
Hybrid Dynamic Data Race Detection

Robert O’Callahan
IBM T. J. Watson Research Center

roca@us.ibm.com

Jong-Deok Choi
IBM T. J. Watson Research Center

jdchoi@us.ibm.com

ABSTRACT
We present a new method for dynamically detecting potential data
races in multithreaded programs. Our method improves on the state
of the art in accuracy, in usability, and in overhead. We improve
accuracy by combining two previously known race detection tech-
niques —lockset-based detectionand happens-before-based de-
tection— to obtain fewer false positives than lockset-based detec-
tion alone. We enhance usability by reporting more information
about detected races than any previous dynamic detector. We re-
duce overhead compared to previous detectors — particularly for
large applications such as Web application servers — by not relying
on happens-before detection alone, by introducing a new optimiza-
tion to discard redundant information, and by using a “two phase”
approach to identify error-prone program points and then focus in-
strumentation on those points. We justify our claims by presenting
the results of applying our tool to a range of Java programs, in-
cluding the widely-used Web application servers Resin and Apache
Tomcat. Our paper also presents a formalization of lockset-based
and happens-before-based approaches in a common framework, al-
lowing us to prove a “folk theorem” that happens-before detection
reports fewer false positives than lockset-based detection (but can
report more false negatives), and to prove that two key optimiza-
tions are correct.

Categories and Subject Descriptors
D.2.4 [Software]: Software/Program Verification

General Terms
Verification

Keywords
Java dynamic race detection happens-before lockset hybrid

1. INTRODUCTION
A data raceoccurs in a multithreaded program when two threads

access the same memory location with no ordering constraints en-
forced between the accesses, such that at least one of the accesses

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03,June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

is a write [20]. In many cases, a data race is a programming error.
Furthermore, programs with data races are notoriously difficult to
debug because they can exhibit different behaviors when executed
repeatedly with the same set of inputs. Because of the detrimen-
tal effects of data races on the reliability and comprehensibility of
multithreaded software, it is widely recognized that tools for auto-
matic detection of potential data races can be valuable. As a result,
there has been a substantial amount of past work in building tools
for analysis and detection of potential data races [1, 10, 13, 16, 17,
21, 22, 23].

Previous work on dynamic data race detectors focused on two
approaches. One approach islockset-based detection, where a po-
tential race is deemed to have occurred if two threads access a
shared memory location without holding a common lock [22, 21].
(The race is “potential” because the two threads may not, in fact,
have interfered with each other.) This approach can be imple-
mented with very low overhead, at least when whole program static
analysis is available [9]. Unfortunately perfectly valid and race-
free code can violate the locking hypothesis, leading to false pos-
itives in the output of a tool. Another approach ishappens-before
detection, where a potential race is deemed to have occurred if
two threads access a shared memory location and the accesses are
causally unorderedin a precise sense as defined by Lamport [18].
This approach produces fewer false positives than lockset-based
detection – none, in fact – in the sense that for every potential
race it reports, there is an alternative thread schedule where the
two accesses happen “simultaneously”. Unfortunately happens-
before race detection has proven difficult to implement efficiently.
The best implementation to date slows down benchmark Java pro-
grams by a factor of five compared to running the programs in
an interpreter [10]. Theoretical results suggest happens-before de-
tection will resist great improvements in efficiency [7]. We also
show below that happens-before detection produces more false neg-
atives than lockset-based detection. (Of course, being dynamic
techniques, both approaches produce false negatives because they
only consider a subset of possible program executions.)

Our goal is to combine these approaches into a hybrid algorithm
which uses happens-before techniques to reduce the false positives
reported by a lockset-based race detector, but otherwise preserves
the performance advantages of the lockset-based detector. The
idea of combining happens-before and lockset approaches surfaced
briefly 12 years ago [11] but, to our knowledge, it has never been
implemented and hence the issues in making it practical have never
been explored, nor have the benefits been measured.

Figure 1 shows a Java program with a potential race, adapted
from a situation we discovered in a real program.Main.execute
starts aChildThread and then tries to terminate the child thread
just before returning, if the child thread has not already terminated.

167

// MAIN THREAD // CHILD THREAD
class Main { class ChildThread extends Thread {

int globalFlag; Main main;
ChildThread childThread;
void execute() {

globalFlag = 1;
childThread = new ChildThread(this); ChildThread(Main main) { this.main = main; }
childThread.start(); void run() {
... if (main.globalFlag == 1) ...;
synchronized (this) { ...

if (childThread != null) {
main.childThread = null;

L: childThread.interrupt();
} }

} }
}

}

Figure 1: A Program With A Potential Race

A race arises when theChildThread setsmain.childThread
to null while execute is at labelL; in this case the program
will crash. This race may occur very rarely and could be very
difficult to detect during normal testing. A lockset-based detec-
tor would observe that even during a non-crashing test run, the
childThread field is accessed byChildThread.run() and
Main.execute with no common lock held, and conclude that
those accesses constitute a potential race. Unfortunately, a lockset-
based detector would also report a potential race on accesses to
main.globalFlag for similar reasons. On the other hand, a
happens-before detector would recognize that “globalFlag =
1; ” in Main.execute must “happen before” the child thread is
started, and therefore before the test ofglobalFlag in method
childThread.run , and therefore there is no potential race there.
This kind of synchronization constraint can be represented using
happens-before race detection but not using lockset-based detec-
tion, and thus our hybrid detector eliminates this false positive and
reports only the real race.

In this paper we describe the following advances over the state
of the art:

� We demonstrate a significant reduction in the number of false
positives produced by lockset-based detection, at little addi-
tional computational expense, by adding a limited amount of
happens-before detection.

� We collect more information to help diagnose suspected races,
including stack traces for both events in a pair of racing events.

� We improve the scalability of race detection by eliminating
the need for whole-program static analysis used in prior work
[9, 21]. Instead we obtain low overhead with dynamic opti-
mizations, including a novel dynamic optimization (“oversized-
lockset”, see Section 5.4) and by running the program twice
with different instrumentation in each run.

These features require new optimizations beyond those previously
used to obtain efficient lockset-based detection [9, 21]. In partic-
ular we extend and generalize the notion ofevent redundancy[9].
We introduce a new optimization which exploits the fact that the
maximum number of locks held by a Java thread is very small for
most programs.

We present the results of applying our race detection tool to a
wide range of programs, including the Apache Tomcat Web ap-

plication server. Our results confirm our claims: our detector has
much lower overhead than previous happens-before detectors, re-
ports significantly fewer false positives than previous lockset-based
detectors, and is more scalable than any detector of comparable ef-
ficiency, largely because it does not rely on any static analysis.

The rest of the paper is organized as follows. Section 2 describes
the basics of lockset-based race detection and formalizes them in
framework which allows us to compare with happens-before de-
tection and prove that certain optimizations are correct. Section 3
describes “happens-before” data race detection in the same frame-
work and proves that it reports a subset of the races reported by
lockset-based detection. Unfortunately this algorithm is extremely
expensive. In section 4 we present the hybrid algorithm which ad-
dresses the performance problems. Section 5 presents the high-
level optimizations we use to make the algorithm practical for real
Java programs. We discuss implementation details in section 6.
Experimental results for the overhead and accuracy of our tool ap-
pear in section 7. Finally, Section 8 describes related work, and
Section 9 contains our conclusions.

2. LOCKSET-BASED RACE DETECTION
In this section we explain a previous approach to lockset-based

race detection [9] in a formal framework which allows us to com-
pare it to happens-before detection and also to verify that certain
optimizations are correct.

2.1 Program Execution Model
The analysis techniques in this paper are fully dynamic; race

detection does not access the program code, but only observes a
stream of events generated by instrumentation inserted into the pro-
gram. Thus we treat the program as an abstract machine which
outputs a sequence of eventsheii to our detector.

Each event contains components which we abstract to the fol-
lowing types:

� M: a set ofmemory locations. In Java, a memory location
is a non-static field of a particular object, a static field, or
an element of an array; these are the only mutable locations
which can be accessed by more than one thread.

� L: a set oflocks. In Java, a lock corresponds to an object.

168

� T : a set ofthreads. In Java, a thread corresponds to an object
of classThread .

� G: a set ofmessage IDs. In Java, an example of a mes-
sage is an object that is synchronized on usingwait() and
notify() .

� A = fREAD;WRITEg: the two possibleaccess typesfor a
memory access.

Program execution generates the following kinds of events:

� Memory accessevents of the form MEM(m;a; t)wherem 2
M, a 2 A andt 2 T . These indicate that threadt performed
an access of typea to locationm. In Java these correspond
to reading and assigning the values of static and non-static
fields, and reading and assigning array elements.

� Lock acquisitionevents of the form ACQ(l; t) wherel 2 L
andt 2 T . These indicate that threadt acquired lockl. (Java
locks are reentrant; we only generate ACQ whent did not
already hold the lock.) In Java these correspond to entering
asynchronized method or block wheret did not already
hold the lock.

� Lock releaseevents of the form REL(l; t) wherel 2 L and
t 2 T . These indicate that threadt released lockl and no
longer holds the lock. In Java these correspond to leaving a
synchronized method or block wheret usage count on
the lock decreases to zero.

� Thread message sendevents of the form SND(g; t) where
t 2 T andg 2 G. These indicate that threadt is sending a
messageg to some receiving thread.

� Thread message receiveevents of the form RCV(g; t) where
t 2 T and g 2 G. These indicate that a threadt has re-
ceived a messageg from some sending thread and may now
be unblocked if it was blocked before.

Thread message events are only observed by the happens-before
detector, discussed in Section 3.

To simplify the presentation, we assume the abstract machine
is sequential. At each step, it chooses a single thread to run, and
executes that thread for some quantum, possibly generating one
or more events. Thus events are observed by our detector in a se-
quence which depends on the thread schedule. Our implementation
uses locks inside the detector to map Java thread execution into this
sequential abstraction.

2.2 Accumulating Locksets
Before performing lockset-based detection, we must compute

the set of locks held by a thread at any given time.
Given an access sequenceheii, we compute the locks before step

i by a threadt, Li(t), as

Li(t) = f l j 9a:a < i ^ ea = ACQ(l; t)

^ (6 9r:a < r < i ^ er = REL(l; t))g

The “current lockset” for each thread,Li(t) for each live thread
t, can be efficiently maintained online as acquisition and release
events are received.

2.3 The Lockset Hypothesis
Lockset-based detection relies on the following hypothesis:When-

ever two different threads access a shared memory location, and
one of the accesses is a write, the two accesses are performed hold-
ing some common lock.The postulated lock ensures mutual exclu-
sion for the two accesses to the shared location. A potential race
is deemed to have occurred whenever this hypothesis is violated.
Formally, given an input sequenceheii,

IsPotentialLocksetRace(i; j) =

ei = MEM(mi; ai; ti) ^ ej = MEM(mj ; aj ; tj)

^ ti 6= tj ^ mi = mj ^ (ai = WRITE_ aj = WRITE)

^ Li(ti) \ Lj(tj) = ;

For example, in Figure 1, the statement “childThread.
interrupt() ” generates a memory access with locationmain.
childThread , type READ, thread MAIN, and locksetfmain g.
The statement “main.childThread ” generates a memory ac-
cess onmain.childThread with type WRITE, thread CHILD
and lockset;. Therefore IsPotentialLocksetRace will be true for
these two events.

2.4 Lockset-Based Detection
Because the number of races is potentially quadratic in the num-

ber of memory accesses, we cannot report all races, nor would that
be useful in practice. Instead our tool reports one race for each
memory locationm on which at least one potential race is detected.
This simplification creates opportunities for many optimizations.

To check IsPotentialLocksetRace for all access to a given mem-
ory locationm, it suffices to store a set of(a; t; L) tuples with the
access type, thread, and current lockset for each access tom. Since
we only need to detect one race, multiple accesses with identical
(a; t; L) tuples are redundant and only one tuple need be recorded.
Therefore our basic detection algorithm processes a MEM(m;a; t)
event by first checking to see whether the(a; t; L) tuple is already
present form. If it is already present, the new access is ignored.
Otherwise if(a; t; L) forms a potential race with any prior tuple
(ap; tp; Lp) according to IsPotentialLocksetRace, a race is reported
and we stop detecting races onm. Otherwise we add(a; t; L) to
the tuple set form.

In practice we perform many optimizations to improve this al-
gorithm. The space requirements of the tuple set, and the cost of
detecting duplicate and racing tuples, can be significantly reduced
by carefully choosing the representation of the tuple set, but for the
sake of brevity this paper does not describe those choices. Other
optimizations are described below.

3. HAPPENS-BEFORE RACE DETECTION
Unfortunately violations of the lockset hypothesis are not always

programming errors. Programmers can and do write safe multi-
threaded code which mutates shared data without specific locks
protecting the data. One common example is programs which use
channelsto pass objects between threads in the style of CSP [15].
In such programs thread synchronization and mutual exclusion are
accomplished by explicit signaling between threads.

Figure 2 shows an example of object recycling, a common tech-
nique for reducing object allocation and initialization costs in large
programs. Object recycling often leads false positives in a lockset-
based detector. The problem is that thread A and thread B both
accessmyBig without holding locks, and thus the accesses are re-
ported as races by the lockset-based detector. However races are
in fact prevented because exclusive ownership of the BigObject is

169

// THREAD A
BigObject big = new BigObject();
big.init(...);
...
bigPool.recycle(big);

// THREAD B
BigObject myBig = bigPool.removeOne();
myBig.init(...);
...
bigPool.recycle(myBig);

Figure 2: Sharing Objects Between Threads Using Pools

message

E3
E2

E1

Process A Process B

Figure 3: Happens-Before Example

transferred when the object reference itself is transferred between
threads via the object pool.

Happens-before based race detection can take account of inter-
thread signaling both explicit (e.g., using the Java primitivesnotify
andwait) and implicit (e.g., via data structures such as the pool
above). In this section we define Lamport’s happens-before rela-
tion [18] and the (previously known) technique of happens-before
race detection [10] in our framework. We name this approachpure
happens-before detection, to contrast it with thelimited happens-
before detection that our hybrid algorithm actually implements.
The difference between the pure and limited algorithms is described
in Section 4.1.

3.1 The Happens-Before Relation
Thehappens-before relationwas defined by Lamport as a partial

order on events occuring in a distributed system [18]. We transfer
this relation to our setting by treating threads as processes and the
events observed by our race detector as the events occurring in the
system.

The basic idea of the happens-before relation is that a pair of
events(ei; ej) are related if communication between processes al-
lows information to be transmitted fromei to ej . In Figure 3, event
E1 happens-before event E2, but E2 and E3 are unrelated.

Given an event sequenceheii, the happens-before relation! is
the smallest relation satisfying the following conditions:

� If ei andej are events in the same thread, andei comes be-
foreej , theni! j. Formally,

Thread(ei) = Thread(ej) ^ i < j =) i! j

� If ei is the sending of messageg andej is the reception ofg,

theni! j.

ei = SND(g; t1) ^ ej = RCV(g; t2) =) i! j

� Happens-before is transitively closed.

i! j ^ j ! k =) i! k

The happens-before relation is defined over the event indices
i because two occurrences of the same event may have different
happens-before relationships.

Following Lamport we can also say thata ! b means it is pos-
sible fora to causally affectb.

3.2 Thread Messages
The definition above depends on the definition of the set of mes-

sages that can be transmitted between threads. We consider a mes-
sage to be sent from threadt1 to threadt2 whenevert1 takes an
action that later affectst2. One action can affect multiple threads,
and therefore each send may have multiple receivers (or none).

Thread message events capture explicit synchronization between
Java threads, such as that performed by Java’sstart() , join() ,
wait() , notify() and notifyAll() mechanisms. When
a threadt1 starts threadt2, a unique messageg is generated and
two events occur, a SND(g; t1) and a RCV(g; t2). Similarly when
threadt1 calls t2.join() and t2 terminates, events SND(g; t2)
and RCV(g; t1) are generated. Whent1 callsobj.notify() on
an object, we generate an event SND(g; t1), and for all threadst2
waiting onobj (having calledobj.wait()), RCV(g; t2) is gen-
erated.

For full happens-before detection, we need some additional thread
messages to capture thread interactions arising from shared mem-
ory access and locking. When a threadt1 writes to a shared mem-
ory location, we generate a fresh messageg and follow the
MEM(m;WRITE; t1) with a SND(g; t1). Each time a threadt2
subsequently reads or writesm, we generate an event RCV(g; t2)
after the read or write, using theg sent by the most recent writer to
the location. This models the fact that information transmitted by
MEM(m;WRITE; t1) can influence the timing of events following
MEM(m;READ; t2).

Similarly, after a threadt1 releases a lock, we generate SND(g; t1),
and the next threadt2 to acquire the lock first generates RCV(g; t2).
(The first acquisition of a lock does not receive any message.)

Tracking all memory and locking messages is very expensive [10]
and in practice we do not track them; this is discussed further in
section 4.

3.3 Happens-Before Race Detection
In principle happens-before race detection is very simple: we say

that a potential race has occurred if we observe two distinct events
ei and ej that access the same memory location, where at least
one event is a write, and neitheri happens-beforej nor j happens-
beforei, i.e., there is no possible causal relationship orderingi and
j. Formally:

IsPotentialHBRace(i; j) =

^ ei = MEM(mi; ai; ti) ^ ej = MEM(mj ; aj ; tj)

^ ti 6= tj ^ mi = mj ^ (ai = WRITE_ aj = WRITE)

^ :(i! j) ^ :(j ! i)

The happens-before relation can be computed on-line using stan-
dardvector clocks[12, 19], based on Lamport clocks [18]. Each
threadt1 maintains avector clockindexed by thread IDs;t1’s vec-
tor clock’s entry for threadt2 holds a logical timestamp indicating

170

the last event int2 that could have influencedt1. We also assign a
vector clock to each message, which captures the vector clock state
of the sending thread at the time the message was sent. We define
the vector clockVi(t) of threadt at the completion of eventi, and
the vector clockV (g) of messageg, as follows:

V0(t)(t) = 1

V0(t1)(t2) = 0; t1 6= t2

Vi(t)(t) = Vi�1(t)(t) + 1; ei�1 = SND(g; t)

Vi(t1)(t2) = max(Vi�1(t1)(t2); V (g)(t2));

ei = RCV(g; t1) ^ t1 6= t2

Vi(t1)(t2) = Vi�1(t1)(t2); otherwise

V (g) = Vi(t); ei = SND(g; t)

It can be shown thati! j if and only ifVj(tj)(ti) � Vi(ti)(ti)^
i < j, whereti = Thread(ei) andtj = Thread(ej).

Maintaining the vector clocks costsO(jT j) work per message
send and receive, wherejT j is the number of threads in the system
that have ever lived. Vector clocks also requireO(jT j) space for
each active thread and for each sent message which could be re-
ceived in the future (e.g.,per live shared memory location). How-
ever, the cost of actually checking the happens-before relation is
O(1).

Some of the costs can be reduced using clever techniques [10],
but the overhead remains high. Charron-Bost [7] shows that vector
clocks are asymptotically space-optimal for completely character-
izing the happens-before relation in the worst case.

3.4 Example
Consider Figure 1. The only inter-thread happens-before re-

lationships that will be produced are that “globalFlag = 1 ”
happens-before “if (globalFlag) ” and the following state-
ments, and that “childThread.start() ” happens-before
“ChildThread.run() ” and the following statements. There-
fore a happens-before detector will never report a race onglobalFlag ,
but it will report a race between “main.childThread = null ”
and “if (childThread != null) ”.

3.5 Relationship Between Happens-Before De-
tection and Lockset Detection

If a happens-before detector detects a race between two events,
then it is possible to determine feasible alternative thread schedules
where the events happen consecutively in time, in either order (un-
less there are hidden inter-thread dependencies due to the actions of
non-Java code or quirks in the virtual machine). Therefore we can
say that a happens-before detector reports only “real races”. This
is a desirable property for a bug-finding tool1.

In fact, we can show that the races reported by a full happens-
before detector are a subset of the races reported by lockset-based
detection.

THEOREM 1. Letheii be an event sequence. Suppose happens-
before detection reports a race between eventsei andej . We show
that lockset-based detection would also report a race betweenei
andej .

The proof is omitted for the sake of brevity.
However, a full happens-before detector also fails to detect some

real bugs that would be detected by a lockset-based detector. For

1However, not every real race corresponds to a bug; some people
can write correct code that does not depend on the order of accesses
to shared memory. Examples are discussed in section 7.

// THREAD A
globalInt = 7;
synchronized (clockLock) { clock++; }

// THREAD B
synchronized (clockLock) { clock++; }
int x = globalInt;

Figure 4: Race Hidden By Happens-Before Detection

example, consider a program that frequently updates some global
counter, such as in Figure 4. The reads and writes to this counter
induce happens-before relations between events in the threads that
are not truly synchronized, such as the accesses toglobalInt ,
causing this bug to not be revealed by a full happens-before detec-
tor. The core problem is that not all happens-before relationships
correspond to true synchronization.

4. HYBRID RACE DETECTION
Maintaining vector clocks for every shared memory location and

every lock is too expensive in practice. Pure happens-before detec-
tion can also result in a small number of bugs being found, because
too many spurious inter-thread messages are generated. There-
fore we have implemented ahybrid race detectorwhich combines
lockset-based detection with a limited form of happens-before de-
tection.

4.1 Approach
Our approach is to start with a lockset-based detector as previ-

ously described and to add limited happens-before checking. We
record thread messages for the Java synchronization primitives
start() , join() , wait() andnotify() . We also provide
the ability for the user to mark arbitrary Java methods,e.g.,enqueue
anddequeue , as corresponding to thread message sends and re-
ceives. However we do not create thread messages corresponding
to shared memory write/read or write/write pairs, nor do we cre-
ate thread messages for lock release/acquire pairs. In practice this
means we deal with a very small number of thread messages and
the overhead of maintaining the vector clocks is negligible. This
limited happens-before relation, denoted by_!, is only a subset of
the true happens-before relation, but we have found that it is never-
theless very useful for weeding out false positives.

4.2 Hybrid Detection Check
The check we perform is simply the conjunction of the lockset

detection check and a limited happens-before detection check:

IsPotentialHybridRace(i; j) =

^ ei = MEM(mi; ai; ti) ^ ej = MEM(mj ; aj ; tj)

^ ti 6= tj ^mi = mj ^ (ai = WRITE_ aj = WRITE)

^ Li(ti) \ Lj(tj) = ; ^ :(i _!j) ^ :(j _!i)

This can be implemented by starting with a regular lockset de-
tector implementation and adding thread message event tracking
using vector clocks. We maintain a full vector clock for each ac-
tive thread and for each sent message that could yet be recieved
by another thread. We record for each memory locationm a set
of (a; t; L; v) tuples corresponding to the accessesei to m, where
ei = MEM(m; a; t), L = Li(t), andv is the thread’s timestamp
for itself,v = Vi(t)(t). We can then compute IsPotentialHybridRace
between any old eventei and the current eventej (using the vector
clock for the current thread,Vj(tj)).

171

Limiting the number of thread messages means that we perform
few vector clock updates, which are relatively expensive. We per-
form many happens-before checks, but they are cheap. Further-
more we do not need to record an entire vector clock for each stored
event; a single element suffices to check the happens-before rela-
tion. We only need full vector clocks for each active thread and for
each pending message.

4.3 Example
Consider figure 1. The lockset detector reports races on both

globalFlag andchildThread , but the race onglobalThread
is suppressed because even our limited happens-before detector can
prove thatglobalFlag = 1 happens-beforeif (globalFlag) .
(The ordering is induced by the call tochildThread.start()).

5. EFFICIENT HYBRID DETECTION
It is impractical to store a record of every access ever performed

to a shared memory location, let alone compare each access to ev-
ery past access to the same location. The hybrid race detector needs
optimizations to make it practical. In this section we describe some
refinements to the race detection algorithm that dramatically reduce
the time and space requirements. These refinements generalize and
improve on previous work [9]. We describe theoversized-lockset
optimization which exploits the fact that locksets are usually all
small. We also extend the previously describedlockset-subsetcon-
dition to take account of the fact that we are now using happens-
before detection as well as lockset detection.

5.1 Redundant Events
Suppose we have recorded a set of past accessesei to a particular

memory locationm. Suppose a new eventen arrives. Suppose
further that we can prove that for every possible evente0, if e0 races
with en thene0 must also race with one of the eventsei; 0 < i < n.
Thenen is redundantand it can be ignored without affecting the
possibility of detecting a race on locationm.

We employ two heuristics to efficiently detect this condition.

5.2 The Lockset-Subset Condition
If the thread, access type, and timestamp of a previous event

ei match those of a new eventen, andei’s lockset is a subset of
the locks foren, then the new event is redundant according to the
theorem below.

IsRedundantLocksetSubset(i; n) =

ei = MEM(m;ai; ti) ^ en = MEM(m;an; tn)

^ (ai = WRITE_ ai = an) ^ ti = tn

^ Li(ti) � Ln(tn) ^ Vi(ti)(ti) = Vn(tn)(tn)

This condition corresponds to the previously describedweaker-
than relation [9], extended to account for the presence of happens-
before detection by checking to make sure that the timestamps for
the thread performing the old and new events are the same. As a
special case, the condition captures repeated accesses tom by the
same thread with the same type, lockset, and timestamp.

Here we exploit the fact that our vector clocks only increment
a thread’s timestamp after it has sent a message; because we have
limited the thread messages, we can obtain many events with the
same timestamp. (Some other vector clock formalisms increment
the thread’s timestamp at every event.)

This check is implemented efficiently using lock-labelled tries
to represent the per-memory-location data structures, similar to the
tries used in previous work [9].

5.3 Redundancy of Lockset-Subset

THEOREM 2. Suppose IsRedundantLocksetSubset(i; n), i < n,
and IsPotentialHybridRace(k; n). Then IsPotentialHybridRace(k; i).

The proof is omitted for brevity.

5.4 The Oversized Lockset Condition
Results below show that the lockset-subset heuristic is very ef-

fective, but it is not effective enough. For example, we observe
many unsynchronized read accesses to “read only” data,i.e., data
initialized before the starting of child threads and not modified
thereafter. These accesses are performed while holding a variety
of locks which happen to be unrelated to the data. The locksets are
often disjoint so the lockset-subset heuristic does not work. We end
up having to accumulate information about very many accesses,
just so that if a thread ever writes to the data, we know to report a
race.

Suppose we have observed readse1, e2, e3 of a datum by a thread
with locksetsfag, fbg, andfcg. Another such evente4 arrives
with locksetfdg. Now suppose that some future event races with
e4 but does not race withe1, e2 or e3. That event’s lockset must
intersect the locksets ofe1, e2, e3 (and not intersect the lockset
of e4). Therefore the future event’s lockset must include at least
fa; b; cg. In general, as we collect more non-racing, non-redundant
accesses, for a new event to not be redundant the size of the lockset
of future racing events must be very large. This is unlikely because
in practice we observe that the number of locks held by a thread at
any one time is very small.

Therefore suppose we knowN , ana priori bound on the number
of locks a thread can hold at one time:8i; t:jLi(t)j � N . We have
the followingoversized-locksetredundancy check, this time over a
set of event indices instead of a single event index:

IsRedundantLocksetOversized(I; n) =

en = MEM(m;an; t)

^ (8i 2 I: ei = MEM(m; ai; t) ^ (ai = WRITE_ ai = an))

^ (8i 2 I: Vi(t)(t) = Vn(t)(t))

^ jMinHittingSet(f Li(t)� Ln(t) j i 2 I g)j > N

Here MinHittingSet(C) computes a smallest setH such thatH
intersects every element ofC. (We assumeC does not contain
the empty set. An empty set inC would correspond toLi(t) �
Ln(t) = ;, i.e.,Li(t) � Ln(t), in which case redundancy would
have already been detected by IsRedundantLocksetSubset.) The
idea is that for nonredundancy, a future event must have a lockset
which does not intersect the lockset aten but does intersect the
locksets of the prior events. MinHittingSet computes a minimum-
sized such lockset.

Here we may not be able to prove thaten is redundant with re-
spect to any singleei, but we can prove it is redundant with respect
to a set ofeis. This is a significant generalization of previous forms
of redundancy checking [9, 11].

Unfortunately computingjMinHittingSetj is NP-complete [2].
Therefore we approximate it with a heuristic. Suppose a classC

of setsc1; : : : ; cn is given. Define

S(0) = ;

S(i) = S(i� 1) [fcig; 8c 2 S(i� 1): c \ ci = ;

S(i) = S(i� 1); otherwise

ThenjMinHittingSet(C)j � jS(n)j. The proof is straightforward:

172

I nst r ument at i on
Eng i ne

Run i n J VM

Memor y Acc ess St r eam
Th r ead
Locali t y
Ch eck

Lock set− Subset
Redund ancy

Ch eck

Access
Store

Instrumented Bytecode Hybrid
Check

Simple
Lockset
Check

Java Program

Report Results

Static
Dynamic

Detailed Mode

Simple Mode

Vector Clock
Store

Inter−thread Messages

 Locks Held

Simple
Store

Oversized−Lockset
Redundancy

Check

Figure 5: Detector Architecture

the sets inS(n) are mutually disjoint, and therefore any hitting set
must include an element from each set inS(n).

Section 6 describes how we usejSj to boundjMinHittingSet(C)j,
and, thereby, efficiently compute IsRedundantLocksetOversized(I; n).

Note that for any setL and set of setsC,

jMinHittingSet(C)j � jMinHittingSet(f c� L j c 2 Cg)j)

Any hitting set for the right hand side is also a hitting set for the
left hand side.

5.5 Oversized-lockset Implementation
We determine a value for the maximum lockset size,N , by run-

ning the program and observing the size of the largest lockset ob-
tained. (This is done during the “simple mode” run described in
section 6.) Of course this is not guaranteed to be correct for future
runs, but ifN is exceeded in a future run then we detect the viola-
tion, increaseN , and rerun the program. In pratice this is uncom-
mon, especially if one adds a small “safety margin” to the observed
value ofN . Alternatively one could use static analysis to find a
bound forN (although static analysis may not be able to provide a
bound in the presence of recursive synchronized methods).

We check IsRedundantLocksetOversized using the same lock-
labelled tries as above. The details are ommitted for brevity.

5.6 Redundancy of Oversized-Lockset

THEOREM 3. Suppose IsRedundantLocksetOversized(I; n),
8i 2 I: i < n, and IsPotentialHybridRace(k; n).
Then9i 2 I: IsPotentialHybridRace(k; i).

The proof is omitted for brevity.

6. IMPLEMENTATION
Figure 5 shows the overall architecture of our approach.

6.1 Two-Phase Mode Selection
The overhead of detailed detection as described by

IsPotentialHybridRace is generally too high to apply it to every
memory location in a program. Therefore we first run the race de-
tector in a low-overhead “simple” mode which is much less accu-
rate but much more efficent than the detailed mode. We identify
all Java fields which incur races in this mode. (Our detector does
not attempt to detect races on elements of arrays.) Then we rerun
the detector in detailed mode, instrumenting accesses to only these
“race-prone” fields. The two program runs are not guaranteed to

behave identically, but this does not seem to be a problem in prac-
tice, perhaps because in both phases we detect potential races rather
than races which actually occurred.

Simple mode is not necessary to our approach. We could have
the programmer select fields for detailed analysis, or to run the pro-
gram several times, selecting a different set of fields for detailed
analysis each time, until all fields have been checked. However, it
is an effective way to make the analysis tractable.

Our detector is the first race detection tool to apply two dynamic
phases in this way. The developers of Eraser investigated a similar
technique but were unable to use it effectively, because at the binary
level it was too difficult to reliably identify the field being accessed
by an instruction [6].

6.2 Simple Mode
The simple mode behaves almost identically to the lockset-based

detector Eraser [22]. Given a set of accessesei; i 2 I to location
m, we report a race if

IsPotentialSimpleRace(I) =

(8i:9a; t: ei = (m; a; t)) ^ (9i; t: ei = (m;WRITE; t))

^

�����
[

i2I

fThread(ei)g

����� > 1 ^
\

i2I

Li(Thread(ei)) = ;

Thus we report a race if we see at least one write, not all accesses
are performed by the same thread, and there is no lock that is held
by all accesses. This is easy to compute efficiently online as ele-
ments are added toI.

6.3 Thread Locality Check
We speed up simple mode even more by applying athread local-

ity check to objects: we only start adding accesses toI once we see
that the object has been accessed by more than one thread. Most
objects in Java programs arethread-local, only ever accessed by a
single thread. This can cause us to miss races in simple mode, for
example when an object is accessed first by one thread, then by an-
other thread, and never again, and the two accesses race. However,
this check is very important for space and time efficiency and most
race detectors use it [22, 21, 9]. Results below show that the thread
locality check introduces few additional false negatives.

We add a field to each object in which we store the object’sown-
ing thread, the thread that has performed all accesses to the object
so far. The field is initialized to “null” to indicate that the object has
not been accessed. We store a special value “shared” if there is no
owning thread. At every field access we check to see if the owning
thread is the current thread, and if it is, we ignore the event. If the
field is “null”, we set the owning thread to the current thread, other-
wise we continue with simple race detection. No synchronization
is performed around the loading and storing of the owner thread
field, so it is subject to races and could lead to real races being
missed. We did not observe this happening in repeated runs of our
experiments.

We need per-thread data, such as the thread’s current lockset (and
in detailed mode, its vector clock). Therefore instead of storing a
reference to the owning thread itself, we store a reference to our
per-thread data for the owning thread (which includes a reference
to the actual thread object).

6.4 Instrumentation
We insert probes into Java programs by modifying their byte-

codes. This allows us to analyze programs for which source is not
available. Probes call methods in our race detector, which is also
written in Java and runs alongside the user program in the same

173

/*BEFORE*/ class Example {
Object f;
synchronized void setF(Object p) {

this.f = p;
} }

/*AFTER*/ class Example {
Object f, _detector_state;
final static int FIELD_ID_F = 1;
synchronized void setF(Object p) {

ThreadInfo current =
ThreadInfo.getCurrentThreadInfo();

Detector.acquiredLock(this, current);
try {
this.f = p;
// thread locality check
if (this._detector_state != current) {

this._detector_state =
Detector.performedWrite(this,
FIELD_ID_F, this._detector_state,
current);

}
Detector.releasedLock(this, current);

} catch (Throwable t) {
Detector.releasedLock(this, current);
throw t;

} } }

Figure 6: Instrumented Code Example

virtual machine.
Figure 6 shows Java code equivalent to the code produced by our

instrumentation for simple mode.
Instrumentation of memory accesses and lock acquisitions or re-

leases is inserted after the corresponding bytecode instructions, to
ensure that if the instruction throws an exception, then we do not
record an event that did not happen. To record the locking behavior
of synchronized methods, we insert code at the start of the method
to record lock acquisition, and we insert code before every return
instruction to record lock release. We also add a “catch-all” excep-
tion handler over the whole method to record lock release in that
case.

We instrument calls toThread.start, join, notify and
wait at each call site, because these are native methods whose
code we cannot modify.

We also attempt to automatically identify some “shared channel”
data structures. Most such structures sometimes block, and in Java,
this is usually implemented by usingnotify andwait. When
we see a class with methods callingnotify or wait, then we
instrument all lock acquisitions and releases in that class to send
a thread message when a lock is released, and to receive thread
messages when a lock is acquired (if a message is pending for that
lock).

In simple mode, our instrumentation engine inlines each thread
locality check into the user code performing the access. Other than
that, each inserted code snippet simply calls a method in our race
detector, passing in all relevant parameters.

The race detection state passed in is an object containing all the
per-object state maintained by the race detector. This is normally
an array indexed by field identifier since the race detector actually
keeps state for each memory location. The instrumentation stores a
reference to this state in an added field in the accessed object itself.

No synchronization is performed around the loading and storing

of the race detection state. Our instrumentation is carefully engi-
neered so that races in updates to race detection state can only lead
to missed races (false negatives). We did not observe this happen-
ing over multiple runs of our experiments.

6.5 Handling Class Initializers
Java class initialization performs rather complex synchronization

[14]. In particular, while a thread is initializing a class, any other
thread attempting to access the class will block until initialization
is complete. Thus, while a thread is initializing a classC, accesses
it performs to static fields ofC cannot race with any other accesses
to those fields. Many programs rely on this behavior. We simply
do not instrument accesses to static fields ofC by C ’s initializer;
this eliminates most false race reports involving class initializers.

6.6 Debugging Support
In large programs it can be difficult to understand the behavior

that leads to a potential data race. Our detailed mode assists by
reporting, for each of the two accesses deemed to be a potential
race, the name of the thread performing the access, the type of the
access, the set of locks held, and a full stack trace for the thread.

Collecting and storing a full stack trace is very expensive, espe-
cially for events that might not even contribute to races in the fu-
ture, and therefore previous race detection tools have not reported
stack traces for both events in a race. However the information is
invaluable, particularly because in Java lock acquisition is lexically
scoped, and therefore walking the stack shows where every held
lock was acquired. The redundancy optimizations described above
are critical to making stack trace collection practical, because we
do not need to collect stack traces (or any other information) for
redundant events.

Our race detector reports a potential race as soon as the second
racing event occurs. Therefore it is easy to interrupt the program
and activate a debugger to inspect the full program state at the sec-
ond event.

6.7 Limitations
Our tool misses some events. It does not capture field accesses

performed by native code or by reflection, nor does it capture lock
acquisition or release by native code. Furthermore, we do not cur-
rently instrument Java library code.

Lost lock acquisitions can lead to false positives. Lost field ac-
cesses can lead to false negatives. In practice we have not noticed
any problems.

7. EXPERIMENTAL RESULTS
Here we present evidence showing that our tool achieves very

precise results with reasonable slowdown. We also show the effects
of our different optimizations.

7.1 Benchmarks
We applied the tool to the programs shown in table 1, drawn from

a variety of sources. We do not know the exact number of source
lines fortomcat andresin, because they include components
for which source is not available. The “Threads” column shows the
number of application threads created. The “MaxLocks” column
shows the maximum number of locks held at once by an application
thread.

We modifiedelevator slightly to force it to terminate when
the simulation finishes (normally it just hangs).

The originalspecjbb runs for a fixed length of time and re-
ports the number of transactions processed per second. We modi-
fiedspecjbb to process a fixed number of transactions (100,000)

174

Example Lines Threads MaxLocks Description
elevator 523 3 1 A real-time discrete event simulator from ETH Zurich [21]
hedc 29948 7 3 A Web-crawler application kernel developed at ETH [21],
tsp 706 3 1 Traveling Salesman Problem solver from ETH [21]
sor2 17742 5 1 Modified Successive Over-Relaxation benchmark from ETH [21]
mtrt 3751 3 2 MultiThreaded Ray Tracer from SPECJVM98 [24]
moldyn 1291 4 1 Java Grande Forum molecular dynamics benchmark
montecarlo 3557 4 1 Java Grande Forum Monte Carlo simulation benchmark
raytracer 1859 4 1 Java Grande Forum raytracer benchmark
specjbb 30078 9 5 SPEC Java Business Benchmark 2000, based on TPC-C [25]
resin > 67536 13 7 Web application server (v2.1.2) from Caucho Technology
tomcat > 54144 21 10 Web application server (v4.0.4) from Apache Foundation

Table 1: Benchmark programs and their characteristics

Example Unmodified Simple Detailed Detailed-NoHB Detailed-NoOversized Detailed-NoOpts
tsp 3.03s 16.87 18.56 (2.50) 13.74 (2.41) 22.39 (2.57) — (2.59)
sor2 0.62s 5.68 5.15 (1.17) 5.13 (1.11) 5.13 (1.16) 54.66 (1.16)
mtrt 5.56s 4.23 86.38 (1.08) 85.63 (1.07) 84.97 (1.10) — (1.13)
moldyn 26.42s 2.54 43.94 (1.54) 39.72 (1.50) 44.41 (1.50) — (1.50)
montecarlo 9.74s 1.40 5.39 (1.04) 12.46 (1.03) 5.32 (1.03) — (1.03)
raytracer 7.96s 26.89 189.75 (1.04) 163.80 (1.02) 187.11 (1.02) — (1.05)
specjbb 31.81s 2.94 — (2.21) — (1.31) — (—) — (6.23)
resin 78.46s 1.91 — (2.06) — (3.74) — (2.02) — (9.42)
tomcat 24.08s 2.68 5.37 (1.26) 11.47 (1.30) 5.65 (1.22) 42.65 (1.15)

Table 2: Runtime Performance

and report the time taken. We configuredspecjbb to use 8 ware-
houses only.

To benchmarkresin andtomcat, we configured them with
their respective default Web sites and Web application examples,
then used thewget tool to crawl the default site and retrieve a list
of accessible URLs. Then we modified the Web servers to add a
“harness” thread which scans through the list ten times, loading
each URL in turn. Each server’s persistent caches were cleared at
the end of each benchmark run. All the other benchmarks come
with their own input data sets; we used the “small” data sets for the
Java Grande Forum benchmarks.

7.2 Performance
Table 2 shows the basic runtime overhead of our tool.elevator

andhedc are not CPU-bound and are therefore omitted. We re-
port wall-clock times for the best run out of three consecutive runs,
restarting the Java virtual machine for each run. The tests were run
on a 2GHz Pentium 4 machine with 1.5GB of memory, using the
IBM JDK version 1.3.1, with initial and maximum heap sizes set
to 1GB. The JIT compiler was enabled for all tests. Runs taking
longer than 1800s were terminated and are represented by dashes.

“Unmodified” reports the running time of the program without
any instrumentation, in seconds. The other times are all reported
as a ratio of the unmodified time. “Simple” reports the running
time with “simple mode” detection enabled. “Detailed” reports
the running time with “detailed mode” detection enabled for all
fields; the number in parentheses is the time when detection is
enabled only for the fields which the Simple run identifies as in-
curring races. “Detailed-NoHB” reports the running times for de-
tailed mode with happens-before checking disabled. “Detailed-
NoOversized” reports the running times for detailed mode with
the oversized-lockset optimization disabled. “Detailed-NoOpts”
reports the running time with both lockset-subset and oversized-

lockset disabled.
Simple mode applied to all fields usually has tolerable overhead.

tsp andraytracer incur high overhead, probably because our
instrumentation is causing the JIT to not properly optimize these
numeric codes. The overhead of Simple could be reduced consid-
erably using a variety of static optimization techniques [9], such as
escape analysis.

Detailed mode applied to all fields usually incurs unacceptable
overhead. However, applied only to the fields selected by Simple,
the overhead is quite low. The overhead for all-fields detailed mode
is, however, comparable to overheads reported for pure happens-
before detectors (especially considering our detector records stack
traces and other information for easy diagnosis) [10].

The cost of performing the happens-before checks is usually very
low. Often, removing the happens-before checks even slows down
the program, because many more races must be reported. (Race
report files were as large as 25MB for a single run oftomcat.)

The oversized-lockset optimization makes no difference in many
programs but it is essential forspecjbb.

The lockset-subset optimization is essential for analyzing all fields
and even for analyzing selected fields inspecjbb andresin.

7.3 Accuracy
Table 3 records the number of distinct fields on which we detect

races in a variety of scenarios.
“Fields” gives the total number of fields present in the bench-

mark code. (The number of fields fortomcat andhedc is mis-
leading because much of code of these applications is not exercised
by our benchmark harness.) “Simple” reports the number of racing
fields found in simple mode. “Detailed-All” reports the number of
racing fields found in detailed mode applied to all fields. “Detailed”
reports the number of racing fields found in detailed mode applied
only to the fields selected by “Simple”.

175

Example Fields Sim- Detailed Detailed Detailed
ple -All -NoHB

elevator 19 0 0 0 0
hedc 546 5 4–0–0 4–0–0 3–0–1
tsp 29 3 1–0–2 1–0–2 0–0–2
sor2 220 0 0 0 0
mtrt 413 13 2–3–2 2–3–0 2–2–7
moldyn 254 0 0 0 0
montecarlo 254 1 0–1–0 0–1–0 0–1–0
raytracer 254 1 1–0–0 1–0–0 0
specjbb 703 5 — 0–1–1 0–1–1
resin 9289 193 — 1–18–57 1–25–152
tomcat 8908 22 5–7–39 3–6–13 2–6–17

Table 3: Number of Fields With Dataraces Reported (classified
as Bugs–Benign–False)

“Detailed-NoHB” is as for “Detailed”, except that happens-before
checking is turned off and a thread-locality check is used, as in pre-
vious work [9, 21]. In Figure1, the thread locality check would pre-
vent the detector from recording the writeglobalFlag = 1;
because at this pointglobalFlag is local to the main thread. The
thread locality check prevents reporting false races for many com-
mon cases where a memory location is initialized by one thread and
then read by another newly started thread without locking. Thus
“Detailed-NoHB” represents the results obtained by a state-of-the-
art purely lockset-based detector.

Each field count is broken down into three categories:

� Bugs: the races reported on the field lead to observable vio-
lations of correctness.

� Benign: the races reported on the field can occur in practice
but cannot affect correctness, either because the code is de-
signed to be correct in the presence of such races, or the val-
ues affected by the races do not lead to observable violations
of correctness.

� False: the races reported on the field cannot occur in prac-
tice because the program has implicit synchronization not
observed by the race detector.

These classifications were performed by inspection of the code and
are subjective in some cases, given that complete correctness spec-
ifications are not available for these programs.

When multiple races are reported on a field (belonging to differ-
ent objects), we classify the field with the most serious classifica-
tion of the races (i.e., the field is a bug if any reported race on it is
a bug, etc).

The “Detailed-All” and “Detailed” results show that our detec-
tor reports few false races for most programs, and even for the
large programs the number of false races does not overwhelm the
true races. Comparing the two columns shows that using “Simple”
mode to select fields for detailed analysis is effective: not only does
it improve performance, but it also improves the ratio of real races
to false races reported.

The “NoHB” results show that happens-before checking reduces
the false positive rate and increases the number of bugs reported.
This is partly because using the thread locality check in a lockset-
based detector can mask bugs because accesses performed while an
object is thread-local will be completely ignored. Also, sometimes
the first race reported for a particular field by the lockset-based de-
tector is a false race, but the hybrid detector eliminates that false
positive and goes on to report a true race for the same field.

7.4 Bugs Found
We found bugs in many programs, even well-tested, much-used

applications such astomcat. The bugs are diverse and it seems
hard to identify the “cause” of each bug, but in most cases it seems
the programmer simply did not recognize the possibility of concur-
rent access (rather than recognizing the possibility of concurrency
but failing to deal with it correctly.)

The severity of the bugs found ranges from potential aborts (e.g.,
hedc) and hangs (e.g.,resin) to data corruption (e.g.,tomcat,
mtrt), wrong answers (e.g.,tsp), and minor violations of re-
source constraints (e.g.,tomcat).

7.5 Benign Races
Our benchmarks contain many pieces of code which incur data

races without necessarily compromising correctness.

� Constant writes: Some programs write to a shared memory
location multiple times without synchronization, where the
value written is constant. Such writes do not affect the be-
havior of the program. Future detectors should ignore write
events when the value written is the same as the current value.

� Caching: Caches occur frequently in programs. Some caches
have weak semantics: adding two copies of the same object
to a cache, or failing to find an object in a cache, need not
be treated as incorrect. Some programmers exploit this and
improve performance by carefully removing some synchro-
nization in cache operations.

� Lazy initialization: Some programs test to see if a memory
location has been initialized, and if it has not, initialize the
location with some predictable value. This pattern can be
implemented without synchronization.

� Asynchronous notification: Many programs update a shared
memory location to asynchronously signal other threads, which
periodically poll the location.

� Timestamps: Some programs maintain global counters or times-
tamps which are accessed without synchronization. Threads
which read the timestamps rely on observing a consistently
non-decreasing value and observing updates at some mini-
mum rate.

� Statistics: Many programs keep internal statistics such as
pool sizes, bytes transferred, estimated queue delay, etc, to
aid performance decisions. Often, incorrect values for these
statistics will not affect correctness, and small deviations from
the true value have no noticeable effect. Such statistics are
often read and updated without synchronization.

� Unused: Some values that are incorrectly updated are simply
never used by the program.

� Double-checked locking: This pattern is especially popular
in tomcat: a boolean test is copied out of a synchronized
block to try to avoid unnecessary synchronization. For ex-
ample:

if (e) { synchronized (...) { if (e) ...; } }

Many of these patterns are actuallynot necessarily safe accord-
ing to the Java memory model. In principle, most of the double-
checked locking, lazy initialization, constant writes and asynchronous
notification in these benchmarks could cause incorrect behavior in

176

the presence of aggressive multiprocessor memory systems or ag-
gressive optimizing compilers [3], and are arguably bugs. We have
classified these races as benign because they are safe in typical Java
environments.

7.6 False Races
Certain kinds of race-free code are not yet identified as such by

our detector.

� Shared channels: Some programs use shared data structures
as channels to pass data between threads. Access to the chan-
nels is synchronized but access to the transmitted data need
not be. We can handle these programs by manually identify-
ing channel structures and associating inter-thread messages
with operations on those structures. These are very common
in tomcat andresin.

� Data ordering: Some programs use data flags to signal when
a shared location may be safely read from or written to. Ac-
cesses to the flags are synchronized but accesses to the shared
location need not be. We can handle these cases by associat-
ing inter-thread messages with accesses to the data flags.

� Finalizers: When an object is no longer reachable from heap
roots, the Java virtual machine invokes itsfinalizemethod
in a special “finalizer” thread. Some finalizer code guaran-
tees race-freedom by relying on the fact that there are no out-
standing references to the finalized object. In general the race
detector would have to perform some analysis of heap con-
nectivity to capture such constraints.

� Library and native code: Synchronization performed by li-
brary and native code is not observed by our race detector.
This contributes to a few false races where such synchro-
nization prevents races from occurring in the user’s program.

The vast majority of the false races reported are caused by shared
channels. In particularresin andtomcat frequently “recycle”
objects by putting unused objects into free lists; when a new object
is needed it is removed from an appropriate free list, if available,
rather than being freshly allocated. These free lists act as channels
passing objects from one thread to another. Manually adding a few
annotations to indicate that the use of object pools should induce
happens-before edges eliminates almost all the false races. Auto-
matic, low-overhead detection of shared channels and data ordering
remains an open problem.

8. RELATED WORK
Past research on race detection can be classified asahead-of-

time, on-the-fly, or post-mortem. These approaches offer different
trade-offs alongease-of-use, precision, efficiency, andcoveragedi-
mensions.

Ahead-of-time race detection is usually performed instatic data
race analysistools which yield high coverage by considering the
space of all possible program executions and identifying data races
that might occur in any one of them. Flanagan and Freund’s race
detection tool is a static tool for Java [13] which tracks synchroniza-
tion using extended type inference and checking. Guava is a dialect
of Java that statically disallows races by preventing concurrent ac-
cesses to shared data [4]. Only instances of classes belonging to the
class categorycalledmonitor can be shared by multiple threads.
By serializing all accesses to fields or methods of the same shared
data, Guava can prevent races. Boyapati and Rinard propose a sys-
tem of type annotations for Java that ensures a well-typed program

is race-free and allows the programmer to write a generic class and
subclass it with different protection mechanisms [5].

Warlock is an annotation-based static race detection tool for ANSI
C programs [23], which also supports lock-based synchronization.
Aiken and Gay’s work statically detects data races in SPMD pro-
grams [1]. Since SPMD programs employ barrier-style synchro-
nizations, they do not track locks held at each statement.

The key advantage of dynamic analysis approaches such as on-
the-fly and post-mortem race detection is the precision of the re-
sults, but this often comes with a high efficiency cost. A dynamic
approach also has more limited coverage than a static approach be-
cause it only examines a single dynamic execution. (However, most
dynamic race detectors improve coverage by considering alternate
orderings of synchronization operations that are consistent with the
actual events observed in the original program execution.)

Eraser [22] is a well-known lockset-based race detector. Eraser
enforces the constraint that each shared memory location is pro-
tected by a unique lock throughout an execution. Our lockset check
is more flexible than Eraser’s and, in conjunction with our happens-
before checking, our approach is more accurate than Eraser’s. Our
thread locality check can be traced back to Eraser’s ownership model.
Eraser works independently of the input source language by instru-
menting binary code, but its runtime overhead is in the range of
10� to 30�.

Praun and Gross’sobject race detection[21] for Java improved
on Eraser’s performance by applying escape analysis to filter out
non-racing statements and by detecting races at the object level in-
stead of at the level of each memory location (their overhead ranges
from 16% to 129% on their three benchmarks). However, their
coarser granularity of race detection leads to the reporting of many
false races.

TRaDe [10] is a state-of-the-art pure happens-before detector for
Java. TRaDe adds a runtime overhead ranging from 4� to 15� [10]
compared to an interpreter. Since JIT compilers usually speed up
programs by an order of magnitude, TRaDe’s overhead for a com-
piled program would be considerable. Unfortunately many of the
techniques we use to improve performance, particularly the use of
Simple mode to select fields for detailed analysis, would not help
much with TRaDe because it would still need to track an enormous
number of inter-thread messages.

Dinning and Schonberg introduced the idea of detecting races
based both on locksets and the happens-before relation [11]. They
also describe an optimization similar to our lockset-subset opti-
mization. They do not appear to have implemented their algorithm.

Cheng et al. [8] combined lockset-based detection with ordering
information derived from the “dag” execution model of the Cilk
parallel programming language. Their ordering information can be
thought of as a limited happens-before relation. They only present
results for small Cilk programs and their algorithm does not handle
the less structured parallelism of Java programs.

Our previous work was based on locksets, but also employed
the happens-before relation in a limited fashion by using locks and
a thread locality check to simulate synchronization performed by
start() andjoin() [9]. This work improves on that work
by eliminating the need for whole-program static analysis and ob-
taining efficiency by adding “Simple” mode and performing two
passes. We also improve accuracy by adding first-class happens-
before checking, and improve usability by reporting stack traces
for both events in a race. However, our new tool could still benefit
from some of the static optimization techniques used in the previ-
ous system.

177

9. CONCLUSIONS AND FUTURE WORK
We have shown that by combining the two techniques of lockset-

based and happens-before-based detection, and by using lockset-
based detection alone to select fields for analysis, we obtain a de-
tector with better accuracy than previous lockset-based detectors
and with significantly better performance than previously studied
happens-before detectors. We have also formalized race detec-
tion and proved the safety both of previously known optimizations
and new optimizations in the combined happens-before and lock-
set framework. Our results also represent a major improvement
in scalability over previously reported efficient race detectors [9,
21]; tomcat andresin are an order of magnitude larger than
the benchmarks used with those detectors.

The analysis of our results also reveals interesting properties of
our benchmark programs. Many of the races found in real programs
are benign, probably even intentional, and do not affect correctness
— if one assumes a somewhat stricter memory model than Java
actually promises.

In this work we have not taken advantage of any static analysis or
optimizations to reduce overhead (a strategy which contributed to
our scalability improvement). A clear direction for future work is
to apply previously known or new scalable static analyses to reduce
amount of instrumentation required, especially in the first “Simple
mode” pass.

Perhaps the most useful feature of the happens-before checking
we have introduced is to allow easy modelling of arbitrary syn-
chronization constraints between threads. In the future we need to
exploit this by automatically identifying and modelling the use of
shared channels. It would also be helpful to automatically recog-
nize benign data races.

Acknowledgements
We would like to thank Dan Pelleg and the CMU zephyr commu-
nity for identifying the minimum hitting set problem, Darko Mari-
nov for helpful comments on the paper, and Mark Christiaens and
Christof von Praun for helping us find benchmark programs and for
sharing their results and insights with us.

10. REFERENCES
[1] A. Aiken and D. Gay. Barrier inference. InProceedings of

the 25th Symposium on Principles of Programming
Languages (POPL), pages 342–354, January 1998.

[2] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving
reductions among convex optimization problems.Journal of
Computer System Sciences, 21(1):136–153, Aug. 1980.

[3] D. Bacon, J. Bloch, J. Bogda, C. Click, P. Haahr, D. Lea,
T. May, J.-W. Maessen, J. D. Mitchell, K. Nilsen, B. Pugh,
and E. G. Sirer. The ”double-checked locking is broken”
declaration.
http://www.cs.umd.edu/ pugh/java/memoryModel/
DoubleCheckedLocking.html.

[4] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect
of java without data races. InACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2000.

[5] C. Boyapati and M. Rinard. A parameterized type system for
race-free java programs. InACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2001.

[6] M. Burrows. Personal communication.
[7] B. Charron-Bost. Concerning the size of logical clocks in

distributed systems.Information Processing Letters, 39(1),
July 1991.

[8] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting data races in Cilk programs that use
locks.Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures, 1998.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise data race detection
for object oriented programs. InProceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 285–297, June 2002.

[10] M. Christiaens and K. De Bosschere. TRaDe, a topological
approach to on-the-fly race detection in java programs.
Proceedings of the Java Virtual Machine Rsearch and
Technology Symposium (JVM’01), April 2001.

[11] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections.Proceedings of the
ACM/ONR Workshop on Parallel and Distributed
Debugging, published in ACM SIGPLAN Notices,
26(12):85–96, 1991.

[12] C. J. Fidge. Timestamp in message passing systems that
preserves partial ordering. InProceedings of the 11th
Australian Computing Conference, pages 56–66, 1988.

[13] C. Flanagan and S. N. Freund. Type-based race detection for
java. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 219–232, June 2000.

[14] J. Gosling, B. Joy, and G. Steele.The Java(TM) Language
Specification. Addison-Wesley, 1996.

[15] C. Hoare.Communicating Sequential Processes. Prentice
Hall International Series in Computer Science. Prentice Hall,
1985.

[16] KL Group, 260 King Street East, Toronto, Ontario, Canada.
Getting Started with JProbe.

[17] Kuck & Associates, Inc., 1906 Fox Drive, Champaign, IL
61820-7345, USA. AssureJ User’s Manual, 2.0 Edition,
March 1999.

[18] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[19] F. Mattern. Virtual time and global states of distributed
systems. InProceedings of the Parallel and Distributed
Algorithms Conference, pages 215–226. Elsevier Science,
1988.

[20] R. H. Netzer and B. P. Miller. What are race conditions?
some issues and formalizations.ACM Letters on
Programming Languages and Systems, 1(1):74–88, Mar.
1992.

[21] C. v. Praun and T. Gross. Object race detection. InACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, 2001.

[22] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for
multi-threaded programs.ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[23] N. Sterling. Warlock: A static data race analysis tool. In
USENIX Winter Technical Conference, pages 97–106, 1993.

[24] The Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks. http://www.spec.org/osg/jvm98/, 1998.

[25] The Standard Performance Evaluation Corporation. SPEC
JBB 2000. http://www.spec.org/osg/jbb2000/, 2000.

178

