable
display must be connected. The keyboard connector islocated on the side of the card-cage; the 15-pin
VGA display connector is located on the connector panel of the Single Board Computer (the only full-
length card in the card-cage).

Power the Data Logger system and allow it to start normally. If there were no fatal errors during start-up,
the “enter” key on the handheld terminal will have to be pressed to acknowledge the compass heading
check; then the “EXIT” key should be pressed. The standard shutdown message should appear on the
handheld terminal and the VGA display should provide a standard M SDOS command-line prompt.

In the event that the Data L ogger system fails to even boot the MSDOS operating system, a keyboard and
display must be attached and a bootable 3 ¥2” floppy disk must be available and inserted in the drive.
When the system is powered, press the Del key on the keyboard when prompted to enter the CMOS setup
screens. Once in setup, configure the boot options to allow booting from the floppy disk first, then the
fixed disk. Savethe CMOS setting and allow the system to re-boot. The single board computer should
boot the MSDOS operating system from the floppy disk and allow testing to be performed. Diagnostics

17

should then be performed to determine the cause of the failure to boot from the fixed disk and this
condition remedied.

Before returning the system to service as a Data L ogger, restore the boot options back to the original
configuration; i.e. boot from the fixed disk only. This setting is chosen so that a user can insert a floppy
disk (used to provide a copy of the Logger datafile) at any time without having the system attempt to boot
from the floppy.

At this point, the autoexec.bat file can be edited to comment out the lines that automatically start the Data
Logger software (gpstest.exe). These should be removed before the system id returned to service.

Once the computer is booted and operating in MSDOS, all normal MSDOS functions should be available
and the unit should behave as a standard computer using command at the standard DOS prompt. The
floppy drive (A) and fixed disk (C) should be accessible for both read and write; serial ports COM1 and
COM2 should be available. Notethat “COM3” is non-standard and will not be recognized by DOS. Also
there are no active paralel portsin the system!

Executing the file gpstest.exe from its home directory will run the actual logger software. The external
compass system and the handheld display terminal must be connected for the system to start. Furthermore,
if the GPS antenna and the RBS differential correction receiver antenna are not connected and receiving
signals, the Data L ogger will not be allowed to enter the logging mode.

Compass System Problems

Accuracy

If the Data Logger does not provide an error message related to the compass system (type C) but the data
provided by the system appears to be erroneous; the first step would be to perform a new calibration
(autocompensation) procedure.

Thisisaccomplished by powering the Data Logger and moving the aircraft to an area free from metal
structures and underground electrical power cables. This procedure is most easily accomplished with two
operators. one to maneuver the aircraft and one to operate the handheld terminal. The aircraft must be
maneuvered to eight (8) distinct headings during this process. The operators will be guided through the
procedure by a sequence of messages on the Console. At the end of a successful calibration procedure, two
single digit numbers are displayed (0-9): the higher the numbers, the better! The first digit represents the
quality of the compensation (a score of “7” or above indicates an accuracy of 2 degrees or better). The
second digit represents the quality of the magnetic environment (a score of “5” or better is acceptable). If
acceptable scores are not achieved, the procedure should be repeated after moving the aircraft to a different
physical location.

If calibration does not correct the problem, the optimum diagnostic procedure would be to substitute a
KVH C100 compass from another Data Logger system to verify the problem is the compass engine. If the
repl acementﬂmit solves the problem, the defective unit should be returned to the manufacturer for repair or
replacement ™

If the substitution of the compass engine does not solve the problem, the difficulty may be associated with
the aircraft. Changesin the location of the compass system or additional pieces of equipment recently
installed near the compass engine location may effect accuracy. Changesin the aircraft wiring in the area
of the compass may a so have the same effect. It isalso possible that the aircraft’s engine or generating

1 1f anew C-100 Compass System is acquired, it must be configured using the software provided by the
manufacturer. See Appendix 3 for details.

18

system may be producing electrical noise that may interfere with proper operation of this electronic
compass engine.

Communications

If the Data Logger does display an error message (a C001 or C002 fatal error), first check the cable
between the Data L ogger and the compass system. If the cable was securely connected, disconnect the
cable from the compass system end and measure the voltage between pins 5 and 8 of the 9-pin connector.
With the Data Logger turned on, there should be 12 volts DC present; pin 8 being positive.

There are only two items (besides the cable and the lack of DC power) which can cause a communication
failure. One isthe compass system itself and the other isthe SIIG input/o%out board. Replace theseitems
(with units from another Data L ogger) one at a time to isolate the problem®

GPS System Problems

The Global Position System receiver (Ashtech G12) and the Differential Correction receiver (DCl RDS-
3000) work together to provide the total positioning information for the Data Logger. Since the differential
corrections are channeled through the GPS receiver and thereis not direct connection between the RDS-
3000 and the remainder of the Data L ogger system, the GPS system must be functioning correctly before
attempting to diagnose any potential problems concerning differential corrections.

GPS Receiver System

If the GPS receiver has a problem, the operator will observe one of the following symptoms,

e A Fatal Error of Type G will be displayed on the console.
e The GPSLED on the console will fail to light.
e Excessivetimeisrequired for the GPS LED to light (in excess of two minutes).

The Ashtech G12 GPS receiver has an indicator mounted on the circuit board that contains both red and
green LED’s. Flashing red indication means the receiver has power (+5 volt DC). The green LED flashes
between the red flashes. Each green flash indicates one satellite locked (being received and processed), e.g.
four (4) green flashes indicates four satellites locked. The unit must be locked on to a minimum of four
satellites for the Data Logger to operate.

If afatal error of type G was displayed, check the power to the Ashtech G12 receiver. Verify that the 9-pin
connector labeled Port A is firmly connected to the COM 1 seria port of the single board computer. If
neither of the above is the cause of the problem, the COM1 seria port should be checked and/or the
Ashtech G12 should be checked for proper operation independent of one another.

One method is to use a program supplied by Ashtech called Evaluate. This program can be runon a
Windows computer using a serial extension cable to connect the computer serial port to the connector
labeled Port A. This program will communicate with and test any number of Ashtech GPS receiver
systems. A usersguide isavailable for Evaluate 4.0.

If no fatal errors are displayed but the GPS Led never lightsto indicate GPS data is available, then the
problem is either in the G12 receiver itself or the GPS antenna system. The LED on the receiver itself can
be helpful in thiscase. If green flashes are never observed, the most likely cause is either the antenna or the

2 |f the C-100 Compass System is replaced, see Appendix 3 for information on software configuration. |f
the SIIG input/output board is replaced, see Appendix 2 for information on the hardware configuration.

19

antenna cabling. The most straightforward method of determining the component(s) at fault isto
interchange to Ashtech G12 receiver with the receiver in another Data Logger (much easier than
interchanging antenna systems).

If excessive time appears to be required for the GPS system to lock onto the required number of satellites,
the problem may be that the “keep-alive battery” that retains receiver data may be exhausted. This battery
allows the system to retain it’s last position, the satellite amanac, and satellite ephemeris data. The battery
islocated within the silver colored connector near the GPS receiver mounting position. If the battery is
functional, the GPS LED on the handheld display should illuminate within one minute after the
“STARTING” message is displayed.

Differential Correction System

A problem with the differential correction system will only be evident by the Data L ogger never coming
out of “STANDBY"” and the DIFF LED never being lit.

There is no direct communication between the DCI RDS-3000 Differential Corrections Receiver and the
main Data Logger computer. All differential statusinformation is passed through the Ashtech G12 GPS
system.

The RDS-3000 has two LED’ s that provide a visual indication of the state of the differential correction
receiver.

e Short random flashing of the red LED indicates power is applied and the receiver is not yet

tracking an RDS signal.

e |fthered LED issteadily on (except for occasional short flashes), the receiver hasfound aRDS
signal.

» |f thegreen LED flashes at 2-second interval or faster, the system is receiving differential
corrections.

» |If thegreen LED turnson for 5 seconds then off for 5 seconds, the system is receiving a DCI
broadcast but believes the subscription to the service has lapsed. This should not occur since the
subscriptions for these receivers were purchased for an indefinite term. DCI should be contacted
to resolve thisissue.

If the LED’sindicate no RDS signal, check the antenna system and cables. A 20 to 30 inch wire connected
to the center contact of the BNC connector on the Data Logger should provide enough signal for
troubleshooting purposes.

A/D Problems

Analog-to digital converter problems may be of several levels of severity. Each of these will require a
somewhat different approach in troubleshooting. The A/D system itself consists of two discrete circuit
boards: the main A/D converter (AD12-8) which islocated in the computer card-cage, and the multiplexer
board (AT16-P) mounted on the side of the Data L ogger enclosure. Each of the multiplexer channels used
iswired to one of the internal sensors or to the external radio-navigation outputs of the aircraft. The radio-
navigation signals pass through a set of relays used for emergency isolation of the Data Logger and
essential navigation displays.

Each of the following paragraphs describes a particular class of A/D problem.
Error Codes Displayed
If an A/D error code is displayed on the handheld terminal (type A), the problem islocalized to the two

circuit boards mentioned above or the cable, which connects the two boards. Verify that the AD12-8 is
properly seated in the card-cage and that the cable is firmly seated to each mating connector. If the

20

problem persists, replace the AD12-8 and AT 16-P one at atime to determine which hasfailed. The AT16-
P can be substituted by merely unplugging the cable from the installed unit and plugging it into the spare;
there is no need to remove the original unit nor to connect the inputs to the spare AT 16-P used for testing
purposes. If this procedure is used, be certain that the replacement AT16-Pis placed on an insulating
surface before applying power.

Spare AD12-8 and AT16-P are available (already properly configured) in addition to a spare cable used to
connect these units.

Operational Checks Using the Terminal

If no errors are flagged but it is suspected that there is a problem with one or more of the anal og-to-digital
channels, the actual converted data from these channels can be displayed on the handheld terminal to aid in
maintenance and troubleshooting.

When the Data Logger isin the recording mode, the actual values being stored in the flight data records for
pitch, roll, airspeed, ball (yaw), and radio-navigation course-deviation-indicators (CDI’s), and associated
flags can be displayed on the third line of the alphanumeric display.

* Pressing “1” displaysthe pitch and roll in degrees (positive is right or up)

» Pressing “2" displaysthe airspeed in knots and the ball position in unit of “ball width”
e Pressing “3" displaysthe VOR/LOC #1 course deviation in percent and the flag status
e Pressing “4” displaysthe VOR/LOC #2 course deviation in percent and the flag status
* Pressing “5” displaysthe Glideslope course deviation in percent and the flag status

e Pressing “0" clearsthe display

Errorsin High Level Channels

The high level channels are defined as those for which the gain of the A/D system islessthan five. These
include:

e pitchdata

* roll data

e yaw or ball data
e airspeed data

If ALL high level inputs are exhibiting errors, the common source may be the +10 volt precision reference
voltage that is used to excite al of these sensors. This reference voltage is generated on the AD12-8 board,
routed to the AT16-P viathe interconnecting cable, and is distributed to the sensors via aterminal strip
located near the AT16-P board.

If the error islimited to asingle high level channel, examine the wiring to between that sensor and the
AT16-P. If both the pitch and roll channels are exhibiting errors, either the vertical gyroscope or the
“secondary voltage converter” may be at fault. With the exception of the output of the secondary
converter, which may be directly measured with a voltmeter, the detection of the fault is most easily
accomplished by substitution of components (the vertical gyroscope/pendulum assembly or the differential
pressure assembly (in event of an airspeed problem).

Errorsin Low Level Channels
The low-level channels are those associated with the radio-navigation instruments. These signals are not

“low level” in the strictest sense of the term but these channels are measuring differential voltage inputsin
the millivolt range (200 mv range).

21

If al of these channels are not responding correctly, examine the external connector between the Data
Logger and the aircraft (the larger of the two circular connectors). Secondly, verify that the isolation relays
are operating (these relays should be activated when power is applied to the Data Logger system. Another
possibility is that the zeroing of the multiplexer and/or analog converter may have drifted to an extent
which effects these millivolt range measurements without effecting the apparent accuracy of the high level
channels. This occurrence would be rare, but if suspected, the procedure for calibration and zeroing of
these components is described in the respective product manuals but istoo involved to be included here.

If the errors are restricted to a subset of the level-level inputs or to only those from a particular instrument
(VOR#1, VOR#2, or GS), the most likely cause is awiring fault.

Use in 24-Volt Aircraft

The Data Logger was originally constructed for usein an aircraft with a 12-volt DC power buss. In order
to convert the unit to operate in a 24-volt aircraft, a number of component and wiring changes are required.
The time required to convert one Data L ogger from 12-volt to 24-volt operation is estimated to be less than
two hours.

Components Required (for each Data Logger)

e Power Converter - International Power Sources, Inc —Model PD110-40M
* Relays- Potter & Brumfield —Model KHAU17D13 D(3 pieces)
e Fan—Papst — Model 4314 or equivalent (24 VDC Brushless, 4.7 inch square mount)

Procedure

1. Remove the International Power Sources PD110-40L Power Converter and install the model PD110-
40M initsplace. It isthe same physical size and is a pin-for-pin replacement (no modifications need
be made to the cabling).

2. Remove the three or four P& B relays and replace with the 24 VDC units.

3. Remove the 12 VDC fan assembly and replace with the 24 VDC unit.

Optionally, the Data L ogger power switch/circuit breaker may be replaced with a unit rated a5 amperes.

NOTE: Inthe event that new Data Logger units are built for use in 24-VDC aircraft; the secondary power
converter (Converter Concepts) can be completely eliminated from the construction. This
converter is used only to provide power to the gyroscope in 12-VDC aircraft. The gyroscope’s
motor can be wired directly to the switched A+ power buss of the Data L ogger when operated in a
24-VDC aircraft.

Acknowledgments and Disclaimer

Thismaterial isbased upon work supported by the Federal Aviation Administration under Award
No. DTFA 98-G-003. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the Federal Aviation
Administration.

% The contacts of the selected relay should be aminimum of gold flashed since the signals passing through
are small and any excess contract resistance may effect the accuracy of the radio-navigation data.

22

References

Benton, C.J., Corriveau, P., & Koonce, J.M. (1993). Concept Development and Design of a Semi-
Automated Flight Evaluation System (SAFES), AL/HR-TR-1193-0134

DoD (1992). Mapping Datum Transformation Software. NT1S PB93-500296

Taylor, H.L., Bradshaw, G.L., Taleur, D.A., Emanuel, T.W., Hulin, C.L., Lendrum, L., & Vaughn, JA.
(1999) Effectiveness of Personal Computers to Meet Recency of Experience Requirements, Proceedings of
the Tenth International Symposium of Aviation Psychology, Columbus, OH: The Ohio State University.
Lendrum, L., Taylor, H.L., Talleur, D.A., Hulin, C.L., Bradshaw, G.L., & Emanuel, T.W. (1999) Airborne

Flight Data Recorder, Proceedings of the Tenth International Symposium of Aviation Psychology.
Columbus, OH: The Ohio State University.

Hardware Reference Manuals

Evaluate 4.0 — Users Guide (1997), Sunnyvale, CA: Ashtech

G12 GPSO Board Reference Manual (1997), Sunnyvale, CA: Ashtech

Greenleaf CommLibO - Reference Manual (1997), Dallas, TX: Greenleaf Software, Inc.
1/O Professional User’'s Manual (1997), Fremont, CA: SIIG, Inc.

FM Receiver for DGPS — RDS 3000 — Installation and Operator’s Manual (1994), Cupertino, CA:
Differential Corrections, Inc.

KVH C100 Compass Engine — Technical Manual (Rev. G1), Middletown, RI: KVH Industries, Inc.
Model SB486PV Product Manual (1995), San Diego: Industrial Computer Source

Model AD12-8 Product Manual (1996), San Diego: Industrial Computer Source

Model AT-16P Product Manual (1997), San Diego: Industrial Computer Source

QTERM-II User's Manual, Revision 10 (1997), Salt Lake City: QS| Corporation

23

Appendices

Appendix 1 — BIOS Settings for Single Board Computer

In general, most of the settings within the BIOS (CM OS setup) of the SB486PV single board computer
remain as configured in the standard factory defaults. In addition to the microprocessor and 1SA buss
controller, only the hard disk controller, the floppy disk controller, and the serial ports are essential for Data
Logger operation.

It should be verified that the two on-board serial ports are configured in the standard manner; i. e. COM1 at
port 3f8 hexadecimal and IRQ 4; COM2 at port 2f8 hexadecimal and IRQ 3.

Because both IRQ 5 and IRQ 7 are required for other devices by the Data Logger hardware, the on-board
parallel port on the SB486PV must be disabled.

Since it isthe normal operating procedure to insert a floppy disk in the Data L ogger before applying power,

the boot sequence of the SB486PV must be modified. The BIOS must be configured to attempt to boot
from only the fixed disk, never the floppy.

Appendix 2 — Configuration of Third Serial Data Port

The SIIG 1/0O Professional multifunction input/output board, Model 101809, used in this application
requires that only one serial port be active and that the other serial port and the parallel port be disabled.

The board is configured by means of jumpers. There are fifteen sets of three pins each; the sets are labeled
JP1 through JP15. Each set may be jumped in three ways,

» H; the center and upper pins jumpered
* L;thecenter and lower pinsjumpered
* Open; no jumper installed

The following table documents the jumper configuration used in the Data L ogger.

Table4 SI1G 1/0 Board Configuration

Position | Jumper | Position | Jumper
JP1 H JP9 OPEN
JP2 L JP10 OPEN
JP3 L JP11 OPEN
JP4 L JP12 H
JP5 L JP13 OPEN
JP6 H JP14 OPEN
JP7 L JP15 OPEN
JP8 L

24

Appendix 3 — Configuration of the KVH Compass System

The KVH C100 compass system is configured by software supplied by the manufacturer. ThisisMSDOS
program but can be run within the Windows environment. The files CLI00USR.EXE and CLIST.TXT
must be copied to adirectory and the executable run from that directory.

Since the C100 compass system is mounted in separate enclosure and both the RS-232 serial
communications and the DC power are routed through the single interconnection cable, the following
procedure should be used to run the setup program. Use a seria extension cable to connect the computer
running the C100USR program to the cable in the Data L ogger which is normally connected to COM 3 (the
seria port which is associated with the SIIG 1/O Professional multifunction input/output board). This
allows the Data Logger to supply the 12 VDC to power the compass engine.

The compass engines used in the Data Logger are set to communicate at 9600 baud; however, the default
baud rate of a new unit is 4800 baud. The parameters should be set as follows:

* Heading Type: magnetic

» PowerUp Mode: Not Sending
» Baud Rate: 9600

* Message Units: d (degrees)

e Output Type: 0

e Output Format: 0

e Damping Type: 3

e Damping Rate: 0

The Data Logger sends atype “d1” command to the compass engine to read the present heading in degrees
and does not expect to see any output from the compass engine except responses from such commands. 1f
the PowerUp Mode is inadvertently set to sending, the Data L ogger will flag an error immediately.

Calibration should always be performed using the Data Logger built-in feature with the entire system
mounted and configured in the airframe in which the system will operate.

Appendix 4 — Configuration of the A/D System
AD12-8

The AD12-8 is configured for £5 volt input (bipolar). Analog-to digital conversions are started using the
on-board counter/timer. The unit is configured to interrupt the main processor on end-of-conversion
(EOC). Thebase 1/0O addressis 310 hexadecimal and the interrupt output is selected as IRQ 7 (IRQ3-5 are
used by the serial ports).

A DIP switch S1 configures the base address; the individual switches are labeled A3 through A9. Switches
A3, A4, and A6 are ON and the remainder are OFF to configure the address of 310 hexadecimal.

Jumpers accomplish the remainder of the configuration and these are set as listed below.
* BIP/UNIP jumper set to BIP
e 10V/5V jumper set to 5V
* CLKOjumper present
e TMR/EXT jumper setto TMR
e EXT/EOC jumper set to EOC
* |IRQ jumper set to IRQ7

25

AT16-P

The AT16-Pis configured to use programmable gain settings and is set to output £5 volts. All other
settings and jumpers are on the standard default settings (if present).

A DIP switch S1 on the AT16-P board configures these setting. The individual switches labeled GMO,
GM1, and GM2 are set OFF; the remainder (labeled G/2, SHO, GP0, GP1, and GP2) are set ON.

Appendix 5 — Initial Settings for DCI Receiver

The DCI receiver Model RDS-3000 istotally software configured. The manufacturer provides a Windows
program named RTCMWIN that allows the user to view the correction messages as they are received and
set the configuration of the receiver. Theitems that can be configured include the RS-232 baud rate, the
method of scanning for RDS signals, and alist of frequenciesto be used.

The RDS-3000 as used in the Data Logger is configured as follows,
* Baud rate is 9600.
e Signal scanisrestricted to alist of station.
» Station frequencies are 93.9, 94.5, 94.9, 102.7, and 103.7 megahertz.

This configuration is stored on the computer as afile called 9600.cfg. Thisfile can be uploaded to the
receiver using the RTCMWIN program to restore these settings.

The computer, upon which RTCMWIN isinstalled, is connected directly to the RDS-3000 viaa NULL
modem cable with 9-pin female connectors on each end. If the computer has more than one serial port, the
program must be set to use the serial port to which the RDS-3000 is connected. A previously configured
receiver should be communicating at 9600 baud, but if not, the program can automatically try all possible
communication rates until the receiver islocated.

Once the program locates the receiver, the user can “open” the configuration file (9600.cfg) and “send” it to
thereceiver. If the baud rate originally in use by the receiver and the baud rate specified in the
configuration file were different, communication between the program and the receiver will have to be
reestablished.

Note that the receiver does not have to be connected to an antennato be configured; however, if it is
desired to view the received RCTM correction data using the RTCM Monitor portion of the RTCMWIN
program, an antenna must be attached and an RDS broadcast received.

Appendix 6 — Initial Settings for Display/Control Console

The QTERM-II is configured via software provided by the manufacturer. The program QSETUP.EXE is
used to program the terminal using a“QDATA File.” The QDATA Fileisan ASCII file provided by the
manufacturer in several versions for the various models of the QTERM-II terminal. The particular file
appropriate to this unit is QDATA40W.V 30.

26

Several changes were made to this default filein order to utilize the display more conveniently and to
simplify the task of communicating with the terminal. Specifically the lines identified below were
modified.

» [auto wrap mode] off

» [auto scroll mode] off

» [auto line feed mode] off

* [key repeat mode] off

» <k00>'~5 <k01>'~4 <k02>'~3
» <k03>'~2 <k04>'~1’ <k05>

o <sk00>'~5 <sk01>'~4' <sk02>'~3'
e <sk03>'~2 <sk04>'~1 <sk05>

Theresult of loading this modified configuration is twofold.

1. All twenty character positions on each of the four lines of the display can be written to without
changing the display on any other line in the process, and

2. Thedata sent when afunction key is pressed (START/STOP, EXIT, etc.) starts with the tilde (~)
character which is not sent by any other key on the keypad.

Detailed instructions on the use of QSETUP and “QDATA Files’ arein Chapter 3 of the QTERM-II User’'s
Manual.

The QTERM-I1 sends and receives data and is supplied +5 VDC power through the single serial cable
connected between the Data L ogger enclosure and the unit. Pin 5 isthe standard ground pin for 9-pin serial
connectors but pin 9 isused asthe +5 VDC input for the QTERM-II. . Use a serial extension cableto
connect the computer running the QSETUP program to the cable in the Data L ogger, which is normally
connected to COM2 (the lower serial port on the single board computer card). This allows the Data Logger
to supply the 5 VDC to power the QTERM-I1 handheld terminal.

Appendix 7 — Source Code

System Operation Software

The following modules are compiled together and linked with the al2drvc.obj file provided by Industrial
Computer Source (ICS) and GCLL.LIB provided by Greenleaf Software. Header files are also provided:
al2drvc.h from ICS; ibmkeys.h, asciidef.h, and gsci.h from Greenleaf Software. The memory model
required by the ICS module isthe “large” and therefore that model has been used the compilation. The
entry point of the program (main) is to be found in the file gpstest.c.

ADFUNCT. C

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

#i ncl ude <mat h. h>

#i ncl ude <ctype. h>
#i ncl ude <bi os. h>

#i ncl ude <all oc. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>
#i ncl ude "al2drvc. h"

extern fl oat PitchOf f set,
Pi t chGai n,
Rol | Of f set
Rol | Gai n,

27

extern int Gyr oFl ag;
extern struct record

unsi gned | ong Ti ne;

int Mar k;

int Mode;
doubl e Lati t ude;
doubl e Longi t ude;
int Al titude;
int RateOf d i nb;
int Ai r speed;
i nt MagHeadi ng;
int Pitch;

int Rol | ;

fl oat Bal | ;

int CDI 1;

i nt CDI T_F1;

i nt CDI Fl ag1;
int CDI 2;

i nt CDI T_F2;

i nt CDI Fl ag2;
int GSDev;

i nt GSFl ag;
int COG,

int SCG,

}s

extern struct record Record;
extern int ADCount;

ext ern unsi gned LoopCounter;
extern int ADI nProgressFl ag;
extern int ADDat aReadyFl ag;

voi d Fatal Error(char *);
unsi gned cal | _driver(void);
unsi gned ADSet up(voi d);

unsi gned ADPr ocedur es(voi d);
unsi gned ADCheckRdy(voi d);
void QTLed(int,int);

extern unsi gned ADPoi ntBuffer[];
extern int ADSt at us,
ADTask,
ADPar aneters[],
ADDat aBuffer[],
ADTenpBuffer[];

**/
*/

call _driver is the primtive call to al2drv.obj supplied by */
I CS. */

*/

/
/*
/*
/*
/*
/**/
unsi gned cal |l _driver()

al2drv(FP_OFF(&ADTask) , FP_OFF(ADPar anet er s) , FP_OFF(&ADSt at us)) ;
if(ADStatus != 0)

printf("An A/D error code of % was detected\n", ADSt at us) ;
printf("Programtermnated.");

ret urn(ADSt at us) ;

}

/**/
/* */
/* ADSetup sets the AD system paraneters. |t assigns point */
1 * addresses, scaleing and gains to all channels */
/* */
/**/

unsi gned ADSet up()

unsi gned |, status;

28

ADPar aneters[0] = 1; /* manual setup */
ADPar anet ers[1] = 0x310 /* address of AD12-8 */
ADPar aneters[2] = 7; I* TRQ 7 */

ADPar aneters[3] = 5; /* five volt range */
ADPar aneters[4] = 1; /* bipol ar node */
ADTask = O; /* Initialize Board */
status = call _driver();

if (status !'= 0) Fatal Error("A001"); /* return on error */
ADTask = 11, /* clear task list */

ADPar aneters[0] = 2;
status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */
ADTask = 5; /* assign point addresses */
ADPar aneters[0] = O;

ADPar aneters[1] = 3; /* channels 0,1,2, and 3 */
status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 4;

ADPar aneters[1] = 6; /* channels 4,5, and 6 */
status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 8;

ADPar aneters[1] = 10; /* channals 8,9, and 10 */
status = call _driver();

if (status != 0) Fatal Error(“AOOl“) /* return on error */

ADPar aneters[0] = 12;

ADPar aneters[1] = 13; /* channels 12 and 13 */
status = cal | _driver

if (status 1="0) Fatal Error(“AOOl“)' /* return on error */
ADTask = 14; /* set up tinmers */

ADPar aneters[0] = 1; /* counter 1 */

ADPar aneters[1] = 3; /* mode 3 */

ADPar aneters[2] = 2; /* period 4.47 usec */
status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 2; /* counter 2 */

ADPar aneters[2] = 1760; /* 1760period 8 mllisec */

status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */
ADTask = 10; /* set scale for point 0*/
ADPar aneters[0] = 3;

ADPar aneters[1] = O;

ADPar anet er s[2] =-10000;

ADPar anet ers[3] = 10000;

status = call _driver();

if (status !'= 0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 4; /* same for points 1 and 2 */
ADPar aneters[1] = O;

ADPar aneters[2] = 1,

ADPar aneters[3] = 2;

status = call _driver();

if (status !=0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 3;

ADPar aneters[1] = 3; /* set scale for point 3 */
ADPar anet ers[2] = -5000;

ADPar anet er s[3] = 5000;

status = call _driver();

if (status !'= 0) Fatal Error("A001"); /* return on error */

ADPar aneters[0] = 3; /* set acale for point 4 */
ADPar aneters[1] = 4;

ADPar aneters[2] = -1000;

ADPar amaters 3] = 1000;

status = call _driver();

if (status != 0) Fatal Error(“AOOl“) /* return on error */

ADPar aneters[0] = 4; /* same for points 4 thru 11 */
ADPar aneters[1] = 4;

29

ADPar anet er s[2] 5;

ADPar anet er s[3] 13;

status = call _driver();

if (status !'= 0) Fatal Error("A001"); /* return on error */

ADTask = 4; /* set gains */
ADPar anet er s[0]
ADPar anet er s[1]
ADPar anet er s| 2]
status = call _d ;
if (status !'=0 Error("A001"); /* return on error */
ADPar anet er s[0]
ADPar anet er s[1]
ADPar anet er s| 2]
status = call_d ;
if (status !'=0 Error("A001"); /* return on error */
ADPar aneters[0] =
ADPar aneters[1] = 13;
ADPar aneters[2] = 2;
status = call _driver();

if (status != 0) Fatal Error("A001"); /* return on error */

return(0);

/**/
/* */
I * ADProcedures perforns two functions: */
/* 1) Start a conversion if a conversion is not in progress, */
[* 2) Read and store the data if a conversion was conpl et ed. */
/* */
/**/

unsi gned ADProcedures()

static unsi gned channel , gain, |, status, *t enp, of f pnt buf, of f dat buf ;
doubl e dat a, t enpx, tenpy;

static int *tenpl;

int pitch,roll;

extern int ADCount;
i f(!ADI nProgressFl ag)
{

ADTask = 11,

ADPar aneters[0] = 1;

status = call _driver();

if (status !'= 0) Fatal Error("A002"); /* return on error */

tenmpl = ADDat aBuffer;

of fdat buf = FP_OFF(tenpl);
tenp = ADPoi nt Buf fer;

of f pnt buf = FP_OFF(t enp);

ADTask = 9; /* timer driven interrupt data acquisition */
ADPar anet er s[0] 1;
ADPar anet er s[1] 12;

ADPar anet er s| 2] FP_OFF(ADTenpBuf fer);
ADPar anet er s[3] FP_SEQ ADTenpBuffer);
status = call _driver();

if (status != 0) Fatal iError(“A003“); /* return on error */
ADI nProgressFlag = 1;
return(0);

i f (ADDat aReadyFl ag)
{

ADCount ++;

ADTask = 9; /* get data from buffer */
ADPar aneters[0] = 3;

ADPar anet ers[1] = of f dat buf;

ADPar anet ers[2] = of f pnt buf;

ADPar aneters[3] = 12;

status = call _driver();
if (status !'= 0) Fatal Error("A004"); /* return on error */

30

for (I =0; | < ADParaneters[3];|++)
{

channel = (ADPointBuffer[l] & Oxff00)/256;
data-ADDataBuffer[I] * 0.001;
gain ADPoi nt Buffer[1] & OXOOff

switch(l)
{

case 0:
tenpx = data + PitchOf fset; /* pitch */
tenmpx *= PitchGain;
Record. Pitch += pitch = (int)tenpx;
br eak;

case 1: /* roll */

tempx = data + Rol|l Offset;

tempx *= Rol | Gai n;

Record. Rol | += roll = (int)tenpx;
br eak;

case 2: /* airspeed */
tempx =(data + AltOffset)*Alt Gai n;
tenpx = 142.91*sqrt (fabs(tenpx));
Record. Ai rspeed += (i nt)tenpx;
br eak;
case 3: /* ball */

tenpx = (data + Ball O fset)*Ball Gain;
Record. Bal | += tenpx;

br eak;
case 4: /[* CDI2 LIR */
case 7: /* CDI1 L/IR */
case 10: /* GS Dev */

tempx = 2000*dat a/ 3;

if(tempx < -120.0) tenmpx = -120.0;

if(tenpx > +120.0) tenpx = +120.0;

if(l==4) Record.CDI2 -= (int)tenpx;

el se

{

if(1==7) Record.CDI1 -= (int)tenpx;
el se Record. GSDev -= (int)tenpx; /* note sign change*/

}
br eak
case 5 [* CDI2 T/F */
case 8 /* CDI1 T/F */
tenpx = O;
if(aa>0042) tempx = -1; /* FROM */
if(data <-0.042) tenpx=1; [* TO */
i f(1==5) Record. CDIT F2 t enpx; /* note sign change */
el se Record. CDI T_F1 tenpx;
br eak;
case 6: /* CDI2 Flag */
case 9: /* CDI1 Flag */
tenpx = O;
|f(data > 0.175) tenpx = 1;
if(1==6) Record.CDIFlag2 = tenpx;
el se Record. CDI Fl agl = tenpx;
br eak;
case 11: /* GS Flag */
tenpx = O;
if(data > 0. 0) tempx = 1;
Record. GSFl ag = t enpx;
br eak;

}

1f(!1GyroFlag && (abs(pltch) < 7) & (abs(roll) < 5)) GroFlag = 1;
ADI nProgr essFl ag = ADDat aReadyFl ag = O;

31

return(0);

/**/
/* */
/* ADCheckRdy merely checks to see if the interrupt driven */
/* conversions are conplete and set a flag. */
/* */
/**I

unsi gned ADCheckRdy()
{

int status;

i f (ADI nProgressFl ag && ! ADDat aReadyFl ag)

{ /* look for conplete flag */
ADTask = 9;

ADPar aneters[0] = 2;

status = call _driv e()

i f (ADPar aret er s[1] 0) ADDat aReadyFl ag = 1;

if (status != 0) Fatal Error("A003"); /* exit on error */

}
ret ur n(ADDat aReadyFl ag) ;

**/
* */

* ADLoop check for a condition wereby the A/D system accepts all*/

* commands with no errors but never returns a conversion*/

* conpl ete signal. This condition requires power be renoved*/
* and the systemstarted col d! */

* */

*

LR R R R E R R R R R R R R R Ry

—~ e

voi d ADLoop()

[*printf ("%l %\ n", ADCount , LoopCounter); */
i f(!ADCount && (LoopCounter > 200)) Fatal Error("A005")
return
COWPASS. C
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <dos. h>
#i ncl ude <bi o0s. h>
#i ncl ude <coni 0. h>
#i ncl ude <stdi 0. h>
#i ncl ude "i bnkeys. h"
#i ncl ude "asciidef.h"
#i ncl ude "gsci.h"
extern int Cal Fl ag,
InitFlag
Banner Fl ag
GPSFI ag
DCl Fl ag
extern PORT *KVH; /* conpass systemon COMB */
extern PORT *QT; /* terminal on COWR */

extern PORT *GPS;

voi d Fatal Error(char *);

voi d QTBeep(voi d)

void QTLed(int, int);

voi d ConpassConmand(char *,char *);
voi d Qrd ear (voi d)

void QTW.i ne(char *,);
fl oat Get MagHeadi ng(void);
voi d QTBackLite(void)

voi d QTReset (voi d)

voi d NonFat al Error(char*);
voi d QTrContrast (void);
voi d Cal Conpass(voi d)

voi d QTAudi oOn(voi d);

voi d QTAudi oOf f (voi d);
voi d Di spl ayConpass(voi d)
voi d GPSDel ni t (voi d)

void GPSInit();

32

voi d Cal Abort(char * s)
{

}

char * AbortString = "=cez";

NonFat al Error(s);

WiteString(KVH Abort String, 0x0d);
Cal Fl ag = BannerFlag = O;
GPSInit();

del ay(500);

Cl ear RXBuf f er (GPS) ;

return;

voi d Di spl ayConpass(voi d)
{

fl

/*
/*
/*
/*
/*
/*

fl oat head,

int test = 0;

char buffer[10];

char *msgl ="Magneti c Headi ng Chk";

char *msg2 =" Press Enter to Cont."

QIrW.i ne(msgl, 1);

QIrW.i ne(nsg2, 4) ;

do
head = Get MagHeadi ng(); /* Request heading from conpass */
sprintf(buffer,” % 4. 1f \ xdf ", head) ; /* format for display */
QIrW.i ne(buffer, 2); /* wite it to line tw! */

del ay(1000);
i f(!1sSRXEnpty(QT))

{
ReadsSt ri ngTi ned(QT, buf fer, 10, 0x00, 1) ;
if(buffer[0] == "B || buffer[0] =="G) QrIBackLite();
if(buffer[0] == Ox0d) test = 1;
if(buffer[0] =="C || buffer[0] =="H) QIContrast();
Cl ear RXBuf f er (QT) ;
}
}while(!test);
Qrd ear ();
oat Get MagHeadi ng(voi d)
fl oat headi ng;
char * HDG = "d1"; /* command to get heading data */
char ans[40];
int ERROR = 0;
ConpassComand(HDG, ans) ; /* call command routine */
ERROR = !sscanf(ans, "% ", &eadi ng); /* scan result for heading */
i f (ERROR) Fatal Error ("C002"); /* exec Fatal error routine */

ret urn(headi ng) ;

***/
*/
Pronpts User through 8 - point calibration procedure */
Checks for errors which are considered non-fatal */
*/

LR R EEEE LR R R R R R R R R R LY

voi d Cal Conpass(voi d)
{

char * cal = "=cel"; /* calibration conmand */
char response[40]; /* return string buffer */
char * pos = "Position ACto "; /* Pronpt sub-string */
char * test = "conplete:"; /* SUCCESS sub-string */
float |astheading = 0.0, heading;

int ERROR

int status;

char ¢ ="' "'

if(!Cal Flag) return;
GPSDelnit();

33

GPSFlag = DCl Flag = 0;

Qrd ear (); /* Clear Display */

Cal Flag = 1; /* Set Cal Fl ag, no other ops! */
QTW.i ne(" Conpass Cal i bration", 1); /* Use Pronpt Strings */

QTW.i ne("Enter on Positioned", 3);

QrWine("Press \"A" to Abort", 4);

do
{
printf("line 141\n"); /* for testing only */
ConmpassCommand(cal , r esponse) ; /* send cal conmand */
printf("line 143\n"); /* for testing only */
ERROR = ! sscanf (response, "%f", &eadi ng) ; /* scan for valid response */
i f (headi ng != | ast headi ng) ERROR++; /* check 45 degree increnent */
printf("heading % 9% \n", headi ng, | ast headi ng); /* for testing only */
I f (ERROR)
Cal Abort("Calibration");
return;
}
sprintf(response, " %%t03d\ xdf ", pos, (i nt) headi ng); /* format pronpt */
QIMWLi ne(response, 2); /* Wite to Display */
| ast headi ng = headi ng + 45.0; /* increment |astheading for next */
do /* wait for response */
status = ReadChar Ti med(Qr, 30000L);/* wait 30 seconds */
if(status < 0)
Cal Abort("Cal - Time Qut!");
return; /* no response in 30 seconds - abort */
}
¢ = (char)status; /* assure returned value is char */
/* disregard characters which are not valid (A F, and <CR> are valid */
}while(!(c == 0x0d || ¢ =="A || ¢ =="F));
if(c !'= 0x0d)
Cal Abort ("Cal - User Abort!");
return;
/* response other than <CR> - abort! */
} while(heading != 315.0);

/* conpass systemresponse changes at this stage; requires nodifications
to procedures */

ConpassConmand(cal , NULL) ; /* does not return new heading! */
i f (ReadStri ngTi med(KVH, r esponse, 40, 0x0d, 10000L) < 0)

Cal Abort("Cal - Time Qut!");

return;
}
ERROR = O;
i f(Rea adstri ngTi med(KVH, r esponse, 40, 0x0d, 2000L) < 0) ERROR++;
if(strstr(response,test) == NULL) ERR(P++
i f(ERROR)
{
Cal Abort ("Cal - Failed");
return;
}
Qrd ear ();

QMALi ne(" Oonpass Cal 'ed", 1);

i f(!ReadString(KVH, response, 40, 0x0d))
QIW.i ne(response, 2);

QTBeep() ;

del ay(3000)

InitFlag = l

Qrd ear ();

Cal Flag = O;

Cl ear RXBuf f er (GPS) ;

GPSInit();

LR R EEEE LR E R R R R R R Ry

*
/
Send Command to Conpass and return the response */
Makes five attenpts to send comrand */
Fatal Error is Conpass Fails to respond */

34

/*

*/

IEEEEEA R E R R R R E R R R R R Ry

voi d ConpassCommand(char * command, char * responsel)

int loop = 0;
int ERROR = 0;
char tenp[21];
if(!lsRXEnpty(KVH)) C ear RXBuffer (KVH); /* assure clear buffer */
do
{
Wi teString(KvH comand, 0x0d) ; /* send the conmand */
if(command[0] !="'=") delay(60); /* delay */
el se del ay(200);
i f (ReadChar (KVH) == "'>") break; /* check for conmand accepted! */
Cl ear RXBuf f er (KVH) ; /* command ignored, clear buffer */
if(++loop >= 5) ERROR = 1; /* increnent error count, retry */
} while(loop < 5);
i f (ERROR) Fatal Error ("C001"); /* abort with Fatal Error */
do
{ tenp[0] = ReadChar (KVH); /* purge remains of first line */
}while(tenp[0] != 0x0d && tenp[0] >= 0);
ReadChar Ti med(KVH, 100L) ; /* wait for first character of next */
i f(command[0] == "'=") del ay(100); /* increase delay for "cals" */

el se del ay(5);

if(responsel != NULL) ReadStringTi med(KVH, responsel, 40, 0x0d, 100L) ;

ERRHAND. C

#i ncl ude <stdio. h>
#i ncl ude <coni o. h>
#i ncl ude <dos. h>

#i ncl ude <ctype. h>

#define | GNORE 0
#define RETRY 1
#defi ne ABORT 2

#pragma warn -par
int handler(int errval, int ax, int bp, int si)

unsi gned di;
int drive;
int errorno;
di = _Dl;

if(ax < 0) har dr et n(ABORT) ;

drive = ax & Ox00ff;
errorno = di & 0xO00ff;
if(drive !'= 0) hardretn(ABORT);

/* sprintf(nmsg,"Error: % on drive %\r\nA)bort, R)etry, |)gnore:
err_msg[errorno],' A + drive);
*/
har dr esurme(| GNORE) ;
return ABORT,

#pragma warn +par

CGETSYS. C
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <ctype. h>

35

#i ncl ude <stdlib. h>

extern char System D;
extern float PitchOf f set,

PitchGai n,
Rol | Of f set
Rol | Gai n,
A tOfset,
Al t Gai n,
Bal | Of f set,
Bal | Gai n;

extern char DatabirPath[50] ;

voi d Fatal Error(char * n);

voi d Get Char(char * x, int* y);

float CetFl oat(char *)

int GetString(char * buffer char * path);

/**/

/* */

/* This routine | ooks for "logger.ini" file and reads the */

I * gains and offsets for critical anal og channels, the systent/
/* ID and the path in which to store the data files. */

/* */
/**/

voi d ReadSysPar anet ers()
{

FILE * in;

char buffer[80];

char * marker;

float tenp[8];

char pat h[50];

int ch;

char c;

int count = 0,index;

char keys[10][25] = {"PitchOfset","PitchGain","Roll O fset","Roll Gain",
"AltOffset","AltGain","Ball Offset", "Bal | Gai n", " Systenl D',
"DataDirPath"};

if((in = fopen("logger.ini","rt")) == NULL) Fatal Error("S001");
for(;;
{
if(fgets(buffer,80,in) == NULL) break;
for (i ndex=0; |ndex<10 |ndex++)
{
if((strstr(buffer, keys[index])) != NULL)
{
swi t ch(i ndex)
case 8:
Get Char (buf fer, &h);
c = ch;
i f(isalpha(c))
{
count ++;
goto next;
case 9:
{
if(GetString(buffer, path))
{
goto next;
defaul t:
if((temp[index] = GetFloat(buffer)) <9999) count ++;
goto next;
}
}
}
next :
} .
fclose(in);
if(count == 9)
{

36

Systenm D = c;

PitchOf fset = tenp[O]
Rol | Gain = tenp[3];
Bal | Of fset = tenp[6];

if(strlen(path) = 0)

; PitchGain = tenp[1]; RollOfset = tenp[2];
AltOfset = tenp[4]; AltGin = tenp[5];
Ball Gain = tenp[7];

strcpy(Dat abi r Pat h, pat h) ;

el se
Fat al Error (" S002");

float GetFloat(char * buffer)
{

char * marker
char tenpbuffer[80];
float val ue

i f((marker

strstr(buffer,"="))

strcpy(tenpbuffer, marker + 1)
i f(sscanf(tempbuffer,"%", &al

}
return(10000);

voi d Get Char(char * buffer, int* x)
{

char * marker

char tenpbuffer[80];

i f((marker

strstr(buffer,"="))

strcpy(tenpbuffer
i f(sscanf(tenpbuffer,"”

mar ker +1);
%", X)

}
x = 0x00
return

int GetString(char * buffer

char * marker
char tenpbuffer[80];

i f((marker strstr(buffer,"="))

strcpy(tenpbuffer, marker + 1)
i f(sscanf(tenpbuffer," %", pat

}
pat h[0] = 0x00
return(0);

GPSTEST. C

#
#

<stdi o. h>
<dos. h>
<tine. h>
<ctype. h>
<bi os. h>
<al | oc. h>
<stdlib. h>
<coni 0. h>
<mat h. h>
<string. h>
<dir.h>

<i 0. h>
"al2drvc. h"

ncl ude
ncl ude
#i ncl ude
#i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude
i ncl ude

i ncl ude
i ncl ude
ncl ude

"i bnkeys. h"
"asciidef.h"
"gsci.h"

time_t WiteTine
int Paci ngFl ag=0;
int WiteTineFlag = 0

NULL)

ue)

1)

NULL)

== 1)

char * path)

NULL)

h))

37

return(val ue)

return;

return(l);

FILE * restart;
FILE * | ogfil epointer;
char LogFi | eNane[80] ;

int GPSFlag = 0,
RecFl ag =
Cal Flag =
GyroFl ag =
ReSt art Fl a
DCl Flag =
InitFlag
Mar kFl ag
Mar kl ndex = 0,
ReStartFileFlag = O,
ReSt art Updat eFl ag = 0,
ReSt ar t Mar kI ndex 0
ConpassCheckFl ag 0
LogFi | eNamed = 0O;

int WiteRecordFlag = O;

int FlushRecordBufferFlag = O;

int SetTineFlag = 1;

int FloppyFlag = 0;

int ExitFlag = O;

i

i

i

i

ocQ oo
"=
o

int ADl nProgressFlag = 0;

int ADDataReadyFlag = O;

int BannerFlag = 0;

int DiagnosticFlag = O;

unsi gned char Current Contrast
char System D;

fl oat PitchOf f set,
Pi t chGai n,

char Dat aDi r Pat h[
struct record

unsi gned | ong Ti ne;

int Mar k;

int Mode;
doubl e Lati t ude;
doubl e Longi t ude;
int Al titude;
int RateOf d i nb;
int Ai r speed;
i nt MagHeadi ng;
int Pitch;

int Rol | ;

fl oat Bal | ;

int CDI 1;

i nt CDI T_F1;

i nt CDI Fl ag1;
int CDI 2;

i nt CDI T_F2;

i nt CDI Fl ag2;
int GSDev;

int GSFI ag;
int COG,

int SCG,

}s

struct record Record;
struct record RecordBuffer[10];
int Recordl ndex = 0;

= 0x66;

int GPSBuf fer Fl ag[2] = {0, 0};

char GPSBuffer[2][130];

unsigned int LoopCounter = 1000;

unsi gned ADPoi nt Buf f er [200] ;
int ADSt at us,
ADTask,
ADPar anet er s[5]

ADDat aBuf f er [200] ,

/* GPS Data Available */
/* Recording Data */
/* Calibrating Conpass */
/* Gyro Erect */
/* Restart Recording to old file */
/* Differential Corrections good */
/* Init in progress */
/* Marking in progress */
/* Current or |ast mark index */
/* Valid restart file read */
/* Update present restart.ini file */

/* display conpass check */
/* valid filename in "logfil ename" */
/* wite a record now */
/* recordi ng stopped! flush!*/

/* logger.ini variables */

/* dobals for A/D board */

38

ADTenpBuf f er [100] ;
i nt ADCount =10;

PORT * KVH, /* conpass system on COMB */
PORT *Qr; /* terminal on COWR */
PORT *GPS; /* GPS receiver on COML */
int SendGPSComand(char * p);
voi d Fatal Error(char * p);

voi d GPSInit(void);

int ReadGPS(voi d) ;

voi d GPSDel ni t (voi d);

voi d GPSScan(voi d) ;

voi d NaneFi | e(voi d);

voi d WiteToFil e(void);

voi d ReadSysPar anet er s(voi d) ;
voi d SysTine(long int);

voi d Wi teToBuffer(void);

int WiteRestart(void);

voi d checkdi sk(voi d);

voi d CopyToFl oppy(voi d);

int handler(int,int,int,int);
voi d Di spl aySi gnOn(char, char*);
voi d Qrd ear (voi d) ;

voi d QTW.i ne(char*,int);

voi d QrBeep(voi d);

voi d LEDUpdat e(voi d) ;

voi d Get Keyboar dl nput () ;

voi d Updat eCount (char *);

voi d ReadRest art (voi d);

voi d QrReset (voi d);

voi d Di spl ayRestart (voi d);

unsi gned ADSet up(voi d) ;

unsi gned ADPr ocedur es(voi d) ;
unsi gned ADCheckRdy(voi d);
voi d Get Keyboar dl nput (voi d);

voi d Paci ng(voi d);

voi d ADLoop(voi d);

voi d Si gnO f (voi d) ;

voi d CopyMessage(char *);

voi d ReadConpass(voi d) ;

float Get MagHeadi ng(void);

voi d Di spl ayConpass(voi d);

FILE * in;
int main()

int status;

ReadSysPar aneters();

ReadRestart () ;

harderr (handl er); /* error handl er subsitute */

status = G eenl eaf Set 16550Tri gger Level (TRI GGER _04) ;
if(status < 0)
{

printf("Error returned on Trigger = %\ n", status);
Fatal Error("1001");
exit(0);

G eenl eaf Set Por t Har dwar e(COVB, | R(B, 0x2e8) ;
KVH = Port QpenG eenl eaf Pol | ed(COMB, 9600L, ' N, 8, 1) ;
i f(KVH == NULL) Fatal Error("1002");

GPS = Port OpenG eenl eaf Fast (COML, 9600L, ' N , 8, 1) ;
i f(GPS == NULL)

printf("Port Open Failed\n");
Fatal Error("1003");
exit(0);

}

UseRtsCts(GPS, 1) ;

Qr = Port QpenG eenl eaf Pol | ed(COMR, 9600L, ' N , 8, 1) ;
if(Qr == NULL) Fatal Error("1004");

UseXonXof f (QT, 1) ;
QlReset () ;

39

if(ReStartFil eFlag) DisplayRestart();

el se
{
Di spl aySi gnOn(System D, " V1. 22");
checkdi sk(); /* check for floppy */
Di spl ayConpass();
QTWLi ne(" STARTI NG', 2);
}
ADSet up() ;
GPSInit();

Cl ear RXBuf f er (GPS) ;
Cl ear RXBuf f er (QT) ;

do

{
LoopCounter += 1,
ADPr ocedures();
ReadGPS() ;
GPSScan() ;
i f(WiteRecordFl ag)

printf("Tine = %d, Mde = %, GPSFlag = %, DClFlag = %\ n",

Record. Ti ne, Recor d. Mode, GPSFI ag, DCl Fl ag) ;
printf("Lat = %f, Long = %f, Alt = %, Heading = %\n",

Record. Lati tude, Record. Longi t ude, Record. Al ti t ude, Recor d. MagHeadi ng) ;
i f (ADCount)

printf ("%l %\ n\ n", Recor d. Pi t ch/ ADCount , Record. Rol | / ADCount) ;

}
WiteToBuffer();
WiteToFile();
LEDUpdat e() ;
Cal Conpass();
Get Keyboar dl nput () ;
WiteRestart();
ADCheckRdy() ;
del ay(1);
Paci ng();
I ADLoop() ;

}whil e(! Exi tFl ag);

Copy ToF! oppy() ;

SignOf();

GPSDel nit();

Port C ose(QrT);

Port d ose(KVH) ;

Port d ose(GPS) ;

return(0);

**/
* */
* GPSInit reset the receiver and then sets up 3-D nav and */
* the differential parameters. The receiver will return*/
* a GGA and PCS nessage each second. Any error is considered */
* fatal! *

* */

*

LR R R R R E R R R R R R R R Ry

~———————

voi d GPSI nit(void)
{

int status;

/* Reset GPS to default settings */

i f(!SendGSComand(" $PASHS, RST")) Fatal Error (" G002");

/* Set Differential Mde to auto */

i f(!SendGSCommand(" $PASHS, RTC, AUT, Y")) Fatal Error (" G003");

/* Set GPS Mdde to 3-D */

i f(!SendGPSComand(" $PASHS, PMD, 0")) Fatal Error (" @004");

/* Set Up Differential Corrections on Port B */

i f(!SendGPSCommand(" $PASHS, RTC, REM B")) Fat al Error (" G005");

/* Set message GGA ONLY SENT | F POSI TI ON COMPUTED */

i f(!SendGPSComand(" $PASHS, NVE, GGA, A, ON')) Fatal Error (" Q006");
/* Set nessage POS ALWAYS SENT */

i f(!SendGPSComand(" $PASHS, NVE, PGS, A, ON')) Fatal Error (" Q07");
/* Set RTCMtinmeout to fifteen seconds*/

i f(!SendGPSComand(" $PASHS, RTC, MAX, 15")) Fatal Error (" G008");

40

voi d GPSDel ni t (voi d)

{

WiteString(GPS, "$PASHS, RST", - 2);
/* SendGPSCommand(" $PASHS, RST") ; */
}
/**/
/* */
/* SendGPSConmand attenpts five tinmes to send the conmand to the */
l* receiver. It |looks at the response of the receiver and scans*/
/* for "ACK" which indicates the command was accepted. It wll*/
/* attenpt three repeations before returning failure. */
* *
;**/ /

int SendGPSCommand(char * buffer)

int status,i;
int count =0;
char response[100];
char * ack = "ACK";

do
{ e
for(i=0;i<5;i++)
Cl ear RXBuf f er (GPS) ;
if((status = WiteString(GPS, buffer,-2)) == 0) break;
if(status !'= 0) Fatal Error("G001");
ReadsSt ri ngTi ned(GPS, r esponse, 99, - 2, 1500L) ;
i f (GPS->status == ASSUCCESS)
if(strstr(response,ack) != NULL) return(1l);
count ++;
}whil e(count < 3);
return(0);

int ReadGPS(voi d)
{

static int CurrentBuffer = 0;
static int Bufferlndex[2] = {0, 0};
int input;

whil e(! I sRXEnpty(GPS))/*(input = getc(in)) != EOF) /* while characters are available */

i nput = ReadChar (GPS) ; /* get next character */
if(input >= 0) /* valid read */
{

i{f((input 1= 0x0d) && (input !'= 0x0a))

GPSBuf ferFl ag[CurrentBuffer] = 0; /* test of flags */
GPSBuffer[CurrentBuf fer] [Bufferlndex[CurrentBuffer]++] = (char)input;
GPSBuf fer[Current Buf fer] [Bufferlndex|[CurrentBuffer]] = 0x00;

el se
i f(input == 0x0d)
{

GPSBuf fer[Current Buffer] [Bufferlndex[CurrentBuffer]] = 0x00;
/* null termnate string */
= 0; /* reset index */
] = 1; /* indicate buffer ready */
fer) 2 0:1; /* toggle current buffer */

Buf f er | ndex[Cur rent Buf f er]
GPSBuf f er Fl ag[Current Buf fer
CurrentBuffer = (CurrentBuf

}
}
if(Bufferlndex[CurrentBuffer] != 0) GPSBufferFlag[CurrentBuffer] = 0;
if(input == 0x0d) return(0);
}

}
return(0);

41

/**/

/* */
l* GPSScan parses the buffers filled by GPSRead. GPSBufferFlags are */
l* used to determine if buffer is conplete. */
/* */
/* GPSFl ag and DCl Flag are set to 10 each tinme a valid position conmp */
l* and di ff node usage are determined. These are decrenented at a */
/* once per second rate if no conputation or non-diff is detected. */
/* */
/**/

voi d GPSScan(voi d)
{

int i ndex, st at us;
char ns, ew,
static unsigned | ong GGATi me, POSTi ne, LastTi meT, LastTi neD;
static double Gat, GLon, GAl' t, PLat, PLon, PAI t, Rat e=0, Geoi dal =- 30;
static int GFl ag, PFl ag;
float COG SOG
doubl e tenpti ne;
static char * ggaformat =

"$GPCGA % f,%f, %, %f, %, %dd, %2d, waf, Bf, MW",
static char * posformat =

"$PASHR, PCS, %l, %d, % f,%f, %, %f, %, %f,,6 %,6%,%f";

i f(!1GPSBuf ferFlag[0] && !GPSBufferFlag[1l]) return;
/* no buffers filled */
index = GPSBufferFlag[0] ? 0:1; /* use buffer O if filled */

i f(strstr(GPSBuffer[index],"$CGPGGA") = NULL) /* is a GGA nmessage */
{

i f (sscanf (GPSBuf fer[index], ggaf or mat, & enpti nme, &G.at , &ns, &G.on, &ew, &GFl ag,
&GAl t, &Ceoi dal) == 8) /* if scan good, transfer data */
{

GGATIi me = tenpti ne;
if(ns =='S") Gat *=
if(ew=="W) Gon *=
Record. Ti me = GGATI ne;
Record. Latitude = GLat;

Record. Longi tude = G.on;

Record. Al titude = 3.2808*(GAlt - Ceoidal);

if(GFlag == 2) /* if differential set bit 0 =1 */
{

-1.0;
-1.0;

Record. Mode | = 0x0001;
DCl Fl ag = 10;

el se

Recor d. Mode &= Oxfffe; /* if not clear bit 0 */
if((DClFlag > 0) &% (LastTinmeD != PCSTine)) DCl Flag--;
Last Ti neD = POSTi ne;

}

Record. Mode | = 0x0002; /* set bit 1 =1 */
GPSFl ag = 10; /* set GPSFlag */
Last Ti neT = POSTi ne;

}
GPSBuf f er Fl ag[i ndex] = O; /* mark buffer as read */
return;

}
i f(strstr(GPSBuffer[index],"$PASHR') != NULL) /* is a POS nessage */

WiteRecordFl ag = 1; /* time to wite a record */
i f (sscanf (GPSBuf f er[i ndex], posf or mat, &°Fl ag, & enpti ne, &PLat , &ns, &PLon, &ew,
&PAl t , &COG, &SOG, &Rate) == 10)

POSTi ne = tenpting;

if(ns =='S") PLat *= -1.0;

if(ew=="W) PLon *= -1.0;

i f(POSTi me <= Record. Tine) WiteRecordFlag = 0;

el se Record. Ti ne = POSTi ne;

Record. Latitude = PLat;

Record. Longi tude = PLon;

Record. Al titude= 3.2808*(PAIt - Geoidal);

Record. RateOClinb = 0.25*Record. RateOdinb + 147. 636*Rat e;
/* ms to ft/mn */

/* three second tine constant added to rate of clinb*/

Record. COG = COG,

42

Record. SOG = SOG

i f(SetTimeFlag) SysTi me(Record. Tinme); /* set systemtime to GPS */
if(PFlag == 1)
{
Record. Mbde | = 0x0001;
DCl Fl ag = 10;
el se
{

Record. Mbde &= Oxfffe;
if((DClFlag > 0) &% (LastTimeD != POSTi ne)) DClFl ag--;
Last Ti neD = POSTi ne;

}

1f((GPSFlag > 0) && ((LastTimeT + 1L) > POSTi ne))

{

Record. Mbde &= Oxfffd;
GPSFl ag- - ;

}
Paci ngFl ag = Wi teTi neFl ag

1l
L

el se

Record. Ti ne++;

Record. Mode = O;

i f (GPSFl ag >0) GPSFl ag- -;
if(GPSFlag == 0) DOl Flag =
Paci ngFl ag = WiteTineFlag = 0;

e

}
GPSBuf f er Fl ag[i ndex] = O;

return;

}
/**/
/* */
/* WiteToFile uses previously defined file name if present or */
/* generates a new nane based on the date and tine. Then */
l* wites the contents of the buffer to this file and cl oses */
l* the file each tine. */
/* */
/**/

void WiteToFile()
{

char directory[80] = {"f:/"};
char tenpl[15],tenmp2[5], string[20]= "Log File:";

i f((Recordlndex < 10) && !FlushRecordBufferFlag) return; /*not yet and no flush */
i f (Recordl ndex == 0)
{

Fl ushRecor dBufferFl ag = O;

return;

/* if we get here, there is data to wite! */
i f(!LogFi| eNanmed)

if(!ReStartFl ag)

NameFi l e() ; /* generate file nane fromdate */
if(strlen(DatabD rPath)) /* If there is a path, add it!*/
strcpy(directory, DatabDirPat h);
strcat(directory, LogFil eNane); /* add fil ename */
strcpy(LogFi | eNane, di rectory); /* copy to gl obal */

LogFi | eNamed = 1;

ReSt art Updat eFl ag = 1;

fnsplit(LogFil eNane, NULL, NULL, t enpl, t enp2);
strcat (tenpl, tenp2);

strcat(string, tenpl);

QMW.i ne(string, 2);

(1 ogfil epointer = fopen(LogFi | eNane, "a+b")) == NULL) Fatal Error("WO01");
fwite(RecordBuffer,sizeof (Record), Recordl ndex, | ogfi | epoi nter)
I'= Recordl ndex)
Fat al Error ("W02");
if(fclose(logfilepointer) != 0) Fatal Error("W03");
Recordl ndex = O;
Fl ushRecor dBufferFl ag = O;

}

}
1f(
if(

43

/**/
/* */
/* WiteToBuf fer averages sumed fields in the data record and */
l* wites the resulting record into the buffer. */
/* */
/*

LR R R R EE R R R R R R R R R R R LY

void WiteToBuffer()

static unsigned int count = O;
char s[10];

float tenpy;

i f(WiteRecordFl ag)

{

printf (" Count

printf("Loops
LoopCount er =0;
i f (ADCount)

%\ n", ADCount) ;
%\ n", LoopCounter) ;

Record. Ai rspeed /=ADCount; Record. Pitch /=ADCount; Recor d. Rol | / =ADCount ;
Record. Bal | / =ADCount ; Record. CDI 1/ =ADCount; Record. CDl 2/ =ADCount ;
Recor d. GSDev/ =ADCount ; ADCount = O;

}
if (Record.Ball <0) tenpy = -1;

el se tenpy = +1;
Record. Ball = floor(fabs(Record.Ball*4.0)+ 0.5);
Record. Ball = tenpy*Record. Ball/4.0;
i f (RecFl ag)
{
ReadConpass();

Recor dBuf f er [Recor dl ndex++] = Record;
sprintf(s,"%u", ++count);
Updat eCount (s) ;

AR AR R E R AL R E R R R R R R Ry

/* */
l* The followi ng "switch" displays diagnostic infornmaton */
/* on the A/D system functions. Displaying the information */
/* on the third line of the termnal. */
I * 1 displays pitch and roll */
/* 2 di spl ays airspeed and ball position */
/* 3 displays CDI # 1 and its flag */
I * 4 dispalys CDI # 2 and its flag */
/* 5 displays GS Dev and its flag */
/* */
l* 0 clears the third line display */
/* */

/**/

swi t ch(Di agnosti cFl ag)
{

case '0':
br eak;

case '1':
Pi t chRol | (Record. Pi tch, Record. Rol I');
br eak;

case '2':
ASPend(Recor d. Ai rspeed, Record. Bal I);
br eak;

case '3':
Pi t chRol | (Record. CDI 1, Record. CDI T_F1) ;
br eak;

case '4':
Pi t chRol | (Record. CDI 2, Record. CDI T_F2) ;
br eak;

case '5':
Pi t chRol | (Recor d. GSDev, Recor d. GSFI ag) ;
br eak;

defaul t:
br eak;

}
time(&WiteTine);
WiteTineFlag = 1;

}
WiteRecordFl ag = 0; Record. Airspeed = 0; Record.Pitch = 0;
Record. Roll = 0; Record.Ball = 0; Record.CDI1 = 0; Record.CD 2 = 0;

44

Recor d. GSDev =0;

return;

/**/
/* */
/* checkdi sk checks for the presence of a disk in drive A and if*/
/* provides an estimate of the length of flight data which can */
l* be copied to this disk. */

/* */
/*

***/

voi d checkdi sk(voi d)
{

struct diskfree_t free;
I ong avail;

int size;

float tinme;

char |inel[22];

i f(_dos_getdiskfree(1, &ree) = 0)
{

Qrd ear () ;
QrWine(" Insert a Formatted", 1);
QTWLi ne(“ Disk into Drive A", 2);
QTW.i ne("Press ENTER to Cont.", 4);
QrBeep() ;
ReadChar Ti med(QT, 15000L) ;
Qrd ear ();

}

i f(_dos_getdiskfree(1, & ree) == 0)
{

avail = (long)free.avail _clusters * (long)free. bytes_per_sector
* (long)free.sectors_per_cluster;

size = sizeof (Record);

tinme = (float)avalll(float)5|ze

time /= 3600. 0;

sprintf(linel,"space for %.2f hours",tine);
Qrd ear ();

QTWLi ne(" "This Diskette has", 1);
QTW.i ne(linel, 2);
QTW.i ne(" of Flight Data", 3);

QrBeep() ;

del ay(3000)

Qrd ear ();

Fl oppyFl ag = 1,

}

}
/**/
/* */
I * CopyToFl oppy copies all data files in the datasave directory to */
l* the floppy. It copies only file with are not archived. *
/* After a successful copy to floppy, the source file is nark as */
l* as archived so it will not be copied again. The source file*/
I * is retained (not erased). */
/* */
1 * CopyToFl oppy calls FileCopy to perforn the disk to disk copy. */
* *
5**//

voi d CopyToFl oppy(voi d)
{

char * fname ="*. *'
char * dest = a/
char destfile[20];

char search[80];

char sourcefil e[80];
struct ffblk bl ock;
struct diskfree_t free;

int FileCopy(char*,char*);
i f(_dos_getdiskfree(1, &ree) = 0)

QlReset () ;
QrW.ine(" No Disk in Drive!",1);

45

QTWLi ne(" FILE COPY ABORTTED', 3);
QTBeep() ;

del ay(2000);

return;

}
if(strlen(DataDirPath))

strcpy(search, Dat abi r Pat h) ;
strcpy(sourcefil e, DatabDirPath);

strcat (search, f nane) ;

if(findfirst(search, &l ock, FA_ ARCH) != 0) return;
strcpy(destfile, dest);

strcat (destfil e, bl ock. ff_nane);

strcat (sourcefil e, bl ock. ff_nane);

i f(_chmod(sourcefile, 0) == 0x20)

CopyMessage(destfile);
i f(FileCopy(destfile,sourcefile))
_chnod(sourcefile,1,0x00);

}
for(;;)
{

i f(findnext (&bl ock) !'= 0) return;
strcpy(sourcefil e, Dat abDi r Pat h) ;
strcat (sourcefil e, bl ock. ff_nane);
strcpy(destfile, dest);

strcat (destfil e, bl ock. ff_nane);

i f(_chmod(sourcefile, 0) == 0x20)

CopyMessage(destfile);
i f(FileCopy(destfile,sourcefile))
_chnod(sourcefile, 1, 0x00);

/**/
/* */
/* Fi | eCopy copies source to destination returning "true" if */
/* i f suuccessful and "false" if not. */
/* */
/**/

int FileCopy(char * dest, char * source)

FILE * in;

FILE * out;

int status, count, size;
int * buffer;

int error = 0;

if((in = fopen(source,"rb")) == NULL) return(0);

if((out = fopen(dest,"wb")) == NULL) return(0);

size = sizeof (Record);

if((buffer = (int *) malloc(100*size)) == NULL) return(0);
do

{

count = fread(buffer,size, 100,in);

if(!count) break;

status = fwite(buffer,size, count, out);

if(status != count) error = 1;
}while(lerror);

fclose(in);
fcl ose(out);
if(error)
unl i nk(dest);
return(0);
}
return(l);
}
/**/
/* */
l* ReadConpass cal | s Get MagHeadi ng and pl aces the result in the*/
/* present record. */

46

/* */
AR RS EEEE AR EE AR EE R ER R EE R R R R R Ry

voi d ReadConpass(voi d)
{
fl oat head;

head = Get MagHeadi ng();
Recor d. MagHeadi ng = (1 nt) head;
return;

NAMVEFI LE. C

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>
#i ncl ude <tine. h>
#i ncl ude <string. h>

extern char LogFil eNare[];
extern int LogFil eNaned;
extern char System D;

**I
* */
* This routine gives the data file a uni que nane based on the */
* System | D, year, nonth, day, hour, and minute (UTC tine). */
* */
**/

/
/
/
/
/
/

voi d NaneFil e()

/*TZ environnental varible should be TZ=GMI0 and cl ock should be GMI */
struct tm*time_now,

int nonth;

time_t secs_now,

char str[80];

char tenpstr[80];

sprintf(str,"%", Systenm D) ;
tine(&secs_now);

time_now = | ocal ti me(&secs_now);
strftime(tenpstr, 13, " %@%M %", ti ne_now) ;
strcat(str, tenpstr);

month = tinme_now >tmnmon + 1;
sprintf(LogFil eName, "%%X", str, nont h);
LogFi | eNaned = 1;

PACI NG C

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>
#i ncl ude <dos. h>

extern tinme_t WiteTine;
extern int PacingFl ag;
extern int WiteRecordFl ag;
extern int WiteTi meFl ag;
extern int RecFl ag;

extern int GPSFl ag;

extern int DClFl ag;

extern struct record

unsi gned | ong Ti ne;

int Mar K;

int Mode;

doubl e Lati tude;
doubl e Longi t ude;
int Al titude;
int RateOf d i nb;
i nt Ai r speed;
int MagHeadi ng;
int Pitch;

int Rol | ;

fl oat Bal | ;

int CDI 1;

int CDI T_F1;

47

i nt CDI Fl ag1;
i nt CDI 2;

i nt CDI T_F2;
i nt CDI Fl ag2;
i nt GSDev;

i nt GSFl ag;
int CCG;

i nt SOG,

b
extern struct record Record;

**/

* */
* WiteTo Buffer will set WiteTinme! Pacing() will check for |oss */
* of 1Hz datarate. ScanGPS may reset PacingFlag if reacquired. */
* */
*

LR EEEE LR R R R R R R Ry

/
/
/
/
/
/

voi d Set Ti neRecor d(voi d)
{

struct tinme now,
I ong tenp;

getti me(&now);

tenp = 100*now. ti _hour + now. ti_min;
temp = 100*tenp + now. ti_sec;
Record. Time = tenp;

voi d Paci ng(voi d)

static tinme_t PresentTi ne;
time_t diff;

if(!RecFlag||!WiteTi meFl ag) return;
i f(!Paci ngFl ag)
{

if(time(&PresentTine) > WiteTine +2L)
Set Ti mreRecord();
Paci ngFl ag = 1;
WiteRecordFlag = 1;
GPSFlag = DCl Flag = 0;
WiteTine = PresentTing,;
el se
{ _ .
time(&Present Tine);
if((diff = PresentTime - WiteTinme) == 0) return;
el se
{
Record. Tine += diff;
WiteTineFlag = O;
WiteRecordFl ag = 1;
}
}
}
QTFUNCT. C

#i ncl ude "gsci.h"

#i ncl ude "ibnkeys. h"
#i ncl ude "asciidef.h"
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

extern struct record

unsi gned | ong Ti ne;

int Mar k;

int Mode;
doubl e Lati t ude;
doubl e Longi t ude;
int Al titude;

48

int RateOf d i nb;

i nt Ai r speed;
i nt MagHeadi ng;
i nt Pi tch;
int Rol I ;

f | oat Bal | ;

i nt CDI 1;

i nt CDI T_F1;
i nt CDI Fl ag1;
i nt CDI 2;

i nt CDI T_F2;
i nt CDI Fl ag2;
i nt GSDev;

i nt GSFl ag;
int CCG,

i nt SCOG

}s

extern struct record Record;
extern int DiagnosticFl ag;

extern PORT *QT;
extern unsigned char CurrentContrast;
extern char System D;
extern int RecFl ag,
Mar kFl ag,
Mar kI ndex,
ReSt ar t Mar kil ndex,
ReSt art Updat eFl ag,
ReSt art Fl ag,
Cal Fl ag,
ReSt art Fi | eFl ag,
GPSFI ag,
DCl Fl ag,
ConpassCheckFl ag,
Gyr oFl ag,
FI ushRecor dBuf f er Fl ag,
Exi t Fl ag;
extern int Banner Fl ag,
Paci ngFl ag;

khkhkhkhkhkhkhkhkhkhkhkhhkhhhhhkhhhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhhkhhkhhhhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkx*x*x
/ /
/* */
I* Clear Only the Text on Q Term Ter m nal */
[* */
R EE R R EEEEEEREEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EEE RS RS EEEEEEEEEEE S
/ /

voi d Qrd ear (voi d)

char str[2]={0x1b,"'E };
WiteBuffer(Qr,str,2);

**I

* */

* Wites the null-terminated string "buffer: to designated Iine */
* */
*

LA R EEEEE R R R R R R R R R LY

voi d QTW.i ne(char * buffer,int |ine)
{

char pos[4] ={ESC,'I','@,' @}; /* position to col 1, line 1 */
char clear[2] ={ESC 'K }; clear to end of line */

pos[2] +=line - 1; modify line to that selected */
Wit eBuf fer(Qr, pos, 4); exec positioning */
WiteBuffer(Qr,clear,2); exec clear */

WiteString(Qr, buffer,-1); wite string */

~———
* %k ok Ok *

**/

* */

* *
Control Status of Q Term LED, s /

* */

**/

voi d QTLed(int lanmp, int function)

char string[3] = {ESC,'P};
unsi gned char c;

49

/* lanps nunbered 1-5 fromright to left */
/* 0 = off, 1= 0n, 2= blink, 3 = toggle */

c = 0x40 + Ianp + 8*funct|on

strlng[2]

Wit eBuffer(QT string, 3);
/**/
/* */

/* Toggl e Backl i ght on display */
/* */
/**/

voi d QTBackLite(void)

char back[3] = {ESC,'V ,'B'};
Wit eBuffer(Qr, back, 3);

}
/**I
/* */
/* Reset QT : Cears dislay, Cears LEDs, resets stored paraneters */
* *
;**I /
voi d QTReset (voi d)

char rst[2] = {ESC"' M}

WlteBuffer(QT rst,

del ay(350); /* command requires 300 ns */
/**I
/* */
[* Adj ust Contrast on Q Term Screen */
* *
;**I /
voi d QTrContrast (void)
{

char c;

char msg[3] = {ESC, 'L'};

c = Current Contrast + 0x04;

if(c > 0x78) ¢ = 0x60;

Current Contrast = nsg[2] = (char)c;
/* printf("Contrast is % hex\n",c); */

W iteBuffer(Qr, nsg, 3);
}
/**I
/* */
/* Next three routines control the buzzer of the Q Term */
/* */
/**/
voi d QTBeep(voi d)

char beep[3] ={ESC,'O,'B};

Wi teBuffer(Qr, beep, 3);
}
voi d QTAudi oOF f (voi d)

char beep[3] = {ESC,'O,' @};

Wi teBuffer(Qr, beep, 3);
}
voi d QTAudi oOn(voi d)

char beep[3] = {ESC,'O,"'A};

Wi teBuffer(Qr, beep, 3);
}
/**/
/* */
/* Di spl ay and Announces COccurance of a Software Fatal Error */

50

/* */

IEEEEEA R E R R R R E R R R R R Ry

voi d Fatal Error(char * nmessage)

char string[20];
int i;

sprintf(string,"Fatal Error # %", nessage);

Qrd ear ();

|ne(str|ng 1);
QIrW.i ne(" Record Error Number! ", 2);
QM'W.i ne("To Restart, reset or", 3);
QIrW.i ne("cycl e power on unit!", 4);
for(i=0;i<3;i++)

QrBeep() ;
del ay(1000)

exit(0);

LR R EEEEE LR RS R R R R R R R Ry

/*
/*
1 * Di spl ays the Sign-On Message and System | D. Tests LEDs and Beep! */
/*
/*

***/
voi d Di spl aySi gnOn(char ¢, char * st)

char buffer[20];
int i;

QlReset () ;

QrWine(" |PC Data Logger",1);
sprintf(buffer,” System %", c);
QIrW.i ne(buffer, 2);

sprintf(buffer,” %", st);
QMW.i ne(buffer, 3);

for(i=1;i<6;i++)

QrLed(i, 1); /* LED s on */
del ay(300);

}

QrBeep() ;

del ay(500);
for(i=5;i>0;i--)

QrLed(i, 0); /* LED s off */
del ay(300);

del ay(3000);

LA R EEE LR R R R R R R LY

}
/*
/*
l* Looks for KeyPresses on the QI Terminal, scans for valid inputs, */
I * sets flags for the various functions to be perforned. */
/*
/*

LA R EEEE LR R R R R R R R LY

voi d Get Keyboar dl nput (voi d)
{

int status;
char buffer[2
char nessi[5] {ESC,"I',"B,' @};
5]
y(

1;
= {ESC 'K }:

char mess2|

i f (I sRXEmp Qr)) return; /* return imediately if no characters */
if(eekChar(QT) ="'~ /* if not tilde, single character command */
{

if((status = ReadChar(QT)) < 0) return; /* return on error */

switch (status)

{
case 'B': /* Q@ Term BackLite */
case 'G:
QrBackLite();
return;
case 'C: /* @ Term Contrast */

51

case 'H:
QrContrast ();

return;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5

Wit eBuf fer (QT, mess1, 4)
WiteBuffer(Qr, ness2, 2);
Di agnosti cFl ag = status;

return;
defaul t:
return;
}
if((status = ReadChar(QT)) < 0) return; /* read and discard first */
if((status = ReadChar(Qrl)) < 0) return; /* read and retain second */
{
switch (status)
case '5': /* toggle marking */
i f(!RecFlag) return; /* must be recording to toggle */
i f(!MarkFl ag) /* not presently marking */
{
Mar kFl ag = 1; /* set Mark flag */
QTLed(1, 1); /* MARK LED on */
/* increment index */
sprintf(buffer,"MARKING 9©d", ++Mar kl ndex) ;
Record. Mark = Markl ndex;
QTW.i ne(buffer, 4); /* Display nessage */
ReSt art Updat eFl ag = 1; /* set flag to indicate the restart.ini file
shoul d be updated */
return;
}
el se /* presently marking */
{
Mar kFl ag = O; /* reset Mark flag */
Record. Mark = 0;
sprintf(buffer,"Last MARK was 9%d", Mar kl ndex) ;
QTW.i ne(buffer, 4); /* Display Message */
QrLed(1, 0); /* MARK Led off */
return;
}
case '4': /* calibrate conpass */
if(lCalFlag & !ReStartFil eFl ag && ! RecFl ag)
/* if not cal'ing and no possibility of restart and
not recording data, allow a calibration */
{
Cal Flag = 1; /* set calibration flag */
}
return;
case '3': /* Use Restart */
if(ReStartFil eFlag & ! RecFl ag && ! Cal Fl ag && GPSFl ag
&& DCl Fl ag)
{
ReStart Fl ag = 1;
Mar kI ndex = ReSt art Mar kl ndex;
RecFl ag = GyroFl ag = 1;
QTWi ne(" Appendi ng", 1) ;
QTLed(5, 1); /* REC LED on */
return;
case '2': /* exit program */
if(!RecFlag && ! Cal Fl ag && ! ConpassCheckFl ag)
ExitFlag = 1;
unlink("restart.ini");
return;
case '1':

i f(!RecFlag & ! Cal Fl ag && ! ConpassCheckFl ag

&& GPSFl ag && DCl Fl ag && (GyroFl ag ||
{

ReStart Fi | eFl ag))

RecFl ag = 1; /* set RECORD Flag */
QrLed(5,1); /* set REC LED on */
ReSt art Updat eFl ag = 1;

Qrd ear ();

QIrW.i ne(" Recordi ng", 1) ;
unlink("restart.ini");

return;

}

1 f (RecFl ag) /* if recording */

{
RecFl ag = 0; /* reset RECORD Flag */
QrLed(5, 0); /* set RECORD LED off */
QrLed(1,0);

Fl ushRecordBufferFlag = 1;

ReSt art Updat eFl ag = O;

unli nk(“restart ini"y;

QrWi ne("", 1);

QTWLi ne(" Press EXIT to quit", 3);
QTW.i ne(" START to resune", 4);
return;

defaul t:
return;

**/

*
* Di splay Non - Fatal Error Message; Sound Al ert */
* */
**/

/
/
/
/
/

voi d NonFatal Error(char * text)

Qrd ear () ;

QIW.i ne("Error Detected in ",1);
QIrWi ne(text, 2);

QIW.i ne(" Procedure Canceled!", 3);
del ay(1000);

QrBeep() ;

del ay(lOOO)

QrBeep();

del ay(lOOO)

QrBeep() ;

del ay(2000)

Qrd ear ();
}
/**/
/* */
/* Updat eCount wites the current record nunber to the display */
I * as an indication of continuing data collection.
/* */
/**/

voi d Updat eCount (char * msg)

char pos[5] = {ESC' '@,"'K};
Wi teBuffer(Qr, pos, 4
WiteString(QT,rng,-l);

**/
* */
* SignOf display a message to the operater when the power may*/
* safely renmoved fromthe system (all file copied and the*/
* systemis idle). */

* */
*

***/

voi d SignOf(void)
{

int i;

Qrd ear () ;

for(i=1;1<6;i++) QrLed(i,0);

QIrW.i ne(" Program Term nated!", 1);
QIrWi ne(" You may safely shut", 2);

53

QrW.i ne(" down the system ", 3);
del ay(100);

}

/**/

/* */
/* CopyMessage di splays during the copy-to-floppy process warning */
l* the operator to wait until the process is conpleted. */
/* */
/*

***/

voi d CopyMessage(char * s)
{

int i;

for(i=1;i<6;i++) QrLed(i,0);

Qrd ear () ;

QTWLi ne(" Pl ease Wi t!", 1);

QM'W.ine("Witing File", 3);

QIrW.i ne(s, 4);
}
/**/
/* */
/* Di spl ayRestart inforns the operator that a restart.ini file */
1 * was found an data may be appended to that file if desired.*/
/* */
/**/

voi d Di spl ayRestart (void)

Qrd ear () ;

QTWLi ne(" RESTART PCSSI BLE", 1);

QrBeep();
}
/**/
/* */
l* Di spl ayReady di splay either "STANDBY' or "READY" depending */
/* on the state of the datal ogger. */
* *
;**//

voi d Di spl ayReady(voi d)

if(!(BannerFlag == 1) && ! RecFlag &% GPSFl ag &&
DCl Flag & GyroFlag /*|| ReStartFileFlag)*/ && !'ExitFlag)

QTWLi ne(" READY", 2) ;
QrBeep() ;
Banner Fl ag = 1;
}
1f(!(BannerFlag == 2) && !'RecFlag && (!GPSFlag || 'DClFlag || !GyroFlag))
QTWLi ne(" STANDBY! ", 2) ;
Banner Fl ag = 2;
}
}
/**/
/* */
l* LEDUpdate controls the state of the LED s depending on the state*/
/* of the machine and the state of internal flags. */
* *
;**//

}{/oi d LEDUpdat e()

static int Last Rec,
Last GPS,
Last DCl ;
int i;
i = (RecFlag) ? 2:0;
if((RecFlag != LastRec) || (GPSFlag != LastGPS))
i f(GPSFl ag) QrlLed(4,1); else {QTLed(4,i);if(i==2) QIBeep();}

if((RecFlag != LastRec) || (DClFlag != LastDCl))
if(DClFlag) QrLed(3,1); else {QTLed(3,i);if(i==2) QIBeep();}

54

Last Rec = RecFl ag; LastGPS = GPSFl ag; LastDCl = DCl Fl ag;
i f(GyroFl ag) QrLed(2,1);
i f(!PacingFl ag) Di spl ayReady();

}

void PitchRoll (int pitch, int roll)
{

char strl[5];
char str2[5];
char positionl[5] ={ESC,'I','B,'@};
char position2[5] = {ESC'I','B,'K};

sprintf(strl,"98i", pitch);
sprintf(str2,"93i",roll);
Wi teBuffer(Qr, positionl,4);
WiteString(Qr,strl,-1);
Wi teBuffer(Qr, position2,4);
WiteString(Qrl,str2,-1);

}

voi d ASPend(int AS, float ball)
{

char strl[5];
char str2[5];
char positionl[5]
char position2[5]

={ESC,'I','B,'@};
={ESC,'I','"B,'K};
sprintf(strl,"98i", AS);
sprintf(str2,"%. 2f" ball);

Wi teBuffer(Qr, positionl,4);
WiteString(Qr,strl,-1);

Wi teBuffer(Qr, position2,4);
WiteString(Qrl,str2,-1);

}

RESTART. C

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <dos. h>

#i ncl ude <string. h>

[*#i ncl ude "l ogger.h" */

extern char LogFil eNane[];

extern int ReSt ar t Mar kIl ndex
Mar kI ndex

int ReadRestart(void);

int WiteRestart(void);
extern FILE * restart;

extern int LogFil eNaned;
extern int ReStartFil eFl ag;
extern int ReStart UpdateFl ag;

***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

This routine |ooks for the file "restart.ini". If it is
present, and can be read, the operator is given the option
to restart data loggong to the sane file for which | oggi ng
was i nterrupted.

"restart.ini" will only exist if a failure caused the data
to stop in an abnornal manner, i. e. a Fatal Error, etc.

Nornal term nation of the programdeletes the restart file.

LR R R R R R R R R R R R R R R R LY

int ReadRestart (void)

extern FILE * restart;

char * filenane = "Fil eNane";
char * = "Mar kl ndexNunber " ;
char * marker;

char buffer[80];

char tenpbuffer[80];

char | ocal fil enanme[80];

i nt | engt h;

int | ocal mar knunber ;

55

—~

*
*
*
*
*
*
*

int localfileflag = O,
| ocal markflag = O;
FILE * tenmpfile;
if((restart = fopen("restart.ini","rt")) == NULL)
return(0); /* restart.ini not found */
for(; ;)
if(fgets(buffer,80,restart) == NULL) /* if no nore lines */
br eak;
if(strstr(buffer,filenane) != NULL) /* if filename line */
{

if((marker = strpbrk(buffer,"=")) !'= NULL)
{

strcpy(tenpbuffer, marker +2);

length = strlen(tenpbuffer);

tempbuffer[length -1] = 0x00;

if((tempfile = fopen(tenpbuffer,”rb")) != NULL)
{

fclose(tempfile);
localfileflag = 1;
strcpy(l ocal fil enane, t enpbuffer);

goto next;
}
}
el se
if(strstr(buffer, mark) != NULL)
if((marker = strpbrk(buffer,"=")) !'= NULL)
i f(sscanf(marker + 1,"9% ", & ocal mar knunber))
| ocal markflag = 1;
}
}
}
next:;

}
fclose(restart);
if(localfileflag && | ocal markfl ag)
{
ReSt art Mar kl ndex = | ocal mar knunber ; /* if successfull, copy |ocal
strcpy(LogFi | eNare, | ocal fil enamne);
ReStartFil eFlag = 1;
return(l); /* indicate success! */
return(0); /* failure */
***/
*/
This is the routine which creates and updates the restart*/
file. The data file name and the |ast I ndex mark used is*/
recorded in this file for possible append operations.*/
*/

LA R R R R R R R R R R R R R R LY

int WiteRestart(void)

extern FILE * restart;

char * filename = "Fil eName = ";
char * mark = "Markl ndexNunber ="
char buffer[80];

int ERROR = 0;

if(!ReStartUpdateFl ag) return(l);
ReSt art Updat eFl ag = O;

if((restart = fopen("restart.ini","w")) == NULL)
return(0); /* unable to open file */
if(sprintf(buffer,"%%\n",filenanme, LogFi | eNanme) == EOF)
ERROR++;
if(fputs(buffer,restart) == ECF)
ERROR++,;
if(sprintf(buffer,"%%", mark, Mar kl ndex) == EOF)
E ++:
if(fputs(buffer,restart) == EOF)
ERROR++;

fclose(restart);

56

to globals */

i{f (ERROR)

unlink("restart.ini")
return(0);

el se
return(l);

}
SYSTI ME. C

#i ncl ude <stdio. h>

#i ncl ude <dos. h>

#i ncl ude <tine. h>
extern int SetTineFl ag;

/**I
/* */
/* This routine sets the systemtine to UTC tinme as detern1ned */
I * by the GPS system after acquistion.

/* */
/*

***/

int SysTinme(long int GPSTi ne)
{

struct tine t;
long int a,b;
long int x = 10000L

(GPSTi me/ 10000L)
a*x
Time = GPSTinme - b
(GPSTine/lOOL)
ime

CBO'QJ
nw;iu

GP Ti ne -= b*100;

t.ti_mn = (unS|gned char) b;
t.ti_hour = (unsigned char)a;
t.ti_sec = (unS|gned char) GPSTi ne;
t.ti_hund = 0;

settime(&t);

SetTineFlag = 0

return(0);

Basic Post Flight Software

LATITUDE-LONGITUDE ASCII CONVERSION

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

#i ncl ude <ctype. h>
#i ncl ude <bi os. h>
#i ncl ude <all oc. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>
#i ncl ude <math. h>
#i ncl ude <string. h>
#i ncl ude <dir. h>

#i ncl ude <io. h>

struct record

unsi gned | ong Tine

int Mar K;

int Mode

doubl e Latitude
doubl e Longi t ude
int Al titude;
int RateOf d i nb;
i nt Ai r speed

i nt MagHeadi ng;
int Pitch

int Rol |

fl oat Bal |

57

i nt CDI 1;

i nt CDI T_F1;
i nt CDI Fl ag1;
i nt CDI 2;

i nt CDI T_F2;
i nt CDI Fl ag2;
i nt GSDev;

i nt GSFl ag;
int CCG,

i nt SOG

}s

struct record Record;

void convert(struct record rec,char * str)

sprintf(str,"%d\t%l\t%l\tod5. 51 f\tod5.51 f\t%l\t %\t %\t %\t %\t %\ tob. 2f\t %\ t %\ t %\ t %a
\t %\ t %@\ t %6\ t %@\ t %@\ t %a\ n",
rec. Ti ne,
rec. Mark,
rec. Mode,
rec. Latitude,
rec. Longltude
rec. Al titude,
rec. RateOrd i nb,
rec. Ai rspeed,
rec. MagHeadi ng,
rec. Pitch,
rec.Rol |,
rec. Bal
rec.
rec.
rec.
rec.
rec.
rec.
rec. GSDev,
rec. GSFl ag,
rec. COG
rec. SOG) ;
}

int main(void)

char InputFile[80], QutputFile[80],tenp[10];

int Res;
FILE * in;
FILE * out;

char StrBuffer[SOO];
struct record * Buffer;
int size,i,count,factor,j;

printf("Data Logger Conversion Utility\n\n");

printf("Enter name of File to Convert: ");
gets(lnputFile);
printf(“\n\nEnter name of File for result: ");

gets(QutputFile);

pri ntf(“\n\nPreproce55| ng:\n\td) deci mate?\ n\tn) mar ked only?\n");
prlntf(\tn) none?\n\nEnter d, m or n: "

do

{

Res toupper((char)getch())
}V\hlle(Resl— &% Res '="N);
if(Res == 'D)

{

printf("\n\nDeci mati on Factor? ");

get s(tenp)

sscanf (t enb, "od", & actor);

printf("\n\n");

SI ze = sizeof (Record);
f((Buffer = (struct record *) malloc(500*size)) == NULL)

,_.,—

printf("Storage Allocation Failed!\n");
printf("Exiting Program\n");

58

exit(0)

oo
1f((in
{

= fopen(lnputFile,"rb")) == NULL)

printf("% not Found!\n",|nputFile)
printf("Exiting Program\n\n");

exi t(0)
if((out = fopen(QutputFile,"wt")) == NULL)
{
printf("Error opening file %!",QutputFile);
printf("Exiting Program\n")
exit(0);
}
sprintf(StrBuffer,"Tine\tMl k\thde\tLat\tLong\tAlt\tRate of _dinmb\tA
tPitch\tRolI\tBal I\tCDI _1\t T_F1\tFl ag1\t CDI _2\t T_F2\t Fl ag2\t GSCDI \ t GS
fputs(StrBuffer,out);
j =0;
do
{
count = fread(Buffer,size, 500,in);
if(!count) break
for(i=0;i<count;i++)
if((Res =='M && Buffer[i].Mark !=0) || Res I="'M)
{
if(j == 0| Res!="'D)
{
convert (Buffer[i], StrBuffer);
fputs(StrBuffer,out);
j = factor;
}
o}
J--s
o}
}while(l)
fclose(in);
fcl ose(out);
return O

UTM Post Flight Software

UNIVERSAL TRANSVERSE MERCATUR ASCII CONVERSION

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

| ong doubl e d_rad
| ong doubl e naj or

<stdi o. h>
<dos. h>
<ctype. h>
<bi os. h>
<al | oc. h>
<stdlib. h>
<coni 0. h>
<mat h. h>
<string. h>
<dir.h>

<i 0. h>

M_PI/180.0
6378137. OL

| ong double flat = 1.0L/298. 257223563L
| ong doubl e recfl at;

| ong doubl e bnaj or

| ong doubl e eccensqr, eccenbsqgr

| ong doubl e TN, AP, BP, CP, DP, EP

| ong doubl e FE
| ong double XK

500000. OL
0. 9996L,

struct record

59

speed\tNthbadlng\
GSFl ag\'t COG t SOG\ n") ;

unsi gned | ong Tine;

i nt Mar k;

i nt Mode;
doubl e Latitude;
doubl e Longi t ude;
i nt Al titude;

i nt Rat eOF O i mb;
i nt Ai r speed;
i nt MagHeadi ng;
i nt Pitch;

i nt Rol | ;

fl oat Bal | ;

i nt CDI 1;

i nt CDI T_F1;

i nt CDI Fl ag1;
i nt CDI 2;

i nt CDI T_F2;

i nt CDI Fl ag2;
i nt GSDev;

i nt GSFl ag;

i nt COoG,

i nt SCOG,

}s

struct record Record;
void convert(struct record rec,int zone, char * str)

sprintf(str,"%d\t%l\t%l\t%l\tod5. 0l f\tod5. 0l f\t %\t %\t %\t %\t %\t %\ tob. 2f\t %\t %\ t %
\t %\ t %@\ t %\ t %@\ t %@\ t %@\ t %@\ n",
rec. Ti e,
rec. Mark,
rec. Mode,
zone,
rec. Latitude,
rec. Longi t ude,
rec. Al titude,
rec. RateOdi nb,
rec. Ai r speed,
rec. MagHeadi ng,
rec. Pitch,
rec. Rol |,
rec. Bal
rec. CDI
rec. CDI
rec. CDI
rec. CDI
rec. CDI
rec. CDI
rec. GSDev,
rec. GSFl ag,
rec. COG
rec. SOG ;
}

| ong doubl e dg2rads(l ong doubl e degrees)

| ong doubl e tenpl, tenp2,tenps3;
/* format of geodetic paraneters dddmm mmmmmm */

templ = degrees/100. OL;
if(templ>=0L) tenp2 = floorl (tenpl);
el se tenp2 = ceill (tenpl);
temp3 = (tenpl-tenp2)*100. OL;
tenp2 += tenp3/60. 0OL;
templ = tenp2*d_rad;
return(tenpl);
}

void || 2UTM | ong doubl e | atrad,
| ong doubl e | ongrad, |ong double * north, |long double *east, int * | ZONE)

static int status = O;
| ong doubl e cen_neridi an, del ta_neridi an, sinl at, cosl at, tanl at, ETA
void initialize(void);
| ong doubl e rad_cur (| ong double x, long double y, |ong double Zz);
| ong doubl e true_ner_dis(long double a, |ong double b, |ong double c, |ong double d,
| ong doubl e e,
| ong double f);

60

long double t1,t2,t3,t4,t5,t6,t7,t8,t9, SN, TMD,

| ong doubl e delta_2,delta_4,delta_6, cosl at_3, cosl at_5, coslat_7, ETA 2, ETA 3,

ETA 4;

| ong doubl e tanlat_2,tanlat_4,tanl at_6;
| ong doubl e dg2rads(l ong doubl e);

latrad = dg2rads(latrad);
| ongrad = dg2rads(| ongrad);
if(!status)

initialize();
status = 1;

}

*
|
|

cen_meridian = (long double)(*1 ZONE*6 -183)*d_r ad;
delta_meridian =

delta_2
delta_4
delta 6

si nl at
cosl at
tanl at

cosl at _
cosl at
cosl at

tanl at
tanl at
tanl at

w

5
7

2

4
6

IZCNE = 31+ floorl (longrad/d_rad/6.0L);
if(*I ZONE > 60) *IZONE = 60;
if(*I ZONE < 1) *I ZONE = 1;

I ongrad -cen_neridi an;

= delta_nmeridi an*del ta_neri di an;
= delta_2*delta_2;
= delta_2*delta_4;

sinl (latrad);
cosl (latrad);
tanl (latrad);

cosl at *cosl at *cosl at ;
cosl at _3*cosl at *cosl at ;
cosl at _3*cosl at _3*cosl at;

tanl at*tanl at;
tanl at _2*tanl at _2;
tanl at _2*tanl at _4;

ETA = eccenbsqr*cosl at *cosl at ;

ETA 2
ETA 3
ETA 4

ETA* ETA;
ETA_2*ETA:
ETA_2*ETA 2;

SN = rad_cur (mj or, eccensqr, sinlat);
TMD = true_mer_di s(AP, BP, CP, DP, EP, | atrad) ;

— -+
ArWNPF

t5

TMD* OK;

SN*si nl at *cosl at *OK/ 2. OL;
SN*si nl at *cosl at _3*OK*(5.0L -tanlat_2 +9. OL*ETA +4. OL*ETA 2)/24.0L;
SN*si nl at *cosl at _5*OK*(61. 0L -58.0L*tanl at_2 +tanlat_4 +270. OL*ETA

-330. 0L*tanl at _2*ETA +445. OL*ETA 2 +324. OL*ETA 3 -680. 0L*tanl at_2*ETA 2

+88. OL*ETA 4 -600. OL*t anl at _2*ETA 3 -192. OL*t anl at
SNtsi nl at *cosl at _7*OK*(1385. 0L -3111.OL*tanl at _2 +543.0L*tanl at_4

-tanl at _6)/40320. OL;

if(latrad>= 0.0L) *north = OL; else *north

2*ETA_4)/720.0L;

*north += t1 + delta_2*t2 + delta_4*t3 + delta_6*t4 + delta_4*delta_4*t5;

— -+
o~NO
I n

t9

*east =

*north
*east =

SN*cosl at _5* OK*(

SNrcosl at *OK;
SN*cosl at _3*OK*(1.0L - tanlat_2 + ETA)/6.0OL;
5.0L -18.0L*tanl at_2 +tanl at_4 +14. 0L*ETA

-58.0L*tanl at_2*ETA +13. OL*ETA 2 +4. OL*ETA 3 -64. 0L*tanl at _2*ETA 2
-24.0L*tanl at _2*ETA_3)/120. OL;

-tanl at _6)/5040. OL;

FE +delta_neridian*t6 + delta_2*delta_neridi an*t?7

SN*cosl at _7*OK*(61.0L -479.0L*tanlat_2 +179.0L*tanl at_4

+delta_4*delta_neridian*t8 + delta_6*delta_neridi an*t9;

(*north + 0.5L);
*

ri
(ast + 0.5L);

void initialize(void)

| ong doubl e TN2, TN3, TN4, TN5;

61

recflat = 1.0L/fl at;

brmaj or = major*(1.0L -flat);

eccensqr = 1.0L -pow (braj or/ mgj or, 2. 0L);
eccenbsqr = pow (maj or/ bmaj or, 2. 0L) -1.0L;

TN = (rmj or-braj or)/ (maj or +braj or) ;

TN = TNFTN,
TNS = TN2* TN,

NG = TN3*TN;

NS = TNA*TN;

AP = major * (1.0L -TN + 5. OL*(TN2 - TN3)/4.0L + 81.0L*(TN4 - TN5)/64.0L);
BP = 3.0L * major *(TN -TN2 +7.0L*(TN3 - TN4)/8. 0L +55. OL* TN/ 64. OL)/ 2. OL;
CP = 15.0L*mgj or*(TN2 - TN3 +0. 75L*(TN4 - TN5))/ 16. OL;

DP = 35.0L*maj or *(TN3 - TN4 +11. OL*TN5/ 16. OL)/ 48. OL;

EP = 315. OL*mmj or *(TN4 - TN5)/512. OL;

}

| ong doubl e rad_cur (1l ong double x,1ong double y, |ong double z)
| ong doubl e tenp;
temp = x/sqrtl(1.0L - y*z*z);
return(tenp);

| ong doubl e true_ner_dis(long double a, |ong double b, |ong double c, |ong double d, |ong
doubl e e,
| ong doubl e f)
| ong doubl e tenp;

tenp = a*f -b*sinl (2.0L*f) +c*sinl(4.0L*f) -d*sinl(6.0L*f) +e*sinl(8.0L*f);
return(tenp);

int main(void)

char InputFile[80], QutputFile[80],tenp[10];

int Res;
FILE * in;
FILE * out;

char StrBuffer[500];

struct record * Buffer;

int size,i,count,factor,j;

char name[MAXFI LE], ext [MAXEXT];
char newext[MAXEXT] = ".txt";
int zone;

| ong doubl e north, east;

printf("Data Logger Conversion Utility\n\n");
printf("Enter name of File to Convert: ");
gets(lnputFile);

/*
printf("\n\nEnter nane of File for result: ");
gets(QutputFile);

*/

fnsplit(lnputFile, NULL, NULL, nare, ext);
f nmer ge(Qut put Fi | e, NULL, NULL, nane, newext) ;

size = sizeof (Record);
if((Buffer = (struct record *) mall oc(500*size)) == NULL)
{

printf("Storage Allocation Failed!'\n");
printf("Exiting Program\n");
exit(0);

}

1f((in = fopen(lnputFile,"rb")) == NULL)

{
printf("% not Found!\n",InputFile);
printf("Exiting Program\n\n");
exit(0);

if((out = fopen(QutputFile,"wt")) == NULL)

printf("Error opening file %!",QutputFile);

62

printf("Exiting Program\n");

exit(0);
}
printf("\'n\nPreprocessing:\n\td) decinmate?\n\tm narked only?\n");
printf("\tn) none?\n\nEnter d, m or n: ");
do
{

Res toupper((char)getch())
}V\hlle(Resl— &% Res '="N);
if(Res == 'D)

printf("\'n\nDeci mati on Factor? ");

gets(tenp);

sscanf (tenp, "%", & actor);
printf("\n\n");

sprintf(StrBuffer,"Tine\tMrk\tMde \tZone\tNorthlng\tEastlng\tAlt\tRate of _Clinmb\tAirspee
d\t MagHeadi ng\tPitch\tRol I\tBal I\tCDI _1\t T_F1\t Fl agl\t CDI _2\t T_F2\t Fl ag2\t GSCDI \ t GS| Fag\t
CoGt SoG n");

fputs(StrBuffer,out);

] =0;
do
{
count = fread(Buffer,size, 500,in);
if(!count) break;
for(i=0;i<count;i++)
if((Res =="'M && Buffer[i].Mark !'=0) || Res !'="M)
if(j == 0| Res!="D)
I'1 2UTM (1 ong doubl e)Buffer[i]. Latitude,
(long doubl e)Buffer[i].Longitude, &iorth, &ast, &one);
Buffer[i].Latitude = (double) north;
Buffer[i].Longitude = (double) east;
convert(Buffer[i], zone, StrBuffer);
fputs(StrBuffer,out);
j = factor;
}
o}
J--s
o}
}while(l);
fclose(in);
fclose(out);
return O;

63

	Aviation Research Lab
	Institute of Aviation
	Savoy, Illinois 61874
	
	
	
	IPC DATA LOGGER
	Operation Manual

	July 2000

	Contract DTFA 98-G-003

	I
	Introduction
	Components
	Single Board Computer
	Digital Storage Devices
	Serial Data Ports
	Analog to Digital Converter
	Vertical Gyroscope
	Pendulum
	Compass System
	Positioning System
	GPS Receiver System
	Differential Correction System

	Radio-Navigation Instruments
	Airspeed Sensor
	User Display/Control Console
	Power Converters
	Primary Converter
	Secondary Converter

	Software
	System Operating Software
	Post Flight Data Conversion Software

	Operation
	General Operational Procedures
	
	
	Errors and Recovery
	Other Features

	Operational Error Codes
	Structure and Content of Data Files
	
	
	Table 2 Legend for Latitude/Longitude ASCII Conversion

	Post Processing Procedures

	Maintenance and Troubleshooting
	General System Software Configuration
	System Start Up
	Logger Parameter File
	
	
	Typical logger.ini file

	General Maintenance and Calibration
	Periodic Maintenance
	Calibration

	Troubleshooting
	General Computer Problems
	Compass System Problems
	Accuracy
	Communications

	GPS System Problems
	GPS Receiver System
	Differential Correction System

	A/D Problems
	
	Operational Checks Using the Terminal

	Use in 24-Volt Aircraft
	
	
	Components Required (for each Data Logger)
	Procedure

	References
	Hardware Reference Manuals
	Appendices
	Appendix 1 – BIOS Settings for Single Board Computer
	Appendix 2 – Configuration of Third Serial Data Port
	
	
	Position
	
	
	
	H

	Appendix 3 – Configuration of the KVH Compass System
	Appendix 4 – Configuration of the A/D System
	AD12-8
	AT16-P

	Appendix 5 – Initial Settings for DCI Receiver
	Appendix 6 – Initial Settings for Display/Control Console
	Appendix 7 – Source Code
	System Operation Software
	Basic Post Flight Software
	UTM Post Flight Software

