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1.1 Eye Movement Contingent Display control

Our eyes are always in motion. During natural viewing, fast relocations of gaze (saccades) occur ev-
ery few hundred milliseconds. Even in between saccades, when the eyesare fixating on a target, small
fixational eye movements, of which we are usually not aware, continuouslymove the projection of the
stimulus on the retina (see Figure 1.1). It is surprising that the visual systemis able to construct a coher-
ent percept from such fragmentary and continuously changing input. Although much progress has been
made in understanding how the brain processes sensory signals, the fundamental mechanisms by which
visual information is organized into a global representation of the scene are still elusive.

In experimental studies of visual functions, the need often emerges for modifying the stimulus ac-
cording to the eye movements performed by the subject. The methodology of EyeMovement Contingent
Display (EMCD) enables accurate control of the position and motion of the stimulus on the retina. It has
been successfully used in several areas of vision science, including visual attention, fixational eye move-
ments, and the physiological characterization of neuronal response properties. In addition to basic vision
research, EMCD control is also crucial in a variety of applications ranging from augmented information
displays to aids for subjects with visual impairments. Unfortunately, the difficulty of real-time program-
ming and the unavailability of flexible and economical systems that can be easily adapted to the diversity
of experimental needs and laboratory setups have prevented a widespread use of EMCD control.

Despite the important benefits offered by EMCD control to many areas of vision research, several
factors have prevented widespread use of this technique. A first problem is that real-time control (i.e. en-
suring an upper boundary on the delay between subject eye movements andthe update of the stimulus on
the display) is a difficult operation that requires the development of complexhardware and/or advanced
programming expertise.

The development of real-time software is also challenged by the characteristics of the most popular
operating systems, such as Microsoft Windows and Apple MacOS, which do not allow precise control
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CHAPTER 1. INTRODUCTION 3

Figure 1.1 –Example of fixational eye movements. A trace of eye movementsrecorded by a DPI eyetracker is
shown superimposed on the original image. The panel on the bottom right shows a zoomed portion
of the trace in which small fixational eye movements are present. The color of the trace represents
the velocity of eye movements (red: slow movements; yellow:fast movements). Blue segments
mark periods of blink. The image was examined for a period of 10 s.

of temporal events. Secondly, available systems lack the flexibility that is required to accommodate the
diverse needs of experimenters. They are usually designed for specific tasks and cannot be easily modi-
fied. Another important element has been the exorbitant cost of commerciallyavailable systems. These
systems are usually sold as components or accessories of specific eyetrackers and cannot be interfaced
with more affordable devices (see Table 1.1).

The tremendous improvements in computational power, video hardware, andeye tracking technolo-
gies of recent years have opened the way to a flexible and economical approach to EMCD experiments.
Personal computers now possess the computational resources and high-speed interfaces that are neces-
sary for real-time data processing.

High-quality CRTs with refresh rates up to 200 Hz and graphic boards with built-in accelerators for
the fast generation of visual stimuli are now available. The short delays and quality of visualization
provided by these systems are adequate for many experiments of visual neuroscience. Improvements
in eye-tracking methods have widely enlarged the circle of potential users by miniaturizing the devices,
significantly simplifying their use and reducing their costs.

The system described here provides widespread access to the methodology of EMCD control. It
enables laboratories that conduct research in visual psychophysicsand neurophysiology to design their
own EMCD experiments as well as to adopt the procedures already in use.Furthermore, by allowing
stimulus modifications on the basis of various parameters of oculomotor activity,this system opens the
way for a new generation of EMCD experiments in which changes in the visual input do not depend only
on the position of gaze. Experiments of this kind are needed in several areas of vision research.
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Table 1.1 –This table summarizes the main systems and algorithms currently available to experimenters in the
field of visual neuroscience. Commercial products and open source software present complementary
strengths and disadvantages. Public domain systems come atno cost, but being based purely on
software, they cannot reach the high refresh rates requiredby many experiments. Software systems
also lack a check of real-time compliance because they do notguarantee that the system is running at
the expected frequency without missing frames. Commercialproducts can be faster as they usually
rely on dedicated hardware. However, they come at high cost and surprisingly little flexibility. Since
most of these systems were not specifically designed for EMCDcontrol, they have serious structural
limitations. The range of possible applications remains limited, and no flexible system for EMCD
control is currently available.

1.2 Objective

This report focuses on the development of a general-purpose systemto perform EMCD experiments on
a personal computer. We have recently developed a hardware and software prototype to study fixational
eye movements that combines flexibility, simplicity of use, and low cost of the components.

The Eye movement Real-time Integrated System (EyeRIS) (Active Perception Lab, Boston Uni-
versity) takes advantage of recent technological advancements to develop a general-purpose system for
EMCD experiments. The proposed system complies with the following specifications:

1. Flexibility of experimental design: The experimenter needs to be able to design an EMCD exper-
iment by selecting the variables of oculomotor activity that are relevant to the study and linking
them to changes in the visual stimulus in the desired fashion. In addition to enabling changes in the
visual stimulus according to the position of gaze, the system also allows control of the stimulus on
the basis of higher-order parameters of oculomotor activity such as processed signals (e.g., speed,
acceleration) or the type of oculomotor activity (e.g., saccade vs. smooth pursuit).

2. Versatility: The system accommodates the diversity of experimental demands and setups of differ-
ent laboratories as it works under Windows, the operating system most often used by laboratory
computers.

3. Simplicity of use: The nuances of real-time programming and the hardware characteristics of the
system are transparent to the user. The system possesses an intuitive high-level interface that
provides access to users with no programming experience.

4. High-level performance: The system operates at the highest refresh rates and resolutions allowed
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by current commercial graphic cards and CRTs. This level of performance is often needed in
experiments of visual neurophysiology.

5. Real-time compliance: Real-time performance is guaranteed by external sensors which provide an
upper boundary to the delay of the stimulus update on the screen. Trials in which this upper bound
is accidentally exceeded are automatically flagged to the user.

6. Affordability: The system is designed using low-cost technologies.

1.3 System architecture

The proposed system intimately links the eyetracker and the computer as it is responsible for (a) sampling
and processing oculomotor signals and subject responses, and (b) communicating with the graphics card
on the host PC to allow the real-time generation, visualization, and gaze-contingent modification of
visual stimuli. Its structure consists of:

1. A dedicated DSP board with analog and digital interfaces which possesses dedicated firmware
specifically designed for the real-time processing of eye movement data. Itwill enable EMCD
experiments with real-time performance guaranteed by a maximum delay of two-frames (10 ms at
200 Hz).

2. An extensive software library, implemented in C++, for the control of theboard and the real-time
manipulation and display of visual stimuli. The graphic component of this libraryis built on top of
OpenGL (Silicon Graphics, Inc.) and uses the hardware acceleration ofOpenGL routines present
in current graphic cards. The C++ library will enable programmers to control all functionalities of
the system without dealing with the details of the hardware and real-time control.

3. A high-level programming language for the simple design and execution ofEMCD experiments.
This language has been developed to make the system accessible to users with no programming
experience.

During the generation of each video frame, the real-time routines run on the DSP to sample input data,
label saccades and periods of fixation (see Figure 1.2), and convertinput voltages into angles on the basis
of an initial calibration procedure. Processed data is transmitted to the host CPU, where C++ routines
convert it to pixel coordinates and update the stimulus on the display at the next video frame.
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Figure 1.2 –Functional architecture of the system. It is designed to enable EMCD control with refresh rates up
to 200Hz at the highest resolution supported by the video board, and with maximum delay of 10 ms
(average delay 5 ms). Real-time performance is guaranteed by monitoring the signal of a photocell
located at the corner of the display.
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The hardware component of EyeRIS includes four major modules: a C6713 DSP board, a generic digital
I/O board, A/D conversion module, and a video board to display stimuli.

2.1 DSP board

The C6713 DSK (Spectrum Digital Inc.) is a low-cost standalone development platform that enables
users to evaluate and develop applications for the TI C67xx DSP family. Thiscard is based on the
TMS320C6713 (Texas Instruments Inc.), which operates at 300 MHz, delivering 2400 million instruc-
tions and 1800 million floating-point operations per second. The DSK comes witha full complement of
on-board devices that suit a wide variety of application environments. Keyfeatures include:

1. A Texas Instruments TMS320C6713 DSP operating at 225 MHz

2. An AIC23 stereo codec

3. 8 MBytes of synchronous DRAM

4. 512 KBytes of non-volatile Flash memory

5. 4 user accessible LEDs and DIP switches

6. Software board configuration through registers implemented in CPLD

7. Configurable boot options

8. Standard expansion connectors for daughter card use

9. JTAG emulation through on-board JTAG emulator with USB host interface or external emulator

7
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Figure 2.1 –Prototype of the EyeRIS hardware component.

The DSP on the DSK interfaces with on-board peripherals, such as SDRAM, Flash memory, and CPLD,
through a 32-bit wide EMIF (External Memory Interface). This interface also connects daughter card
expansions (EDCI) which are used for third party add-in boards.

The DSP interfaces with analog audio signals through an on-board AIC23codec and four 3.5 mm
audio jacks (microphone input, line input, line output, and headphone output). The codec can select the
microphone or the line input as the active input. The analog output is drivento both the line out (fixed
gain) and headphone (adjustable gain) connectors. McBSP0 is used to send commands to the codec
control interface while McBSP1 is used for digital audio data. McBSP0 andMcBSP1 can be re-routed
to the expansion connectors in software.

A CPLD programmable logic device is used to configure some of the componentsof the DSK and
provide user input/output features. The CPLD has a register based user interface that lets the user con-
figure some of the settings of the board by reading and writing to its registers.

The DSK includes 4 LEDs and a 4 position DIP switch as a simple way to provide the user with
interactive feedback. Both are accessed by reading and writing to the CPLD registers.

2.2 Digital board

The system includes a digital interface specifically designed and developed in-house to acquire 32 I/O
simultaneous binary events (TTL-levels), record subject’s responses, and drive visual and acoustic warn-
ings. It acquires the general status of the eyetracker (some of the statussignals, such as blink and track,
are TTL compatible), and the input devices (a Playstation2-type joypad from Sony Inc.). This board is
designed to connect directly to C5000 and C6000 DSK platforms through theEDCI interface.

2.3 Analog/Digital conversion board

The system acquires the oculomotor signals generated by the eyetracker by means of a ADS8364 Eval-
uation Module (EVM) board which is built around a high-speed, low power, dual 16-bit A/D converter
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(Texas Instrument Inc.). The six fully differential channels allow simultaneous holding and sampling
on all six analog inputs at a maximum frequency of 250KHz. They can operate on mixed voltages (+/-
10V, +/- 5V, +/- 2.5V), which are normalized to the nominal A/D converter range by the analog front-end
circuitry. The EVM is designed to function with C5000 and C6000 DSK platforms through the EDCI
interface.

2.4 Video board

Stimuli and eye movements are visualized on a high refresh rate monitor by meansof a commercial
video board. Modern graphic boards perform most processing in hardware, enabling fast visualization of
computationally intensive displays. On the host computer, the system currently uses a RADEON 9800
XT AGP which can be considered a video board with high-level performance. Major characteristics
include:

1. Eight parallel rendering pipelines

2. Four parallel geometry engines

3. 256-bit DDR memory interface

4. AGP 8X support

5. Dual integrated 10-bit per channel 400 MHz DACs

6. Pixel Fill-rate: 3.3Gpixel/sec; Geometry Rate: 412Mtriangles/s

7. Max Refresh rate: 200Hz at 1152x864

8. Native OpenGL acceleration

The RADEON 9800 XT AGP presents a very good stability of the output signal that allows its use in
experiments of visual psychophysics. Signal instability is less than 0.1% (calculated at the 100 % of red
component).
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A number of processes run in parallel on the DSP by means of the Eyetracker Operative System 2
(ETOS2) (Active Perception Lab, Boston University), the proprietaryfirmware that acquires and pro-
cesses in real-time oculomotor data and subject responses.

3.1 Firmware fundamentals and operation modes

As illustrated in Figure 3.1, ETOS2 is responsible for the acquisition, preprocessing, and communication
of the oculomotor data and subject responses to the PC host. The firmware isbased on the DSP/BIOS
(Texas Instrument Inc.) version 2, which is a scalable real-time kernel designed for the TMS320C5000
and TMS320C6000 DSP platforms.

Because DSP/BIOS enables real-time applications to be cleanly partitioned, thefirmware is easy
to maintain and new functions can be added without disrupting real-time response. DSP/BIOS pro-
vides standardized APIs across C5000 and C6000 DSP platforms to support rapid application migration.
DSP/BIOS has been proved in thousands of customer designs and requires no runtime license fees.

The firmware can function in three different modalities:

1. When inidle mode, the firmware continuously polls the communication channel for new com-
mands. Data is not collected from the ADC, and no transfer to the PC is performed. The joypad is
active. Its status is acquired and transmitted (every 100ms) to the PC.

10
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Figure 3.1 –Real-time functioning of the system. The eyetracker signals and the subject responses are prepro-
cessed by the processing pipeline inside the DSP, and transferred to the PC in the very first stage of
graphic rendering.

2. Theraw modedisables all the data processing of the firmware, allowing the voltage values of the
six channels of the ADS8364 to be transmitted without analysis. The joypad is active, and its status
is transmitted (every 100ms) to the PC. This mode is activated and deactivated only by command
from the PC.

3. The firmware intrial modeperforms the processing of all six channels’ data, including voltage-
angle transformation, real-time tagging, and dropped frame counting and recording. This mode is
activated and deactivated only by command from the PC, and its current status is indicated by the
large red LED on the board.

3.2 Processing pipeline

When the firmware is in trial mode, all the data collected from the six A/D channelsare preprocessed
by a series of software tasks before being communicated to the PC host. Thissoftware component of
the DSP firmware is responsible for a variety of tasks related to data acquisition, digital filtering, data
transformation, and real-time verification. Samples pass through a pipeline formed by different tasks,
each of which can modify the received sample according to its particular function. For example, one
of these processes is responsible for transforming the data represented in voltages from the eyetracker
into angle units. Another task tags the data acquired in order to classify eye movements into saccades,
fixational eye movements, etc.

These are the stages (in order of execution) active in this version of the firmware:

1. Dropped Frames Detection Module (DFDM): This task detects if the PC is refreshing visual infor-
mation within the time constraints set by the refresh rate of the monitor.

2. Voltage-Angle Transformation Module (VATM): This task is responsible for transforming the input
voltages from the eyetracker into arc minutes of visual angle.

3. Eye Movements Tagging Module (EMTM): This task classifies the eye movements, obtained from
task VATM, into two different classes: saccades and fixations.
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Figure 3.2 –Real-time compliance of the stimuli visualized on the monitor is ensured by monitoring the flickering
of a small square displayed at the corner of the screen (a andd). If the system requires more than
one frame to update the stimulus, the flickering frequency ofthe square will be altered. Video
signals are measured in real time by a fast photodiode (b ande), and missing or additional frames
will be detected by measuring the temporal displacements between successive white squares (c and
f ). Trials with missing frames are automatically labeled andsignaled to the experimenter.

4. EMCD Variables Calculation Module (EVCM): This task calculates all the information regarding
the oculomotor data sampled from the eyetracker (included summary informationproduced by the
EMTM).

Each task produces information which is collected by the firmware and transfered to the PC. Once on the
host, the information is available to the user for further processing and recording.

3.2.1 Dropped Frames Detection Module (DFDM)

This task ensures real-time performance of the PC during the stimuli visualization. Contemporaneously
to the visual stimuli scheduled for the frames by the experiment, the low level software of the library (see
Chapter 4 for further details) places, every other frame, a small white square at the corner of the monitor.
The flickering of this square produces a specific signal (see Figure 3.2, linesb ande) which is sampled
by the system. If the calculation performed by the PC of the next frame requires more then the time set
by the monitor vertical refresh, the square will appear as delayed in the signal, disrupting its frequency.

Trials with missing frames are automatically marked by this task and signaled to the PCat the end
of the trial. The experimenter can request, through the low-level functions(see Chapter 4), a complete
report of the dropped frames and their temporal locations in the experiment.
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Figure 3.3 –Real-time identification of saccades. A real-time algorithm based on several parameters of oculomo-
tor signals compared well with respect to a human expert (HE). The mean error of classification over
400 s of recordings is about3.0%. EM signals (EM) represent horizontal and vertical components
of eye movements in a trial. Saccade labeling is shown on the bottom. Thex axis represents time in
ms.

3.2.2 Voltage-Angle Transformation Module (VATM)

The eyetracker outputs are proportional to the vertical and horizontal angles of the subject’s eye position.
The proportionality constants are an offset and a gain in each of the vertical and horizontal directions.
These constants are determined in the calibration procedure (see Chapter4 for further details), by per-
forming a linear regression to map between voltages and angles for a set ofstimulus points in known
positions on-screen.

The formulas for converting the raw eyetracker outputs to vertical and horizontal angles are:

posx = (voltagex + offsetx) ∗ gainx

posy = (voltagey + offsety) ∗ gainy

3.2.3 Eye Movements Tagging Module (EMTM)

The purpose of this task is to categorize and label eye-movements as saccade, blink, or fixation (relatively
slow motion) for the higher functions of the system. Data received by the algorithm is classified accord-
ing to past values and two thresholds of velocity and acceleration calculatedusing the three most recent
samples. Once the initial three values are received, each newly acquiredsample is labeled accordingly.

In order to label samples as blinks, the algorithm uses the blink status signal of the eyetracker. If a
blink event is detected, the next 100 samples will be labeled as blink without anyfurther calculations.

If the most recently received sample is not classified as blink, velocities andacceleration amplitudes
are calculated. The current sample is labeled by comparing the accelerationamplitude against a user
defined threshold. If label changes are detected during the classification, the corresponding velocities are
also compared against another user defined threshold to confirm the change of state. If the test fails, the
sample corresponding to the detected state change is automatically labeled as that of the previous sample.
This further test reduces the mislabeling in the tagging process which is sensitive to noise present in the



CHAPTER 3. FIRMWARE 14

velocity and acceleration variables. An example comparison of the output of the algorithm vs. human
tagged data is presented in the Figure 3.3.

3.2.4 EMCD Variables Calculation Module (EVCM)

This task calculates the set of oculomotor-related flags and variables that the user can link to conditions
for stimulus manipulation. During an experiment, the user is able to specify whichEMCD variable to
monitor and use them as events in EDL (see Chapter 5 for further details).

Using the transformed eyetracker signals and digital input data, this module produces single binary
events or analog output values that signal the occurrence of the specified condition. EMCD variables
can be used, for example, in experiments in which the position of gaze has exceeded a pre-specified
threshold, or a saccade has exceeded a user-specified amplitude.

These are the EMCD variables currently available in this version of the module:

1. Velocityx, Velocityy: These variables represent horizontal and vertical velocity (arcmin/s) of
the eye movements sampled by the eyetracker.

2. Accelerationx, Accelerationy: These variables represent horizontal and vertical acceleration
(arcmin/s2) of the eye movements sampled by the eyetracker.

3. Saccadeduration, Saccaceamplitude: This variable indicates the duration and the amplitude (re-
spectively inms andarcmin) of the saccade which has just ended. Their values are valid only at
the transition of the saccade/fixation signal generated by the EMTM module.

4. Fixation duration: This variable indicates the duration (inms) of a fixation which has just ended.
Its value is valid only at the transition of the fixation/saccade signal generated by the eye move-
ments tagging module.

3.3 Communication protocol

Commands and data between the DSP board and the host CPU are transferred in little-endian format
over the real-time communication protocol RTDX (Texas Instruments Inc.). Data transfer occurs on the
basis of a fault-tolerant master-slave communication protocol (the DSP assumes a slave role) accessible
through the low-level functions described in Chapter 4.

When the PC writes a command, the DSP executes it and signals either successor failure. The DSP
sends data to the PC both through synchronous replies to the commands and through periodical writing
data to the PC.

3.3.1 Conduits and packets

The communication protocol provides two conduits through which data and commands can flow. An
output conduit which carries commands and data from the PC to the DSP, andan input conduit that
carries data from the DSP to the PC. The underlying RTDX protocol guarantees that transmitted data
will arrive in-order, but not necessarily contiguously. Data on both conduits are organized in packets of
two different types: commands and data request sent by the PC (transported by the output conduit), and
DSP answers to the requests (transported by the input conduit). The general structure of a packet is the
following:
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ID SIZE COMMAND PAYLOAD

uint uint uint ...

• Packet identification(ID): Packets carry, as an unsigned 32-bit integer, a unique ID number gen-
erated by the PC. This number is then copied into the corresponding ACK packet, so the PC can
verify that the correct request’s response has arrived.

• Packet size(SIZE): This field holds, as an unsigned 32-bit integer, the size of the payload inunits
of 32-bit words. Applications that wish to transmit irregularly-sized data must pad the data to a
4-byte boundary before transmission.

• Packet command(COMMAND): This field holds, as an unsigned 32-bit integer, the description of
the information contained in the payload (see the following sections for a complete list of available
commands).

• Packet payload(PAYLOAD): This field holds the data that has to be transferred. The size of this
section is variable and depends on the command transmitted, but must be a multiple of four bytes.

3.3.2 Commands

COM DFDM GET COUNT

Request: ID 0 COM DFDM GET COUNT

Response:
ID 3 COM ET ACK COM DFDM GET COUNT Count

uint uint

This command requests from the DFDM the number of frames dropped duringthe last trial.

COM DFDM GET FRAMES

Request: ID 0 COM DFDM GET FRAMES

Response:
ID 2 + n COM ET ACK COM DFDM GET FRAMES Frame 0 Frame 1 ...

uint uint uint uint

This command requests from the DSP which frames have been dropped. The number of dropped frames
n is contained in the size of the message, while information about the dropped frames in contained in the
payload.

COM DFDM SET FRAMERATE

Request:
ID 1 COM DFDM SET FRAMERATE Frame rate

float

Response: ID 1 COM ET ACK

This command communicates to the Dropped Frames Detection Module the refreshrate of the monitor
(in Hz). Without the proper value, the module will not be able to detect dropped frames.
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COM DSP END RAW

Request: ID 0 COM DSP END RAW

Response: ID 1 COM ET ACK

This command communicates to the DSP to exit raw mode and enter idle mode. All modules of the
software pipeline are enabled by this command.

COM DSP END TRIAL

Request: ID 0 COM DSP END TRIAL

Response: ID 1 COM ET ACK

This command communicates to the DSP to exit trial mode and enter idle mode. All modules of the soft-
ware pipeline remain enabled, and contain valid data which can be retrieved at the end of the experiment.
The DIO board LED is turned off when this command is executed.

COM DSP PING

Request: ID 0 COM DSP PING

Response: ID 1 COM ET ACK

This command can be sent to the firmware to verify correct functioning of theboard and measure the
communication latency.

COM DSP START RAW

Request: ID 0 COM DSP START RAW

Response: ID 1 COM ET ACK

This command communicates to the DSP to enter raw mode. All modules of the software pipeline are
disabled by this command.

COM DSP START TRIAL

Request: ID 0 COM DSP START TRIAL

Response: ID 1 COM ET ACK

This command communicates to the DSP to enter trial mode. All modules of the softwarepipeline are
enabled and initialized, and the DIO board LED is turned on by this command.

COM EMTM SET THRESH

Request:
ID 4 COM VATM SET VAPARAMS Velocity Acceleration Amplitude Blink skip

float float float float

Response: ID 1 COM ET ACK

This command communicates to the DSP board the new thresholds which will be used by the EMTM
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module in the processing pipeline to classify eye movements in saccades and fixations. These parameters
include: velocity (arcmin/s), acceleration (arcmin/s2), amplitude (arcmin). It also possible to set the
number of samples ignored by the module after a blink of the subject.

COM ET DATA

ID 7 COM ET DATA Triggers Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6

uint float float float float float float

This command communicates to the PC the values collected by the ADC. These values are preprocessed
in the software pipeline if the firmware is in trial mode. Triggers are packed intoan unsigned 32-bit
integer, while channel data are represented as 32-bit floats.

COM JP DATA

ID 3 COM JP DATA Joypad data (9 bytes) Padding (3 bytes)

uint uint uint

Joypad data is also transmitted as soon as it is read from the joypad. Due to thelatency of the joypad,
this packet is transmitted every100 ms.

The Playstation joypad (Sony Inc.) can function in two different modes: analog and digital. Data
structure changes according to the modality of the joypad, and takes the following form:

Analog Mode:
Byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
1 Reserved
2 Reserved
3 Reserved
4 SLCT JOYR JOYL STRT UP RGHT DOWN LEFT
5 L2 R2 L1 R1 4 © × 2

6 Right Joypad: Left = 0x00, Right = 0xFF
7 Right Joypad: Up = 0x00, Down = 0xFF
8 Left Joypad: Left = 0x00, Right = 0xFF
9 Left Joypad: Up = 0x00, Down = 0xFF

Digital Mode:
Byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
1 Reserved
2 Reserved
3 Reserved
4 SLCT - - STRT UP RGHT DOWN LEFT
5 L2 R2 L1 R1 4 © × 2

The correct interpretation of this information is left to the supplementary classes included in the low-
level software (see Chapter 4).

COM VATM GET VAPARAMS

Request: ID 0 COM VATM GET VAPARAMS

Response:
ID 6 COM ET ACK COM VATM GET VAPARAMS Offset x Offset y Gain x Gain y

uint float float float float

This command requests the current V-A parameters (offset x and y, gainx and y) used by the VATM
module in the processing pipeline. The V-A parameters will be null if they havenot been set since the
last DSP boot.
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COM VATM SET VAPARAMS

Request:
ID 4 COM VATM SET VAPARAMS Offset x Offset y Gain x Gain y

float float float float

Response: ID 1 COM ET ACK

This command communicates to the DSP board the new V-A parameters (offset xand y, gain x and y,
expressed inarmin/V ) which will be used by the VATM module in the processing pipeline.
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Low-level software

Contents

4.1 Hardware/firmware mapping class . . . . . . . . . . . . . . . . . . . .. . . . . . . 19

4.2 Experiment management and system classes . . . . . . . . . . . .. . . . . . . . . 20

4.3 Graphic management classes . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 21

4.4 Input/Output management classes . . . . . . . . . . . . . . . . . . .. . . . . . . . 22

4.5 Additional classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 22

4.6 Examples of low-level software . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 23

4.6.1 Create a basic experiment . . . . . . . . . . . . . . . . . . . . . . . .. . . . 23

4.6.2 Create an experiment that displays stationary planes. . . . . . . . . . . . . . 24

4.6.3 Create an experiment in which planes track the subject’s eye movements . . . . 25

4.6.4 Create an experiment that responds to the keyboard andjoypad . . . . . . . . . 26

4.6.5 Save experiment data for offline analysis . . . . . . . . . . .. . . . . . . . . 28

4.6.6 Load recorded eyetracker data and play it back . . . . . . .. . . . . . . . . . 29

4.6.7 Do your own OpenGL rendering . . . . . . . . . . . . . . . . . . . . . .. . . 30

4.6.8 Display a scene that changes over time . . . . . . . . . . . . . .. . . . . . . 31

The Eye Movements Integrated Library (EMIL) (Active Perception Lab,Boston University) constitutes
the control center of the system and provides the foundation for the execution of real-time experiments.
Although accessible by users with programming expertise, this library remainshidden under the OOP
interface. Different classes of functions cover all the functionalities ofthe system.

4.1 Hardware/firmware mapping class

CDSP

The CDSP class provides a transparent interface to the physical DSP by completely hiding the com-
munication protocol, giving the appearance of the programmer commanding theDSP board directly.
Among the high-level commands provided by this class are functions for fetching eyetracker data from
the DSP, querying the joypad status, and calibrating the DSP. As more features are added to the DSP
program, new functions can easily be added to theCDSP class to reflect them into the EMIL library. This

19
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Figure 4.1 – Real-time functioning of the system. The eyetracker signals and the subject responses are pre-
processed by the DSP during a frame, and transferred to the PCin the very first stage of graphic
rendering. While the DSP continues to sample and process input signals, the CPU and video board
use available data during to design and render the display atthe next video frame.

class also implements a partial emulation mode, so that experiments can be tested without the physical
DSP connected, or recorded data can be replayed to recreate an old experiment.

4.2 Experiment management and system classes

These classes provide the framework within which experiments will be designed. They specify the way
in which input devices will be used, which oculomotor events to respond to, and how to modify the
stimulus accordingly. Some routines also control the proper functioning of the system by handling sys-
tem initialization, opening and managing communication channels, assessing real-time compliance, and
executing the proper shutdown of the system.

CEnvironment

CEnvironment is the class that ties all lower-level functions together. It handles system initializa-
tion, where it commands theCDSP class to open a communication channel, andCScene to ready the
display for drawing. It manages a list ofCExperiments, which it runs in sequence, passing key-
board, mouse, joypad, and render events into the running experiment.CEnvironment also fetches
eyetracker and joypad data from theCDSP object, and passes those data into the current experiment for
processing. Finally,CEnvironment handles system shutdown, in which experiment objects are de-
stroyed, DSP communication terminated, and the display returned to default settings. This class allows
the main function in an EMIL program to be extremely short, using only a few commands to create the
CEnvironment, populate it with experiments, and activate it, with everything else handled by the class.
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CExperiment

TheCExperiment class provides a framework within which real experiments may be written. This
class handles the rendering of planes and the photocell marker, as well as movie recording. To write a
custom experiment, the programmer must inherit fromCExperiment, and overload whichever event
methods he deems necessary - keyboard, mouse, joypad, and render.The render event is central, as it
receives eyetracker data, and also manipulates theCPlanes to be drawn in the next frame. The ability
to respond to input devices as well as changing eye movements makes this class extremely flexible. Ad-
ditionally, experienced programmers may elect to forgo the use ofCPlanes for drawing and implement
their own OpenGL rendering commands, meaning that anything that the computer is capable of drawing
can be used as a stimulus, without altering the basic experiment structure.

4.3 Graphic management classes

The graphic engine of the system is built on top of OpenGL. It consists of two levels, with the lower level
directly interacting with the video card to take advantage of its accelerated hardware features. While ex-
perienced programmers are be able to add their own OpenGL code to implementnew features, system
graphic functions enable creation, manipulation and rendering of visual stimuli without explicitly calling
OpenGL routines. Access is given to all basic graphic parameters, including frame rate, display resolu-
tion, and units of measurement of visual space.

CScene

TheCScene class exists to handle the setup and maintenance of EMIL’s OpenGL context.Its tasks
include resolution and frame rate switching, the printing of on-screen text, and the registration and rout-
ing of event callbacks (keyboard, mouse, frame).

COGLHal

CScene also utilizes the lower-level classCOGLHal (OpenGL Hardware Abstraction Layer) that per-
mits movement of the EMIL system across video cards with different capabilities. COGLHal handles
the checking of OpenGL extensions, and interfaces with some video-cardspecific features, such as the
toggling of the vertical sync.

CPlane

CPlane is the basic drawing primitive of EMIL. It permits a client program to manipulate basic stimuli
without any explicit OpenGL code.CPlanes can be translated and scaled with single commands, and
can use bothpixels andarcmin units, making precise alignment to on-screen objects or eye positions
trivial. CPlane can natively display only solid colors.

CTexture

TheCTexture class exists to allow aCPlane to display an image loaded from disk and generated
by other programs. Currently,CTexture supports the BMP and Targa image formats.



CHAPTER 4. LOW-LEVEL SOFTWARE 22

4.4 Input/Output management classes

These classes provide the basic tool for storing and exchanging data. They are responsible for: (a) Stor-
ing and retrieving experimental data in the EMIL format, which enables replaying experimental trials.
(b) Generating movies of the stimulus and the experiment. It is possible to displayin the movie the
position of gaze as well as the values of the selected EMCD variables.

CDSPDataStreams

An auxiliary set of classes, collectively calledCDSPDataStreams, exist to facilitate saving and load-
ing of eyetracker data for this purpose. These classes are easily extensible to provide new data-handling
capabilities; for instance, the buffering of eyetracker data for later analysis, or the streaming of such data
over a network connection.

CTaggedFile

CTaggedFile is a general-purpose tagged file format written specifically to be used within the EMIL
framework. It records binary data in a set of records, each with a tag containing arbitrary user-defined
meta-data. A client program can efficiently search these tags for requested data. This format is used for
the saving of old eyetracker data for playback, and the recording of calibration parameters to disk, and is
extensible to many other uses.

CMovieSaver

CMovieSaver is an auxiliary class that uses thelibavformat andlibavcodec libraries (LGPL
license) to record an on-screen experiment to a movie file. Movie recording is fairly slow, and is bound
by the speed of the machine it runs on, so this class is most effectively usedon pre-recorded data sets
that can be played back at leisure.

4.5 Additional classes

These classes provide additional functionality to EMIL. They can be usedto provide: (a) automatic or
refined manual calibration of the eyetracker. (b) interpretation of the joypad events.

CCalibrator

This class, which derives fromCExperiment, exists to provide an automatic calibration of the eye-
tracker. It determines the linear mapping parameters that the DSP pipeline will use to convert raw eye-
tracker outputs into arcminutes of vertical and horizontal visual angle.

It works by displaying nine points on-screen sequentially, with the subjectinstructed to fixate on
each one as it appears. The points are arranged in a square, with one point at screen center, two along
each coordinate axis, and one in the corner of each quadrant.

To make the calibration, the PC instructs the DSP to transmit raw voltage data, thendisplays the
points. At each point, the PC records data until it decides that the subject’seyes are fixated, then av-
erages a set of 3500 data points to interpolate the point location in voltage space. Once all nine points
are recorded, linear regressions are calculated in the X and Y directions, and the resulting calibration
parameters transmitted to the DSP.
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CManualCalibrator

The automatic calibration implemented byCCalibrator is not perfect, and can suffer systematic
errors from optical aberrations in the experimental setup and computational errors in locating the point
centers.CManualCalibrator is an experiment that allows the subject to manually adjust the cali-
bration parameters in real-time.

This experiment first places the DSP in raw mode, and activates functionalitythat allows the PC
library to emulate the DSP’s calibration. The subject is then presented with all nine points from the auto-
matic calibration at once, along with a visual marker that indicates where the system believes the subject
to be looking. The subject can fixate on the center point, and if the visual marker does not coincide
with the point, use the system’s joypad to adjust the offset parameters until they line up. The subject
can then saccade to the other calibration points, and adjust the gain parameters until those points line up
with the visual marker as well. Once the subject deems the calibration complete, thenew parameters are
transmitted to the DSP.

CPS2 JoypadParser

CPS2 JoypadParser is an auxiliary class that interprets the data coming from a PS2 joypad (Sony
Inc.). This class supplies the user with a high level interface to the events generated by this kind of joypad.

CDestroyer JoypadParser

CDestroyer JoypadParser is an auxiliary class that interprets the data coming from a basic joy-
pad (4 buttons analog joypads). This class supplies the user with a high level interface to the events
generated by this kind of joypad.

4.6 Examples of low-level software

4.6.1 Create a basic experiment

Every EMIL experiment must conform to a template in order to function properly. The experiment shown
below can serve as such a template. When run, this experiment will simply do nothing, and can only be
exited by pressingESC, which will exit EMIL altogether.

classExperimentBody: public CExperiment{
public :
// Set up the experiment. pxWidth and pxHeight should be set to the desired pixel
// width and height of the screen, and RefreshRate should be passed the desired refresh
// rate (in Hz) of the monitor.
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

// These functions handle EMIL events
void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples) {}
void eventJoypad() {}

};
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ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

4.6.2 Create an experiment that displays stationary planes

The simplest object that EMIL can draw is a solid-color plane. EMIL provides theaddPlane functions
to simplify the creation of planes, and a number of functions for their manipulation. This experiment
will render a single red plane in the center of the screen. EMIL can also display a plane that is painted
with an image loaded from a file on-disk. This experiment will also display a textured plane.

classExperimentBody: public CExperiment{
public :
// Set up the experiment. pxWidth and pxHeight should be set to the desired pixel
// width and height of the screen, and RefreshRate should be passed the desired refresh
// rate (in Hz) of the monitor.
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

// These functions handle EMIL events
void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples) {}
void eventJoypad() {}

// These functions are for general set-up and clean-up
void initialize();

protected :
// Pointers to our planes
CPlane∗ m solid plane;
CPlane∗ m texturedplane;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Create the solid plane. The three arguments to the function are red, green, and blue components,
// and their range is 0-255.
m solid plane= addPlane(255, 0, 0);

// Set the position of the plane. (0, 0) is the center of the screen, and the ranges of the arguments
// are (-mpxWidth/2, mpxWidth/2), and (-mpxHeight/2, mpxHeight/2)
m solid plane→ SetPositionPixels(0, 0);

// Set the size of the plane.
m solid plane→ SetSizePixels(100, 100);

// Now, create the textured plane and set its size and location
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m texturedplane= addPlane(”MyImage.bmp”);
m texturedplane→ SetPositionPixels(0, 200);
m texturedplane→ SetSizePixels(100, 100);

}

4.6.3 Create an experiment in which planes track the subject’s eye movements

One of EMIL’s advantages is the ease with which one can cause a displayed image to track the subject’s
eyes. The code below accomplishes just this, causing a small red dot to follow the subject’s eyes around
the screen.

classExperimentBody: public CExperiment{
public :
// Set up the experiment. pxWidth and pxHeight should be set to the desired pixel
// width and height of the screen, and RefreshRate should be passed the desired refresh
// rate (in Hz) of the monitor.
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

// These functions handle EMIL events
void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples);
void eventJoypad() {}

// These functions are for general set-up and clean-up
void initialize();
void finalize();

protected :
CPlane∗ m plane;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Create the dot - a red plane, 2 pixels on a side.
m plane= addPlane(255, 0, 0);
m plane→ SetPositionPixels(0, 0);
m plane→ SetSizePixels(2, 2);

// Here we place the DSP in trial, or data-collecting mode. Ifwe did not do this, the
// DSP would not give us any data form the eyetracker
m DSPEngine→ StartTrial();

}

void ExperimentBody:: finalize()
{

// Tell the DSP to stop collecting data now that we are finished
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m DSPEngine→ EndTrial();

CExperiment:: finalize();
}

// This event is called every time EMIL is preparing to rendera frame. It can be used to
// move planes around, do on-line data processing, or even execute raw OpenGL commands.
void ExperimentBody:: eventRender(int FrameCount, int NumSamples, const float ∗ Samples)
{

// These variables will store the on-screen position of the dot.
float xPos, yPos;

// Multiple eyetracker samples may be transmitted in a single frame, but we will ignore
// all but one in this experiment. The data we are receiving isstored in Samples, in the
// format [X, Y, triggers]. First, we must check that we received data at all.
if (NumSamples== 0) return ;

// Because we may receive multiple position data per frame, we will ignore all but the most recent
// here. The X- and Y-values we want are stored in Samples[3*(NumSamples-1)] and
// Samples[3*(NumSamples-1)+1], respectively
// However, because the eyetracker transmits X- and Y- positions in units of arcmin, we must convert
// to pixels for display.

// This function call fetches the current converter, which is an object designed to handle
// several types of necessary coordinate transformations.In this case, we use the ’a2p’
// function, which transforms angles as transmitted by the DSP into pixel positions on-screen.
m Environment→ getConverter().a2p(Samples[3 ∗ (NumSamples− 1)],

Samples[3 ∗ (NumSamples− 1) + 1], xPos, yPos);

// Now that we know which pixel position the subject is looking at, we can simply move the plane there.
m plane→ SetPositionPixels(xPos, yPos);

}

4.6.4 Create an experiment that responds to the keyboard andjoypad

Often experiments require to use input devices to affect what is being displayed, and what is being
processed. EMIL provides functions to receive input events from thekeyboard, mouse, and joypad. This
experiment will demonstrate proper usage of this functionality.

For demonstration purposes, this example will have the following features:

• Pressing theP key will activate or deactivate the photocell

• Pressing theQ key will end the experiment

• Pressing theSPACE bar will ping the DSP

• Pressing theR1 button on the joypad will show or hide the joystick tracers

• Moving the right joystick will cause a small dot to move on-screen, unless deactivated
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classExperimentBody: public CExperiment{
public :
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

void eventKeyboard(unsigned charkey, int x, int y);
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples) {}
void eventJoypad();
void initialize();
void finalize();

protected :
// The plane that will trace the joystick’s movements
CPlane∗ m plane;

// Indicate whether the joystick tracer is to be shown or hidden
boolm show tracer;

// Indicate whether the photocell is being displayed
boolm showphotocell;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Create the tracer dot - a blue plane, 4 pixels on a side.
m plane= addPlane(0, 0, 255);
m plane→ SetPositionPixels(0, 0);
m plane→ SetSizePixels(4, 4);

// Start out by displaying the tracer and the photocell
m showtracer= true ;
m showphotocell= true ;

}

void ExperimentBody:: eventKeyboard(unsigned charkey, int x, int y)
{

switch (key) {
case′p′ : // If the ’p’ key was pressed, turn on or off the photocell

m showphotocell= !m showphotocell;
if (m showphotocell)

activatePhotocell();
else

deactivatePhotocell();
return ;

case′ ′ : // If the space bar is pressed, ping the DSP
m DSPEngine→ Ping();
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return ;
}

}

void ExperimentBody:: eventJoypad()
{

// Next, grab the position of the right joystick
float jX = m joypad.getJoystickStatus(CPS2JoypadParser:: JPAD JOYSTICK RIGHT H);
float jY = m joypad.getJoystickStatus(CPS2JoypadParser:: JPAD JOYSTICK RIGHT V );

// Now, calculate where on-screen to display the tracer
float x = (float (jX ) − 128)/255.0f ∗ m pxWidth;
float y = (float (jY ) − 128)/255.0f ∗ m pxHeight;

// Move the tracer there
m plane→ SetPositionPixels(x, y);

// Now, check whether the trigger button was pressed in the last frame
if (m joypad.getButtonPressed(CPS2JoypadParser:: JPAD BUTTON R1)){

// If the tracer is currently visible
if (m showtracer){

// Make the tracer invisible
m plane→ Hide();
m showtracer= false;

}
else{

// If the tracer is currently not visible
// Make the tracer visible again
m plane→ Show();
m showtracer= true ;

}
}

}

4.6.5 Save experiment data for offline analysis

EMIL has built-in the capability to record and save raw data from the DSP to a file for off-line analysis
with Matlab (Mathworks Inc.) or other analysis tool. This experiment simply runs until the user presses
Q, then writes out data it has recorded to a file.

classExperimentBody: public CExperiment{
public :
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples) {}
void eventJoypad() {}
void initialize();
void finalize();

private :
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// This object handles the file output
COutFileDSPDataStreammoutData;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Tell the DSP engine to direct its output to the stream
m DSPEngine→ SetOutputStream(&m outData);

// Start fetching data from the DSP
m DSPEngine→ StartTrial();

}

void ExperimentBody:: finalize()
{

// Tell the DSP to stop collecting data
m DSPEngine→ EndTrial();

// Write the stream data out to EMIL’s native file format
m outData.write(′′data.dat′′);

// Write the same data out to matlab format
m outData.writeMatlab(′′channel1.dat′′, ′′channel2.dat′′, ′′channel3.dat′′);

CExperiment:: finalize();
}

4.6.6 Load recorded eyetracker data and play it back

Another basic capability of EMIL is to operate without the physical DSP. Thisis accomplished by loading
saved trial data into the DSP engine and placing it in emulation mode. In this mode, all commands given
to the DSP engine are intercepted before reaching the physical DSP, andsome commands (fetch data, for
one) are emulated.

classExperimentBody: public CExperiment{
public :
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples) {}
void eventJoypad() {}
void initialize();
void finalize();

private :
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// This object handles the file input
CInFileDSPDataStreamminData;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Load the file data into our stream object. This load commandexpects a file
// in EMILs native file format. For other suported formats, see the CDSPDataStream
// header file.
m inData.load(′′data.dat′′);

// Place the DSP in emulation mode, and tell it to receive datafrom the input stream.
m DSPEngine→ enterEmulationMode();
m DSPEngine→ SetInputStream(&m inData);

}

4.6.7 Do your own OpenGL rendering

EMIL’s emphasis on ease of use has come at the price of flexibility in some areas. The built-in support
for plane rendering is adequate for many experiments, but some applications require finer control. EMIL
allows users to write their own OpenGL commands directly into their experiments. We will illustrate this
technique and point out a few pitfalls to be avoided. This experiment will rununtil theQ key is pressed,
and draw triangles in OpenGL on top of and below an EMIL-rendered plane.

classExperimentBody: public CExperiment{
public :
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples);
void eventJoypad() {}
void initialize();
void finalize();

private :
CPlane∗ m plane;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();
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// Create the central red plane
m plane= addPlane(255, 0, 0);
m plane→ SetPositionPixels(0, 0);
m plane→ SetSizePixels(150, 150);

}

void ExperimentBody:: eventRender(int FrameCount, int NumSamples, const float ∗ Samples)
{

// The OpenGL setting in place when this function is called is:
// gluOrtho2D(-mpxWidth / 2, mpxWidth / 2, -mpxHeight / 2, mpxHeight / 2);
// Feel free to change it as you see fit, but CHANGE IT BACK BEFORE THE FUNCTION
// EXITS. Later system rendering will be corrupted if the view is changed.

// First, render the big blue triangle that will go on the bottom
glColor3f(0, 0, 1);
glBegin(GL POLY GON);

glVertex2f(0, 300);
glVertex2f(300, − 300);
glVertex2f(−300, − 300);

glEnd();

// Next tell EMIL to render its own planes. If this is not done,then the
// planes are rendered after this function exits, which is fine for most
// applications, but will overwrite any user rendering donein this function.
// Call renderPlanes() before any user rendering that should not be overwritten.
renderPlanes();

// Now, draw the small green triangle on top
glColor3f(0, 1, 0);
glBegin(GL POLY GON);

glVertex2f(0, 50);
glVertex2f(50, − 50);
glVertex2f(−50, − 50);

glEnd();
}

4.6.8 Display a scene that changes over time

Experiments are often passive, collecting data for background analysiswhile preprogrammed stimuli
appear on-screen. EMIL’s built-in timer class can be used to easily updatethe display in real-time, or
after a delay. This example displays a square that shift position every 1 second.

classExperimentBody: public CExperiment{
public :
ExperimentBody(int pxWidth, int pxHeight, int RefreshRate);

void eventKeyboard(unsigned charkey, int x, int y) {}
void eventMouse(int x, int y) {}
void eventRender(int FrameCount, int NumSamples, const float ∗ Samples);
void eventJoypad() {}
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void initialize();

private :
CPlane∗ m plane;
// The timer we will use
CTimermtimer;
// The current position of the plane
float m planePosition;

};

ExperimentBody:: ExperimentBody(int pxWidth, int pxHeight, int RefreshRate) :
CExperiment(pxWidth, pxHeight, RefreshRate)

{}

void ExperimentBody:: initialize()
{

CExperiment:: initialize();

// Start out with the plane on the left-hand side of the screen
m planePosition= −m pxWidth/4;

// Create the plane and position it
m plane= addPlane(255, 255, 255);
m plane→ SetPositionPixels(m planePosition, 0);
m plane→ SetSizePixels(150, 150);

// Set the timer to expire in 1 second ans start the timer
m timer.setDuration(1000);
m timer.restart();

}

void ExperimentBody:: eventRender(int FrameCount, int NumSamples, const float ∗ Samples)
{

// Check whether the timer has expired
if (m timer.isExpired()){

// Restart the timer
m timer.restart();

// Move the plane around
m planePosition+ = m pxWidth/4;
if (m planePosition> m pxWidth/4)
m planePosition= −m pxWidth/4;

// Move the plane to its new position
m plane→ SetPositionPixels(m planePosition, 0);

}
}
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The Experiment Description Language (EDL) (Active Perception Lab, Boston University) is a program-
ming language for describing psychophysical vision experiments in a compact, clear format. It makes
it possible for experimenters without deep programming experience to write complicated experiments
using the full power of EMIL’s display and real-time interaction.

EDL programs, which describe the experimental procedure to perform, are implemented as Finite
State Machines (FSMs), in which a set of states, each identifying a unique phase of the procedure, is
connected by a set of conditions that regulate the transitions among states.

5.1 A very simple EDL program

The simple program below shows a EDL program which will just print out a message. Although the
program is very simple, a few points are worthy of note:

• Most EDL programs are in lower case letters. As matter of fact, EDL is a case-sensitive language,
that is, it recognizes a lower case letter and its upper case equivalent asbeing different.

33
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• Comments are often added to make a EDL program more readable. The slash/star (/* .. */)
combination is used in EDL for comment delimiters. The first slash star combinationintroduces
the first comment and the star slash at the end of the first line terminates this comment. EDL
supports also // as an inline comment, as it can be used on any line and is delimited by the newline
character (return).

• Every EDL program contains a state declaration calledbegin, and it represent the starting point
of the program. The two curly brackets after the declaration of the statebegin represent the
beginning and end of the state. Curly brackets in EDL are used to group statements together. Such
a grouping is known as a compound statement or a block.

• Upon entering the statebegin, theenter event is triggered, and its code executed. The first
command in this example prints the string “Hello, world!”.

• Unlike in other programming languages, the statement that ends the program has to be clearly
stated. In fact, the other command present in the program, the instructionjump, is an uncondi-
tional state transition to the final default stateend. This state is a placeholder state that causes
program termination when jumped to.

statebegin{
evententer{

// Print out a greeting
print(“Hello, world!”);

/* Quit the program. This type of comment can
be extended to more than one line */
jump(end);

}
}

5.2 Basic elements of EDL

5.2.1 Names in EDL

Before you can do anything in any language, one must know how to name anentity. An identifier is
applied to all variables, states, event handlers. In EDL, an identifier is a combination of alphanumeric
characters, the first being a letter of the alphabet or an underscore character, and the remainder consists
of letters of the alphabet, digits, and underscore. EDL recognizes upper and lower case characters as
being different. Finally, one is not allowed to use EDL’s keywords as variable names. Examples of legal,
unique variable names include:

x result movement amplitude
x1 x2 out file max amplitude

POWER Power Gamma Power
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5.2.2 Constant and variable types

Variables

In EDL, a variable must be declared before it can be used. Variables can be declared at the beginning of
a state, in which case they arelocal variables, or at the beginning of the EDL program, in which case
they areglobal variables.

A declaration begins with the type, followed by the name of the variable. It canalso be initialized
when it is declared, which is done by adding an equals sign and the required value after the declaration.
EDL provides a useful range of types, such asinteger, float, string, andboolean. Variables
may be left uninitialized, in which case integers and floats will default to0, strings to the empty string
“”, and booleans tofalse. For example:

integer a; // Integer variables can assume values−231 through+231 − 1
float b = 0.5; /* Float variables can assume values−1.79E + 308 through1.79E + 308 */
string c = “Hello” ;
booleand = true ; // Boolean variables can assume only valuestrue andfalse

If the definition of a variable is preceded by the keywordconst, the assigned value to the variable
cannot be modified inside the program. For example:

const integerfive = 5;
const stringname = “J. Random Hacker” ;
const floatpi = 3.14159;
const booleanfoo = true ;

Images and vectors of images

A special type of constant identifier isimage, and its vector formmultiImage. A constant of type
image binds the name of the constant to a file which contains the image itself, and it is used to display
images during an experiment without referring directly to the physical position on the PC.
An constant of typemultiImage, instead, is a container that may hold any number of images, only
one of which can be displayed at a time. The particular image to be displayed can be chosen by index or
randomly.
A noisy modifier can be applied to bothimage andmultiImage. This form will apply random gray
noise selected uniformly between the highest and lowest gray values in each image. The argument of the
noisy modifier is an integer between0 and100 indicating the percentage of image pixels to replace with
noise.

imagex(“picture.tga”);
noisy (50)imagey(“picture.tga”); // 50% replaced by noise
multiImage z(“p1.tga” , “p2.tga” , 5, “p3.tga”);
/* multiImage holding one copy each of p1 and p3, and 5 copies of p2 */
noisy (20)multiImage w(“p6.tga” , 10); // multiImage with random noise applied

It is possible to select particular images withinmultiImage to be displayed (for further details see
reference in Section 5.5):

display(my imagevector(2));
display(my nimagevector(4));

where the index of the vector must be an integer less than the size of the vector (i.e. counting from zero).
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5.2.3 Expressions, operators, and built-in constants

Assignment Statement

The easiest example of an expression is the assignment statement. An expression is evaluated, and the
result is saved in a variable:

y = (m ∗ x) + c;

This assignment will save the value of the expression in variabley.

Arithmetic operators

EDL introduces a number of common arithmetic operators for each type of variable:
Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo reduction (remainder from integer division)

Multiplication, division, and modulo reduction will be performed before addition or subtraction in any
expression. Brackets can be used to force a different order of evaluation to this. Where division is
performed between two integers, the result will be an integer, with remainderdiscarded. Operations
between integers and floats will result in automatic casting of the integer to a float. Modulo reduction
is only meaningful between integers. If a program is ever required to divide a number by zero, this will
cause an error.

Comparison

EDL, like other programming languages, has operators to compare variables and constants:
Operator Description
== Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to

Note that == is used in comparisons and = is used in assignments. Comparison operators are used in
expressions like:x == y, i > 10, a + b != c. In the last example, all arithmetic is done before any
comparison is made.
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Logical Connectors

EDL allows to combine conditions using relational operators:
Operator Description
&& And
|| Or
! Not

In EDL these logical connectives employ a lazy evaluation technique. Theyevaluate their left hand
operand, and then only evaluate the right hand one if this is required. Clearly, false&& <anything> is
alwaysfalse, true || <anything> is alwaystrue. In such cases the second test is not evaluated.
Here is an example of the use of logical connectors:

booleanResult= (x < 20) && (x >= 10);

if (!Acceptable|| y < 10)
print (“Not Acceptable”);

Built-in functions

Some common mathematical functions are accessible through EDL.

Floating-Point functions:
Function Description

floor(x)
Calculates the floor (greatest integer less than or equal to) value of a
number

ceil(x)
Calculates the ceiling (smallest integer greater than or equal to) value of
a number This is the result of rounding up

sqrt(x) Calculates the square root of a floating-point number
abs(x) Takes the absolute value of an integer
fabs(x) Takes the absolute value of an floating-point

rand(x, y)
Generates a pseudo-random number within x and y from a uniform dis-
tribution

round(x) Calculates the closest integer in value to the argument

Logarithmic functions:
Function Description
exp(x) Calculates the exponential function value of a floating-point number
log(x) Calculates the natural logarithm (base e) of a floating-point number
log10(x) Calculates the common logarithm (base 10) of a floating-point number
pow(x, y) Calculates the value of x raised to the power of y,xy
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Trigonometric functions:
Function Description
cos(x) Calculates the cosine of a floating-point number, in arcmin
sin(x) Calculates the sine of a floating-point number, in arcmin
tan(x) Calculates the tangent of a floating-point number, in arcmin
acos(x) Calculates the arccosine of a floating-point number, in arcmin
asin(x) Calculates the arcsine of a floating-point number, in arcmin
atan(x) Calculates the arctangent of a floating-point number, in arcmin

Strings

EDL supports also some basic operations on the strings:

Function Description
length(s) Returns the number of characters in a string
empty(s) Tests whether a string contains no characters
clear(s) Forces a string to have 0 length
getAt(s) Returns the character at a specified position
setAt(s) Sets a character at a specified position
compare(s1, s2) Compares (lexicographic order) two strings (case sensitive)
compareNoCase(s1, s2) Compares (lexicographic order) two strings (case insensitive)
extract(s, b, l) Extracts thel characters of a string beginning from positionb
makeUpper(s) Converts all the characters in the string to uppercase characters
makeLower(s) Converts all the characters in the string to lowercase characters
format(f, a1, a2, ...) Format the string (refer to the command sprintf of C)
find(c, s) Finds a character or substring inside a larger string
reverseFind(c, s) Finds a character inside a larger string; starts from the end

Built-in EMCD variables

Some useful read-only integer and boolean variables are provided by EDL during the execution of an
experiment:

Variable Description
pos h Current horizontal eye position
pos v Current vertical eye position
vel h Current horizontal eye position velocity
vel v Current vertical eye position velocity
acc h Current horizontal eye position acceleration
acc v Current vertical eye position acceleration
jpad LH Horizontal position of the left joypad joysticks (PS2 joypads)
jpad LV Vertical position of the left joypad joysticks (PS2 joypads)
jpad RH Horizontal position of the right joypad joysticks (PS2 joypads)
jpad RV Vertical position of the left joypad joysticks (PS2 joypads)
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Variable Description
saccade amplitude Amplitude of last saccade
saccade duration Duration of last saccade
fixation duration Duration of last fixation
in blink true if the subject is in a blink
in saccade true if the subject is in a saccade

5.3 Entity statements

5.3.1 States

A EDL program may consist of many states, each corresponding to a singlestage of the experiment.
At any point in time, a running program is in a single state, which defines all program behavior at that
instant. For example, one state may display a fixation dot, while the next displaysa stimulus that is
stabilized to the subject’s eyes, while a third counts saccades.

Each state is characterized by its name, a set of local variables, and a setof event handlers:

state < name> {
< local variable declarations>

< event handler 1>
< event handler 2>
< event handler 3>
...

}

In any EDL program,beginandendstates represent the initial and final state of the experiment. The state
beginmust be always defined, while it is illegal to define a state namedend(it is a placeholder provided
by the EDL runtime).

5.3.2 Event and Event handlers

When certain system event occur or conditions are satisfied, EDL asserts that aneventhas occurred, and
searches the current state for a corresponding event handler to execute. Anevent handlerconsists of a
list of EDL commands, related to the event is executed sequentially. Each statepossesses a certain set of
handlers which are active only when that state is active. Only one event handler at the time can be active.

The general EDL form for an event handlers is as following:

event < event name> (< arguments>) {
< command list>
...

}
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5.4 Flow-control statements

if-else

The if-else statement is a two-way decision statement. Its general form is:

if (< condition>)
< EDL command 1>
else
< EDL command 2>

The else portion is optional. If the<condition> evaluates totrue then<EDL command 1> is executed.
If there is anelse statement and the<condition> evaluates tofalse <EDL command 2> is executed.
EDL commands are terminated by a semicolon “;”, and can grouped into blocks by enclosing them in
curly brackets. For example:

if (p == 1)
r = p ∗ 2 + q;

if (p == 1) {
r = p ∗ 2 + q;
p = p ∗ 2;

}

if (p == 1) {
r = p ∗ 2 + q;
p = p ∗ 2;

} else{
r = p ∗ 3 + q;
p = p ∗ 3;

}

Because the statement in theelse part can also be anif statement, a construct such as shown below is
possible EDL to create a multiple choice construct.

if (< condition 1>)
< EDL command 1>

else if(< condition 2>)
< EDL command 2>

else if(< condition 3>)
< EDL command 3>

else if(< condition 4>)
< EDL command 4>
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5.5 Reference

5.5.1 Events

Blink end

Handler : event blinkEnd {}
Arguments : none

The eyetracker asserts a blink signal when it loses track of the subject’seye and detects an eyelid instead.
The DSP board reports the status of this signal, and EDL activates the event handler in the current state
when the signal falls (if the handler has been defined).

Blink start

Handler : event blinkStart {}
Arguments : none

The eyetracker asserts a blink signal when it loses track of the subject’seye and detects an eyelid instead.
The DSP board reports the status of this signal, and EDL activates the event handler in the current state
when the signal rises (if the handler has been defined).

Enter into state

Handler : event enter {}
Arguments : none

Called before other state event handlers are activated.

Exit from state

Handler : event exit {}
Arguments : none

Called after current state event handlers are deactivated, but before the next state’senter event is
triggered.

Joypad events

Handler : event joypad(<button>, <status>) {}
Arguments :

<button> Identification of the joypad’s button
<status> on or off

When joypad’s buttons are pressed or released, the event handler in the current state is triggered. The in-
dicated button must belong to the set{L1, L2, R1, R2, UP, DOWN, LEFT, RIGHT, TRIANGLE, SQUARE,
CIRCLE, X, START, SELECT, JOYL, JOYR}. The second argument indicates whether the event should
be triggered when the button is pressed (on) or released (off).
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Saccade end

Handler : event saccadeEnd {}
Arguments : none

When the board tags the end of a saccade, EDL triggers this type of eventhandler in the current state (if
previously defined).

Saccade start

Handler : event saccadeStart {}
Arguments : none

When the board tags the beginning of a saccade, EDL triggers this type of event handler in the current
state (if previously defined).

Timer events

Handler : event timer(<timer ID>) {}
Arguments :

<timer ID> Identification number of the timer

When the timer with the specified identification expires, the event handler in the current state is triggered.
Timer events are local to the current state, and are deleted when a state transition occurs.

5.5.2 Commands

break

Forms : break
Arguments : none

break;
This command stops the execution of the current event handler.

destabilize

Forms : destabilize(<image>)
Example : destabilize(my image); destabilize(my multiImage);
Arguments :

<image> Image to stabilize

This command turns off stabilization for the indicated image. The image will be left at the last position
of the subject’s eyes, shifted by the offset if defined in the stabilize command. If the indicated image is
already destabilized, this command has no effect.

display

Forms : display(<h>, <v>, <image>)
Example : display(0 px, 0 px, my image);
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Arguments :
<h> Horizontal coordinates
<v> Vertical coordinates
<image> Image variable to display

Displays the specified image or images at the specified location. Coordinates can be indicated in ar-
cminutes (arcmin), degrees (deg), or pixels (px). If the image is already displayed, it is moved to the
specified location. If the indicated image object is amultiImage, an image is selected at random from
its set and displayed.

hide

Forms : hide(<image>)
Example : hide(my image); hide(my multiImage);
Arguments :

<image> Image variable to hide

This command hides the indicatedimage, ormultiImage. If it is already hidden, this command has
no effect. If anmultiImage is displayed by index, one hides it by calling the command on the entire
variable.

jump

Forms : jump(<state>);
Example : jump(end);
Arguments :

<state> Name of the state destination

This command causes the EDL to jump to the specified state. EDL will perform the following sequence
of operations:

1. Trigger the current state’sexit event

2. Deactivate the current state’s event handlers

3. Trigger the next state’senter event

4. Activate the next state’s event handlers.

print

Forms : print(<argument1>, <argument2>, ...)
Example : print(7, ‘‘ate’’, x != 5); print(<state>); print(<image>);
Arguments :

<argument> Any kind of EDL entity

This command prints on the console any EDL literal or variable in a human-readable form. Comma-
separated arguments are printed with spaces separating them. Eachprint command prints a newline after
its arguments. An empty commandprint() simply prints a newline.
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setTimer

Forms : setTimer(<timer ID>, <time>)
Example : setTimer(0, 5 sec); setTimer(1, 100 ms); setTimer(2, 5 frs);
Arguments :

<timer ID> Identification number of the timer
<time> Time to expire

This command activates timers that trigger state timer events when they expire. The<timer ID> passed
to this command must match the<timer ID> of a timer event handler in the current class. Time can
be indicated in seconds (sec), milliseconds (ms), or frames (frs). The event will trigger as soon as
possible after the indicated time has elapsed, but the system’s time granularity maybe one frame if the
system is not busy, or several frames if it overloaded.

stabilize

Forms : stabilize(<image>, <h offset>, <v offset>)
Example : stabilize(my image, 100 arcmin, -200 arcmin);
Arguments :

<image> Image to stabilize
<h offeset> Horizontal offset
<v offeset> Vertical offset

Stabilizes the indicated image to the subject’s eyes with an optional offset. Offset can be indicated in
arcminutes (arcmin), degrees (deg), or pixels (px). If the indicated image is already stabilized, this
command will modify the offset if necessary. If the indicated image is currentlydisplayed, this com-
mand takes effect immediately. When the image is hidden, stabilization is activated but the effect is not
shown until the image is displayed. If an images is stabilized anddisplay is called again to change
the displayed image, the newly-displayed image will also be stabilized.
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Figure 5.1 –FSM representation of the experiment that measures the difference in a subject’s perception when a
stabilized stimulus is presented as opposed to a stationaryone.

5.6 Complete EDL Example

This section includes a complete EDL example program whose functionality is similar to that of a real
psychophysical experiment originally performed using a very complex C++ program.

The purpose of this experiment is to measure the difference in a subject’s perception when a stabilized
stimulus is presented as opposed to a stationary one. Two stimuli are used: a right-facing and left-facing
gray bar, and both are obscured by random noise. A single trial consists of several steps (see FSM
representation in Figure 5.1):

1. A fixation dot is displayed for1.57 s.

2. A set of arcs is displayed at a random location a fixed distance from screen center, for240 ms.

3. The system then hides the fixation dot and the arcs, and waits for the subject to make a saccade to
the region in which the arcs appeared and enter a visual fixation.

4. A stimulus is then displayed, tilted right or left, chosen randomly. The stimulus isdisplayed for
500 ms. Depending on a flag set by the programmer, the stimulus is either stationary atthe arcs’
old location, or stabilized, following the subject’s gaze.

5. A mask is then displayed for1.33 s, at the same location and in the same mode as the stimulus.

6. The system then waits for the subject to indicate whether they saw a left- orright-tilted bar, and
prints to the console if the response was correct or incorrect.

7. This process repeats for a certain number of trials.
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// Constant definitions - Edit here to change the parameters of the experiment
const integerMaxTrials = 40; // How many trials to run
const integerNoisyImages= 25; // The number of noisy images to generate
const integerNoiseLevel= 80; // The percentage of image pixels to be replaced by noise
const booleanStabilization= true ; // True for stabilized stimuli, false for unstabilized
const integerCueArcsRadius= 50; // Radius of the arcs
const integerCueArcsDistance= 400; // Distance from screen center to the arcs

// Image definitions
imageFixationDot(“dot.tga”);
imageCueingArcs(“arcs.tga”);
noisy (NoiseLevel) multiImage LeftStimulus(“leftbar.tga” , NoisyImages);
noisy (NoiseLevel) multiImage RightStimulus(“rightbar.tga” , NoisyImages);
imageMask(“mask.tga”);

// Global variables
integer CurrentTrial= 0; // The number of the current trial
integer CuePosX; // Position of the cueing arcs
integer CuePosY;
integer CurrentStimulus; // 0 for left, 1 for right

// Begin - This state displays a fixation dot at screen center for 1.57 seconds
// It also checks whether we have completed our quota of trials
state begin{

event enter{
// Exit the program if we have run enough trials
CurrentTrial= CurrentTrial+ 1;
if (CurrentTrial== MaxTrials) jump (end );

display (0, 0, FixationDot); // Display the fixation dot at screen center
setTimer (0, 1570 ms); // Set a timer to jump to the next state

}

// Jump to the cueing state
event timer (0) {

jump (CueState);
}

}

// This state displays cueing arcs for 240 ms.
stateCueState{

float Angle;

event enter {
// Choose a position for the arcs
Angle = rand (0, 360 ∗ 60);
CuePosX= round (CueArcsDistance∗ cos(Angle));
CuePosY= round (CueArcsDistance∗ sin (Angle));

display (CuePosX, CuePosY, CueingArcs); // Display the arcs at that position
setTimer (0, 240 ms); // Set a timer to jump to the next state

}
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// Jump to the saccade state
event timer (0) {

jump (SaccadeState);
}

// Clean up displayed images
event exit {

hide (FixationDot);
hide (CueingArcs);

}
}

// This state waits for the subject’s gaze to stabilize inside the spot where the arcs were
stateSaccadeState{

booleanCheck;

// Set an initial timer event
event enter{

setTimer (0, 1 frs);
}

// Every frame, check whether we are fixating inside the arcs,and jump to the next state if so
event timer (0) {

Check= sqrt (pow (PosX− CuePosX, 2) + pow (PosY− CuePosY, 2)) <= CueArcsRadius);
if (Check&& !inSaccade) jump (StimulusState);
setTimer (0, 1 frs);

}
}

// This state displays the stimulus for 500 ms
stateStimulusState {

event enter{
// Randomly decide which stimulus to display
CurrentStimulus= rand (0, 1);
print (LeftStimulus, PosX, PosY, CurrentStimulus== 0);
print (RightStimulus, PosX, PosY, CurrentStimulus== 1);

// Stabilize if that parameter is set
stabilize (LeftStimulus, Stabilization);
stabilize (RightStimulus, Stabilization);

setTimer (0, 500 ms); // Set the expiration timer
}

// Jump out when time expires
event timer (0) {

jump (MaskState);
}

// Clean up images
event exit{

hide (LeftStimulus);
hide (RightStimulus);
destabilize(LeftStimulus);
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destabilize(RightStimulus);
}

}

// This state displays the mask for 1333 ms
stateMaskState{

event enter{
// Display the mask and set the expiration timer
display (PosX, PosY, Mask);
stabilize (Mask, Stabilization);
setTimer (0, 1333ms);

}

// Jump out when time expires
event timer (0) {

jump (WaitState);
}

// Clean up images
event exit{

hide (Mask);
destabilize(Mask);

}
}

// This state waits for the subject to indicate whether they saw a right- or left-facing bar, and prints out the results
stateWaitState{

// React to joypad button presses - left or right - and return to the beginning
event joypad(L1, on ) {

// Print out the actual orientation of the bar, followed by subject response and correct flag
print (CurrentStimulus, 0, CurrentStimulus== 0);
jump (begin );

}
event joypad(R1, off ) {

// Print out the actual orientation of the bar, followed by subject response and correct flag
print (CurrentStimulus, 1, CurrentStimulus== 1);
jump (begin );

}
}


