
semester thesis

One touch C++ code
automation for Eclipse CDT

Toggle Function Definition

Martin Schwab, Thomas Kallenberg

December 22, 2010

Supervisor: Prof. Peter Sommerlad

During this semester thesis a code automation tool has been de-
veloped for the Eclipse C++ Development Toolkit (CDT) using
the Eclipse refactoring mechanism. The resulting plug-in enables a
C++ developer to move function definitions easily between header
and source files.

The new plug-in differs from existing refactorings single keystroke
interaction. The refactoring uses no wizard at all and is tolerant to
imprecise code selection.

This document discusses the uses of the plug-in as well as the is-
sues that had to be handled during the project. Students developing
a new refactoring tool may have a look at the conclusion chapter,
to not doing the same mistakes we did again and the Project Setup
chapter to start with their own project quickly. Project setup hints
are listed in the appendix.

Management Summary

In C++ there is the possibility to tell the compiler that there exists
a function with a so called declaration. Since this does not specify
what the function does, a definition is needed with the functionality.

1 class A {
2 int function(int param); // declaration
3 };
4

5 inline int function(int param)
6 {
7 return param + 23; // definition
8 }

Listing 1: class with declaration and separated definition

Every definition is a declaration too.

1 class A {
2 int function(int param) { //decl. and def.
3 return param + 23;
4 }
5 };

Listing 2: class with declaration and definition

Since a declaration and definition can be separated, differences
may occur between the signature of the definition and the signature
of the declaration. This is not allowed. Now imagine that changing
a function signature in C++ is an unthankful task. As an additional
difficulty, a declaration and a definition may appear in two different
files.

ii

1 #ifndef A_H_
2 #define A_H_
3

4 class A {
5 void function ();
6 };
7

8 #endif /* A_H_ */

Listing 3: Header file with a
declaration

1 #include "A.h"
2

3 void A:: function () {
4 return
5 }
6

7

8 |

Listing 4: Source file containing
definition

If a signature changes, these changes must be made in two files:
the header file and the implementation file. More than once pro-
grammers forget to change the signature in one place which results
in compile errors and unnecessary time consuming error correction.

Toggle Function Definition

Refactorings are solving such problems by automating dependent
changes to source code, so less errors are introduced by hand.

Toggle Function Definition moves a function definition inside an
Eclipse CDT source editor from one position to another and pre-
serves correctness.

This is done by searching for a function definition or declaration
next to the user’s code selection. Then, according to the found
element, it’s sibling is searched. After that, the signature of the
definition is copied and adapted to the new position. The new
definition gets inserted and the old definition is removed. If no
separate declaration existed before, the old definition is replaced
by a newly created declaration.

All this is done without any wizard and kept speedy to not break
the work flow. The refactoring is bound to the key combination
Alt-Shift-V.

1 class A {
2 int function(int param) {
3 return 42; | //<- cursor position
4 }
5 };

iii

Listing 5: Startposition of toggling

1 class A {
2 int function(int param) {
3 return 42;
4 }
5 };
6

7 X // <- new position is here

Listing 6: New position is found

1 class A {
2 int function(int param);
3 };
4

5 inline int function(int param) {
6 return 42;
7 }

Listing 7: Class with declaration and inlined definition

Toggling again moves the definition out of the header file to the
implementation file that should contain the actual functionality. If
function(int param) from listing 7 is toggled, the definition will
end up in the implementation file as shown in listing 8.

1 #include "A.h"
2

3 int A:: function(int param) {
4 return 42;
5 }

Listing 8: Defintion in an implementation file

Quick Implement Function

To obtain some coding flow and due to the fact that Implement
Method does not really fit into this fast-toggle working style, this

iv

semester thesis re-implemented the implement function as a Quick
Implement Function.

The idea behind this is the following: The developer starts writ-
ing a class. He comes to the point where he has written the first
declaration and then, by using a keystroke Alt-Shift-Z, the declara-
tion is replaced with a definition containing an appropriate return
statement.

1 class A {
2 int function ();|//<-cursor position
3 };

Listing 9: Situation before quick implement

1 class A {
2 int function ()
3 {
4 return int (); //new generated definition
5 }
6 };

Listing 10: Situation after quick implement

The developer can continue to write the functionality of func-

tion() and toggles the definition with the other keystroke Alt-
Shift-V to the header file.

Thanks

We would not have been able to achieve this project without the
help of others. A big thanks goes to all of these people.
Specially we would like to thank Prof. Peter Sommerlad for the
original idea of the toggle refactoring, for supervising the project
and for various cool ideas in many problems we encountered, Lukas
Felber who provided us with instant solutions where we struggled
to continue, Emanuel Graf for his ideas and explanation in every
subtopic of the CDT project and Thomas Corbat for help and ideas
for various subtopics like comment handling.
Another big thank goes to our families and friends who were missed
out a little bit during our semester thesis.

Contents

1 Introduction 1
1.1 Current Situation 1
1.2 Motivation . 1
1.3 What has been Planned 2

1.3.1 Toggle Function Definition 2
1.3.2 Implement Member Function 3
1.3.3 Override Virtual Member Function 3

1.4 Objectives . 4
1.4.1 Advanced Objectives 4
1.4.2 Further Objectives and Outlook 5

1.5 Expected Outcome 5
1.6 Project Duration 5

2 Specification 6
2.1 Toggle Function Definition 6

2.1.1 Activation 6
2.1.2 Three Positions for Function Definitions . . 6
2.1.3 Basic Scenarios 8
2.1.4 Special Cases 12
2.1.5 Expected Result 15

2.2 Quick Implement Function 15
2.2.1 Activation 16
2.2.2 Example . 16
2.2.3 Expected Result 17

2.3 Override Virtual Member Function 17

3 Implementation and Solution 18
3.1 Implementation approach 18
3.2 Architecture . 18

3.2.1 Class Diagram 19
3.2.2 Basic Call Flow 19
3.2.3 Strategies 19

vii

Contents

3.2.4 ToggleNodeHelper 21
3.2.5 Context . 21
3.2.6 Strategy Factory 22
3.2.7 Stopping with Exception 22
3.2.8 Implications of not Using a Refactoring Wizard 23
3.2.9 Running the Refactoring 23

3.3 Testing and Performance Environment 26
3.3.1 Normal Testing 26
3.3.2 Testing for Exceptions 26
3.3.3 Testing New File Creation 27
3.3.4 Real World Test Environment 29
3.3.5 Performance Tests 30

4 Conclusions, Interpretation and Future Work 32
4.1 Conclusions . 32

4.1.1 Toggle Function Definition 32
4.1.2 Implement Function 33
4.1.3 Override Virtual Function 33

4.2 Known Issues . 33
4.2.1 Constructor / Destructor Bug 33
4.2.2 Unneccessary Newlines 33
4.2.3 Comment Handling 34
4.2.4 Menu Integration (partially solved) 35
4.2.5 Preprocessor Statements 35
4.2.6 Doxygen . 36
4.2.7 ’/RegressionTestProject/A.h’ does not Exist 36

4.3 Solved Issues . 37
4.3.1 Speed . 37
4.3.2 Accessing Standalone Header Files 37
4.3.3 Indexing all Projects 38
4.3.4 Selection . 38
4.3.5 Fuzzy Whitespace Recognition 38
4.3.6 Comments and Macros 39
4.3.7 Toggling Function-Local Functions 40

4.4 Future Work . 41
4.5 Interpretation . 41

4.5.1 Features and Limitations 41
4.5.2 Performance Results 42
4.5.3 Personal Review 42

viii

A User Manual 46
A.1 Installation of the Plug-in 46

A.1.1 Activate the Menu Item 46
A.2 Using the Refactoring 47
A.3 Example . 47

A.3.1 The Solution 48

B Project Setup 49
B.1 Configuration Management 49

B.1.1 Project Server 49
B.1.2 Git . 49
B.1.3 Maven and Tycho 49
B.1.4 Continuous Integration 50

B.2 Project Management 50
B.3 Test Environment 50

B.3.1 Test Coverage 50
B.3.2 Documentation 51

C Time Management 52
C.1 Time Budget . 52
C.2 What the Charts Tell us 52
C.3 What the Team is Saying 53

D Glossary 54

Bibliography 56

CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Current Situation

The Eclipse Java Development Toolkit (JDT) has a large set of
both quick and useful refactorings. Its sibling the C++ Develop-
ment Toolkit (CDT) offers just a small range of such code helpers
today. In addition, some of them don’t work satisfactory: Cur-
rently, extracting the body of a hello world function takes more
than three seconds on our machines. Reliability? Try to extract
constant the hello world string of the same program. At the time
of this writing, this still failed.

Bachelor students at HSR may visit a C++ programming course
where Eclipse is used to solve exercises. For the authors of this
document, it was clear after a while that touching the refactoring
buttons was a dangerous action because in some cases described
above they broke your code. Compile errors all over the place and
difficult exercise assignments didn’t make our life easier.

1.2 Motivation

One annoying problem in C++ is the separation of the source and
the header files. This is a pain point for every programmer. For-
getting to update the function signature in one of the files will
result in a compilation error causing either lack of understanding
for beginners or loss of time.

After two minutes of compile error hunting because of a function
signature that was out of sync in the header and the implementation
file, it may be asked: Why has nobody yet implemented a solution
to prevent such an error?

Refactorings in CDT have a big field of such interesting and un-
resolved problems. With the support of the Institute of Software
IFS at HSR Rapperswil, these problems could be solved. The Insti-

1

CHAPTER 1. INTRODUCTION

tute for Software with its group around Professor Peter Sommerlad
and Emanuel Graf has been working on Eclipse refactorings for a
long time. Since 2006 nine Eclipse refactoring projects have been
completed.

1.3 What has been Planned

During this semester thesis it was planned to introduce and improve
one or more refactorings to the Eclipse CDT project. They will now
be introduced by priority.

1.3.1 Toggle Function Definition

The goal of this refactoring is to automate the process of moving
the definition of a function from one place to another as shown in
Listings 1.1 and 1.2:

1 #ifndef EXAMPLE_H
2 #define EXAMPLE_H
3

4 class ClearClass {
5 void bigfunction () {
6 /* implementation */
7 }
8 };
9

10 #endif

Listing 1.1: Initial situation: member function defined inside a class

1 #ifndef EXAMPLE_H
2 #define EXAMPLE_H
3

4 class ClearClass {
5 void bigfunction ();
6 };
7

8 inline void ClearClass :: bigfunction {
9 /* implementation */

10 }

2

CHAPTER 1. INTRODUCTION

11

12 #endif

Listing 1.2: Separated definition after toggling

The example shows that moving the function body does not only
involve copying code but also adding a scope operator :: to the new
definition. In addition, the former definition had to be replaced
by a plain declaration. There are several such changes required
depending on the scope and properties (static, virtual, etc.) of the
function. Toggling multiple times should bring the code back to
the original position in almost no time.

Throughout this documentation, this functionality is referred to
as being a refactoring as it uses the refactoring facility of the Eclipse
LTK [Fre06]. However, Toggle Function Definition actually is a
code generator. The idea for this ”refactoring” was introduced by
project advisor Prof. Peter Sommerlad.

Goal of this thesis is to realize this idea in form of an Eclipse
plug-in and to make it fast enough to become a good alternative to
editing the functions manually.

1.3.2 Implement Member Function

The current CDT plug-in already includes an Implement Member
Function. However, it is slow and does not fit together with the
newly created Toggle Function Definition. It breaks the coding
flow for adding functionality to classes with unneccessary wizards,
which could be a reason not to use the new toggle functionality
subsequently. This code generator shall support Toggle Function
Definition by providing a quick way to create a new function given
an existing declaration.

Depending on the success of the implementation with the first
refactoring, it is planned to re-implement the Implement Function
refactoring.

1.3.3 Override Virtual Member Function

This code genrator may share some functionality with the above
ones. Its goal is to help the user override multiple member functions
of an inherited class.

3

CHAPTER 1. INTRODUCTION

1.4 Objectives

These are the basic aims for the project:

• Toggling between in-class, in-header, separate-file and
back again to in-class works for basic and some frequent
special cases.

• Project organization: Fixed one-week iterations are used. Red-
mine is used for planning and tracking time, issue tracking
and as information radiator for the supervisor. A project doc-
umentation is written. Organization and results are reviewed
weekly together with the supervisor.

• Quality: Common cases are covered with test cases for each
refactoring subtype.

• Integration and Automation: Sitting in front of a fresh Eclipse
CDT installation a first semester student can install our refac-
toring using an update site as long as the functionality is not
integrated into the main CDT plug-in.

• To minimize the integration overhead with CDT it will be
worked closely with Emanuel Graf as he is a CDT commiter.

• At the end the project will be handed to the supervisor with
two CD’s and two paper versions of the documentation. An
update site is created where the functionality can be added to
Eclipse. A website describes in short words the functionality
and the project vision.

1.4.1 Advanced Objectives

All basic goals will be achieved. Additionally:

• Toggling function is fast. Less than a second.

Re-Implement the “Implement Function” feature.

• A new function block is created with nearly no delay right
below the function signature.

4

CHAPTER 1. INTRODUCTION

• A default return statement is created when the block is cre-
ated.

• If the return statement cannot be determined, a comment is
inserted into the block.

1.4.2 Further Objectives and Outlook

If there is enough time, an Override Virtual Function is imple-
mented. Additionally, content assist may be implemented. This
could be part of a bachelor thesis which continues and completes
the work done in this semester thesis.

1.5 Expected Outcome

Implement member function and the toggle key are written to work
in synergy. First write the declaration for a (member) function in
the header or class definition, then a hot-key is used to implement
the function. At this point the toggle key may be hit at any time
to move the function to the appropriate position and continue with
the next new member function.

1.6 Project Duration

The semester thesis starts on September 20th and has to be finished
until December 23rd, 2010.

5

CHAPTER 2. SPECIFICATION

2 Specification

This section describes how the different code automation mecha-
nisms have been analyzed and designed.

2.1 Toggle Function Definition

Good code should separate interface and implementation. However,
it is annoying to copy function signatures from the header file to the
implementation file or vice versa. This process shall be automated.

Toggle Function Definition moves the code of a member func-
tion between different possible places, preserving the declaration
statement inside the header file. What the different places are, in
which direction the code may be moved and in which situation the
refactoring may be invoked is described in the following chapters.

2.1.1 Activation

For the selected function, a function definition must exist in the
current or an associated file. If no definition exists, the refactoring
aborts. There may be more than one declaration. However it is
not specified to which one will be toggled. It will be toggled to any
declaration that is found first.

The refactoring shall allow selections anywhere inside the func-
tion, whether inside the signature, function (try) body, a catch
handler or a template declaration.

If functions are defined inside a function body which is non-
standard but allowed by some compilers, the outermost function
parent should be toggled. [Fre10]

2.1.2 Three Positions for Function Definitions

In C++ there are three possible positions where a function defini-
tion may occur. Listing 2.1 shows an example where the definition

6

CHAPTER 2. SPECIFICATION

of a member function is placed inside its class definition. New code
blocks created by Implement Member Function are placed inside the
class definition too. Placing implementation code right in the class
definition is also the most intuitive behaviour for Java developers.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 int function () {
7 return 0;
8 }
9 };

10 }
11

12 #endif /* A_H_ */

Listing 2.1: In-class implementation in A.h

To keep the interface clear, function definitions may be placed
outside the class definition but are still located in the same (header)
file. Such a function is called inlined. See Listing 2.2.

For templates, this is the only position outside the class definition
where the implementation may be placed, due to problems of the
export keyword [SP03]. This means: templated functions cannot
be placed outside the header file. Except for functions which are
specially marked with above export keyword.

Listing 2.2 shows an example of what will be called in-header
situation throughout this document.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 int function ();
7 };
8

9 inline int A:: function () {
10 return 0;
11 }

7

CHAPTER 2. SPECIFICATION

12 }
13

14 #endif /* A_H_ */

Listing 2.2: In-header implementation in A.h

To separate the implementation from the interface more clearly,
a separate source file may be used for the definitions while the
declarations remain in the header file.

An example for this position of a function definition is shown in
listings 2.3 and 2.4. This position will be called in-implementation
throughout this document.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 int function ();
7 };
8 }
9

10 #endif /* _A_H */

Listing 2.3: A.h, with declara-
tion

1 #include "A.h"
2

3 namespace N {
4 int A:: function () {
5 return 0;
6 }
7 }
8

9

10 .

Listing 2.4: A.cpp, with defini-
tion

2.1.3 Basic Scenarios

Depending on the current selection, a different strategy needs to
be applied to move the function definition. All supported toggling
situations and their special cases are listed in this section.

Free Functions (Non-Member Functions)

Functions which are not member of a class are so called non-member
functions. In this document they are called free functions to dis-
tinguish them more clearly.

Toggling for plain free functions shall be possible at two positions:

1. Toggle from in-header to in-file

8

CHAPTER 2. SPECIFICATION

2. Toggle from in-file to in-header

Example

Let us assume a free function definition in a header file with no fur-
ther declaration specified is toggled. Listing 2.5 shows the situation
before toggling.

1 int freefunction () {
2 return 42;
3 }
4

5 int main() {
6 return 0;
7 }

Listing 2.5: A.cpp, initial situation

First it is checked if there exists a file with the same name as the
original implementation file. A.h in this example. If not, a new file
is created with the appropriate include guards. See listing 2.6.

1 #ifndef A_H_
2 #define A_H_
3

4 #endif /* A_H_ */

Listing 2.6: Newly created A.h

Subsequently, the freefunction() definition is moved into the
header file as shown in listing 2.7

1 #ifndef A_H_
2 #define A_H_
3

4 int freefunction () {
5 return 42;
6 }
7

8 #endif /* A_H_ */

Listing 2.7: Inserted freefunction() in A.h

9

CHAPTER 2. SPECIFICATION

If toggled again, the declaration of freefunction() remains in-
side the header file, while the definition is inserted into the imple-
mentation file and an include statement is inserted at the beginning
if of the implementation file. Listing 2.8 and 2.9 shows the end sit-
uation.

1 #ifndef A_H_
2 #define A_H_
3

4 int freefunction ();
5

6 #endif /* A_H_ */
7

8

9 .

Listing 2.8: A.h, inserted decla-
ration

1 #include "A.h"
2

3 int freefunction () {
4 return 42;
5 }
6

7 int main() {
8 return 0;
9 }

Listing 2.9: A.cpp, inserted defi-
nition

If freefunction() is toggled again, the declaration in the header
file has to be replaced by the definition which is removed from
the implementation file, resulting in a header file already shown in
listing 2.7.

Member Functions

For functions inside classes, toggling is expected to be available for
three positions:

1. Toggle from in-class (to in-header)

2. Toggle from in-header (to in-file)

3. Toggle from in-file (to in-class)

Example

The starting point for toggling member functions could be a class
with a function definition inside like in listing 2.10.

1 #ifndef A_H_
2 #define A_H_
3

10

CHAPTER 2. SPECIFICATION

4 namespace N {
5 class A {
6 virtual void function () {
7 return;
8 }
9 };

10 }
11 #endif /* A_H_ */

Listing 2.10: A.h, function definition inside class declaration

Function function() needs to be toggled. The next position
of the definition is ouside of the class but kept in the namespace
definition. The definition is replaced by a declaration as in 2.11.

If there is no namespace definition, the function definition will
be placed below the class in the header file. See listing 2.12.

If there are any special keywords like virtual or static, these
are adapted to the new definition. Definitions in the header file
need the prefixed keyword inline. The keyword virtual is only
allowed inside a class definition.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 vitual void function ();
7 };
8

9 inline void A:: function () {
10 return;
11 }
12 }
13 #endif /* A_H_ */

Listing 2.11: A.h, function definition outside of class definition in
header

1 #ifndef A_H_
2 #define A_H_
3

4 class A {
5 virtual void function ();

11

CHAPTER 2. SPECIFICATION

6 };
7

8 inline void A:: function () {
9 return;

10 }
11

12 #endif /* A_H_ */

Listing 2.12: A.h, function definition outside class definition with-
out namespace

If function() gets toggled again, the definition is moved to the
implementation file and if necessary a namespace definition is cre-
ated where the function gets inserted. Nothing remains outside of
the class definition in the header file and the declaration in the class
does not change.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 void function ();
7 };
8 }
9

10 #endif /* A_H_ */

Listing 2.13: A.h, after moved
definition

1 #include "A.h"
2

3 namespace N {
4 void A:: function () {
5 return
6 }
7 }
8

9

10 .

Listing 2.14: A.cpp with defini-
tion

If function() is toggled once again, the original starting position
from listing 2.10 is reached.

2.1.4 Special Cases

Not every function may be toggled between the three positions and
some cases require additional work before they may be toggled.
Those special case are listed in this section.

12

CHAPTER 2. SPECIFICATION

Namespaces

If the moved function definition is contained inside a namespace def-
inition, the function definition is moved with regard to the names-
pace. This means when toggling from in-class to in-header the
definition is inserted before the namespace is closed in the header
file.

1 namespace N { // namespace found
2 class A {
3 void function () {
4 return;
5 }
6 };
7 X // <- new position inside namespace
8 }

Listing 2.15: A.h

If the function is toggled from in-header to in-implementation
and there is no namespace definition, a new namespace is created.

1 #include "A.h"
2

3 namespace N {
4 // namespace created
5 }
6

7 #endif /* _A_H */

Listing 2.16: A.cpp, new name-
space created

1 #include "A.h"
2

3 namespace N {
4 int A:: function () {
5 return 0;
6 }
7 }

Listing 2.17: A.cpp, insterted
function

Namespace definitions that become empty after removing the last
function definition shall be deleted.

13

CHAPTER 2. SPECIFICATION

1 #include "A.h"
2

3 namespace N {
4 //empty namepsace
5 }
6

7 #endif /* _A_H */

Listing 2.18: A.cpp, empty na-
mespace

1 #include "A.h"
2

3

4 //no namespace
5

6

7 .

Listing 2.19: A.cpp, removed
empty namepsace

Templated Member Functions

Another exception is a templated member function that may only
be toggled inside the same header file. There, two strategies are
interesting.

1. Toggle from in-class to in-header

2. Toggle from in-header to in-class

Example

The starting situation is shown in listing 2.20.

1 #ifndef A_H_
2 #define A_H_
3

4 template <typename T>
5 class A {
6 void function(T & t) {
7 return;
8 }
9 };

10

11 #endif /* A_H_ */

Listing 2.20: A.h, in-class definition with template parameters

Toggling function(T & t) now does not differ from toggling a
non templated member function and will result in listing 2.21.

1 #ifndef A_H_

14

CHAPTER 2. SPECIFICATION

2 #define A_H_
3

4 template <typename T>
5 class A {
6 void function(T & t);
7 };
8

9 template <typename T>
10 inline void A:: function(T & t) {
11 return;
12 }
13

14 #endif /* A_H_ */

Listing 2.21: A.h, in-header definition with template parameters

Toggling again will put the definition back to its original position
in the class definition as shown in listing 2.20. When a template
definition is in another file than the declaration, the export keyword
is needed. However, this is not supported by many compilers.

2.1.5 Expected Result

Toggling Member functions should work for the default cases. “Nor-
mal” member functions should be toggled fast without producing
inconsistent code.

Templated member functions should be supported in a normal
way. It is not the idea to give support for obscure tricks with
template metaprogramming or other strange things which the usual
C++ programmer does not use.

Additionally free (non-member) functions should be supported
too. This means the refactoring should work for C projects in
Eclipse as good as for C++ projects.

2.2 Quick Implement Function

Goal of this functionality is to offer an efficient way to append a
minimal function body to an existing function declaration.

15

CHAPTER 2. SPECIFICATION

2.2.1 Activation

This refactoring shall be active as soon as a function declaration
is selected that has no associated definition. The original idea was
to use this refactoring on declarations without a trailing semicolon.
This is problematic because the state without a semicolon is saved
before the refactoring starts. This however results in a so called
problem node. This means the parser of the compiler found an
error in this source code range, resulting in a corrupt index.

In the short time left to implement this feature it was not achieved
to parse the problem node and generate correct code out of it.

So, an already completed function declaration can be transformed
to a function definition by using the “Quick Implement Member
Function” hot-key which creates a body with default empty return
statement. If the return statement can not be created, e.g. the
return type of the function is a reference, no return statement is
created in the body.

2.2.2 Example

1 #ifndef A_H_
2 #define A_H_
3

4 class A {
5 int function ();
6 };
7

8 #endif /* A_H_ */

Listing 2.22: A.h, with declaration and no definition

Selecting function() and using the Quick Implement Function
key Ctrl-Shift-Z results in the following listing 2.23.

1 #ifndef A_H_
2 #define A_H_
3

4 class A {
5 int function ()
6 {
7 return int()
8 }

16

CHAPTER 2. SPECIFICATION

9 };
10

11 #endif /* A_H_ */

Listing 2.23: A.h, with declaration and no definition

2.2.3 Expected Result

As described above, functions may only be toggled when they pro-
vide a function body. This refactoring shall provide a facility to
create an function body with a default return value to enable Tog-
gle Function Definition.

The re-implementation of Implement Function must be very fast.

2.3 Override Virtual Member Function

No deeper investigation has been done for this refactoring since it
was not implemented during the project.

17

CHAPTER 3. IMPLEMENTATION AND SOLUTION

3 Implementation and
Solution

From the three specified refactorings, Toggle Function Definition
has been implemented in depth. This chapter explains how the
refactoring was implemented and how it was tested.

3.1 Implementation approach

At the beginning, as many different cases as possible were collected
on the project wiki to gain a view on what had to be realized, what
was planned to take into scope and what had nothing to do with
toggling function definitions. Some cases were simple, some exotic.
The simplest one, toggling from inside a class to the same file out-
side the class, was chosen to be implemented first (See listings 1.1
and 1.2).

Before, a skeleton plug-in was built with a NullRefactoring to
try whether it was possible to develop a separate plug-in instead
of directly manipulating the CDT source code. By this approach
it was assured that the developed plug-in may be deployed easily
even without being integrated into CDT.

After the first refactoring was implemented, more cases were
added by order how a member function is toggled circularly. Mostly
it was worked with a test driven development approach. First write
a test and then implement the functionality to get a positive test
restult.

3.2 Architecture

In Eclipse, most of the architecture of a plug-in is already given.
Some specialties of the toggle refactoring implementation are pre-
sented in this section.

18

CHAPTER 3. IMPLEMENTATION AND SOLUTION

3.2.1 Class Diagram

Figure 3.1: class diagram of Toggle Function Definition

3.2.2 Basic Call Flow

The sequence diagram in figure 3.2 illustrates the basic call flow
when Toggle Function is invoked.

3.2.3 Strategies

The way to toggle from one place to another differs depending on
the current position. Having all logic in the same unit would need
a complex conditional structure which is on one side confusing and
on the other side slow.

19

CHAPTER 3. IMPLEMENTATION AND SOLUTION

Figure 3.2: Basic call flow when toggling a function definition

Consequently, a strategy pattern based code structure was intro-
duced. For toggling a simple not templated member function, three
strategies were used. With the help of these, member functions may
be toggled circularly.

• ToggleFromClassToInHeaderStrategy

• ToggleFromInHeaderToImplementationStrategy

• ToggleFromImplementationHeaderOrClassStrategy

To support templated classes, another strategy is required which
toggles from in-header back to in-class as explained in section 2.1.4.

20

CHAPTER 3. IMPLEMENTATION AND SOLUTION

This strategy is specially implemented to support templated func-
tions.

• ToggleFromInHeaderToClassStrategy

All these strategies implement an interface with a run() method
taking a ModificationCollector argument to collect the changes
to be applied to the source code.

1 public interface IToggleRefactoringStrategy {
2 public void run(ModificationCollector col);
3 }

Listing 3.1: IToggleRefactoringStrategy

An interface was chosen because an abstract class containing all
the methods needed by the various strategies was too big and un-
clear. This was solved with an interface and a static helper class
named ToggleNodeHelper.

3.2.4 ToggleNodeHelper

ToggleNodeHelper contains a lot of methods which could be reused
by other projects. It inherits from NodeHelper to make the inte-
gration of these methods as smooth as possible.

3.2.5 Context

The ToggleRefactoringContext is used to collect and store in-
formation about definitions, declarations and their corresponding
translation units.

The context is then passed to the strategy factory. See section
3.2.6. Then the factory creates the strategy and passes the con-
text to this specific strategy. The strategy retrieves all the needed
information about the current situation from the context.

The context was introduced to prevent the code smell Long Pa-
rameter List [Fow99]. A common refactoring for this smell is to
introduce a Parameter Object which consolidates all arguments.

The context searches the information by its own due to the fact
that context would just be a very small data class and yet another
class would be needed to search and collect the information, builds
and returns the context.

21

CHAPTER 3. IMPLEMENTATION AND SOLUTION

3.2.6 Strategy Factory

The ToggleStrategyFactory is used to decide which strategy should
be considered based on the passed context. The strategy makes
various checks and decides which strategy will be returned.

1 public IToggleRefactoringStrategy getStategy () {
2 if (context.getDefinition () == null) {
3 throw new NotSupportedException (...);
4 }
5 ...
6 if (isInClassSituation ()) {
7 return new ClassToInHeaderStrategy(context);
8 }
9 if (isTemplateSituation ()) {

10 return new HeaderToClassStrategy(context);
11 }
12 ...
13 }

Listing 3.2: IToggleRefactoringStrategy

3.2.7 Stopping with Exception

Refactorings that use a wizard may communicate with the user by
displaying warnings and errors. Those are internally collected in a
RefactoringStatus object by the refactorings.

This approach was used too until it became too tedious to al-
ways pass and process the status parameter in all classes used dur-
ing ToggleRefactoring’s checkInitialConditions(...). Every
method that needed to abort the checking process needed to use
code as in listing 3.3.

1 public RefactoringStatus findSomeNode () {
2 ...
3 if (hadSomeProblem) {
4 initStatus.addFatalError("fatal");
5 return initStatus;
6 }
7 ...
8 return initStatus
9 }

22

CHAPTER 3. IMPLEMENTATION AND SOLUTION

Listing 3.3: Exemplary use of the RefactoringStatus

The latter use of RefactoringStatus consumes five lines of code
and uses up the return value in each method. To solve this, a
NotSupportedException was introduced which may be thrown by
any client of checkInitialConditions. There, the exception is
catched and transformed into a RefactoringStatus as shown in 3.4

1 public RefactoringStatus checkInitialConditions (..
2 try {
3 ...
4 } catch (NotSupportedException e) {
5 initStatus.addFatalError(e.getMessage ());
6 }
7 return initStatus;
8 }

Listing 3.4: checkInitialConditions forwarding an exception

3.2.8 Implications of not Using a Refactoring
Wizard

No wizard was used for this refactoring since it must be fast and
may be executed several times in succession. When using a wizard,
the RefactoringWizardOpenOperation handles the execution of the
refactoring inside a separate job. Since the toggle refactoring does
not use the wizard, a separate job had to be scheduled by the
ActionDelegate.

In addition, the undo functionality had to be implemented sepa-
rately. When the changes are performed, they also return the undo
changes that are needed by the UndoManager. The functionality
of the ToggleRefactoringRunner is described in the following sec-
tion.

3.2.9 Running the Refactoring

Present refactorings use a RefactoringWizard together with a Wi-

zardOpenOperation to execute a refactoring. Listing 3.5 shows
CDT’s HideMethodRefactoringRunner run method as an example.

23

CHAPTER 3. IMPLEMENTATION AND SOLUTION

1 public void run() {
2 CRefactoring refactoring =
3 new HideMethodRefactoring (...);
4 HideMethodRefactoringWizard wizard =
5 new HideMethodRefactoringWizard(refactoring);
6 RefactoringWizardOpenOperation operator =
7 new RefactoringWizardOpenOperation(wizard);
8 operator.run(shellProvider.getShell(),
9 refactoring.getName ());

10 }

Listing 3.5: Shorted run method of HideMethodRefactoringRunner

As discussed before, no wizard is used to start Toggle Func-
tion Definition. Instead, the refactoring is executed directly by
the ToggleRefactoringRunner. This means that the latter class
needs to take care of what the WizardOpenOperation was respon-
sible before.

The responsibilities of ToggleRefactoringRunner and Refacto-

ringJob are explained in the following sections.

Run a Separate Job

Why does the refactoring have to run in a separate job?
Toggle Function Definition does not use wizards and therefore

has no UI blocking modal dialogs. Any process like waiting for the
indexer would just freeze the user interface. Running the refactor-
ing in a separate job allows the user to continue using Eclipse as
long as he does not change the affected source code.

Running the refactoring in a separate job is straightforward:

1 public void run() {
2 ...
3 new RefactoringJob(refactoring). schedule ();
4 }

Listing 3.6: ToggleRefactoringRunner starting the job

Avoid Concurrent Refactoring Instances

Why is queuing refactoring jobs not allowed?

24

CHAPTER 3. IMPLEMENTATION AND SOLUTION

As an addition consequence of not using modal dialogs, it is pos-
sible to invoke another concurrent instance of the refactoring. Even
though the refactoring runs in a separate job, it was decided to not
allow multiple instances of the refactoring. Note that selected code
could be removed during refactoring and a subsequent refactoring’s
selection would be invalid.

To decide whether another refactoring is still running, the Refac-
toringJob is assigned to a special kind of jobs by overriding the be-
longsTo() method of org.eclipse.core.runtime.jobs.Job. See
listing 3.7.

1 public final static Object FAMILY_TOGGLE_DEFINITION
2 = new Object ();
3

4 @Override
5 public boolean belongsTo(Object family) {
6 return family == FAMILY_TOGGLE_DEFINITION;
7 }

Listing 3.7: RefactoringJob is assigned to a separate family of jobs

With the help of the overriden belongsTo() method, the job
manager can now check whether another job of the same family
is running. Listing 3.8 shows how a second refactoring instance is
avoided by the ToggleRefactoringRunner.

1 public void run() {
2 Job[] jobs = Job.getJobManager ()
3 .find(RefactoringJob.FAMILY_TOGGLE_DEFINITION);
4 if (jobs.length > 0) {
5 CUIPlugin.log (...);
6 return;
7 }
8 new RefactoringJob(refactoring). schedule ();
9 }

Listing 3.8: ToggleRefactoringRunner avoiding a second refactoring
instance

Execute Refactoring and Support Undoing it

Running a refactoring is essentially calling its methods checkAll-

Conditions and createChanges. The returned changes are per-

25

CHAPTER 3. IMPLEMENTATION AND SOLUTION

formed using changes.perform(...). The perform method re-
turns the changes needed to undo the performed changes.

The process of registering the changes at the undo manager is
long and may be looked up in the RefactoringJob class.

3.3 Testing and Performance Environment

This section introduces some approaches to simplify testing and
monitoring of performance.

3.3.1 Normal Testing

The test coverage for the toggle refactoring reached over 80%. Main-
ly the refactoring tests from CDT were used for default testing. The
test files were divided into the various C++ features. They may
require special handling or they must be supported because they
are simple default cases. These files have the inner structure in
which the toggle order was implemented. Namely from in-class
to in-header, from in-header to in-implementation and from in-
implementation to in-class.

After a problem was found, an issue was created in the wiki bug
tracker and a test case was introduced to the file of the specific
C++ feature where the problem occurred.

3.3.2 Testing for Exceptions

The mechanism to test for exceptions is not quite obvious, so an
example will be shown at this point.

The .rts test file may include the following syntax:

1 //@.config
2 fatalerror=true

Listing 3.9: Syntax to set variables inside a .rts file

The fatalerror variable may be retrieved using a member function
of RefactoringTest :

1 @Override
2 protected void configureRefactoring(
3 Properties refactoringProperties) {

26

CHAPTER 3. IMPLEMENTATION AND SOLUTION

4 fatalError = Boolean.valueOf(
5 refactoringProperties.getProperty(
6 "fatalerror", "false")). booleanValue ();
7 }

Listing 3.10: Accessing a property set in the .rts file

The runTest method may then assert that an error has occurred
by using:

1 RefactoringStatus initialConditions =
2 refactoring.checkInitialConditions(
3 NULL_PROGRESS_MONITOR);
4 if (fatalError)
5 assertConditionsFatalError(initialConditions);

Listing 3.11: Checking for errors inside the refactoring test class

All in all, the special refactoring test environment developed by
[BG06] was a big help for relaxed refactoring.

3.3.3 Testing New File Creation

In case a member function is toggled from in-header to in-implementation
and the implementation file does not exist, the user of the plug-in
is asked through the ToggleFileCreator if he wants to create a
new file and move the function there.

Long time it was not tested for this case and more than once this
functionality was hurt and destroyed accidentally

In the .rts file, the newfiles variable has been introduced. This
variable takes one or more file names separated by a comma.

1 //@.config
2 filename=A.h
3 newfiles=A.cpp , B.h, C.h
4 //@A.h

Listing 3.12: Syntax to set variables inside a .rts file

Further, there is no need to write the initial code state of the file,
since it does not exist. However the final state must be written for
comparison like in any other test.

27

CHAPTER 3. IMPLEMENTATION AND SOLUTION

1 //!FreefunctionFromHeaderToImpl
2 //#ch.hsr.ecl [...]. ToggleRefactoringTest
3 //@.config
4 filename=A.h
5 newfiles=A.cpp
6 //@A.h
7 void /*$*/ freefunction /*$$*/() {
8 return;
9 }

10 //=
11 void freefunction ();
12

13 //@A.cpp
14 //=
15

16

17 #include "A.h"
18

19 void freefunction ()
20 {
21 return;
22 }

Listing 3.13: Writing test for newfile creation

The files listed in the newfiles variable are deleted before the
actual refactoring in the test is started. Then the new file gets cre-
ated by the ToggleFileCreator (which functionality is specifically
tested here) and gets compared with the expected source.

User Inputs

The easiest solution to test user inputs, being aware that it is not
the nicest, is to mock the refactoring and to return an internal
reference to the ToggleRefactoringContext. The context however
has the ability to set predefined answer values to the question of
the file creation, which is done in the test class.

28

CHAPTER 3. IMPLEMENTATION AND SOLUTION

3.3.4 Real World Test Environment

The toggle refactoring was tested with some open source projects
found out in the wild.

COAST

The COAST [Hub10] source code was used as test environment for
real-world tests as it uses a lot of C++ code features to test the
toggling.

Toggling some functions in COAST, it was discovered that macros
are not toggled correctly and are replaced by an NullStatement re-
sulting in a function with a lot of semicolons. This was then fixed
in later versions.

WebKit

Testing to toggle functions from Webkit [Web10] code showed us
two problems.

First, Webkit uses a lot of namespaces. Until this point the
Toggle plug-in did not work correctly with namespaces. Functions
were moved completely out of the namespace and were referenced
with the full qualified namespace as shown in listing 3.14. This is
not very elegant.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N
5 class A {
6 void function ();
7 };
8 }
9

10 inline void N::A:: function () {
11 return;
12 }
13

14 #endif /* A_H_ */

Listing 3.14: function() with reference to namespace

29

CHAPTER 3. IMPLEMENTATION AND SOLUTION

The behavior was changed later to the following.

1 #ifndef A_H_
2 #define A_H_
3

4 namespace N {
5 class A {
6 void function ();
7 };
8

9 inline void A:: function () {
10 return;
11 }
12

13 }
14

15 #endif /* A_H_ */

Listing 3.15: A.h, function definition in namespace

An other problem discovered with Webkit was that preproces-
sor statments were deleted. Have a look at section 4.2.5 for this
problem.

3.3.5 Performance Tests

The simplest way to assess the speed of the refactoring is to look at
the JUnit time measurements. The first test that is run takes more
time and represents the time needed for first time toggling when
the refactoring infrastructure has to be loaded.

All performance tests have been executed on the same developer
machine, taking the average time of three consecutive runs of all
tests. Five scenarios have been chosen to be able to observe the
performance of the toggle refactoring:

1. First time toggling: Includes loading of the infrastructure and
will take some more time.

2. Toggle from in class to header: Only one file is affected by
this refactoring. This represents the least complex refactoring
and should be the quickest one beside the reference test.

30

CHAPTER 3. IMPLEMENTATION AND SOLUTION

3. Toggle from implementation to header: Two files are affected
here.

4. Emtpy reference test: A dummy refactoring that won’t load
and analyze any code. Shows what amount of time is con-
sumed by the given refactoring infrastructure.

Another technique to measure time more accurately was checked
out. For this, the org.eclipse.test.performance plug-in was used.
This does not lead to satisfying results as stated in 4.5.2

31

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

4 Conclusions, Interpretation
and Future Work

During the project, a lot of challenges have been discovered which
were documented in the following sections along with a look back
on the whole project and an outlook on what could be done in
future theses.

4.1 Conclusions

4.1.1 Toggle Function Definition

The main goal of the project was to create a stable refactoring that
would have a chance to be integrated into CDT. In the view of
the authors, the developed plug-in became quite handy but should
be tested by a larger community before it may be released to the
public. One of the drawback is the issue with whitespaces which
are not handled satisfactorily. See section 4.2.1 about newlines.

Anyhow, it should be taken into account that the C++ language
specification (and its implementations by different compilers) may
offer a lot more features than two developers could ever think of. It
is not sure whether the covered special cases are enough general to
cover all language constructs that may exist. Even programming
against the C++ language specification is no guarantee that the
refactoring will behave correctly out in the wild because compilers
provide their own extensions and limitations.

All in all, the developer team is proud of the solution although
aware of the fact that there may still be some improvements needed
to satisfy a large audience.

32

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

4.1.2 Implement Function

Implement Function shares a lot of similarities and benefits of func-
tionality developed for the Toggle Function Definition. This refac-
toring was developed in short time after the Toggle Function Defi-
nition.

4.1.3 Override Virtual Function

No deeper investigation on how this refactoring could benefit from
the developed work has been done until now. This is still left to be
implemented for another semester or bachelor thesis.

4.2 Known Issues

This section presents some unresolved problems or bugs which could
not be fixed during the semester thesis.

4.2.1 Constructor / Destructor Bug

Problem: Let CDT create a new class with a constructor and a
destructor. Then toggle the constructor out of the class definition.
The Destructor will be overridden partially. This bug can also be
triggered when a function above a constructor or a destructor is
toggled. It seems that it is triggered with function names which
do not have a type information and the replace() method of the
ASTRewrite. There are some ways to prevent this bug, although
it is not really a workaround. First the destructor can be made
virtual. In the function above, arguments will also prevent this
bug.

Cause: Unknown. It seems to be an offset bug and/or a rewriter
bug.

Solution: Not yet solved.

4.2.2 Unneccessary Newlines

Problem: When toggling multiple times, a lot of newlines are
generated by the rewriter.

33

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

Cause: Newlines are inserted by the rewriter before and after an
new node but are not removed when removing the same node. To
be able to judge how many newlines have to be inserted or removed,
the whitespace situation around an affected node has to be analyzed
thoroughly. Given figure 4.1 it could be tried to always remove one
newline before and one newline after the removed function.

1 void before () {
2 }
3 // 1st newline added
4 void newFunction () {
5 } // 2nd newline added
6

7 void after() {
8 }

Listing 4.1: Whitespaces will not be removed blindly

Yet, it is not determined whether the programmer changed the
code to look like in figure 4.2. There, it would be fatal to remove a
character before and after the function because brackets would be
removed instead.

1 void before (){} void newFunction (){} void after (){}

Listing 4.2: Code without the usual newlines

Workaround: First, the formatter could be used to remove
multiple newlines. This breaks the programmers formatting which
could be disruptive. Another solution is to manually change the
generated text edits to avoid inserting or to delete more newlines.
However, the changes are highly coupled to the different refactor-
ing strategies. When this solution was tried to be implemented,
it was a problem too that the generated text edits were changing
their array positions, which made changes even more difficult. The
resulting code was unstable and this solution is not recommended.

4.2.3 Comment Handling

Problem: A lot of freestanding comments are generated when tog-
gling multiple times. These comments become leading if a function
gets toggled below these freestanding comments.

34

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

Cause: When a node is removed by the rewriter, associated com-
ments are not removed. This may be seen as a defensive strategy
to avoid deleting comments accidentally. The ASTRewrite adopts
all comments above a node as a leading comment not caring how
many spaces or lines there are between node and comment.

Solution: No solution yet. This could be solved by a new
rewriter.

4.2.4 Menu Integration (partially solved)

Problem: Adding a new menu item to the ”refactor“ menu is
difficult when developing a separate plug-in.

Cause: Menu items are hardcoded inside CRefactoringAction-
Group. No way was found to replace or change this class within a
separate plug-in. In addition, the use of the org.eclipse.ui.actionSets
extension point does not make inserting new items easier.

Workaround: The menu was added using plugin.xml and may
be added by the user manually. See the manual in A.1.1 to solve
this issue. Anyhow, the refactoring may always be invoked using
the key binding of Ctrl+Shift+V.

4.2.5 Preprocessor Statements

Problem: If a preprocessor statement (e.g. #ifdef) is contained
inside the parent of a rewritten, removed or inserted node, the
preprocessor statement is deleted. Listing 4.3 shows an example
where a class is rewritten and a contained preprocessor statement
is removed as a side effect.

1 #ifdef EXAMPLE_H_ // not affected
2 #define EXAMPLE_H_ // not affected
3

4 class WillBeRewrittenImplicitly {
5 #ifdef _X86__ // will be removed
6 void specificCode () {} // will be removed
7 #endif // will be removed
8

9 void toBeManipulatedFunction (); // rewrite this
10 };
11

12 #endif // not affected

35

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

Listing 4.3: Jeopardized preprocessor statement inside a class

Cause: The rewriter does not support preprocessor statements.
Solution: None yet. This has to be solved by a fix for the

rewriter which supports preprocessor statements.
There was a small workaround for this problem by warning about

the presence of a preprocessor statement in the affected files. In the
end this was dropped because this breaks the initial idea of a fast
code flow.

4.2.6 Doxygen

Problem: Doxygen [Dox10] syntax //! may not be used in the
test files since this syntax is used to specify the test name.

Cause: Refactoring tests need the //! syntax to specify the
refactoring class which should be called for the selected code.

Solution: It was not looked for a solution to this problem. A so-
lution could be to change the syntax for controlling the refactoring
tests to something else.

4.2.7 Resource ’/RegressionTestProject/A.h’ does
not Exist

Problem: When running refactoring test cases, a message ran-
domly popped up:

1 !ENTRY org.eclipse.cdt.core 4 0 2010 -12 -13 ...
2 !MESSAGE Error: Resource ’/RegressionTestProject /\
3 A.h’ does not exist.
4 !STACK 1
5 org.eclipse.core.internal.resources .\
6 ResourceException: Resource ’/RegressionTest\
7 Project/A.h’ does not exist.
8 at... ces.Resource.checkExists(Resource.java :326)
9 [...]

Listing 4.4: Randomly appearing error message

Cause: Unknown (no deeper investigation)

36

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

Solution: Tests still pass without failure. It seemed this is no
root of a problem. However it should be mentioned here.

4.3 Solved Issues

This section describes issues that have been resolved during this
thesis.

4.3.1 Speed

Problem: Refactoring, especially the first run, was very slow in
the beginning. Including a big header file slowed down the process
even more.

Cause: The first thought was that header file indexing was
the cause. However, the indexer option that skips already in-
dexed headers is already enabled in CRefactoring. In the end,
it was found out that most of the time was consumed by the
checkInitialConditions method of CRefactoring that checked
for problems inside the translation unit.

Solution: The super call to checkInitialConditions was omit-
ted. This was possible since calling the super method is not neces-
sary. For example, the translation unit provided by the CRefactoring
is initialized here. But this is not used by the toggle plug-in because
it uses smaller, per file translation units. Additionally the project
files were indexed with options to prevent reindexing of already
indexed files.

4.3.2 Accessing Standalone Header Files

Problem: Header files that are not included in any source file by
default were not found by the indexer. Thus, it was not possible to
analyze the source code of the affected header file.

Cause: By default, the indexer preference option IndexerPreferences.KEY

INDEX UNUSED HEADERS WITH DEFAULT LANG is set to false. How-
ever, this option is needed for standalone header files to be indexed.

Solution: Set the described option in IndexerPreferences to
true. This sets the indexer option per project since the index is
retrieved per single project.

37

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

4.3.3 Indexing all Projects

Problem: Having multiple projects with the same file containing
the same functions causes the plug-in to crash.

Cause: The index provided by the CRefactoring class returns
an index containing all the indexes over all the open projects. This
option only makes sense for refactorings like an “organize include
statements”

Solution: Providing our own project local index and omitting
functionality from CRefactoring class.

4.3.4 Selection

Problem: After toggling multiple times, the wrong functions were
toggled or no selected function was found at all.

Cause: The region provided by CRefactoring pointed to a
wrong code offset. This happens due to the fact that IWork-
benchWindowActionDelegate’s selectionChanged method is up-
dated with outdated offset information.

Solution: The current selection is now based directly on the
current active editor part’s selection and fetched every time when
toggling is started.

4.3.5 Fuzzy Whitespace Recognition

Problem: In past theses at HSR, the refactoring testing environ-
ment needed an exact definition of the generated code. This was
annoying because same-looking code samples resulted in a red bar if
white spaces were not the same. To make writing new tests easier,
the comparison method was overridden to support fuzzy whitespace
recognition.

Cause: The TesterHelper in the CDT test environment does
compare the whole actual and expected code as String with [JUn10]
AssertEquals(String, String). This leads to a failing test as
soon as a single whitespace is different between the expected and
the actual code.

Solution: Leading whitespaces are recognized in both expected
and actual source code. Then the smallest common divider is taken
as as a tab length and replaced by a tabulator. Trailing superfluous
newlines that are added by the ASTRewriter are ignored and also

38

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

trailing whitespaces at the end of a line. After that the edited code
is sent to the assert() for comparison.

4.3.6 Comments and Macros

Problem: Nodes inside a translation unit have to be copied to
be changed since they are frozen. When nodes are copied, their
surrounding comments get lost during rewrite[SZCF08]. This was
annoying, since copying the function body provided a straightfor-
ward solution for replacing a declaration with a definition.

Another issue were macros. Macros are working perfectly when
copied and rewritten inside the same translation unit. As soon
as a macro is moved outside a translation unit, the macro will be
expanded during rewrite or even deleted when no information about
the macro is found.

Cause: The rewriter is using a method in ASTCommenter to get
a NodeCommentMap of the rewritten translation unit. If a node is
copied, it has another reference which will not be inside the com-
ment map anymore. Thus, when the rewriter writes the new node,
it will not notice that the node was replaced by another.

Solutions:

• Get the raw signature of the code parts that should be copied
and insert them using an ASTLiteralNode.

Pro: It works without changing the CDT core and macros are
not expanded.

Contra: Breaks indentation and inserts unneeded newlines.
This solution was finally used. Afterwards, whitespace issues
may be dealt with the formatter.

• Do as ExtractFunction does: rewrite each statement inside
the function body separately.

Pro: Automatic indentation.

Contra: Touches the body although it does not need to be
changed in any way.

• Change the CDT: Inside the ChangeGenerator.generate-

Change, the NodeCommentMap of the translation unit is fetched.
By writing a patch, it was possible to insert new mappings

39

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

into this map. This allowed to move comments of an old node
to any newly created node.

Pro: Automatic indentation, developer may choose where to
put the comments, every comment may be preserved.

Contra: Does not deal with macros, five classes need to be
changed in CDT, comments need to be moved by hand. See
the branch ’inject’ inside the repository to study this solution.
Due to intellectual property issues, this solution was not re-
viewed by the Institute For Software. To find out whether
it is an acceptable solution the patch should be reviewed by
the CDT community. Anyhow, a less disruptive solution was
found for the problem.

• Find and insert comments by hand using an IASTComment.

Pro: Lets the developer decide where to put the comment.

Contra: Feature is commented-out in the 7.0.1 release of
CDT, comments need to be moved by hand.

• Other solutions may be possible. An idea could be to register
the comments whenever a node is being copied. Since copy

is abstract in IASTNode and implemented separately inside
every node, this would require a change inside every node
class.

4.3.7 Toggling Function-Local Functions

Problem: When using function-local functions, the refactoring
may produce code that won’t compile.

Cause: Despite in the C++ standard[30910] function-local func-
tions are not allowed, the GNU C compiler allows to define such
nested functions[Fre10]. In this case the selection detection finds
the nested function if selected and it is tried to toggle it. However,
it is not guaranteed that valid code will be generated.

Solution: Toggling is disabled for such nested function defini-
tions.

40

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

4.4 Future Work

The toggle refactoring was developed as a separate plug-in so inte-
gration into the CDT project should be possible if desired.

It should be a small task to provide a solution for multi-toggling.
If the user selects more than one definition, all of them could be
toggled. An example workflow could be ”Create new class (inherit
from an abstract class)”, ”add unimplemented methods”, ”toggle
all methods to an implementation file”.

A big problem in this refactoring was the rewriter. Since it is
limited in its functionality by limited support for comments, no
preprocessor statement support, inserting newlines over and over,
and even producing wrong code with the constructor bug (see sec-
tion 4.2.1), it is extremely time consuming to find workarounds for
such problems. Therefore before any new refactoring is developed,
the rewriter should be fixed or rewritten. As in the last meeting
of this semester thesis with the supervisor, it was ensured such a
work will be done by the Institut fuer Software.

A mechanism could be implemented that fixes indentation after
refactoring. Better user feedback in case of errors could be provided.

At the end there was no time left to do the Override Virtual
Member Function refactoring. This is still left as a semester thesis.

4.5 Interpretation

After implementation, a personal look backwards was made on what
the resulting refactoring is capable of and what may still need some
improvement.

4.5.1 Features and Limitations

Toggling functions is available inside any class or namespace hier-
archy and may be invoked when the selection is anywhere inside a
function declaration or body. Basic templated functions are sup-
ported as well. However, there may be template special cases that
we have not thought of.

On the other side, the code generator removes preprocessor state-
ments that stay inside a node that has to be rewritten. Removing

41

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

comments of removed nodes was not achieved without changing the
rewriter since this is a bug in the rewriter.

4.5.2 Performance Results

It is difficult to compare the speed with other refactorings of CDT
since wizards are used for the other known refactorings. However,
the goal was reached that the refactoring is executing almost in-
stantly.

It was planned to measure the speed of the JUnit tests as ex-
plained in section 3.3.5. However, the displayed time does not rep-
resent the actual speed of the refactoring. This may be due to the
fact that tests are not being invoked exactly the same way as the
actual refactoring. The manually invoked refactoring is run with
the help of ToggleRefactoringRunner.

The results from the org.eclipse.test.performance speed tests were
not used either. Since in reality the refactorings are much slower
than the (repeated) measurements, resulting values may only be
compared relative to each other.

In the end, the only way to judge whether the refactorings be-
came quicker is to check out an older version and to try it out
manually. Included libraries like iostream slowed down the refac-
toring noticeably before speed was improved.

4.5.3 Personal Review

Some words from the authors about the developed plug-in, project
management, of what was fun and what not.

Martin Schwab

What I like about the developed refactoring is that it was possible
to implement it without a wizard. However, the user needs full
trust in the code generation that it will not break code and this is
currently not given when preprocessor statements are used. Nev-
ertheless I am glad the developed plug-in is able to write complex
template definitions that I could not write myself without the C++
specification by my side. This could save a lot of time and hassle
for programmers.

42

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

What next? If the plug-in is integrated into CDT, I would be
interested in the Eclipse Usage Data Collector [usa10] to check
whether users find out when and how they can profit from the
refactoring and whether they use it repeatedly. If the refactoring
is considered helpful by users and applied as it is designed to use,
this should be reflected in a high execution count compared to the
user count.

Thomas Kallenberg

Personally I like the C++ programming language. Despite the
complexity it can be an alternative to Java or other OOP languages.
Specially if there is a focus on performance or other subjects where
templates do fit nicely in the concept of the project. The one touch
toggle refactoring is another step towards a better knowledge of
C++.

What I liked about the project was the clear and productive
communication with the supervisor. The environment to develop a
CDT refactoring provided enough functionality to develop a good
refactoring in the given time scope but let us enough freedom to
realize innovative ideas.

The goal was to develop a plug-in that is used by the world and
not thrown away. Even if we could not solve all issues, specially
with comments and macros, I think we achieved the main task and
realized our supervisors and customers idea of a toggle definition.

What we Would do the Same Way

Using Git[GIT10] for version control was very useful. The provided
development server was occasionally down during the first weeks
and it was possible to continue work locally with version control.
Being able to work locally was also helpful to work on the train.

Working next to each other in the same study room was helpful to
get quick answers for questions, reduce slow written communication
and playing a round of table foot when concentration was used up.

For each meeting, the planned tasks were collected inside the
agenda, then rubber-stamped by the supervisor and transformed
into issues for the following week. This way, a minimal administra-
tive overhead was produced.

43

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

What we Would not do the Same Way

Time Management

During most of the project, time was tracked for every issue. How-
ever, the collected data was not actively used to measure team
velocity and estimate further issues. This valuable data could have
been used for better scope prediction.

Commits not Connected with Issues

During the project we sometimes “forgot” to track our time. Some-
times it was forgotten and sometimes it was delayed (and then for-
gotten) to speed up implementation of the functionality. This is
clearly not a good behavior since the danger is high to forget about
the tracked time as it happened to us many times.

As an improvements in the bachelor thesis we thought about
connecting every commit to the version control with an issue. It
could even be checked with a server side script during committing.
If the commit message does not contain a valid issue number the
commit is rejected. This forces the developer to connect his commit
to an issue.

Wiki and Documentation Differences

The special cases that were listed on the project wiki were useful
to communicate but it may have saved time if they were directly
integrated into the documentation.

Writing Documentation at the End

We knew about the fact that writing documentation at the end is
a hard thing due to time shortage. We created the documentation
structure early and started to write some text to it. But somewhere
in the middle of the project we did not kept in mind to continue
this. This and changes to the code until the end led to a lot of stress
in the last two weeks since the documentation was not written as
far as expected.

Chapters like specification should be written early. The wiki
is not read, but the documentation is read and if written early

44

CHAPTER 4. CONCLUSIONS, INTERPRETATION AND
FUTURE WORK

mistakes do not live long, as long as the documentation is reviewed
continuously.

Glossary should be written continuously and even some parts of
the implementation needs to be documented early.

Redmine Fine Tuning

The default Redmine trackers and categories that were used were
not sufficient to track time in a way that shiny charts could be
produced for categories like ”implementation”, ”documentation”
and ”administration. For future projects we need more fine grained
categories and trackers.

Multiple Git Branches

While using one master git branch for every developer, a second
git branch called development was introduced. During half a week
new work was committed to the development branch and then both
trees were merged. The idea behind this was to have always a stable
master branch. This allowed to carelessly mess around inside the
development branch which resulted in nobody daring to pull from
the others branch. Inside the master branch everything was already
merged and the development branch was in an “always unstable”
condition. If something unstable is introduced to the repository
one should explicitly use a separate branch and include this in the
master as soon as possible.

45

APPENDIX A. USER MANUAL

A User Manual

To quickly have a look at what was realized during the semester
thesis, just install the Toggle Function Definition code automation
according to this manual.

A.1 Installation of the Plug-in

To try out the plug-in, you will need a running Eclipse Helios (3.6)
installation with CDT 7.0.1 already installed. Choose ”Help”, ”In-
stall New Software...” and type in the following url into the address
bar:
http://sinv-56042.edu.hsr.ch/updatesite

The plug-in may now be installed using the install wizard. Be
aware that the update site is hosted on a virtual server that will be
removed at the end of summer 2011.

A.1.1 Activate the Menu Item

Figure A.1: To use the refactoring from the menu, it needs to be
enabled manually after installation.

To run the refactoring using the menu, some changes have to be
applied to the current perspective. Right-click on the toolbar and
choose ”Customize perspective...”. Then go to the ”Groups and

46

http://sinv-56042.edu.hsr.ch/updatesite

APPENDIX A. USER MANUAL

commands visibility” tab and check all ”C++ coding” boxes. The
menu ”Toggle Function Definition” should now be visible inside the
source menu.

A.2 Using the Refactoring

Toggling is available whenever the cursor is inside a function dec-
laration or definition. Any selection between the first and the last
character of the function definition (without comments) is consid-
ered valid for toggling. Figure A.2 depicts all valid selection ranges
in an example code. As soon as the cursor is inside the valid range,

Figure A.2: Region for valid selection positions

toggling may be invoked by pressing Ctrl+Shift+v.

A.3 Example

Figure A.3: Redundant declarations that were not both updated

47

APPENDIX A. USER MANUAL

Imagine the situation in figure A.3 where a programmer forgot
to update a function signature of a function that was defined inside
another file. After finding and correcting the signatures, the pro-
grammer would like to define the function directly inside the header
file, removing the redundancy of a separate definition. What would
he do?

Perhaps he would jump to the definition, copy its body, remove
the definition, jump back to the declaration, remove its semicolon,
add curly brackets and paste the copied function body. All in all,
seven actions.

A.3.1 The Solution

This is the point where Toggle Function Body makes life easier.
Imagine the same situation (with correct signatures though) and
the user presses the key combination Ctrl+Shift+V. Figure A.4
shows what happens to the code. The declaration got automatically
replaced by the definition.

Figure A.4: By the touch of a key combination, the function defi-
nition is moved

The function is now defined in one place and its signature may be
changed without updating the declaration separately. Seven actions
have been replaced by just one keystroke. Convinced?

48

APPENDIX B. PROJECT SETUP

B Project Setup

Project setup needed two weeks to become stable. In this chapter,
solutions are described that may help future projects to build up
their project environment more efficiently.

B.1 Configuration Management

This section describes what techniques were used throughout this
project and what product versions were needed to realize an agile
production environment for Eclipse plug-in development.

B.1.1 Project Server

As a project server Ubuntu Linux 10.04.1 LTS (Lucid Lynx) on a
VmWare Cluster was used.

B.1.2 Git

As a version control system, Git[GIT10] was used. This time it
was not used like an SVN[SVN10] replacement but instead to get
some redundancy by storing the source code on multiple servers.
Both project developers had their “own“ git server on which the
developer committed. It was merged between these servers and
then pushed to the main repository for automatic testing.

Later in the project, a master and a development branch have
been introduced to improve trust for the master branch.

B.1.3 Maven and Tycho

Tycho[tyc10] is a plug-in for Maven[mav10] v3.0 to build an Eclipse
plug-in and to execute its tests. Maven3 is required for this to work.
Although Maven3 is beta, it was proven stable during the project.

49

APPENDIX B. PROJECT SETUP

B.1.4 Continuous Integration

Hudson is a build server for executing repeated build jobs. It is
specialized for executing Java projects. To get the tests executed
on the fake X sever, the DISPLAY environment variable must be set.
If not, tests will fail with a cryptic SWTError.

There is a plug-in for Hudson[hud10] to set the environment vari-
able to the right value. In most cases this is :0.

B.2 Project Management

Redmine[red10] was used to track issues, milestones and agendas
and as an information radar for the supervisor.

The Redmine version used crashed every now and then. This
issue went away after some memory upgrade. Redmine depends
how it is configured. Using the passenger ruby module made it
quite stable.

B.3 Test Environment

To execute the tests on a headless server with Hudson build server
first a fake X Server was needed. Xvfb[xvf10] was used for the job.
Maven has to be explicitly told which test class to execute and in
which folder the test class is located. If this is not done properly
the tests will fail.

B.3.1 Test Coverage

Creating new files was not tested in the beginning due to the dialog
box popping up during execution. However, with the help of the
same technique that was used to test for errors, the problem could
be solved. Before a dialog box is popped up asking whether to
create a new file, it is checked whether the test framework has set
a flag to skip that question.

The code coverage tool EclEmma[ecl10] was a good help to find
dead code and to think about justification of code blocks.

50

APPENDIX B. PROJECT SETUP

B.3.2 Documentation

The documentation was originally based on [AV08] and adapted to
meet the requirements of the project.

51

APPENDIX C. TIME MANAGEMENT

C Time Management

This chapter should help other students guessing the amount of
work that is involved in writing a refactoring semester thesis.

C.1 Time Budget

The extent of work expected for a semester thesis at HSR is 8 ECTS
which corresponds to an effort of 240 hours per person. Issues were
created after the meetings on Thursday and an amount of time was
guessed for them.

As mentioned in the section 4.5.3 we sometimes forgot to log the
time right away. Later we guessed the time invested in the issues
we worked on.

C.2 What the Charts Tell us

This tables illustrate the workload by week and team member.

Figure C.1: Working hours of the team members by weeks from
beginning of the project to 11th of November

Figure C.2: Working hours of the team members by weeks from
11th November to 23rd of December

Summing up all, results in about 450 hours worked for the project.

52

APPENDIX C. TIME MANAGEMENT

C.3 What the Team is Saying

Charts are generated out of numbers which have been typed in
by humans. There has been a time between week eight and ten
where time tracking was abandoned and added three weeks later.
(Also see section 4.5.3). Also, there were a lot of discussions that
could not have been assigned to a specific issue. Not every minute
was tracked, so be aware that the actual spent time was about ten
percent above the reported time.

53

APPENDIX D. GLOSSARY

D Glossary

• AST: Abstract Syntax Tree

• CDT: C/C++ Development Tooling for Eclipse

• Content Assist: Content assist allows you to provide con-
text sensitive content completion upon user request. Popup
windows are used to propose possible text choices to complete
a phrase. The user can select these choices for insertion in the
text. [ass10]

• Declaration: “A declaration introduces names into a trans-
lation unit or redeclares names introduced by previous dec-
larations. A declaration specifies the interpretation and at-
tributes of these names.”[30910]

• Definition: “A declaration is a definition unless it declares
a function without specifying the function’s body, it contains
the extern specifier or a linkage-specification and neither an
initializer nor a function-body, it declares a static data mem-
ber in a class definition, it is a class name declaration, it is
an opaque-enum-declaration, or it is a typedef declaration, a
using-declaration, or a using-directive.”[30910]

• Doxygen: A documentation system that supports multiple
programming languages.

• Free function: Whenever free functions are mentioned through-
out this document, non-member functions are meant in the
C++ terminology. These are functions which are not part of
a structure or a class.

• Header file: A file with the file extensions .h, .hpp or .hxx

• Non-member function: A function that does not belong
to any type.

54

APPENDIX D. GLOSSARY

• Problem node: If a source code range has syntactical errors,
the CDT parser wraps it into an IASTProblem which can be
handled as if it were a normal IASTNode.

• .rts file: Before/after tests for refactorings may be written
inside a file with the extension ”.rts” using a special syntax.
CDT offers a mechanism to automatically read those files, run
the refactoring and compare the sources.

• Source file: A file with the file extensions .c, .cpp or .cxx

• Toggle refactoring: The developed Toggle Function Defini-
tion code automation was referred to by this name because it
is shorter.

• Toggling: The act of invoking the plug-in developed during
this project to move a function definition to another place.

• Translation unit: “The text of the program is kept in units
called source files [...]. A source file together with all the head-
ers and source files included via the preprocessing directive
#include, less any source lines skipped by any of the condi-
tional inclusion preprocessing directives, is called a translation
unit.”[30910]

55

Bibliography

[30910] ISO/IEC JTC1 SC22 WG21 N 3092. IS 14882: Program-
ming Languages – C++. International Organization for
Standardization, Geneva, Switzerland, March 2010.

[ass10] Content Assist. http://help.eclipse.org/help32/

topic/org.eclipse.platform.doc.isv/guide/

editors_contentassist.htm, 2010. [Online; accessed
20-December-2010].

[AV08] A. Simeon A. Verhein. Werkzeugkasten Technische
Berichte 1, 2008.

[BG06] Leo Büttiker and Emanuel Graf. C++ refactoring sup-
port für eclipse-cdt. http://ifsoftware.ch/uploads/

tx_icscrm/i_da_2006_refactoring_support_fuer_

eclipse_cdt_leo_buettiker_emanuel_graf.pdf,
2006. [Online; accessed 13-December-2010].

[Dox10] Doxygen – Generate documentation from source code.
http://www.doxygen.org/, 2010. [Online; accessed 21-
December-2010].

[ecl10] EclEmma – Java Code Coverage for Eclipse (Version
1.5.1). http://www.eclemma.org, 2010. [Online; ac-
cessed 17-December-2010].

[Fow99] Martin Fowler. Refactoring – Improving the Design of
Existing Code. Object Technology Series. Addison Wes-
ley, October 1999.

[Fre06] Frenzel, Leif. The Language Toolkit: An API for Auto-
mated Refactorings in Eclipse-based IDEs. Eclipse Mag-
azin, 5, January 2006. see http://www.eclipse.org/

articles/Article-LTK/ltk.html.

56

http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://ifsoftware.ch/uploads/tx_icscrm/i_da_2006_refactoring_support_fuer_eclipse_cdt_leo_buettiker_emanuel_graf.pdf
http://ifsoftware.ch/uploads/tx_icscrm/i_da_2006_refactoring_support_fuer_eclipse_cdt_leo_buettiker_emanuel_graf.pdf
http://ifsoftware.ch/uploads/tx_icscrm/i_da_2006_refactoring_support_fuer_eclipse_cdt_leo_buettiker_emanuel_graf.pdf
http://www.doxygen.org/
http://www.eclemma.org
http://www.eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/articles/Article-LTK/ltk.html

Bibliography

[Fre10] Free Software Foundation. Nested Functions - Using the
GNU Compiler Collection (GCC), 2010. [Online; ac-
cessed 24-December-2010].

[GIT10] Download page for Git version control system (Version
1.7.0). http://www.kernel.org/pub/software/scm/

git/, 2010. [Online; accessed 16-December-2010].

[Hub10] Marcel Huber. Coast – C++ Open Applica-
tion Server Toolkit. personal communication, 2010.
also known as WebDisplay2 http://wiki.hsr.ch/APF/

files/WebDisplay2_Architecture.pdf.

[hud10] Hudson – Extensible continuous integration server (Ver-
sion 1.352). http://hudson-ci.org/, 2010. [Online;
accessed 17-December-2010].

[JUn10] JUnit.org – Resources for Test Driven Development.
http://www.junit.org/, 2010. [Online; accessed 21-
December-2010].

[mav10] Apache Maven (Version 3.0-beta3). http://maven.

apache.org/, 2010. [Online; accessed 16-December-
2010].

[red10] Redmine – Project Management Web Application (Ver-
sion 0.9.3-1). http://www.redmine.org/, 2010. [Online;
accessed 22-December-2010].

[SP03] Herb Sutter and Tom Plum. Why We Can’t Afford
Export. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2003/n1426.pdf, March 2003.

[SVN10] Apache Subversion. http://subversion.apache.org/,
2010. [Online; accessed 22-December-2010].

[SZCF08] Peter Sommerlad, Guido Zgraggen, Thomas Corbat, and
Lukas Felber. Retaining comments when refactoring
code. In Companion to the 23rd ACM SIGPLAN confer-
ence on Object-oriented programming systems languages
and applications, OOPSLA Companion ’08, pages 653–
662, New York, NY, USA, 2008. ACM.

57

http://www.kernel.org/pub/software/scm/git/
http://www.kernel.org/pub/software/scm/git/
http://wiki.hsr.ch/APF/files/WebDisplay2_Architecture.pdf
http://wiki.hsr.ch/APF/files/WebDisplay2_Architecture.pdf
http://hudson-ci.org/
http://www.junit.org/
http://maven.apache.org/
http://maven.apache.org/
http://www.redmine.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1426.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1426.pdf
http://subversion.apache.org/

Bibliography

[tyc10] Tycho – Sonatype (Version part of Maven 3). http:

//tycho.sonatype.org/, 2010. [Online; accessed 17-
December-2010].

[usa10] Usage Data Collector Results. http://www.eclipse.

org/org/usagedata/results.php, 2010. [Online; ac-
cessed 16-December-2010].

[Web10] The WebKit Open Source Project (Version SVN head:
r71799). http://webkit.org/, 2010. [Online; accessed
22-December-2010].

[xvf10] Xvfb – virtual framebuffer X server for X Ver-
sion 11. http://www.x.org/archive/X11R6.8.1/doc/

Xvfb.1.html, 2010. [Online; accessed 22-December-
2010].

58

http://tycho.sonatype.org/
http://tycho.sonatype.org/
http://www.eclipse.org/org/usagedata/results.php
http://www.eclipse.org/org/usagedata/results.php
http://webkit.org/
http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html
http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html

	Introduction
	Current Situation
	Motivation
	What has been Planned
	Toggle Function Definition
	Implement Member Function
	Override Virtual Member Function

	Objectives
	Advanced Objectives
	Further Objectives and Outlook

	Expected Outcome
	Project Duration

	Specification
	Toggle Function Definition
	Activation
	Three Positions for Function Definitions
	Basic Scenarios
	Special Cases
	Expected Result

	Quick Implement Function
	Activation
	Example
	Expected Result

	Override Virtual Member Function

	Implementation and Solution
	Implementation approach
	Architecture
	Class Diagram
	Basic Call Flow
	Strategies
	ToggleNodeHelper
	Context
	Strategy Factory
	Stopping with Exception
	Implications of not Using a Refactoring Wizard
	Running the Refactoring

	Testing and Performance Environment
	Normal Testing
	Testing for Exceptions
	Testing New File Creation
	Real World Test Environment
	Performance Tests

	Conclusions, Interpretation and Future Work
	Conclusions
	Toggle Function Definition
	Implement Function
	Override Virtual Function

	Known Issues
	Constructor / Destructor Bug
	Unneccessary Newlines
	Comment Handling
	Menu Integration (partially solved)
	Preprocessor Statements
	Doxygen
	'/RegressionTestProject/A.h' does not Exist

	Solved Issues
	Speed
	Accessing Standalone Header Files
	Indexing all Projects
	Selection
	Fuzzy Whitespace Recognition
	Comments and Macros
	Toggling Function-Local Functions

	Future Work
	Interpretation
	Features and Limitations
	Performance Results
	Personal Review

	User Manual
	Installation of the Plug-in
	Activate the Menu Item

	Using the Refactoring
	Example
	The Solution

	Project Setup
	Configuration Management
	Project Server
	Git
	Maven and Tycho
	Continuous Integration

	Project Management
	Test Environment
	Test Coverage
	Documentation

	Time Management
	Time Budget
	What the Charts Tell us
	What the Team is Saying

	Glossary
	Bibliography

