

DM6420 Driver for Linux

User’s Manual

Version 2.01.xx

SWM-640010014

rev C

IISSOO99000011 aanndd AASS99110000 CCeerrttiiffiieedd

DM6420 Driver for Linux

ii

RTD Embedded Technologies, INC.

103 Innovation Blvd.

State College, PA 16803-0906

Phone: +1-814-234-8087

FAX: +1-814-234-5218

E-mail

sales@rtd.com

techsupport@rtd.com

web site

http://www.rtd.com

DM6420 Driver for Linux

iii

Revision History

04/20/2004 Revision A issued

 Documented for ISO9000

07/14/2005 Revision B issued

 Removed duplicate word in “Using the API Functions” section

4/11/2008 Revision C issued

 Released new version of the driver that supports 2.6 kernels

 Updated the driver revision number and documented changes related to the

 2.6 kernel

 Added dm6420-dual-dma-data-viewer example program

DM6420 Driver for Linux

Published by:

RTD Embedded Technologies, Inc.

103 Innovation Blvd.

State College, PA 16803-0906

Copyright 2005 by RTD Embedded Technologies, Inc.

All rights reserved

Printed in U.S.A.

The RTD Logo is a registered trademark of RTD Embedded Technologies. cpuModule and

dataModule are trademarks of RTD Embedded Technologies. PS/2, PC/XT, PC/AT and IBM are

trademarks of International Business Machines Inc. MS-DOS, Windows, Windows 98, Windows

NT, Windows 2000 and Windows XP are trademarks of Microsoft Corp. PC/104 is a registered

trademark of PC/104 Consortium. All other trademarks appearing in this document are the

property of their respective owners.

DM6420 Driver for Linux

iv

Table of Contents

TABLE OF CONTENTS ..4

INTRODUCTION ...5

INSTALLATION INSTRUCTIONS..6

EXTRACTING THE SOFTWARE ...6
CONTENTS OF INSTALLATION DIRECTORY ..6
BUILDING THE DRIVER ...6
BUILDING THE LIBRARY ...7
BUILDING THE EXAMPLE PROGRAMS ...7

USING THE API FUNCTIONS...8

FUNCTION REFERENCE ..9

API FUNCTION GROUPS ..10

ANALOG TO DIGITAL CONVERSION...10
DIGITAL TO ANALOG CONVERSION...10
DIGITAL I/O..11
DIRECT MEMORY ACCESS (DMA) DATA TRANSFER ...11
GENERAL..11
INTERRUPT CONTROL AND STATUS ..12
TIMER/COUNTER CONTROL AND STATUS ...12

ALPHABETICAL FUNCTION LISTING..13

EXAMPLE PROGRAMS REFERENCE..101

LIMITED WARRANTY...102

DM6420 Driver for Linux

5

Introduction

This document targets anyone wishing to write Linux applications for an RTD DM6420 analog

I/O dataModule. It provides information on building the software and about the Application

Programming Interface used to communicate with the hardware and driver. Each high-level

library function is described as well as any low-level ioctl() system call interface it may make use

of.

The diagram below 1) provides a general overview of what hardware and software entities are

involved in device access, 2) shows which units communicate with each other, and 3) illustrates

the methods used to transfer data and control information.

Application

Application

Application

Library

Driver

Hardware

User Space

Kernel Space

C Function Calls C Function Calls C Function Calls

Bus

Electrical Signals

ioctl() System Calls

Software

Hardware I/O Space Accesses

DM6420 Driver for Linux

6

Installation Instructions

Extracting the Software

All software comes packaged in a gzip’d tar file named dm6420_Linux_v2.01.xx.tar.gz. First,

decide where you would like to place the software and make a copy of the tar file in this directory

by issuing the command “cp <path to tar file>/ dm6420_Linux_v2.01.xx.tar.gz <installation

path>” substituting the appropriate paths for <path to tar file> and <installation path>. Next,

change your current directory to where you made a copy of the tar file by issuing the command

“cd <installation path>”. Once you are in this directory, extract the software by issuing the

command “tar –xvzf dm6420_Linux_v2.01.xx.tar.gz”; this will create a directory

dm6420_Linux_v2.01.xx.tar.gz / which contains all the files that are part of the software package.

Contents of Installation Directory

Once the tar file is extracted, you should see the following files and directories within

dm6420_Linux_v2.01.xx/:

 driver/

 examples/

 include/

 lib/

 CHANGES.TXT

 LICENSE.TXT

 README.TXT

The file CHANGES.TXT describes the changes made to the software for this release, as well as

for previous releases. The file LICENSE.TXT provides details about the RTD end user license

agreement which must be agreed to and accepted before using this software. The file

README.TXT contains a general overview of the software and contact information should you

experience problems, have questions, or need information. The directory driver/ contains the

source code and Makefile for the drivers. The directory examples/ holds the source code and

Makefile for the example programs. The directory include/ contains all header files used by the

driver, example programs, library, and your application programs. Library source code and

Makefile reside in the directory lib/.

Building the Driver

Driver source code uses files located in the kernel source tree. Therefore, you must have the full

kernel source tree available in order to build the driver. The kernel source tree consumes a lot of

disk space, on the order of 100 to 200 megabytes. Because production systems rarely contain this

much disk space, you will probably use a development machine to compile the driver source code.

The development system, which provides a full compilation environment, must be running the

exact same version of the kernel as your production machine(s); otherwise the kernel module may

not load or may load improperly. After the code is built, you can then move the resulting object

files, libraries, and executables to the production system(s).

Building the driver consists of several steps: 1) compiling the source code, 2) loading the

resulting kernel module into the kernel, and 3) creating hardware device files in the /dev

directory. To perform any of the above steps, you must change your current directory to driver/.

The file Makefile contains rules to assist you.

DM6420 Driver for Linux

7

To compile the source code, issue the command “make”. This command will create the driver

object file. The name of the driver object file depends on the version of the kernel being used. If

compiling with a 2.4 kernel, the filename will be rtd-dm6420.o and if compiling with a 2.6 kernel

the filename will be rtd-dm6420.ko. The GNU C compiler gcc is used to build the driver code.

Before the driver can be used, it must be loaded into the currently running kernel. Using the

command “make insmod” will load the DM6420 driver into the kernel. This target assumes that:

 * A single DM6420 is installed.

 * The board’s base I/O address is set to the factory default of 0x300.

 * The DM6420 will use IRQs 3 and 5.

 * The board will use DMA channels 5 and 6.

If the previous assumptions do not match your hardware setup, you will need to edit the Makefile

and change this rule to reflect your board configuration or manually issue an appropriate insmod

command.

When you load the kernel driver, you might see the following message:

 “Warning: loading ./rtd-dm6420.o will taint the kernel: no license”

You can safely ignore this message since it pertains to GNU General Public License (GPL)

licensing issues rather than to driver operation.

The final step is to create /dev entries for the hardware. Previous versions of the driver always

assumed a character device major number of 240 when registering the boards and creating the

/dev entries. Instead, the driver now asks the kernel to dynamically assign a major number.

Since this major number may change each time you load the driver, the best way to create the

device files is to use the command “make devices”; this generates four files in /dev named

rtd-dm6420-0 through rtd-dm6420-3.

If you ever need to unload the driver from the kernel, you can use the command “make rmmod”.

Building the Library

The example programs and your application use the DM6420 library, so it must be built before

any of these can be compiled. To build the library, change your current directory to lib/ and issue

the command “make”. The GNU C compiler gcc is used to compile the library source code.

The DM6420 library is statically linked and is created in the file librtd-dm6420.a.

Building the Example Programs

The example programs may be compiled by changing your current directory to examples/ and

giving the command “make”, which builds all the example programs. If you wish to compile

a subset of example programs, there are targets in Makefile to do so. For example, the command

“make dm6420-auto-burst” will compile and link the source file dm6420-auto-burst.cc and

the command “make dm6420-stream” will compile and link the source file dm6420-stream.cc.

The GNU C compiler gcc is used to compile the example program code.

DM6420 Driver for Linux

8

Using the API Functions

DM6420 hardware and the associated driver functionality can be accessed through the library API

(Application Programming Interface) functions. Applications wishing to use library functions

must include the include/dm6420lib.h header file and be statically linked with the

lib/librtd-dm6420.a library file.

The following function reference provides for each library routine a prototype, description,

explanation of parameters, and return value or error code. By looking at a function’s entry, you

should gain an idea of: 1) why it would be used, 2) what it does, 3) what information is passed

into it, 4) what information it passes back, 5) how to interpret error conditions that may arise, and

6) the ioctl() system call interface if the function makes use of a single ioctl() call.

Note that errno codes other than the ones indicated in the following pages may be set by the

library functions. Unless otherwise noted in the description of a function’s return value, please

see the ioctl(2) man page for more information

DM6420 Driver for Linux

9

Function Reference

DM6420 Driver for Linux

10

API Function Groups

Analog to Digital Conversion

ChannelGainDataStore6420

ClearADFIFO6420

ClearChannelGainTable6420

EnableTables6420

GetAutoincData6420

IsAboutTrigger6420

IsADConverting6420

IsADFIFOEmpty6420

IsADFIFOFull6420

IsADHalted6420

LoadADSampleCounter6420

LoadADTable6420

LoadDigitalTable6420

LoadTriggerRegister6420

ReadADData6420

ReadADDataMarker6420

ReadADDataWithMarker6420

ReadChannelGainDataStore6420

ResetChannelGainTable6420

SetBurstTrigger6420

SetChannelGain6420

SetConversionSelect6420

SetPauseEnable6420

SetStartTrigger6420

SetStopTrigger6420

SetTriggerPolarity6420

SetTriggerRepeat6420

StartConversion6420

Digital to Analog Conversion

LoadDAC6420

DM6420 Driver for Linux

11

Digital I/O

ClearDINFIFO6420

ConfigDINClock6420

DIOClearChip6420

DINClockEnable6420

DIOClearIrq6420

DIOEnableIrq6420

DIOIsChipIrq6420

DIOIsChipIRQEnabled6420

DIOIsChipIRQEventMode6420

DIOIsChipPort1Output6420

DIOIsChipStrobe6420

DIOIsChipSystemClock6420

DIOLoadCompare6420

DIOLoadMask6420

DIORead6420

DIOReadCompareRegister6420

DIOReadStatus6420

DIOSelectClock6420

DIOSelectIrqMode6420

DIOSelectRegister6420

DIOSetPort0Direction6420

DIOSetPort1Direction6420

DIOWrite6420

IsDigitalIRQ6420

IsDINFIFOEmpty6420

IsDINFIFOFull6420

IsDINFIFOHalf6420

LoadDINConfigRegister6420

ReadDINFIFO6420

Direct Memory Access (DMA) Data Transfer

ClearADDMADone6420

DeInstallDMA6420

GetDmaData6420

InstallDMA6420

IsADDMADone6420

IsFirstADDMADone6420

StartDMA6420

StopDMA6420

General

ClearBoard6420

ClearRegister6420

CloseBoard6420

InitBoard6420

LoadControlRegister6420

OpenBoard6420

ReadStatus6420

DM6420 Driver for Linux

12

Interrupt Control and Status

ClearIRQ06420

ClearIRQ16420

DisableIRQ6420

EnableIRQ6420

GetIRQCounter6420

InstallCallbackIRQHandler6420

LoadIRQRegister6420

RemoveIRQHandler6420

SetIRQ0Source6420

SetIRQ1Source6420

Timer/Counter Control and Status

ClockDivisor6420

ClockMode6420

DoneTimer6420

IsBurstClockOn6420

IsPacerClockOn6420

ReadTimerCounter6420

SelectTimerCounter6420

SetBurstClock6420

SetPacerClock6420

SetPacerClockSource6420

SetSampleCounterStop6420

SetUserClock6420

DM6420 Driver for Linux

13

Alphabetical Function Listing

ChannelGainDataStore6420

int ChannelGainDataStore6420(int descriptor, int Enable);

Description:

Enable or disable a board’s channel/gain data store.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Enable: Flag to indicate whether the channel/gain data store should be enabled.

 A value of 0 means disable the data store. A nonzero value means

 enable the data store.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request ;

/*

 * Write to the Control Register at I/O base address + 2

*/

io_request.reg = r_CONTROL_6420;

/*

 * Only change bit 4 in the Control Register

 */

io_request.mask = 0xFFEF;

/*

 * Enable the channel/gain data store

 */

io_request.value = (1 << 4);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

14

ClearADDMADone6420

int ClearADDMADone6420(int descriptor);

Description:

Clear a board’s A/D DMA done flag.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_AD_DMA_DONE);

ClearADFIFO6420

int ClearADFIFO6420(int descriptor);

Description:

Clear a board’s A/D sample FIFO.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_AD_FIFO);

DM6420 Driver for Linux

15

ClearBoard6420

int ClearBoard6420(int descriptor);

Description:

Reset a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_BOARD);

ClearChannelGainTable6420

int ClearChannelGainTable6420(int descriptor);

Description:

Clear the contents of a board’s channel/gain table.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_CLEAR_GAIN);

DM6420 Driver for Linux

16

ClearDINFIFO6420

int ClearDINFIFO6420(int descriptor);

Description:

Clear a board’s digital input FIFO.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_DIO_FIFO);

ClearIRQ06420

int ClearIRQ06420(int descriptor);

Description:

Clear the first interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_IRQ1);

DM6420 Driver for Linux

17

ClearIRQ16420

int ClearIRQ16420(int descriptor);

Description:

Clear the second interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_IRQ2);

ClearRegister6420

int ClearRegister6420(int descriptor, u_int16_t ClearValue);

Description:

Write a bit mask into a board’s Program Clear Register and then read from the Clear Register to

clear some part(s) of the board. Other library functions make use of this routine to perform their

work.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 ClearValue: Bit mask to write into Program Clear Register before reading Clear

 Register.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

DM6420 Driver for Linux

18

IOCTL Interface:

int rc;

/*

 * Clear the contents of board’s channel/gain table.

 */

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_CLEAR_GAIN);

ClockDivisor6420

int ClockDivisor6420(int descriptor, enum DM6420HR_CLK Timer, u_int16_t Divisor);

Description:

Set the divisor for the specified counter on the 8254 chip. Before calling this function, the

counter must have been set to receive the divisor least significant byte first then most significant

byte.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Timer: Indicates which counter to use. Valid values are DM6420HR_CLK0,

 DM6420HR_CLK1, and DM6420HR_CLK2.

 Divisor: Counter divisor value.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Timer is not valid.

IOCTL Interface:

This function makes use of several ioctl() requests.

ClockMode6420

int ClockMode6420(

 int descriptor,

 enum DM6420HR_CLK Timer,

 enum DM6420HR_CLK_MODE Mode

);

DM6420 Driver for Linux

19

Description:

Set the mode of the specified counter on the 8254 chip. This function also sets the indicated

counter to receive a subsequent divisor load least significant byte first then most significant byte.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Timer: Indicates which counter to use. Valid values are DM6420HR_CLK0,

 DM6420HR_CLK1, and DM6420HR_CLK2.

 Mode: Indicates which clock mode to set. Valid values are

 DM6420HR_CLK_MODE0, DM6420HR_CLK_MODE1,

 DM6420HR_CLK_MODE2, DM6420HR_CLK_MODE3,

 DM6420HR_CLK_MODE4, and DM6420HR_CLK_MODE5.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Timer is not valid.

 EINVAL Mode is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Write to Timer/Counter Control Register at I/O base address + 22

 */

io_request.reg = r_TIMER_CTRL_6420;

/*

 * Operate on timer/counter 2

 */

io_request.value = ((DM6420HR_CLK2 & 0x3) << 6);

/*

 * Put timer/counter into Mode 2 (rate generator mode)

 */

io_request.value |= ((DM6420HR_CLK_MODE2 & 0x7) << 1);

DM6420 Driver for Linux

20

/*

 * Set timer/counter value to be accessed least significant byte first then most significant byte

 */

io_request.value |= 0x30;

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTB, &io_request);

CloseBoard6420

int CloseBoard6420(int descriptor);

Description:

Close a DM6420 device file opened previously with OpenBoard6420().

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure. Please see the close(2) or ioctl(2) man page for information on

 possible values errno may have in this case.

IOCTL Interface:

This function makes use of several ioctl() requests.

ConfigDINClock6420

int ConfigDINClock6420(int descriptor, enum DM6420HR_DI_FIFO_CLK DIN_Clock);

Description:

Set the source for a board’s digital input FIFO clock.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 DIN_Clock: Source of digital input FIFO clock. Valid values are

 DM6420HR_DI_FIFO_CLK_USER_TC0,

 DM6420HR_DI_FIFO_CLK_USER_TC1,

 DM6420HR_DI_FIFO_CLK_AD_WRITE_FIFO,

 DM6420HR_DI_FIFO_CLK_EXTERNAL_PACER, and

 DM6420HR_DI_FIFO_CLK_EXTERNAL_TRIG.

DM6420 Driver for Linux

21

Return Value:

 0: Success.

 -1 Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL DIN_Clock is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Digital Input FIFO Configuration Register at base I/O address + 10

 */

io_request.reg = r_DIN_CONFIG_6420;

/*

 * Only change bits 0 through 2 in Configuration Register

 */

io_request.mask = 0xFFF8;

/*

 * Set source for digital input FIFO clock to the output of User Timer/Counter 0

 */

io_request.value = DM6420HR_DI_FIFO_CLK_USER_TC0;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DeInstallDMA6420

int DeInstallDMA6420(int descriptor, enum DM6420HR_DMA DMAChannel);

Description:

Configure the specified DMA circuit on a board so that DMA can no longer be performed on it.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 DMAChannel: DMA circuit to configure. Valid values are DM6420HR_DMA1

 and DM6420HR_DMA2.

DM6420 Driver for Linux

22

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL DMAChannel is not valid.

 EINVAL No DMA channel was ever allocated to DMAChannel.

IOCTL Interface:

int rc;

struct DM6420HR_DI io_request;

/*

 * Operate on board’s first DMA circuit

 */

io_request.dma = DM6420HR_DMA1;

/*

 * DMA can no longer be performed on the circuit

 */

io_request.action = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_INSTALL, &io_request);

DINClockEnable6420

int DINClockEnable6420(int descriptor, int Enable);

Description:

Enable or disable a board’s digital input FIFO clock.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Enable: Indicates whether or not to enable the digital input FIFO clock. A

 value of 0 means disable the clock. A nonzero value means enable the

 clock.

DM6420 Driver for Linux

23

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Digital Input FIFO Configuration Register at base I/O address + 10

 */

io_request.reg = r_DIN_CONFIG_6420;

/*

 * Only change bit 3 in Configuration Register

 */

io_request.mask = 0xFFF7;

/*

 * Disable digital input FIFO clock

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DIOClearChip6420

int DIOClearChip6420(int descriptor);

Description:

Clear a board’s digital I/O chip.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

DM6420 Driver for Linux

24

IOCTL Interface:

This function makes use of several ioctl() requests.

DIOClearIrq6420

int DIOClearIrq6420(int descriptor);

Description:

Clear a board’s digital I/O IRQ status flag.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DIOEnableIrq6420

int DIOEnableIrq6420(int descriptor, int Enable);

Description:

Enable or disable a board’s digital interrupts.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Enable: Flag indicating how digital interrupts should be set. A value of 0

 means disable digital interrupts. A nonzero value means enable digital

 interrupts.

DM6420 Driver for Linux

25

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO8 io_request;

/*

 * Write to Digital Mode Register at base I/O address + 30

 */

io_request.reg = r_DIO_MODE_6420;

/*

 * Only change bit 4 in Mode Register

 */

io_request.mask = 0xEF;

/*

 * Enable digital interrupts

 */

io_request.value = (1 << 4);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTB, &io_request);

DIOIsChipIrq6420

int DIOIsChipIrq6420(int descriptor, int *interrupt_generated_p);

Description:

Determine whether or not a board has generated a digital I/O interrupt.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Interrupt_generated_p: Address where interrupt generated flag should be stored.

 If the board has generated a digital I/O interrupt, a

 nonzero value will be stored here. Otherwise, 0 will be

 stored here.

DM6420 Driver for Linux

26

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

 /*

 * If bit 6 is set in Status Register, an interrupt occurred

 */

 if (io_request.value & 0x40) {

 fprintf(stdout, “Digital I/O interrupt generated.\n”);

 }

}

DIOIsChipIRQEnabled6420

int DIOIsChipIRQEnabled6420(int descriptor, int *irq_enabled_p);

Description:

Determine whether or not digital interrupts are enabled for a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

DM6420 Driver for Linux

27

 Irq_enabled_p: Address where IRQ enabled flag should be stored. If digital

 interrupts are enabled, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

 /*

 * If bit 4 is cleared in Status Register, digital I/O interrupts are disabled

 */

 if ((io_request.value & 0x10) == 0) {

 fprintf(stdout, “Digital I/O interrupts disabled.\n”);

 }

}

DIOIsChipIRQEventMode6420

int DIOIsChipIRQEventMode6420(int descriptor, int *irq_event_p);

Description:

Determine whether or not a board’s digital interrupt mode is set to event.

DM6420 Driver for Linux

28

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Irq_event_p: Address where IRQ event mode flag should be stored. If digital

 interrupts are in event mode, a nonzero value will be stored here.

 Otherwise, 0 will be stored here (meaning digital interrupts are in

 match mode).

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

 /*

 * If bit 3 is cleared in Status Register

 * Then

 * Interrupt mode is event

 * Else

 * Interrupt mode is match

 */

 if ((io_request.value & 0x08) == 0) {

 fprintf(stdout, “Digital I/O interrupts in event mode.\n”);

 } else {

 fprintf(stdout, “Digital I/O interrupts in match mode.\n”);

 }

}

DM6420 Driver for Linux

29

DIOIsChipPort1Output6420

int DIOIsChipPort1Output6420(int descriptor, int *port1_output_p);

Description:

Determine whether or not a board’s digital port 1 is set to output.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Port1_output_p: Address where port 1 output flag should be stored. If port 1 is set

 to output, a nonzero value will be stored here. Otherwise, 0 will

 be stored here (meaning port 1 is set to input).

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

 /*

 * If bit 2 is set in Status Register

 * Then

 * Port 1 is output

 * Else

 * Port 1 is input

 */

DM6420 Driver for Linux

30

 if (io_request.value & 0x04) {

 fprintf(stdout, “Port 1 set to output.\n”);

 } else {

 fprintf(stdout, “Port 1 set to input.\n”);

 }

}

DIOIsChipStrobe6420

int DIOIsChipStrobe6420(int descriptor, int *strobe_occurred_p);

Description:

Determine whether or not data has been strobed into digital I/O port 0.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Strobe_occurred_p: Address where strobe event flag should be stored. If data was

 strobed into port 0, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

DM6420 Driver for Linux

31

 /*

 * If bit 7 is set in Status Register

 * Then

 * Data was strobed into port 0

 * Else

 * No data strobed

 */

 if (io_request.value & 0x80) {

 fprintf(stdout, “Data strobed into digital I/O port 0.\n”);

 } else {

 fprintf(stdout, “No data strobed into digital I/O port 0.\n”);

 }

}

DIOIsChipSystemClock6420

int DIOIsChipSystemClock6420(int descriptor, int *system_clock_p);

Description:

Determine whether or not the 8 MHz system clock is driving digital I/O sampling.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 System_clock_p: Address where system clock flag should be stored. If the 8 MHz

 system clock is driving digital sampling, a nonzero value will be

 stored here. Otherwise, 0 will be stored here (meaning that the

 User Timer/Counter is driving sampling).

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from the Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

DM6420 Driver for Linux

32

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

if (rc != -1) {

 /*

 * If bit 5 is cleared in Status Register

 * Then

 * 8 MHz system clock in use

 * Else

 * User Timer/Counter in use

 */

 if ((io_request.value & 0x20) == 0) {

 fprintf(stdout, “8 MHz system clock driving digital I/O sampling.\n”);

 } else {

 fprintf(stdout, “User Timer/Counter driving digital I/O sampling.\n”);

 }

}

DIOLoadCompare6420

int DIOLoadCompare6420(int descriptor, u_int8_t Compare);

Description:

Load the Compare Register for a board’s digital I/O port 0.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Compare: The bit pattern to be matched.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

33

DIOLoadMask6420

int DIOLoadMask6420(int descriptor, u_int8_t Mask);

Description:

Load the Mask Register for a board’s digital I/O port 0.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Mask: The bit mask to be loaded.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DIORead6420

int DIORead6420(int descriptor, enum DM6420HR_DIO Port, u_int8_t *digital_data_p);

Description:

Read 8 bits of data from board’s specified digital I/O port.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Port: Indicates which digital I/O port to read. Valid values are

 DM6420HR_DIO0 and DM6420HR_DIO1.

 Digital_data_p: Address where data read should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

 EINVAL Port is not valid.

DM6420 Driver for Linux

34

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from Digital I/O Port 1 Register at base I/O address + 26

 */

io_request.reg = r_DIO_PORT_1_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

DIOReadCompareRegister6420

int DIOReadCompareRegister6420(int descriptor, u_int8_t *register_value_p);

Description:

Read the contents of a board’s digital I/O Compare Register.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Register_value_p: Address where register contents should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

35

DIOReadStatus6420

int DIOReadStatus6420(int descriptor, u_int8_t *status_p);

Description:

Read the contents of a board’s Digital IRQ/Strobe Status register. Other library functions make

use of this routine to perform their work.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Status_p: Address where digital I/O status register contents should be

stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from Digital IRQ/Strobe Status Register at base I/O address + 30

 */

io_request.reg = r_DIO_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the byte read.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

DIOSelectClock6420

int DIOSelectClock6420(int descriptor, enum DM6420HR_CLK_SEL Clock);

Description:

Select the sample clock source for a board’s digital I/O chip.

DM6420 Driver for Linux

36

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Clock: Indicates the clock source. Valid values are

 DM6420HR_CLOCK_TC and DM6420HR_USER_TC.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Clock is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO8 io_request;

/*

 * Write to Digital Mode Register at base I/O address + 30

 */

io_request.reg = r_DIO_MODE_6420;

/*

 * Only change bit 5 in Mode Register

 */

io_request.mask = 0xDF;

/*

 * Set digital I/O sample clock source to User Timer/Counter 1

 */

io_request.value = (DM6420HR_USER_TC << 5);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTB, &io_request);

DIOSelectIrqMode6420

int DIOSelectIrqMode6420(int descriptor, enum DM6420HR_DIO_IRQ IrqMode);

Description:

Set the advanced digital interrupt mode for a board’s digital I/O chip port 0.

DM6420 Driver for Linux

37

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IrqMode: Indicates the digital interrupt mode. Valid values are

 DM6420HR_DIO_IRQ_EVENT and

 DM6420HR_DIO_IRQ_MATCH .

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IrqMode is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO8 io_request;

/*

 * Write to Digital Mode Register at base I/O address + 30

 */

io_request.reg = r_DIO_MODE_6420;

/*

 * Only change bit 3 in Mode Register

 */

io_request.mask = 0xF7;

/*

 * Set digital I/O interrupt mode to Event Mode

 */

io_request.value = (DM6420HR_DIO_IRQ_EVENT << 3);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTB, &io_request);

DIOSelectRegister6420

int DIOSelectRegister6420(int descriptor, enum DM6420HR_REG_SEL Select);

Description:

Set the mode of a board’s digital I/O port 0 Direction/Mask/Compare Register located at base I/O

address + 28. Other library functions make use of this routine to perform their work.

DM6420 Driver for Linux

38

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Select: Which mode to configure. Valid values are

 DM6420HR_REG_CLEAR, DM6420HR_REG_DIR,

 DM6420HR_REG_MASK, and DM6420HR_REG_CMP.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Select is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO8 io_request;

/*

 * Write to Digital Mode Register at base I/O address + 30

 */

io_request.reg = r_DIO_MODE_6420;

/*

 * Only change bits 0 and 1 in Mode Register

 */

io_request.mask = 0xFC;

/*

 * Put digital I/O port 0 Direction/Mask/Compare Register into Clear Mode. A subsequent read

 * from this register will clear the digital IRQ status flag whereas a subsequent write to this

 * register will clear the digital I/O chip.

 */

io_request.value = DM6420HR_REG_CLEAR;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTB, &io_request);

DIOSetPort0Direction6420

int DIOSetPort0Direction6420(int descriptor, u_int8_t Direction);

Description:

Set the digital I/O port 0 bit direction (input or output) on a board.

DM6420 Driver for Linux

39

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Direction: Bit mask indicating bit direction for port 0 bits. A 1 in the mask means

 set that bit to output. A 0 in the mask means set that bit to input.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DIOSetPort1Direction6420

int DIOSetPort1Direction6420(int descriptor, int Direction);

Description:

Set the digital I/O port 1 bit direction (input or output) on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Direction: Flag indicating bit direction. A value of 0 means set port 1 bits to

 input. A nonzero value means set port 1 bits to output.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO8 io_request;

/*

 * Write to Digital Mode Register at base I/O address + 30

 */

io_request.reg = r_DIO_MODE_6420;

DM6420 Driver for Linux

40

/*

 * Only change bit 2 in Mode Register

 */

io_request.mask = 0xFB;

/*

 * Set digital I/O port 1 bit direction to output. All port bits are set to this direction.

 */

io_request.value = (1 << 2);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTB, &io_request);

DIOWrite6420

int DIOWrite6420(int descriptor, enum DM6420HR_DIO Port, u_int8_t Data);

Description:

Write data to a board’s selected digital I/O port.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Port: The port to write to. Valid values are DM6420HR_DIO0 and

 DM6420HR_DIO1.

 Data: The data to write.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Port is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Write to digital I/O port 0

 */

io_request.reg = r_DIO_PORT_0_6420;

DM6420 Driver for Linux

41

/*

 * Write the value 0x44 (68 decimal)

 */

io_request.value = 0x44;

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTB, &io_request);

DisableIRQ6420

int DisableIRQ6420(int descriptor, enum DM6420HR_INT IRQChannel);

Description:

Disable the specified interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IRQChannel: Interrupt circuit to disable. Valid values are DM6420HR_INT1

 and DM6420HR_INT2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IRQChannel is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_IE io_request;

/*

 * Target of operation is second interrupt circuit

 */

io_request.intr = DM6420HR_INT2;

/*

 * Disable the interrupt circuit

 */

io_request.action = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_IRQ_ENABLE, &io_request);

DM6420 Driver for Linux

42

DoneTimer6420

int DoneTimer6420(int descriptor);

Description:

Initialize a board’s user timer/counter counter 0 and counter 1 for high speed to ensure immediate

load. This function puts these two counters into mode 2.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure. Please see the descriptions of the ClockDivisor6420(),

 ClockMode6420(), and SelectTimerCounter6420() functions or the ioctl(2)

 man page for information on possible values errno may have in this case.

IOCTL Interface:

This function makes use of several ioctl() requests.

EnableIRQ6420

int EnableIRQ6420(int descriptor, enum DM6420HR_INT IRQChannel);

Description:

Enable the specified interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IRQChannel: Interrupt circuit to enable. Valid values are DM6420HR_INT1

 and DM6420HR_INT2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IRQChannel is not valid.

DM6420 Driver for Linux

43

IOCTL Interface:

int rc;

struct DM6420HR_IE io_request;

/*

 * Target of operation is first interrupt circuit

 */

io_request.intr = DM6420HR_INT1;

/*

 * Enable the interrupt circuit

 */

io_request.action = 1;

rc = ioctl(descriptor, DM6420HR_IOCTL_IRQ_ENABLE, &io_request);

EnableTables6420

int EnableTables6420(int descriptor, int Enable_AD_Table, int Enable_Digital_Table);

Description:

Enable or disable the A/D and digital tables in the channel/gain scan memory on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Enable_AD_Table: Flag to indicate whether the A/D table should be enabled.

 A value of 0 means disable the A/D table. A nonzero

 value means enable the A/D table.

 Enable_Digital_Table: Flag to indicate whether the digital table should be

 enabled. A value of 0 means disable the digital table. A

 nonzero value means enable the digital table.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EOPNOTSUPP The digital table is to be enabled but the A/D table is to be

 disabled.

DM6420 Driver for Linux

44

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Control Register at base I/O address + 2

 */

io_request.reg = r_CONTROL_6420;

/*

 * Only change bits 2 and 3 in Control Register

 */

io_request.mask = 0xFFF3;

/*

 * Enable just the A/D table

 *

 * To disable both tables, set io_request.value to 0.

 * To enable both tables, set io_request.value to (0x3 << 2)

 */

io_request.value = (1 << 2);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

GetAutoincData6420

int GetAutoincData6420(

 int descriptor,

 enum DM6420HR_STR_Regs from_register,

 enum DM6420HR_STR_TYPE type,

 void *buffer_p,

 size_t element_num

);

Description:

Initiate a streaming read from a board. Once can specify the board register to read from, what

size data is to be transferred, and how many data elements to transfer.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 From_register: Register from which the data should be read. Valid values are

 rSTR_AD_6420 and rSTR_DIN_FIFO_6420.

DM6420 Driver for Linux

45

 Type: Type/size of element to be transferred. Valid values are

 DM6420HR_STR_TYPE_BYTE and

 DM6420HR_STR_TYPE_WORD.

 Buffer_p: Address of buffer in which to place the data read.

 Element_num: How many data elements of type “type” should be read.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

 EFAULT buffer_p is not a valid user address.

 EINVAL from_register is not valid.

 EINVAL type is not valid.

 EOPNOTSUPP from_register is rSTR_AD_6420 and type is

 DM6420HR_STR_TYPE_BYTE.

 EOPNOTSUPP from_register is rSTR_DIN_FIFO_6420 and type is

 DM6420HR_STR_TYPE_WORD.

IOCTL Interface:

int rc;

struct DM6420HR_GID io_request;

int16_t ad_buffer[600];

uint8_t digital_buffer[512];

/*

 * Read from A/D input FIFO

 */

io_request.port = rSTR_AD_6420;

/*

 * Transfer 16-bit values

 */

io_request.type = DM6420HR_STR_TYPE_WORD;

/*

 * Transfer data into ad_buffer[] array

 */

io_request.buf = (void *) &(ad_buffer[0]);

DM6420 Driver for Linux

46

/*

 * Transfer 600 16-bit values

 */

io_request.times = 600;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_GETINC, &io_request);

/*

 * Read from digital port 0 input FIFO

 */

io_request.port = rSTR_DIN_FIFO_6420;

/*

 * Transfer 8-bit values

 */

io_request.type = DM6420HR_STR_TYPE_BYTE;

/*

 * Transfer data into digital_buffer[] array

 */

io_request.buf = (void *) &(digital_buffer[0]);

/*

 * Transfer 512 8-bit values

 */

io_request.times = 512;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_GETINC, &io_request);

GetDmaData6420

int GetDmaData6420(

 int descriptor,

 void *dma_buffer_p,

 enum DM6420HR_DMA DMAChannel,

 size_t length,

 size_t offset,

 size_t *bytes_transferred_p

);

Description:

Copy data from specified DMA circuit’s DMA buffer into user buffer.

DM6420 Driver for Linux

47

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Dma_buffer_p: Address of user buffer.

 DMAChannel: DMA circuit to operate on. Valid values are

 DM6420HR_DMA1 and DM6420HR_DMA2.

 Length: Number of bytes to transfer.

 Offset: Offset in bytes from beginning of driver’s DMA buffer where

 read should begin.

 Bytes_transferred_p: Address where actual number of bytes transferred will be

 stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

 EFAULT dma_buffer_p is not a valid user address.

 EFAULT dma_buffer_p is not large enough to hold the data.

 EINVAL DMAChannel is not valid.

 EINVAL No DMA channel was ever allocated to DMAChannel.

 EINVAL No DMA buffer was ever allocated to DMAChannel.

 EINVAL (length + offset) lies beyond the end of the driver’s DMA buffer.

IOCTL Interface:

int rc;

struct DM6420HR_GDD io_request;

int16_t user_buffer[8192];

/*

 * Read from DMA buffer on second DMA circuit

 */

io_request.dma = DM6420HR_DMA2;

/*

 * Transfer data into user_buffer[] array

 */

io_request.buf = (void *) &(user_buffer[0]);

DM6420 Driver for Linux

48

/*

 * Transfer 8192 16-bit values (16384 8-bit values)

 */

io_request.length = 16384;

/*

 * Read from beginning of driver’s DMA buffer

 */

io_request.offset = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_GETDATA, &io_request);

GetIRQCounter6420

int GetIRQCounter6420(

 int descriptor,

 enum DM6420HR_INT IRQChannel,

 unsigned long *counter_value_p

);

Description:

Get the number of interrupts that have occurred on a board’s specified interrupt circuit.

Data returned from this function is interpreted differently depending upon usage of the force

argument on the insmod command. If you specify a nonzero value for the force argument, the

value returned represents the number of interrupts that occurred since the driver module was

loaded. If you specify a zero value for the force argument or do not use force at all, the value

returned represents the number of interrupts that occurred since the device file was opened.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IRQChannel: Interrupt circuit to read counter value from. Valid values are

 DM6420HR_INT1 and DM6420HR_INT2.

 Counter_value_p: Address where counter value should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

 EINVAL IRQChannel is not valid.

 EINVAL No IRQ was ever allocated to IRQChannel.

DM6420 Driver for Linux

49

IOCTL Interface:

int rc;

struct DM6420HR_GIC io_request;

/*

 * Target of operation is first interrupt circuit

 */

io_request.intr = DM6420HR_INT1;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable counter contains the interrupt count.

 */

io_request.counter = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_GET_IRQ_COUNTER, &io_request);

if (rc != -1) {

 fprintf(stdout, “Interrupt count: %ld.\n”, io_request.counter);

}

InitBoard6420

int InitBoard6420(int descriptor);

Description:

Initialize a board. This will 1) clear the board, 2) clear the A/D DMA done flag, 3) clear the

channel/gain table, and 4) clear the A/D input FIFO.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

50

InstallCallbackIRQHandler6420

int InstallCallbackIRQHandler6420(

 int descriptor,

 void (*callback)(void),

 enum DM6420HR_INT IRQChannel

);

Description:

Install a function which will be called whenever an interrupt occurs and the driver sends a signal

to the process to indicate that the interrupt happened.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Callback: Address of callback function.

 IRQChannel: Board interrupt circuit that signal should be attached to. Valid values

 are DM6420HR_INT1 and DM6420HR_INT2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL callback is NULL.

 EINVAL IRQChannel is not valid.

 ENOMEM Library callback descriptor memory could not be allocated.

 Please see the sigaction(2) man page, the sigprocmask(2) man page, or the

 ioctl(2) man page for information on other possible values errno may have

 in this case.

IOCTL Interface:

This function makes use of several ioctl() requests.

InstallDMA6420

int InstallDMA6420(int descriptor, enum DM6420HR_DMA DMAChannel);

Description:

Configure the specified DMA circuit on a board to be able to perform DMA.

DM6420 Driver for Linux

51

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 DMAChannel: DMA circuit to configure. Valid values are DM6420HR_DMA1

 and DM6420HR_DMA2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL DMAChannel is not valid.

 EINVAL No DMA channel was ever allocated to DMAChannel.

 ENOMEM DMA buffer memory allocation failed.

IOCTL Interface:

int rc;

struct DM6420HR_DI io_request;

/*

 * Target of operation is second DMA circuit

 */

io_request.dma = DM6420HR_DMA2

/*

 * Enable DMA on the circuit

 */

io_request.action = 1;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_INSTALL, &io_request);

IsAboutTrigger6420

int IsAboutTrigger6420(int descriptor, int *ad_about_trigger_p);

Description:

Determine whether or not a board’s A/D about trigger has occurred.

DM6420 Driver for Linux

52

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_about_trigger_p: Address where A/D about trigger flag should be stored. If

 A/D about trigger has occurred, a nonzero value will be

 stored here. Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 8 is set in Status Register, then about trigger has occurred

 *

 * If bit 8 is cleared, then about trigger has not occurred

 */

 if (io_request.value & 0x0100) {

 fprintf(stdout, “About trigger occurred.\n”);

 }

}

DM6420 Driver for Linux

53

IsADConverting6420

int IsADConverting6420(int descriptor, int *ad_converting_p);

Description:

Determine whether or not a board’s A/D converter is converting.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_converting_p: Address where A/D converting flag should be stored. If A/D

 conversion is occurring, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 3 is cleared in Status Register, then A/D converter is converting

 *

 * If bit 3 is set, then A/D converter is not converting

 */

DM6420 Driver for Linux

54

 if ((io_request.value & 0x0008) == 0) {

 fprintf(stdout, “A/D converter is still converting.\n”);

 }

}

IsADDMADone6420

int IsADDMADone6420(int descriptor, int *ad_dma_done_p);

Description:

Determine whether or not a board’s A/D DMA transfer is complete.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_dma_done_p Address where A/D DMA done flag should be stored. If A/D

 DMA is finished, a nonzero value will be stored here. Otherwise,

 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

DM6420 Driver for Linux

55

 /*

 * If bit 4 is set in Status Register, then A/D DMA is done

 *

 * If bit 4 is cleared, then A/D DMA is not done

 */

 if (io_request.value & 0x0010) {

 fprintf(stdout, “A/D DMA completed.\n”);

 }

}

IsADFIFOEmpty6420

int IsADFIFOEmpty6420(int descriptor, int *ad_fifo_empty_p);

Description:

Determine whether or not a board’s A/D FIFO is empty.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_fifo_empty_p: Address where FIFO empty flag should be stored. If the A/D

 FIFO is empty, a nonzero value will be stored here. Otherwise, 0

 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

DM6420 Driver for Linux

56

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 0 is cleared in Status Register, then A/D FIFO is empty

 *

 * If bit 0 is set, then A/D FIFO is not empty

 */

 if ((io_request.value & 0x0001) == 0) {

 fprintf(stdout, “A/D FIFO empty.\n”);

 }

}

IsADFIFOFull6420

int IsADFIFOFull6420(int descriptor, int *ad_fifo_full_p);

Description:

Determine whether or not a board’s A/D FIFO is full.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_fifo_empty_p: Address where FIFO full flag should be stored. If the A/D

FIFO

 is full, a nonzero value will be stored here. Otherwise, 0 will be

 stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

DM6420 Driver for Linux

57

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 1 is set in Status Register, then A/D FIFO is not full

 *

 * If bit 1 is cleared, then A/D FIFO is full

 */

 if (io_request.value & 0x0002) {

 fprintf(stdout, “A/D FIFO not full.\n”);

 }

}

IsADHalted6420

int IsADHalted6420(int descriptor, int *ad_halted_p);

Description:

Determine whether or not a board’s A/D conversion has been stopped because the sample buffer

is

full.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_halted_p: Address where A/D halted flag should be stored. If A/D

conversion

 has been stopped, a nonzero value will be stored here. Otherwise, 0

 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

DM6420 Driver for Linux

58

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 2 is cleared in Status Register, then A/D conversion has not been stopped

 *

 * If bit 2 is set, then A/D conversion has been stopped

 */

 if ((io_request.value & 0x0004) == 0) {

 fprintf(stdout, “A/D conversion not halted due to sample buffer being full.\n”);

 }

}

IsBurstClockOn6420

int IsBurstClockOn6420(int descriptor, int *ad_burst_clock_on_p);

Description:

Determine whether or not a board’s A/D burst clock gate is on.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_burst_clock_on_p: Address where A/D burst clock flag should be stored. If

A/D

 burst clock gate is on, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

DM6420 Driver for Linux

59

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 6 is set in Status Register, then burst gate is on

 *

 * If bit 6 is cleared, then burst gate is off

 */

 if (io_request.value & 0x0040) {

 fprintf(stdout, “Burst gate is on.\n”);

 }

}

IsDigitalIRQ6420

int IsDigitalIRQ6420(int descriptor, int *digital_interrupt_p);

Description:

Determine whether or not an advanced digital mode interrupt has occurred on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Digital_interrupt_p: Address where digital interrupt flag should be stored. If an

 advanced digital interrupt has occurred, a nonzero value will

 be stored here. Otherwise, 0 will be stored here.

DM6420 Driver for Linux

60

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 9 is cleared in Status Register, then no digital interrupt occurred

 *

 * If bit 9 is set, then digital interrupt occurred

 */

 if ((io_request.value & 0x0200) == 0) {

 fprintf(stdout, “Digital interrupt has not occurred.\n”);

 }

}

IsDINFIFOEmpty6420

int IsDINFIFOEmpty6420(int descriptor, int *digital_fifo_empty_p);

Description:

Determine whether or not a board’s digital input FIFO is empty.

DM6420 Driver for Linux

61

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Digital_fifo_empty_p: Address where digital FIFO empty flag should be stored. If

 the digital FIFO is empty, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 10 is set in Status Register, then digital input FIFO is not empty

 *

 * If bit 10 is cleared, then digital input FIFO is empty

 */

 if (io_request.value & 0x0400) {

 fprintf(stdout, “Digital input FIFO is not empty.\n”);

 }

}

DM6420 Driver for Linux

62

IsDINFIFOFull6420

int IsDINFIFOFull6420(int descriptor, int *digital_fifo_full_p);

Description:

Determine whether or not a board’s digital input FIFO is full.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Digital_fifo_full_p: Address where digital FIFO full flag should be stored. If the

 digital FIFO is full, a nonzero value will be stored here.

 Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 12 is cleared in Status Register, then digital input FIFO is full

 *

 * If bit 12 is set, then digital input FIFO is not full

 */

DM6420 Driver for Linux

63

 if ((io_request.value & 0x1000) == 0) {

 fprintf(stdout, “Digital input FIFO is full.\n”);

 }

}

IsDINFIFOHalf6420

int IsDINFIFOHalf6420(int descriptor, int *digital_fifo_half_full_p);

Description:

Determine whether or not a board’s digital input FIFO is half full.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Digital_fifo_half_full_p: Address where digital FIFO half full flag should be

 stored. If the digital FIFO is half full, a nonzero value

 will be stored here. Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

DM6420 Driver for Linux

64

 /*

 * If bit 11 is set in Status Register, then digital input FIFO is not half full

 *

 * If bit 11 is cleared, then digital input FIFO is half full

 */

 if (io_request.value & 0x0800) {

 fprintf(stdout, “Digital input FIFO is not half full.\n”);

 }

}

IsFirstADDMADone6420

int IsFirstADDMADone6420(int descriptor, int *ad_first_dma_done_p);

Description:

Determine whether or not a board’s A/D first DMA transfer is complete when in dual channel

DMA mode.

NOTE: The description of the ad_first_dma_done_p parameter below is based upon the

 hardware manual’s description of the First DMA Flag in the Status Register.

 However, the manual erroneously provides an inverted interpretation of this flag.

 Since this function examines the First DMA Flag, the value stored in

 *ad_first_dma_done_p is inverted also. In reality, the value stored in this address

 will be zero if A/D first DMA transfer is finished and nonzero otherwise.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_first_dma_done_p: Address where A/D first DMA done flag should be

 stored. If A/D first DMA is finished, a nonzero value

 will be stored here. Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

DM6420 Driver for Linux

65

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 5 is cleared in Status Register, then first DMA is done

 *

 * If bit 5 is set, then first DMA is not done

 */

 if ((io_request.value & 0x0020) == 0) {

 fprintf(stdout, “First DMA done.\n”);

 }

}

IsPacerClockOn6420

int IsPacerClockOn6420(int descriptor, int *ad_pacer_clock_on_p);

Description:

Determine whether or not a board’s A/D pacer clock gate is on.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_pacer_clock_on_p: Address where A/D pacer clock flag should be stored. If

 A/D pacer clock gate is on, a nonzero value will be

 stored here. Otherwise, 0 will be stored here.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

DM6420 Driver for Linux

66

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 /*

 * If bit 7 is set in Status Register, then A/D pacer clock gate is on

 *

 * If bit 7 is cleared, then pacer clock gate is off

 */

 if (io_request.value & 0x0080) {

 fprintf(stdout, “A/D pacer clock gate is on.\n”);

 }

}

LoadADSampleCounter6420

int LoadADSampleCounter6420(int descriptor, u_int16_t NumOfSamples);

Description:

Load a board’s analog to digital sample counter.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 NumOfSamples: Number of samples to take.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

67

LoadADTable6420

int LoadADTable6420(int descriptor, u_int16_t ADEntries, ADTableRow *ADTable_p);

Description:

Load a board’s A/D table with the given number of entries.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 ADEntries: Number of entries in A/D table.

 ADTable_p: Address of memory containing A/D table to send to board.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL ADEntries is 0.

 EINVAL ADEntries is greater than 1024.

 EINVAL An entry in the table pointed to by ADTable_p has an invalid

 Channel, Gain, ADRange, or Se_Diff member variable value.

IOCTL Interface:

This function makes use of several ioctl() requests.

LoadControlRegister6420

int LoadControlRegister6420(int descriptor, u_int16_t value);

Description:

Load a value into a board’s Control Register.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Value: Data to write into Control Register.

DM6420 Driver for Linux

68

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Write to Control Register at base I/O address + 2

 */

io_request.reg = r_CONTROL_6420;

/*

 * Set first DMA circuit to use DMA channel 5

 */

io_request.value = (1 << 12);

/*

 * Set second DMA circuit to use DMA channel 7

 */

io_request.value |= (3 << 14);

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

LoadDAC6420

int LoadDAC6420(int descriptor, enum DM6420HR_DAC dac, u_int16_t Data);

Description:

Load a 12-bit binary value into one of the digital to analog converters on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Dac: D/A converter to load. Valid values are DM6420HR_DAC1 and

 DM6420HR_DAC2.

 Data: Value to write to converter.

DM6420 Driver for Linux

69

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL dac is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Write to DAC1 Output Register at base I/O address + 12

 */

io_request.reg = r_DAC1_6420;

/*

 * Write 1984 (0x07C0 in two’s complement) to D/A converter

 */

io_request.value = 0x07C0;

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

LoadDigitalTable6420

int LoadDigitalTable6420(int descriptor, u_int16_t entries, u_int8_t *table_p);

Description:

Load a board’s digital table with the given number of entries.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Entries: Number of entries in digital table.

 Table_p: Address of memory containing digital table to send to board. This

 memory is an array of unsigned bytes.

Return Value:

 0: Success.

DM6420 Driver for Linux

70

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL entries is 0.

 EINVAL entries is greater than 1024.

IOCTL Interface:

This function makes use of several ioctl() requests.

LoadDINConfigRegister6420

int LoadDINConfigRegister6420(int descriptor, u_int16_t value);

Description:

Load a 16-bit value into a board’s Digital Input FIFO Configuration Register.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Value: Value to write into register.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Write to Digital Input FIFO Configuration Register at base I/O address + 10

 */

io_request.reg = r_DIN_CONFIG_6420;

/*

 * Set digital input FIFO clock source to output of user timer/counter 1

 */

io_request.value = 0x0001;

DM6420 Driver for Linux

71

/*

 * Enable digital input FIFO clock

 */

io_request.value |= (1 << 3);

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

LoadIRQRegister6420

int LoadIRQRegister6420(int descriptor, u_int16_t value);

Description:

Load a 16-bit value into a board’s Interrupt Register.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Value: Value to load into Interrupt Register.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Write to Interrupt Register at base I/O address + 8

 */

io_request.reg = r_IRQ_6420

/*

 * Set source of interrupts on first circuit to be write to digital input FIFO

 */

io_request.value = 0x000F;

/*

 * Use IRQ5 for first interrupt circuit

 */

io_request.value |= (1 << 6);

DM6420 Driver for Linux

72

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

LoadTriggerRegister6420

int LoadTriggerRegister6420(int descriptor, u_int16_t value);

Description:

Load a 16-bit value into a board’s Trigger Mode Register.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Value: Value to write into Trigger Mode Register.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Pacer Clock controls A/D conversion

 */

io_request.value = 0x0001;

/*

 * Start Pacer Clock when digital interrupt received

 */

io_request.value |= (1 << 3);

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

DM6420 Driver for Linux

73

OpenBoard6420

int OpenBoard6420(int DeviceNumber);

Description:

Open a DM6420 device file.

Parameters:

 DeviceNumber: Minor number of board device file.

Return Value:

 >=0: Success. The integer returned is the file descriptor from open() system

 call.

 -1: Failure. Please see the open(2) man page for information on possible

 values errno may have in this case.

IOCTL Interface:

None.

ReadADData6420

int ReadADData6420(int descriptor, int16_t *ad_data_p);

Description:

Read the 12-bit A/D sample from a board’s analog to digital FIFO.

NOTE: This function discards marker data from the A/D FIFO data. Calling

 ReadADData6420() and ReadADDataMarker6420() separately with the intention of

 getting data from a single sample will likely result in data being returned from two

 distinct samples.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_data_p: Address where A/D sample data read should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

DM6420 Driver for Linux

74

IOCTL Interface:

int rc;

int16_t ad_data;

struct DM6420HR_IO16 io_request;

/*

 * Read from A/D Data FIFO Register at base I/O address + 4

 */

io_request.reg = r_AD_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the A/D data.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 ad_data = ((int16_t) io_request.value >> 3);

}

ReadADDataMarker6420

int ReadADDataMarker6420(int descriptor, u_int8_t *data_marker_p);

Description:

Read the 3-bit data marker from a board’s analog to digital FIFO .

NOTE: This function discards A/D sample data from the A/D FIFO data. Calling

 ReadADDataMarker6420() and ReadADData6420() separately with the intention of

 getting data from a single sample will likely result in data being returned from two

 distinct samples.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Data_marker_p: Address where data marker should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

DM6420 Driver for Linux

75

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

u_int8_t data_marker;

/*

 * Read from A/D Data FIFO Register at base I/O address + 4

 */

io_request.reg = r_AD_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the A/D data.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 data_marker = (u_int8_t) (io_request.value & 0x0007);

}

ReadADDataWithMarker6420

int ReadADDataWithMarker6420(int descriptor, int16_t *ad_fifo_p);

Description:

Read the entire 16-bit contents of a board’s analog to digital FIFO . The most significant bit is

the

sign bit. The next 12 bits are the converted A/D data. The least significant 3 bits are the data

marker.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Ad_fifo_p: Address where A/D FIFO contents should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

DM6420 Driver for Linux

76

IOCTL Interface:

int rc;

int16_t ad_data;

struct DM6420HR_IO16 io_request;

u_int8_t data_marker;

/*

 * Read from A/D Data FIFO Register at base I/O address + 4

 */

io_request.reg = r_AD_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the A/D data.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

if (rc != -1) {

 ad_data = ((int16_t) io_request.value >> 3);

 data_marker = (u_int8_t) (io_request.value & 0x0007);

}

ReadChannelGainDataStore6420

int ReadChannelGainDataStore6420(int descriptor, u_int16_t *cgds_data_p);

Description:

Read a board’s channel/gain data word. This function assumes the caller knows whether or not

the channel/gain data store has been enabled since there is no way to query the board for this

status.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Cgds_data_p: Address where data read should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

DM6420 Driver for Linux

77

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from A/D Data FIFO Register at base I/O address + 4

 */

io_request.reg = r_AD_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the channel/gain data.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

ReadDINFIFO6420

int ReadDINFIFO6420(int descriptor, u_int8_t *digital_data_p);

Description:

Read 8 bits of data from the port 0 digital input FIFO.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Digital_data_p: Address where data read should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO8 io_request;

/*

 * Read from Digital Input FIFO Register at base I/O address + 10

 */

io_request.reg = r_DIN_FIFO_6420;

DM6420 Driver for Linux

78

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the digital data.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INB, &io_request);

ReadStatus6420

int ReadStatus6420(int descriptor, u_int16_t *status_p);

Description:

Read a board’s Status Register. Other library functions make use of this routine to perform their work.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Status_p: Address where status should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Status Register at base I/O address + 2

 */

io_request.reg = r_STATUS_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the register contents.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

DM6420 Driver for Linux

79

ReadTimerCounter6420

int ReadTimerCounter6420(

 int descriptor,

 enum DM6420HR_CLK_SEL Timer,

 enum DM6420HR_CLK Clock,

 u_int16_t *counter_value_p

);

Description:

Read the 16 bit contents of the desired timer/counter. The read is done as two 8-bit reads: least

significant byte then most significant byte.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Timer: Indicates which timer/counter to use. Valid values are

 DM6420HR_CLOCK_TC and DM6420HR_USER_TC.

 Clock: Indicates which counter to use. Valid values are

 DM6420HR_CLK0, DM6420HR_CLK1, and

 DM6420HR_CLK2.

 Counter_value_p: Address where timer contents should be stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Timer is not valid.

 EINVAL Clock is not valid.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

80

RemoveIRQHandler6420

int RemoveIRQHandler6420(int descriptor, enum DM6420HR_INT IRQChannel);

Description:

Uninstall the function which was previously registered as an interrupt callback by

InstallCallbackIRQHandler6420().

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IRQChannel: Board interrupt circuit that signal should be detached from. Valid

 values are DM6420HR_INT1 and DM6420HR_INT2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IRQChannel is not valid.

 EINVAL No IRQ was ever allocated to IRQChannel.

IOCTL Interface:

This function makes use of a single ioctl() call. However in addition to this ioctl() call, several

other system calls are used to reset process signal handling state; a description is beyond the scope

of this document.

ResetChannelGainTable6420

int ResetChannelGainTable6420(int descriptor);

Description:

Reset a board’s channel/gain table starting point to the beginning of the table.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

DM6420 Driver for Linux

81

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, DM6420HR_IOCTL_CLEAR, DM6420_CL_RESET_GAIN);

SelectTimerCounter6420

int SelectTimerCounter6420(int descriptor, enum DM6420HR_CLK_SEL Select);

Description:

Select which timer/counter on a board will be accessed when a subsequent operation is performed

on the registers located at base I/O address + 16 through base I/O address + 22. Other library

functions make use of this routine to perform their work.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Select: Indicate which timer/counter will be accessed. Valid values are

 DM6420HR_CLOCK_TC and DM6420HR_USER_TC.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Select is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Control Register at base I/O address + 2

 */

io_request.reg = r_CONTROL_6420;

/*

 * Only change bits 5 and 6 in Control Register

 */

DM6420 Driver for Linux

82

io_request.mask = 0xFF9F;

/*

 * Select User Timer/Counter

 */

io_request.value = (1 << 5);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetBurstClock6420

int SetBurstClock6420(int descriptor, double BurstRate, double *actual_p);

Description:

Set a board’s burst clock rate.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 BurstRate: Burst clock rate desired.

 Actual_p: Address where the actual programmed frequency should be stored.

 If this function fails, the actual frequency is not updated.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

This function makes use of several ioctl() requests.

SetBurstTrigger6420

int SetBurstTrigger6420(int descriptor, enum DM6420HR_BURST_TRIG Burst_Trigger);

Description:

Select a board’s burst mode trigger.

DM6420 Driver for Linux

83

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Burst_Trigger: What triggers a burst. Valid values are

 DM6420HR_BURST_TRIG_SOFTWARE,

 DM6420HR_BURST_TRIG_PACER,

 DM6420HR_BURST_TRIG_EXTERNAL, and

 DM6420HR_BURST_TRIG_DIGITAL.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Burst_Trigger is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bits 10 and 11 in Trigger Mode Register

 */

io_request.mask = 0xF3FF;

/*

 * Bursts triggered by external trigger

 */

io_request.value = (1 << 11);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

84

SetChannelGain6420

int SetChannelGain6420(

 int descriptor,

 enum DM6420HR_AIN Channel,

 enum DM6420HR_GAIN Gain,

 enum DM6420HR_RANGE Range,

 enum DM6420HR_SE Se_Diff

);

Description:

Load a board’s channel/gain latch.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Channel: A/D channel. Valid values are DM6420HR_AIN1,

 DM6420HR_AIN2, DM6420HR_AIN3, DM6420HR_AIN4,

 DM6420HR_AIN5, DM6420HR_AIN6, DM6420HR_AIN7,

 DM6420HR_AIN8, DM6420HR_AIN9, DM6420HR_AIN10,

 DM6420HR_AIN11, DM6420HR_AIN12, DM6420HR_AIN13,

 DM6420HR_AIN14, DM6420HR_AIN15, and DM6420HR_AIN16.

 Gain: A/D gain. Valid values are DM6420HR_GAINx1,

 DM6420HR_GAINx2, DM6420HR_GAINx4, and

 DM6420HR_GAINx8.

 Range: A/D input voltage range and polarity. Valid values are

 DM6420HR_RANGE_SIGNED5,

 DM6420HR_RANGE_SIGNED10, and

 DM6420HR_RANGE_UNSIGNED10.

 Se_Diff: Select single-ended or differential mode. Valid values are

 DM6420HR_SE_SE and DM6420HR_SE_DIFF.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Channel is not valid.

 EINVAL Gain is not valid.

 EINVAL Range is not valid.

 EINVAL Se_Diff is not valid.

DM6420 Driver for Linux

85

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Before loading channel/gain latch, bits 1 and 0 in Control Register at base

 * I/O address + 2 must be set to zeroes. This is not shown here.

 */

/*

 * Write to Load Channel/Gain Latch Register at base I/O address + 4

 */

io_request.reg = r_CHANNEL_GAIN_6420;

/*

 * Target of operation is analog input channel 7

 */

io_request.value = 0x0006;

/*

 * Set x2 gain

 */

io_request.value |= (1 << 4);

/*

 * Set differential mode

 */

io_request.value |= (1 << 9);

rc = ioctl(descriptor, DM6420HR_IOCTL_OUTW, &io_request);

SetConversionSelect6420

int SetConversionSelect6420(int descriptor, enum DM6420HR_CONV Select);

Description:

Configure how a board’s A/D conversion is done.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

DM6420 Driver for Linux

86

 Select: Indicates how A/D conversions are controlled. Valid values are

 DM6420HR_CONV_SOFT_TRIGGER,

 DM6420HR_CONV_PACER_CLOCK,

 DM6420HR_CONV_BURST_CLOCK, and

 DM6420HR_CONV_DIGITAL_INT.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Select is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bits 0 and 1 in Trigger Mode Register

 */

io_request.mask = 0xFFFC;

/*

 * Pacer clock controls A/D conversion

 */

io_request.value = 0x0001;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetIRQ0Source6420

int SetIRQ0Source6420(int descriptor, enum DM6420HR_INTSRC IRQSource);

Description:

Select the interrupt source of the first interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

DM6420 Driver for Linux

87

 IRQSource: Source of interrupt on first circuit. Valid values are

 IRQS_AD_SAMPLE_CNT_6420,

 IRQS_AD_START_CONVERT_6420,

 IRQS_AD_END_CONVERT_6420,

 IRQS_AD_WRITE_FIFO_6420,

 IRQS_AD_FIFO_HALF_6420,

 IRQS_AD_DMA_DONE_6420,

 IRQS_RESET_GAIN_TABLE_6420,

 IRQS_PAUSE_GAIN_TABLE_6420,

 IRQS_EXT_PACER_CLOCK_6420,

 IRQS_EXT_TRIGGER_6420,

 IRQS_DIGITAL_6420,

 IRQS_TC_COUNTER0_6420,

 IRQS_TC_COUNTER0_INVERTED_6420,

 IRQS_TC_COUNTER1_6420,

 IRQS_DIO_FIFO_HALF_6420, and

 IRQS_DIO_WRITE_FIFO_6420.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IRQSource is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Interrupt Register at base I/O address + 8

 */

io_request.reg = r_IRQ_6420;

/*

 * Only change bits 0 through 4 in register

 */

io_request.mask = 0xFFE0;

/*

 * Set interrupt source to be A/D FIFO half full

 */

io_request.value = 0x0004;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

88

SetIRQ1Source6420

int SetIRQ1Source6420(int descriptor, enum DM6420HR_INTSRC IRQSource);

Description:

Select the interrupt source of the second interrupt circuit on a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 IRQSource: Source of interrupt on first circuit. Valid values are

 IRQS_AD_SAMPLE_CNT_6420,

 IRQS_AD_START_CONVERT_6420,

 IRQS_AD_END_CONVERT_6420,

 IRQS_AD_WRITE_FIFO_6420,

 IRQS_AD_FIFO_HALF_6420,

 IRQS_AD_DMA_DONE_6420,

 IRQS_RESET_GAIN_TABLE_6420,

 IRQS_PAUSE_GAIN_TABLE_6420,

 IRQS_EXT_PACER_CLOCK_6420,

 IRQS_EXT_TRIGGER_6420,

 IRQS_DIGITAL_6420,

 IRQS_TC_COUNTER0_6420,

 IRQS_TC_COUNTER0_INVERTED_6420,

 IRQS_TC_COUNTER1_6420,

 IRQS_DIO_FIFO_HALF_6420, and

 IRQS_DIO_WRITE_FIFO_6420.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL IRQSource is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Interrupt Register at base I/O address + 8

 */

io_request.reg = r_IRQ_6420;

/*

 * Only change bits 8 through 12 in register

 */

DM6420 Driver for Linux

89

io_request.mask = 0xE0FF;

/*

 * Set interrupt source to be User Timer/Counter 0 countdown to zero

 */

io_request.value = (0xB << 8);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetPacerClock6420

int SetPacerClock6420(int descriptor, double clock, double *actual_p);

Description:

Set a board’s pacer clock rate. This function decides whether to use a 16-bit or 32-bit clock

depending upon the clock rate.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Clock: Clock rate desired.

 Actual_p: Address where the actual programmed frequency should be stored. If

 this function fails, the actual frequency is not updated.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL clock is greater than 8 MHz.

 EINVAL clock is 0.0.

 EINVAL clock is less than 0.0.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

90

SetPacerClockSource6420

int SetPacerClockSource6420(int descriptor, enum DM6420HR_PACER_CLK Source);

Description:

Select the source of a board’s pacer clock.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Source: Pacer clock source. Valid values are

 DM6420HR_PACER_CLK_INTERNAL and

 DM6420HR_PACER_CLK_EXTERNAL.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Source is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bit 9 in register

 */

io_request.mask = 0xFDFF;

/*

 * Set internal pacer clock

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

91

SetPauseEnable6420

int SetPauseEnable6420(int descriptor, int Enable);

Description:

Enable or disable a board’s A/D table pause bit.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Enable: Flag to indicate whether the A/D table pause bit should set. A value of

 0 means enable the pause bit. A nonzero value means disable the

 pause bit.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Control Register at base I/O address + 2

 */

io_request.reg = r_CONTROL_6420;

/*

 * Only change bit 8 in register

 */

io_request.mask = 0xFEFF;

/*

 * Activate pause bit in A/D table channel/gain scan memory

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

92

SetSampleCounterStop6420

int SetSampleCounterStop6420(int descriptor, int Disable);

Description:

Enable or disable a board’s A/D Sample Counter Stop.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Disable: Flag to indicate whether the A/D sample counter should stop the pacer

 clock. A value of 0 means enable sample counter stop. A nonzero

 value means disable sample counter stop.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Control Register at base I/O address + 2

 */

io_request.reg = r_CONTROL_6420;

/*

 * Only change bit 7 in register

 */

io_request.mask = 0xFF7F;

/*

 * Disable A/D sample counter stop

 */

io_request.value = (1 << 7);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

DM6420 Driver for Linux

93

SetStartTrigger6420

int SetStartTrigger6420(int descriptor, enum DM6420HR_START_TRIG Start_Trigger);

Description:

Configure how a board’s pacer clock is started during A/D conversion.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Start_Trigger: What starts the pacer clock. Valid values are

 DM6420HR_START_TRIG_SOFTWARE,

 DM6420HR_START_TRIG_EXTERNAL,

 DM6420HR_START_TRIG_DIGITAL_INT,

 DM6420HR_START_TRIG_USER_TC1, and

 DM6420HR_START_TRIG_GATE.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Start_Trigger is not valid.

 EOPNOTSUPP Start_Trigger is one of the three reserved bit patterns as

 defined in the hardware manual.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bits 2 through 4 in register

 */

io_request.mask = 0xFFE3;

/*

 * Start pacer clock when User Timer/Counter 1 counts down to zero

 */

io_request.value = (0x3 << 2);

DM6420 Driver for Linux

94

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetStopTrigger6420

int SetStopTrigger6420(int descriptor, enum DM6420HR_STOP_TRIG Stop_Trigger);

Description:

Configure how a board’s pacer clock is stopped during A/D conversion.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Stop_Trigger: What stops the pacer clock. Valid values are

 DM6420HR_STOP_TRIG_SOFTWARE,

 DM6420HR_STOP_TRIG_EXTERNAL,

 DM6420HR_STOP_TRIG_DIGITAL_INT,

 DM6420HR_STOP_TRIG_SAMPLE_CNT,

 DM6420HR_STOP_TRIG_ABOUT_SOFTWARE,

 DM6420HR_STOP_TRIG_ABOUT_EXTERNAL,

 DM6420HR_STOP_TRIG_ABOUT_DIGITAL, and

 DM6420HR_STOP_TRIG_ABOUT_USER_TC1.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Stop_Trigger is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bits 5 through 7 in register

 */

io_request.mask = 0xFF1F;

DM6420 Driver for Linux

95

/*

 * Stop pacer clock by software trigger

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetTriggerPolarity6420

int SetTriggerPolarity6420(int descriptor, enum DM6420HR_POLAR Polarity);

Description:

Select which edge of an external pacer clock triggers a board’s burst mode.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Polarity: Which external pacer clock edge triggers burst mode. Valid values are

 DM6420HR_POLAR_POSITIVE and

 DM6420HR_POLAR_NEGATIVE.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Polarity is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bit 12 in register

 */

io_request.mask = 0xEFFF;

DM6420 Driver for Linux

96

/*

 * Set external trigger to occur on negative edge

 */

io_request.value = (1 << 12);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetTriggerRepeat6420

int SetTriggerRepeat6420(int descriptor, enum DM6420HR_REPEAT Repeat);

Description:

Select whether or not a trigger initiates multiple A/D conversion cycles.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Repeat: Indicates whether or not A/D conversion cycles repeat. Valid values

 are DM6420HR_REPEAT_SINGLE and

 DM6420HR_REPEAT_REPEAT.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Repeat is not valid.

IOCTL Interface:

int rc;

struct DM6420HR_MIO16 io_request;

/*

 * Write to Trigger Mode Register at base I/O address + 6

 */

io_request.reg = r_TRIGGER_6420;

/*

 * Only change bit 13 in register

 */

io_request.mask = 0xDFFF;

DM6420 Driver for Linux

97

/*

 * Enable trigger repeat

 */

io_request.value = (1 << 13);

rc = ioctl(descriptor, DM6420HR_IOCTL_MOUTW, &io_request);

SetUserClock6420

int SetUserClock6420(

 int descriptor,

 enum DM6420HR_CLK Timer,

 double InputRate,

 double OutputRate,

 double *actual_p

);

Description:

Set up a board’s user clock.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 Timer: Indicates which counter to use. Valid values are DM6420HR_CLK0,

 DM6420HR_CLK1, and DM6420HR_CLK2.

 InputRate Input frequency to specified counter.

 OutputRate: Desired output rate from specified counter.

 Actual_p: Address where the actual programmed frequency should be stored. If

 this function fails, the actual frequency is not updated.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL Timer is not valid.

IOCTL Interface:

This function makes use of several ioctl() requests.

DM6420 Driver for Linux

98

StartConversion6420

int StartConversion6420(int descriptor);

Description:

Issue a Start Convert (software trigger) command to a board.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for read access.

IOCTL Interface:

int rc;

struct DM6420HR_IO16 io_request;

/*

 * Read from Start Convert Register at base I/O address + 6

 */

io_request.reg = r_START_CONVERSION_6420;

/*

 * Any value works here because it is ignored making this request. However, on return from

 * ioctl(), the member variable value contains the data read but in this case we’re not interested

 * in the value at all … just the fact that the read was performed.

 */

io_request.value = 0;

rc = ioctl(descriptor, DM6420HR_IOCTL_INW, &io_request);

StartDMA6420

int StartDMA6420(int descriptor, enum DM6420HR_DMA DMAChannel, size_t TransferBytes);

Description:

Start DMA on a board’s specified DMA circuit.

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

DM6420 Driver for Linux

99

 DMAChannel: DMA circuit to operate on. Valid values are DM6420HR_DMA1

 and DM6420HR_DMA2.

 TransferBytes: Number of bytes to transfer in a single DMA. This value must be

 even because the entities transferred are 16-bit signed converted

 A/D values.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL DMAChannel is not valid.

 EINVAL No DMA channel was ever allocated to DMAChannel.

 EINVAL No DMA buffer was ever allocated to DMAChannel.

 EINVAL TransferBytes is odd.

 EINVAL TransferBytes is greater than the DMA buffer size.

IOCTL Interface:

int rc;

struct DM6420HR_DST io_request;

/*

 * Target of operation is first DMA circuit

 */

io_request.dma = DM6420HR_DMA1;

/*

 * DMA transfer size is 4096 bytes (2048 words)

 */

io_request.length = 4096;

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_START, &io_request);

StopDMA6420

int StopDMA6420(int descriptor, enum DM6420HR_DMA DMAChannel);

Description:

Stop DMA on a board’s specified DMA circuit.

DM6420 Driver for Linux

100

Parameters:

 descriptor: File descriptor from OpenBoard6420() call.

 DMAChannel: DMA circuit to operate on. Valid values are DM6420HR_DMA1

 and DM6420HR_DMA2.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EACCES descriptor refers to a file that is open but not for write access.

 EINVAL DMAChannel is not valid.

 EINVAL No DMA channel was ever allocated to DMAChannel.

IOCTL Interface:

int rc;

/*

 * Halt DMA on second DMA circuit

 */

rc = ioctl(descriptor, DM6420HR_IOCTL_DMA_STOP, DM6420HR_DMA2);

DM6420 Driver for Linux

101

Example Programs Reference

 Name Remarks

dm6420-auto-burst Demonstrates how to use the pacer clock, burst clock, sample

counter, and channel/gain table to scan groups of channels multiple

times.

dm6420-auto-scan Demonstrates using the sample counter and pacer clock to do

multi-scan sampling.

dm6420-dac Demonstrates how to use the digital to analog converter.

dm6420-digital-interrupt Demonstrates how to use advanced digital interrupts in event mode.

dm6420-digital-io Demonstrates how to read and write the digital I/O ports. Uses port

0 for input and port 1 for output.

dm6420-dma Demonstrates using DMA transfers to acquire data.

dm6420-dual-dma Demonstrates using both DMA circuits on a board to transfer data.

dm6420-dual-dma-data-viewer Demonstrates how to read the data from the dual_dma.dat file

generated by the dm6420-dual-dma example program.

dm6420-multi-burst Demonstrates how to perform an analog to digital conversion on

multiple channels using the channel/gain table.

dm6420-sample-counter Demonstrates how to use the sample counter to generate interrupts.

dm6420-soft-trigger Demonstrates how to initiate an analog to digital conversion using a

software trigger.

dm6420-speed-test Demonstrates three different IRQ handling and data read methods:

1) using a callback routine invoked via the driver interrupt handler

sending a signal to the process; data is read using streaming input,

2) polling the IRQ counter for an interrupt circuit; data is read one

sample at a time, and 3) polling the IRQ counter for an interrupt

circuit; data is read using streaming input.

dm6420-stream Demonstrates using streaming input to read blocks of data from the

digital input FIFO.

dm6420-test-lib-errors Test program to validate library error checking. This program

exercises the error checking code added to the library. All exported

functions are verified. The following types of tests are performed:

1) a function fails when expected, 2) if a function fails as expected.

errno is set as expected depending upon the cause of failure, 3) a

function succeeds when expected, and 4) if a function can accept

multiple valid inputs, it succeeds on all combinations of such inputs.

dm6420-throughput Allows one to see how the driver works when a board is converting

A/D data at a particular throughput rate and converted data is being

read using a specified method. Data can be retrieved as follows:

1) reading one sample at a time, 2) using streaming input, 3) using

single channel DMA, and 4) using dual channel DMA. In all cases,

interrupts are used to signal availability of data. Every five seconds,

the program prints status information.

dm6420-timers Demonstrates how to program the 8254 programmable interval

timers.

dm6420-user-timer Demonstrates how to set up the User Timer to generate interrupts at

a specified rate, poll the appropriate interrupt counter, and perform

an A/D conversion when the counter changes.

DM6420 Driver for Linux

102

Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it

manufactures and produces to be free from defects in materials and workmanship for one

year following the date of shipment from RTD Embedded Technologies, INC. This

warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies will repair or

replace, at its option, any defective products or parts at no additional charge, provided

that the product is returned, shipping prepaid, to RTD Embedded Technologies. All

replaced parts and products become the property of RTD Embedded Technologies.

Before returning any product for repair, customers are required to contact the factory for

an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH

HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such

as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow

the operating instructions that are provided by RTD Embedded Technologies, "acts of

God" or other contingencies beyond the control of RTD Embedded Technologies), OR

AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN

RTD Embedded Technologies. EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO

OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-

NESS FOR A PARTICULAR PURPOSE, AND RTD Embedded Technologies

EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL

IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR

MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE

LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE

PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE

PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS

PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD Embedded

Technologies BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY

DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES,

EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS,

AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN

IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR

EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY

ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

DM6420 Driver for Linux

103

 RTD Embedded Technologies, Inc.

 103 Innovation Blvd.

 State College PA 16803-0906

 USA

 Our website: www.rtd.com

