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ABSTRACT 

INTELLIGENT WHEELCHAIR UTILIZING A FUZZY APPROACH WITH 

COGNITIVE, FACIAL AND SPEECH INPUTS FOR USER COMMANDS 

By 

Alfie Gil 

Master of Science 

In Mechanical Engineering 

Creating tools and devices to provide ways to give independence to persons with 

disabilities is important. Everyone should have an opportunity to live as independently as 

possible and have a life filled with their own decisions and choices. Utilizing devices can 

alleviate some of the challenges for persons with limited mobility. In this case, a fuzzy 

logic controller was developed to dynamically control and interpret user commands to the 

motors of a powered wheelchair. This would assists the user into navigating their 

surroundings employing user commands via electroencephalography (EEG) signals, facial 

movements, and vocal inputs. 

Human subjects participated in a study. In this particular investigation, the results 

are from individuals with no physical and cognitive disabilities. Subjects that participated 

utilized the user commands mentioned previously in order to maneuver through an obstacle 

course to meet a particular objective. The course was completed using different modes of 

motion control: a manual mode, a hybrid mode, and a hybrid mode combined with the 

fuzzy logic controller. The manual mode was used as a baseline as there is no machine 



xii 

 

intervention from path planning algorithms or fuzzy logic interpretation. These different 

modes were compared based on successfulness of completion, time duration to complete 

the objective, number of collisions encountered, and distances travelled but not be limited 

to these comparison in results. Using the results from the study, the user commands and 

controller were evaluated and rated on various criteria. 

 

 



 

 

1.0 INTRODUCTION 

In general, BCI systems consists of a device that acquires signals from the brain 

which can be used to manipulate an external device or end effector. Conceptually, this is 

easier said than done. BCI technology is still very challenging. For users, that still have 

ability to move, this technology is almost unnecessary. Individuals with limited mobility 

would benefit more with this technology, but it would still provide a challenging method 

of communication. 

BCI Wheelchair graduate project aims to provide an intelligent powered wheelchair 

for individuals with limited mobility that require hands-free methods to interact with their 

wheelchair. This graduate project is part of the Mechanical Engineering Department at 

California State University, Northridge. This is an important project because, no matter 

who you are, each person deserves to live the way they choose and use tools like these can 

give more possibilities to live independently. There should be options for individuals with 

limited mobility and the availability for the customization of tools and devices so that each 

person’s needs can be approached on an individual level instead of a one size fits all 

concept. 

To alleviate the challenges of BCI technology for the users, a shared control was 

considered where the powered wheelchair will autonomously make decisions on its motion 

control and be aided by the user with hybrid modes of user commands in combination with 

cognitive, facial, and speech commands. In addition, a fuzzy logic interpreter will 

determine the users intended direction based on the intent of the command and levels of 

likeness of that command. A human study was administered to compare these different 

modes and create a rating system of the commands used as well as compare different shared 
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control modes. This rating system should create a way for wheelchair users to find the 

mode easiest for them to interact with their powered wheelchair. In addition, the developed 

controller can increase intelligence of the wheelchair to create a more reliable way for users 

to interact with their machines more naturally and with little effort. 
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2.0 BACKGROUND 

2.1 Brain Computer Interface Systems Background 

Imagine for a moment that you could control things or machines with only your 

thoughts. This idea can be seen in science fiction, games, toys, and movies such as Avatar, 

where a paraplegic soldier interfaces with an “avatar”, which is an external bioengineered 

alien version of himself that is controlled by his brain. Another example is The Matrix, 

where human beings unknowingly interact with and are trapped in an alternative virtual 

reality, which their minds are plugged into. Star Wars Science created a mind trick game 

and toy called the Jedi Force Trainer, where the user using a headset can move a ping pong 

sized object up and down using their mind. These are examples of Brain Compute Interface 

(BCI) systems in popular culture. BCI technology is not a new idea. It has been around but 

only until now has it had some further movements in its development. 

In the simplest form, “… BCI systems measure specific features of brain activity 

and translate them into device control signals (Schalk, et al., 1034).” In a basic BCI systems 

consist of at least the following elements: 1. A device that acquires brain activity from a 

subject in a form at which a compute or controller can understand, 2. Brain activity signals 

are processed by the computer and interprets the features from the signal based on a set of 

algorithms and logic, 3. The translated brain activity gets converted into an action per the 

subject’s request, and 4. Some form of user feedback for the subject’s verification. 

2.1.1 Data Acquisition 

There are 2 common methods of acquiring the brain activity signals: Noninvasive 

and Invasive. Noninvasive data acquisition are typically acquired by placing electrodes 

over the surface of the scalp in specific regions of interest. Invasive data acquisition are 
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more intrusive requiring surgery and data is collected by carefully implanting electrodes in 

or on the surface of the brain. 

The intelligent powered wheelchair, discussed in a later passage, is using a 

noninvasive type of Electroencephalography (EEG) technology. The noninvasive device 

will be used to “measures differences in the electrical potential between two locations on 

the scalp, which are produced by the changing electrical activity of the neurons in the brain 

(Burdet, et al, 12)”. 

2.1.1.1 Electroencephalography 

BCI systems are found commonly using EEG as the method of monitoring the brain 

activity. EEG is a measurement of electrical activity of the brain which is collected via 

electrodes and measured in terms of electrical potential as voltage, and it resembles 

fluctuating waves or more complex patterns. EEG is currently being used for diagnosis of 

neurological disorders and the creation of computerized tomography (such as a CT scan) 

that can be read to indicate altered mental status, head trauma, and much more. Other 

applications of EEG are used for brain electrical activity mapping, evoked potentials, and 

other neurodiagnostic tests. For this discussion EEG is used for a BCI system for users to 

interact with a machine. 

2.1.2 Signal Processing 

Recorded brain activity have features that can be extracted which could be used to 

determine the subject’s intent. There are many features seen in the signal such “features or 

signals that have been used [in the past] include slow cortical potentials, P300 evoked 

potentials, sensorimotor rhythms recorded from the cortex, and neuronal action potentials 

recorded within the cortex (Cook and Polgar, 246),” but not limited to these.  
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2.1.3 User Application and Feedback 

Features can be extracted and an algorithm or a set of algorithms can be used to 

translate these features to commands that a machine can do. Typically, there would be a 

feedback for the subject or user. Feedbacks depend on the application, could either be 

visual or tactical. 

2.1.4 Other Works 

Some applications and research of BCI systems are as follows: 

 EEG into Cursor Movements (Fabiani, et al.) 

 EEG as reward signals for Reinforcement Learning (Iturrate, Montesano 

and Minguez) 

 Noninvasive brain actuated wheelchair relying on P300 neurophysiological 

protocol and automated navigation (Iturrate, et al.) 

2.2 Current Wheelchair Project under Investigation 

The current BCI wheelchair under investigation is the Brain Computer Interface 

Wheelchair graduate project at California State University, Northridge. This project aims 

to make an autonomous powered wheelchair utilizing mental commands, facial gestures, 

and speech recognition as mechanisms for the users to interact with the motion control of 

the wheelchair. The autonomous mode of the wheelchair is where the motion of the 

wheelchair is decided by the computer to navigate the surroundings. The concept of radial 

path planning is used as the base of the motion control of this vehicle. There are other 

features for terrain detection, to select preferred surfaces to travel across, obstacle 

avoidance, and outdoor navigation. 
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The current wheelchair used for this investigation has the ability to navigate paths 

and avoid obstacles using a radial polar histogram (RPH) algorithm which is based on the 

radial path planning concept. This wheelchair can also travel to predefined locations 

without user inputs using an outdoor navigation algorithm. It incorporates a hybrid BCI 

system where the inputs are from the brain activity, facial movements, and/or speech 

commands from the subject, and based on the surrounding area. This hybrid BCI 

wheelchair is meant for “persons with limited use of their legs and arms such as amputees 

or quadriplegics (Lin, et al., 316).” Users can interact with the wheelchair by changing the 

direction of motion and stopping and starting motion. These commands are translated based 

on a fuzzy logic controller that will interpret the commands themselves. The fuzzy logic 

controller, also referred to as the fuzzy logic interpreter, is based on the intent of the user 

from the EEG signals, vocal inputs, and objects nearby. Any combination of the following 

methods can be used to create commands for the intelligent powered wheelchair: cognitive 

commands, facial gesturing commands, and speech commands. These features allow the 

user to have full control or allow autonomy of motion of the powered wheelchair without 

the need to physically interact with it. An overview of the system can be seen in Figure 1. 
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2.3 User Inputs 

The wheelchair would not be called a BCI system without interfacing with the 

brain. This is where the user inputs come into play. The following are the user inputs that 

are used to interface with the intelligent wheelchair: 

 Cognitive commands using brain activity 

 Facial commands using facial expressions and gestures 

 Speech commands interpreted by speech recognition software 

2.3.1 Cognitive Commands via EEG 

The user trains cognitive commands through the software interface collecting 

samples from the raw EEG, brain activity sample, and through a series of pattern 

recognition and machine learning algorithms. Historically, BCI systems used P300, other 

event evoked potentials, or motor imagery, but not limited to these stimuli, to cognitively 

interface with machines. According to the developer of the EEG headset used, those 

responses are not considered (gmac 2013). Pattern recognition and machine learning 

algorithms proprietary to the company are processing the EEG which neglects artifacts due 

to muscle movements (gmac 2013), refer to 3.1.1 for the discussion of the EEG headset 

used. 

There are many difficulties using EEG. One of the challenges is achieving 

consistency from the users for their cognitive commands. It isn’t an everyday task to create 

consistent cognitive thoughts, and there are not a lot of home use products on the market 

that use a brain computer interface. “When using the EEG as a clinical tool, one should 

always keep in mind that the EEG recording is simply a random sample of the person’s 

brain electric activity taken at a particular period of time” (Duffy, Iyer and Surwillo 1989). 
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If the brain activity isn’t captured at the moment when the user is training a sample for 

command recognition, then the sample itself wouldn’t necessarily mean anything, as it 

would just be a random occurrence of brain activity. 

Even if the user were able to train the machine to understand their mental 

commands, another problem occurs due to feedback lag. For example, if the user creates a 

mental command, then that action may not activate immediately. Techniques used for 

motion control of a BCI system that interacts with a robotic arm found that “a major issue 

in describing motor control is the problem of integrating the one-way input-output 

processing involved in neural information for motion planning and execution with the two-

way energy exchange that characterizes interaction…with the environment and delayed 

neural feedback” (Burdet, Franklin and Milner, 5).  

2.3.2 Facial Commands via EMG 

There are three common artifacts seen in EEG: 1. Heart pulses which are recorded 

in an electrocardiogram (ECG), 2. Muscle movements, which are recorded in an 

electromyogram (EMG), 3. Eye movements, which are recorded in an electrooculogram 

(EOG). Facial commands are generated by the user through movement of the face creating 

common facial expressions such as smiling, blinking, and even laughter utilizing the EMG 

artifact, and eye movement direction such as looking left or looking right utilizing the EOG 

artifact in the live EEG recordings from the users. Gestures like these can be associated to 

different actions the machine can understand. 
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2.3.3 Speech 

Speech commands are made by the user verbally creating a series of words that 

correlate to an action. Similar to hands-free setting on cell phones to make calls, read text 

messages, or navigate with the built in GPS. 

2.4 Fuzzy Logic Background 

Fuzzy logic is a line of reasoning based on truth values that vary between 0 and 1. 

Compared to the classical logic or Boolean logic where these truth values are only “True” 

or “False,” 1 or 0, fuzzy logic can address a range of values for partial truths, which aren’t 

completely true or completely false. This definition is considered the narrow sense or micro 

scale view of fuzzy logic. Fuzzy logic can also be defined in a board sense as “all of the 

theories and technologies that employ fuzzy sets, which are classes with unsharp 

boundaries” (Yen and Langari 1999, 3). The design of the fuzzy logic interpreter, discussed 

in Section 3.2, uses the board sense of the concept.  

Fuzzy logic applications are decision-making support, pre-diagnostic and inquiry 

system, medical diagnosis, databases, scheduling, speech recognition, automotive speed 

control (Terano, Asai and Sugeno 1994), rice cookers, washing machines, and toilets. For 

this design, fuzzy logic will be used to interpret the users’ intent and convert it to a local 

heading that the powered wheelchair can use to govern its motion control. 

The following passages are some of the fuzzy logic concepts that will be considered 

for the fuzzy system design which are fuzzy sets and their membership functions, linguistic 

variables, fuzzy rules, and defuzzification. 
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2.4.1 Fuzzy Sets and Membership Functions 

A fuzzy set is a set of values that vary between 0 and 1 or a set of values with 

degrees of membership. Fuzzy sets are special because they can be used in a combination 

with other techniques and in terms of natural language. For example, to determine when 

the air condition is turned on or turned off based on if it is hot, warm, or cold and/or very 

hot, slightly hot, or not so hot. “Fuzzy sets are a mathematical method that [were] invented 

with the goal of expressing the semantic ambiguity in human language, and they are unique 

in that they make it possible to deal scientifically with subjectivity” (Terano, Asai and 

Sugeno 1994, 6). 

Fuzzy sets “contain objects that satisfy imprecise properties of membership… [and 

where boundaries]…of the fuzzy sets are vague and ambiguous. (Ross 1995, 10-11)” 

Membership functions are “function[s] that maps objects in a domain of concern to their 

membership value in the set… [and]...provides a gradual transition from regions 

completely outside a set to regions completely in the set” (Yen and Langari 1999, 29). 

Fuzzy sets are at times considered not well-defined as classical sets, or crisp sets, but 

despite the notion of the ambiguity of the fuzzy set, they can be defined clearly with the 

use of a membership function where the elements of the set lies between 0 and 1. They are 

considered “fuzzy” because they aren’t strictly defined as a unique value of either off or 

on, or false or true, since they can vary between 0 and 1. Fuzzy sets have infinite 

possibilities so their membership function can also have infinite variations. “The most 

commonly used in practice are triangles, trapezoids, bell curves, Gaussian, and sigmoidal 

functions” (Yen and Langari 1999, 25). 
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2.4.2 Linguistic Variables 

Linguistic variables are both a description in linguistic terms and qualitatively as a 

membership function. These linguistic terms are descriptions of the variable in words 

commonly used in normal day to day conversation like tall, short, heavy, light, loud, soft, 

etc… “A linguistic variable is like a composition of a symbolic variable (a variable whose 

value is a symbol) and a numeric variable (a variable whose value is a number)” (Yen and 

Langari 1999, 31). 

2.4.3 Fuzzy Rules 

Once linguistic variables are determined they can be used in combination with 

fuzzy if-then rules, fuzzy rules; normally determined by experts or through observations. 

These fuzzy rules in this instance are conditional statements; IF “this” THEN “that”. 

“[This] fuzzy implication…, is known as the generalized modus ponens form of inference” 

(Ross 1995, 269). In the if-then rule, the “this” is an antecedent, premise or condition, and 

the “that” is a consequent, conclusion as a result of the antecedent. These rules are used in 

a knowledge base in fuzzy systems. 

2.4.4 Defuzzification 

Using these concepts and other techniques, defuzzification can be implemented. In 

fuzzy systems, inputs can be discrete values that become fuzzified. “Fuzzification is the 

process of making crisp quantity fuzzy” (Ross 1995). Basically, the discrete values is 

turned into a degree of membership of the fuzzy set(s) so that they are in terms of fuzzy 

value. Defuzzification is the opposite of fuzzification. Defuzzification is used when a 

discrete value is desired. 
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3.0 INTEGRATION OF USER INPUTS 

This passage will discuss the method of communication the user can employ to 

interact with the intelligent powered wheelchair. These methods, user inputs, will be used 

to interpret the heading the wheelchair should take. There are 4 user commands (forward, 

left, right, and stop) that can be used in any combination of the 3 different methods 

(cognitive, facial, and speech). The heading is referring to the local heading of the 

wheelchair, this direction is in terms of degrees where the immediate right is 0° and to the 

left is 180°, refer to Figure 2. The heading will be determined based on the output of a 

fuzzy logic interpreter. The fuzzy logic interpreter takes multiple inputs i.e. the user inputs 

(intent and confidence) and surrounding obstacles. It also uses fuzzy techniques in 

combination with the fuzzy rules, and implication, refer to section 2.4, so that a discrete 

value can be obtained for the local heading of the wheelchair. This fuzzy logic interpreter 

will be discussed in more detail in section 3.2. 

 

Figure 2: Heading Orientation* 

*The image on the left is the local heading of the wheelchair. The image on the right is the 

coordinate system the fuzzy logic interpreter uses but will output the user heading based on the 

local heading coordinate system. 
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3.1 User Inputs 

The user or subject can use one or a combination of the following commands to 

interact with the intelligent powered wheelchair: cognitive (using mental thoughts), facial 

(using facial gestures), and speech (using the voice). Each command can provide the 

direction: forward, left, right, and stop; and magnitude of the direction: slight, medium, 

and wide, or no change, “normal” turn, and large turn. The terminology will depend on 

what type of command is used. The software will determine what is appropriate. The 

software is created in LabVIEW and utilizes Software Development Kits from Emotiv to 

detect cognitive and facial expressions for cognitive and facial commands, and Microsoft 

Speech Recognition to detect speech inputs for speech commands. The following will 

discuss in more detail what commands can be made. 

3.1.1 Cognitive Commands 

Cognitive commands are interpreted using an Emotiv EEG headset and the Emotiv 

Research Edition Software Development Kit (SDK). The EEG headset used has 14 

channels along the scalp. This headset was designed for the gaming industry. Despite their 

target audience, plenty of researchers have used this headset for BCI systems. The headset 

is compact, easy to set up, aesthetically pleasing, and compatible for this real-time 

application. The “Cognitiv” Suite can take mental commands generated by the user, and 

the suite’s algorithm interprets the brain activity and associates it to 13 cognitive actions 

(push, pull, lift, drop, left, right, rotate left, rotate right, rotate clockwise, rotate counter 

clockwise, rotate forwards, rotate reverse, and disappear). 

Each cognitive action has a direct influence on a cube generated on the screen, so 

if the cognitive action was a push, then the cube would be pushed forward. This action 
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doesn’t necessarily have to be the same as the mental thought that the user wants to create 

to generate the action. These thoughts could be one or more of the following (but not 

limited to this list): 

 A color or colors 

 A figure 

 A mental event or task 

 A mental task added with a physical task like making a fist 

 Multiple things like sounds, visual images, and patterns rehearsed in the 

mind. 

The subjects were given the freedom to choice their thoughts. Refer to section 5.0 on the 

thoughts used by the subjects. 

The original concept was to only use cognitive commands. Many users find it 

challenging to create more than one or two cognitive commands. So multimodal commands 

were considered, where the user could choose different combinations of commands that 

were easiest for them to do. 

Using the Emotiv Cognitiv Suite demo software, limited the users to 4 cognitive 

actions could be used at once. Emotiv claims that, “increasing the number of concurrent 

actions increases the difficulty in maintaining conscious control over the Cognitiv detection 

results (Emotiv, 31).” The software for the wheelchair does not put a limit but since there 

are currently only 4 commands a user can make, 4 cognitive commands can be used if an 

experienced user is able to manage them. 
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An example of a command a user would use is to mentally visualize an event such 

as pushing a box. This would be associated to a cognitive action such as “push”. To 

associate this action, the software needs to sample brain activity while the user is creating 

the mental command. To train a cognitive command, multiple 8 second samples of brain 

activity are collected. This will serve as a training set for the software to detect features in 

the brain signal to determine the intent of the subject. Each detected command has an action 

power. The action power is the defined as the likeliness that it was the intended command. 

The detected command and this likeliness value will be used by the fuzzy logic interpreter. 

3.1.2 Facial Gestures 

Facial commands are generated by the user by moving facial muscles to perform 

gestures or expressions. The Emotiv Expressiv Suite can detect facial expressions such as 

blinking, left and right winking, raising and furrowing one’s eyebrow, smiling, clenching 

of the teeth, laughter, and left and right smirking. The Emotiv SDK has a universal 

signature, a profile that works with most people. In the case this universal signature does 

not recognize the user’s facial expressions as well, each subject has the opportunity to train 

specific facial expressions. Signals are taken from the EEG, recall that EMG is an artifact 

that appears in recorded EEG. Similar to cognitive training, facial expressions are collected 

from EEG signals through the headset. The Emotiv headset can detect eye movement as 

well, recall that EOG is an artifact of EEG and has a unique pattern so that feature can be 

detected. This could be paired to a command, but since the user has to use their eyes to 

visually detect obstacles in the path of the wheelchair it would not be desirable to use them 

as inputs. For example, the user must move their eyes to look over an obstacle but if eye 

movements were a command, it would consider this as an input and travel towards the 
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obstacle instead of avoiding it. The following is a list of facial expressions that users will 

select to be associated to a command: left and right wink, raise and furrow eyebrows, 

clench, and left and right smirk. Using the universal signature or the unique, trained 

signature for the user, the facial expression will be detected and the software will assign an 

intent. Each detection will also have an action power similar to the cognitive action power 

which is a value of the likeliness of that particular gesture. The action power and the intent 

will be sent to the fuzzy logic interpreter. 

The Expressiv Suite has other expressions that will not be considered for user 

commands such as blinking, looking left or right, smiling and laughter. These were not 

used because it will continually poll for these actions, and the software cannot judge 

without help if a particular expression is intended or involuntary. 

3.1.3 Speech Commands 

Speech commands are detected using Microsoft speech recognition and the built-

in microphone of the laptop. A grammar list is created with words that will be detected by 

the speech recognition software. These words will be used to create speech commands. 

Grammar List: 

1. Listen 

2. Forward 

3. Left 

4. Right 

5. Stop 

6. Slight 

7. Medium 

8. Wide 

9. Cancel 

 The speech commands are structured differently than the cognitive and facial 

commands. Speech has 3 phases: 1. Listening, 2. Direction, and 3. Magnitude. 
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The listening phase is when the user gets the attention of the software to start 

detecting speech commands. This phase is a hotkey for the software to know that the user 

intends to create a speech command. The reason this was implemented was to prevent false 

commands when the user is speaking casually without the intent of creating a command. 

Once the software detects that the user intends to create a command, the wheelchair will 

stop moving and the speech command will go into the next phase, the direction phase. 

The direction phase is where the user will give the different commands such as 

forward, left, right and stop. The forward command lets the wheelchair know to move 

forward. This ends the speech command and the magnitude phase is skipped. Left or right 

commands will set the wheelchair to make a left or right turn, and then it will go into the 

magnitude phase where the user can determine the desired region. Stop will turn off the 

autonomous mode, will prevent the wheelchair from continuing to move, and will not go 

into the magnitude phase. 

The magnitude phase is only meant for making turns. It allows the user to determine 

approximately how much to turn. After setting the magnitude it will complete the speech 

command and will output a heading and intent for the fuzzy logic interpreter. Unlike 

cognitive and facial commands there is no likeliness value so instead a discrete heading 

will be sent to the interpreter and converted to a percentage. The user can select a slight, 

medium, or wide turn. The behavior of the turn is based on the membership functions of 

each magnitude, refer to section 3.2.1, and the motion control will determine the speeds of 

each wheel based on the heading computed by the fuzzy logic controller. 

The “cancel” phrase will cancel the command and go back into the autonomous 

mode. The user can cancel in any part of the phases except if the speech command was 
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completed in all its phases, which happens after setting a magnitude for the turns or setting 

a forward or stop command in the direction phase. 

When the listening phase is actuated the computer will output an audio feedback 

for the user to know what the computer has heard. For example, if a user wanted to create 

a slight right turn, the following would occur: 

User: “Listen” 

The wheelchair will stop moving 

Computer: “Listening. What is your command?” 

User: “Right” 

Computer: “Making a right turn. How far Right?” 

User: “Slight” 

Computer: “Making a slight turn” 

Ends the speech command and the wheelchair would proceed to make the turn. 

Other Examples of Speech Command Word Combinations: 

 Listen  Left Wide 

 Listen  Stop 

 Listen  Forward 

 Listen  RightMedium 

 Listen  Cancel 

 Listen  Left  Cancel 

3.1.4 Order of Priority 

Since the user inputs could be any combination of different methods it is important 

to note the priority the commands. If a speech command is detected, it will override any 

cognitive or facial commands. If a facial command is detected without a speech command, 

the facial command will override any cognitive command. If a cognitive command is 

detected, it will only be used if no other method is detected. The priority is as such: 1. 

Speech, 2. Facial, and 3. Cognitive, refer to the flowchart in Figure 3. 
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Figure 3: Command Priority Flowchart 

3.2 Fuzzy Logic Interpreter 

Sending multiple cognitive commands is challenging especially for new users. It 

also can be overwhelming for users because once in a mental state of frustration, it does 

not matter your level of experience, the cognitive detection may not interpret your intended 

signals. This can give false positives on commands that the user may not want to send. A 

fuzzy logic controller was designed and added between the user inputs and the motion 
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control to possibly alleviate the user by lower their frustration and establish a better sense 

of communication to the machine. Let us call this fuzzy logic controller a fuzzy logic 

interpreter. This will convert the user inputs and translate them to something the machine 

can understand as a user heading, refer to Figure 4. The heading convention is different in 

the fuzzy logic interpreter than the local heading of the wheelchair for symmetry purposes, 

refer to Figure 5. 

 

Figure 4: Overview of Fuzzy Logic Interpreter 

 

Figure 5: Fuzzy Logic Heading Convention 
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The fuzzy logic interpreter takes in multiple inputs and has a single output. The 

multiple inputs consist of the user command which has 2 components (detected action and 

confidence level) and obstacle detection at 3 specific regions from the laser range finder 

(LRF) collected data. The final output is the “user heading” which refers to the local 

heading or the direction the wheelchair will move towards. There are two fuzzy systems 

that will be used to do this. The first one is used to take the intent and confidence values 

and determine the intended heading. The intended heading will be used to locate the 3 

specific points on the LRF data which will give distances of obstacles from the wheelchair. 

These distances and the intent (same as the intent sent to the first fuzzy system) will be sent 

to the second fuzzy system. This fuzzy system is based on an obstacle avoidance fuzzy 

logic controller. The second fuzzy system determines a value to correct the heading, by 

either adding or subtracting from the intended heading. This corrected heading will be the 

user heading that is sent to the motion control. Refer to the following passages on the design 

of these fuzzy systems. 

Refer to the APPENDIX A and APPENDIX B for the inputs and output variables, 

and rules used in designing the fuzzy systems to interpret the Intending Heading and 

Corrected Heading, respectively, utilizing the Fuzzy Logic Toolkit in LabVIEW. Note 

some of the terminology is different from this current discussion for ease of understanding. 

3.2.1 User Intended Heading 

Using fuzzy logic, a fuzzy system was designed to interpret the discrete heading 

value that is sent to the motion control so that the vehicle speed can be determined. This 

fuzzy system takes the user input as the intended direction in terms of forward, left, and 

right, and the level of the likeness of the command such as action power from Cognitv and 



23 

 

Expressiv detection suites. Speech commands are detected with a confidence value, but 

due to the multiple parts of the command, a value is set based on the command made. 

The input variables for this fuzzy system is defined as “Intent” and “Confidence”. 

Detected commands like Forward, Left, and Right are represented as singleton membership 

functions. These actions are assigned a value between 0-4 for the purpose of the software 

to distinguish between these actions. They are defined using Table 1 and Figure 6. 

Table 1: "Intent" Membership Definition 

Membership Function Shape Range Value 

Forward Singleton 1 

Left Singleton 2 

Right Singleton 3 

 

The membership function can be illustrated as the following: 

 

Figure 6: Membership Functions of the "Intent" Variable for Intended Heading 
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This input variable acts like a Boolean or a crisp value because only one command can be 

detected at a time. If the detected intent is Left, it cannot also be a detected intent of Right. 

The intent can only be one or the other, it will never be 2 or more of these intents. 

 For a stop command, the detected command will bypass the fuzzy systems and go 

directly to motion control to stop the wheelchair from moving. 

The input variable called “Confidence” varies between 0-100% and consists of 3 

membership functions. The 3 membership functions are “Very Sure”, “Sure”, and “Not So 

Sure”. These are illustrated in Figure 7. 

 

Figure 7: Membership Functions for the "Confidence" Variable 

The membership function “Very Sure” is used when the confidence level of the detected 

intent is high; and very likely that was the detected command is the correct one. “Sure” is 

used when the detected command is more than likely correct. “Not So Sure” is used when 

the detected command is not likely to be correct. 

 The output variable for this fuzzy system is defined as “Intended Heading”. 

Intended Heading varies between -90° and 90°. It consists of 7 membership functions: 
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“Wide Left”, “Medium Left”, “Short Left”, “Forward”, “Short Right”, “Medium Right”, 

and “Wide Right”. Short, medium, and wide refers to the magnitude of the turn from small 

to large respectively. Refer to Figure 8 for the output membership functions for the 

Intended Heading. 

 

Figure 8: Output Membership Function for Intended Heading 
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The knowledge base consists of 9 fuzzy rules. The following are the fuzzy rules 

used: 

Rule 1. IF 'Intent' IS 'Left' AND 'Confidence' IS 'Very Sure' 

THEN 'Intended Heading' IS 'Wide Left' 

Rule 2. IF 'Intent' IS 'Left' AND 'Confidence' IS 'Sure' 

THEN 'Intended Heading' IS 'Medium Left' 

Rule 3. IF 'Intent' IS 'Left' AND 'Confidence' IS 'Not So Sure' 

THEN 'Intended Heading' IS 'Short Left' 

Rule 4. IF 'Intent' IS 'Forward' AND 'Confidence' IS 'Very Sure' 

THEN 'Intended Heading' IS 'Medium Forward' 

Rule 5. IF 'Intent' IS 'Forward' AND 'Confidence' IS 'Sure' 

THEN 'Intended Heading' IS 'Medium Forward' 

Rule 6. IF 'Intent' IS 'Forward' AND 'Confidence' IS 'Not So Sure' 

THEN 'Intended Heading' IS 'Medium Forward' 

Rule 7. IF 'Intent' IS 'Right' AND 'Confidence' IS 'Very Sure' 

THEN 'Intended Heading' IS 'Wide Right' 

Rule 8. IF 'Intent' IS 'Right' AND 'Confidence' IS 'Sure' 

THEN 'Intended Heading' IS 'Medium Right' 

Rule 9. IF 'Intent' IS 'Right' AND 'Confidence' IS 'Not So Sure' 

THEN 'Intended Heading' IS 'Short Right' 

In summary, the rules can be visualized in Table 2. 

Table 2: Rule Table for Intended Heading 

Confidence 

Intent 

Not So Sure Sure Very Sure 

Forward Forward 

Left Short Left Medium Left Wide Left 

Right Short Right Medium Right Wide Right 

Stop** Stop 

 

**Stop is not in the Fuzzy Rules but if the intent is stop for any level of confidence, the 

vehicle should stop. 
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Various defuzzification techniques were simulated to narrow down which gave the 

best output based on prior experiences. The center of maximum (CoM) was selected to 

obtain a discrete value for the intended heading. This intended heading will be used for the 

next fuzzy system for determining the Corrected Heading which will be used as the User 

Heading for motion control. 

3.2.2 Corrected Heading 

The second fuzzy system will use observations of detected obstacles around the 

intended heading and determine whether the intended heading needs to be corrected. This 

fuzzy system is based on a fuzzy logic obstacle avoidance controller. For example, if the 

intent of the user was to go forward and the prior fuzzy system determined the heading to 

be 90° (directly in front of the wheelchair), and there are obstacles near the wheelchair in 

front and to the left, the fuzzy system would adjust the heading and make the wheelchair 

move more to the right instead of directly in front of the wheelchair. The reasons for this 

are for safety and to reduce collisions. If the user created the command in error, e.g. the 

user meant to make a right turn but triggered the forward command unintentionally, and an 

obstacle was directly in front of the wheelchair, this fuzzy system would change the 

heading either to turn left or right to avoid the obstacle. 

Making a command in error occurs more often in crowded environments, 

dynamically changing environments, and surroundings with a lot of distractions. So this 

part of the fuzzy logic interpreter is a failsafe in the case that the user makes an 

unintentional command. This fuzzy system aims to reduce the user inputs in difficult 

situations. It handles situations where: 1. The user intends to turn but does not turn enough 

to avoid obstacles, 2. Identifies too many obstacles and attempts to turn around, and 3. 
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Does nothing if obstacles are close by. What it does not handle is if the operation detected 

the wrong command, as in the user intended to turn right but the software detected a left 

turn instead. The difference scenarios that can be addressed are illustrated in Figure 10. 

There are 4 input variables for this fuzzy system: “Left”, “Intended”, “Right”, and 

“Intent”. Left, Intended, and Right refer to detected obstacles based on the intended 

heading. Intended is the distance of the detected obstacle located at the intended heading. 

Left and Right are the distances of the detected obstacles to the left and right of the intended 

heading. Left, Intended, and Right have 2 membership functions: “Near” and “Far”. Near 

and Far refer to obstacles that are either too close or far enough away. “Intent” is from the 

original detected intent and is the same linguistic variable from the previous fuzzy system, 

refer to Figure 6. The membership functions for Left, Intended, and Right have the same 

membership functions, refer to Figure 9, but the value taken is based on the obstacle 

detected in those 3 regions. 

 

Figure 9: Membership Functions of Near and Far (Used for "Left", "Intended", and 

"Right" Input Variables) 
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Figure 10: Scenarios of Detected Obstacles 
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The output variable for this fuzzy system is called “Corrected Heading” and 

contains 7 membership functions: “Large Left Turn”, “Turn More Left”, “Turn Left”, “No 

Change”, “Turn Right”, “Turn More Right”, and “Large Right Turn”. These membership 

functions refer to what should change in the intended heading. If turning left or right, it 

would subtract or add to the heading, respectively. The terms such as “Large”, “Turn 

More”, and “Turn”, refer, from largest to smallest respectively, to the magnitude of change 

applied to the heading. Refer to Figure 11 for the membership functions. 

 

Figure 11: Membership Functions for the "Corrected Heading" Output Variable 

Table 3 summarizes the fuzzy rules and the associated scenarios used for the 

knowledge base for this fuzzy system. The fuzzy operation for the IF-THEN rules is the 

conjunction (AND) which means that the rules would follow this format: 

IF “Intended” IS “Near/Far” AND “Left” IS “Near/Far” AND “Right” IS “Near/Far” AND 

“Intent” IS “Detected Command” 

THEN “Corrected Heading” IS “Behavior”.  
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Table 3: Fuzzy Rules for Calculating the Corrected Heading 

Scenario Rule Intended Left Right Intent Behavior 

I 

1 Near Near Near Forward Large Right Turn 

2 Near Near Near Left Large Left Turn 

3 Near Near Near Right Large Right Turn 

II 

4 Near Near Far Forward Turn More Right 

5 Near Near Far Left Large Left Turn 

6 Near Near Far Right Turn Right 

III 

7 Far Near Near Forward Turn More Left 

8 Far Near Near Left Turn Left 

9 Far Near Near Right Large Right Turn 

IV 

10 Near Far Far Forward Turn More Right 

11 Near Far Far Left Turn More Left 

12 Near Far Far Right Turn More Right 

V 

13 Far Near Near Forward No Change 

14 Far Near Near Left Large Left Turn 

15 Far Near Near Right Large Right Turn 

VI 

16 Far Near Far Forward Turn Right 

17 Far Near Far Left Large Left Turn 

18 Far Near Far Right No Change 

VII 

19 Far Far Near Forward Turn Left 

20 Far Far Near Left No Change 

21 Far Far Near Right Large Right Turn 

VIII 

22 Far Far Far Forward No Change 

23 Far Far Far Left No Change 

24 Far Far Far Right No Change 

 

Various defuzzification methods were simulated and it was determined that the CoM 

method gave the desired results. Using CoM, the Corrected Heading can be obtained as a 

discrete value. This value is set as the User Heading which is sent to motion control. 
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4.0 VALIDATION 

The purpose of this study is to investigate alternative methods of interacting with an 

intelligent powered wheelchair and to determine if these methods are more beneficial. The 

lessons learned from this study could help define what is most effective for controlling an 

intelligent powered wheelchair BCI system via different hands free methods and between 

different combinations of shared control techniques. 

Approval for this Human Subject Research was obtained to conduct this study 

through the Committee for Protection of Human Subjects at California State University, 

Northridge. The following passage will outline the subjection information, recruitment 

procedures, and experiment design and procedures. 

4.1 Participants Considered 

Upon approval of the human subject protocol, recruitment began. Flyers were 

distributed at the university with posting approval from the university and social media 

invitations were sent out via Facebook. Participants were selected based on the inclusion 

and exclusion criterion discussed on the next page. All participants were given an 

opportunity to read and understand the consent form and purpose of the study prior to 

signing the consent form. 
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Participants were selected based on the following inclusion and exclusion 

requirements submitted with the approved human subject protocol. 

Inclusion Requirements: 

 18 years of age or older. 

 Able to transfer them self into a standard size powered wheelchair. 

 Able to speak. 

 Do not have any perceptual impairments. 

 Willing to be in contact with saline solution. 

 Fall in either of the following categories: 

o You are a person with no cognitive and physical disabilities. 

o You are a person with physical disabilities which requires the use of a 

manual wheelchair or powered wheelchair. 

Exclusion Requirements: 

 If the Emotiv Electroencephalography (EEG) Headset: 

o Does not fit their head. 

o Is unable to establish a connection with the computer i.e. due to hair 

thickness. 

 The participant is unable to view a computer screen or laptop screen set on a table 

while seated. 
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Ten participants were selected and 7 of these participants were able to complete some 

obstacle sessions. Of the 7, there were 2 females and 5 males varying between the ages of 

18-32. The other participants terminated their involvement or became unavailable prior to 

sessions in the obstacle course, refer to the timeline in Figure 12. They all had no prior 

experience using the intelligent powered wheelchair of interest or other BCI systems. 

4.2 Human Subject Research Experiment Design and Procedures 

Each subject attempted a manual mode, a shared control mode without the fuzzy 

logic interpreter, and a shared control mode with the fuzzy logic interpreter. The manual 

mode was the base from which the other modes were compared in order to determine their 

unique challenges and difficulty. 

Human Subject Research Protocol Procedure: 

1. Pre-Training Session 

2. Training Sessions 

3. Practice Sessions 

4. Obstacle Course(s) 

5. Questionnaire 

6. End of Study 

Refer to the timeline in Figure 12 for the duration of the study. 

4.2.1 Pre-Training Sessions 

During the Pre-Training Session, the Emotiv EEG headset was fitted on the subject. 

This was to determine if the headset would fit them and to see if a connection could be 

made. If they were able to connect, then they would be considered for the study. The most 

common failures were a result of the size and shape of the subject’s head and the density 
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of the subject’s hair. These factors could prevent the headset from sitting on the head 

properly and reduce connectivity to the electrodes. Pre-training determines if the fit would 

not work well on a, subject before they get heavily involved in the study. This process is 

relatively brief, about 30 minutes, compared to the rest of the study which can take months 

to complete. 

4.2.2 Training Sessions 

Once it is confirmed that the subject can use the headset, they can start doing the 

training sessions. During the training session, training samples are collected. There are 

three different training samples taken for cognitive, facial, and speech detection. These 

training samples are used by the software to recognize the cognitive, facial, or commands. 

Cognitive training collects 8 second samples of EEG recordings. The subject must think of 

the mental command during this 8 second sample. Facial training also collects an 8 second 

sample but this time the subject will physically preform a facial expression to. Facial 

training does not always require samples as the universal signature tends to work well for 

most individuals. Cognitive and facial training require a neutral action to be trained. This 

neutral action is really a neutral state where the user is relaxed and not attempting to 

stimulate their mind or make a facial expression. For facial training of the neutral action, 

the subjects is asked to relax and not blink. Lastly, speech training requires subjects to read 

a prompt activated through the built-in Microsoft Speech Recognition software. Unique 

speech profiles will be created which will allow the software to better detect their verbal 

commands. After the commands are created, the subjects have a chance to get familiar with 

the new movement style of the wheelchair since it is a significantly different experience 

when the wheelchair is in manual mode than autonomous mode. 
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4.2.3 Practice Session 

When the users are completely confident of their commands they do a practice 

session. This is where they get to use the commands with the autonomous mode on. During 

the practice session, commands are requested to be performed. If the subjects can do the 

commands successfully, they move onto the obstacle course. If they are not able to do 

certain commands, additional training sessions are conducted to collect more samples to 

increase the reliability of the command (or likeness of the command to be recognized by 

the software). 

4.2.4 Obstacle Courses 

Various courses were designed for the obstacle sessions. There are 3 obstacle 

courses proposed in the human subject protocol. All the obstacle courses were setup in a 

classroom with barrels, tables, and markings per applicable course. These were proposed 

but not necessarily completed by all subjects due to various situations such as time 

commitment and scheduling. 

The first obstacle course was designed to provide the subjects with more than one 

path to take, in order to give them choices so they do not rely solely on the autonomous 

features. Refer to Figure 13 for the layout of obstacle course 1 and an example of a path 

that the wheelchair may take for this setup. The barrels and tables used for this course can 

be seen in Figure 14 which is an image of the actual obstacle course. 

The second obstacle course has waypoints, locations or goals, to travel to. This is 

to simulate going to and from locations in a daily life setting and to add a more complex 

situation for the subjects to navigate. Refer to Figure 15 for the layout of obstacle course 

2. 
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Figure 13: Obstacle Course 1 Layout 

 

Figure 14: Image of Classroom Setup 
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Tables 
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Figure 15: Obstacle Course 2 Layout 

 

Figure 16: Obstacle Course 3 Layout 
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The third obstacle course has only one path but moving obstacles to simulate the 

dynamically changing atmosphere of a real life situation; travelling through a hallway with 

peers walking by or crossing paths with the user, refer to Figure 16. 

These courses were meant to compare the different shared control modes with the 

autonomous features and the multimodal commands, as well as to see how well the 

wheelchair and the subjects perform when navigating through different courses. During the 

obstacle courses, observations were made such as erroneous operations by the user or the 

wheelchair, completion of course, and duration of completion, if applicable. Data was 

collected from motor encoders, predicted paths taken, and other vehicle parameters to 

determine distances taken. The results will be discussed in more detail in section 5.0. 
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5.0 RESULTS 

The following section will discuss the results of the study are: 1. Evaluation of 

Commands Execution, 2. Evaluation of Intelligent Wheelchair Performance. The results 

are from training sessions, practice sessions, and obstacle course 1 sessions. Due to lack of 

completion by the subjects, obstacle courses 2 and 3 are not discussed in these results. 

These items are outlined in the following subsections. Refer to the APPENDIX C for more 

details on the data collection such as standard deviations, maximum values, and minimum 

values. 

5.1 Evaluation of Training Success and Command Execution 

1. Total Training Session Time: The total time for all the training sessions. 

2. Sample Ratio: The total samples used for command recognition over the total 

samples taken per command type. 

3. Frequency of Commands Used: The average amount of commands per type 

and control mode. 

4. Frustration Score: The average value of the emotional state of frustration 

detected by the Emotiv EEG headset collected during each run. 

The total training session time per subject is summarized in Figure 17. The training 

sessions included activities such as taking samples, command executions, and practice of 

commands (speech, facial, and cognitive). The actual training sessions may take longer 

than projected as it does not account for equipment set up and interruptions. These training 

sessions were on a weekly basis and can vary between 1-2 hours per session for several 

months. 
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Figure 17: Total Training Session Time per Subject 

Cognitive command recognition training contributed to the bulk of the time for 

training sessions. Subject 1 and 4 can execute more than 1 cognitive commands. Subject 5 

and 8 were having inconsistencies executing their cognitive commands but made extra 

effort to use a single cognitive command. This could explain why their training sessions 

were longer than the rest. Subject 3 did not use cognitive commands but attempted 

cognitive training. Subject 6, 9, and 10 trained only one cognitive command. One cognitive 

command or less may contribute to lower training session times. Majority of the impact on 

the total training session time was due to cognitive command training. 

Speech command training required one training set and is simple to do. Subject 6 

was the only subject that required multiple speech command samples. Other than that 

subject, only one sample was acquired from all other subjects. Speech training is relatively 

1 3 4 5 6 8 9 10

Total Session Time 15.75 6.42 14.17 17.00 6.50 11.50 5.83 6.33

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

T
im

e,
 H

o
u
rs

Total Training Session Time per Subject



43 

 

quick and may only take about 10-15 minutes to complete which does not impact the 

training session significantly. 

Facial command training does not normally require samples taken as it works for 

most individuals. Subjects 3, 5, and 6 went through facial command training. Despite facial 

command training, Subject 3 could not manage facial commands. Subject 1 did some facial 

command training but did not use the samples instead they used the universal signature that 

required no training. No samples were acquired from all other subjects. These subjects used 

the universal signature. 

The results show varying times per subject. This was a result of the different efforts 

needed to collect the varying command recognition samples. Each subject had individual 

or common challenges that may have contributed to longer training session times. 

The sample ratio represents the percentage of the amount of samples used for the 

training set for command recognition over the total samples attempted for command 

recognition. The percentages are summarized in Figure 18. For reference, the blank spaces 

in the facial sample ratios refers to those subjects using the universal signature which 

required no facial command training. 

The sample ratios for cognitive command training varies per subject but overall is 

low compared to facial and speech command training. During the cognitive command 

training process, a lot of samples were collected but not every sample was accepted by the 

subject or the subject was unable to manage the cognitive command with the collected 

sample. In the case the subject was unable to manage the command, more samples were 

collected to replace the training set. Due to sample rejection, significant amount of samples 
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were collected but only a few were used to create a cognitive command which resulted in 

low sample ratios. 

 

Figure 18: Sample Ratios per Command Type 

The sample ratio for facial command training was almost unnecessary as the device 

was able to detect most of the subjects’ facial expressions. Almost all of the subjects used 

the universal signature without the need to do facial command training. Subject 5 and 6 

required facial command training. Recall that Subject 3 went through facial training, but 

was unable to manage the commands. This is reflected by the 0% sample ratio. There are 

3 out of 8 subjects that underwent the full facial command training process where 1 out of 

those 3 subjects failed to use facial commands completely. 
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The sample ratios for speech command training are all 100% because all samples 

collected were used. For most subjects, only one training set was collected for the speech 

command recognition. In ideal conditions, the speech commands were registered with no 

problem.  

Frequency of commands used is the average of the amount of commands used 

during the obstacle course sessions. The results are summarized in Figure 19-Figure 22 

representing all commands used, and the different control modes (manual, autonomous, 

fuzzy logic autonomous). In the content of the figures, “Speech” refers to obstacles sessions 

where only speech commands were used. “EEG” refers to obstacles sessions where only 

cognitive and facial commands were used. “Multimodal” refers to obstacle sessions where 

speech, cognitive, and facial commands were used. 

 

Figure 19: Frequency of Commands Used per Control Type and Obstacle Course 1 Run 

Type 

Speech EEG Multimodal
Average

per Run

Manual Control 12.73 45.67 44.88 28.41

Autonomous Control 7.33 58.25 55.20 36.81

Fuzzy Logic Autonmous

Control
7.86 44.08 41.07 28.41
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Based on the total commands used, refer to Figure 19, speech commands were used 

less often than cognitive and facial commands combined in general. In the sessions where 

speech was the only mode of command, there were less speech commands used when 

shared control was used compared to manual control. To see the cognitive commands and 

the facial commands separately, the different control modes are separated and the different 

averages of the commands used in these modes are identified in Figure 20-Figure 22. 

Based on the different control modes in Figure 19, the average frequency of 

commands in the fuzzy logic autonomous mode is less than the manual control. The 

autonomous mode without fuzzy logic is the main wheelchair navigation system. The fuzzy 

logic autonomous control is an improvement to the main navigation system as well as 

having less commands executed during this mode than manual control. The values of the 

frequency of cognitive and facial commands for the fuzzy logic system is still close to 

manual control values. This was due to erroneous operation in the fuzzy logic autonomous 

mode (as well as in the autonomous mode without fuzzy logic) where the wheelchair 

travelled undesirably such as multiple turns around the objective or improper calibration 

of the LRF position on the chair rendering obstacle avoidance less accurate. These 

erroneous operations also lead to more collisions, refer to Section 5.2. 
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Figure 20: Break Down of Average Commands used in Manual Control 

In manual control, refer to Figure 20, facial commands were used the most. 

Cognitive commands were used less often than speech commands when compared between 

speech only runs and runs with combined cognitive and facial commands. When subjects 

were allowed to decide to pick any combination of commands, speech commands were 

used the least and the facial commands were used the most. Cognitive commands, in this 

case, were used more than speech but relatively low in comparison to facial commands. It 

appears from the usage of commands in the manual control that facial commands are most 

preferred and speech the least preferred. This preference is repeated in autonomous control 

and fuzzy logic autonomous control, refer to Figure 21 and Figure 22 respectively. 
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Figure 21: Break Down of Average Commands Used in Autonomous Control 

 

Figure 22: Break Down of Average Commands Used in Fuzzy Logic Autonomous 

Control 
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The frustration score is the average value of the emotional state of frustration 

detected by the Emotiv EEG headset collected during an entire run. This value was 

collected to evaluate if frustration levels can be lowered using shared control. The average 

frustration scores are summarized in Table 4. Unfortunately, due to technical difficulties 

the frustration scores were not acquired during the speech only sessions. Based on the 

average frustration scores, shared control had lower values than manual control. Fuzzy 

logic autonomous control had the lowest overall average. 

Table 4: Frustration Scores 

Control Mode Command Type Frustration Score 

Average 

Manual 

Control 

Speech N/A 

EEG 0.72 

All 0.62 

Total 0.66 

Autonomous 

Control 

Speech N/A 

EEG 0.60 

All 0.63 

Total 0.62 

Fuzzy Logic 

Autonomous 

Control 

Speech N/A 

EEG 0.63 

All 0.56 

Total 0.59 

 

5.2 Evaluation of Intelligent Wheelchair Navigation Performance 

1. Objective Completion: The percentage of completed objectives over the total 

amount of runs attempted per category 

2. Time: The average time taken to complete the objective of all runs per 

category in seconds 

3. Number of Collisions: The average number of collisions per category 

4. Distance Travelled per Wheel: The average distance travel per wheel based on 

motor encoder counter converted to meters per category 



50 

 

The results of the runs recorded where the objectives were completed are 

summarized as the percentage of completed objectives over the total amount of runs 

attempted per category in Figure 23. There is a significant improvement of completed 

objectives using shared control compared to manual control, there is an increase of 40% or 

greater of the completed objectives in shared control than in manual control. Fuzzy logic 

autonomous control has a 4% increase of total runs completion compared to autonomous 

control without fuzzy logic. 

 

Figure 23: Objective Completion Percentages 
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The time was recorded for each run and the average time taken to complete the 

objective of all runs per category in seconds is summarized in Figure 24. Runs that used 

speech commands only, have the longest run times due to the wheelchair stopping during 

a collection of a speech command. Autonomous control without fuzzy logic surprisingly 

has the highest average time when using a combination of cognitive and facial (“EEG” 

column) commands and a combination of commands picked by the subjects (“Multimodal” 

column). Despite having longer than expected results, averaging all the runs for 

autonomous control without fuzzy logic performs better than manual control. Based on the 

subjects’ comments, the fuzzy logic felt more responsive to their commands. This could be 

why the fuzzy logic autonomous mode had shorter run times compared to the other control 

modes as well as similar frequency of commands used during manual control mode. 

Manual control has the highest average times of all the runs, autonomous control has the 

second highest average time, and lastly, fuzzy logic autonomous control has the lowest 

overall time. 

To evaluate the performance of the wheelchair navigation, the number of collisions 

was recorded. To summarize the number of collisions recorded per run the average was 

calculated and represented in Table 5. Despite having obstacle avoidance algorithms for 

motion control, there are more collisions occurring in both autonomous modes. The fuzzy 

logic autonomous mode has a smaller average for collisions compared to the autonomous 

mode without fuzzy logic. Manual control has the lowest average of collisions. Therefore, 

the autonomous modes are not reducing the amount of collisions and did not perform as 

well as manual control. 
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Figure 24: Average Time (in seconds) to Complete Objective per Run 
 

Table 5: Number Collisions per Mode and Command Type 

Control Mode Command Type Average Collisions 
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Total 0.73 
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Control 
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Total 0.51 
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To evaluate if the wheelchair navigation is taking an optimal path (shortest distance 

travelled), the distance the wheelchair travelled was recorded. Unfortunately, due to errors 

in the logs actual recorded paths were not taken so instead motor encoder data was used to 

calculate the distance travelled per wheel. The distance the wheelchair travelled was 

evaluated per wheel in meters. Motor encoder counts per wheel was collected converted to 

distance travelled per wheel, the summary of the average distance travelled is represented 

in Figure 25 and Figure 26. In manual control, the distances travelled are very consistent 

between the different command types and are the shortest distances travelled, 

approximately 9.1-9.3 meters. The shorter distances may be due to the stop and go nature 

of manual control which reduced the tendency to overshoot the objective area as well as 

the subjects being observant of the surrounding obstacles. The fuzzy logic autonomous 

control had the largest variation in distance travelled between the different command types 

and had a shorter distance travelled based on all the runs collected compared to the 

autonomous mode without fuzzy logic. Fuzzy logic autonomous control has the largest 

distances travelled while using speech commands only. It appears that the fuzzy logic 

autonomous control may be struggling with speech commands as the mechanism for 

interpreting the command is different than cognitive and facial commands. 
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Figure 25: Average Distance Travelled by Left Wheel 

 

Figure 26: Average Distance Travelled by Right Wheel  
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6.0 CONCLUSIONS 

In conclusion, the shared control method utilizing a fuzzy logic interpreter to 

distinguish user heading in combination with hands free commands created by the user for 

an autonomous hybrid BCI wheelchair is feasible. The fuzzy logic autonomous shared 

control has a high success rate for completion of the objective and has the fastest average 

run times. The distances travelled in this mode and the lack reduction of the number 

collisions compared to manual control can be due to the autonomous path planning and 

motion control, as the results for autonomous control without fuzzy logic performed in a 

similar fashion. It is also interesting to note that the fuzzy logic autonomous mode has the 

lowest frustration score. Based on observations, the subjects like the responsiveness to their 

commands in this mode. The fuzzy logic interpreter is a viable addition to this intelligent 

powered wheelchair. 

In manual control mode, shorter distances were achieved and had the lower average 

of collisions per run. In this mode, there is no assistance from the decision making part of 

the algorithms. Based on observations during the runs for this mode, subjects actively are 

making judgements to prevent collisions prior to moving. Making these active assessment 

requires some time to make reasonable judgements to deliver a command which can be 

seen in the longer run times for manual control. The clearance between the obstacles and 

the wheelchair were much smaller than what the tolerances were allowed during 

autonomous mode of the wheelchair. It appears that despite having path planning, 

algorithms for decision making, and a larger safety zone, the wheelchair autonomous 

control modes with or without fuzzy logic clearly need a better sense of what users’ desire 

as safe. Despite this, more objectives were completed during the autonomous modes 
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compared to manual control. The users play an important part of the decision making 

process and their decisions should be rated higher than the decisions from the machine. 

The machine’s role should be to assist the user since the successful rate of completely the 

objective is higher rather than dominating the decision making process from the user. 

The fuzzy logic autonomous shared control performs as well or better than the 

autonomous shared control without fuzzy logic, refer to Table 6: Summary of Intelligent 

Wheelchair Navigation Performance Values Table 6. The fuzzy logic autonomous shared 

control also out performed manual control in objective completion and run times. Future 

improvement to the fuzzy logic interpreter, the autonomous algorithms, and sensor range 

may improve the reduction of collisions, reduce distance travelled, and improve command 

responsiveness, refer to section 6.1. 

Table 6: Summary of Intelligent Wheelchair Navigation Performance Values 

Intelligent Wheelchair Navigation Performance Values For 

Reference 

Mode Objective 

Completion 

Completion 

Time 

Average 

Collision 

Encountered 

Distances 

Travelled 

Frustration 

Scores 

Manual 

Control 

Low Slowest Low Shortest 0.66 

Autonomous 

Control 

High Faster Medium Furthest 0.62 

Fuzzy Logic 

Autonomous 

Control 

High Fastest Medium In-between 

Manual and 

Autonomous 

Control 

0.59 

 

Subjects faced a lot of challenges using the BCI wheelchair. One of the most 

obvious challenges for the individual was learning how to activate their cognitive 
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commands. The relationship between the thought and the activation of the command is 

more complicated than they expected. This is seen through the results where there are 

longer training sessions times with subjects attempting multiple cognitive commands, low 

sample ratios (meaning more samples taken but low success of useful training samples), 

and low frequency of usage. From observations, the low frequency was due to the lack of 

confidence the subjects had utilizing this type of command. There is a learning curve per 

each individual. To learn how to use the cognitive functions of a BCI wheelchair is like 

learning how to use a new muscle. Cognitive training is an important part of using the 

commands with confidence and it is the most challenging. 

 Facial commands were the most used and required no or little additional training. 

The sample ratio for facial commands is high for samples taken for training. Most of the 

samples were useful and aided in facial command detection. The frequency of use of facial 

commands was extremely high. It was easy to use and manage. A disadvantage to this is 

instead of reducing the commands the user needs to use, it increases it, making the users 

more actively control the motion of the wheelchair instead of letting the autonomous 

controls do the work. Facial commands are preferred method for the subjects giving them 

more control over the wheelchair movement. 

 Speech commands are fairly easy to train and use except when it does not detect 

correctly. The training session was short and in ideal situations has not required additional 

training. Due to the length of time required to use a speech command, the frequency of the 

commands was low. Another possible reason for the infrequent use of this command is due 

to not detecting the verbal input correctly. This could be due to hardware limitations and 

external noise which can be easily fixed as better hardware is available off the shelf. 



58 

 

The obstacles course is a controlled setting and may not reflect the realistic 

challenges these commands will face during everyday usage. The results do not reflect 

other issues. For example, speech commands may not always detect your inputs or detect 

them correctly forcing repetitive vocal inputs which can be disruptive. When you are in a 

meeting or a classroom and the user wants to adjust the position of their wheelchair, they 

need to speak out loud and by doing that can be distracting to others. In addition, the 

particular way these commands are executed for this study is lengthy. If the user wants to 

get somewhere in a hurry, they may not want to use speech commands. So maybe using 

cognitive or facial commands are better since you do not have to speak out loud. Well these 

command types have other issues as well. Facial commands are used most frequently but 

if the user wanted to talk to someone, that movement of the face can also move the 

wheelchair when the user may not want it to move at all. To create a facial command 

depending on the facial expression used it may look silly or may create embarrassing facial 

gestures that imply suggestive body language creating undesired attention to the user. 

Cognitive commands may be the best choice to have discrete commands without being 

disruptive but it requires a lot of concentration and focus so in loud and distracting 

environments it may difficult to execute. Each type of command has its unique problems 

in a real setting. 

Based on the results and issues discussed in the paragraph above, the command 

types make be used in a different applications so that they are more effective, refer to 

section 6.1 for future applications of these commands for the BCI wheelchair. In summary, 

refer to Table 7, for recommended applications for the different command types. For 

speech commands, the commands can be shorten to activate or disable features such as a 
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hotkey that turns on and off the autonomous modes that assist the user. Or have command 

phrases or statements to communicate different actions. For example, telling the machine 

to drive you to the local store similarly like how a person would talk to their standalone 

personal GPS device or smartphone to assist with driving directions. This would reduce 

the amount of time to execute the speech commands as well as being more direct with the 

machine. Due to the challenges of cognitive commands, simplifying how they are used 

would make them more effective as well as restricting to one command. For example, use 

a cognitive command to changing the speed of the wheelchair by looking at the duration 

of a cognitive commend. The longer an individual concentrates on their cognitive 

command the faster the wheelchair will move or the concentrating for smaller amount of 

time will slow the vehicle down. Another example would be to use other features of the 

brain signals to use as inputs for the fuzzy logic interpreter to improve the effectiveness of 

a command such as concentration, focus, medication, and/or excitement but not limited to 

these signals. Lastly, facial commands are really a detection of muscle movements so 

instead of restricting to only facial expressions, other muscle actuations could be detected. 

This would alleviate the face to do other things such as talking to peers. 

Table 7: Recommended Applications for Command Types 

Command Type Application 

Speech Use phrases to communicate to different features, i.e. Outdoor 

Navigation, or a hot key enabling features 

Cognitive Use emotional states such as frustration, excitement, and/or 

meditation for additional inputs i.e. Speed Control or inputs to 

assist the Fuzzy Logic 

Facial Consider other muscle actuations on the body 
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 For a summary of the evaluation of training success and command execution, refer 

to Table 8. Facial commands are used the most than all other commands. Speech 

commands appear to have a good execution rate for all modes as in they have a low 

frequency of use. During the different control modes, speech commands have high 

successful rates of completion. It can be concluded that speech and facial commands are 

both preferred methods of sending commands to the machine. Cognitive commands due to 

the challenges of executing and training this command type may be preferred the least. 

Table 8: Summary of Evaluation of Training Success and Command Execution 

Evaluation of Training Success and Command Execution User 

Preference 

based on this 

evaluation 

Command 

Type 

Training 

Session Time 

Sample Ratio Frequency of 

Commands 

Speech Short High Low Preferable 

Cognitive Very Long Low Lowest Least 

Preferred 

Facial None or some 

training 

required 

High High Most Preferred 
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6.1 Future Work 

In retrospect, the fuzzy system that interprets the intended heading prior to 

correcting it, would need additional fuzzy sets to better determine the intention of the user. 

The fuzzy system that interprets intent can be improved by using levels of meditation and 

frustration to assist. For example, if the user is in a high level of meditation and a low level 

of frustration then the intent is more than likely true. Or if the user is in a low level of 

meditation and a high level of frustration then the intent is less likely to be true or more 

likely to be false. 

The fuzzy system for correcting the heading by using the concept of obstacle 

avoidance was simplified to use only 3 points of interest. This was due to limitations of the 

software. It is desired to use a complex fuzzy set instead of the traditional membership 

functions. A complex fuzzy set refers to a fuzzy set that is dynamically changing based on 

the full range of the distances of obstacles from the available sensors. Conceptually, this 

should be possible but the toolkits used for developing the software could not interpret a 

complex fuzzy set like that. During the next software development phase, a technique 

should be considered to take the raw LRF data and create a fuzzy set from it for objects 

that are near or far. The fuzzy set would change dynamically as the environment changes. 

This would be used instead of the current fuzzy sets which determined what objects were 

near or far from the Intended Heading, and a little bit left and right of it. In addition, the 

wheelchair algorithm would need to either change to accept the range of the LRF to go 

beyond the range of 180° to 270°, or temporarily save data on the location of nearby 

obstacles to reduce collisions. 
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One of the difficulties the subjects faced was the drifting and whipping motion of 

the wheelchair. The path planning and motion control of the powered wheelchair was 

originally used for an unmanned autonomous vehicle. The wheelchair navigation was not 

optimized for rider comfort. The algorithms for path planning and motion control should 

be revamped for user comfort. I recommend two possible solutions to this problem. One 

option for preventing the whipping motion is to change the path planning algorithm from 

a radial path planning concept to one that reduces the rotational motion required to get to 

a destination. In addition, there could be a simulated brake or install a physical brake 

system on the wheelchair platform. The second option, is to develop a fuzzy logic 

controller with a knowledge base created using the experience from the human study. This 

would be then used in an adaptive fuzzy control to optimize path planning which will 

smooth out motion control. 

The wheelchair navigation for autonomous mode is continuously moving and may 

not be desirable in all situations. There are no options to stop or do nothing in a situation 

where the user commands and the allowable paths that are deemed safe are conflicting. 

Also in some situations users may actually want to approach obstacles. For example, a user 

may want to read something posted on the wall or approach a friend in the hallway. The 

current system will avoid them such as turning away from them or travel past them. 

Subjects made comments that they preferred to move backwards instead of continuously 

moving forward if they missed their objective during an obstacle course session. The ability 

to move backwards only occurs during a dead end situation in the current system. This 

back up feature needs a user override so that the users have more control over the desired 
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paths. More conditional cases and back up options need to be added to the system to make 

better predictions of what is desirable for the wheelchair navigation. 

The type of commands for the BCI wheelchair may remain the same but used for 

different applications as well as changing the mechanism of which they are being activated. 

Speech commands could be shortened and streamlined for quick commands to reduce the 

length of execution. They may be used only for outdoor navigation to tell the wheelchair 

something along the lines of saying, “Drive me to the nearest grocery store.” Using 

keywords such as “drive” or “take me” to let the machine know the user wants to go 

somewhere. Using keywords such as “nearest” or “fastest” to determine the route that is 

taken. Other descriptive keywords could determine the particular location that can be 

located by using GPS. Cognitive commands can be used for toggling like turning 

something on and off or throttling like changing the speed of the wheelchair. Facial 

commands can continued to be used but maybe using a more discrete way. For example, a 

user may want to control their wheelchair while having a conversation with a peer but to 

constantly smirking or winking may be disruptive to their conversation. These are some 

ideas for improvements of the different applications these commands can be used for. 

For future human studies using the same procedures, the clearance between the 

obstacles and the wheelchair should be recorded. This can be used to evaluate the 

wheelchair navigation performance. Additionally, a different study could be made to see 

how close subjects actually want to get to obstacles to alert the safety tolerances. 

Ultimately, in the future, it would be desirable to work with target audience who 

would benefit the most from the intelligent wheelchair.  
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APPENDIX A 

The following are generated from LabVIEW using the Fuzzy System Designer tool of the 

fuzzy logic systems implemented for the human study. 

Fuzzy System for Intended Heading 

The filename for this system is Fuzzy v4.fs. 

Input variables 

Table 9: Input Variables in Fuzzy Logic Design for Intended Heading 

Name Range 
Number of membership 

functions 

Intent 0 to 4 3 

Concentration 0 to 100 3 

 

Output variables 

Table 10: Output Variable used in the Fuzzy Logic Design for Intended Heading 

Name Range 
Number of membership 

functions 

Intended Headiing -90 to 90 7 

 

Defuzzification method: Center of Maximum 

Input membership functions: 

Intent 

Table 11: “Intent” Membership Function Shape and Points used in the Fuzzy Logic 

Design for Intended Heading 

Membership function Shape Points 

Left Singleton 2 

Forward Singleton 1 

Right Singleton 3 
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Concentration 

Table 12:“Concentration” Membership Function Shape and Points used in the Fuzzy 

Logic Design for Intended Heading 

Membership function Shape Points 

Very Sure Trapezoid 50 ; 75 ; 100 ; 100 

Sure Triangle 25 ; 50 ; 75  

Not So Sure Trapezoid 0 ; 0 ; 25 ; 50 

 

Output membership functions 

 

Intended Direction 

Table 13: Output Membership Function Shape and Points used in the Fuzzy Logic 

Design for Intended Heading 

Membership function Shape Points 

Medium Forward Triangle -25 ; 0 ; 25  

Short Left Triangle -45 ; -22.5 ; 0  

Medium Left Triangle -67.5 ; -45 ; -22.5  

Wide Left Trapezoid -135 ; -112.5 ; -67.5 ; -45 

Short Right Triangle 0 ; 22.5 ; 45  

Medium Right Triangle 22.5 ; 45 ; 67.5  

Wide Right Trapezoid 45 ; 67.5 ; 112.5 ; 135 

 

 

Rules 

 

1. IF 'Intent' IS 'Left' AND 'Concentration' IS 'Very Sure' THEN 'Intended Direction' IS 

'Wide Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 



67 

 

2. IF 'Intent' IS 'Left' AND 'Concentration' IS 'Sure' THEN 'Intended Direction' IS 

'Medium Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

3. IF 'Intent' IS 'Left' AND 'Concentration' IS 'Not So Sure' THEN 'Intended Direction' IS 

'Short Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

4. IF 'Intent' IS 'Forward' AND 'Concentration' IS 'Very Sure' THEN 'Intended Direction' 

IS 'Medium Forward' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

5. IF 'Intent' IS 'Forward' AND 'Concentration' IS 'Sure' THEN 'Intended Direction' IS 

'Medium Forward' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

6. IF 'Intent' IS 'Forward' AND 'Concentration' IS 'Not So Sure' THEN 'Intended 

Direction' IS 'Medium Forward' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

7. IF 'Intent' IS 'Right' AND 'Concentration' IS 'Very Sure' THEN 'Intended Direction' IS 

'Wide Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

8. IF 'Intent' IS 'Right' AND 'Concentration' IS 'Sure' THEN 'Intended Direction' IS 

'Medium Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

9. IF 'Intent' IS 'Right' AND 'Concentration' IS 'Not So Sure' THEN 'Intended Direction' 

IS 'Short Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 
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APPENDIX B 

The following are generated from LabVIEW using the Fuzzy System Designer tool of the 

fuzzy logic systems implemented for the human study. 

Fuzzy System for Corrected Heading 

The filename for this system is CorrectedFL v6.fs. 

Input variables 

Table 14: Input Variables in Fuzzy Logic Design for Corrected Heading 

Name Range 
Number of membership 

functions 

Intended 0 to 1 2 

Left 0 to 1 2 

Right 0 to 1 2 

Intent 0 to 4 3 

 

Output variables 

Table 15: Output Variables in Fuzzy Logic Design for Corrected Heading 

Name Range 
Number of membership 

functions 

Corrected Heading -12 to 12 7 

 

Defuzzification method: Center of Maximum 
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Input membership functions 

 

Intended 

Table 16: “Intended” Membership Function Shape and Points used in the Fuzzy Logic 

Design for Corrected Heading 

Membership function Shape Points 

Near Trapezoid 0 ; 0 ; 0.25 ; 0.75 

Far Trapezoid 0.25 ; 0.75 ; 1 ; 1 

 

Left 

Table 17: “Left” Membership Function Shape and Points used in the Fuzzy Logic Design 

for Corrected Heading 

Membership function Shape Points 

Near Trapezoid 0 ; 0 ; 0.25 ; 0.75 

Far Trapezoid 0.25 ; 0.75 ; 1 ; 1 

 

Right 

Table 18: “Right” Membership Function Shape and Points used in the Fuzzy Logic 

Design for Corrected Heading 

Membership function Shape Points 

Near Trapezoid 0 ; 0 ; 0.25 ; 0.75 

Far Trapezoid 0.25 ; 0.75 ; 1 ; 1 
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Intent 

Table 19: “Intent” Membership Function Shape and Points used in the Fuzzy Logic 

Design for Corrected Heading 

Membership function Shape Points 

Forward Singleton 1 

Left Singleton 2 

Right Singleton 3 

 

 

Output membership functions 

 

Corrected Direction 

Table 20: Output Membership Function Shape and Points used in the Fuzzy Logic 

Design for Corrected Heading 

Membership function Shape Points 

No Change Triangle -3 ; 0 ; 3  

Turn Left Triangle -6 ; -3 ; 0  

Turn More Left Triangle -9 ; -6 ; -3  

Large Left Turn Trapezoid -12 ; -12 ; -9 ; -6 

Turn Right Triangle 0 ; 3 ; 6  

Turn More Right Triangle 3 ; 6 ; 9  

Large Right Turn Trapezoid 6 ; 9 ; 12 ; 12 

 

 

Rules 

 

1. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Large Right Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 
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2. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Large Left Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

3. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 

'Right' THEN 'Corrected Direction' IS 'Large Right Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

4. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Turn More Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

5. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Large Left Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

6. IF 'Intended' IS 'Near' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'Turn Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

7. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Turn More Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

8. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Turn Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

9. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'Large Right Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

10. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Turn More Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

11. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Turn More Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

12. IF 'Intended' IS 'Near' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'Turn More Right' 
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connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

13. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

14. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Large Left Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

15. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Near' AND 'Intent' IS 

'Right' THEN 'Corrected Direction' IS 'Large Right Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

16. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Turn Right' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

17. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'Large Left Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

18. IF 'Intended' IS 'Far' AND 'Left' IS 'Near' AND 'Right' IS 'Far' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

19. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'Turn Left' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

20. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 'Left' 

THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

21. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Near' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'Large Right Turn' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

22. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 

'Forward' THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

23. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 'Left' 
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THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 

 

24. IF 'Intended' IS 'Far' AND 'Left' IS 'Far' AND 'Right' IS 'Far' AND 'Intent' IS 'Right' 

THEN 'Corrected Direction' IS 'No Change' 

connective: AND (Minimum) ; implication: Minimum ; degree of support: 1.00 
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APPENDIX C 

The following are results collected during the human study. The values including the 

averages, standard deviations, run totals, maximum, minimum values. 

 

Table 21: Total Training Session Time Statistics 

Average Standard 

Deviation 

Maximum Minimum 

10.44 4.72 17.00 5.83 

 

Table 22: Time per Run Statistics 

Time per Run 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 188.58 33.41 271.41 110.04 

EEG 67.84 16.04 94.92 40.31 

Multimodal 78.61 6.76 86.88 65.39 

Average per 

Run 

133.26 62.73 271.41 40.31 

Autonomous 

Control 

Speech 140.54 88.19 439.64 45.85 

EEG 93.71 99.79 399.76 41.66 

Multimodal 93.90 68.00 263.39 40.06 

Average per 

Run 

112.68 89.80 439.64 40.06 

Fuzzy Logic 

Autonomous 

Control 

Speech 156.84 72.94 377.88 68.59 

EEG 68.12 30.94 131.64 41.37 

Multimodal 63.78 24.04 126.58 40.70 

Average per 

Run 

98.93 66.46 377.88 40.70 
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Table 23: Distance Travelled (Left Wheel) Statistics 

Distance Travelled Based on Left Motor Encoder Counts 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 9.25 0.97 10.45 6.28 

EEG 9.14 0.43 9.71 8.46 

Multimodal 9.31 0.73 10.68 8.43 

Average 

per Run 

9.24 0.82 10.68 6.28 

Autonomous 

Control 

Speech 20.32 14.38 71.47 7.98 

EEG 18.60 22.98 95.92 8.49 

Multimodal 15.95 10.90 46.41 8.41 

Average 

per Run 

18.53 16.84 95.92 7.98 

Fuzzy Logic 

Autonomous 

Control 

Speech 23.52 13.79 64.55 8.13 

EEG 14.41 7.73 25.83 8.67 

Multimodal 10.11 3.61 22.96 8.59 

Average 

per Run 

15.53 10.89 64.55 8.13 

 

Table 24: Distance Travelled (Right Wheel) Statistics 

Distance Travelled Based on Right Motor Encoder Counts 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 9.29 0.87 10.60 7.11 

EEG 9.20 0.36 9.76 8.58 

Multimodal 9.15 0.82 10.48 7.87 

Average 

per Run 

9.23 0.78 10.60 7.11 

Autonomous 

Control 

Speech 19.68 11.96 53.22 8.19 

EEG 19.83 26.60 104.32 8.42 

Multimodal 16.65 14.57 59.41 8.29 

Average 

per Run 

18.85 18.40 104.32 8.19 

Fuzzy Logic 

Autonomous 

Control 

Speech 22.78 10.41 50.95 8.14 

EEG 12.76 5.58 21.06 8.56 

Multimodal 9.30 2.45 18.42 8.28 

Average 

per Run 

14.60 9.08 50.95 8.14 
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Table 25: Frequency of Total Commands Executed per Run Statistics 

Commands Delivered 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 12.73 1.84 15.00 8.00 

EEG 45.67 17.64 68.00 19.00 

Multimodal 44.88 14.77 79.00 31.00 

Average 

per Run 

28.41 19.74 79.00 8.00 

Autonomous 

Control 

Speech 7.33 4.38 20.00 2.00 

EEG 58.25 56.50 216.00 14.00 

Multimodal 55.20 51.57 200.00 7.00 

Average 

per Run 

36.81 48.45 216.00 2.00 

Fuzzy Logic 

Autonomous 

Control 

Speech 7.86 3.54 16.00 3.00 

EEG 44.08 23.84 104.00 19.00 

Multimodal 41.07 28.12 110.00 16.00 

Average 

per Run 

28.41 24.68 110.00 3.00 

 

Table 26: Speech Commands Received per Run Statistics 

Speech Commands Received 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 12.73 1.84 15.00 8.00 

EEG 0.00 0.00 0.00 0.00 

Multimodal 1.00 1.05 3.00 0.00 

Average 

per Run 

3.52 5.14 15.00 0.00 

Autonomous 

Control 

Speech 7.33 4.38 4.38 20.00 

EEG 0.00 0.00 0.00 0.00 

Multimodal 1.43 1.86 7.00 0.00 

Average 

per Run 

1.89 2.93 16.00 0.00 

Fuzzy Logic 

Autonomous 

Control 

Speech 7.86 3.54 16.00 3.00 

EEG 0.00 0.00 0.00 0.00 

Multimodal 0.87 1.56 5.00 0.00 

Average 

per Run 

1.97 2.93 11.00 0.00 
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Table 27: Cognitive Commands Received per Run Statistics 

Cognitive Commands Received 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 5.83 2.79 8.00 0.00 

Multimodal 5.75 4.76 12.00 0.00 

Average 

per Run 

2.79 4.03 12.00 0.00 

Autonomous 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 5.50 7.56 30.00 0.00 

Multimodal 4.80 11.73 48.00 0.00 

Average 

per Run 

3.08 7.99 48.00 0.00 

Fuzzy Logic 

Autonomous 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 3.58 4.01 15.00 0.00 

Multimodal 3.13 6.45 26.00 0.00 

Average 

per Run 

1.95 4.42 26.00 0.00 

 

Table 28: Facial Commands Received per Run Statistics 

Facial Commands Received 

Control 

Mode 

Command 

Mode 

Average Standard 

Deviation 

Maximum Minimum 

Manual 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 39.83 12.28 63.00 20.00 

Multimodal 37.50 12.28 63.00 20.00 

Average per 

Run 

18.59 21.66 63.00 0.00 

Autonomous 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 52.75 53.55 216.00 12.00 

Multimodal 47.53 45.19 194.00 3.00 

Average per 

Run 

29.94 45.64 216.00 0.00 

Fuzzy Logic 

Autonomous 

Control 

Speech 0.00 0.00 0.00 0.00 

EEG 40.50 20.59 89.00 17.00 

Multimodal 36.20 28.63 109.00 3.00 

Average per 

Run 

24.76 26.06 109.00 0.00 
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Table 29: Run Totals 

 Command 

Mode 

Run 

Totals 

Manual 

Control 

Completed 

Runs 

Speech 15 

EEG 6 

Multimodal 8 

Average per 

Run 

29 

Autonomous 

Control 

Completed 

Runs 

Speech 21 

EEG 16 

Multimodal 15 

Average per 

Run 

52 

Fuzzy Logic 

Autonomous 

Control 

Completed 

Runs 

Speech 14 

EEG 12 

Multimodal 15 

Average per 

Run 

41 

All 

Completed 

Runs 

Speech 50 

EEG 34 

Multimodal 38 

Total 122 

Total Runs Speech 57 

EEG 46 

Multimodal 51 

Total 155 

 


