

Name:AE0032GV.PDFAuthor:Gerhard ViewegeMail:g.vieweg@goepel.com

Version: 1.4 Create: 01.03.2013

Subject:

BScan / JTAG Testbus Failures – how to tackle?

This Application Note explains Testbus failure reports gives suggestions and comments for design and troubleshooting.

The sections FAQ as well as "Typical Mistakes and Misunderstandings" should be understood as further help.

Some special cases from the practice are discussed, too.

Content

Testbus: Basics	3
Introduction	
Conditions for the "perfect" BScan / JTAG Testbus	3
Testbus Design: Needs and Mistakes	4
Testbus Failures	
Detection of Testbus Failures	5
Specialities	5
The Testbus Failure Message	
Reasons for Testbus Failures	
Static Testbus Failures	6
Dynamic Testbus Failures	7
Analysis Methods of Testbus Failures	7
Failure Message	8
Testbus Failure – how is it defined?	8
Typical Testbus Failure –Messages by CASCON [™]	9
Further Analysis, Trouble Shooting Strategy	.12
General Guideline for Troubleshooting	12
CASLAN Program "TCK Check-up"	13
Tests on TDO Output	14
Further Possibilities by the Boundary Scan Probe	16
Troubleshooting at Testbus Failures during Test Run Time	18
Troubleshooting at dynamic Failures by means of Scope	22
Special Cases in Practice	22
Question Catalog, Index, Hyperlinks	.25
Question Catalog	25
FAQs	26
Typical Mistakes and Misunderstandings	28
Terms and Abbreviations	29
More Help needed?	29
Appendix	.30
Test Program "TCK Check-up"	30
Literature	34

Testbus: Basics

Introduction

The Boundary Scan / JTAG Test utilizes a serial transfer protocol. It's error-free transmission requires some conditions, that - if not fulfilled - make the test useless or even impossible.

This document helps to recognize the failures and to understand the reactions of the system properly. A guideline for troubleshooting in different situations is contained.

Basic knowledge on Standard IEEE 1149.1 and knowledge on basic operation of the system CASCON [™] are assumed to be known.

All in the document used screenshots are based on CASCON TM version 4.4.2.

Conditions for the "perfect" BScan / JTAG Testbus

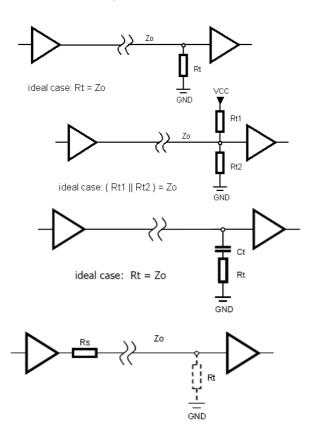
- 1. All BScan ICs understand the signals TMS and TCK such that all of them are in the same TAP state. This requires TCK and TMS have to be connected in parallel to all BScan ICs on the board.
- 2. The maximum applied TCK frequency is chosen to such value that the clearance of minimum 3 MHz to the maximum TCK of the slowest BScan IC in the chain.
- 3. The settings of signal delay compensation (ADYCSTM) are chosen to such levels, that the system operation is guaranteed over the complete range between TCK_{min} and TCK_{max}.
- 4. The voltage levels are defined to needs of the respective BScan ICs. If needed level shifters are applied.
- 5. There is no crosstalk between the Testbus lines.
- 6. There is no crosstalk between Testbus lines and other signals on the board.

Dynamic Conditions:

- 1. The signal quality des TCK is such that no essential ringing can occur. For this, a good cable design and an appropriate line termination is required.
- 2. The signal quality des TCK such that signal edges are free of dips. For this, the fan-out of the drivers must be considered.
- 3. The ADYCSTM parameters are optimized. This will allow the system to sample the data coming from the UUT at the correct time.

Static Conditions:

- 1. The actual length of the data registers and the instruction register correspond to the BSDL File.
- 2. The relationship between instructions and herewith selected data register is according to the BSDL File.
- 3. Possible Compliance Patterns are defined in the BSDL file and are realized on board.
- 4. Count and order of the BScan ICs in the scan chain are properly described in the Scanpath Configuration File (CON). The same is required for possible Scan Router ICs.
- 5. Existing Scan Router ICs are applied with the correct address given in the CON file.



Testbus Design: Needs and Mistakes

Observe the board design in the run-up for:

- 1. TAP connection. They can be fed via a special connector, via the system connector, or via fixture probes. In any case however, GND connections must be provided as well.
- 2. The TAP cable requires on both sides GND connections. It is not a matter of shield but of carry back the current of the TAP signals.
- 3. GND connections should be located close to the TAP connections. They should be available independent from Power Supply GND connections.
- 4. Line terminations shall be ideally located on the end. For small or medium size boards, the can be closed to the edge connector for the TAP.

Possible Variants of line termination.

This variant ensures Low level when the driver is not connected.

It is the most popular scenario.

Here the termination resistor is split in two individual resistors. Due to RF parallel connection of VCC and GND by bypass capacitors, both resistors can be treated as parallel connection. The logic level is High when the driver is not connected.

The scenario on the left ensures a particular low load for the driver. The level is not defined, when the driver is not connected but this can be compensated by parallel connection with a high-omic resistor.

(Low-ohmic) serial resistor on the driver output is possible, but works only well for single receiver scenarios. There is a voltage drop along the line. Minimum load for the driver. Note there is voltage drop along Rs.

This should be avoided:

- 1. Too many BScan ICs in parallel on TCK and TMS. Rule of thumb: Spend one buffer for 5 ICs.
- 2. Direct neighborhood of TCK to other signals including TAP signals on cables or on the board over long distance.
- 3. Direct coupling of /TRST and System reset.
- 4. "Star wiring" of TAP signals TCK and TMS.
- 5. Complicate jumper scenarios in order to achieve a certain scan chain design. Misunderstandings can easily a time waster.

Testbus Failures

Detection of Testbus Failures

Testbus Failures are detected only when executing CASLAN tests and during IEEE-1532 programming. Along every scan instruction (DRSHIFT, IRSHIFT) a Testbyte is transferred in addition to the actual required data stream. In other words: The Testbyte is put through the UUT's scan chain. In the case the Testbyte comes back faulty a Testbus failure message is generated and the test is aborted. If the faulty scan operation was a DRSHIFT automatically an IRSHIFT will follow in order to allow deeper diagnosis. For more details see section 0: Testbus Failure – how is it defined?

Specialities

- 1. In multiple TAP scenarios the individual scan chains get their own Testbyte. This ensures a TAPdepending failure message.
- 2. In scenarios with ScanRouters, implicit DRSHIFT and IRSHIFT instructions are used within the LOCALPATH instructions.
- 3. For Multidrop configurations based on ScanBridges or Addressable Scan Ports, for every ScanRouter an individual Testbyte is used.
- 4. Because of missing information, there is no diagnosis for Testbus failures possible during FLASH programming.

The Testbus Failure Message

Example, more examples in section 0, Typical Testbus Failure –Messages by CASCONTM.

```
<0104> Testbus failure at DRShift; Diagnosis by IRShift:
HIGH starting from U1; check U2-TDI and U1-TCK, -TMS, -TDO
```

<117> 12 DRSHIFTs have been executed.

No	Information Content	Possible Value
1	Art der failurehaften Scanoperation	Testbus failure at DRSHIFT; Diagnosis by IRSHIFT:
		Testbus failure at DRSHIFT; Diagnosis by IRSHIFT
		without Testbus failure:
2	Faulty measured level	HIGH starting from U1
		LOW starting from
		FAIL starting from
3	Failure localization within the Scan chain	Check U2-TDI and U1-TCK, -TMS, -TDO
		Check <dev1>- TDI and <dev2>-TCK, -TMS, -TDO</dev2></dev1>
		<dev1> and <dev2> are adjacent scan components. One of</dev2></dev1>
		them can be the controller.
4	Failure localization within the CASLAN	12 DRSHIFTs have been executed
	program.	

For more details about failure message see section "F".

Reasons for Testbus Failures

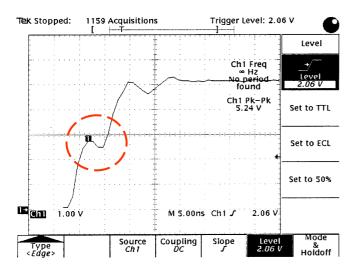
The possible Testbus failures can be sorted in categories as shown below. For more detailed differentiation see the following sections.

Nr	Reason	Typical Pattern of Defect
1	Manufacturing defect	Happens only on certain boards
2	Wrong parameterization	Can be excluded by low frequency (1 MHz or less) and
	(TCK frequency, delays, voltages)	setup of the voltages
3	poor Testbus signal quality	Typically change of fault locations and messages;
		At lower TCK frequencies better but not error-free

		function
4	Wrong wiring Controller – UUT; in particular	Every test fails at the first SHIFT.
	TDI / TDO mismatched	LOW starting from <tdo device="" of="" th="" the<=""></tdo>
		UUT> and controller TDI.
		Low/High depends on Pull-Down/-Up resistor.
5	Asynchronous Reset of the Testbus	Reset can be active static, then the same as faulty wiring.
	(TRST, Power, Compliance-Pins, Watchdog)	At dynamic resets the Testbus failure happens typically
		always on the same position of CASLAN (exception:
		Watchdogs) and on the same H/W position in the
		Scanchain.
6	Wrong modelling / description	Testbus failure constant on the same position in
	(Scanpath Configuration File, BSDL-Files)	CASLAN, when wrong register lengths occur. IRSHIFT
		mostly failure-free;
		possible asynchronous reset due to wrong cell – port
		allocation
7	"strange"(external) pins on the Testbus	The same as asynchronous reset.
	(buffer in Testbus not transparent, other pins	
	active illegally)	
	Board design failure	
8	Non-compliant behavior of components	Failure when utilizing certain registers

Static Testbus Failures

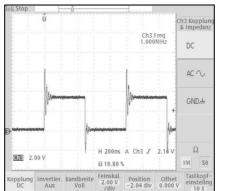
There is no relation between the TCK frequency and the pattern of defect. The defect is constant. Typical cases:

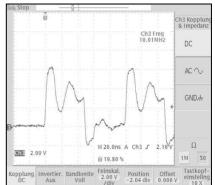

_ i ypn	cal cases:	D 11 D	5
	Pattern of defect	Possible Reason	Diagnose
1	TDO (Test Data Out) of the UUT provides different pattern, however they are different from "0" or "1".	Wrong BSDL File. Register lengths (Instruction register or Data registers) differ.	Diagnosis in Debugger, TCK Step Mode is possible, when the difference is small. There is a chance to recognize the dislocated Testbyte, provided the actual chain length is shorter. When it is longer, a few or all bits of the Testbyte are "swallowed"- so the diagnosis becomes unsure. A dummy BSDL with large Boundary Scan register can help to find the location of the Testbyte. Diagnosis by BCcan-Probe, see section "Further Possibilities by the Boundary Scan Probe"
2	TDO (Test Data Out) of the UUT drives constant "0" or "1".	 Design mistake of the TAP cable Design mistake on TAP of the board Compliance Pattern not satisfied System-Reset or /TRST active TDO is shorted to GND or driver with fix level 	Check if TDO of the BScan IC is active only in the TAP states SHIFT-IR / SHIFT-DR
3	IRSHIFT is failure-free, DRSHIFT is faulty after loading the instruction SAMPLE or EXTEST	Wrong BSDL file. Length of the BScan Register differs.	See 1, related to the data register selected by the previously loaded instruction

Dynamic Testbus Failures

The TAP (Test Access Port) operation is based on edge-triggered protocol. The TCK signal serves for synchronization. That's why it is the moist critical signal among the TAP ones.

In particular ringing caused by wrong or missing termination of the signal line can be interpreted as extra clocks. Cable design between controller and UUT and UUT design itself shall follow the rules of RF- design. Dynamic Testbus failures show a relation to the TCK frequency. Change of the TCK frequency can result in PASS or FAIL.


TCK Signal


This image shows a source of problems for unstable synchronisation on the Testbus. Because of no observance of the fan-out, there are dips that may be treated as extra clocks.

Such spikes can be sometimes very small and are visible only by means of scopes with a high bandwidth.

Over- and under-shots – the most often reason for instable Testbus. In the examples the termination is obviously missing. There is no chance for synchronisation.

Also the change of the TCK frequency does not have any effect.

Analysis Methods of Testbus Failures

For effective search for the Testbus failure reason, some questions get answered before using additional measurement technique. For this, sometimes a few extra tests are required.

Nr	Frage
1	Does the Testbus failure occur with the first DRSHIFT / IRSHIFT?
2	Does the failure message contain HIGH or LOW and "Controller TDI"?
3	Does the Testbus failure occur in all retries?
4	Does the Testbus failure occur in all tests?
5	Does the Testbus failure occur at low frequencies (TCK < 1 MHz)
6	Does the Testbus failure occur on all boards?

If all questions get a "yes", there is typically a general problem because the Testbus does not show any reaction at all. Here mainly as the failure reasons are "faulty wiring", "static asynchronous reset", (in particular due to missing power) and "strange pins on Testbus".

Alternatively can be the last IC in the chain (that is driving the TDO of the UUT) the reason. Check: Compliance pins, TRST or testbus pins.

If one of the question get a "no", the Testbus works at least partially and based on the functional part, further diagnosis steps ca be added.

Failure Message

Testbus Failure – how is it defined?

A Testbus failure happens if the Testbyte has not been detected properly.

One bit difference is enough for that. The exitcode is always 65534.

The testbyte is a CASCON TM - built in feature to check for transparency of the Testbus. It is provided in extra to the actual on the board existing chain length during SHIFT-DR and SHIFT-IR. Because the Testbyte is issued in addition, at first leaves the controller, it has to arrive at the end of the shift operation (Shift) on the serial output of the UUT.

The Testbyte is a 100% guarantee for the synchronization of the BScan ICs on the board and the controller. However it is no 100% guarantee for the total failure-free Testbus operation, because also single bits apart from the Testbytes can be falsified anyway. Fortunately, this happens more seldom.

Prove by the testbytes is therefore a good option to prove the chain length. The calculated chain length is given in the BScan ICs within the chain and their actual situation. The CASLAN instructions for activating the Testbus are IRSHIFT and DRSHIFT. They result in a walkthrough graph ranges IR-Scan and DR-Scan. Note: The chain length is constant at IRSHIFT but depends on the previously chosen data register at DRSHIFT. An instruction selects a data register that is connected between TDI and TDO for following DRSHIFTs.

A data register is selected by an Instruction or is selected per ,,default" as defined in the Standard. The default data register is the Idcode register (if exist), otherwise the Bypass register.

Caution:

Do not disable the Testbyte when executing tests. Otherwise you lose the safety for the UUT during the test execution. Only in rare exceptions, those are technically required can / must the Testbyte temporarily disabled.

A Testbus failure can be stable. However, it can behave dynamically. See following chapters for more failure cases and their typical reasons.

Typical Testbus Failure –Messages by CASCONTM

Example 1 – simple test set-up	(SCANPATH 1
*.CON	(DEV U2 'EPM7032AETC44')
	(DEV U1 `XC9572XL_TQ100')

	Testing boundary register U2 … <0108> Testbus failure at DRShift; IRShift without Testbus
181	failure:
222	FAIL starting from BScan controller; check Ul-TDI and BScan
Message	controller-TCK, -TMS, -TDO.
	<117> 4 DRSHIFTs have been executed.
	• Length IR OK, data register (here the BScan register) wrong length
Meaning , possible Failure	Check BSDL and Compliance Pattern

Message	<0104> Testbus failure at DRShift; Diagnosis by IRShift: HIGH starting from U1; check U2-TDI and U1-TCK, -TMS, -TDO. <117> 1 DRSHIFTs have been executed.
Meaning , possible Failure	 Connection U1:TDO => U2:TDI has problems U1 has no TMS or TCK U1 stays in Reset Mode U1 Compliance Pattern not satisfied
Message	<0101> Testbus failure at DRShift; Diagnosis by IRShift: LOW starting from BScan controller; check U1-TDI and BScan controller-TCK, -TMS, -TDO.
·	<117> 1 DRSHIFTs have been executed.
Meaning , possible Failure	• Connection controller:TDO => U1:TDI has problems

GOPEL electronic **Application Note** <0101> Testbus failure at DRShift; Diagnosis by IRShift: Message LOW starting from U2; Check BScan controller-TDI and U2-TCK, -TMS, -TDO. <117> 1 DRSHIFTs have been executed. • UUT no Power supply Meaning, possible • SFX-TAP module of the UUT not allocated • SFX-TAP module wrong TAP voltage settings Failure • Testbus cable defective • Connection U2:TDO => Controller:TDI has problems • U2 has no TMS or TCK • U2 stays in Reset Mode

• U2 Compliance Pattern not satisfied

Example 2 – Scanpath multidrop by	(SCANPATH 1
Scanrouter IC	
	(SCANROUTER U100 'scanstal12_B0'
*.CON	(ADDRESS 03h)
	(LOCALPATH 7
	(DEV U204 `XC9536XL-10VQ44C')
)
	(LOCALPATH 6
)
	(LOCALPATH 5
	(DEV U203 `XCR3064XL-VQ44C')
)
	(LOCALPATH 4
	(DEV U202 `XC9572XL-10VQ44C')
)
	(LOCALPATH 3
)
	(LOCALPATH 2
	(DEV U201 `XCR3064XL-VQ44C')
	(LOCALPATH 1
	(DEV U200 `XC9536XL-10VQ44C')
)
)

Message	<0103> Testbus failure at IRShift: LOW starting from U100; Check BScan controller TDI and U100-TCK, -TMS, -TDO. <117> 0 DRSHIFTs have been executed. Scan Bridge (Address 3H) not found
Meaning , possible Failure	 This message contains two information: Testbus failure for the Scan Router-own Scanpath (primary TAP) and addressing failure. UUT no Power supply Testbuscable is defective Address is wrong

Message	<0106> Testbus failure at IRShift: HIGH starting from U202; Check U203-TDI and U202-TCK, -TMS, -TDO. <117> 2 DRSHIFTs have been executed.
Meaning , possible Failure	 U202 has no TMS or TCK U202 in Reset Mode U202 Compliance Pattern not satisfied Connection U202:TDO => U203:TDI has problems

Further Analysis, Trouble Shooting Strategy

These questiones needs to be answered:

Nr	Question	How to continue
1	Is the failure sporadic?	Yes: Continue with 3
	Use Run – Continuous Run	
2	Does the content of the failure message change?	Yes: Check stability of the Testbus, see section "CASLAN Program "TCK Check Up"
3	Is the failure TCK frequency-depending?	Check ADYCS TM , check cable design
4	Does the failure occur only on certain test programs?	Yes: continue with 5
		No: Check Sie die Stability des Testbus, see section "CASLAN Program "TCK Check Up"
5	Does the failure occur at the begin of the testprogram?	Yes: continue with Section "Static Testbus"
6	Does the failure occur in the middle of the testprogram?	Yes: continue with 7
7	Is the faulty test step constant and independend from the TCK frequency?	Yes: continue with Section "Troubleshooting at Testbus Failures during Test Run Time" No: check for asynchrones Reset
8	Does the failure occur on a "new" board?	Yes: possibly program faulty; Debug required
9	Does the failure occur only on certain boards?	Yes: possibly manufacturing defect
10	Is the failure location at the begin of the chain = TDI UUT?	Yes: cable to controller, possibly level
11	Is the failure location at the end of the chain = TDO UUT?	Yes: continue in section "Static Testbus"
12	Is the failure location in the middle of the chain?	Jumper, resistors (TDI-TDO)
13	Does the failure occur in a certain cable configuration?	Yes: check cable design

General Guideline for Troubleshooting

A simple method is the execution of one IRSHIFT instruction in a manually written test program. No particular instruction code is required. This will result in loading the instruction BYPASS by default. As also no IC name is addressed, all scan components will get the instruction BYPASS. Sequence:

Executables / Manually / New / <test_name> Files / CASLAN / CASLAN BEGIN IRSHIFT; END.

For check versus TCK frequency dependency you may change in Execute options of the test the TCK. "Use Special TCK Frequency".

The target is to see if there are TCK ranges without faults.

Execute Options * Results					
Recording Test Execution					
Teststep Recording					
Fail Values					
Write Failed Pins to the Result File					
Write Failed Groups to the Result File					
Testbus					
🗹 Permanent Testbus Check (using a Testbyte)					
Vse special TCK Frequency:	1.000000 MHz				

More efficient is, to change the TCK frequency inside the test program. This is done with the CASLAN test "TCK Check-Up", moreover, the Frequency and PASS / FAIL information is displayed.

The Debugger / Command Window allows to use directly IRSHIFT in a test program (Exceptions: In-System-Programming – FLASH, SVF, JAM/STAPL). For this, just launch the program in Debug mode, open the Command Window and type in IRSHIFT;.

Debugger start, the program waits at the first instruction.	<pre>18 19 Begin 20 21 22 LDI U2, Sample; 23 LDI U1, Sample; 24 IrShift; 25</pre>
Open the Command Window, type in IRSHIFT;	CASCON GALAXY 4.4.2 beta03 - CASLAN Debugger Ele Yiew Help Image: Stop (I) Commands (I) Commands (I) Commands (I) [2] [3] [4] [5] [6] [7] Run Continuous Run Step

CASLAN Program "TCK Check Up"

That test program can be imported in any CASCON project because no IC is addressed.

The kernel is the two instructions IRSHIFT and TCK. The **Testbyte** is disabled exceptionally, in order to recognize possible interruptions of PASS ranges.

For the CASLAN code see the appendix. The content of the result window consists of a TCK frequency scale and underneath a dot "." for PASS or "F" for FAIL. FAIL happens when the measured Instruction register's Capture value is different from the expected one.

Optimum setting, there is no	TESTING TAP1
essential interruptions of the PASS () stream.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
	41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Faulty line termination or	TESTING TAP1
wrong ADYCS TM setting.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
There are alternating "Good"	······································
and "Bad" sections.	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
It would not be a good idea to	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
chose a "Good" TCK for	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
testing. Instead the reason	······································
must be found and fixed.	
	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
	· · · · · · · · · · · · · · · · · · ·

The ADYCS [™] settings can made by hand; Starting from CASCON 4.4.1 the ADYCS [™] parameter can be checked by the system under "Measure TCK-TDO Delay" at SFX-TAP transceivers:	SFX_TAP_2_1 -SFX_DIO_1 -SFX-L5 -SFX-L5 1 -SFX-L5 2		Firmware: Version Module: 2.23 Version File: 2.23 Pre power: Generic IO (I ² C) Modes: Generic IO 1: Z Generic IO 2: Z Generic IO 3: Z Delay: 3 Pre-power test 1:	Power: <u>PIP-VI/O Voltages;</u> PIP 1/2: 3.300 V PIP 3/4: 3.300 V TDIs/TAP: 1 <u>Generic IO (I²C) Modes;</u> Generic IO 1: Z
			disabled <u>Pre-power test 2:</u> disabled TAPs: <u>Measure TCK-TDO delay</u> TCK-TDO delay delta: 1 ns	Generic IO 2: Z Generic IO 3: Z Delay: 3
Second panel.		Found max. freq	Incy: 30 MHz of devices: 10.000000 MHz Start measurement TAP: 1 lelta: 2 ns Activate delay values laximize TCK frequency	

Tests on TDO Output

or

Debugger, TCK Step Mode: Get the Step Mode in Debugger via these two possible ways:

Options / Step Mode

Click on the right lower edge in Debug window.

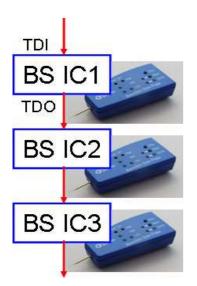
The highest priority has "TCK", the options "IR" and "DR" are not treated then.

	Þ
	×
not tested TCK Stmt IR DR Jmp C/R +DRSHIFT	

Signal names and headlines correspond to the signals of the controller. Alternating colors for different BScan ICs and the Testbyte makes the pattern easier to understand.

詹 Rese	et->IrShift	->Run	Idle							_ [
Step	TAP state	TMS	OUT Dev:Reg	jister Pin [Cell]	TDO	EXP	TDI	IN Dev:Re	egister Pin [(Cell]	
2	SelectDR	1			0	×	0				_
3	SelectIR	0			0	x	0				
4	CaptureIR	0			0	x	0				
5	ShiftIR	0	Testbyte [0]		0	1	1	U2:IR [0]			
6	ShiftIR	0	Testbyte [1]		1	0	0	U2:IR [1]			
7	ShiftIR	0	Testbyte [2]		0	1	1	U2:IR [2]			
8	ShiftIR	0	Testbyte [3]		0	0	0	U2:IR [3]			
9	ShiftIR	0	Testbyte [4]		1	1	1	U2:IR [4]			
10	ShiftIR	0	Testbyte [5]		0	0	0	U2:IR [5]			
11	ShiftIR	0	Testbyte [6]		1	1	1	U2:IR [6]			
12	ShiftIR	0	Testbyte [7]		0	0	0	U2:IR [7]			
13	ShiftIR	0	U2:IR [0]		1	1	1	U2:IR [8]			
14	ShiftIR	0	U2:IR [1]		1	0	0	U2:IR [9]			
15	ShiftIR	0	U2:IR [2]		1	1	1	U1:IR [0]			
16	ShiftIR	0	U2:IR [3]		1	0	0	U1:IR [1]			
17	ShiftIR	0	U2:IR [4]		1	x	0	U1:IR [2]			
18	ShiftIR	0	U2:IR [5]		1	x	0	U1:IR [3]			
19	ShiftIB	Π	112-IB-I61		1	×	Π	111 ⁻ IB [4]			-
<u></u>	<u>Step Cursor End</u> Sa <u>v</u> e VK										
Exec	Executed steps: 33 Remaining steps: 0 Errors: 0										

The Testbyte is shifted out of the controller first. It's vector is 52h. The LSB comes out first.


The signal names of the TCK Step Window correspond to the controller signals. This means, ,TDO' is the TDO of the controller and so on.

🧏 Reset->IrShift->RunIdle 📃 🗌 🗙									
Step	TAP state	TMS	OUT Dev:R	egister Pin [Cell]	TDO	EXP	TDI	IN Dev:Register Pin [Cell]	
17	ShiftIR	0	U2:IR [4]		1	x	0	U1:IR [2]	
18	ShiftIR	0	U2:IR [5]		1	х	0	U1:IR [3]	
19	ShiftIR	0	U2:IR [6]		1	х	0	U1:IR [4]	
20	ShiftIR	0	U2:IR [7]		1	0	0	U1:IR [5]	
21	ShiftIR	0	U2:IR [8]		1	0	0	U1:IR [6]	
22	ShiftIR	0	U2:IR [9]		1	0	0	U1:IR [7]	
23	ShiftIR	0	U1:IR [0]		1	0	0	Testbyte [0]	
24	ShiftIR	0	U1:IR [1]		1	1	1	Testbyte [1]	
25	ShiftIR	0	U1:IR [2]		1	0	0	Testbyte [2]	
26	ShiftIR	0	U1:IR [3]		1	0	0	Testbyte [3]	
27	ShiftIR	0	U1:IR [4]		1	1	1	Testbyte [4]	
28	ShiftIR	0	U1:IR [5]		1	0	0	Testbyte [5]	
29	ShiftIR	0	U1:IR [6]		1	1	1	Testbyte [6]	
30	ShiftIR	1	U1:IR [7]		1	0	0	Testbyte [7]	
31	Exit1IR	1			0	х	Ū		
32	UpdatelR	>0			0	х	0		
33	Runidle	\gg En	d of burst <<						
									-
				1					
<u>S</u>	<u>Step</u> <u>C</u> ursor <u>E</u> nd Sa <u>v</u> e ✓ OK								
Exec	Executed steps: 33 Remaining steps: 0 Errors: 0								

Since 8 bit are shifted in addition to the actual chain length on the board, the Testbyte must arrive at the end of the transport in the controller.

The un-modified value of that vector 52H proves the correct function of the Scan chain and the identity between library model (BSDL) and reality regarding IRSHIFT.

G^OPEL electronic

Application Note

The Boundary Scan Probe allows the check of a TDO output for correct function:

In debugger / TCK-Step Mode an **IRSHIFT** is executed. Check for

- the TDO is active only in the TAP state "ShiftIR / ShiftDR"
- the first two bits at ShiftIR are ...01b (LSB=1)

This is because of the fact that the two LSB bits capture values of the instruction register are constant and defined according to the Std. with ...01b.

This behavior is identical on all BScan ICs. All BScan ICs provide simultaneously on TDO ...01b, that may be checked by the debugger. Just the following bits are depending on the chip design and can be found in the BSDL file / Library / Instruction Capture Values.

This check proves the correct function of the device-under-test:

- ♦ TCK
- ♦ TMS
- ♦ TDO
- Chip power supply
- Reset of the TAP controller (is here not active)

In case of differences check the signal levels (logic and voltages). In particular at constant 0 or 1 check for possible short circuits to power nets or to active drivers.

Further Possibilities by the Boundary Scan Probe

Beside the obove mentioned features you may use the Boundary Scan Probe use also for:

- to check the lengths of IR and data registers
- to check the IDCode
- to check the relation between IR code and data register length
- to check the allocation of BScan register cells and pins
- to trace the signals TMS, TCK, and TDO on a board

For further informationen see the section "

Li"

Troubleshooting at Testbus Failures during Test Run Time

In the beginning the Testbus is error-free but is disturbed before normal end of the test. Because of the cancelation the diagnosis report cannot be generated. Just the Testbus failure message is generated.

Use the following method when the failure appears constantly at the same test step.

Note: In case of time-pendent failures the faulty step can be changed when operating the Debugger.

Target	Find out which BScan driver causes the problem.
Strategy	See in Debugger: which test step, which BScan driver, which level
Method	Insert in CAS additional DRSHIFT (automatic in debugger from CASCON TM 4.4.1)
	Find the CAS line: Debugger STEP mode
	Find the BScan driver: Debugger Command Window, break up the CAS line

Procedure

Step 1:	<0101>	Testbus failure at DRShift; Diagnosis by IRShift:
		LOW starting at U2;
Failure report		check BScan-Controller-TDI and U2-TCK, -TMS, -TDO

<118> 4 DRSHIFTs and 1 DRSHIFTs/ATG have been executed.

Schritt 2:

Debugger

No breakpoints are set. Options for Pin Toggler are de-activated.

Start the test in the normal way.

Test cancels at Drive 3.

The yellow arrow indicates which DrShift was causing the failure. Arrow to left = the line has been

executed.

Intercor	nnection.CAS
64	DH (PB03 07/C, PB03 06/C, PB03 05/C, PB03 04/C, PB03
65	DH (PB02_15/C, PB02_14/C, PB02_13/C, PB02_12/C, PB02_
66	DH (PB02_03/C, PB02_02/C, PB02_01/C, PB02_00/C, PB01_
67	DH (PB01_10/C, PB01_09/C, PB01_08/C, PB01_07/C, PB01_
68	DH (PBO0_14/C, PBO0_13/C, PBO0_12/C, PBO0_11/C, PBO0_
69	<pre>DH (PB00_03/C, PB00_02/C, PB00_01/C, PB00_00/C);</pre>
70	IGN U2:Boundary;
71	IGN U1:Boundary;
72	DrShift;
73	EL (Error
74	EL (1
75	ЕН (1 💦
76	EH (Color > Testbusfehler bei DRShift; Diagnose durch IRShift; 95
77	EH (1 LOW ab U2; BScan-Controller-TDI und U2-TCK, -TMS, -TDO prüfen. 3
78	ЕН (
79	
80	
81	ЕН (
82	EH (PB01_00/I, PB00_17/I, PB00_16/I, PB00_15/I, PB00_
83	EH (PB00_06/I, PB00_05/I, PB00_04/I, PB00_03/I, PB00_
84	Disable pins
85	DL (U2:I019/C, I018/C, I015/C, I014/C, I013/C);
86	DL (U1:PB03_17/C, PB03_16/C, PB03_15/C, PB03_14/C, PB03_13
87	DL (PB03_05/C, PB01_00/C);
88 🤶	DrShift/ATG; (* Drive 3 Measure 2 *)
	Suitar love, of bird

Step 3:

Debugger

Options / Insert DrShifts

Test is called after the line 65

Intercor	nection.CAS
41	LDI U2, Extest;
42	LDI U1, Extest;
43	IrShift; (* Drive 1 *)
44	
45	(* Stuck-At-Low Test (alle Leitungen werden auf High geset:
46	(* 2 Testschritte. *)
47	
48	Switch level of pins
49	DL (U2:I023/0, I022/0, I021/0, I020/0, I042/0);
50	DL (U1:PB02_07/0, PB02_04/0, PB02_03/0, PB01_17/0, PB01_04
51	DH (U2:I035/0, I033/0, I031/0, I030/0, I028/0, I025/0, I0:
52	DH (I06/0, I05/0, I03/0, I02/0, I044/0, I043/0);
53	DH (U1:PB03_17/0, PB03_16/0, PB03_15/0, PB03_14/0, PB03_10
54	DH (PB03_07/0, PB03_06/0, PB03_05/0, PB03_04/0, PB03_
55	DH (PB02_15/0, PB02_14/0, PB02_13/0, PB02_12/0, PB02_
56	DH (PB02_00/0, PB01_16/0, PB01_15/0, PB01_14/0, PB01_
57	DH (PB01_07/0, PB01_06/0, PB01_05/0, PB01_00/0, PB00_
58	DH (PB00_10/0, PB00_09/0, PB00_07/0, PB00_06/0, PB00_
	DrShift/ATG; (* Drive 2 Measure 1 *)
60	Enable pins
61	DH (U2:1035/C, 1033/C, 1031/C, 1030/C, 1028/C, 1025/C, 10:
62	DH (I06/C, I05/C, I03/C, I02/C, I044/C, I043/C, I042/
63	DH (U1:PB03_17/C, PB03_16/C, PB03_15/C, PB03_14/C, PB03_13
64	DH (PB03_07/C, PB03_06/C, PB03_05/C, PB03_04/C, PB03_
65 🤶	DH (PB02_15/C, PB02_14/C, PB02_13/C, PB02_12/C, PB02_
66	NH / DROP OB/C DROP OP/C DROP O1/C DROP OD/C DRO1

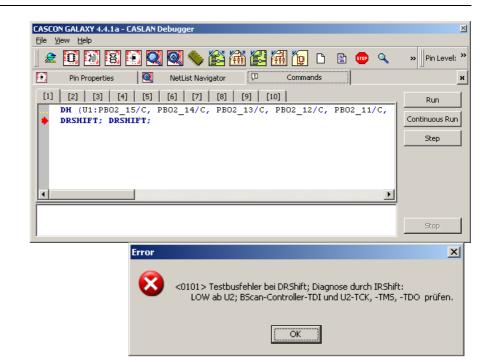
Step 4:

Debugger

Copy line 65 to Command Window and insert device name

Insert 2x DRSHIFT

CASCON GALAXY 4.4.1a - CASLAN Debugger	
File View Help	
] 🕿 🖸 😫 🗑 🔍 🍳 💊 🏠 🏦 🚰 🍈 🕒 🗈 👳 🔍	» Pin L
Pin Properties 🛛 🕅 NetList Navigator 🖓 Commands	
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] DH (U1:PB02 15/C, PB02 14/C, PB02 13/C, PB02 12/C, PB02 11/C, PB	Run
DRSHIFT; DRSHIFT;	Continuou:
	Step
	Stop



Step 5:

Debugger

Source Window Set breakpoint to line 65

Interco	nnection.CAS								
43	IrShift;	(*	Drive	1				*)	
44				CASCON G	ALAXY 4.4	.1a - CA9	il AN Deh	unner	
45	(* Stuck	-At-Low	Test	File View	Help				
46	(* 2 Tes	tschrit	te. *)	11 10 10 11					
47				1 🤶 🗓		8 1		0	
48	Swit	ch leve	l of pi		18			<u></u>	
49	DL (U2:	1023/0,	1022/0	1	^p in Propertie	es 🛛		NetList Na	avigator
50	DL (U1:	_		E 4 3 1 6	-1 [r=1 [r	- 1 r	L real
51	DH (U2:	1035/0,	1033/0	[1] [2] [3]	[4]	[5] [6] [7]	[8]
52	DH (, 105/0		U1:PBO2	_15/C,	PBO2_	_14/C,	PB02_13
53	DH (U1:	_			IFT; DR	SHIFT;			
54	DH (_	07/0, H						
55	DH (PBO2_	15/0, H						
56	DH (PBO2_	00/0, H						
57	DH (_	07/0, B						
-58		PBOO_							
59	DrShift/A	1 A A A A A A A A A A A A A A A A A A A							
60	Enab	-							
61	DH (U2:								
62	DH (, 105/0						
63	DH (U1:	_							
64	DH (_	07/C, B	1					
65 🛑	DH (_		B02_14/		-	_		
66	DH (_		BO2_02/		-	_		
67	DH (_		B01_09/		-	_		_
- 68	DH (PBOO	14/C, H	BOO 13/	С, РВОО	12/C,	PBOO	11/C,	РВОО 👱

Step 6:

Debugger

Debugger: Reset Debugger: Run

Command Window Set the cursor on first line Run

Check for FAIL

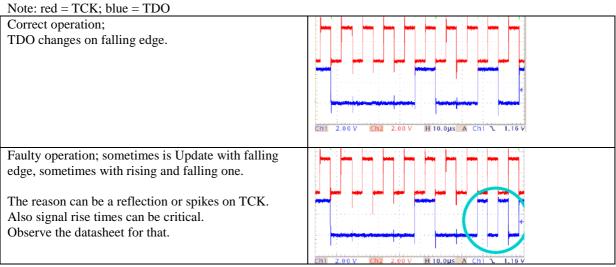
Store 7.	CASCON GALAXY 4.4.1a - CASLAN Debugger File View Help	×
Step 7:		» Pin Level: »
Half the line	Pin Properties NetList Navigator Commands	* x
);		 Run
Debugger: Reset	DH (U1:PB02_15/C, PB02_14/C, PB02_13/C);, PB02_12/C, PB02_1 DRSHIFT; DRSHIFT;	Continuous Run
Debugger: Run		Step
Command Window		
Set cursor on first line Run		
Kun		
Check for FAIL		Char 1
		Stop
Step 8:	CASCON GALAXY 4.4.1a - CASLAN Debugger	
Step 0.	File View Help	
Debugger] 2 II 🗄 🕄 II 🔍 🍳 🦠 🎬 🏦 🎦 🗅 🗈 👳 🤉	► Pin Le
	Pin Properties 🔍 NetList Navigator 🖓 Commands	
Command Window		Run
Repeat steps, check, at which	<pre>DH (U1:PB02_15/C);, PB02_14/C, PB02_13/C, PB02_12/C, PB02_ DRSHIFT; DRSHIFT;</pre>	_1 Continuous
DH/DL no longer FAIL occurs		Step

Here the U1:PB02_15/C is the causer

[1]		[4] [5] 302 15/C); ·		 PB02 13/C,	PB02 12/C.	PB02 1
•	DRSHIFT;		,	 	···· <u>·</u> ···,	
•						Þ

Stop

Step 9:


Check the circuitry why U1:PB02_15/C can disturb the Testbus.

Troubleshooting at dynamic Failures by means of Scope

This proves, if the TDO changes on falling TCK as expected.

Definition: The rising TCK edge loads the parallel inputs of the cells (Capture), falling one changes outputs (Update).

Special Cases in Practice

Those cases are not representative, however they show, that difficult cases can happen. Often the behavior has not been compliant to the Standard.

	Chip, Vendor, Failure image	Reason, Work-Around
1	<type by="" name="" nda="" protected=""> Instead of 1 there are 3 BScan cores inside one package Only one of them is usable for JTAG mode</type>	Faulty BSDL File; Create 3 individual library models Detect IR and BScan register lengths Create 2 Dummy models, later those Ics will be held in mode: Global Extended Generator Settings (*.EGS), (DEVICES (DEV (INSTRUCTION BYPASS))
2	<type by="" name="" nda="" protected=""> The length of the BScan register in mode SAMPLE / PRELOAD is shorter than in EXTEST; the function however is correct</type>	Design failure on chip; Disable the Testbyte in SAMPLE mode, afterwards activate it again Global Extended Generator Settings (*.EGS, (CASLAN (PRESHIFT_0 SET TEST_BYTE, OFF;) (PREEXTEST SET TEST_BYTE, 052H;))
3	Infineon MPC8548E-1333_CFCBGA_PGEQ1 At the TAP transition from Update-DR => Run- Test/Idle => Select-DR-Scan => there is no UPDATE if the mode EXTEST has been loaded.	Design failure on chip; Generate Options / Time between Update and Capture = Fast (2.5 TCK)
4	Texas Instruments TMS320C6713 Sporadic Testbus failure, often PASS after reset. Sporadic FAIL, then the length of the BScan register does not match the BSDL file.	Application error; Compliance Pattern has not been fulfilled: TMS320C6713:Reset_Z did not get a LOW, because of the prevention of Flash access by that.

		Compliance pattern			
		Select Package GDP272_PBGA			
		Ports/Patterns Pattern: 1			
		emu0 (#D9) 0			
		emu1 (#89) 0			
		gnd (#B4) 0			
		reset_z (#A13) 0			
		The IC vendor guarantees the function only when the			
		compliance patterns are met.			
		Change the board design: make a separation between TMS320C6713:Reset_Z and Flash:Reset			
5	<type by="" name="" nda="" protected=""> The operation hangs up in TAP state PAUSE-DR;</type>	To avoid the TAP state "PAUS-DR" there are two restrictions:			
	continue of operation with Test Logic Reset only	 the UUT must have only one TAP 			
		♦ in TestProgram Generator (Intercon, RAM-			
		Intercon), Time between Update and Capture = Normal			
		- Normai			
		Generate Options ★ Execute Options ▼ Resu			
		Test Execution			
		Time between UpdateDR(IR) and CaptureDR			
		Normal (about 1 ms)			
		C Fast (2.5 TCKs)			
		disadvantage: Missing Pull resistors sometimes cannot be detected			
6	Difficult to explain Testbus failures; when checking by scope, on TDO sometimes proper and	Failure on board design. There were planned resistors for different assembly scenarios, however the actually			
	sometimes midrange levels can be seen.	mounted one was different. Due to this, two TDOs			
		have been connected in parallel.			
7	Xilinx Spartan 3E causes Testbus failure everytime the Instruktion SAMPLE is loaded.	Failure on board design. The /TRST pin was connected just to an IO of the Spartan 3E, in addition there was			
	everythile the instruction Station EL is folded.	an Pull-Up of 4k7. No connection to the BScan			
		controller's /TRST output.			
		Xilinx Support:			
		It is expected to see I/Os pulled up/down with unconfigured device when SAMPLE instruction is			
		loaded and the TAP controller switch to Update-			
		IR state. If HSWAP is high, you will see all I/O pulled down but if HSWAP is low you will see all			
		I/Os pulled up. The workaround we give to			
		customer is then to use BSDLAnno and set the			
		I/O as needed if the pull-up/down effect is problematic.			
		problemater			

8	One BScan IC shows Testbus failure, the others in the same chain are error-free. The faulty IC (IC1) is connected through a serial resistor in the TCK line, moreover from there is connection to a fixture line. The opposite end of that line is open (= stub). The period time of ringing shown in the clock diagram (blue signal) after edges is directly depending on the length of the stub.	FAIL PASS PASS IC1 IC2 IC3 TCK TCK TCK Wire to fixture TCK from controller
	Explanation: The open line causes reflection. Also, this line has a capacitive load due to wiring in the fixture. Blue: TCK signal of the faulty IC. Essential spikes on the edges, therefore there is no chance for synchronization. The voltage range of the spikes is critical; they appear to IC1 as extra clocks. Red: Also here spikes are visible. However due to the serial resistor they are transferred to a non- critical voltage range. However, it is an indicator fort he trouble described above. Solution: Cut the connection to the fixture.	Ch1 Freq 1.867MHz T.00 V Ch2 2.00 V H 100ns A m 2 1.90 V
9	Here we have a BScan combination with a MDA Tester. The Testbus is instable – we see sporadic Testbus failures. The TCK check by Scope on the UUT proves:	GND 33pF Y2 R26 8 XT1/MCLK C11 T XT2
	The Testbus signals are heterodyned a clock of 12 MHz. The clock generator is on the UUT.	GND 33pF
	Explanation: A bi-level fixture on Testpoint X) is assembled with a wrong size of probe. As a result, the clock signal is transferred down to the fixture and interferes there the TAP signals.	
	Solution: Avoid connection of those signals during BScan test by choosing short sizes of fixture probes.	h 1.00 V H 1.00 µs

Question Catalog, Index, Hyperlinks

Question Catalog

	Failure Images & Questions	Failure Reasons; Hints
1	Testbus failure ist stable	Testbus cable System-Reset active /TRST not connected Compliance Pattern not satisfied
2	Testbus failure occurs in certain tests only	Check over-current; check the data base of the board against faulty / wrong models for BScan ICs or non-BScan ICs There is a Ground Bounce effect – match settings of test generator Faulty board; current peaks at short circuits
3	There is TCK frequency dependency	ADYCS TM setting not optimized Testbus not terminated properly GND on TAP cable or termination not optimal
4	ADYCS TM settings do not improve the situation	The line termination is not well; probably line reflections
5	Testbus failure in EXTEST mode only	see 2
6	Testbus failure im Intercon; the causing DRSHIFT seems to be unstable – in Debugger DRSHIFT step mode the failure appears earlier	BScan hangs up itself by switching off the board-internal power supply; the power does not break down immediately Check power consumption
7	What happens if BScan pins (drivers) are connected to TAP lines?	Those pins are normally detected and kept in stable inactive state automatically. They will not get a Drive function.
8	Testbus failure in INFRA test only	Possibly a BScan IC with IDCODE register is not compliant to the Standard and the ID Code register is not selected by default. Solution: Load the IDCode instruction.
		Advanced Options Generate Infra structure Compile Debug Execute Convert Write statements in BOUNDARY registers test Don't use statement CheckIdcode OK

FAQs

Is it possible to utilize the full PASS TCK range	Not really. In that test program only an IRSHIFT is
detected in TCK Check-up test for other test programs?	executed. In Extest mode and in DRSHIFT differences
	can happen. For experience: Reduce down by 3 MHz
	the found maximum TCK frequency.
Which TCK frequency for which executable type	Infra, Intercon, RAM Intercon, Cluster, SVF: 1 3
makes sense?	MHz or higher.
	High TCK frequencies in Intercon can cause pseudo
	errors for Pull-resistors.
	RAM with many DRSHIFTs (e.g. DDR2 SDRAM) and
	Flash actions: As high as possible, however ~3 MHz
	below the maximum TCK.
When is it advisable to apply a controller "Speed Grade	If you want to program more than just a few kbyte of
B" or "Speed Grade C"?	data down to a (parallel) FLASH in short time
	(seconds) then use "Speed Grade B or C" controller.
Why appears in the Testbus failure report often	IRSHIFT is the only possibility, get back constant
"Diagnosis with IRSHIFT"?	vectors from BScan ICs. More precise: The Capture
,,,	value of the IR is constant and has to be "01b" for
	LSB according to the Std. So opens on TDI and TDO
	can be detected.
Even when a test program executes just a DRSHIFT, in	This is an automatic element in CASCON TM . The
the case of a Testbus failure an IRSHIFT is issued, too.	IRSHIFT can help to locate the possible failure
the case of a restous familie an institute is issued, too.	location, see above.
How does the SEV controller of Smood Crade A" est	ADYCS [™] is active for all speed grades, including
How does the SFX controller of "Speed Grade A" act	
regarding ADYCS™?	"Speedgrade A".
Why is the measure result one step (DRSHIFT) after	Capture occurs before Shift and Update after. That's
the DRSHIFT updating the driver?	why the controller gets the measure result with the next
	DRSHIFT.
Is there a way to check a TDO pin for tristate or active?	 High-omig voltage devider e.g. 2x 10 kOhm
	nagainst GND and VCC: ~0V / ½ VCC /
	~VCC; observe by DMM or scope
	 BScan Probe: LEDs show the state directly
Why do all ICs simultaneously issue on their TDO	Since all ICs are supplied with the same TCK and
01b when executing IRSHIFT?	TMS, the must be always in the same TAP state.
	Therefore at TAP state Shift-IR all ICs clock out their
	Capture value of the Instructions register starting with
	LSB. And this is according to the Std01b.
How can we fix / solve Ground Bounce problems?	CASCON offers in the Generate options the feature to
	reduce the number of output pins that change their
	level simultaneously and split the instead to several
	DrShifts.
Topic: TAP Connections on Backplane	The ideal scenario is when all signals coming from the
T T T T T T T T T T T T T T T T T T T	controller have the same delay. The delay itself is not
Scenario:	important. Important is, that the BScan ICs can
8 similar boards on which there are 3 Boundary Scan	synchronise among each other. And this is guaranteed
FPGAs to test the back panel connectors.	as long as there is no essential delay between two ICs
Some cables connect the boards with each other; this	in terms of TCK arrives too early.
creates a long boundary scan chain.	
creates a rong boundary sour chain.	The controller's TDI can be also considered as a BScan
Question:	IC's TDI and normally it would have a delay problem
What is the best way to route the TCK line?	as discussed above because the controller would use
what is the best way to route the reachine?	the controller's TCK that is connected to the UUT. But
	ADYCS compensates exactly this. You can see, only the delay between the last IC and controller's TDI will
	the delay between the last IC and controller's TDI will
	be compensated.
	Conclusion:

Buffers on the backplane are good for signal quality. There is no effect / difference between different buffer types with different delay for the TAP buffers on the backplane because all boards will see the same delay.
The only time-"critical" detail is the delay along the line between the last IC of a board routed to the TDI of the next one. Do not use buffer there. This delay could be compensated if you would delay TCK and TMS for the next board by buffer. Here is the real limit, but this can be measured / calculated.

Typical Mistakes and Misunderstandings

- The Testbus failure report is not red by the operator carefully. However it points very often to a particular failure location and moreover it generates hints for Troubleshooting.
- Testbus cable's GND line is connected only on one side; it is not a matter of shielding, but GND must carry back the driver current.
- Cable design: TDI mismatched with TDO.
- Testbus cable no ,,twisted Pair" nor flat cable with GND-Signal-GND-Signal scheme.
- GND connection on the UUT side is not close to the TCK connection; if the distance is too large, the current back is overlaid by current of other sources.
- Testbus signals are not terminated on UUT side; this results in line reflections, that causes over and under shoots
- More than 5 BScan ICs in parallel on the same TCK and TMS lines; this can result in spikes / dips in the
- Ground-Bounce problem not handled; source of Testbus failures during test execution
- TCK frequency is close to the maximum usable one (sporadic Testbus failures, pseudo data failures)
- Testbyte de-activated (possible Testbus failures are not detected and will lead to a wrong diagnosis with a number of nets being reported faulty in Intercon, RAM Intercon and Cluster test)
- Testbyte de-activated in order to get a partly result of the INFRA test; the result has no value at all
- BScan activates the System reset on the board
- BScan switches off board-internal power supply
- BScan controls buffers for the Testbus
- Drivers drive against each other; defect or poor data set preparation (Library model, assembly versions, CAD data, Extended Generator Settings)
- BScan driver pins drive actively on Testbus lines
- Not enough wait time after activating the power supply (extern or on board)
- Assumption a low TCK frequency can compensate a poor Testbus cable design; ringing and over / under shoots are not depending on the frequency
- The program "TCK Check-up" is applied on a not connected (in CON not described) TAP; here the result is always PASS
- CON has been created manually but the order is wrong. Possibly INFRA has PASS, in particular in cases when no IDCode registers exist or identical device types are assembled in the chain. High number of faulty nets in Intercon; even BS pins that are connected to GND or VCC show the opposite level; often Testbus failure due to driver conflicts
- wrong Testbus voltage settings on TAP Transceiver can cause High/Low failures on the Testbus
- ignoring Testbus faults as the user is interested in the measure results from the UUT only

Terms and Abbreviations

ТАР	Test Access Port, the interface for the testbus	
TAP Controller	TAP control unit inside a BScan IC	
TAP State	state of the TAP controller	
Ground-Bounce	Rise of the GND level internally in the chip on silicon due to simultaneous change of	
	a high number of outputs; the TAP controller can lose the synchronization	
ТСК	Testbus signal: Test Clock	
TMS	Testbus signal: Test Mode Select	
TDI	Testbus signal: Test Data In	
TDO	Testbus signal: Test Data Out	
TRST	Testbus signal: Test Reset	
ADYCS TM	Active Delay Compensation; CASCON [™] property, to compensate signal delay along	
	Testbus lines + buffers	
CASLAN	CASCON's programming language, source code of tests	
SVF	Serial Vector Format, simple vector description format for TAP activities, de-facto	
	Standard	
JAM/STAPL	Vector description format, more flexible than SVF, standardized	
Termination	here: Line termination of correct impedance	
Testbyte	A byte to verify the chain length; a CASCON TM feature	
Fan-out	Driver parameter; defines the maximum number of inputs that can be safely driven	
Compliance Pattern	Side conditions to get access to BScan in the case the JTAG port is used for both	
	purposes, Debug /Emulating and JTAG test	
Scan Router	ICs for splitting of Scan paths	
BSDL	Boundary Scan Description Language (File)	
IR	Instructions register	
CON	Scan Path Configuration File; CASCON TM file; the IC mentioned on top is connected	
	with it's TDO to the controller's TDI	
LSB	Least Significant Bit	
UUT	Unit-Under-Test	

More Help needed?

If all work steps described in this application note you need the support by Goepel electronic. Our application team will assist you.

For this, please use <u>BScan support@goepel.com</u>.

Excluded from this support is the supply of BSDL files. For this, please contact in any case the chip vendor.

Appendix

Test Program "TCK Check Up_1TAP"

Note: Starting from CASCON 4.6.0, you need CON depending versions of the test program. The version below reflects version for TAP1 only.

```
_____
_ _
-- Caslan File
--- Name : TCK Check Up.CAS
-- Date : 15.04.2005
-- Author : vieweg
_ _
___

        -- Version
        Date
        Change

        -- 1.0
        15.04.2005
        Creation

        -- 1.1
        13.12.2006
        Update
        compressed output format

        -- 1.2
        21.12.2006
        Update
        TAP selection

               01.03.2013 Update TAP selection according to CON file
-- 1.4
___
__ ___
         _____
PROGRAM 'TCK Check UP';
VAR
  v_TCK
             : INT;
 v_TCK : INT;
v_2 : INT;
v_3 : 16;
vSel : 16;
  failflag : 1;
vLoopCnt : INT;
  vLoopCnt
LABEL
  NewSelect;
PROC pTAP3; -- procedure keyword 'PROC' and name 'ProcName'
                  -- place procedure code between 'begin' and 'end;'
  BEGIN
    WRITE (' ');
    FOR v_TCK := 1 TO 79 DO --20 MHz
FOR v_TCK := 1 TO 39 DO --10 MHz
      TCK v_TCK;
      IRSHIFT;
      IF failflag ==1 THEN
        WRITE ('F');
        LD failflag, 0;
      ELSE
        WRITE ('.');
      END;
    TAPRESET;
    END;
    WRITELN ('');
  END;
PROC p_TAP_TEST; BEGIN;
WRITELN ('');
WRITELN ('
                1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20');
WRITELN ('
WRITE ('
  FOR v_2 := 1 TO 79 DO --20 MHz
      TCK v_2;
      IRSHIFT;
  IF failflag ==1 THEN
    WRITE ('F');
    LD failflag, 0;
  ELSE
    WRITE ('.');
```


END;

Application Note

```
END;
WRITELN ('');
WRITELN ('');
WRITELN ('
                               21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40');
WRITELN ('
···· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
WRITE ('
                 ');
   FOR v_2 := 80 TO 159 DO --40 MHz
           TCK v_2;
            IRSHIFT;
    IF failflag ==1 THEN
       WRITE ('F');
        LD failflag, 0;
    ELSE
       WRITE ('.');
    END;
   END;
WRITELN ('');
WRITELN ('');
WRITELN ('
                              41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60');
WRITTELN ('
FOR v_2 := 160 TO 239 DO --60 MHz
            TCK v_2;
           IRSHIFT;
    IF failflag ==1 THEN
      WRITE ('F');
       LD failflag, 0;
    ELSE
       WRITE ('.');
    END;
   END;
WRITELN ('');
WRITELN ('');
WRITELN ('
                            61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80');
WRITELN ('
FOR v_2 := 240 TO 319 DO --80 MHz
           TCK v_2;
            IRSHIFT;
    IF failflag ==1 THEN
       WRITE ('F');
       LD failflag, 0;
    ELSE
       WRITE ('.');
    END;
   END;
END;
PROC pLoop20MHz; BEGIN;
                               1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
   WRITELN ('
20');
  WRITELN ('
LOOP vLoopCnt DO
       CALL pTAP3;
    END;
   WRITELN ('
20');
   WRITELN ('');
END;
```

PROC pActionSelect; BEGIN; READSELECTION ('Action select', vSel, '1 x 80 MHz', '100 x 20 MHz', '1000 x 20 MHz', 'Exit');

SWITCH vSel CASE 0: CALL p_TAP_TEST; CASE 1: vLoopCnt := 100; CALL pLoop20MHz; CASE 2: vLoopCnt := 1000; CALL pLoop20MHz; CASE 3: STOP 200; END; END; PROC p_FAIL; BEGIN; WRITE (' FAIL'); LD failflag, 1; END; BEGIN ON_ERROR p_FAIL; NewSelect: LD vSel, 0; WRITELN ('TAP select'); READSELECTION ('TAP selec', vSel, 'TAP1', 'TAP2', 'TAP3', 'TAP4', 'TAP5', 'TAP6', 'TAP7', 'TAP8', 'Exit'); SWITCH vSel CASE 0: SCANPATH (1 SHIFT);--, 2 PARK, 3 PARK, 4 PARK, 5 PARK, 6 PARK, 7 PARK, 8 PARK); CALL pActionSelect; CASE 1: WRITELN (' chosen TAP does not exist'); JMP NewSelect; --SCANPATH (1 PARK, 2 SHIFT, 3 PARK, 4 PARK, 5 PARK, 6 PARK, 7 PARK, 8 PARK); CALL pActionSelect; CASE 2: WRITELN (' chosen TAP does not exist'); JMP NewSelect; --SCANPATH (1 PARK, 2 PARK, 3 SHIFT, 4 PARK, 5 PARK, 6 PARK, 7 PARK, 8 PARK); --WRITELN (' ======= TESTING TAP3 -----'); CALL pActionSelect; CASE 3: WRITELN (' chosen TAP does not exist'); JMP NewSelect; --SCANPATH (1 PARK, 2 PARK, 3 PARK, 4 SHIFT, 5 PARK, 6 PARK, 7 PARK, 8 PARK); CALL pActionSelect; CASE 4: WRITELN (' chosen TAP does not exist'); JMP NewSelect; --SCANPATH (1 PARK, 2 PARK, 3 PARK, 4 PARK, 5 SHIFT, 6 PARK, 7 PARK, 8 PARK); -----'); CALL pActionSelect; CASE 5: WRITELN (' chosen TAP does not exist'); JMP NewSelect; --SCANPATH (1 PARK, 2 PARK, 3 PARK, 4 PARK, 5 PARK, 6 SHIFT, 7 PARK, 8 PARK);


```
-----');
    CALL pActionSelect;
        CASE 6:
     WRITELN (' chosen TAP does not exist');
     JMP NewSelect;
     --SCANPATH (1 PARK, 2 PARK, 3 PARK, 4 PARK, 5 PARK, 6 PARK, 7 SHIFT, 8 PARK);
     CALL pActionSelect;
        CASE 7:
     WRITELN (' chosen TAP does not exist');
     JMP NewSelect;
     --SCANPATH (1 PARK, 2 PARK, 3 PARK, 4 PARK, 5 PARK, 6 PARK, 7 PARK, 8 SHIFT);
     -----');
    CALL pActionSelect;
        CASE 8:
     STOP 100;
     WRITELN ('');
    END;
     WRITELN ('');
    JMP NewSelect;
END.
```


Literature

[1] Software description SYSTEM CASCON[™], "User Manual", "User Interface", "Selected Topics", Version 4.6.2c, GOEPEL electronic GmbH – 2013 www.goepel.com

[2] Boundary Scan Probe, "Technical Description" Version 1.0, GOEPEL electronic GmbH - 2008 www.goepel.com

[3] Application Note "Usage of Boundary Scan Probe", Version 1.7, GOEPEL electronic GmbH - 2007 www.goepel.com

[5] Application Note "Implementation of Boundary Scan during ASIC and PCB Design", Version 1.0, GOEPEL electronic GmbH - 1999 www.goepel.com

[6] Application Note "DFT Rules for Boundary Scan (Samples)", Version 1.0, GOEPEL electronic GmbH - 1999 www.goepel.com