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1.1 Eye Movement Contingent Display control

Our eyes are always in motion. During natural viewing, fast relocatibérgmpe (saccades) occur ev-
ery few hundred milliseconds. Even in between saccades, when thareyisating on a target, small
fixational eye movements, of which we are usually not aware, continuousWe the projection of the
stimulus on the retina (see Figure 1.1). It is surprising that the visual syst&iohe to construct a coher-
ent percept from such fragmentary and continuously changing inptitodgh much progress has been
made in understanding how the brain processes sensory signals, daenfemtal mechanisms by which
visual information is organized into a global representation of the scerstiiielusive.

In experimental studies of visual functions, the need often emerges fdifyimg the stimulus ac-
cording to the eye movements performed by the subject. The methodology dMdwsnent Contingent
Display (EMCD) enables accurate control of the position and motion of the lsisnon the retina. It has
been successfully used in several areas of vision science, includimg attention, fixational eye move-
ments, and the physiological characterization of neuronal respoogergties. In addition to basic vision
research, EMCD control is also crucial in a variety of applications ranfyjom augmented information
displays to aids for subjects with visual impairments. Unfortunately, the diffiofireal-time program-
ming and the unavailability of flexible and economical systems that can be edapyea to the diversity
of experimental needs and laboratory setups have prevented a weidésme of EMCD control.

Despite the important benefits offered by EMCD control to many areas ioihviesearch, several
factors have prevented widespread use of this technique. A firdepnab that real-time control.g. en-
suring an upper boundary on the delay between subject eye movemettie aipdiate of the stimulus on
the display) is a difficult operation that requires the development of configliedwvare and/or advanced
programming expertise.

The development of real-time software is also challenged by the charticteothe most popular
operating systems, such as Microsoft Windows and Apple MacOS, wiictotallow precise control



CHAPTER 1. INTRODUCTION 3

Figure 1.1 —Example of fixational eye movements. A trace of eye movemesrded by a DPI eyetracker is
shown superimposed on the original image. The panel on ttterbaight shows a zoomed portion
of the trace in which small fixational eye movements are priesehe color of the trace represents
the velocity of eye movements (red: slow movements; yelléast movements). Blue segments
mark periods of blink. The image was examined for a perioddos$.1

of temporal events. Secondly, available systems lack the flexibility that isreelgio accommodate the
diverse needs of experimenters. They are usually designed fdfispaesks and cannot be easily modi-
fied. Another important element has been the exorbitant cost of commemiailgble systems. These
systems are usually sold as components or accessories of specificlegeti@and cannot be interfaced
with more affordable devices (see Table 1.1).

The tremendous improvements in computational power, video hardwareyanchcking technolo-
gies of recent years have opened the way to a flexible and economicahappio EMCD experiments.
Personal computers now possess the computational resources arspédghinterfaces that are neces-
sary for real-time data processing.

High-quality CRTs with refresh rates up to 200 Hz and graphic boards withib accelerators for
the fast generation of visual stimuli are now available. The short delagsyaality of visualization
provided by these systems are adequate for many experiments of viswascience. Improvements
in eye-tracking methods have widely enlarged the circle of potential ugersriaturizing the devices,
significantly simplifying their use and reducing their costs.

The system described here provides widespread access to the megiyooloE©MCD control. It
enables laboratories that conduct research in visual psychoplaygiaseurophysiology to design their
own EMCD experiments as well as to adopt the procedures already inFustéhermore, by allowing
stimulus modifications on the basis of various parameters of oculomotor adfivit\gystem opens the
way for a new generation of EMCD experiments in which changes in thelirgué do not depend only
on the position of gaze. Experiments of this kind are needed in seveaal afrgision research.
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System Application Realization | Refresh Real-Time Cost
Rate compliance

SVI Toolbox Foveated image Software up to 50Hz | No Public Domain

CPS - UTA

VSG Retinal stabilization Hardware/ up to 160Hz | Yes (<12ms) $15,000

Cambridge RS Ltd. Software

EyeLink II Gaze Contingent Window | Software up to 160Hz | No $36,000

SR Research Ltd.

Stimulus Deflector | Retinal stabilization Optical/ N/A Yes (~6ms) $15,000

Fourward OT Inc. | Artificial scotoma Mechanical

Proposed system General purpose Hardware/ up to 200Hz | Yes (<10ms) | $3,400'
Software

' Cost of the components.

Table 1.1 —This table summarizes the main systems and algorithmsntiyrr@vailable to experimenters in the
field of visual neuroscience. Commercial products and oparce software present complementary
strengths and disadvantages. Public domain systems come @ist, but being based purely on
software, they cannot reach the high refresh rates reqgbiredany experiments. Software systems
also lack a check of real-time compliance because they dguatntee that the system is running at
the expected frequency without missing frames. Commepe@ucts can be faster as they usually
rely on dedicated hardware. However, they come at high cabsarprisingly little flexibility. Since
most of these systems were not specifically designed for EM@iirol, they have serious structural
limitations. The range of possible applications remainstéd, and no flexible system for EMCD
control is currently available.

1.2 Objective

This report focuses on the development of a general-purpose sistgenform EMCD experiments on
a personal computer. We have recently developed a hardware awdrsoprototype to study fixational
eye movements that combines flexibility, simplicity of use, and low cost of the coems.

The Eye movement Real-time Integrated System (EyeRIS) (Active Peraepmio, Boston Uni-
versity) takes advantage of recent technological advancements toglevgeneral-purpose system for
EMCD experiments. The proposed system complies with the following spéimfisa

1. Flexibility of experimental desigrThe experimenter needs to be able to design an EMCD exper-
iment by selecting the variables of oculomotor activity that are relevant tottigly and linking
them to changes in the visual stimulus in the desired fashion. In addition tbrenalbanges in the
visual stimulus according to the position of gaze, the system also allows tofitne stimulus on
the basis of higher-order parameters of oculomotor activity such asgsed signale(g, speed,
acceleration) or the type of oculomotor activigig, saccade vs. smooth pursuit).

2. Versatility. The system accommodates the diversity of experimental demands ans sediiffer-
ent laboratories as it works under Windows, the operating system ntest used by laboratory
computers.

3. Simplicity of use The nuances of real-time programming and the hardware characteristits o
system are transparent to the user. The system possesses an intghieval interface that
provides access to users with no programming experience.

4. High-level performanceThe system operates at the highest refresh rates and resolutionscallow
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by current commercial graphic cards and CRTs. This level of perfoceds often needed in
experiments of visual neurophysiology.

5. Real-time complianceReal-time performance is guaranteed by external sensors which eavid
upper boundary to the delay of the stimulus update on the screen. Trialédn thifs upper bound
is accidentally exceeded are automatically flagged to the user.

6. Affordability. The system is designed using low-cost technologies.

1.3 System architecture

The proposed system intimately links the eyetracker and the computer asfdamsible for (a) sampling
and processing oculomotor signals and subject responses, andnfimucicating with the graphics card
on the host PC to allow the real-time generation, visualization, and gaze-gemtimodification of
visual stimuli. Its structure consists of:

1. A dedicated DSP board with analog and digital interfaces which pesseeslicated firmware
specifically designed for the real-time processing of eye movement datéll &nable EMCD
experiments with real-time performance guaranteed by a maximum delay ofames (10 ms at
200 Hz).

2. An extensive software library, implemented in C++, for the control obibwrd and the real-time
manipulation and display of visual stimuli. The graphic component of this lisawyilt on top of
OpenGL (Silicon Graphics, Inc.) and uses the hardware accelerati®peariGL routines present
in current graphic cards. The C++ library will enable programmers teroball functionalities of
the system without dealing with the details of the hardware and real-time control.

3. A high-level programming language for the simple design and executiBM@D experiments.
This language has been developed to make the system accessible toitlsas programming
experience.

During the generation of each video frame, the real-time routines run onSRket®sample input data,
label saccades and periods of fixation (see Figure 1.2), and campetivoltages into angles on the basis
of an initial calibration procedure. Processed data is transmitted to the Rakstwhere C++ routines
convert it to pixel coordinates and update the stimulus on the display atxheideo frame.
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Figure 1.2 —Functional architecture of the system. It is designed tdEnBMCD control with refresh rates up
to 200Hz at the highest resolution supported by the videody@ad with maximum delay of 10 ms
(average delay 5 ms). Real-time performance is guaranteeatbhitoring the signal of a photocell
located at the corner of the display.
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The hardware component of EyeRIS includes four major modules: a3IB3P board, a generic digital
I/0 board, A/D conversion module, and a video board to display stimuli.

2.1 DSP board

The C6713 DSK (Spectrum Digital Inc.) is a low-cost standalone developpiatform that enables
users to evaluate and develop applications for the TI C67xx DSP family. chnisis based on the
TMS320C6713 (Texas Instruments Inc.), which operates at 300 Mélwedng 2400 million instruc-

tions and 1800 million floating-point operations per second. The DSK comesaviuthcomplement of

on-board devices that suit a wide variety of application environmentsfééyres include:

1. A Texas Instruments TMS320C6713 DSP operating at 225 MHz
An AIC23 stereo codec
. 8 MBytes of synchronous DRAM

. 512 KBytes of non-volatile Flash memory

2.

3

4

5. 4 user accessible LEDs and DIP switches

6. Software board configuration through registers implemented in CPLD
7. Configurable boot options

8. Standard expansion connectors for daughter card use

9

. JTAG emulation through on-board JTAG emulator with USB host interfaesternal emulator
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Figure 2.1 —Prototype of the EyeRIS hardware component.

The DSP on the DSK interfaces with on-board peripherals, such as SDRlAsh memory, and CPLD,
through a 32-bit wide EMIF (External Memory Interface). This integfatso connects daughter card
expansions (EDCI) which are used for third party add-in boards.

The DSP interfaces with analog audio signals through an on-board AdG@3c and four 3.5 mm
audio jacks (microphone input, line input, line output, and headphone ouffhg)codec can select the
microphone or the line input as the active input. The analog output is diavbath the line out (fixed
gain) and headphone (adjustable gain) connectors. McBSPO is usedda@smmands to the codec
control interface while McBSP1 is used for digital audio data. McBSPOMcBSP1 can be re-routed
to the expansion connectors in software.

A CPLD programmable logic device is used to configure some of the compaouiethits DSK and
provide user input/output features. The CPLD has a register basethtgséace that lets the user con-
figure some of the settings of the board by reading and writing to its registers.

The DSK includes 4 LEDs and a 4 position DIP switch as a simple way to proveegér with
interactive feedback. Both are accessed by reading and writing to thi® @&gisters.

2.2 Digital board

The system includes a digital interface specifically designed and dedeiofmuse to acquire 32 1/0

simultaneous binary events (TTL-levels), record subject’s resppasdsrive visual and acoustic warn-
ings. It acquires the general status of the eyetracker (some of the Sitatats, such as blink and track,
are TTL compatible), and the input devices (a Playstation2-type joypad $wny Inc.). This board is

designed to connect directly to C5000 and C6000 DSK platforms throudgbDi# interface.

2.3 Analog/Digital conversion board

The system acquires the oculomotor signals generated by the eyetrgckeahs of a ADS8364 Eval-
uation Module (EVM) board which is built around a high-speed, low poaeal 16-bit A/D converter
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(Texas Instrument Inc.). The six fully differential channels allow simultasdwolding and sampling
on all six analog inputs at a maximum frequency of 250KHz. They canatgp®n mixed voltages (+/-
10V, +/- 5V, +/- 2.5V), which are normalized to the nominal A/D convertegeby the analog front-end
circuitry. The EVM is designed to function with C5000 and C6000 DSK platithrough the EDCI
interface.

2.4 Video board

Stimuli and eye movements are visualized on a high refresh rate monitor by miearsommercial
video board. Modern graphic boards perform most processing itwlaae, enabling fast visualization of
computationally intensive displays. On the host computer, the system ttymeas a RADEON 9800
XT AGP which can be considered a video board with high-level perforeamdajor characteristics
include:

Eight parallel rendering pipelines

Four parallel geometry engines

256-bit DDR memory interface

AGP 8X support

Dual integrated 10-bit per channel 400 MHz DACs

Pixel Fill-rate: 3.3Gpixel/sec; Geometry Rate: 412Mtriangles/s
Max Refresh rate: 200Hz at 1152x864

© N o o A~ w N R

Native OpenGL acceleration

The RADEON 9800 XT AGP presents a very good stability of the output &itpad allows its use in
experiments of visual psychophysics. Signal instability is less than 0.1%ulated at the 100 % of red
component).
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A number of processes run in parallel on the DSP by means of the Eyetr@gerative System 2
(ETOS2) (Active Perception Lab, Boston University), the propriefargware that acquires and pro-
cesses in real-time oculomotor data and subject responses.

3.1 Firmware fundamentals and operation modes

As illustrated in Figure 3.1, ETOS2 is responsible for the acquisition, pcepsing, and communication
of the oculomotor data and subject responses to the PC host. The firmviiaseid on the DSP/BIOS
(Texas Instrument Inc.) version 2, which is a scalable real-time kersgmed for the TMS320C5000
and TMS320C6000 DSP platforms.

Because DSP/BIOS enables real-time applications to be cleanly partitionefitmiaare is easy
to maintain and new functions can be added without disrupting real-time respddSP/BIOS pro-
vides standardized APIs across C5000 and C6000 DSP platforms torstgggd application migration.
DSP/BIOS has been proved in thousands of customer designs anagsegmiruntime license fees.

The firmware can function in three different modalities:

1. When inidle mode the firmware continuously polls the communication channel for new com-
mands. Data is not collected from the ADC, and no transfer to the PC isperdio The joypad is
active. Its status is acquired and transmitted (every 100ms) to the PC.

10
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Figure 3.1 —Real-time functioning of the system. The eyetracker sigaad the subject responses are prepro-
cessed by the processing pipeline inside the DSP, and ¢éraegfto the PC in the very first stage of
graphic rendering.

2. Theraw modedisables all the data processing of the firmware, allowing the voltage valties o
six channels of the ADS8364 to be transmitted without analysis. The joypatiMs,amnd its status
is transmitted (every 100ms) to the PC. This mode is activated and deactivdydayacommand
from the PC.

3. The firmware intrial mode performs the processing of all six channels’ data, including voltage-
angle transformation, real-time tagging, and dropped frame counting eodiineg. This mode is
activated and deactivated only by command from the PC, and its curramd &andicated by the
large red LED on the board.

3.2 Processing pipeline

When the firmware is in trial mode, all the data collected from the six A/D charamelpreprocessed
by a series of software tasks before being communicated to the PC hostsoftaiare component of
the DSP firmware is responsible for a variety of tasks related to data acquisligtal filtering, data
transformation, and real-time verification. Samples pass through a pipetmeddy different tasks,
each of which can modify the received sample according to its particulatifum For example, one
of these processes is responsible for transforming the data repksentdtages from the eyetracker
into angle units. Another task tags the data acquired in order to classify eygmmeats into saccades,
fixational eye movements, etc.
These are the stages (in order of execution) active in this version ofitnedie:

1. Dropped Frames Detection Module (DFDMhis task detects if the PC is refreshing visual infor-
mation within the time constraints set by the refresh rate of the monitor.

2. Voltage-Angle Transformation Module (VATMis task is responsible for transforming the input
voltages from the eyetracker into arc minutes of visual angle.

3. Eye Movements Tagging Module (EMTNMis task classifies the eye movements, obtained from
task VATM, into two different classes: saccades and fixations.
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Figure 3.2 —Real-time compliance of the stimuli visualized on the momis ensured by monitoring the flickering
of a small square displayed at the corner of the screem(d). If the system requires more than
one frame to update the stimulus, the flickering frequencyhefsquare will be altered. Video
signals are measured in real time by a fast photodiéda@ ), and missing or additional frames
will be detected by measuring the temporal displacementgdamn successive white squaresa(d
f). Trials with missing frames are automatically labeled aigghaled to the experimenter.

4. EMCD Variables Calculation Module (EVCMThis task calculates all the information regarding
the oculomotor data sampled from the eyetracker (included summary inforrpatiduced by the
EMTM).

Each task produces information which is collected by the firmware and éraulstio the PC. Once on the
host, the information is available to the user for further processing aoddieg.

3.2.1 Dropped Frames Detection Module (DFDM)

This task ensures real-time performance of the PC during the stimuli visuatiz&@ntemporaneously
to the visual stimuli scheduled for the frames by the experiment, the low Ieftelese of the library (see
Chapter 4 for further details) places, every other frame, a small whitgsat the corner of the monitor.
The flickering of this square produces a specific signal (see Figurdir®eb ande) which is sampled
by the system. If the calculation performed by the PC of the next frame esguiore then the time set
by the monitor vertical refresh, the square will appear as delayed in thal stlisrupting its frequency.

Trials with missing frames are automatically marked by this task and signaled to taetR€end
of the trial. The experimenter can request, through the low-level funcfsme Chapter 4), a complete
report of the dropped frames and their temporal locations in the experiment.
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Figure 3.3 —Real-time identification of saccades. A real-time alganithased on several parameters of oculomo-
tor sighals compared well with respect to a human expert (FIE§ mean error of classification over
400 s of recordings is abo@t0%. EM signals (EM) represent horizontal and vertical compsie
of eye movements in a trial. Saccade labeling is shown ondttern. Ther axis represents time in
ms.

3.2.2 \Voltage-Angle Transformation Module (VATM)

The eyetracker outputs are proportional to the vertical and horizamgi s.0f the subject’s eye position.
The proportionality constants are an offset and a gain in each of thealeatid horizontal directions.
These constants are determined in the calibration procedure (see Chémtéurther details), by per-
forming a linear regression to map between voltages and angles for as@nofus points in known
positions on-screen.

The formulas for converting the raw eyetracker outputs to vertical ariddrmdal angles are:

pos; = (voltage, + of fsety) * gaing
posy = (voltage, + of fset,) * gain,

3.2.3 Eye Movements Tagging Module (EMTM)

The purpose of this task is to categorize and label eye-movements adesdulog, or fixation (relatively
slow motion) for the higher functions of the system. Data received by theithigois classified accord-
ing to past values and two thresholds of velocity and acceleration calculsitegithe three most recent
samples. Once the initial three values are received, each newly acqairgde is labeled accordingly.

In order to label samples as blinks, the algorithm uses the blink status sighal @yetracker. If a
blink event is detected, the next 100 samples will be labeled as blink withoditiethgr calculations.

If the most recently received sample is not classified as blink, velocitiea@raleration amplitudes
are calculated. The current sample is labeled by comparing the accelaatitude against a user
defined threshold. If label changes are detected during the classifidigocorresponding velocities are
also compared against another user defined threshold to confirm thgecbistate. If the test fails, the
sample corresponding to the detected state change is automatically labeld¢damhthprevious sample.
This further test reduces the mislabeling in the tagging process which isetsnoise present in the
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velocity and acceleration variables. An example comparison of the outpué @figorithm vs. human
tagged data is presented in the Figure 3.3.

3.2.4 EMCD Variables Calculation Module (EVCM)

This task calculates the set of oculomotor-related flags and variablesehaeahcan link to conditions
for stimulus manipulation. During an experiment, the user is able to specify vidht@D variable to
monitor and use them as events in EDL (see Chapter 5 for further details).

Using the transformed eyetracker signals and digital input data, this mochages single binary
events or analog output values that signal the occurrence of the speaifindition. EMCD variables
can be used, for example, in experiments in which the position of gaze basded a pre-specified
threshold, or a saccade has exceeded a user-specified amplitude.

These are the EMCD variables currently available in this version of the module

1. Velocityx, Velocityy: These variables represent horizontal and vertical veloaityrfin/s) of
the eye movements sampled by the eyetracker.

2. Accelerationx, Accelerationy: These variables represent horizontal and vertical acceleration
(arcmin/ s%) of the eye movements sampled by the eyetracker.

3. Saccadeduration, Saccacemplitude This variable indicates the duration and the amplitude (re-
spectively inms andarcmin) of the saccade which has just ended. Their values are valid only at
the transition of the saccade/fixation signal generated by the EMTM module.

4. Fixation duration This variable indicates the duration ims) of a fixation which has just ended.
Its value is valid only at the transition of the fixation/saccade signal genkebgtéhe eye move-
ments tagging module.

3.3 Communication protocol

Commands and data between the DSP board and the host CPU are teghsfdittle-endian format
over the real-time communication protocol RTDX (Texas Instruments Incfa ansfer occurs on the
basis of a fault-tolerant master-slave communication protocol (the DShassslave role) accessible
through the low-level functions described in Chapter 4.

When the PC writes a command, the DSP executes it and signals either sudedisse. The DSP
sends data to the PC both through synchronous replies to the commandsoaigth theriodical writing
data to the PC.

3.3.1 Conduits and packets

The communication protocol provides two conduits through which data aminemds can flow. An
output conduit which carries commands and data from the PC to the DSBnaimgut conduit that
carries data from the DSP to the PC. The underlying RTDX protocol gtega that transmitted data
will arrive in-order, but not necessarily contiguously. Data on botideits are organized in packets of
two different types: commands and data request sent by the PC (treatspg the output conduit), and
DSP answers to the requests (transported by the input conduit). Theagstructure of a packet is the
following:
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[ 1D [ SIZE | COWAND | PAYLOAD \
[uint Juint [ uint [... \

e Packet identificatiorfl D): Packets carry, as an unsigned 32-bit integer, a unique ID numher ge
erated by the PC. This number is then copied into the corresponding ACketpao the PC can
verify that the correct request’s response has arrived.

e Packet siz€S| ZE): This field holds, as an unsigned 32-bit integer, the size of the paylaauits
of 32-bit words. Applications that wish to transmit irregularly-sized datatrpad the data to a
4-byte boundary before transmission.

e Packet comman@COMMVAND): This field holds, as an unsigned 32-bit integer, the description of
the information contained in the payload (see the following sections for a cteniskeof available
commands).

e Packet payloadPAYLOAD): This field holds the data that has to be transferred. The size of this
section is variable and depends on the command transmitted, but must be a mifoplebytes.
3.3.2 Commands
COM DFDM GET_COUNT

Request: [ 1D ] 0 | COMDFDMGET_COUNT |

[1D [ 3 | COMET ACK | COMDFDMGET_COUNT | Count |
| | | \ ui nt [ uint |

Response:

This command requests from the DFDM the number of frames dropped dbargst trial.

COM.DFDML.GET _FRAMES

Request: [ 1D [ 0 | COMDFDMGET_FRAMES |

[TD] 2 + n | COMET.ACK | COMDFDMGET FRAMES | Frame 0 | Frame 1 [ ... |
| | [ [ ui nt [ uint [ uint Juint |

Response:

This command requests from the DSP which frames have been droppeduifiber of dropped frames
n is contained in the size of the message, while information about the dropjpeekfia contained in the
payload.

COM.DFDML.SET _FRAMERATE

[1D ] 1 | COMDFDMSET FRANERATE | Frane rate |
| | | | f1 oat |

Request :

Response: | ID [ 1 | COMETACK |

This command communicates to the Dropped Frames Detection Module the mefiees the monitor
(in Hz). Without the proper value, the module will not be able to detect droppedes.
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COM.DSP_END_RAW

Request: [ 1D ] O | COVMDSP_END_RAW |
Response: [ ID [ 1 [ COMETACK ]

This command communicates to the DSP to exit raw mode and enter idle mode. All soduhe
software pipeline are enabled by this command.

COM.DSP_END_TRI AL

Request: [ 1D [ O | COMDSP.ENDTRI AL |
Response: [ 1D [ 1 [ COMETACK |

This command communicates to the DSP to exit trial mode and enter idle mode. All modthe soft-
ware pipeline remain enabled, and contain valid data which can be retrietvedeand of the experiment.
The DIO board LED is turned off when this command is executed.

COMDSP_PI NG
Request: [ ID [ 0 | COMDSP_PING |
Response: [ 1D [ 1 [ COMETACK |

This command can be sent to the firmware to verify correct functioning obdlaed and measure the
communication latency.

COM.DSP_START _RAW

Request: | 1D [ O | COMDSP_START_RAW |
Response: | ID [ 1 | COMET-ACK ]

This command communicates to the DSP to enter raw mode. All modules of the sofiipaline are
disabled by this command.

COMDSP_START_TRI AL

Request: [ 1D ] O | COMDSP_START_TRIAL |
Response: | ID [ 1 | COMETACK |

This command communicates to the DSP to enter trial mode. All modules of the sofiipatime are
enabled and initialized, and the DIO board LED is turned on by this command.

COMEMIM.SET _THRESH

[ 1D ] 4 | COMVATMSET_VAPARAMS | Vel ocity | Acceleration [ Anplitude [ Blink skip |
| [ ] [ float ] fl oat [ float | float |

Request :

Response: [ 1D [ 1 [ COMETACK |

This command communicates to the DSP board the new thresholds which will ddysee EMTM
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module in the processing pipeline to classify eye movements in saccadesaiwhfix These parameters
include: velocity ¢rcmin/s), accelerationdrcemin/s?), amplitude ¢remin). It also possible to set the
number of samples ignored by the module after a blink of the subject.

COMET_DATA

[ID] 7 | COMETDATA [Triggers [ Ch 1 [ Ch2 [ Ch3 [ Ch4 [ Ch5 [ Ch6 |
| | | | ui nt | float [ float | float | float [ float [ float |

This command communicates to the PC the values collected by the ADC. Thessamyeeprocessed
in the software pipeline if the firmware is in trial mode. Triggers are packedantansigned 32-bit
integer, while channel data are represented as 32-bit floats.

COM.JP_DATA

[ 1D [ 3 [ COMJP_DATA | Joypad data (9 bytes) | Paddi ng (3 bytes) |
| | | [ uint [ uint [ uint |

Joypad data is also transmitted as soon as it is read from the joypad. Duddtetiey of the joypad,
this packet is transmitted evetp0 ms.

The Playstation joypad (Sony Inc.) can function in two different modealognand digital. Data
structure changes according to the modality of the joypad, and takes theifgjlorm:

Analog Mode:

Byte[ Bit 0 [Bit 1 [Bt2 [Bit3 [Bt4 [Btb5 [Bit6 [Bt7
1 Reserved

2 Reserved

3 Reser ved

4 SLCT JOYR JOYL STRT uP RGHT DOWN LEFT
5 L2 R2 L1 R1 A O X O

6 Ri ght Joypad: Left = O0x00, Ri ght = OxFF

7 Ri ght Joypad: Up = 0x00, Down = OxFF

8 Left Joypad: Left = O0x00, R ght = OxFF

9 Left Joypad: Up = 0x00, Down = OxFF

Digital Mode:

Byte[ Bit 0 [Bit 1 [Bt2 [Bit3 [Bt4 [Bt5 [Bit6 [Bt7
1 Reserved

2 Reserved

3 Reserved

4 SLCT - - STRT uP RGHT DOWN LEFT
5 L2 R2 L1 R1 AN O X O

The correct interpretation of this information is left to the supplementary edaiseluded in the low-
level software (see Chapter 4).

COM.VATM.GET _VAPARANMS

Request: [ D [ O | COMVATMGET VAPARANG |

[1D ] 6 | COMET.ACK | COMVATMGET_VAPARAMG | Offset x | Offset y | Gain x | Gain y |
| | | \ ui nt | float | float | float [ float |

Response:

This command requests the current V-A parameters (offset x and yxgaia y) used by the VATM
module in the processing pipeline. The V-A parameters will be null if they navdeen set since the
last DSP boot.
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COM.VATM.SET _VAPARAMS

[1D] 4 | COMVATMSET_VAPARAMS | OfFfset x [ Offset y [ Gain x [ Gain y |
| | | | float | float [ float [ float |

Request :

Response: | ID [ 1 | COMETACK ]

This command communicates to the DSP board the new V-A parameters (offedty gain x and vy,
expressed iarmin/V’) which will be used by the VATM module in the processing pipeline.
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Low-level software
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The Eye Movements Integrated Library (EMIL) (Active Perception LBdiston University) constitutes
the control center of the system and provides the foundation for theigxeof real-time experiments.
Although accessible by users with programming expertise, this library rerhaden under the OOP
interface. Different classes of functions cover all the functionalitighekystem.

4.1 Hardware/firmware mapping class
CDSP

The CDSP class provides a transparent interface to the physical DSP by complédélg the com-
munication protocol, giving the appearance of the programmer commandirig3Reboard directly.
Among the high-level commands provided by this class are functions fdrifgi@yetracker data from
the DSP, querying the joypad status, and calibrating the DSP. As moredeate added to the DSP
program, new functions can easily be added todb8P class to reflect them into the EMIL library. This

19
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Figure 4.1 —Real-time functioning of the system. The eyetracker sigmad the subject responses are pre-
processed by the DSP during a frame, and transferred to tha B@ very first stage of graphic
rendering. While the DSP continues to sample and process signals, the CPU and video board
use available data during to design and render the displéng atext video frame.

class also implements a partial emulation mode, so that experiments can be tesbed tivéhphysical
DSP connected, or recorded data can be replayed to recreate apetarent.

4.2 Experiment management and system classes

These classes provide the framework within which experiments will be dagigrhey specify the way
in which input devices will be used, which oculomotor events to respondnih,haw to modify the
stimulus accordingly. Some routines also control the proper functioningeafytbtem by handling sys-
tem initialization, opening and managing communication channels, assessitigjjeeeompliance, and
executing the proper shutdown of the system.

CEnvi r onment

CEnvi r onment is the class that ties all lower-level functions together. It handles systitializa-

tion, where it commands theDSP class to open a communication channel, @sdene to ready the
display for drawing. It manages a list @Experi nment s, which it runs in sequence, passing key-
board, mouse, joypad, and render events into the running experir@Enivi r onnment also fetches
eyetracker and joypad data from t6BSP object, and passes those data into the current experiment for
processing. FinallyCEnvi r onment handles system shutdown, in which experiment objects are de-
stroyed, DSP communication terminated, and the display returned to defdinlgseThis class allows

the main function in an EMIL program to be extremely short, using only a fawngands to create the
CEnvi r onnent , populate it with experiments, and activate it, with everything else handleclnjehs.
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CExperi ment

The CExper i nment class provides a framework within which real experiments may be written. This
class handles the rendering of planes and the photocell marker, assvmetivée recording. To write a
custom experiment, the programmer must inherit fl©Bxper i ment , and overload whichever event
methods he deems necessary - keyboard, mouse, joypad, and réndeender event is central, as it
receives eyetracker data, and also manipulate€fh@nes to be drawn in the next frame. The ability

to respond to input devices as well as changing eye movements makes thisxtiasnely flexible. Ad-
ditionally, experienced programmers may elect to forgo the u€Plbfines for drawing and implement
their own OpenGL rendering commands, meaning that anything that the carigocépable of drawing
can be used as a stimulus, without altering the basic experiment structure.

4.3 Graphic management classes

The graphic engine of the system is built on top of OpenGL. It consistsmligvels, with the lower level
directly interacting with the video card to take advantage of its acceleratdaai features. While ex-
perienced programmers are be able to add their own OpenGL code to impleenefdatures, system
graphic functions enable creation, manipulation and rendering of visoallswithout explicitly calling
OpenGL routines. Access is given to all basic graphic parameters, ingltrdime rate, display resolu-
tion, and units of measurement of visual space.

CScene

The CScene class exists to handle the setup and maintenance of EMIL's OpenGL cotitexasks
include resolution and frame rate switching, the printing of on-screen texthe registration and rout-
ing of event callbacks (keyboard, mouse, frame).

COGLHal

CScene also utilizes the lower-level clas30G_Hal (OpenGL Hardware Abstraction Layer) that per-
mits movement of the EMIL system across video cards with different capahil@@G_Hal handles
the checking of OpenGL extensions, and interfaces with some videcspaumific features, such as the
toggling of the vertical sync.

CPl ane

CPI ane is the basic drawing primitive of EMIL. It permits a client program to manipulatdustimuli
without any explicit OpenGL codeCPl anes can be translated and scaled with single commands, and
can use bothixzels andarcmin units, making precise alignment to on-screen objects or eye positions
trivial. CPl ane can natively display only solid colors.

CTexture

The CText ur e class exists to allow &Pl ane to display an image loaded from disk and generated
by other programs. CurrentlText ur e supports the BMP and Targa image formats.
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4.4 Input/Output management classes

These classes provide the basic tool for storing and exchanging detta.affe responsible for: (a) Stor-
ing and retrieving experimental data in the EMIL format, which enables raqgasxperimental trials.
(b) Generating movies of the stimulus and the experiment. It is possible to dispthg movie the
position of gaze as well as the values of the selected EMCD variables.

CDSPDat aSt r eans

An auxiliary set of classes, collectively call@DSPDat aSt r eans, exist to facilitate saving and load-
ing of eyetracker data for this purpose. These classes are easilgiblddn provide new data-handling
capabilities; for instance, the buffering of eyetracker data for latdysisaor the streaming of such data
over a network connection.

CTaggedFi |l e

CTaggedFi | e is a general-purpose tagged file format written specifically to be used witiBNHL
framework. It records binary data in a set of records, each with adataining arbitrary user-defined
meta-data. A client program can efficiently search these tags for tegudgta. This format is used for
the saving of old eyetracker data for playback, and the recordindibfation parameters to disk, and is
extensible to many other uses.

CMovi eSaver

CMovi eSaver is an auxiliary class that uses thebavf or mat andl i bavcodec libraries (LGPL
license) to record an on-screen experiment to a movie file. Movie recpisifairly slow, and is bound
by the speed of the machine it runs on, so this class is most effectivelyonspie-recorded data sets
that can be played back at leisure.

4.5 Additional classes

These classes provide additional functionality to EMIL. They can be tsspdovide: (a) automatic or
refined manual calibration of the eyetracker. (b) interpretation of theajbgpents.

CCal i br at or

This class, which derives frof8Exper i ment , exists to provide an automatic calibration of the eye-
tracker. It determines the linear mapping parameters that the DSP pipelineseviib wonvert raw eye-
tracker outputs into arcminutes of vertical and horizontal visual angle.

It works by displaying nine points on-screen sequentially, with the subjsttucted to fixate on
each one as it appears. The points are arranged in a square, witbiohatgcreen center, two along
each coordinate axis, and one in the corner of each quadrant.

To make the calibration, the PC instructs the DSP to transmit raw voltage dataditipdays the
points. At each point, the PC records data until it decides that the sulggetsare fixated, then av-
erages a set of 3500 data points to interpolate the point location in voltage. Space all nine points
are recorded, linear regressions are calculated in the X and Y direcéindghe resulting calibration
parameters transmitted to the DSP.
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CMVanual Cal i br at or

The automatic calibration implemented Bal i br at or is not perfect, and can suffer systematic
errors from optical aberrations in the experimental setup and computagiooes in locating the point
centers.CManual Cal i br at or is an experiment that allows the subject to manually adjust the cali-
bration parameters in real-time.

This experiment first places the DSP in raw mode, and activates functiottadityallows the PC
library to emulate the DSP’s calibration. The subject is then presented witimalpoints from the auto-
matic calibration at once, along with a visual marker that indicates where skensypelieves the subject
to be looking. The subject can fixate on the center point, and if the visudemedoes not coincide
with the point, use the system’s joypad to adjust the offset parameters umtiiribeup. The subject
can then saccade to the other calibration points, and adjust the gain pasanmitehose points line up
with the visual marker as well. Once the subject deems the calibration completeyitgarameters are
transmitted to the DSP.

CPS2_JoypadPar ser

CPS2_JoypadPar ser is an auxiliary class that interprets the data coming from a PS2 joypad (Sony
Inc.). This class supplies the user with a high level interface to the evamsaged by this kind of joypad.

CDest r oyer JoypadPar ser

CDest r oyer JoypadPar ser is an auxiliary class that interprets the data coming from a basic joy-
pad (4 buttons analog joypads). This class supplies the user with a highnaréace to the events
generated by this kind of joypad.

4.6 Examples of low-level software

4.6.1 Create a basic experiment

Every EMIL experiment must conform to a template in order to function pigp€he experiment shown
below can serve as such a template. When run, this experiment will simply dogathd can only be
exited by pressingSC, which will exit EMIL altogether.

classExperimentBody: public CExperiment
public :
/I Set up the experiment. pxWidth and pxHeight should b@ skétdesired pixel
/[l width and height of the screen, and RefreshRate shouléd&segl the desired refresh
Il rate (in Hz) of the monitor.
ExperimentBodyint pxWidth, int pxHeight int RefreshRatg

/I These functions handle EMIL events

void eventKeyboar@unsigned charkey, int x, int y) {}

void eventMouséint x, int y) {}

void eventRenddimt FrameCountint NumSamples const float « Sample$ {}
void eventJoypaf) {}
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ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight int RefreshRatg:
CExperimentpxWidth, pxHeight RefreshRatg

{

4.6.2 Create an experiment that displays stationary planes

The simplest object that EMIL can draw is a solid-color plane. EMIL presitheaddPl ane functions
to simplify the creation of planes, and a number of functions for their manipualafidnis experiment
will render a single red plane in the center of the screen. EMIL can alptaglia plane that is painted
with an image loaded from a file on-disk. This experiment will also display aftedtplane.

classExperimentBody: public CExperiment{
public :
Il Set up the experiment. pxWidth and pxHeight should be skétdesired pixel
// width and height of the screen, and RefreshRate should&seg the desired refresh
/ rate (in Hz) of the monitor.
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

Il These functions handle EMIL events

void eventKeyboar@unsigned charkey, int x, int y) {}

void eventMousént x, int y) {}

void eventRenddint FrameCountint NumSamples const float « Sample$ {}
void eventJoypaf) {}

I/l These functions are for general set-up and clean-up
void initialize();

protected :

// Pointers to our planes
CPlanex m_solid plane
CPlanex m_texturedplane

b

ExperimentBody:: ExperimentBodyint pxWidth, int pzHeight, int RefreshRate) :
CExperimentpxWidth, pxHeight RefreshRatg

{

void ExperimentBody: initialize()

{

CExperiment: initialize();

Il Create the solid plane. The three arguments to the functre red, green, and blue components,
/I and their range is 0-255.
m_solid_plane= addPlan&55, 0, 0);

Il Set the position of the plane. (0, 0) is the center of theestrand the ranges of the arguments
/I are (-mpxWidth/2, mpxWidth/2), and (-npxHeight/2, mpxHeight/2)
m_solid_plane— SetPositionPixel), 0);

Il Set the size of the plane.
m_solid plane— SetSizePixels 00, 100);

/I Now, create the textured plane and set its size and logatio
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m_texturedplane= addPlan€ MyImage.bmp”);
m_texturedplane— SetPositionPixel$), 200);
m_texturedplane— SetSizePixels 00, 100);

}

4.6.3 Create an experiment in which planes track the subje& eye movements

One of EMIL's advantages is the ease with which one can cause a didphagge to track the subject’s
eyes. The code below accomplishes just this, causing a small red dot te fosubject’s eyes around
the screen.

classExperimentBody: public CExperiment{
public :
Il Set up the experiment. pxWidth and pxHeight should be skétdesired pixel
// width and height of the screen, and RefreshRate shouldbssg the desired refresh
/l rate (in Hz) of the monitor.
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

Il These functions handle EMIL events

void eventKeyboardunsigned charkey, int z, int y) {}

void eventMouséint z, int y) {}

void eventRendédint FrameCount, int NumSamples, const float x Samples);
void eventJoypaf) {}

I/l These functions are for general set-up and clean-up
void initialize();
void finalize();

protected :
CPlanex m_plane

%

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight, int RefreshRate) :
CExperimentpxWidth, pxHeight, RefreshRate)

{

void ExperimentBody: initialize()

{

CExperiment: initialize();

Il Create the dot - a red plane, 2 pixels on a side.
m_plane= addPlané&255, 0, 0);

m_plane— SetPositionPixel$), 0);

m_plane— SetSizePixelQ, 2);

I/l Here we place the DSP in trial, or data-collecting modewé did not do this, the
// DSP would not give us any data form the eyetracker
m_DSPEngine— StartTrial);

}

void ExperimentBody: finalize()

I/ Tell the DSP to stop collecting data now that we are finished
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m_DSPEngine— EndTrial();

CExperiment: finalize();

}

/I This event is called every time EMIL is preparing to renddrame. It can be used to
/ move planes around, do on-line data processing, or eveows® raw OpenGL commands.
void ExperimentBody:: eventRenddimt FrameCount, int NumSamples, const float « Samples)
{
/I These variables will store the on-screen position of the d
float xPos yPos

/[ Multiple eyetracker samples may be transmitted in a sifigime, but we will ignore
/I all but one in this experiment. The data we are receivingtgsed in Samples, in the
I/l format [X, Y, triggers]. First, we must check that we reeal data at all.

if (NumSamples== 0) return ;

/l Because we may receive multiple position data per franeeyill ignore all but the most recent

I/l here. The X- and Y-values we want are stored in Sampled[BSamples-1)] and

/I Samples[3*(NumSamples-1)+1], respectively

I/ However, because the eyetracker transmits X- and Y-iposiin units of arcmin, we must convert
/I to pixels for display.

/I This function call fetches the current converter, whiglam object designed to handle
Il several types of necessary coordinate transformatibmthis case, we use the 'a2p’
/ function, which transforms angles as transmitted by ti&#Dnto pixel positions on-screen.
m_Environment— getConverte().a2pSample§ « (NumSamples- 1)],
Samplef3 « (NumSamples- 1) + 1], xPos yPos);

// Now that we know which pixel position the subject is logkaty we can simply move the plane there.
m_plane— SetPositionPixelxPos yPos);

}
4.6.4 Create an experiment that responds to the keyboard angypad

Often experiments require to use input devices to affect what is beintagésh and what is being
processed. EMIL provides functions to receive input events frorkeliboard, mouse, and joypad. This
experiment will demonstrate proper usage of this functionality.

For demonstration purposes, this example will have the following features:

e Pressing th@ key will activate or deactivate the photocell

e Pressing th&key will end the experiment

Pressing th&PACE bar will ping the DSP

Pressing th&1 button on the joypad will show or hide the joystick tracers

Moving the right joystick will cause a small dot to move on-screen, unleastiated
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classExperimentBody: public CExperiment

%

public :
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

void eventKeyboar@unsigned charkey, int x, int y);

void eventMousént x, int y) {}

void eventRenddint FrameCountint NumSamples const float « Sample$ {}
void eventJoypaf);

void initialize();

void finalize();

protected :
/I The plane that will trace the joystick’s movements
CPlanex m_plane

Il Indicate whether the joystick tracer is to be shown or keidd
boolm.showtracer

/I Indicate whether the photocell is being displayed
bool m.showphotocell

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight, int RefreshRate) :

CExperimentpxWidth, pxHeight RefreshRatg
{}

void ExperimentBody: initialize()

{

}

CExperiment: initialize();

/I Create the tracer dot - a blue plane, 4 pixels on a side.
m_plane= addPlané0, 0, 255);

m_plane— SetPositionPixel$), 0);

m_plane— SetSizePixels!, 4);

/I Start out by displaying the tracer and the photocell
m_showtracer= true ;
m_showphotocell= true ;

void ExperimentBody:: eventKeyboar@unsigned charkey, int z, int y)

switch (key) {
cas€'p’ : /lIf the 'p’ key was pressed, turn on or off the photocell
m_showphotocell= 'm_showphotocell
if (m_showphotocell
activatePhotoce{);
else
deactivatePhotocdl),
return ;

cas€ ' : |/ If the space bar is pressed, ping the DSP
m_DSPEngine— Ping();
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return ;
¥
}
void ExperimentBody:: eventJoypa)
{

/I Next, grab the position of the right joystick
float jX = m_joypad getJoystickStaty£CPS2JoypadParser JPAD.JOYSTICK RIGHT_H);
float jY = m_joypad getJoystickStatysCPS2JoypadParser JPAD.JOYSTICKRIGHT_V);

/I Now, calculate where on-screen to display the tracer
float x = (float (jX) — 128)/255.0 f * m_pxWidth;
float y = (float (jY') — 128)/255.0f = m_pxHeight

I/ Move the tracer there
m_plane— SetPositionPixels, y);

/I Now, check whether the trigger button was pressed in thieftame
if (m_joypad getButtonPresséCPS2JoypadParser JPAD BUTTON_R1)){

/I If the tracer is currently visible

if (m_showtracen{
/I Make the tracer invisible
m_plane— Hide();
m_showtracer= false;

}

else{
I 1f the tracer is currently not visible
/I Make the tracer visible again
m_plane— Show();
m_showtracer= true ;

}

}
}

4.6.5 Save experiment data for offline analysis

EMIL has built-in the capability to record and save raw data from the DSP te fofioff-line analysis
with Matlab (Mathworks Inc.) or other analysis tool. This experiment simpl umtil the user presses
Q then writes out data it has recorded to a file.

classExperimentBody: public CExperiment
public :
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

void eventKeyboardunsigned charkey, int x, int y) {}

void eventMousént x, int y) {}

void eventRenddint FrameCountint NumSamplesconst float « Sample$ {}
void eventJoypaf) {}

void initialize();

void finalize();

private :
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// This object handles the file output
COutFileDSPDataStreamoutData

b

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight int RefreshRate:

CExperimentpxWidth, pxHeight RefreshRatg
{}

void ExperimentBody: initialize()

{

CExperiment: initialize();

/I Tell the DSP engine to direct its output to the stream
m_DSPEngine— SetOutputStreafd: m_outDatg;

/I Start fetching data from the DSP
m_DSPEngine— StartTrial);

}

void ExperimentBody: finalize()

{

// Tell the DSP to stop collecting data
m_DSPEngine— EndTrial();

/I Write the stream data out to EMIL’s native file format
m_outDatawrite(" data.dat’);

I/l Write the same data out to matlab format
m_outDatawriteMatlab(” channell.dat”, " channel2.dat”, " channel3.dat”);

CExperiment: finalize();

4.6.6 Load recorded eyetracker data and play it back

29

Another basic capability of EMIL is to operate without the physical DSP. iBlascomplished by loading
saved trial data into the DSP engine and placing it in emulation mode. In this nmibcananands given

to the DSP engine are intercepted before reaching the physical DS§ymedommands (fetch data, for

one) are emulated.

classExperimentBody: public CExperiment{
public :
ExperimentBodyint pxWidth, int pxHeight int RefreshRatg

void eventKeyboardunsigned charkey, int x, int y) {}

void eventMousént x, int y) {}

void eventRendéint FrameCountint NumSamples const float « Sample$ {}
void eventJoypa@) {}

void initialize();

void finalize();

private :
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I/l This object handles the file input
CInFileDSPDataStreamiumData

b

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight int RefreshRate:
CExperimentpxWidth, pxHeight RefreshRatg

{

void ExperimentBody: initialize()

{

CExperiment: initialize();

/l Load the file data into our stream object. This load commexykcts a file

// in EMILs native file format. For other suported formatseshe CDSPDataStream
I/ header file.

m_inDataload(” data.dat");

/I Place the DSP in emulation mode, and tell it to receive detten the input stream.
m_DSPEngine— enterEmulationModg;
m_DSPEngine— SetlnputStreart& m_inData);

4.6.7 Do your own OpenGL rendering

EMIL's emphasis on ease of use has come at the price of flexibility in sonas.afée built-in support
for plane rendering is adequate for many experiments, but some appl&ediuire finer control. EMIL
allows users to write their own OpenGL commands directly into their experimemtsvilllustrate this
technique and point out a few pitfalls to be avoided. This experiment willniihthe Qkey is pressed,
and draw triangles in OpenGL on top of and below an EMIL-renderedeplan

classExperimentBody: public CExperiment
public :
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

void eventKeyboardunsigned charkey, int x, int y) {}

void eventMouséint x, int y) {}

void eventRenddint FrameCountint NumSamples const float « Samples;
void eventJoypa@) {}

void initialize();

void finalize();

private :
CPlanex m_plane

b

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight int RefreshRate:
CExperimentpxWidth, pxHeight RefreshRatg

{

void ExperimentBody: initialize()

{

CExperiment: initialize();
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Il Create the central red plane
m_plane= addPlané255, 0, 0);
m_plane— SetPositionPixel$, 0);
m_plane— SetSizePixeld 50, 150);

void ExperimentBody:: eventRenddint FrameCountint NumSamples const float « Sample$
{

Il The OpenGL setting in place when this function is called is

[/ gluOrtho2D(-mpxWidth / 2, mpxWidth / 2, -mpxHeight / 2, mpxHeight / 2);

/I Feel free to change it as you see fit, but CHANGE IT BACK BEEORE FUNCTION

I EXITS. Later system rendering will be corrupted if thewis changed.

/I First, render the big blue triangle that will go on the bart
glColor3f(0, 0, 1);
g/BeginlGL_POLY GON);
glVertex2f(0, 300);
glVertex2f(300, — 300);
glVertex2f(—300, — 300);
glEnd();

/I Next tell EMIL to render its own planes. If this is not dotieen the

Il planes are rendered after this function exits, which is fior most

Il applications, but will overwrite any user rendering ddnehis function.

I/ Call renderPlanes() before any user rendering that sdodt be overwritten.
renderPlangg;

// Now, draw the small green triangle on top
glColor3f(0, 1, 0);
g/Begin(GL_POLY GON);

glVertex2f(0, 50);

glVertex2f(50, — 50);

glVertex2f(—50, — 50);
glEnd();

4.6.8 Display a scene that changes over time

Experiments are often passive, collecting data for background anadis preprogrammed stimuli
appear on-screen. EMIL's built-in timer class can be used to easily uftagisplay in real-time, or
after a delay. This example displays a square that shift position evegphde

classExperimentBody: public CExperiment{
public :
ExperimentBodyint pxWidth, int pxHeight int RefreshRate

void eventKeyboar@unsigned charkey, int x, int y) {}

void eventMouséint x, int y) {}

void eventRenddint FrameCountint NumSamples const float « Samples,
void eventJoypa@) {}
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void initialize();

private :

CPlanex m_plane

I/l The timer we will use
CTimermtimer,

/I The current position of the plane
float m_planePosition

b

ExperimentBody:: ExperimentBodyint pxWidth, int pxHeight int RefreshRatg:
CExperimentpxWidth, pxHeight RefreshRatg

{

void ExperimentBody: initialize()

{

CExperiment: initialize();

/l Start out with the plane on the left-hand side of the screen
m_planePosition= —m_pxWidth/4;

/I Create the plane and position it

m_plane= addPlané255, 255, 255);

m_plane— SetPositionPixelsn_planePosition 0);
m_plane— SetSizePixeld 50, 150);

/I Set the timer to expire in 1 second ans start the timer
m_timer.setDuratior§1000);
m_timer.restart);

}

void ExperimentBody:: eventRenddint FrameCountint NumSamples const float « Sample$

/I Check whether the timer has expired
if (m_timer.isExpired)){

// Restart the timer

m_timer.restart);

/I Move the plane around
m_planePositior- = m_pxWidth/4,;
if (m_planePositior> m_pxWidth/4)
m_planePosition= —m_pxWidth/4,;

/I Move the plane to its new position
m_plane— SetPositionPixelgn_planePosition0);
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The Experiment Description Language (EDL) (Active Perception Laist@& University) is a program-
ming language for describing psychophysical vision experiments in a adnpgdear format. It makes
it possible for experimenters without deep programming experience to varb@lated experiments

using the full power of EMIL's display and real-time interaction.

EDL programs, which describe the experimental procedure to perfaarimgplemented as Finite
State Machines (FSMs), in which a set of states, each identifying a unltase wf the procedure, is

connected by a set of conditions that regulate the transitions among states.

5.1 A very simple EDL program

The simple program below shows a EDL program which will just print out asage. Although the

program is very simple, a few points are worthy of note:

e Most EDL programs are in lower case letters. As matter of fact, EDL is as@asstive language,

that is, it recognizes a lower case letter and its upper case equivalegingdifferent.

33
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e Comments are often added to make a EDL program more readable. Thetatah/s */)
combination is used in EDL for comment delimiters. The first slash star combinatimoluces
the first comment and the star slash at the end of the first line terminates this nomiai2L
supports also // as an inline comment, as it can be used on any line and is deliyritediewline
character (return).

e Every EDL program contains a state declaration cdlledi n, and it represent the starting point
of the program. The two curly brackets after the declaration of the bige n represent the
beginning and end of the state. Curly brackets in EDL are used to graemstats together. Such
a grouping is known as a compound statement or a block.

e Upon entering the stateegi n, theent er event is triggered, and its code executed. The first
command in this example prints the string “Hello, world!”.

e Unlike in other programming languages, the statement that ends the progsato be clearly
stated. In fact, the other command present in the program, the instrijietign, is an uncondi-
tional state transition to the final default stated. This state is a placeholder state that causes
program termination when jumped to.

state begin{
evententeq
/I Print out a greeting
print(“Hel 1 o, worl d!");

/* Quit the program. This type of comment can
be extended to more than one line */

jump(end);

5.2 Basic elements of EDL

5.2.1 Namesin EDL

Before you can do anything in any language, one must know how to nareatiyn An identifier is
applied to all variables, states, event handlers. In EDL, an identifier dsrdioation of alphanumeric
characters, the first being a letter of the alphabet or an underscanactér, and the remainder consists
of letters of the alphabet, digits, and underscore. EDL recognizes apgelower case characters as
being different. Finally, one is not allowed to use EDL's keywords ambér names. Examples of legal,
unique variable names include:

X result mnovenent anplitude
x1 X2 out file max_anplitude
PONER _Power Gamma Power
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5.2.2 Constant and variable types

Variables

In EDL, a variable must be declared before it can be used. Variabfelsecdeclared at the beginning of
a state, in which case they daeal variables or at the beginning of the EDL program, in which case
they areglobal variables

A declaration begins with the type, followed by the name of the variable. latsmbe initialized
when it is declared, which is done by adding an equals sign and the reécmairee after the declaration.
EDL provides a useful range of types, such a$ eger, f| oat, stri ng, andbool ean. Variables
may be left uninitialized, in which case integers and floats will defaull, tetrings to the empty string
*” and booleans tdalse For example:

integer a; Il Integer variables can assume valueg®! through+23' — 1

float b = 0.5; /* Float variables can assume valuesl.79E + 308 through1.79F + 308 */
string ¢ = “Hel | 0”;

booleand = true ; /I Boolean variables can assume only valtrege andfalse

If the definition of a variable is preceded by the keywaminst , the assigned value to the variable
cannot be modified inside the program. For example:

const integer five = 5;

const stringname = “J. Random Hacker ”;
const floatp: = 3.14159;

const booleanfoo = true ;

Images and vectors of images

A special type of constant identifier israge, and its vector formmul t i | mage. A constant of type

i mage binds the name of the constant to a file which contains the image itself, and itisaugdisplay
images during an experiment without referring directly to the physical pasitiothe PC.

An constant of typerul ti | mage, instead, is a container that may hold any number of images, only
one of which can be displayed at a time. The particular image to be displaydutanosen by index or
randomly.

A noisy modifier can be applied to bothmage andnul ti | mage. This form will apply random gray
noise selected uniformly between the highest and lowest gray valueghiineage. The argument of the
noisy modifier is an integer betwe@rand100 indicating the percentage of image pixels to replace with
noise.

imagex(“pi cture. tga”);

noisy (50)imagey(“pi ct ur e. t ga”); // 50% replaced by noise

multiimage z(“pl. tga”,“p2.tga”,5,“p3. tga”);

/* multiimage holding one copy each of p1 and p3, and 5 copieRd/

noisy (20)multilmage w(“p6. t ga”, 10); // multimage with random noise applied

It is possible to select particular images witmml ti | mage to be displayed (for further details see
reference in Section 5.5):

display( my_imagevectof2));
display(my_nimagevectat));

where the index of the vector must be an integer less than the size of the Wectoounting from zero).
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5.2.3 Expressions, operators, and built-in constants

Assignment Statement

The easiest example of an expression is the assignment statement. Ass@xpre evaluated, and the
result is saved in a variable:

y=(mxx)+c;

This assignment will save the value of the expression in varigble
Arithmetic operators

EDL introduces a number of common arithmetic operators for each typeiabler

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo reduction (remainder from integer division)

Multiplication, division, and modulo reduction will be performed before additio subtraction in any
expression. Brackets can be used to force a different order dfaticn to this. Where division is
performed between two integers, the result will be an integer, with remaitisearded. Operations
between integers and floats will result in automatic casting of the integer tota ffmalulo reduction
is only meaningful between integers. If a program is ever required tdedavnumber by zero, this will
cause an error.

Comparison

EDL, like other programming languages, has operators to compare varaideconstants:

Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

I = Not equal to
Note that == is used in comparisons and = is used in assignments. Compgresatoos are used in
expressions likex == y,i > 10,a+ b != c. In the last example, all arithmetic is done before any

comparison is made.
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Logical Connectors

EDL allows to combine conditions using relational operators:

Operator Description
&& And

I Or

! Not

In EDL these logical connectives employ a lazy evaluation technique. €hglpate their left hand
operand, and then only evaluate the right hand one if this is requiredcthC ledse && <anything> is
alwaysfalse, true || <anything> is alwaystrue. In such cases the second test is not evaluated.
Here is an example of the use of logical connectors:

booleanResult= (x < 20) && (x >= 10);

if (!Acceptablel| y < 10)
print (“Not Accept abl e”);

Built-in functions
Some common mathematical functions are accessible through EDL.

Floating-Point functions:

Function Description
£1 0or () Calculates the floor (greatest integer less than or equal to) valug of a
number
. Calculates the ceiling (smallest integer greater than or equal to) value of
ceil (x) . -
a number This is the result of rounding up
sqrt (x) Calculates the square root of a floating-point number
abs(x) Takes the absolute value of an integer
fabs(x) Takes the absolute value of an floating-point
Generates a pseudo-random number within x and y from a uniform dis-
rand(x, vy) Lo
tribution
round( x) Calculates the closest integer in value to the argument
Logarithmic functions:
Function Description
exp(x) Calculates the exponential function value of a floating-point number
| og(x) Calculates the natural logarithm (base e) of a floating-point numbef
| 0g10( x) Calculates the common logarithm (base 10) of a floating-point number
pow X, V) Calculates the value of x raised to the power of¥,
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Trigonometric functions:

38

Function Description

cos(x) Calculates the cosine of a floating-point number, in arcmin

si n(x) Calculates the sine of a floating-point number, in arcmin

tan(x) Calculates the tangent of a floating-point number, in arcmin

acos(x) Calculates the arccosine of a floating-point number, in arcmin

asi n(x) Calculates the arcsine of a floating-point number, in arcmin

at an( x) Calculates the arctangent of a floating-point number, in arcmin
Strings

EDL supports also some basic operations on the strings:

Built-in EMCD variables

ive)

cters

Function Description

 engt h(s) Returns the number of characters in a string

enpt y(s) Tests whether a string contains no characters

cl ear(s) Forces a string to have 0 length

get At (s) Returns the character at a specified position

set At (s) Sets a character at a specified position

compare(sl, s2) Compares (lexicographic order) two strings (case sensitive)
compar eNoCase(sl, s2) Compares (lexicographic order) two strings (case insensit
extract(s, b, I) Extracts thd characters of a string beginning from position
makeUpper ( s) Converts all the characters in the string to uppercase chara
nmakeLower ( s) Converts all the characters in the string to lowercase characters
format (f, al, a2, ...) Format the string (refer to the command sprintf of C)
find(c, s) Finds a character or substring inside a larger string
reverseFi nd(c, s) Finds a character inside a larger string; starts from the end

Some useful read-only integer and boolean variables are provide®hydgring the execution of an

experiment:
Variable Description
pos_h Current horizontal eye position
pos_v Current vertical eye position
vel _h Current horizontal eye position velocity
vel v Current vertical eye position velocity
acc_h Current horizontal eye position acceleration
acc.v Current vertical eye position acceleration
j pad_LH Horizontal position of the left joypad joysticks (PS2 joypad
j pad_LV Vertical position of the left joypad joysticks (PS2 joypads)
j pad_RH Horizontal position of the right joypad joysticks (PS2 joypat
j pad_RV Vertical position of the left joypad joysticks (PS2 joypads)

1s)



CHAPTER 5. EDL LANGUAGE 39

Variable Description

saccade_anpl it ude Amplitude of last saccade
saccade durati on Duration of last saccade
fixation_duration Duration of last fixation

i n_blink true if the subject is in a blink

i n_saccade true if the subject is in a saccade

5.3 Entity statements

5.3.1 States

A EDL program may consist of many states, each corresponding to a sitagle of the experiment.
At any point in time, a running program is in a single state, which defines @firam behavior at that
instant. For example, one state may display a fixation dot, while the next displsiymulus that is
stabilized to the subject’s eyes, while a third counts saccades.

Each state is characterized by its name, a set of local variables, andfagent handlers:

state < name> {
< local variable declarations

< event handler
< event handler 2>
< event handler 3>

-

In any EDL programbeginandendstates represent the initial and final state of the experiment. The state
beginmust be always defined, while it is illegal to define a state naemel{it is a placeholder provided
by the EDL runtime).

5.3.2 Event and Event handlers

When certain system event occur or conditions are satisfied, EDLis#s&rareventhas occurred, and

searches the current state for a corresponding event handleraatexénevent handleconsists of a

list of EDL commands, related to the event is executed sequentially. Eaclpetaesses a certain set of

handlers which are active only when that state is active. Only one emadtdr at the time can be active.
The general EDL form for an event handlers is as following:

event < event name> (< arguments>) {
< command list>
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5.4 Flow-control statements
if-else

The if-else statement is a two-way decision statement. Its general form is:

if (< condition>)

< EDL command 1>
else

< EDL command 2>

The else portion is optional. If theconditior> evaluates torue then<EDL command  is executed.
If there is anelse statement and theconditiorn> evaluates tdalse <EDL command 2 is executed.
EDL commands are terminated by a semicolon “;”, and can grouped into blgckadbosing them in
curly brackets. For example:

if (p==1)
r=px*x2+q;

it (p==1){
r=p*2+gq;
p=p*2;

}

if (p==1){
r=p=*x2+4aq;
p=px*2;

} else{
r=p*x3-+q;
p=px*3;

}

Because the statement in thise part can also be aifi statement, a construct such as shown below is
possible EDL to create a multiple choice construct.

if (< condition 1>)
< EDL command 1>
else if (< condition 2>)
< EDL command 2>
else if(< condition 3>)
< EDL command 3>
else if (< condition 4>)
< EDL command 4>
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5.5 Reference

5.5.1 Events
Blink end

Handler : event blinkEnd {}
Arguments : none

The eyetracker asserts a blink signal when it loses track of the sulggetand detects an eyelid instead.
The DSP board reports the status of this signal, and EDL activates theharetier in the current state
when the signal falls (if the handler has been defined).

Blink start

Handler :event blinkStart {}
Arguments : none

The eyetracker asserts a blink signal when it loses track of the sulggetand detects an eyelid instead.
The DSP board reports the status of this signal, and EDL activates theharetier in the current state
when the signal rises (if the handler has been defined).

Enter into state

Handler : event enter {}
Arguments @ none

Called before other state event handlers are activated.

Exit from state

Handler s event exit {}
Arguments : none

Called after current state event handlers are deactivated, buebitf®mext state'ent er event is
triggered.

Joypad events

Handler : event joypad( <buttor>, <status>) {}
Arguments
<buttorr> Identification of the joypad’s button
<status> onoroff

When joypad’s buttons are pressed or released, the event handlercurtbnt state is triggered. The in-
dicated button must belong to the $et, L2, R1, R2, UP, DOWN, LEFT, RIGHT, TRIANGLE, SQUARE,
CIRCLE, X, START, SELECT, JOYL, JQYRhe second argument indicates whether the event should
be triggered when the button is pressed) or releaseddf f ).
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Saccade end

Handler : event saccadeEnd {}
Arguments : none

When the board tags the end of a saccade, EDL triggers this type oftevadlier in the current state (if
previously defined).

Saccade start

Handler : event saccadeStart {}
Arguments @ none

When the board tags the beginning of a saccade, EDL triggers this typemflgandler in the current
state (if previously defined).

Timer events

Handler :event tiner(<timerID>) {}
Arguments
<timer ID> ldentification number of the timer

When the timer with the specified identification expires, the event handler imthent state is triggered.
Timer events are local to the current state, and are deleted when a staigomasccurs.

5.5.2 Commands

br eak
Forms . break
Arguments : none
break;

This command stops the execution of the current event handler.

destabilize

Forms : dest abi |l i ze( <image>)
Example . destabilize(ny_.i mage); destabilize(ny_nultilmage);
Arguments

<image> Image to stabilize

This command turns off stabilization for the indicated image. The image will betl#fedast position
of the subject’s eyes, shifted by the offset if defined in the stabilize comniftite indicated image is
already destabilized, this command has no effect.

di spl ay

Forms : di splay(<h>, <v>, <image>)
Example : display(0 px, 0 px, ny. mage);
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Arguments
<h> Horizontal coordinates
<> \ertical coordinates

<image> Image variable to display

Displays the specified image or images at the specified location. Coordiratdsedndicated in ar-
cminutes &r cm n), degreesdeg), or pixels px). If the image is already displayed, it is moved to the
specified location. If the indicated image objectimnd t i | mage, an image is selected at random from
its set and displayed.

hi de
Forms . hi de( <image>)
Example : hide(ny.image); hide(my_multil mage);
Arguments

<image> Image variable to hide

This command hides the indicatedage, ornul ti | mage. If it is already hidden, this command has
no effect. If anrmul ti | mage is displayed by index, one hides it by calling the command on the entire
variable.

junmp
Forms :j unp( <state>) ;
Example . junp(end);
Arguments

<state> Name of the state destination

This command causes the EDL to jump to the specified state. EDL will perfornoffoeving sequence
of operations:

1. Trigger the current stateésxi t event
2. Deactivate the current state’s event handlers
3. Trigger the next statesnt er event

4. Activate the next state’s event handlers.

pri nt

Forms : print(<argument, <argument2, ...)

Example print(7, *tate’’, x I'=5); print(<states); print(<image>);
Arguments

<argument-  Any kind of EDL entity

This command prints on the console any EDL literal or variable in a humaraéadbrm. Comma-
separated arguments are printed with spaces separating thenpritacdommand prints a newline after
its arguments. An empty commapdnt() simply prints a newline.
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set Ti nmer
Forms : set Ti mer ( <timer ID>, <time>)
Example . setTiner(0, 5 sec); setTiner(1l, 100 ns); setTimer(2, 5 frs);
Arguments
<timer ID> Identification number of the timer
<time> Time to expire

This command activates timers that trigger state timer events when they exparetifrter ID> passed

to this command must match thetimer ID> of a timer event handler in the current class. Time can
be indicated in seconds€c), milliseconds §s), or frames {rs). The event will trigger as soon as
possible after the indicated time has elapsed, but the system’s time granulariteroag frame if the
system is not busy, or several frames if it overloaded.

stabilize
Forms : stabilize(<image>, <h.offset>, <v_offset>)
Example . stabilize(my.image, 100 arcmin, -200 arcnin);
Arguments
<image> Image to stabilize

<h_offeset- Horizontal offset
<v_offeset- Vertical offset

Stabilizes the indicated image to the subject’s eyes with an optional offsetet@&a be indicated in
arcminutes dr cni n), degreesdeg), or pixels px). If the indicated image is already stabilized, this
command will modify the offset if necessary. If the indicated image is curretigiglayed, this com-
mand takes effect immediately. When the image is hidden, stabilization is activdtdueteffect is not
shown until the image is displayed. If an images is stabilizeddirgbl ay is called again to change
the displayed image, the newly-displayed image will also be stabilized.
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currentTrial == maxTrial

Timer 0

Timer 0

Timer 0

saccade

Figure 5.1 —FSM representation of the experiment that measures therelifte in a subject’s perception when a

5.6

stabilized stimulus is presented as opposed to a statiamey

Complete EDL Example

This section includes a complete EDL example program whose functionality is stoilaat of a real
psychophysical experiment originally performed using a very complex @egram.

The purpose of this experiment is to measure the difference in a subjetiyion when a stabilized
stimulus is presented as opposed to a stationary one. Two stimuli are uggt:facing and left-facing
gray bar, and both are obscured by random noise. A single trial ¢erdiseveral steps (see FSM
representation in Figure 5.1):

1.
2.

A fixation dot is displayed for.57 s.

A set of arcs is displayed at a random location a fixed distance freerscenter, fo240 ms.

. The system then hides the fixation dot and the arcs, and waits for tjeetsttdbmake a saccade to

the region in which the arcs appeared and enter a visual fixation.

. A stimulus is then displayed, tilted right or left, chosen randomly. The stimuldsgayed for

500 ms. Depending on a flag set by the programmer, the stimulus is either statiorthgyatcs’
old location, or stabilized, following the subject’s gaze.

. A mask is then displayed far33 s, at the same location and in the same mode as the stimulus.

. The system then waits for the subject to indicate whether they saw a leftthotilted bar, and

prints to the console if the response was correct or incorrect.

. This process repeats for a certain number of trials.
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/I Constant definitions - Edit here to change the parametétseexperiment

const integerMaxTrials = 40; // How many trials to run

const integerNoisylmages= 25; // The number of noisy images to generate

const integerNoiseLevel= 80; // The percentage of image pixels to be replaced by noise
const booleanStabilization= true ; // True for stabilized stimuli, false for unstabilized
const integer CueArcsRadius= 50; // Radius of the arcs

const integer CueArcsDistance= 400; // Distance from screen center to the arcs

/I Image definitions

image FixationDot“dot . t ga”);

image CueingArcg“ar cs. t ga”);

noisy (NoiseLeve) multiimage LeftStimulug“| ef t bar . t ga”, NoisyImages);
noisy (NoiseLeve) multiimage RightStimulug“ri ght bar . t ga”, NoisyImages);
image Mask(“mask. t ga”);

// Global variables

integer CurrentTrial= 0; // The number of the current trial
integer CuePosX // Position of the cueing arcs

integer CuePosY

integer CurrentStimulus // O for left, 1 for right

/I Begin - This state displays a fixation dot at screen cemte 57 seconds
/I It also checks whether we have completed our quota oftrial
state begin{
event enter{
/I Exit the program if we have run enough trials
CurrentTrial= CurrentTrial+ 1;
if (CurrentTrial== MaxTrials) jump (end);

display (0, 0, FixationDo¥); // Display the fixation dot at screen center
setTimer (0, 1570 ms); // Set a timer to jump to the next state

}

// Jump to the cueing state
event timer (0) {
jump (CueState,

}
}

/I This state displays cueing arcs for 240 ms.
state CueState
float Angle;

event enter {
/I Choose a position for the arcs
Angle = rand (0, 360 x 60);
CuePosX= round (CueArcsDistancex cos(Angle));
CuePosY= round (CueArcsDistancex sin (Angle));

display (CuePosX CuePosY CueingArcg; I/ Display the arcs at that position
setTimer (0, 240 ms); // Set a timer to jump to the next state
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// Jump to the saccade state
event timer (0) {
jump (SaccadeState

}

Il Clean up displayed images
event exit {
hide (FixationDob);
hide (CueingArcs;
}
}

/I This state waits for the subject’s gaze to stabilize iashte spot where the arcs were
state SaccadeStatg
booleanCheck

/I Set an initial timer event
event enter{
setTimer (0, 1 frs);

}

I/l Every frame, check whether we are fixating inside the aed,jump to the next state if so
event timer (0) {
Check= sqrt (pow (PosX— CuePosX2) + pow (PosY— CuePosY2)) <= CueArcsRadiug
if (Check&& linSaccadgjump (StimulusStatg,
setTimer (0, 1 frs);
}
}

/I This state displays the stimulus for 500 ms
state StimulusState {
event enter{
/l Randomly decide which stimulus to display
CurrentStimulus=rand (0, 1);
print (LeftStimulus PosX, PosY, CurrentStimulus== 0);
print (RightStimulus PosX, PosY, CurrentStimulus== 1);

/I Stabilize if that parameter is set
stabilize (LeftStimulus Stabilization);
stabilize (RightStimulus Stabilization);

setTimer (0, 500 ms); // Set the expiration timer

}

[/ Jump out when time expires
event timer (0) {
jump (MaskState,

// Clean up images

event exit{
hide (LeftStimulus);
hide (RightStimulug;
destabilize (LeftStimulus);

a7
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destabilize (RightStimulug;

}
}

/I This state displays the mask for 1333 ms
state MaskState{
event enter{
/I Display the mask and set the expiration timer
display (PosX, PosY, Mask);
stabilize (Mask, Stabilization);
setTimer (0, 1333ms);

}

/I Jump out when time expires
event timer (0) {
jump (WaitState;

}

/I Clean up images
event exit{
hide (Mask);
destabilize(Mask);
}
}

/I This state waits for the subject to indicate whether thay a right- or left-facing bar, and prints out the results
state WaitState{

/l React to joypad button presses - left or right - and retwriihte beginning

event joypad(L1,0n) {
/I Print out the actual orientation of the bar, followed bybgect response and correct flag
print (CurrentStimulus 0, CurrentStimulus== 0);
jump (begin );

event joypad(R1,off ) {
/I Print out the actual orientation of the bar, followed bybgect response and correct flag
print (CurrentStimulusl, CurrentStimulus== 1);
jump (begin);



